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Abstract

Watch your step! Or perhaps, watch your wheels. Whatever the robot is, if it puts its
feet, tracks, or wheels in the wrong place, it might get hurt; and as robots are quickly
going from structured and completely known environments towards uncertain and
unknown terrain, the surface assessment becomes an essential requirement. As a result,
future mobile robots cannot neglect the evaluation of terrain’s structure, according to
their driving capabilities. With the objective of filling this gap, the focus of this study
was laid on terrain analysis methods, which can be used for robot control with particular
reference to autonomous vehicles and mobile robots. Giving an overview of theory
related to this topic, the investigation not only covers hardware, such as visual sensors
or laser scanners, but also space descriptions, such as digital elevation models and point
descriptors, introducing new aspects and characterization of terrain assessment. During
the discussion, a wide number of examples and methodologies are exposed according
to different tools and sensors, including the description of a recent method of terrain
assessment using normal vectors analysis. Indeed, normal vectors has demonstrated
great potentialities in the field of terrain irregularity assessment in both on‐road and
off‐road environments.

Keywords: traversability, terrain assessment, terrain analysis, UGV, mobile robots

1. Introduction

From an analysis in the United States, the automated guided vehicles (AGVs) market will
be worth 2240 million dollars by 2020, due to growing automation investments across all
major  industries  [1].  Besides,  BI  Intelligence  estimates  a  number  of  10  million  cars  and
trucks featuring self‐driving capabilities by the same year [2].  On the other side,  during
the DARPA Robotics  Challenge 2015,  worldwide universities  and their  humanoids have
raced among challenging scenarios,  and a  number  of  robots  lost  their  balance traveling
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across  rubble  [3],  and  some of  them even  used  semi‐autonomous  systems  to  overcome
this challenge by manually sending commands about specific locations where to put their
feet on. Additionally, the Curiosity rover, recently sent on Mars by NASA, demonstrates
the growing utilization of  robotics  technologies  in  planetary exploration as  they require
high level of reliability during their surveys, and rocks or terrain irregularities may cause
irreparable damages to on‐board instrumentation [4].

The common element among all these types of robots consists of the necessity of a high level
of driving capability; though motion control has made great strides, it may fail in case of
unexpected circumstances, including road hazards, pavement distresses, and rubble. As a
result, from widely known AGVs, spread in industries since years, to modern unmanned
ground vehicles (UGVs) [5], the high level of driving capabilities is perceived an essential
requirement. In order to enhance robustness and reliability, future mobile robots should be
designed including custom hardware and software components, helping UGVs to adapt their
driving behavior according to surface irregularities. In robotics, the assessment of terrain
conditions is generally referred to as “terrain traversability analysis;” even though traversability
has been explored from various perspectives, a thorough survey on this topic suggests that a
specific definition is still missing in the robotic community [6]. On the other hand, as robots’
diffusion increases braking up new boundaries in their application, the use of visual technol‐
ogies for traversability assessment will improve their reliability; consequently, the acquisition
of information about the terrain is a prerequisite capacity and recent advances in sensors and
perception encourage future researched in this field.

Among the number of methods and models for terrain analysis, there are at least two large
categories, (i) classification‐based methods and (ii) cost‐assessment methods. In the former, it is
possible to count all the approaches that consider a binary distinction of the terrain as two
classes, traversable or non‐traversable; to cite an example, in [7], the authors use an on‐line
trained classifier to distinguish traversable and non‐traversable regions. Widely spread in
research, occupancy maps also fall in this category as they use the elevation of surrounding
objects to construct a map of occupied regions on the base of sensor measurements [8]. Whereas
in cost‐assessment methods is common to assign a continuous cost index, to better describe
the traversability characteristics of terrain according to a specific cost function [9]. As advances
on the same line, Tanaka et al. implemented a fuzzy‐based traversability analysis, considering
terrain roughness and slope as input for a fuzzy inference system and then generating a vector
field histogram for navigation purposes [10].

A further classification of methods commonly used in this field distinguishes between
geometric‐ or appearance‐based methods. Used in a large number of works in research [11–13],
geometric‐based analyses aim to detect traversability using geometric properties of surfaces
such as distances in space and shapes. Whereas appearance methods, to a greater extent related
to camera images processing and cognitive analyses, have the objective of recognize colors and
patterns not related to the common appearance of terrain, such as grass, rocks or vegetation
[14, 15]. In spite of the clear potentialities of appearance‐based methods, still geometric ones
are mostly common in robotics, because they can be easily used for path‐planning purposes,
where also probabilistic methods are gaining interest. Indeed, in 2006, Thrun et al. [16]
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presented a probabilistic algorithm for terrain classification on a fast moving robot platform,
constituting a part of their autonomous vehicle during the Darpa Grand Challenge in 2005. As
a recent example, in [17], the authors describe a terrain classification approach for an autono‐
mous robot based on Markov random fields (MRFs) on fused 3D laser and camera image data.

In the light of glaring requirements of terrain analysis for future UGVs, this discussion aims
at exploring some of the basic concepts of traversability; the focus was laid on geometric
methods. This study introduces a definition of traversability and its application to robot control
and autonomous ground vehicles. This directly leads to the contributions of this chapter, which
attempts to compare different methodologies and fill the gap between theory and practical
applications giving a definition that can be of general value for terrain traversability analysis
in terms of a fuzzy set, including practical examples to foregoing functions available in the
literature. Furthermore, the potentialities of novel methods based on the normal vectors
analysis will be explored, providing some practical examples of application.

The chapter is structured as follow: Section 2 will provide an overview and basic knowledge
about the field with focus on related works and recent techniques for visual terrain analysis,
used sensors and space representation. Later, in Section 3, a theoretical background will help,
who unfamiliar with the topic, to understand the basic concepts related to robot models and
state spaces, introducing a definition of traversability in terms of a fuzzy set. Examples, results
and comparisons are exposed during a thorough discussion in Section 4, which will cover basic
functions and recent researches in the field applied on both synthetic data and real scenarios.
Conclusions are drawn in Section 5.

2. Overview

As humans themselves rely on their five senses to know where to walk or drive a vehicle on,
creating an implicit space representation in the brain, robots perceive and interpret the space
using exteroceptive and proprioceptive transducers as a sensing aid. In order to build an
effective exteroceptive traversability analysis tool two elements are required: (i) visual sensors
and (ii) a mathematical space representation. The former comprises any exteroceptive sensor
such as cameras, depth cameras, or time‐of‐flight sensors, which endow robots with sensing
capabilities; whereas the latter provides a spatial organization of sensory data and build an
abstract representation of the 3D environment. As a result, the approach to terrain traversa‐
bility analysis may change according to space representation, as much as the available data
may vary according to the type of sensor. Even though the most common methods for terrain
traversability analysis are based on exteroceptive perception [9], for the sake of completeness,
it is important to cite that proprioceptive sensors are also successfully used for terrain analysis
[18–20], measuring and interpreting quantities such as vibrations or slippage, but their study
is out of the scope of this study.

To facilitate the comprehension of the content of this discussion, following a short review on
space representations and sensor technologies available for terrain analysis in mobile robotics
is reported.
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2.1. Sensors for terrain analysis

Sensing denotes a group of techniques used in robotics to measure any physical quantity
interacting with the robot. Hence, any device used to acquire information can be counted in
this category. Although the general concept of sensing as the problem of understanding how
a robot see the world, by means of a set of visual sensors, has been addressed following various
approaches, in the specific topic of traversability, there are a number of open issues still to be
solved. In [21], the author has accurately described the problem of semantic perception for a
robot operating in human‐living environments, approaching the problem from sensors and
data point of view. Notwithstanding the valuable work done in the field of perception, the
indoor structured environments introduce a number of simplifications which are never
applicable in outdoor unstructured environments. First of all, indoor scenarios are generally
characterized by smooth ground surfaces and high‐size objects represented as vertical planes.
For this reason, AGVs, commonly used in indoor industrial environments, do not consider
any terrain representation at all. Moreover, indoor robots generally move at low speed, and
consequently, they do not require any sophisticated system for terrain analysis. The situation
changes totally in the case of planetary rovers [4], driving on sandy terrains featuring rocks,
varying in size and shape. Furthermore, recent driverless cars are quickly going towards public
roads; in such situations, rocks, road hazards, and pavement distresses may put the vehicle,
and its passengers, in serious danger [22].

Figure 1. Examples of sensing devices in which: (a) is a depth camera, the Kinect sensor, mounted on an experimental
planetary rover, (b) is a stereovision system including the XB3 Bumblebee camera used on an agricultural tractor, in (c)
an autonomous electric car featuring a Sick laser, and (d) is an ultrasonic sensor‐based mechatronic device.
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Since this discussion examines terrain analysis, a distinction between acquisition and repre‐
sentation of information should be done. On one hand, the space acquisition strongly depends
on the typology of sensors and applications; on the other hand, its representation depends on
the perception meaning and its content. From a purely geometrical point of view, the most
primitive representation of a point in the space is the 3D Euclidean metric. However, the
information about the real 3D coordinates of a specific point can be obtained by triangulation
techniques [23, 24] on stereocamera images, or by directly measuring its distance using time‐
of‐flight (TOF) systems [25]. Figure 1 shows typical image sensors assembled on several UGVs
in order to acquire some of the images used for the experimental discussion in this work.
Specifically, Figure 1a depicts a depth sensor, the Kinect camera, used in [26] for a novel
approach to terrain analysis, whereas in Figure 1b a more sophisticated vision system designed
for an agricultural tractor is shown [27], the red circle marks a trinocular stereocamera.
Figure 1c and Figure 1d show two examples of time‐of‐flight sensors, a Sick laser range finder
and a sonar sensing system. Following, the technology at the base of such sensors will be briefly
recalled.

2.1.1. Stereovision

Stereocameras constitute a family of cameras composed by two or more lenses with separated
image sensors. They provide a visual image for each lens and post‐elaboration attempts to
estimate the distance of each point from the sensor by means of connections between corre‐
spondences seen by two different lenses at the same time, simulating the human binocular
vision. In order to provide accurate measures, the sensors require the perfect calibration with
respect to each other, done by the extrapolation of their intrinsic and extrinsic parameters.

In the literature, a large number of methods for camera calibration are available. As an example,
Kearney et al. propose a method for the calibration using geometric constraints in [28] and
then Puget and Skordas present a method for optimizing the calibration [29]. Later, many
researchers studied methods for fast and accurate calibration of multiple cameras [30], in
anticipation of the most recent researches of automatic calibration for cars, for example [31].
Recent sensors use more than two cameras for the triangulation in order to increase the
accuracy in both short and long range. The 3D representation of the environment is inferred
detecting the same point into both camera images, and the bigger the set of points the richer
will be the 3D space reconstruction.

Simplifying the concept, said d the distance from a point p measured by a binocular stereoca‐
mera, then:

-P P1 2

= ,fbd
x x (1)

where f is the focal distance of the sensors, b is the baseline, that is, the spacing between the
sensors, and x1, x2 are the coordinates of p in the two images expressed in terms of pixels.
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An example of a trinocular camera featuring multiple baseline can be seen in Figure 1b, where
the sensor has been mounted as visual aid on an experimental tractor [27].

2.1.2. Time‐of‐flight 3D sensors

In contrast to stereocameras, TOF‐based systems, such as lasers and sonars, directly evaluate
distances by the measurement of the delay until an emitted signal hits a surface and returns
back to the receiver, thus estimating the true distance from the sensor to the surface. Also in
this case, a simplified relation can calculate the distance between the sensor and a point in the
space as follows:

= ,
2
ctd (2)

where c is the speed of the ray, light in case of lasers, and t is the amount of time since the
emission until the reception. However, in case of ultrasonic sensors, the speed of the ray
depends of its wavelength and the estimation of the distance as well as the localization problem
become harder due to the wider beam which may be cause of multiple reflections. As an
example, in [32], the authors propose three different mathematical approaches to detect
position and orientation of an observer, such as a robot, with respect to a smooth surface. Such
ultrasonic‐based system is depicted in Figure 1d. In contrast to ultrasonic technology, laser
scanners are much more precises and reliables for environment description. To underline the
global diffusion of laser scanners, Figure 1c shows a Sick 3D laser range finder applied on an
electric autonomous vehicle at University of Almería (Spain) [33]. As proof of the higher
performance of lasers, Borrmann et al. obtained an accurate space description from a laser
scanner and use laser information to build a global map in outdoor urban environment [34].
Besides this research, a large number of scientists continuously propose new methods for the
3D space reconstruction using 3D laser scanner technologies.

Thanks to their properties of accuracy and reliability, the research involving vision for mobile
robot shifted towards the use of laser technologies as an aid for space reconstruction.

2.2. Space representations

The term space representation roboticists refer to an abstract depiction of robots’ surrounding
environment. As robots live in the three‐dimensional space, the most natural space represen‐
tation should be the Euclidean 3D space, but handling 3D space data may be hard and time‐
consuming. Thus, for computational performance purposes, the most used foregoing space

representation has been the 212‐dimensional, such as digital elevation models (DEM) better

described later in this section. Only recently, thanks to the high performing CPU and GPUs,
3D point descriptors are gaining interest in this field.
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2.2.1. Digital elevation maps

Organizing sensors data is a mandatory step to reconstruct information for geometric inter‐
pretation purposes, and digital elevation models (DEM) [35] are widely used as space repre‐
sentation in mobile robotics. Although topography and large areas terrain mapping constitute
the original use of DEMs, their use for traversability analysis has been demonstrated as
successful in mobile robotics [4]. As further example, Larson et al. discuss a real‐time approach
to analyze the traversability of off‐road terrain for UGVs considering positive and negative
obstacles through elevation information [36].

DEMs have been introduced as a compact 212‐dimensional representation, which assumes that

a surface can be represented as an elevation function �(�,�), �:ℝ2 ℝ, where x and y are the
coordinates on a regularly sampled plane. As a result, a grid‐based space representation is
obtained, in which a surface is described by a finite number of points collected in a fixed size
grid structure. Figure 2 shows an example of a DEM representation obtained from a stereo‐
camera images, the entire procedure shows the process from a camera image, see Figure 2a,
to point cloud in Figure 2b, and DEM, Figure 2c. Though compact the DEM representation
requires a further step from acquisition to 3D reconstruction and DEM generation, whereas
working on purely 3D data implies that one step can be skipped.

Figure 2. Example of two different space representations in which (b) is a point cloud representation, whereas (c) is the
relative DEM, both geometrically describing the scene in the camera image (a).
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The classical DEM approach constitutes an efficient representation, but it lacks of accuracy in
space description since objects are described as surfaces using their elevation without taking
into account their real shape. For instance, a tunnel cannot be represented using a digital
elevation model. As an improvement of classical DEMs approach, Pfaff et al. [37] proposed the
extended DEMs or the so‐called extended elevation maps (EEM). Such technique involves the use
of additional information in order to have a better description of objects and space; further‐
more, the authors also used a Kalman filter to enhance the terrain description in a DEM taking
into account measurements error and uncertainties. Recently, in [38], the researchers used EEM
as multilayer digital maps for the description of volcano areas.

In conclusion, though suitable due to its compactness and simplicity, in each DEM formaliza‐
tion, there is the assumption of regularity in the surface and it turns into a not‐complete space
representation. As the matter of fact, it fails in a large number of practical situations; never‐
theless, it is extensively used in robotics since it is simply applicable in low‐performance
embedded controllers.

2.2.2. Point descriptors

A recent space description, used in robotics for traversability purposes, consists in the
representation of each point simply by its 3D Cartesian coordinates [24]. Hence, let us define
a point cloud as a set of scattered 3D points, that is:

( ){ }∈ ∈  3
= , , , = 1,2,..., , ,

i i i i
p x y z i n n (3)

where n is the number of elements in the set. In order to provide a coherent space represen‐
tation, the coordinates of each point  have to be given respect to a common coordinate
system. The origin of such reference frame is usually located into the robot’s geometric center
or the sensing device, defined as camera reference frame ��� ��,��,��,��, . For this reason,

generally distance data need an additional coordinate transformation using appropriate
rotation matrices. As a result, 3D space description in form as point cloud constitutes a simple
and robust solution to represent environments for robotic purposes. In the most recent data
representation, the RGB color information is added to points obtaining the so‐called RGB‐D
point clouds. As an example, Figure 2b shows an RGB‐D point cloud obtained as triangulation
of stereopairs in outdoor road environment. Nowadays, it is common to think the 3D points
as defined in the three‐dimensional meaning of Euclidean metric and represented by its
Cartesian coordinates (x, y, z). However, problems such as perception and recognition in point
clouds are ill‐posed, if only the geometric coordinates of points are considered. In spite of the
addition of new characteristics of points, such as color or intensity, may help, the problem
remains ill‐posed due to the ambiguity of matching between points. In particular, a point in a
cloud can be seen as a single point, yet it could represent the intersection of perpendicular
planes representing the sides of an object, and therefore, it could be described using semantic
meanings such as “vertex” or “edge.” The set of characteristics used to describe a point defines
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a local descriptor. As a result, in the context of perception, the concept of 3D point as described
only by its coordinates is substituted by the concept of local descriptor.

Let be given a point cloud , defined as in Eq. (3), and let us consider a point pq the so‐called
query point, the neighborhood of pq in  can be defined as the set of points such that:

{ }∈ ⊂ − ≤ ∀ 3
= : = 1,2,..., ,

q q

i i m
P p p p d i k (4)

where dm, the so‐defined as search radius, is the maximum distance between pq and each
neighbor, k is the number of neighbors of pq in Pq, and |·| is a generic norm (without loss of
generality, it is possible to refer to the Euclidean distance).

A local descriptor of pq can be defined as the vector function F that describes the information
content of Pd according to a specific characteristic:

( ) { }1 2, = , ,..., ,q q q q q
nF p P x x x (5)

where ��� is the ith dimension of the descriptor. By comparing the local descriptors of two

points, namely p1 and p2, it is possible to estimate their differences. Let Г be the measure of
similarity between p1 and p2, with their associated descriptors F1 and F2, and let d be their
distance:

( )G 1 2= , .d F F (6)

Then, d is a scalar function and can be considered as the degree of similarity between points.
If Г → 0 two points can be considered similar according to the specific characteristics set.
Conversely, if Г increases the points will have different properties. It is important to note
that the effectiveness of the explicit expression of descriptors is given by its ability to
differentiate points in the presence of rigid transformations, noise, sampling variations,
changes in scale, or illumination. Moreover, the generality of the representation of points
using descriptors allows to collect points and their characteristics such as color, but also
traversability, as a vector in the form of a point cloud.

A possible application of point clouds for traversability analysis can be found in [14], where
the authors describe a method for terrain classification using point clouds data obtained by
stereovision. They propose the use of superpixels as the visual primitives for traversability
estimation using a learning algorithm. A different approach can be found in [39]; here, the
authors acquire information about terrain by a LIDAR and, using local 3D point statistics,
segment it into three classes: clutter to capture grass and tree canopy, linear to capture thin
objects such as wires or tree branches, and finally surface to capture solid objects such as
ground terrain surface, rocks or tree trunks. As further example, in [40], the authors use a Sick
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lidar to acquire point cloud and build a traversability cost‐to‐go function for navigation
purposes.

2.2.3. A comparison among methods for terrain analysis

To finalize this overview, it is worth to compare different methods according to their use in the
scientific community and provide a classification of the used approaches. Table 1 presents a
summary of references in the field of terrain analysis and traversability, classifying them for
space representation and used sensor, the full bullet indicates the classification. More specifi‐
cally, the classification of used sensors distinguishes between ToF and stereocameras as method
to acquire information, whereas the space description classification differentiates between
DEMs and point clouds, including in the last category also point descriptors.

Reference Application Sensors
ToF | Stereo

Space representation
DEM | Pt.C

Bellone et al. [27] Natural ●|● ○|●

Bellone and Reina [41] Automotive ●|○ ○|●

Braun et al. [42] Natural ○|● ●|○

Broggi et al. [13] Automotive ○|● ●|○

Cafaro et al. [43] Search and rescue ●|○ ○|●

Dargazanv and Berns [44] Natural ○|● ○|●

Dongshin et al. [14] Natural ○|● ○|●

Haselich et al. [17] Natural ●|○ ●|○

Ishigami et al. [45] Planetary ●|○ ●|○

Kubota et al. [46] Planetary ●|○ ●|○

Larson et al. [36] Natural ●|○ ●|○

Neuhus et al. [25] Automotive ●|○ ○|●

Ohki et al. [38] Field ●|○ ●|○

Oniga et al. [12] Automotive ○|● ●|○

Papadakis et al. [9] Search and rescue ●|○ ●|○

Pfaff et al. [37] Natural ●|○ ●|○

Rohmer et al. [47] Planetary ●|○ ●|○

Roccacio et al. [7] Natural ○|● ●|○

Suger et al. [11] Natural ●|○ ○|●

Thruh et al. [16] Automotive ●|○ ○|●

Vandapel et al. [39] Natural ○|● ○|●

Whitty et al. [40] Field ●|○ ○|●

The full bullet indicates the classification.

Table 1. Comparison of the literature, the table classifies space representations and used sensors for traversability
purposes
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This analysis suggests that both DEMs and point clouds are used for traversability analysis;
however, one can consider as a possible trend, the use of point clouds for terrain traversability,
since recent researches are going towards this direction. Contrary, DEMs constitute a stable
and robust tool, widely used in all the fields of robotics, and it is even possible to find recent
extensions of research. To cite one of them, in [38], the authors use an extended elevation
models as improvement to DEMs. The historical predominant application of traversability is
in natural outdoor environments, where the assumptions of surface regularity cannot be
applied. Only recently, the study of surfaces is gaining interest in the automotive sector, in
which all researches are quite recent, since this technology was never required in the field.
Possible uses are as follows: pavement distress detection [41], sidewalk detection [12], or
segment terrain’s inliers and outliers to be used for obstacles detection [13].

From sensors point of view, laser scanner are commonly used for specific applications such as
planetary or search and rescue, whereas stereocameras are preferred in applications where the
cost‐effectiveness of cameras can be attractive. However, it is important to cite that ToF sensors
are commonly used for geometry‐based traversability techniques, whereas cameras are used
in the case of appearance‐based classification.

3. Terrain traversability analysis

From a dictionary definition, the word “traversability” denotes “the condition of being travers‐
able” and traversable concerns the capability “to travel across or through.”1 This linguistic
definition does not explicitly refer to means; for instance, if one is conducting a car the word
traversable better characterizes the action of “driving across or through,” whereas going by
feet may refer to the natural process of “walking across or through.” However, an allusion to
two elements exists in the definition: (i) the space, to be traversed, and (ii) the mean, to traverse
the space. In classical control theory, such elements are expressed using concepts such as
controllability or reachability, and they are related to the properties of a system to reach a
generic state from the origin or the other way round, according to a specific physical model of
the process. Whereas a thorough survey on traversability assessment suggests that its formal
definition is still missing in the robotic community [6]. In the same survey, a qualitative
definition of traversability in the context of UGVs appears, stating:

“The capability of a ground vehicle to reside over a terrain region under an admissible state
wherein it is capable of entering given its current state, this capability being quantified by
taking into account a terrain model, the robotic vehicle model, the kinematic constraints
of the vehicle and a set of criteria based on which the optimality of an admissible state can
be assessed [6].”

Though descriptive and valuable, this definition only provides ingredients to reach a more
general and formal definition of traversability. First of all, it is important to consider few

1 Definition from Oxford Dictionaries.
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aspects: (i) a robot model including its motion constraints, (ii) space representation, for
example, the terrain model, and (iii) a set of criteria to express the traversability properties. All
these concepts will be later recalled.

Since this topic is attracting further researches, a more general definition of traversability is
given later by Cafaro et al. [43]. The authors have made a valuable work on the theory of space
description using point clouds, introducing the definitions of traversable region and traversability
map in the context of graph theory, thus defining traversability as the existence of a connection
(i.e., a branch) between two vertexes of a graph. A different characterization in terms of fuzzy
sets was already provided by Seraji [48], and even though it was not general, the author
distinguishes among different types of terrain providing the introduction of this topic in the
robotic community. In the light of all relevant works made in research a clear discrepancy
between theory and application appears. This section will attempt to fill this gap, using the
elements in the literature to reach a definition in terms of control space which can consider the
robot model, its operating environment and an evaluation criterion.

3.1. Robot models and configuration space

Prom the basis of control theory, it is well known that the robot control includes three different,
but fundamental, items: process, controller, and sensors. This concept perfectly describes the
ancient meaning of the word control, which refers to the capacity of inducing a specific behavior
to a process based on observations of its evolution. Starting from simple regulators, the control
theory evolved towards robot control, regarding robots considered as complex processes.
Obviously, as processes complexity increases, the complexity of controllers increases itself. The
reason of the growing complexity of robotic systems is furthermore referred to the requirement
of a higher level of interaction between robots and real world.

The physical description of robots in control theory typically is expressed through a process

and a state space. Thus, given the state � ∈ �, where � ⊂ ℝ� is referred to as state space, and the

command � ∈ � with � ⊂ ℝ�, called command space, a discrete system can be defined as:

(7)

The function f, referred to as transition function, denotes the behavior of a system, from simple
systems to complex mobile robots. The generality of this definition expresses the evolution of
any physical process and though usable in any possible situation, its elements, including space
structures and transition function, must be explicitly expressed in practical applications. The
command space can be easily defined given the kinematic/dynamic properties of the robot and
its actuators, and it can be considered as a finite set of possible actions. Whereas the state space
may be uncountable, open set and even featuring time‐variant elements (e.g., moving obsta‐
cles); as a consequence, it deserves a specific description.

For the sake of clarity, let us mention an example, the state space for a planar vehicle may be

defined as � = ℝ2 × ��(2) denoting ℝ2 the translations on x and y axis, respectively, and SO(2)
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the rotation around the axis orthogonal to the motion plane, also known as SE(2), special
Euclidean group. This state space constitutes an open and uncountable set. Considering the

3D space, it is also common to find the state space as ��(3) = ℝ3 × ��(3) referring to 3D
translations and rotations, for example, in the case of position and orientation of UAVs
(unmanned aerial vehicles) or even simply the end effector’s pose in manipulators. Talking
about traversability and driving on not‐flat terrains, the use of 3D representation is also
becoming common for a more accurate design of autonomous navigation systems for UGVs.
As a general definition, in robotics, it is possible to find the name configuration space  or simply
C‐Space [49, 50] describing the set of all possible configurations of the robot. C‐Space refers to
a broad family of constructions closely related to the state space notion in physics which is
common in general control theory.

Now, let us suppose that the C‐Space contains a forbidden region ; moreover, since the
mobile robot will also live in C‐Space, we can denote the robot geometry as a subset , all
sets may be expressed using polygonal or polyhedral models. At this point, let us denote as

 a possible configuration of our mobile robot , as a result  is the configuration of the
entire robot geometry in C‐Space, note that in the case of SE(2), the configuration of the robot
at the time k will be q = (xk, yk, θk). Under the aforementioned assumptions, an obstacle region
can be expressed as follows:

{ }Î Ç ¹ / ÍC C M O C= | ( ) 0 .obs q q (8)

The obstacle region constitutes the set of all robot’s configurations  intersecting the
forbidden subspace. All the other configurations can be denoted as free space, , and
obviously . Let us note that the sets  and  must be closed set in , as a
consequence  must be open, this will ensure the possibility to formalize an optimization
problem in ; moreover, it ensures that the robot can drive arbitrary close to an obstacle
without colliding it. As last consideration, though different in the formulation, the configura‐
tion � and the state � in Eq. (7) may be considered similar; as a consequence, there exists a
transition function to go from a configuration q1 at a time t1, to another configuration q2 at the
time t2. A rough analogy between states and configurations suggests that the transition function
can be expressed as qk+1 = f (qk, uk); clearly defining the robot  in the configuration q moving
according to the equation of motion f.

This discussion does not pretend to be a complete description of spaces and sets, but it only
gives the preliminary knowledge for the reading of this text, for additional details about
assumptions, demonstrations, and definitions please refer to [50] as a relevant reference in the
field.

The reason of the diffusion of C‐Spaces in robotics research resides in the possibility of
describing them as manifolds, i.e., topological spaces that behave at every point like our
intuitive notion of a surface, and the best way of describing the terrain is to consider its
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topological properties. Hence, considering a ground vehicle, the configuration space cannot
be other than the terrain region it is driving on, described as a manifold.

3.2. Traversability characterization

The previous theory considers the robot moving in a configuration space  composed by a free
space part  and a forbidden region . Yet, considering the concept of traversability as the
condition of being traversable, then it is simple to understand that the free space can be
considered as traversable, while the forbidden space may be not traversable. This definition
would be perfectly enough for a binary classification of traversability.

Nevertheless, we are looking for a more general definition; thus, the traversability can be seen
as the capability to travel across of through, which implies that the aforementioned binary
definition could be extended. Indeed, the set could be forbidden (i.e., not traversable at all) or
partially forbidden (i.e., traversable with some grade of membership). This clearly recalls the
fuzzy logic2 that can be considered as an extension of the binary logic, such that statements
need not be true or false, but they may have a grade of truth between 0 and 1. As a result, one
can suppose the existence of a fuzzy set defined following.

Definition 1 Let be given a robot  expressed as a closed subset  where  is a possible
configuration of the mobile robot , and  denotes its C‐Space. Let us suppose the existence of a not
empty free space , with . Moreover, let us suppose be defined a traversability function

, the traversable region will, be the defined by the following fuzzy set:

{ }Î ÎC C T M C= ( , ( ))| ( ) .tr free freeq q q (9)

First of all, let us note that the traversable set is included into the C‐Space by definition,
, because the membership function  is defined in ; moreover  and also

. The traversability function used in this definition can be considered as a clear
analogous of the more general membership functions which are common in the theory of fuzzy
sets. As a result, when  goes to 1 the statement “is traversale” will be true, whereas if 
the statement “is traversable” will be false.

The aforementioned definition considers all the elements previously indicated, i.e., a robot
model , a space structure  and a set of traversability criteria . The use of this definition,
according to an explicit expression of , can also be used to solve optimal control problems.

In order to better clarify the concept, Figure 3 expresses the difference between a simple
occupancy map in Figure 3a, where free space and obstacles are clearly distinguished through
a binary classification black/white, whereas the concept of fuzzy set in Figure 3b better
characterizes the terrain according to the membership function . Its values are expressed

2 Definition of fuzzy set: Given a generic set X and a membership function �:� [0; 1], the fuzzy set A is defined as 
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according to a degree of membership in gray scale, denoting in white high values of ; on the
contrary, black corresponds to low values of . The presence of the region � in Figure 3b can
be interpreted as a region “less‐traversable” than usual, but still not classifiable as an obstacle,
a politic of driving control may generate safe plans.

Figure 3. Depiction of the free space and fuzzy traversability characterization, the entire area inside the rectangle can
be considered as  in (a), whereas the gray‐scale gradient indicates the value of the membership function  for
each point of  in (b). The presence of the region A denotes a portion of the free space featuring different values of
traversability.

4. Discussion

As the definition of traversability previously introduced can be of general value for geometry‐
based terrain analysis purposes, how to use it in order to build practical traversability functions
will be following shown, including the re‐definition of classical methods, such as elevation
models and roughness models. The exposed examples cover both binary classification
methods and cost‐based assessment methods. Along the discussion, an irregular terrain model
in the form of a DEM of about 20 m × 20 m, featuring a 0.25m grid size, has been used in order
to compare different methods. Let us note that the terrain model, considered as sample model,
expressed as a DEM is stored into a 80 × 80 size matrix, that is, 6400 elements. The same data
in form of a point cloud, storing only the points’ Cartesian coordinates, will take 6400 × 3 points.
This clearly demonstrates the advantage in handling DEMs instead of point clouds; however,
using DEMs part of the information is lost due to the assumption of terrain regularity, which
is not always applicable. Moreover, ToF sensors as well as stereocamera triangulation always
provide a set of distances between the cameras and sampled points in the space, that is, a point
cloud, thus a transformation is required, including its computational cost, to build the digital
map.
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4.1. Binary classification for traversability

Let us consider the example of a binary classification and apply the aforementioned definition
to find a member function  such that the traversability region corresponds to the free part of
the configuration space. Given a generic robot , in the configuration space , in this simple
case  can be expressed by the function:

(10)

Note that, even though this function is the simplest possible, it works regardless of the
particular structure of the C‐Space, and it converges into the general theory of configuration
space. However, in practical cases, it is expected the free space to be explicitly expressed. To
prove that  is true in the case of binary classification, let us consider that by definition
that . As a result, the only part that should be proven is , if  is defined as in
Eq. (10). Hence, let us suppose that exists a configuration qk such that  but . This
implies ; hence, , but this is absurd because qk would belong to both 
and . As a result,  if  is defined as in Eq. (10).

Figure 4. Binary traversability rule applied on an elevation model. In (a) and (b) the 3D‐view and xy‐view are shown.
The red color labels not traversable regions (i.e., ), whereas the cyan color denotes the traversable parts of the
terrain, .

As an example of functionality, Figure 4 presents a binary classification applied to a sample
terrain model. For the sake of the example, given � = (�,�,�),  has been defined as the set of
points such that � ≤ ����. The result is a cyan region which can be considered as traversable,

that is, belonging to , and a red region which can be considered as not traversable, that is,
. The example explicitly refers to the 3D space; however, the definition in Eq. (10) has

general value, since the structure of the configuration space has not been explicitly given.
Though simple and widely used this method neglects information about intermediate levels
of elevation or local irregularities; hence, it is much more used in indoor structured environ‐
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ments where there are strong discontinuities (e.g., floor, walls) and under the assumption of
regular flat floor surface. A different way to see this concept consists in the occupancy maps,
which consider a cell as not traversable, if its elevation is higher than a threshold, that is,
obstacle.

4.2. Elevation terrain model for traversability

Typically used in mobile robotics, elevation models may be described using the formulation
in Eq. (9). Let us suppose to have a ground vehicle that can move in three‐dimensional space.
As indicated earlier, its configuration space can be expressed as  = ℝ3, neglecting the orienta‐
tion terms to simplify the notation, the ground vehicle may be considered as a subset ,
and we can also consider the existence of a forbidden region . Now, let us construct a
traversability function given a terrain model expressed as follows:

{ }Î Ç ÆC C M O= ( , , ) | ( ) = ,free q x y z q (11)

where � = �(�,�), with �:ℝ2 ℝ supposed to be regular; moreover, x and y are considered as
limited, thus � ≤ ����, � ≤ ����. In this way, a bounded portion of the x, y plane has been

defined. As a result, given a generic shaped robot  in the configuration space , a traversa‐
bility function  that considers an elevation terrain model can be expressed by the following:

- " Î ¹ ÌT C M C( ) = 1 , 0| ( ) .q
tr max free

max

z
q q z q

z (12)

Figure 5. The elevation model better describes the sample terrain in Figure 4, the higher informative content allows to
perform better cost‐based traversability analysis, in (a) the 3D mesh is presented, whereas the xy‐axis view is depicted
in (b).

One should note that in Eq. (12) if �� ���� then  and the configuration will fall into low

values of membership function and this implies that the point will not belong to . However,
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even though the configuration of the robot includes orientation angles in its formalization, this
traversability function does not consider any orientation in its values and this results in a
limitation in the practical application of pure elevation‐based methods. For the sake of
completeness, we should consider the case of ���� ∞, where  ∀��, but this case can be

considered as trivial.

The example of this type of analysis is reported in Figure 5, where the values of  are indicated
as a color bar from blue corresponding to traversable regions, to red denoting not‐traversable
part of terrain. It results evident that a control rule based on such analysis will bring the robot
towards the lowest regions of the terrain, which though reasonable, it may be not the best
behavior according to the objective of the robot movements. Let us observe that in this method,
the robot shape is considered as a single point in the calculation of the traversability function,
hence considering only the terrain elevation.

4.3. Traversability model based on roughness index

A widely used approach, for geometry and cost‐based terrain traversability analysis, consists
in the definition of the roughness index [47]. It is defined as the standard deviation of the
elevation values in a specific region of the terrain, given by the projection of the robot shape
on the ground.

Given a terrain region considered as free space , defined as in Eq. (11), and a robot model
 described using any polygonal model. Then, it is possible to define the roughness index ��

of the terrain, when the robot is in the configuration  as the standard deviation of the
elevation values �� of the surface given by the intersection between  and .

m- 2= ( ) ,q qB E Z (13)

where  is the set of all points that fall into the intersection between the
robot  and the free space, and  is the average of the elevation values in the same
region. Since the values of �� are not limited in [0, 1] the traversability function related to the

roughness index, according to the definition in Eq. (9), may be considered using a normaliza‐
tion as following:

- " Î ¹ ÌT C M C( ) = 1 , 0| ( ) .q
max free

max

B
q q B q

B
(14)

As in the previous case, Eq. (14) → 0 if �� ���� and the configuration q will fall into low

values of membership function and this implies that it does not belong to . Moreover, 
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, as a result  is well defined. Also in this case, if ���� ∞,  ∀��
can be considered as trivial.

Figure 6 shows an example of traversability map obtained using the roughness index, for the
sake of this calculation, the robot has been considered to cover an area of about 8 × 8 cells of
the map having grid size of 0.25 m, corresponding to 2 meters in size. The consideration of the
standard deviation on a terrain region calculated according to the robot’s geometry may be
considered as a robust method and, for this reason, widely used for practical applications. One
should note that between the pure elevation traversability analysis and the roughness analysis,
a specific region of the terrain appears as irregular and dangerous, corresponding to a local
surface minimum. This evaluation agrees with the reality that a robot may get stuck into a
hole. On the contrary, the same analysis does not mark as irregular the peak of the hill that
may be perfectly traversable as upland. However, it is clear that also this method may fail in
the simple case of a surface featuring a slope, which though regular and traversable, it may
present high values of variance in its elevation [51].

Figure 6. Roughness traversability analysis result based on the roughness index in Eq. (13), integrated into the mem‐
bership function in Eq. (14); (a) 3D surface model; (b) xy‐view. The color bar indicates increasing values of traversabili‐
ty, where red corresponds to not traversable regions, while blue corresponds to traversable portion of terrain.

4.4. Unevenness point descriptor‐based model

As an alternative analysis to solve the problems related to the variance of the elevation in sloped
regular surfaces, the use of normal vectors to estimate surface irregularities was presented in
[27], where the authors defined the unevenness point descriptor (UPD), as a simple choice to
extract traversability information from 3D point cloud data. Specifically, the UPD describes
surfaces using a normal analysis in a neighborhood, resulting in an efficient description of both
irregularities and inclination.

Summarizing the concept, let  be a point cloud, that is, a set of points defined by their
Cartesian coordinates defined as in Eq. (3), and let pq be a given point defined as the query point.
The neighborhood of pq in  can be defined as in Eq. (4), given a search radius dm > 0. Then, we

define the unevenness point descriptor FU in pq, as: ��(��,��) = � �,�� , where � � = (���,���,���)
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is given by the vector sum of all the vectors � � normal vectors in the neighbors Pq, that is,� � = ∑� = 1� � � with � = 1,...,�, �� is defined by �� = � � /�, and k is the number of elements

in ��.

The components of � � provide information about the global direction of the local surface in

the sensor reference frame. Whereas �� can be interpreted as a local inverse “unevenness
index,” since it assesses the degree of local roughness, and it depends on the distribution of

the direction of the normal vectors in the neighborhood. �� is normalized by k, i.e., the number
of points in Pq; hence, it is possible to compare the unevenness index of different points among
each other. The main advantages of this descriptor reside in its simplicity and robustness for
traversability evaluation. Contrary to other methods, UPD detects the variations in the surface
orientation instead of the variation of the pure elevation, which leads to a general description
of regularity in the surface. Moreover, the UPD can be easily adapted to the robot’s specific
task by appropriately setting the neighborhood size, dm. In practice, its value is fixed at the
beginning of the operations based on the robot geometric size [26]. As further observation,

given a neighborhood �� denoting a certain region of the terrain, its orientation can be written
as follows:

q -
æ ö
ç ÷ç ÷
è ø
r1( ) = ,cos

| |

q
q z

q

r
P

r
(15)

where ��� represents the third component of � �, orthogonal to the xy‐plane, as a consequence,

d(Pq) represents the global orientation of the surface portion Pq respect to the plane xy.

To bring the unevenness index into the definition of a traversable region, we can consider as
given the C‐Space  and a forbidden space ⊂ , then a free space can be defined as in the
following Eq. (16):

{ }Î Ç Ç ¹ ÆC C P M O= | ( ) ,free q q (16)

where  is a generic portion of space expressed as a point cloud. Let us note that the meaning
of the intersection with  consists in a practical limitation of the C‐Space in the part the robot
can see or has information about. Then, let us suppose to be given the unevenness index

, the traversability region may be identified by the set in Eq. (9), where the membership
function is given by the following:

z- " Î ÌT C M C( ) = 1 | ( ) .q
freeq q q (17)
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Figure 7. Unevenness point descriptor‐based model for geometric traversability analysis applied on a point cloud de‐
picting the sample terrain model. In (a) and (b), the 3D view and xy‐view, respectively, are depicted. The search radius
for the UPD calculation is dm = 1 m.

Figure 8. UPD point·descriptor analysis. In (b) the 3D point cloud is shown using the color bar to denote traversability
value, whereas its relative ��‐view is shown in (c). As the point cloud has been obtained by stereo‐triangulation, the
left‐camera image is shown in (a). The roughness index‐based analysis in Eq. (14) produces poor results on the same
scenario using a DEM approach, see 3D‐view (d) and xy‐view (e).
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Now, let us observe that in its original form the UPD considers the robot model into the
parameter ��, at least in its size, that has been said to be fixed at the beginning of robot

operations, according to its shape. However, it is possible to generalize the concept of neigh‐

borhood �� considering the set of points which fall in the set not as a sphere neighborhood but
as the intersection between a polyhedral robot model  and the free part of C‐Space, hence

 This generalization allows the user to better define the robot shape
into the descriptor.

The example of the UPD analysis, for the same terrain model considered as sample, is
reported in Figure 7, for the sake of visibility, the values of ζq have been normalized to their
minimum values in the region, since the results of variation were close to regularity. During
the calculation, the search radius has been set to 1 m, according to the previous example of the
roughness index. Contrary to the previous approaches, in the UPD analysis, the strong
variations such as the depressions are now considered as not regular showing a different
perception of the traversability of this terrain model.

As last example, in Figure 8, the UPD has been applied on a point cloud obtained by triangu‐
lation on a stereocamera in real environment, the value of the traversabilitv function is reported
using in color scale, whereas the left‐camera image of the scenario is reported in Figure 8a.
This scene has been extracted from a dataset thoroughly analyzed in [51]. It can be interesting
to note that the presented case scenario features a ramp to access an indoor structure. The ramp
is considered as regular via UPD analysis, whereas it may be misinterpreted considering
elevation model as well as the roughness index. All the borders are correctly detected as not
traversable regions. As the matter of fact, Figure 8d and Figure 8e present the same scenario
described using a DEM and the traversability function in Eq. (14). The misunderstanding of
the scenario leads to the erroneous classification of the ramp to access the building behind it
as fully not traversable. On the contrary, in Figure 8b and Figure 8c the scene is properly
interpreted using the UPD approach.

5. Conclusion and further extensions

Along the chapter, different methods of geometry‐based traversability for mobile robotics have
been explored. A thorough review on the topic suggests that the future trend of sensors and
space description for traversability purposes will refer to point clouds and time‐of‐flight
sensors, or stereo‐3D reconstruction. The necessity to improve the description of terrain,
removing the assumption of regularity, will bring the robot towards the full 3D reconstruction
of the environment at least in short range visibility. Among different methods analyzed in the
discussion, the UPD has demonstrated highest capability of recognition even though it could
be costly in terms of computational performances. The contributions in this work are as follows:
(i) a review of the field with comparison among technologies, (ii) a new definition of travers‐
ability that can be of general value for robot navigation purposes, and (iii) a comparison among
literature methods including practical examples.
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To conclude this chapter, it is worth to give some possible extensions of this work and future
developments. One of them could be the definition of traversable regions in terms of proba‐
bility. Indeed, it should be possible to include a probability function in terms of risk‐of‐collision
or probability of traverse, in which high values refer to minimum probability of collision (i.e.,
max traversing probability) or low values imply maximum probability of collision (i.e., min
traversing probability). Moreover, the traversability regions as defined during this chapter may
fit for navigation purposes using the common potential fields, where the potential function
will consider traversable regions as “attractive.” On the contrary, “repulsive” regions will
coincide with low values of traversability function. Literature in this field typically considers
potential functions that use the distance from obstacles instead of a complete traversability
description.
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