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1. Introduction      

Metal gate electrode together with high dielectric constant or high-κ insulator is considered 
as one of the critical technology enablers to scale the CMOS devices into sub-45nm region 
(ITRS, 2007; Mistry et al., 2007), due to the following concerns on the conventional poly-Si 
electrode and Si oxynitride dielectrics stack:  
1. Poly-depletion effect to add an equivalent oxide thickness or EOT up to ~0.5 nm to the 

gate stack, which is a significant portion for the overall targeted EOT requirement of  
~1 nm;   

2. Excess gate leakage when the EOT of the gate stack is reduced to sub-1nm;  
3. High resistance for the poly electrode.   
Additional benefit of using metal gate / high-κ dielectrics is on the improvement of the 
device variability as no poly-Si doping is needed.  Integration of metal gate /high-κ 
dielectrics using a conventional gate-first route (i.e. the gate stack undergoes a source/drain 
activation annealing) is attractive as compared to a gate-last route, as the gate first approach 
is more compatible with the conventional poly-Si/SiON flow, and hence low-cost 
fabrication is feasible. In addition, in the gate-first flow, the gate stack can afford a high 
thermal budget process, which is required for embedded application (e.g. DRAM). In this 
chapter, Lanthanum Oxide, (LaOx, with κ ~20 and an Eg ~ 5.5eV) dielectric capping 
incorporation into the Hf-based host high-κ dielectrics is firstly demonstrated as a practical 
solution to achieve low threshold-voltage or VT metal-gated uni-channel nMOSFETs 
fabricated using a gate-first flow (Kubicek et al., 2007; Narayanan et al., 2006).  Further, a 
comprehensive study is presented on the integration of LaOx capping layer for sub-32nm 
metal gated CMOS devices with Hf-based high-K dielectrics in a gate first manner.  Two 
different integration routes, i.e. Dual Metal Dual Dielectric flow or DMDD (hard-masks to 
pattern selectively nMOS and pMOS) and Single Metal Dual Dielectric flow or SMDD (soft-
mask processes), are presented and compared. The device reliability study is also provided.  

Source: Solid State Circuits Technologies, Book edited by: Jacobus W. Swart,  
 ISBN 978-953-307-045-2, pp. 462, January 2010, INTECH, Croatia, downloaded from SCIYO.COM
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2. Experimental 

Hf-based high-κ dielectrics, e.g. 1.8nm HfSiOx with 60% of Hf by metal-oxide chemical 
vapor deposition, or 1.5nm HfO2 by atomic layer deposition, were used as host dielectrics. 
An interfacial layer of ~1nm thermal SiO2 was formed before high-κ dielectrics deposition. 
LaOx capping layer with various thickness was deposited via atomic layer deposition, and 
incorporated immediately below and above Hf-based high-κ layer. A 10nm Ta2C electrode 
by physical vapor deposition or TaCNO electrode by metal-oxide chemical vapor deposition 
with a 100nm Poly-Si cap layer was then deposited as metal gate. Considering the ultra-
shallow junction requirement, source/drain was activated with various thermal budgets: i.e. 
via Low (1150oC), Medium (1250oC), and High (1350oC) Laser Power anneals (LLP, MLP 
and HLP), or spike anneals (1035oC).  CMOS transistors were fabricated via either DMDD or 
SMDD approach. Note that Al2O3 by atomic layer deposition was used as the dielectrics 
capping incorporated in Hf-based host dielectrics in pFETs to tune the VT.  

3. Results and discussion 

3.1 NFETs VT dependence on LaOx capping layer thickness, post-annealing condition, 
and location 
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Fig. 1. Relation between nMOS peak mobility and VT for different La2O3 cap thicknesses on 
HfSiON with Ta2C metal gate electrode. 

In Fig.1, it is seen the nFETs VT (Lg = 1µm) is effectively reduced up to 600mV when 
increasing the La2O3 cap thicknesses. However there is a penalty of considerable mobility 
degradation for the case of using 1nm think La2O3 cap. Thus 0.5nm thickness is considered 
as the optimum La2O3 cap thickness for the device integration described in the following 
part of this paper. 
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Fig. 2. Ta2C metal gated NFETs VT dependence on various thermal budgets applied for 
source/drain activation when positioning LaOx capping layer above or immediate below 
HfSiO host dielectrics. 

In Fig. 2, the impact of laser annealing conditions (low, medium and high laser power) on 
VT of nFETs with LaO capping layer positioning above or immediately below HfSiO is 
shown and compared to the spike- rapid thermal annealed reference. When LaOx is on top 
of HfSiO, it is seen that only when applying high laser power, VT lowering is comparable to 
the reference sample. On the other hand, device VT can be effectively reduced regardless the 
thermal budget applied when positioning LaOx immediately below HfSiO. It is naturally 
concluded that the La at the interface between HfSiO and SiOx interfacial layer plays a 
critical role to modulate the nFETs VT: In case of LaOx is on top of HfSiO, when applying 
high thermal budget (i.e. the high power laser annealing or the spike annealing in this 
work), La can be driven to diffuse to reach the interface between HfSiO and interfacial layer, 
effectively driving down the VT.  It is worth mentioning that the gate leakage vs. EOT would 
not be degraded with the adding of LaOx capping layer into the HfSiO host dielectrics, as 
shown in Fig. 3, partially due to the excellent κ and Eg value of La2O3.  Further from Fig. 3, it 
is noted that Ta2C gated devices exhibit better EOT scalability than the TaCNO case, and the 
reason shall be discussed in part 3.3 of the paper. 
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Fig. 3. JG vs. EOT for Ta2C/ TaCNO gated devices with LaO capping incorporated HfSiO 
dielectrics. 

3.2 Integration LaOx capping layer into CMOS devices 
CMOS transistors were fabricated using both DMDD and SMDD approaches. Fig.4 outlines 
the schematic DMDD integration flow. The first gate stack (Ta2C/ LaO cap/ HfSiO) is 
deposited (Fig.4a) and selectively removed from the complementary side using a Si hard 
mask (Fig.4b). The second gate (TaCNO/ AlO cap/ HfSiO) is formed again using a Si hard 
mask (Fig.4c). Next, the poly-Si is deposited (Fig.4d) and gate patterning is done by 
immersion lithography and dry etch (Fig.4e). The remainder of the flow follows 
conventional CMOS processing. Cross-sectional high resolution transmission electron 
microscopy of  n-  &  p-  MOSFETs  fabricated  using  DMDD approach  with gate lengths of 
45nm are shown in Fig.5 along with a detailed view of the gate stack interfaces after gate 
etch.  The n- & p- MOSFETs boundaries on an inverter circuit can be seen as inset of Fig.6 
(after silicidation). Symmetric low VT values of ±0.25V can be obtained for both n- and p-
MOSFETs (Fig.6).   
In Fig. 7(a), both short-channel n- and p- FETs (Lg = 55nm) fabricated using DMDD 
approach exhibit well-behaved Id-Vg characteristics. As shown in Fig. 7(b), the unstrained 
IDSAT of 1035/500 μA/μm for n- / p- MOSFETs at IOFF=100nA/μm and an operating voltage or 
|VDD|=1.1V are demonstrated on a single wafer. 
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Fig. 4. Dual Metal Dual Dielectrics (DMDD) CMOS integration scheme 
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Fig. 5. XTEM of the n-& pFETs fabricated using DMDD. 
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Fig. 6. VT roll-off for both n- & p- FETs fabricated using DMDD. Inset: SEM views of the 
nMOS and pMOS boundaries. 
 

 
Fig. 7. (a): Id-Vg of both n- & p- MOSFETs with a Lg ~55nm; (b) ION-IOFF curves of both n- & 
pMOS fabricated using DMDD.  

Next, we explain the SMDD process flow. As schematically shown in Fig.8, SMDD involves 
a simple resist-based selective high-κ dielectric capping removal process (in this work: La2O3 
or Al2O3 over both HfSiO and SiO2). Several key process modules development in this 
SMDD route is discussed in this section. 1) For the sake of a simple patterning strategy, a 
wet developable Bottom-Anti-Reflection-Coating or BARC layer is developed to be 
patterned directly on the dielectric capping and to be selectively removed from the 
complementary areas (La2O3 from pMOS and Al2O3 from nMOS). This wet BARC layer  
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Fig. 8. Single Metal Dual Dielectrics or SMDD CMOS integration scheme 
 

 

 
Fig. 9. N-P MOSFETs boundary after etching and resist removal using the wet bottom-anti-
reflection-coating or BARC based process (developed for SMDD).  

could guarantee an excellent adhesion towards the dielectrics layer, which can not be 
achieved via 248nm photo-resist only. Fig.9 illustrates the superior adhesion and sharp 
patterning achieved with wet BARC. 2) The high-κ wet capping removal required for the 
proposed process flow must be resist-compatible, highly selective (>100) to the underlying 
layer (SiO2 or HfSiON). As summarized in Table 1, diluted HCl is the chemistry of choice for 
La2O3, and TMAH for Al2O3. 3) Once the high-κ capping has been selectively removed, the 
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photo resist must be stripped without damaging the exposed materials. The resist strip 
(NMP- based) and post-cleans (APM- based) process details are provided in Table 1. It’s 
worthy noting that during SMDD process, both selective high-κ removal and resist strip 
processes have been characterized physically and electrically indicating no major impact on 
VT, EOT, gate leakage, mobility and gate dielectric integrity. 
 

 

 
Table 1. Processes used to selectively remove the cap layers (La2O3 or Al2O3) to high-k 
dielectrics and subsequent strips. 

In Table-2, a comparison is made between SMDD and DMDD. The key advantage of SMDD 
is that the number of process step can be significantly reduced by 40%, which means much 
lower manufacturing cost. It also allows relatively easier and simpler gate etch profile 
control since the same metal is used for both n- and p-MOS areas.  On the other hand, the VT 
tuning flexibility is scarified for SMDD process, as only dielectrics capping layer can be 
utilized for such a purpose. In contrast, in DMDD process, the combination of dielectrics 
capping layer and metal gate itself allows a wider VT tuning capability. In addition, for for 
SMDD approach, attention needs to be paid to avoid the potential impact of capping layer 
removal process to the gate dielectrics integrity.  
 

 
Table 2. A comparison between DMDD and SMDD. 
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3.3 Positive Bias Temperature Instability (PBTI) study of n- MOSFETs with LaOx 
capping layer 
The PBTI of nFETs using LaOx capping layer is measured at 110oC by using sense-and-
measure technique. VT relaxation with a 100s recovery time after each stress cycle is also 
measured for dielectric trapping/de-trapping investigation. The measurement set-up is 
depicted in Fig. 10. 
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Fig. 10. PBTI measurement set-up: sense-and-measure method and the VT relax with 100s 
recovery time after each stress cycle 

 

 
 

Fig. 11. Stress-field dependent polarity-change PBTI VT shift is observed in the Ta2C gated n- 
MOSFETs when incorporating LaOx capping layer, regardless the position (i.e. either on top 
or immediately below HfSiO). Both laser and spike annealing were applied to the device 
under study. 
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Fig. 11 plots the PBTI induced VT shifts vs. stress times for the Ta2C gated n- MOSFETs. A 
stress-field dependent two polarities VT shift is observed, regardless the LaOx capping layer 
position (i.e. either on top or immediately below HfSiO). This phenomenon was also 
reported in the Dysprosium silicate gate stack (Yu et al., 2008), and can be explained by the 
competition between electron de-trapping (dominate at low-stress field) and electron 
trapping /defect generation (dominate at high-stress field). 
The VT relaxation on these devices with various source/drain activation processes (i.e. spike 
or laser annealing) during PBTI recovery periods (100s) is also examined, as shown in Fig. 
12. It is observed that the LLP annealed device exhibits a different relaxation behavior as 
compared to MLP/HLP case, when positioning LaOx- cap either on top or below HfSiO: VT 
follows HfSiOx-like (i.e. no La) recovery behavior initially and then changes to the La 
silicate-like gradually as the stress time increases. It is believed that the relaxation behaviors 
can be explained by the electron de-trap from bulk traps, which are generated by LaO/ 
HfSiO (or SiO) intermixing during PBTI stress, and trap back during the recovery period. 
Insufficient intermixing is expected for the devices under low power anneal, which not only 
reduces VT relaxation amplitude (less trap generation) but also makes relaxation of both Hf- 
host dielectrics and La-silicate seen simultaneously. 
 
 
 
 

 

  
 

 
 

 

Fig. 12. VT relaxation vs. time during PBTI stress for the Ta2C gated n- MOSFETs when 
incorporating LaOx capping layer either on top or immediately below HfSiO. VG −VStress = 
1.25V in this case. 
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In the case of TaCNO gated n- MOSFETs (Fig.13), normal PBTI and pure HfSiO-like VT 
relaxation (see Fig.12) are observed. Further, cross-sectional TEM images together with 
electron-energy loss spectroscopy or EELS study (Fig. 14) suggest the LaO /HfSiOx 
intermixing, and also interactions between dielectrics and electrodes (Ta2C or TaCNO). 
Interestingly, both image contrast and EELS analysis identifies an oxygen-less region 
(~1nm) at the bottom of TaCNO electrode. Likely there, the oxygen is incorporated from 
TaCNO into dielectrics during the intermixing process, and this also links to the worse EOT 
scalability of TaCNO than Ta2C (see Fig.3 also).  Considering these, we thus believe the 
trapping / de-trapping defects generated from dielectric intermixing are probably related to 
the oxygen vacancies incorporation (Shen et al., 2004): TaCNO can provide oxygen, 
suppressing bulk trapping generation in La / Dy based silicates. It is more evident when 
placing cap layers above high κ layer. Schematic diagrams illustrating these phenomena are 
provided in Fig. 15. 
 
 
 
 
 

 
 
 
 
 
 
Fig. 13. Normal PBTI VT vs. stress and VT relaxation curves vs. time for TaCNO gated n-
FETs. Positive VT and HfSiO-like relaxation behaviors (Fig. 12) are observed. 
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Fig. 14. (a) Cross sectional TEM shows LaO / HfSiO intermixing after annealing, with both 
Ta2C and TaCNO electrodes. A less-oxygen layer (or Ta rich) at the bottom of TaCNO 
electrode is observed from (b) image contrast, and (c) electron-energy loss spectroscopy. 
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Fig. 15. Schematic diagrams (after thermal anneals) illustrate the negatively charged traps 
(●) and electron de-trapping (○) during the PBTI stress. Oxygen incorporation from TaCNO 
can result in less trap generation in the gate stack. 

4. Conclusion 

A comprehensive study is presented on the integration of LaOx capping layer for sub-45nm 
metal gated CMOS devices with Hf-based high-κ dielectrics in a gate first manner. Two 
different integration routes, i.e. DMDD and SMDD flow, are reported and compared. The 
device PBTI study is also provided.  
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