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Abstract

A summary is described about nuclear power reactors analyses and simulations in the last
decades with emphasis in recent developments for full 3D reactor core simulations using
highly advanced computing techniques. The development of the computer code AZKIND
is presented as a practical exercise. AZKIND is based on multi-group time dependent
neutron diffusion theory. A space discretization is applied using the nodal finite element
method RTN-0; for time discretization the θ-method is used. A high-performance com-
puting (HPC) methodology was implemented to solve the linear algebraic system. The
numerical solution of large matrix-vector systems for full 3D reactor cores is achieved with
acceleration tools from the open-source PARALUTION library. This acceleration consists
of threading thousands of arithmetic operations into GPUs. The acceleration is demon-
strated for different nuclear fuel arrays giving extremely large matrices. To consider the
thermal-hydraulic (TH) feedback, several strategies are nowadays implemented and
under development. In AZKIND, a simplified coupling between the neutron kinetics
(NK) model and TH model is implemented for reactor core simulations, for which the
TH variables are used to update nuclear data (cross sections). Test cases have been
documented in the literature and demonstrate the HPC capabilities in the field of nuclear
reactors analysis.
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1. Introduction

The mathematical models representing the nuclear reactor physics are based mainly on two

theoretical areas: neutron transport theory and neutron diffusion theory, where it is necessary to

remark that neutron diffusion theory is really a simplification of the neutron transport theory.

Numerical methods are used to solve the partial differential equations representing the nuclear

reactor physics, and these methods are derived from discretization techniques. For numerical

solutions in any scientific area, computational tools have been developed including software

and hardware. In the past, the former computer processing was the sequential execution of

computer commands, meaning to say that program tasks are carried out one after one. Modern

computational tools have been developed for parallel processing, executing several tasks

concurrently.

The computing branch dealing with the system architecture and appropriate software related to

the simultaneous execution of computer instructions and applications is known as parallel com-

puting science. Former developments in parallel computing were made in the late 1950s, follow-

ing the construction of supercomputers throughout the 1960s and 1970s. Nowadays, clusters are

the workhorse of scientific computing and are the dominant architecture in data centers.

Since the late 1950s, the performance of safety analyses was essential in the nuclear industry, in

research reactors, but mainly safety analyses of nuclear power plants for commercial purposes.

Scientific computing calculations were vital to these safety analyses, but with important limi-

tations in computer/computing capabilities. At the beginning, the objective was to give a

solution to partial differential equation models based on neutron diffusion or neutron trans-

port with technology and methods available in those years. Numerical techniques were used

first with finite differences and finite element approaches, and gradually up to now, with nodal

finite element methods (NFEMs). Despite the numerical method employed, the computer code

user faces the problem of solving extremely large algebraic systems challenging hardware/

software capabilities. Generation of results for any reactor simulation in considerable short

times is a desirable achievement for computer code users [1].

Recent developments of high-performance computer equipment and software have made the

use of supercomputing in many scientific areas possible. The appropriate selection of parallel

computing software, like newly developed linear algebra libraries, to be used in a specific

project may result in a suitable platform to simulate nuclear reactor states with relatively

prompt results.

Throughout the world, several research projects in the last decade have been developed with

the main objective of making full tridimensional (3D) coupling simulations of nuclear reactor

cores, leaving aside the obsolescence of the point kinetics theory. Most of the modern nuclear

reactor simulators are based on neutron transport theory, or on neutron diffusion theory, to

obtain detailed 3D results. As light water is used for cooling/moderating light water reactors

(LWRs), a comprehensive analysis of the reactor core physics must include thermal-hydraulic

phenomena, so that modern simulations perform reactor calculations with thermal-hydraulic

feedback coupled with neutron kinetics calculations.

New Trends in Nuclear Science6



All the discussions included in this chapter are centered in a simulator for light water reactors.

The computer code AZtlan KInetics in Neutron Diffusion (AZKIND) is part of the neutronic

codes selected for their implementation in the AZTLAN Platform1 project in which neutron

transport and neutron diffusion codes are being developed in Mexico. A (TH) model has been

implemented recently and coupled with the neutronic (NK) model, and both models are based

on HPC implementations.

2. Reactor core calculation overview

Although there has been growing interest in the transport-based core neutronics analysis

methods for a more accurate calculation with high-performance computers, it is yet impracti-

cal to apply them in the real core design activities because their performance is not so practical

on ordinary desktop or server computing machines. For this reason, most of the neutronics

codes for reactor core calculations are still subject to the two-step calculation procedure, which

consists of (1) homogenized group neutron parameters generation and (2) neutron diffusion

core calculation.

In the core calculation steps that are the main concern of this work, nodal codes based on the

diffusion theory have been used to determine the neutron multiplication factor and the

corresponding core neutron flux (or power) distribution. Practically, almost all nuclear reactor

simulation codes employ the two-group approach involving only fast and thermal neutron

energy groups for the applications to light water reactors (LWR). However, numerical calcula-

tions with the two-group structure are not appropriate in the analysis of cores loaded with

mixed oxide fuels or analysis of fast breeder reactors, since the neutron spectrum is influenced

more by the core environment, requiring much more energy groups than only two groups.

As settled in Ref. [2], even using a high-performance computer, a direct core calculation with

several tens of thousands of fuel pins is difficult to perform in its heterogeneous geometry

model form, using fine groups of a prepared reactor cross-section library. The Monte Carlo

method can handle such a core calculation (see also the Serpent code), but it is not easy to

obtain enough accuracy for a local calculation or small reactivity because of accompanying

statistical errors, besides the large calculation times. Instead of using neutron transport com-

puter codes, the nuclear design calculation is performed in two steps: (1) lattice calculation in a

two-dimensional infinite arrangement of fuel rods or assemblies for the generation of homog-

enized lattices jointly with their corresponding homogenized cross-sections and (2) core calcu-

lation in a three-dimensional whole core, with a neutron diffusion code using the information

of the previous step.

As shown in Figure 1 [2], the lattice calculation prepares few-group homogenized cross

sections which maintain the energy dependence (neutron spectrum) of nuclear reactions, and

these reduce the core calculation cost in terms of time and memory. The final core design

1

This work was performed under the auspices of the financial support from the National Strategic Project No. 212602

(AZTLAN Platform) as part of the Sectorial Fund for Energetic Sustainability CONACYT—SENER, Mexico.
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parameters are not concerned with continuous energy dependence, but spatial dependence,

such as power distribution, is important to avoid high local neutron fluxes or high absorbing

materials causing significant neutron flux gradients, mainly when safety analyses are performed

upon the final proposed core designs.

In the core calculations with space-dependent data (cross sections and neutron flux), the

effective cross sections are processed, with a little degradation in the accuracy as possible, by

using the results from the multi-group lattice calculation. Lattice code calculation and codes

are not discussed here.

There are two processes followed for lattice calculation. One is the homogenization to lessen

the space-dependent information and the other is group-collapsing to reduce the energy-

dependent information as shown in Figure 2. The fundamental idea of both methods is to

preserve neutron reaction rate. The next step is to consider the conservation of reaction rate in

the energy group G in the same manner as that in the homogenization.

The number of few groups depends on reactor type and computation code. Two or three

groups are adopted for the NK- and TH-coupled core calculation of LWRs and much more

groups (18, 33, etc.) are used for the core calculation of LMFRs (Liquid Metal Fast Reactors).

Currently, revised methods exist for the improvement of cross-sections generation using com-

puter codes dedicated to lattice calculation for few-groups approach, like in Ref. [3], where

three topics are involved: (1) improved treatment of neutron-multiplying scattering reactions;

(2) group constant generation in reflectors and other non-fissile regions, leading to the use of

discontinuity factors in neutron diffusion codes; and (3) homogenization in leakage-corrected

criticality spectrum, in which several leakage corrections are used to attain criticality, account-

ing for the non-physical infinite-lattice approximation. Another improvement was done in

Monte Carlo codes [4], implementing reliable multi-group cross-sections calculations for col-

lapsed flux spectrum. Ref. [4] focuses on calculating scattering cross sections, including the

group-to-group scattering.

The following sections contain, as a matter of example, summarized explanations of the AZKIND

nuclear reactor simulator in which the reactor physics is based on neutron diffusion theory.

Figure 1. Typical lattice calculation process flow for light water reactors [2].
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3. Neutron diffusion theory and nodal methods

3.1. Multi-group time-dependent neutron diffusion equations

For G neutron energy groups and Ip delayed neutron precursor concentrations, the neutron

diffusion kinetics equations are given by Eqs. (1) and (2) [5]. Although there has been a

growing interest in the transport-based core neutronics analysis methods for more accurate

calculation with high-performance computers, it is yet impractical to apply them in the real

core design activities because their performance is not so practical on ordinary desktop or

server computing machines. For this reason, most of the neutronics codes for reactor core

calculations are still subject to the two-step calculation procedure, which consists of homoge-

nized group neutron parameter generation and neutron diffusion core calculation
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In addition to boundary conditions for neutron fluxes, initial conditions must be satisfied by

neutron fluxes and neutron precursor functions. Parameters involved in the above equations

are described in [5].

Figure 2. Homogenization and group collapsing of cross sections [2].
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3.2. Spatial discretization

The spatial discretization of Eqs. (1) and (2) is strongly connected with the discretization of a

nuclear reactor core of volume Ω. Representing the neutron flux and the precursor concentra-

tions in terms of base functions defined over Ω, it is possible to write
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; t
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where Nf and Np are the number of unknowns to be determined for neutron flux and delayed

neutron precursors, respectively. Substituting expressions (3) and (4) into (1) and (2), and

applying the Galerkin process for spatial discretization, as described in [6], the resulting

algebraic system of equations can be expressed in a matrix notation as follows:
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: Table 1 contains the expres-

sions representing the calculation of each matrix coefficient.
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Table 1. Matrix elements from the spatial discretization.

New Trends in Nuclear Science10



3.3. NFE method in spatial discretization

As fully explained in [6] and summarized in [1], a simple NFE element is characterized by the

fact that for each node, the function unknowns to be determined are the (00) Legendre moment

(average) of the unknown function over each face of the node and the (000) Legendre moment

over the node volume. Figure 3(a) shows a physical domain Ω graphically represented after

generating an xyz mesh. Figure 3(b) shows a cuboid-type node with directions through the

faces: (x) Right, Left; (y) Near, Far; (z) Top, Bottom; and C for the average of the function over

the node volume. Taking into consideration the general form to build up nodal schemes [7], the

moments of a function (at edges and body) over a node like the one shown in Figure 3(b) can

be written for the NFE method RTN-0 (Raviart-Thomas-Nédélec).

In the NFE method RTN-0, the normalized zero-order Legendre polynomials defined over the

unit cell Ωijk = [�1,+1] � [�1,+1] � [�1,+1] and correlated to each physical cell Ωe = Ωijk =

[xi,xi + 1]� [yj,yj + 1]� [zk,zk + 1] are used to calculate the elements of the matrices in Eqs. (5) and (6).

The matrix elements are quantified introducing the following nodal basis functions [7]:
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where Plpq x; y; zð Þ ¼ Pl xð ÞPp yð ÞPq zð Þ.

Figure 3. Discretization of reactor volume Ω and a local node Ωe. (a) Domain Ω. (b) Physical local node Ωe.

Nuclear Reactor Simulation
http://dx.doi.org/10.5772/intechopen.79723

11



An extensive discussion on nodal diffusion methods can be found in Ref. [7] for space

discretization using simplification approaches for calculating the moments over a node.

3.4. Discretization of the time variable

Once the spatial discretization is done, the θ-method can be applied [6] for the discretization of

the time variable appearing in the algebraic system given by (5) and (6). For the time integra-

tion over the interval (0, T], this interval is divided in L time-steps [tl, tl + 1], and the following

approach is assumed:

ðtlþ1

tl

f tð Þdt ffi hl θf lþ1 þ 1� θð Þf l
� �

(8)

where hl ¼ tlþ1 � tl, f l ¼ f tlð Þ, f lþ1 ¼ f tlþ1ð Þ, and θ is the time integration parameter.

For time integration, parameters θf and θp for neutron flux and delayed neutron precursors are

considered with values in the interval [0, 1], giving different time integration schemes [6].

Once the formulation to be used for time integration is established, the NfG + NpI system of

equations that was spatially discretized, Eqs. (5) and (6) are discretized over the interval (0,T].

Integrating the referred equations over the time interval [tl, tl + 1] using approximation (8), the

following set of equations is generated:

Alþ1Φlþ1 ¼ Ql; l ¼ 0, 1, 2,…, ; (9)

Φlþ1 ¼ ϕ1
lþ1;…;ϕG

lþ1

� �T
; Ql ¼ S1f , l;…; SGf , l

h iT
;

For a known vector Φl the algebraic system (9) is solved for the neutron fluxes Φlþ1. Therefore,

the computing process requires an initial flux vector for the first time step, which is used in (9)

to determine new neutron fluxes at the end of the time step, thus using these neutron fluxes to

calculate a new delayed neutron precursor concentration vector. This process is sequentially

performed for each time step over the total time interval (0,T].

4. Reactor power distribution

Once the computer model to solve the reactor kinetics Eqs. (1) and (2) is able to provide the

neutron flux profile, the next objective is to know the power distribution in the reactor config-

uration. It is necessary to be aware that the neutron flux is by itself the shape of the power

distribution in multiplicative materials. The numerical methods presented in previous sections

to solve Eq. (9) produce an algorithm capable to obtain the neutron flux profile for a reactor

steady state. The calculated neutron flux has the following property over the domain Ω:

ϕ
�

�

�

� ¼ 1. To determine the real average neutron flux in the reactor core, ϕc, it is necessary to

specify the magnitude of the fluxes. For instance, a flux normalization factor ϕnorm can be

introduced such that ϕc ¼ ϕnormϕ
neutrons
cm2

∙seg

h i

:
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Theoretically, it would be best to determine the flux level which resulted in a critical reactor

eigenvalue λ0 ¼ 1ð Þ. This could be accomplished by coupling of the NK model with the TH

model of the whole reactor. In practice, however, the scaling factor ϕnorm is determined such

that the total generated thermal power corresponds to some user-specified value Pth,tot. Before

showing how this is done, the relation between the fluxes and the generated thermal power is

described. For a given discretization of the xy-plane with pieces of area Δa = Δx�Δy, the thermal

power Pth,tot can be expressed as follows:

Pth, tot ¼
X

Δa

ð

zt

zb

q000f zð Þda � dz, dV ¼ da � dz; (10)

where q000f is the volumetric heat generation rate in the fuel in units of [W/cm3], dV is a

differential fuel volume, and the limits zb and zt refer to the coordinates of the bottom and top

of the reactor core, respectively. For a given area Δa, the volumetric heat generation rate q000f zð Þ

in an elevation z may be written in terms of the fluxes as

q000f zð Þ ¼ ϕnormEfiss

X

G

g0¼1

Σ
g0

f zð Þϕg0 zð Þ; (11)

where ϕnorm is a dimensionless factor, Efiss is the energy released by a nuclear fission reaction in

[MeV/fission], and the sum over g0 is the volumetric fission rate in [fissions/(cm3
∙s)]. Thus,

Eq. (10) is written as

Pth, tot ¼ ϕnormEfiss

X
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X
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Σ
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In a more general way, for a reactor volume V composed by the union of sub-volumes Ve (see

Figure 3), the total thermal power can be expressed as

Pth, tot ¼ ϕnormEfiss

X
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e¼1

X

G
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Σ
g0

f , eϕ
g0

e Ve: (13)

Therefore, using the reference total thermal power specified by the code user, the flux normal-

ization factor can be written as

ϕnorm ¼ Pth, tot

X
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e¼1
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g0¼1

κ
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f , eϕ
g0

e Ve

2

4

3

5

�1

; (14)

where the factors “kappa-fission” are κ
g0

f , e ¼ EfissΣ
g0

f , e: With the flux normalization factor ϕnorm

calculated as above, the actual thermal power distributions in the reactor core can be calculated

using the current neutron flux in the reactor core ϕe
c ¼ ϕnormϕ

e. Nevertheless, it is necessary to

introduce the value of Efiss. This value is used as an average energy released of �200 MeV

(i.e.,), based on the energies released by the fission of the U235 nuclei [8].
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In summary, once the NK model is used to generate the neutron flux distribution in the reactor

core, expression (12) can be used to calculate the thermal power being generated along all

the nodes in a thermal-hydraulic channel of area Δa and height H. This thermal power can be

the axial power profile needed by the TH model to produce the thermal-hydraulic state

corresponding to the generated thermal power.

5. Neutronic and thermal-hydraulic coupling model (NK-TH)

The description contained in this section is based on a work published by Ceceñas in Ref. [9]

about a TH model developed for boiling water reactors. The TH model was modified from a

point kinetics approach with an extension of the NK model to 3D and implemented in the

development of AZKIND.

The treatment of neutron kinetics in [9] has been improved by coupling a 3D solution of the

neutron diffusion equations with an arrangement of TH channels in parallel. Each channel

independently contemplates three regions: (1) one phase, (2) subcooled boiling, and (3) bulk

boiling. The objective was to implement a detailed model of a nuclear reactor core, which is

somehow perturbed to simulate NK-TH coupling. These perturbations are obtained when the

power generated in a group of channels changes and thus affecting the TH state of each channel.

The original [9] TH model is based on a generic channel, which is adapted by transferring to it

the operational data as flow area, generated power, axial power profile, and subcooling,

among other parameters. Each channel is associated with a number of nuclear fuel assemblies

and an axial power profile. Although the neutron model is a two-dimensional model for the

radial power profile in each z-plane covering all the channels, information related to the axial

power distribution is considered for each individual channel. In Ref. [9], it is assumed that this

steady-state axial power profile is invariant over time, and it is used to weight the axial

averages of macroscopic cross sections and void fractions. To perform the numerical imple-

mentation of the model, the arrangement of channels is obtained by grouping the total core

assemblies into an appropriate number of thermal-hydraulic channels, which gives a definition

of a set of channels per quadrant.

For the implementation in AZKIND of the TH model of Ceceñas, the grouping of fuel assem-

blies was maintained for generating a reduced number of TH channels; operational data are

also used. The main difference is that the NK model recursively computes the axial power

profile for each channel, and this thermal power is the updated source of power for TH model.

Therefore, a “new” thermal-hydraulic condition is generated, and it is used by the NEMTAB

model to update the nuclear data to generate new thermal power profiles with the NK model.

The process is iterative, and it stops when the convergence is met. Convergence is achieved

when updated conditions do not change in both NK and TH models.

The NK-TH coupling in AZKIND performs core calculations as described above to obtain a

steady-state reactor core condition. For transient conditions in a time interval T, the NK-TH

coupling process is the same for each time step ΔT in T, that is, a different quasi-steady-state
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condition for each successive ΔT. Achieving converge for each ΔTwith respective reactor core

conditions means to produce a time-dependent behavior of the reactor condition over the total

time interval T.

The TH model comprises the solution of the mass, momentum, and energy conservation

equations in the three regions contemplated by the channel: (1) one phase, (2) subcooled

boiling, and (3) bulk boiling. The system receives heat through a non-uniform source whose

profile is axially defined plane by plane. This axial use of the power profile allows the inclusion

of a wide range of axial profiles, from relatively flat to profiles with their peak value at some

axial point in each channel in the core.

In the following subsections, there are several expressions for which the corresponding param-

eters are defined in Refs. [10, 11].

5.1. Heat transfer in the fuel

The heat transfer and temperature distribution in the fuel and cladding can be calculated by a

simple model where the heat diffusion equation is solved in one dimension (radial) for a fuel

rod, since the conduction in axial direction is small compared to the radial one, it can be

neglected. An energy balance per unit length yields

mf cpf
dTf

dt
¼ q0 tð Þ �

1

R0
g

Tf tð Þ � Tc tð Þ
� �

(15)

mccpc
dTc

dt
¼

1
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g

Tf tð Þ � Tc tð Þ
� �

�
1

R0
c

Tc tð Þ � Tm tð Þ
� �

(16)

where R0
g and R0

c represent thermal resistances per unit length. The coefficient of heat transfer

to the refrigerant fluid is calculated by the Dittus-Boelter or Chen correlation, depending on

the type of flow, which can be in one or two phases. These equations are used for the radial

averaging of the temperatures in the fuel rod.

5.2. Reactor coolant dynamics

The conservation equations of mass, energy, and momentum are applied in this case to a flow

of water along a vertical channel, where the dynamics of the fluid heated by the wall of the fuel

is modeled. Conservation equations can be expressed as [10]

∂rm

∂t
þ

∂Gm

∂z
¼ 0 (17)

∂Gm

∂t
þ

∂

∂z

G2
m

rþm
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fGm Gmj j

2Derm
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0 0
Ph
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(19)
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In this work, the conservation equations are solved by the Integral Moment method [11],

according to which it is assumed that the refrigerant is incompressible but thermally expand-

able, and the density is a function of enthalpy at a constant pressure

∂rm

∂t
¼

∂rm

∂hm

�

�

�

�

p

∂hm
∂t

þ
∂rm

∂p

�

�

�

�

hm

∂p

∂t
¼ Rh

∂hm
∂t

þ Rp
∂p

∂t
(20)

Neglecting terms related to pressure changes and wall friction forces, the energy equation is

simplified as

rm

∂hm

∂t
þGm

∂hm

∂z
¼

q
0 0
Ph

Az
(21)

where the axial flow variation can be obtained by

∂Gm

∂z
¼ �

Rh

rm

q
0 0
Ph

Az
�Gm

∂hm

∂z

	 


(22)

This equation provides the flow variations with respect to an average value imposed as a

boundary value or provided by the dynamics of the coolant recirculation system. Three

regions are defined by which the coolant circulates as it ascends into the channel: a one-phase

region, a subcooled boiling region, and a bulk boiling region. The first region begins at the

bottom of the channel, where the coolant enters with known enthalpy and ends at the point of

separation of the bubbles Zsc. The bulk temperature at this point is obtained by the Saha and

Zuber correlation. The subcooled boiling region ends when the bulk temperature reaches the

saturation temperature, and its axial location is determined by an energy balance. The

enthalpy distribution allows the calculation of the thermodynamic equilibrium quality, used

to calculate the flow quality. The axial distribution of the void fractions is calculated by

iteratively solving the equation for void fraction α and the Bankoff correlation slip (S):

α ¼
x

S
rg

rf

� �

þ x 1� S
rg

rf

� �� � , S ¼
1� α

ks � αþ 1� ksð Þαr
, (23)

where, in this case, the parameters ks and r are functions of the system pressure:

ks = 0.71 + 1.2865 � 10�3p, and, r = 3.33 � 2.56021 � 10�3p + 9.306 � 10�5p2.

The total pressure drop in the channel is made up of the contributions of each region. Every

term in each region includes the contribution by acceleration, gravity, and friction. For the

channel arrangement, the steady state is obtained by iterating the coolant flow rate of each

channel to obtain the same pressure drop for all of them. This iteration consists of a correction

to the flow defined by the deviation of the pressure drop of the channel with respect to the

average of all the channels:

Gkþ1
i ¼ Gk

i þ wGk
i

P
k
� Pk

i

Pk
i

 !

(24)
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where Gi is the flow rate for channel i, the index k represents the number of the iteration, w is

an arbitrary weight to control the convergence, and P is the average pressure drop of all

channels at iteration k, obtained as

P
k
¼

1

N

X

N

1¼1

Pk
i (25)

It is observed that even though the pressures are equaled, the value of the pressure drop in the

core is not imposed as a boundary condition. Convergence is achieved when the following

relationship is met:
PN

i¼1 P
k
� Pk

i

�

�

�

�

�

�
< ε . By changing the flow rate of the channel for each

iteration, the enthalpy and void fraction profiles are affected. It is necessary to recalculate the

TH solution at each iteration for all channels, achieving convergence when every parameter

involved in the thermal-hydraulic calculation remains unchanged.

5.3. Neutron kinetics: thermal-hydraulics (NK-TH) coupling model

Although reference [12] has important issues to be considered in the development of an NK-

TH-coupled model, those issues are not repeated here, but taken into account. The most direct

way of coupling NK module and TH module, as implemented in AZKIND, consists simply in

that axially both NK mesh and TH mesh have the same partition, making possible to assign an

NK node at position z to the TH node in the same position. This relationship is a one-to-one

node correspondence.

As it can be seen in Figure 4, before initiating the NK-TH feedback process, the initial nuclear

parameters and kinetics parameter (XS) are loaded from files constructed in NEMTAB format,

previously generated by means of a lattice code. Then, following the reading of the nuclear

reactor burn-up state and thermo-physics initial conditions, the XS parameters are obtained

from the Nemtab multi-dimensional tables by means of interpolation calculations.

The process continues as follows. The corresponding neutron flux is calculated in the NK

module with the mgcs numerical solver, and this power (initial neutron flux) is the heat source

to be assigned to the TH model. The axial power profile can be that of each fuel assembly

assigned to a unique TH channel or the power profile of a set of fuel assemblies assigned to a

TH channel. The axial power profile is the heat source for each node in the z-direction. Once

the axial power profiles have been constructed in the TH module, an initial thermal-hydraulic

state of the reactor system is calculated. The thermal-hydraulic state is calculated for each node

in the TH channels from the bottom to the top of the reactor core.

The important variables sent to the NK module are the fuel temperature (Tf), moderator

temperature (Tm), and moderator density (Dens). The XS parameters are updated using these

3D variables for interpolation in the NEMTAB tables. The next step is to calculate new 3D

power profiles to be sent to the TH module. This cyclic NK-TH calculation continues and stops

when the TH criterion and neutron-flux criterion are met. Stopping the cyclic calculation

means that the reactor power and thermal-hydraulic conditions have reached a steady state.
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6. High-performance computing in AZKIND

6.1. PARALUTION linear algebra library

HPC was implemented in AZKIND with the support of the linear algebra solvers library

PARALUTION [13]. This open-source library is optimized for parallel computing process

using graphics processing units (GPUs). For the numerical solution of an algebraic system

A v
!

¼b
!

PARALUTION includes numerical solvers to obtain the solution vector v
!

for a known

vector b
!

and a specific matrix A that can be a symmetric or a non-symmetric matrix being also

a sparse or a dense matrix. The working matrices in AZKIND are sparse non-symmetric

matrices, and the bicgstab solver [14] was used for reactor simulations. The matrix solvers in

PARALUTION are optimized to use on the non-zero (nnz) elements in the working matrices,

saving processing time and computer memory.

6.2. Parallel processing for neutronic model

To demonstrate the HPC implementation in AZKIND, as described in Ref. [1], very large

matrices were constructed for fine spatial discretization of arrangements of nuclear fuel

Figure 4. The NK-TH feedback process in AZKIND.
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assemblies of an LWR. Fine discretization means that each fuel assembly was subdivided in a

mesh of size 10 � 10. As an example, an arrangement of 6 � 6 fuel assemblies consists of a

square with 36 fine-discretized fuel assemblies. The corresponding algebraic system for each

fuel arrangement was solved with parallel processing performed by the bicgstab solver men-

tioned earlier. In Tables 2 and 3, the speedup of the different cases is shown [1] with a

remarkable performance. Despite the speedup for small matrices that is comparable for the

three computer architectures used, it is also important to notice that the speedup values listed

in Table 3 do not present a linear behavior, and the reason is because although more GPU

processor cores are used with massive data transference to and from the GPU, a data traffic

delay is present in the communication bus between the GPU and the CPU. For the analysis of

the computing acceleration or “speedup,” a definition of speedup is used in [15], known as

relative speedup or speedup ratio: S = T1/Tn, where T1 is the computing time using a single

processor (serial calculation) and Tn is the computing time using n processor cores. The “no

memory” insert listed in Table 2 is because for those large matrix dimensions, there is not

enough memory to load the matrix and solvers.

Figure 5 [1] shows the distribution of nuclear fuel assemblies in the core of a boiling water

reactor. Excepting the blue-shaded zone, colors are for different types of fuel assemblies. In the

plane xy, the mesh is 24 � 24, according to each fuel zone, and axially, there are 25 nodes. The

matrix for this coarse mesh (1,274,304 nnz) is comparable to the matrix of the fine mesh created

for the case of a unique assembly (case 1 � 1 listed in Table 2).

As described in [1], a reactor power transient was simulated as the capability to remove

neutrons was highly increased in the perturbed assembly shown in Figure 5. An increase as

Assemblies array:

Matrix dimension (n):

nnz elements:

1 � 1

126,200

1,332,400

2 � 2

492,800

5,305,600

4 � 4

1,947,200

21,174,400

6 � 6

4,363,200

47,606,400

10 � 10

12,080,000

132,160,000

Serial 24 124 372 994 2471

GTX 860 M 2.1 7.9 31.3 No memory No memory

Tesla K20c 1.3 4.0 16.6 40.1 No memory

GTX TITAN X 1.0 2.6 10.4 26.7 95.4

Table 2. Parallel processing time (seconds) in different architectures [1].

Assemblies 1 � 1 2 � 2 4 � 4 6 � 6 10 � 10

GTX 860 M 11 16 12 – –

Tesla K20c 18 31 22 24 –

GTX TITAN X 24 48 36 37 26

Table 3. Speedup comparison (S) [1].
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step function in the neutrons removal capability during 3 s is implemented in the perturbed

assembly, after that the perturbation finishes and the transient lasts for two more seconds,

giving a reactor power reduction. The time step used in this simulation was 0.1 s. Figure 6

shows the power behavior over time, departing from a normalized value of 1.0 and reducing

the power reactor to almost 80% of its original value. This reactor power transient was

simulated with the AZKIND code, running on the three different GPUs listed in Tables 2 and

3. The right side of Figure 6 shows the time spent by AZKIND in a logarithmic scale, running

in a sequential mode (Serial bar) and the times spent by each GPU card.

Figure 5. A map of fuel assemblies in an LWR [1].

Figure 6. Simulation of a reactor power transient—serial and parallel processing.
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7. Simulation of a reactor core condition

A simple example was prepared to show the capability of the AZKIND code running with NK-

TH coupling, and the thermal-hydraulic effect on power distribution is compared to the power

distribution resulted from the NK model running standalone.

This example was prepared for a two energy group, that is, fast neutrons and thermal neu-

trons. In LWR, the nuclear fissions of the fuel atoms are mainly coming from the thermal

neutrons present in the reactor core. The effect observed in Figure 7 is that the TH feedback

induces an increase in the thermal neutrons population and so increasing power. As the

coolant/moderator enters the reactor core through the bottom part of the reactor and the core

Figure 7. Axial power peaking profile location.
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is beginning the production cycle, the core design allows more power generation in the first

third of the core active fuel. Also, as it was expected, in the map of fuel assemblies of the

reactor core, the location of the fuel assembly with the highest generation of thermal power

remained unchanged with the insertion of TH feedback.

8. Some advances on nuclear reactor simulation

In the last two decades, there have been significant advances in the development of nuclear

reactor codes for 3D simulation with coupling NK-TH, supported with new modeling tech-

niques and modern computing capabilities in software and hardware. Some examples of these

advances are listed subsequently:

1. DYNSUB: Pin-based coupling of the simplified transport (SP3) version of DYN3D with the

sub-channel code SUBCHANFLOW. See [16, 17]. The new coupled code system allows for a

more realistic description of the core behavior under steady state and transient conditions.

DYNSUB has successfully been applied to analyze the behavior of one eight of a PWR core

during an REA transient by a pin-by-pin simulation consisting of a huge number of nodes.

Some insights are pointed out on the convergence process with a detailed coupling solution

modeling neighbor sub-channels and modeling adjacent assembly channels.

2. DYN3D: The code comprises various 3D neutron kinetics solvers, a thermal-hydraulics

reactor core model, and a thermo-mechanical fuel rod model, see [18]. The following topics

are delineated in the reference: the latest developments of models and methods, a status of

verification and validation; code applications for selected safety analyses; multi-physics

code couplings to thermal-hydraulic system codes, CFD, and sub-channel codes as well as

to the fuel performance code TRANSURANUS.

3. TRACE/PARCS: See [19]. The study of the coupling capability of the TRACE and PARCS

codes by analyzing the “Main Steam Line Break (MSLB) benchmark problem,” consisting

of a double-ended MSLB accident assumed to occur in the Babcock and Wilcox Three Mile

Island Unit 1. The model TRACE/PARCS generated data showing that these codes have

the capability to predict expected phenomena typical of this transient and the related NK-

TH feedback.

4. COBAYA3: See [20]. This reference describes a multi-physics system of codes including the

3D multi-group neutron diffusion codes, ANDES and COBAYA3-PBP, coupled with the

sub-channel thermal-hydraulic codes COBRA-TF, COBRA-IIIc, and SUBCHANFLOW, for

the simulation of LWR core transients. Implementation of the PARALUTION library to

solve sparse systems of linear equations was done. It features several types of iterative

solvers and preconditioners which can run on both multi-core CPUs and GPU devices

without any modification from the interface point of view. By exploring this technology,

namely the implementation of the PARALUTION library in COBAYA3, the code can

decrease the solution time of the sparse linear systems by a factor of 5.15 on GPU and

2.56 on a multi-core CPU using standard hardware.
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5. CNFR: See [21]. This reference summarizes three methods, implemented for multi-core

CPU and GPU, to evaluate fuel burn-up in a pressurized light water nuclear reactor (PWR)

using the solutions of a large system of coupled ordinary differential equations. The

reactor physics simulation of a PWR with burn-up calculations spends long execution

times, so that performance improvement using GPU can imply in a better core design

and thus extended fuel life cycle. The results with parallel computing exhibit speed

improvement exceeding 200 times over the sequential solver, within 1% accuracy.

9. Conclusions and remarks

The state of the art in the topic of nuclear reactor simulations shows significant advances in the

development of computer codes. A wide range of applications focusing, besides on improving

nuclear safety, on more efficient analyses to improve fuel cycles/depletion have been found in a

recent study. A considerable “saving time” factor in obtaining nuclear reactor analyses has

been observed.

One important part of a nuclear reactor simulator is the benchmarking process to demonstrate

reliability and repeatability in the simulation of real cases, for which data from reactor opera-

tion or comprehensive data from experiments are well documented. In this sense, extensive

documentation is necessary for theoretical basis, numerical techniques and tools, and valida-

tion of both codes and simulation models.
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