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1. Introduction 

Game theory is a field of applied mathematics for analyzing complex interactions among 

entities. It is basically a collection of analytic tools that enables distributed decision process. 

Game theory (GT) provides insights into any economic, political, or social situation that 

involves individuals with different preferences. GT is used in economics, political science and 

biology to model competition and cooperation among entities, and the role of 

threats/punishments in long term relations. Contemporary social science is based on game 

theory, economics, and psychology in which mathematical logic is applied. The formation of 

coalitions or alliances is omnipresent in many applications. For example, in political games, 

parties, or individuals can form coalitions for improving their voting power. Recently, 

computer science and engineering have been added to the list of scientific areas applying GT. 

While in optimization theory the goal is to optimize a single objective over one decision 

variable, game theory studies multi-agent decision problems. In social sciences and 

economics, the focus of game is the design of right incentives/payoffs; in engineering it 

comes to efficiency – how to design efficient decentralized schemes that take into account 

incentives. However, there are still similarities when applying game theory to different 

disciplines. For example, a measurement allocation framework for localization in wireless 

networks, based on the idea to allocate more measurements to the nodes which contribute 

more, mimics a capitalist society where the gains are mostly reinvested where more profit is 

expected. It also replicates the concept of natural selection in population genetics. 

In general, a game consists of a set of players (decision makers), while each player has its 

strategy, whereby utility (payoff) for each player measures its level of satisfaction. Each 

player’s objective is to maximize the expected value of its own payoff (Myerson, 1997). 

(Srivastava V., et all, 2005) proposed a mapping of network components to game 

components according to the following table:  
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Network component Game component 

Nodes Players 

Available adaptations Action set 

Performance metrics Utility function 

Table 1. Classification of coalitional games 

Game theory can be applied to communication networks from several aspects: at the 

physical layer, link layer and network layer. However, there a certain challenges when 

applying game theory principles to wireless networks. For example, GT assumes that the 

players act rationally, which does not exactly reflect real systems. Furthermore, realistic 

scenarios necessitate complex models, yet the main challenge is to select the appropriate 

utility function, due to a lack of analytical models that would map each node’s available 

actions to higher layer metrics.  

1.1. Notation 

A normal form representation of a game is given by G = <N, Si, {ui}>, where N = {1,…,n} is the 

set of n of players. We indicate an individual player as i ∈ N and each player i has an 

associated set Si ={si1,…,sim} of possible strategies from which, in a pure strategy normal form 

game, it chooses a single strategy si ∈ Si to be realized.  s = {s1,…,sN} is the strategy profile of 

N players, i.e., the outcome of the game, while s-i is the strategy profile of all players but the 

i-th, and {ui} = {u1,…,uN} is the utility function of the i-th player. The utility function 

measures the preferences of each player to a given strategy, assuming the strategies of other 

players are known. If s is a strategy profile played in a game, then ui(s) denotes a payoff 

function defining i’s payoff as an outcome of s. 

There are two main branches of game theory: cooperative and non-cooperative. Non-

cooperative GT addresses interactions among individual players, each aiming to achieve 

their own goal, namely improving its utility, or reducing its costs. Specifically, in 

cooperative games the utility does not only depend on a single node’s strategy, but also on 

the strategies of other nodes within a coalition. Hence, cooperative game theory is more 

elaborate. Especially in realistic situations where entities can participate in several coalitions, 

the potential structure of these coalition allocations is more complex; thus there is a need to 

for concepts that could reduce the complexity, without identifying and comparing all of the 

2n – 1 possible coalitions.  

One of the concepts for solving non-cooperative games is the Nash equilibrium. Nash 

equilibrium is a stable solution of the game such that no player has reason to unilaterally 

change its action, since it may not improve its utility function. More precisely, a strategy 

profile set s*  = {s*1,…,s*N} is a NE if for ∀si ∈ Si  and for ∀i ∈	N,  u(s*i , s*-i) ≥ u(si , s*-i) . A 

strategy set that corresponds to the Nash equilibrium signifies a consistent prediction of the 

outcome of the game. In other words, if all players predict that Nash equilibrium will occur, 

there is no player in the game that has incentives to choose a different strategy. Any game 

allowing mixed strategies has at least one NE. However, some pure strategy normal form 
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games may not have a NE solution at all. Therefore it is relevant to formulate the utility 

function in such a way that the game has at least one equilibrium point. 

When efficiency is important, Pareto Optimality is used. The existence of Nash Equilibrium 

does not assure that the outcome of a game will be beneficial for all players. Mathematically 

formulated, a strategy set s  = {s1,…,sN} is Pareto optimal if and only if there exists no other 

strategy set t = {t1,…,tN} such that ui (t) ≥ ui (s) for ∀i ∈ N , and for some k ∈ N , uk (t) > uk (s) 

In other words, Pareto optimal outcome cannot be improved upon without hurting at least 

one player. 

In this chapter we will focus on cooperative game theory and its application in localization 

algorithms.  

2. Coalitional games in wireless communications 

A coalition formation game is uniquely defined by the pair (N , v). N = {1,2,…,N} denotes the 

set of players, e.g., network entities, pursuing to form sets in order to collaborate with each 

other. Any nonempty subset S ∈ N is called a coalition. Coalitions with cardinality |S| = 1, 

are called singleton coalitions and N is called the grand coalition. The set of all coalitions in a 

game is called coalition structure and is denoted by P. v denotes the coalition value which 

quantifies the worth of a coalition in a game. 

2.1. Coalitional games – background 

Coalitional games in characteristic form are classified into two types based on the 

distributing of gains among users in a coalition:  

i. A transferable utility (TU) game where the total gain achieved can be apportioned in 

any manner between the users in a coalition subject to feasibility constraints, and  

ii. A non-transferable utility (NTU) game where the apportioning strategies have 

additional constraints that prevent arbitrary apportioning. Each payoff is dependent on 

joint actions within coalition. 

In TU games, the cooperation possibilities of a game can be defined by a characteristic 

function v that assigns a value v(S) to every coalition S. Here v(S) is called the value of 

coalition S, and it characterizes the total amount of transferable utility that the members of S 

could gain without any help from the players outside of S. In general, we use the term 

coalition structure to refer to any mathematical structure that describes which coalitions 

(within the set of all 2n – 1 possible coalitions) can effectively negotiate in a coalitional game.   

The overall goal is to find a coalition structure such that no group of players has the 

incentive to leave it – so called stable coalition structure. Superadditivity is defined in TU 

games as a property of the characteristic function: 

           1 2 1 2 1 2  ;   ,  , 1 2 .v S U S v S v S S S N S S   (1) 
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In other words, a TU game is superadditive if cooperation is always rewarding. Thus, grand 

coalition, i.e., the coalition comprising all sensors, is beneficial. The most notable solution 

concept for the coalition formation in superadditive games is the core; other solutions 

include Shapley value, kernel, and Nucleolus.  

The superadditivity concept can be extended to NTU games, by: 

           
  1 2 1 21 1

,  { | }i ji S j S
x v S x v S v S U Sx  (2) 

In case of TU games, goal is to find a coalition structure that maximizes the total utility, 

while in NTU games it is the structure with Pareto optimal payoff distribution. A 

centralized approach can be used, but it is generally NP-complete. The reason is that finding 

an optimal partition requires iterating over all the partitions of the player set N. The number 

of partitions grows exponentially with the number of players in N. For example, for a game 

where N has 10 elements, the number of partitions that a centralized approach has to go 

through is 115,975 (easily computed through the Bell number (Saad W., et all, 2009c). 

Therefore, using a centralized approach for finding an optimal partition is, generally, 

computationally complex and not very practical. Nevertheless, many applications require 

the coalition formation process to take place in a distributed manner, so that the players 

have autonomy on the decision whether or not to join a coalition. Indeed, the complexity of 

the centralized approach has initiated a growth in the coalition formation literature, with the 

goal to find low complexity and distributed algorithms for establishing coalitions. 

A novel classification of coalitional games has been proposed in (Saad W., et all, 2009c). 

Games are grouped into three types: canonical games, coalition formation games and 

coalitional graph games. Their properties are shown in the following table. 

 

Canonical coalitional games Coalition formation games Coalitional graph games 

Grand coalition is the 

optimal structure 

Resulting coalitional 

structure depends on gains 

and costs 

Interaction of players 

depends on communication 

graph structure 

Goal: stabilize the grand 

coalition 

Goal: form appropriate 

coalition structure 

Goal: stabilize grand 

coalition or form network 

topology taking into 

account the communication 

graph 

Table 2. Classification of coalitional games 

In this chapter we will focus on coalition formation games. A generalized approach to 

coalition formation has been proposed in (Apt & Witzel, 2006). The notion of stable partition 

is used when there does not exist any other partition that would improve the total gain. In 

order to illustrate the coalition formation procedure, an abstract preference operator   has 

been introduced, and coalitions are being transformed using merge and split rules.  
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2.2. Applications to communication networks 

From the communication networks perspective, there is the need for developing distributed 

and flexible wireless networks, where the units make independent and rational strategic 

decisions. In addition, low complexity distributed algorithms are required, to capably 

represent collaborative scenarios between network entities. Non-cooperative games have 

been mainly applied for applications such as spectrum sharing, power control or resource 

allocation – mainly settings that can be seen as competitive scenarios. On the other hand, 

cooperative game theory provides analytical tools to study the behavior of rational players 

in cooperative scenarios. In particular, coalitional games show to be a very powerful tool for 

designing fair, efficient and robust cooperation strategies in communication networks. In 

order to highlight an expanding application field, in the following section we will give some 

examples on use of cooperative game theory for communication networks, and specifically 

for localization purposes.  

Physical layer security has been studied via coalitional games in (Saad W., et all, 2009a), (Saad 

W., et all, 2009b). In a distributed way, wireless users organize themselves into coalitions (see 

Figure 1.) while maximizing their secrecy capacity - maximum rate of secret information sent 

from a wireless node to its destination in the presence of eavesdroppers (Saad W., et all, 

2009a). This utility maximization is taking into consideration the costs occurring during 

information exchange. On the other hand, (Saad W., et all, 2009b) introduces a cooperation 

protocol for eavesdropper (attacker) cooperation. Here the utility function is formulated to 

capture the damage caused by the attackers, and the costs in terms of time spent for 

communication among the eavesdroppers. In both cases, independent disjoint coalitions will 

form in the network, as the grand coalition would involve various communication costs.  

 

Figure 1. Wireless users organized into coalitions 

(Mathur S., et all, 2006) and (Mathur S., et all, 2008) consider coalition structures in a 

wireless network where users are permitted to cooperate, while maximizing their own rates. 
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Here both transmitter and receiver cooperation in an interference channel is studied. Several 

models have been analyzed: a TU and an NTU model, and with perfect and partial 

cooperation. In (Mathur S., et all, 2006), the feasibility and stability of the grand coalition for 

all cases was evaluated, while the work in (Mathur S., et all, 2008) is focused on stable 

coalition structures. In (Saad W., et all, 2008) a game theoretical framework for virtual 

MIMO has been proposed, where single antenna transmitters self-organize into coalitions. 

The utility function denotes the total achieved capacity, and also includes the power 

constraint to account for the costs. 

In (Hao X., et all, 2011) the multi-channel spectrum sensing problem is formulated as a 

coalitional game, where players are secondary users that cooperatively sense the licensed 

channels of primary users.  The utility of each coalition reflects the sensing accuracy and 

energy efficiency. Distributed algorithms have been proposed to determine a stable coalition 

structure, maximizing the overall utility in the system. More game theory based solutions 

for spectrum sensing in cognitive radio have been proposed in (Khan Z., et all, 2010) and 

(Saad W., et all, 2009c). 

A network-level study using coalition formation has been performed in (Singh C., et all, 

2012), considering a scenario where service providers are cooperating in order to enhance 

the usage of the available resources. Particularly, different providers may serve each other’s 

customers and thereby increase the throughput and reduce the overall energy consumption. 

The model supports multi-hop networks and is not limited to stationary users and fixed 

channel conditions. A game theory based framework is used to determine optimal decisions 

and a rational basis for sharing the aggregate utility among providers. The optimal coalition 

structure can be obtained by means of convex optimization. 

Other applications of game theory include packet forwarding in ad hoc networks, 

distributed cooperative source coding, routing problems, and localization algorithms, which 

will be more elaborated in the next chapter. 

3. Game theory for localization algorithms 

The expansion and enhancement of wireless and mobile devices has aroused the demand of 

context-aware applications, in which location is often viewed as one of the most important 

contexts. Those applications include pervasive medical care, wireless sensor network 

surveillance, mobile peer-to-peer computing etc. The essential purpose of wireless sensor 

networks (WSN) is to provide information about observed events. Before the WSN can be 

exploited for various applications, knowledge about sensors’ locations is crucial, as 

otherwise the data might become meaningless. Furthermore, location information can be 

used to improve the communication system itself. Geo-location information can serve as 

complementary data to estimate and predict critical parameters for improving wireless 

communication networks, such as setting up location dependent load balancing schemes 

(Yanmaz E. & Tonguz O.K.). Several studies have shown how the efficiency of available 

radio resources can be improved by the availability of position information to provide 

accurate scheduling and link adaptation (Tang S., et all, 2009), or even the prediction of 
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required resources in a highly dynamic scenario. Additionally, localizing the nodes can help 

reduce power consumption in multi hop wireless networks. 

Global navigation satellite systems (GNSS), such as Global Positioning system (GPS) or the 

European satellite navigation system Galileo, are providing positioning information. 

However their accuracy strongly depends on the scenario. Especially in dense urban or 

indoor environments, navigation based on GNSS becomes inaccurate or impossible, since 

the necessary amount of 4 directly visible satellites is not reached. In order to provide 

accurate MT position estimation, the MT position shall be estimated with alternative 

techniques focusing on radio signals which are provided by the terrestrial RANs itself. The 

rapid deployment of WLAN and WPAN technologies, especially in dense indoor 

environments, made it another compelling choice for localization, relying only on the 

existing network infrastructure. 

Generally, the localization process assumes a number of location aware nodes, called 

anchors. In a typical two-stage positioning system, the first phase is the ranging phase, 

where nodes estimate the distances to their neighbors by observing time of arrival, received 

signal strength or some other distance dependent signal metric. In the second phase, nodes 

use the ranging information and the known anchor position for calculation of their 

coordinates.  

 

Figure 2. Two-stage positioning system 

One simple way for position calculation is trilateration / triangulation, based on the least 

square algorithm. Trilateration uses distance estimates to anchor nodes as input, and 

estimates target’s position based on geometric properties of triangles. Each estimated 

distance represents the radius of a circle centered at the corresponding reference node. For 

2-D positioning, measurements from at least three reference nodes are required, and the 

location is obtained as the intersection of circles. This method is also used for GPS. Having 

in mind the errors in estimated distances to the anchors, the geometrical trilateration 

technique can only provide a region of uncertainty, instead of a single point. Therefore the 

solution is based on iterative algorithms to obtain the node position by formulating and 

solving a set of nonlinear equations. 

The availability of positioning information depends on the existing infrastructure such as 

GPS satellites or base stations. Cooperative positioning techniques are used in scenarios 

where non-cooperative solutions are not feasible, or do not perform well in terms of 

accuracy, cost and complexity. The challenge is to allow nodes which are not in range of a 

sufficient number of anchors to be located, and hereby increase localization performance in 

terms of both accuracy and coverage. This can be achieved by means of iterative 

multilateration, among other solutions. Iterative multilateration is a way to expand 

localization coverage throughout the network in a step-by-step fashion, allowing also nodes 

which are not in range of a sufficient number of references to be localized. In this sense, 

Ranging Positioning algorithm
received 

signal metric

distance 

estimation

target 

position
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coverage is the fraction of nodes that have an accurate position estimate. It follows an 

iterative scheme: once an unknown node estimates its position, it becomes an anchor and 

broadcasts its position estimate to all neighboring nodes. The process is repeated until all 

nodes that can have three or more reference nodes obtain a position estimate. As a newly 

localized node is becoming new anchor for its neighbors, the estimation error of the first 

node can propagate to other nodes and eventually get amplified. Over iterations the error 

could spread throughout the network, leading to abundant error in large topologies.  

 

Figure 3. Iterative multilateration 

The number of actively participating nodes should be kept to a minimum, and therefore an 

appropriate cooperation subset has to be chosen, while the other nodes can be ignored. Such 

a restrictive and selective use of references is crucial in networks with limited resources. A 

frequently used method is to select the nearest k anchor nodes. However, this method does 

not take into account node geometry. Therefore other metrics such as geometric dilution of 

precision, Cramer Rao lower bound or stochastic observability are more appropriate. 

The geometric conditioning on localization accuracy is derived in the GDOP (geometric 

dilution of precision) metric (Spirito M.A., 2001). In brief, when reference nodes are well 

separated around the target, the GDOP is lower. 

Localization can be defined as an estimation problem where measurements like wireless 

signal strength, angle or time of arrival are provided to an estimator (i.e. the localization 

algorithm) to obtain the most likely position in the assumed coordinate system. The Cramer 

Rao Lower bound (CRLB) provides a lower bound on covariance of any unbiased estimator. 

In case of localization, the CRLB captures information about node geometry and ranging 

quality, i.e., quality of distance estimates obtained from noisy measurements of received 

signal strength (RSS), time of arrival (TOA) or angle of arrival (AOA) (Patwari N., et all, 

2003). Since the variance of position estimates is associated to the mean error, the lower 

bound on variance can be seen as the upper bound on accuracy.  

3.1. Use of game theory in localization algorithms 

Recently game theory has been applied in localization algorithms, mainly for modeling the 

cost-performance trade-off and for selection of reference nodes. The work in (Ghassemi F. & 

Krishnamurthy V., 2008a) applies game theory for sensor network localization, namely for 

measurement allocation among reference nodes localizing the target. The localization 

process has been modeled as a game belonging to the class of weighted-graph games. For 
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such a representation, the vertices correspond to the players, and the coalition value can be 

obtained by summing the weights of the edges that connect a pair of vertices in the coalition 

with self-loop edges only considered with half of their weights. A weighted-graph game can 

therefore be well represented by 
( - 1)

2

N N
N  weights, in contrast to 2N numbers which are 

usually required to represent a cooperative game. Basic idea is to allocate more 

measurements to nodes that contribute more to the localization process. The allocation 

algorithm has been integrated into a Bayesian estimator. In (Ghassemi F. & Krishnamurthy 

V., 2008b), utility is defined as information gain from a node, i.e. the mutual information 

between the prior density of target position and the measurement. Additionally, a price for 

transmission is included to account for the current energy level in the nodes, and the energy 

needed for data transmission. 

The algorithm proposed in (Moragrega A., et all, 2011) assumes a number of static anchor 

nodes, strategically placed to guarantee coverage to all unknown nodes. Anchors 

transmitting with lower energy can provide coverage to a smaller number of nodes; aim is 

to minimize power consumption at the anchor nodes, while assuring desired localization 

accuracy. The metric for positioning quality is the GDOP. The problem has been formulated 

as a noncooperative game, using Nash equilibrium as solution concept 

In (Bejar B., et all, 2010) the coalition formation within the set of neighboring anchors helps 

reduce communication costs. Using only a subset of available reference nodes does not 

necessarily degrade the accuracy, since some of them provide redundant information. In 

some situations it might be even useful to discard ranging information from some reference 

nodes, after they have been identified as unreliable due to biases in the measurements. This 

paper the localization problem has been defined as a coalitional NTU game, where 

coalitions are formed based on the merge and split procedure. The utility function is defined 

to account for both a quality and cost indicator. While the quality function accounts for 

inconsistencies between each node’s measured distance and the final joint estimated 

distance within the coalition, the cost function is related to communication costs. The target 

tracking task based on coalition formation has been implemented using a Kalman filter. For 

the coalition formation approach a higher mean estimation error has been observed than for 

grand coalition, i.e., when all nodes contribute to the tracking process. Nevertheless, in 

terms of communication costs the proposed scheme provides significant savings. 

(Ghareshiran O. N. & Krishnamurthy V., 2010) proposes a dynamic coalition formation 

algorithm used for energy saving in multiple target localization. Assuming that nodes in sleep 

mode do not record any measurements and thereby save energy in both sensing and 

transmitting data, the optimization problem is formulated to maximize the average sleep time 

of all nodes in the network, assuring that targets are localized with desired accuracy. An 

important contribution is exploitation of spatial correlation of sensor readings. Accuracy 

metric used is the determinant of the Bayesian Fisher information matrix (B-FIM). The 

characteristic function is formulated in a way that larger coalitions of sensors do not 

necessarily lead to longer sleep times. This is mainly due to the fact that the B-FIM, depending 
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on both relative angles and distances of sensors to the target, does not automatically increase 

as the number of sensor nodes in a coalition goes up. The trade-off between performance and 

average sleep time allocated in the network is demonstrated via Monte Carlo simulations. 

4. Scenario 

We propose the use of cooperative non‐superadditive games for modeling localization 

algorithms. As stated in the previous section, a typical localization process consists of the 

ranging phase, where nodes estimate the distances to their neighbors, and a second phase 

where nodes use the ranging information and the known anchor position to calculate their 

coordinates. In a dense network one can assume a large number of available anchor nodes. 

However, transmitting and processing all the obtainable information would consume 

immense power, without necessarily leading to better localization performance. This is due 

to the fact that not all the anchors provide reliable measurements, what leads to erroneous 

distance estimates. Furthermore, the geometry of selected reference nodes shows to have 

significant impact on localization accuracy, what will be extensively elaborated in our work. 

Assuming that at each time instant a target has several neighboring anchor nodes in near 

vicinity, and different coalitions can be formed, the considered scenario is illustrated in 

Fig.4.  

 

Figure 4. Scenario 

We propose an algorithm for reference node selection based on coalitional games. We model 

the localization process as a cooperative game, and formulate the corresponding utility 

function. We define the node selection optimization as one that maximizes the accuracy 

subject to constraints given by nodes’ limited processing capacity. Position estimates are 

obtained using the linearized least squares algorithm (trilateration). 

4.1. Ranging error 

We assume that the distance estimates between nodes are obtained using RSS 

measurements. We use the standard lognormal model for RSS with path loss parameter np 

and shadowing variance Ϭ2RSS. Assuming that the received power Pi,j between nodes i and j 

is lognormal, the random variable Pi,j (dBm) =10logPi,j is Gaussian. RSS based distance 

estimates are obtained using the lognormal model: 
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where vi,j~ N (0, Ϭ2
RSS) and np is the path loss exponent. We used values for indoor scenarios 

np= 2.3 and Ϭ2
RSS = 3.92 dB as in (Patwari N., et all, 2003).  

4.2. Utility function 

The following parameters are relevant for reference node selection: number of references, 

quality of range estimates and geometry. Therefore we propose a node selection mechanism 

based on the Cramer Rao Lower Bound. Since the CRLB gives the upper bound on accuracy, 

the utility function has to be inversely proportional to the CRLB. Besides the quality 

indicator, utility function also has to reflect the cost. Cost is related to the energy spent for 

message exchanges between nodes, and is proportional to the distances of target node to 

reference nodes. Having in mind the energy consumption if all reference nodes were used 

for localization, the grand coalition is not optimal. Therefore we define the problem as a 

nonsuperaditive cooperative game. Since least square localization is not possible for less 

than three reference nodes, we set the value of all coalitions containing less than three nodes 

to zero. For the remaining ones, the coalition value of each chosen subset of nodes S will be 

of the form:  

 ,1
( ) i t

i Si S

d
v S

CRLB R

    (4) 

Where CRLBi∈S is the CRLB for the coalition S, di,t is the distance from node i ∈ S to the target 

t, and R is the transmission range, used to normalize the cost function. In order to illustrate 

the performance of coalition formation based node selection, we will perform an exhaustive 

search over all possible coalition sets containing three nodes. The results are presented in the 

next section. 

5. Results 

In this section we show through simulations how localization performance can be improved 

using cooperative game theory. Performance metrics are accuracy, complexity and latency. 

Accuracy is evaluated as the Euclidean distance between the estimated position, and the 

node’s true location. Complexity is especially important in scenarios with low-power 

devices. In cellular scenarios computation is mainly performed in a central manner, e.g., at 

the base station with power supply, computational and processing complexity is not 

necessarily a limitation. In case of a moving target, its position needs to be updated with a 

frequency depending on the mobility model. Therefore it is important for the position 

calculation to be fast. We evaluate the localization accuracy as the root mean square error 

(RMSE) of location estimates. Complexity is assessed by means of amount of computation 

that has to be performed, while latency refers to the time needed to get a position estimate – 

particularly important for dynamic scenarios.  
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In our simulations we assume that the target node has a number of reference nodes in local 

vicinity, uniformly distributed within a 20 by 20 meters region. We show how appropriate 

selection of reference nodes outperforms the random selection, for cases of 10, 15 and 20 

available references. We performed simulations for different node densities and compared 

them in terms of root-mean-square error (RMSE). We performed 1000 runs for each setup. 

 

 

 

Figure 5. Localization accuracy for random anchor selection and utility based selection. 

The following scatter plot illustrates how the coalition value reflects the localization error. 

In Fig.6 we assumed 10 available reference nodes. Besides accuracy, we will assess the 

complexity of the algorithm depending on the number of available reference nodes, namely 

considering sets of 10, 15, 20, 25 and 30 nodes, respectively. From each of these sets, three 

anchors providing the best results are chosen. We define computational complexity as the 

amount of time spent on localization, in this case on a simulation run. The measurement of 

computation time is calculated using MATLAB functions tic and toc, which return the 

elapsed time in seconds. Knowing that combinatorial complexity increases with number of 

elements, Fig. 7 shows the expected result, namely significantly higher complexity as the 

number of references increases. 

Since we consider a static scenario, the latency factor is not of particular significance. 

However, one can consider the computation time in Fig. 7 as a latency parameter as well. 
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Figure 6. Localization error vs. coalition value 

 

 

Figure 7. Computation time. 

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

coalition value v

e
rr

o
r 

(m
)

 

 

Euclidean error vs. coalition value

10 15 20 25 30
0

2

4

6

8

10

Number of nodes

ti
m

e
(s

)



 
Game Theory Relaunched 186 

6. Conclusion 

In this chapter we considered the application of coalitional games to communication 

networks, in particular to localization algorithms. Game theory proves to be a powerful tool 

for modelling various aspects of localization procedure, such as improved accuracy or 

energy saving. After giving an overview of the most significant contributions in the 

literature on this subject so far, we have proposed a localization procedure aiming to 

improve accuracy by selecting the references providing the best conditions in terms of 

channel conditions and node geometry. Besides providing better performance, choosing 

only a subset of available references contributes to resource saving. This is particularly 

important in wireless sensor networks, having in mind the nature of these networks, 

specifically the limited resources such as energy constraints, processing capacity and short 

transmission range.  

The selection procedure is based on coalitional game theory. We proposed a utility function 

that reflects the contribution of each coalition to the localization accuracy, as well as a cost 

function related to energy consumption during the localization procedure. We compared the 

performance of utility based node selection vs. a random selection scheme. Even though the 

computational complexity significantly increases for a large number of available references, 

the achieved accuracy improvements make it a compelling concept for node selection. 
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