

Characterizing Acyl-carnitine Biosignatures for Schizophrenia: A Longitudinal Pre- and Post-**Treatment Study**

<u>Bing Cao¹</u>; Dongfang Wang¹; Zihang Pan²; Elisa Brietzke²; Roger S. McIntyre^{2, 3}; Jingyu Wang¹ ¹Peking University, Beijing, China; ²University Health Network, TORONTO, ON; ³Brain and Cognition Discovery Foundation, TORONTO, ON

Introduction

- Subjects with schizophrenia have high risks of metabolic abnormalities and bioenergetic dysfunction.
- > Acyl-carnitines involved in bioenergetic pathways provide potential biomarker targets for identifying early changes and onset characteristics in subjects with schizophrenia.

Results 3- Carnitines Concentrations

Carnitines	Pretreatment (n = 156)	Posttreatment (n = 156)	q ^a	FC ^b	VIP ^c	ROC	95% CI		
Concentration (µmol/L), median (IQR)									
C0	45.74 (34.22-60.09)	38.51 (28.57-56.16)	0.03	0.84	0.97	0.574	0.511, 0.638		
C2	10.29 (6.92-15.18)	7.62 (5.98-9.78)	3.44×10^{-08}	0.74	0.9	0.677	0.618, 0.736		
C3	0.42 (0.31-0.58)	0.55 (0.40-0.77)	1.74×10^{-09}	1.31	1.65	0.669	0.610, 0.729		
C4	0.17 (0.13-0.23)	0.25 (0.18-0.40)	4.54×10^{-11}	1.47	1.82	0.708	0.651, 0.766		
$C4-OH(C3-DC)(10^{-2})$	3.62 (1.95-7.81)	1.83 (1.34-2.79)	2.53×10^{-13}	0.51	1.54	0.734	0.678, 0.790		
$C5(10^{-2})$	8.30 (6.16-11.65)	9.94 (7.33-12.99)	1.93×10^{-03}	1.2	1.67	0.591	0.528, 0.654		
$C6(10^{-2})$	7.11 (4.02-10.68)	5.49 (3.57-8.00)	7.05×10^{-04}	0.77	0.9	0.621	0.559, 0.683		
$C6:1(10^{-2})$	0.67 (0.48-1.02)	0.58 (0.43-0.85)	0.002	0.87	0.61	0.581	0.518, 0.644		
$C8(10^{-2})$	13.78 (7.13-24.22)	9.11 (6.19-16.04)	0.004	0.66	0.77	0.605	0.542, 0.668		
$C10(10^{-2})$	17.9 (7.83-28.41)	9.61 (6.58-18.74)	7.05×10^{-04}	0.54	0.72	0.622	0.560, 0.684		
$C10:1(10^{-2})$	19.78 (10.51-31.22)	13.07 (8.35-21.66)	2.43×10^{-04}	0.66	0.75	0.632	0.570, 0.693		
$C10:2(10^{-2})$	1.97 (1.24-2.9)	1.71 (1.06-2.66)	0.04	0.87	0.92	0.562	0.499, 0.626		
$C12(10^{-2})$	4.70 (2.31-7.5)	3.35 (2.05-5.62)	0.01	0.71	0.96	0.596	0.532, 0.659		
$C12:1(10^{-2})$	8.38 (3.97-11.83)	4.67 (2.75-8.13)	1.63×10^{-04}	0.56	0.78	0.64	0.578, 0.701		
$C14(10^{-2})$	1.36 (0.93-2.01)	1.17 (0.88-1.61)	0.008	0.86	1.14	0.588	0.525, 0.651		
$C14:1(10^{-2})$	6.85 (3.63-10.23)	4.01 (2.3-7.23)	1.59×10^{-05}	0.59	0.76	0.655	0.594, 0.715		
$C14:1-OH(10^{-2})$	0.59 (0.28-0.83)	0.36 (0.2-0.57)	4.30×10^{-05}	0.61	0.74	0.646	0.585, 0.708		
$C14:2(10^{-2})$	7.62 (3.68-11.4)	4.50 (2.48-8.41)	1.06×10^{-04}	0.59	0.77	0.641	0.580, 0.703		
$C14:2-OH(10^{-2})$	0.28 (0.14-0.45)	0.19 (0.09-0.34)	7.05×10^{-04}	0.68	0.77	0.618	0.556, 0.681		
$C16(10^{-2})$	9.32 (7.32-11.47)	7.64 (6.2-9.52)	8.04×10^{-07}	0.82	0.83	0.655	0.595, 0.716		
$C16:1(10^{-2})$	2.92 (1.97-3.98)	1.99 (1.34-2.77)	1.14×10^{-08}	0.68	0.78	0.696	0.637, 0.754		
C16:1-OH (10 ⁻²)	0.19 (0.11-0.3)	0.13 (0.07-0.21)	9.36×10^{-05}	0.68	0.77	0.64	0.579, 0.701		
$C16:2(10^{-2})$	1.37 (0.83-1.9)	0.81 (0.48-1.4)	4.34×10^{-07}	0.59	0.82	0.677	0.618, 0.736		
C16:2-OH (10 ⁻²)	0.48 (0.3-0.65)	0.34 (0.22-0.53)	2.20×10^{-04}	0.71	0.77	0.632	0.571, 0.694		
$C16-OH(10^{-2})$	0.15 (0.09-0.23)	0.13 (0.08-0.18)	0.02	0.87	1.21	0.583	0.520, 0.646		
$C18(10^{-2})$	1.96 (1.62-2.6)	1.69 (1.28-2.11)	9.99×10^{-08}	0.86	0.64	0.641	0.580, 0.701		
C18:1 (10 ⁻²)	12.23 (9.84-15.07)	8.20 (5.62-11.20)	2.53×10^{-13}	0.67	1.08	0.734	0.678, 0.790		
C18:1-OH (10 ⁻²)	0.21 (0.12-0.30)	0.12 (0.06-0.19)	1.37×10^{-06}	0.57	0.74	0.688	0.629, 0.746		
$C18:2(10^{-2})$	13.31 (11.01-16.46)	9.91 (7.95-14.44)	2.19×10^{-07}	0.74	0.69	0.665	0.603, 0.727		

Objective

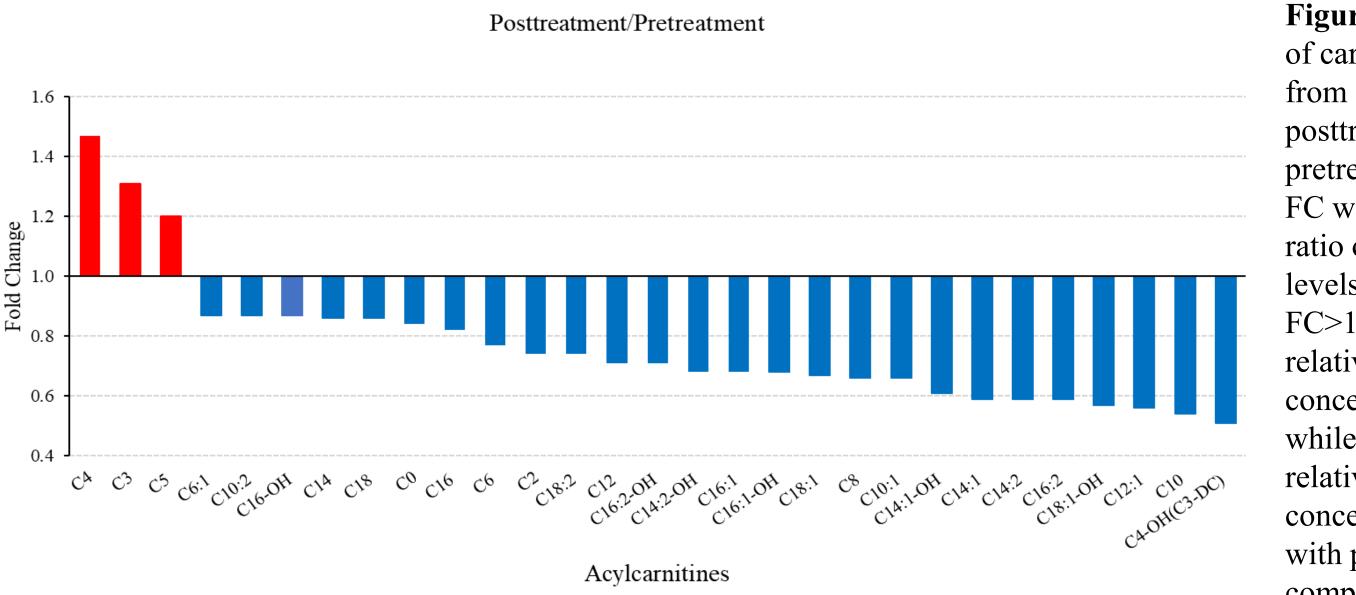
- > Compare levels of 29 carnitines between baseline (pretreatment) and after 8 weeks of treatment (posttreatment).
- > Find potential abnormalities of metabolic pathways involving acyl-carnitines to further explore the connection between schizophrenia and metabolism.

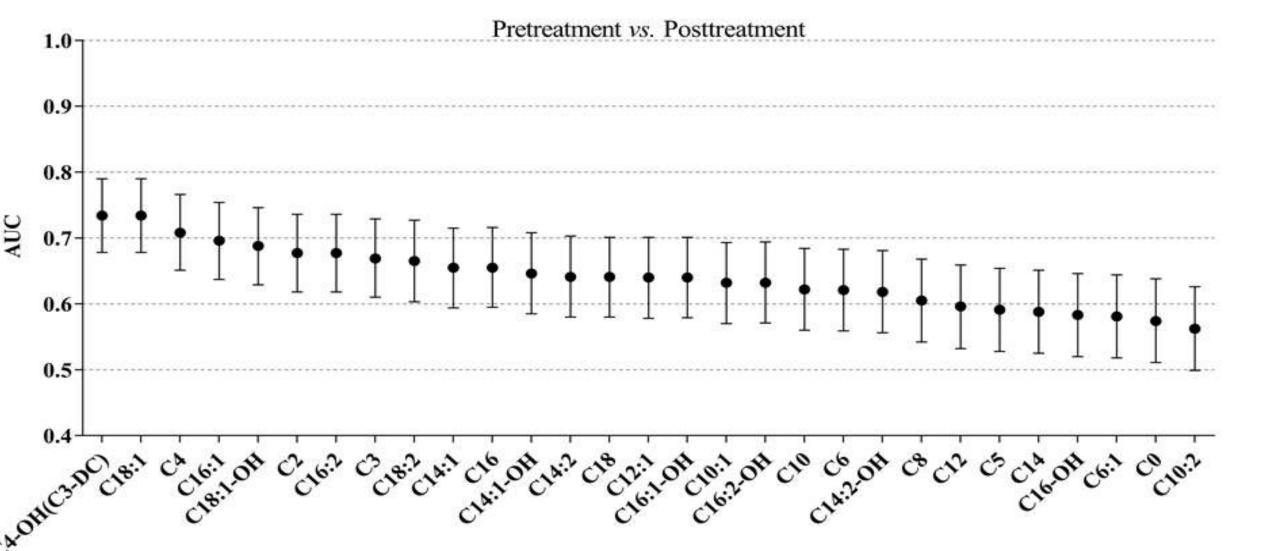
Participants

- 156 subjects with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria (DSM-IV)-defined schizophrenia
- All subjects were either first psychotic episode and drug-naïve or had recurrent schizophrenia and had not taken any antipsychotic drugs for a minimum of 4 weeks before hospitalization.
- Inclusion criteria: (1) age from 18 to 60 years old; (2) absence of diabetes mellitus, hyperlipidemia, cardiovascular disease, or any other severe or unstable medical illness; (3) absence of comorbidity with other psychiatric disorders, including alcohol and substance use disorders.

Materials							
Sample Preparation	Lab Analysis	Statistical Analysis					
• Carnitines were extracted from a 45µL plasma sample	 Waters BEH Amide column (2.1 × 100 mm, 1.7 μm) 	• χ^2 test, paired Student's t- test or Wilcovon signed-rank					

^a q values were FDR corrections for p values which were calculated from two-tailed paired t-test of log10-transformed data. ^b Fold changes were calculated as the ratios of median metabolite levels (posttreatment patients/pretreatment patients). ^c Variable importance in the projection (VIP) values were obtained from cross-validated PLS-DA models with a threshold of 1.0.


Results 4- FC and AUROC


through addition of 135µL of methanol solution (1:3, v/v) mixed with 5.4µL isotopically labeled internal standards (v/v=24/1).

- particles) • Thermo ScientificTM DionexTM UltiMateTM 3000 Rapid Separation liquid chromatography (RSLC) system
- Thermo ScientificTM Q ExactiveTM hybrid quadrupole Orbitrap mass spectrometer
- test or Wilcoxon signed-rank t-test
- Partial least squaresdiscriminant analysis (PLS-DA)
- Area under the receiveroperating characteristic curve (AUROC)

Results 1- Basic Characteristics

Variables	Pretreatment(n = 156)	Posttreatment (n = 156)	P value *
PANSS scores; mean (SD)			
PANSS total	88.82 (18.23)	50.67 (12.7)	< 0.001
PANSS positive	21.78 (8.09)	9.96(4.00)	< 0.001
PANSS negative	21.15 (7.99)	13.65 (5.25)	< 0.001
General psychopathology	42.84 (12.49)	25.67 (7.94)	< 0.001
BMI (kg/m ²); mean (SD)	23.89 (3.96)	24.70 (3.70)	< 0.001
Waist (cm); mean (SD)	88.71 (12.19)	90.63 (11.20)	< 0.001
FBG (mmol/L); mean (SD)	5.62 (1.80)	5.21 (1.00)	0.005
TG (mmol/L); mean (SD)	1.24 (0.82)	1.96 (1.15)	< 0.001
TC(mmol/L); mean (SD)	4.61 (1.08)	4.63 (0.92)	0.821
HDL (mmol/L); mean (SD)	1.42 (0.30)	1.35 (0.32)	0.012
LDL (mmol/L); mean (SD)	2.25 (0.45)	2.29 (0.46)	0.295
VLDL (mmol/L); mean (SD)	0.57 (0.38)	0.91 (0.52)	< 0.001

Figure 2. Fold change(FC) of carnitineas between from subjects with posttreatment and pretreatment patients. The FC was calculated as the ratio of the median carnitine levels between two groups. FC>1.0 indicated a relatively higher concentration of carnitines while FC<1.0 indicated a relatively lower concentration in subjects with posttreatment as compared to pretreatment.

Figure 3. The AUROCs and 95% CIs of carnitines for the comparison between posttreatment with pretreatment patients.

Acylcarnitines

*p values were calculated by two-tailed paired-samples. BMI, body mass index; FBG, fasting blood glucose; TG, triglyceride; TC, total cholesterol; HDL, high density lipoprotein; LDL, low density lipoprotein; VLDL, very low density lipoprotein; SD, standard deviation.

Results 2 – PLS-DA

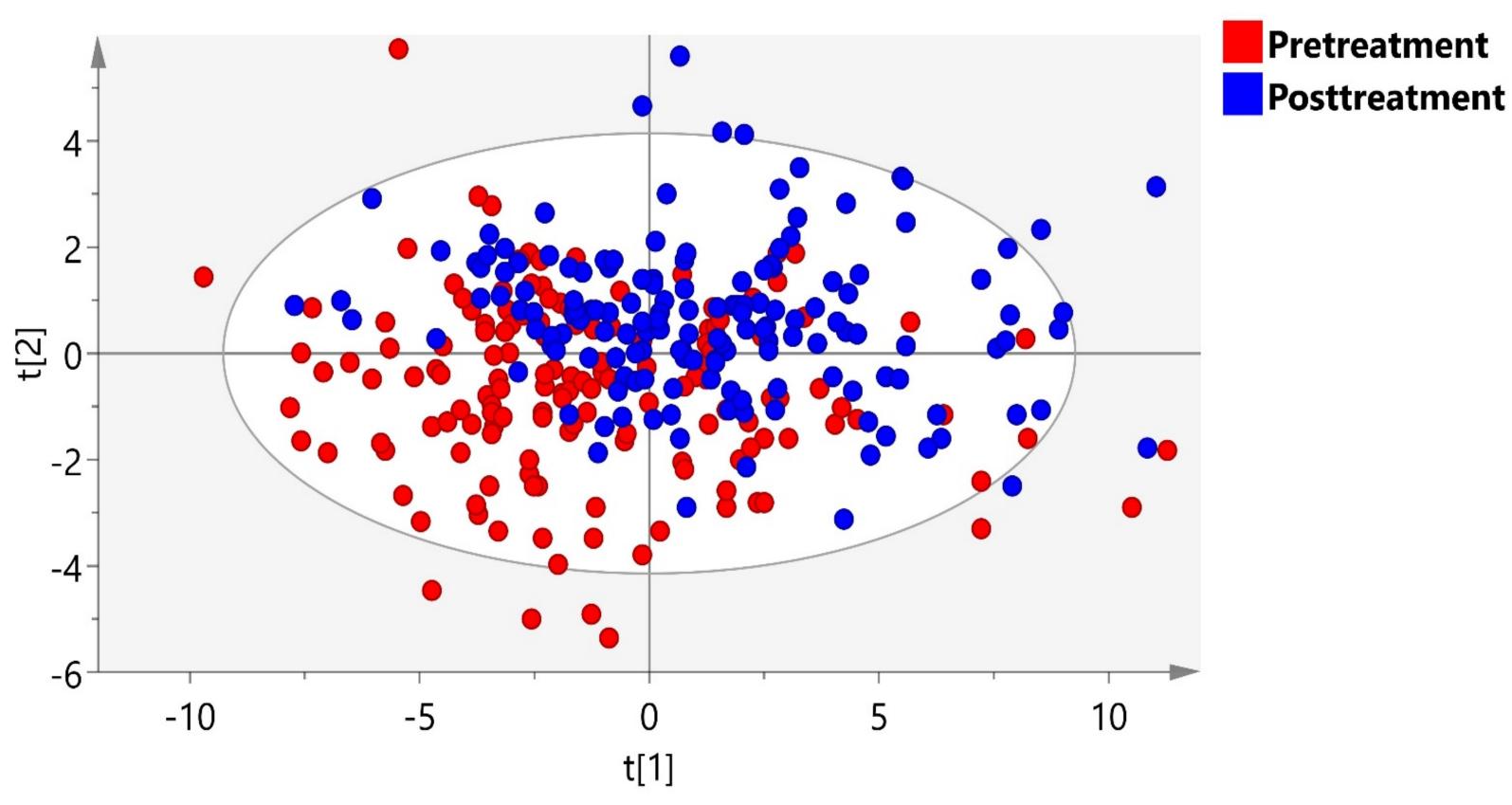


Figure 1. Score plot of the PLS-DA model for the differentiation of pretreatment and posttreatment subjects. R^2X (cum) = 0.744, R^2Y (cum) = 0.333, Q^2 (cum) = 0.277

Conclusion

- **Pretreatment > Posttreatment**: C4-OH (C3-DC), C6:1, C16 and C16:1
- **Pretreatment < Posttreatment**: C3, C4, C5, C8, C10:1, C10: 2 and C18
- Acyl-carnitines with abnormalities in cellular bioenergetics of schizophrenia.
- Acyl-carnitines can be potential targets for future investigations into their roles in the pathoetiology of schizophrenia.
- Acyl-carnitines present novel treatment and screening opportunities for patients with schizophrenia.

Works Cited

- Suvitaival T, Mantere O, Kieseppa T, Mattila I, Poho P, Hyotylainen T, et al. Serum metabolite profile associates with the development of metabolic co-morbidities in first-episode psychosis. *Transl Psychiatry* 2016; 6(11): e951.
- Wong S, Hannah-Shmouni F, Sinclair G, Sirrs S, Dahl M, Mattman A. Acylcarnitine profile in thyroid disease. Clin Biochem 2013; 46(1-2): 180-183.
- Sun L, Liang L, Gao X, Zhang H, Yao P, Hu Y, et al. Early Prediction of Developing Type 2 Diabetes by Plasma Acylcarnitines: A Population-Based Study. *Diabetes Care* 2016; **39**(9): 1563-1570.
- Kriisa K, Leppik L, Balotsev R, Ottas A, Soomets U, Koido K, et al. Profiling of Acylcarnitines in First Episode Psychosis before and after Antipsychotic Treatment. J Proteome Res 2017; 16(10): 3558-3566.
- Bruno A, Pandolfo G, Crucitti M, Lorusso S, Zoccali RA, Muscatello MR. Acetyl-L-Carnitine Augmentation of Clozapine in Partial-Responder Schizophrenia: A 12-Week, Open-Label Uncontrolled Preliminary Study. Clin Neuropharmacol 2016; 39(6): 277-280.