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Preface to “Machine Learning, Low-Rank

Approximations and Reduced Order Modeling in

Computational Mechanics”

The use of machine learning in mechanics is booming. Algorithms inspired by developments

in the field of artificial intelligence today cover increasingly varied fields of application. This book

illustrates recent results on coupling machine learning with computational mechanics, particularly

for the construction of surrogate models or reduced order models. The articles contained in this

compilation were presented at the EUROMECH Colloquium 597, “Reduced Order Modeling in

Mechanics of Materials”, held in Bad Herrenalb, Germany, from August 28th to August 31th 2018.

The Colloquium hosted a total of around 40 people including guest speakers for particular

slots. The scientific aim of relating machine learning, model order reduction, data-driven modeling

and simulation, and error estimation was fully achieved due to the very high quality of the 33

oral presentations and the impressive number of 14 accompanying posters which were extensively

discussed during a separate time slot. The ten best papers are presented here in this book.

Felix Fritzen, David Ryckelynck
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Abstract: Parametric high-fidelity simulations are of interest for a wide range of applications.

However, the restriction of computational resources renders such models to be inapplicable in a

real-time context or in multi-query scenarios. Model order reduction (MOR) is used to tackle this issue.

Recently, MOR is extended to preserve specific structures of the model throughout the reduction,

e.g., structure-preserving MOR for Hamiltonian systems. This is referred to as symplectic MOR. It is

based on the classical projection-based MOR and uses a symplectic reduced order basis (ROB). Such

an ROB can be derived in a data-driven manner with the Proper Symplectic Decomposition (PSD) in

the form of a minimization problem. Due to the strong nonlinearity of the minimization problem,

it is unclear how to efficiently find a global optimum. In our paper, we show that current solution

procedures almost exclusively yield suboptimal solutions by restricting to orthonormal ROBs. As a

new methodological contribution, we propose a new method which eliminates this restriction

by generating non-orthonormal ROBs. In the numerical experiments, we examine the different

techniques for a classical linear elasticity problem and observe that the non-orthonormal technique

proposed in this paper shows superior results with respect to the error introduced by the reduction.

Keywords: symplectic model order reduction; proper symplectic decomposition (PSD); structure

preservation of symplecticity; Hamiltonian system

1. Introduction

Simulations enable researchers of all fields to run virtual experiments that are too expensive or

impossible to be carried out in the real world. In many contexts, high-fidelity models are indispensable

to represent the simulated process accurately. These high-fidelity simulations typically come with the

burden of a large computational cost such that an application in real time or an evaluation for many

different parameters is impossible respecting the given restrictions of computational resources at hand.

Model order reduction (MOR) techniques can be used to reduce the computational cost of evaluations

of the high-fidelity model by approximating these with a surrogate reduced-order model (ROM) [1].

One class of high-fidelity models are systems of ordinary differential equations (ODEs) with

a high order, i.e., a high dimension in the unknown variable. Such models typically arise from

fine discretizations of time-dependent partial differential equations (PDEs). Since each point in the

discretization requires one or multiple unknowns, fine discretizations with many discretization points

yield a system of ODEs with a high order. In some cases, the ODE system takes the form of a

finite-dimensional Hamiltonian system. Examples are linear elastic models [2] or gyro systems [3].

Symplectic MOR [4] allows for deriving a ROM for high-dimensional Hamiltonian systems by

lowering the order of the system while maintaining the Hamiltonian structure. Thus, it is also referred

Math. Comput. Appl. 2019, 24, 43; doi:10.3390/mca24020043 www.mdpi.com/journal/mca1
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to as structure-preserving MOR for Hamiltonian systems [5]. Technically speaking, a Petrov–Galerkin

projection is used in combination with a symplectic reduced-order basis (ROB).

For a data-driven generation of the ROB, the conventional methods, e.g., the Proper Orthogonal

Decomposition (POD) [1] is not suited since they do not necessarily compute a symplectic ROB.

To this end, the referenced works introduce the Proper Symplectic Decomposition (PSD) which is

a data-driven basis generation technique for symplectic ROBs. Due to the high nonlineariy of the

optimization problem, an efficient solution strategy is yet unknown for the PSD. The existing PSD

methods (Cotangent Lift, Complex Singular Value Decomposition (Complex SVD)), a nonlinear

programming approach [4] and a greedy procedure introduced in [5]) each restrict to a specific subset

of symplectic ROBs from which they select optimal solutions which might be globally suboptimal.

The present paper classifies the existing symplectic basis generation techniques in two classes of

methods which either generate orthonormal or non-orthonormal bases. To this end, we show that the

existing basis generation techniques for symplectic bases almost exclusively restrict to orthonormal

bases. Furthermore, we prove that Complex SVD is the optimal solution of the PSD on the set of

orthonormal, symplectic bases. During the proof, an alternative formulation of the Complex SVD for

symplectic matrices is introduced. To leave the class of orthonormal, symplectic bases, we propose a

new basis generation technique, namely the PSD SVD-like decomposition. It is based on an SVD-like

decomposition of arbitrary matrices B ∈ Rn×2m introduced in [6].

This paper is organized in the following way: Section 2 is devoted to the structure-preserving

MOR for autonomous and non-autonomous, parametric Hamiltonian systems and thus introduces

symplectic geometry, Hamiltonian systems and symplectic MOR successively. The data-driven

generation of a symplectic ROB with PSD is discussed in Section 3. The numerical results are presented

and elaborated in Section 4 exemplified by a Lamé–Navier type elasticity model which we introduce

at the beginning of that section together with a short comment on the software that is used for the

experiments. The paper is summarized and concluded in Section 5.

2. Symplectic Model Reduction

Symplectic MOR for autonomous Hamiltonian systems is introduced in [4]. We repeat the

essentials for the sake of completeness and to provide a deeper understanding of the methods used. In

the following, µ ∈ P ⊂ Rp describes p ∈ N parameters of the system from the parameter set P . We

might skip the explicit dependence on the parameter vector µ if it is not relevant in this specific context.

2.1. Symplectic Geometry in Finite Dimensions

Definition 1 (Symplectic form over R). Let V be a finite-dimensional vector space over R. We consider a

skew-symmetric and non-degenerate bilinear form ω : V×V→ R, i.e., for all v1, v2 ∈ V, it holds

ω (v1, v2) = −ω (v2, v1) and ω (v2, v3) = 0 ∀v3 ∈ V =⇒ v3 = 0.

The bilinear form ω is called symplectic form on V and the pair (V, ω) is called symplectic vector space.

It can be shown that V is necessarily of even dimension [7]. Thus, V is isomorphic to R2n

which is why we are restricted to V = R2n and write ω2n instead of ω as follows. In context of

the theory of Hamiltonians, R2n refers to the phase space which consists, in the context of classical

mechanics, of position states q = [q1, . . . , qn]
T ∈ Rn of the configuration space and momentum states

p = [p1, . . . , pn]
T ∈ Rn which form together the state x = [q1, . . . , qn, p1, . . . , pn]

T ∈ R2n.

It is guaranteed [7] that there exists a basis {e1, . . . , en, f1, . . . , fn} ⊂ R2n such that the symplectic

form takes the canonical structure

ω2n (v1, v2) = vT
1 J2nv2 ∀v1, v2 ∈ R

2n, J2n :=

[
0n In

−In 0n

]
, (1)

2



Math. Comput. Appl. 2019, 24, 43

where In ∈ Rn×n is the identity matrix, 0n ∈ Rn×n is the matrix of all zeros and J2n is called Poisson

matrix. Thus, we restrict to symplectic forms of the canonical structure in the following. For the

Poisson matrix, it holds for any v ∈ R2n

J2nJ
T
2n = I2n, J2nJ2n = J

T
2nJ

T
2n = −I2n, vT

J2nv = 0. (2)

These properties are intuitively understandable as the Poisson matrix is a 2n-dimensional, 90◦

rotation matrix and the matrix −I2n can be interpreted as a rotation by 180◦ in this context.

Definition 2 (Symplectic map). Let A : R2m → R2n, y 	→ Ay, A ∈ R2n×2m be a linear mapping for

n, m ∈ N and m ≤ n. We call A a linear symplectic map and A a symplectic matrix with respect to ω2n and

ω2m if

AT
J2n A = J2m, (3)

where ω2m is the canonical symplectic form on R2m (and is equal to ω2n if n = m).

Let U ⊂ R2m be an open set and g : U → R2n a differentiable map on U. We call g a symplectic map if

the Jacobian matrix d
dy g(y) ∈ R2n×2m is a symplectic matrix for every y ∈ U.

For a linear map, it is easy to check that condition (3) is equivalent to the preservation of the

symplectic form, i.e., for all v1, v2 ∈ R2m

ω2n (Av1, Av2) = vT
1 AT

J2n Av2 = vT
1 J2mv2 = ω2m (v1, v2) .

Now, we give the definition of the so-called symplectic inverse which will be used in Section 2.3.

Definition 3 (Symplectic inverse). For each symplectic matrix A ∈ R2n×2m, we define the symplectic inverse

A+ = J
T
2m AT

J2n ∈ R
2m×2n. (4)

The symplectic inverse A+ exists for every symplectic matrix and it holds the inverse relation

A+A = J
T
2m AT

J2n A = J
T
2mJ2m = I2m.

2.2. Finite-Dimensional, Autonomous Hamiltonian Systems

To begin with, we introduce the Hamiltonian system in a finite-dimensional, autonomous setting.

The non-autonomous case is discussed subsequently in Section 2.4.

Definition 4 (Finite-dimensional, autonomous Hamiltonian system). Let H : R2n × P → R be a

scalar-valued function that we require to be continuously differentiable in the first argument and which we call

Hamiltonian (function). Hamilton’s equation is an initial value problem with the prescribed initial data t0 ∈ R,

x0(µ) ∈ R2n which describes the evolution of the solution x(t, µ) ∈ R2n for all t ∈ [t0, tend], µ ∈ P with

d

dt
x(t, µ) = J2n∇xH(x(t, µ), µ) =: XH(x(t, µ), µ), x(t0, µ) = x0(µ), (5)

where XH(•, µ) is called the Hamiltonian vector field. The triple (V, ω2n,H) is referred to as the Hamiltonian

system. We denote the flow of a Hamiltonian system as the mapping ϕt : R2n × P → R2n that evolves the

initial state x0(µ) ∈ R2n to the corresponding solution x(t, µ; t0, x0(µ)) of Hamilton’s equation

ϕt(x0, µ) := x(t, µ; t0, x0(µ)),

where x(t, µ; t0, x0(µ)) indicates that it is the solution with the initial data t0, x0(µ).

3
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The two characteristic properties of Hamiltonian systems are (a) the preservation of the

Hamiltonian function and (b) the symplecticity of the flow which are presented in the following

two propositions.

Proposition 1 (Preservation of the Hamiltonian). The flow of Hamilton’s equation ϕt preserves the

Hamiltonian functionH.

Proof. We prove the assertion by showing that the evolution over time is constant for any x ∈ R2n

due to

d

dt
H(ϕt(x)) = (∇xH(ϕt(x)))T

d

dt
ϕt(x)

(5)
= (∇xH(ϕt(x)))T J2n∇xH(ϕt(x))

(2)
= 0.

Proposition 2 (Symplecticity of the flow). Let the Hamiltonian function be twice continuously differentiable

in the first argument. Then, the flow ϕt(•, µ) : R2n → R2n of a Hamiltonian system is a symplectic map.

Proof. See ([8], Chapter VI, Theorem 2.4).

2.3. Symplectic Model Order Reduction for Autonomous Hamiltonian Systems

The goal of MOR [1] is to reduce the order, i.e., the dimension, of high dimensional systems.

To this end, we approximate the high-dimensional state x(t) ∈ R2n with

x(t, µ) ≈ xrc(t, µ) = V xr(t, µ), V = colspan (V),

with the reduced state xr(t) ∈ R2k, the reduced-order basis (ROB) V ∈ R2n×2k, the reconstructed state

xrc(t) ∈ V and the reduced space V ⊂ R2n. The restriction to even-dimensional spaces R2n and R2k is

not necessary for MOR in general but is required for the symplectic MOR in the following. To achieve

a computational advantage with MOR, the approximation should introduce a clear reduction of the

order, i.e., 2k≪ 2n.

For Petrov–Galerkin projection-based MOR techniques, the ROB V is accompanied by a projection

matrix W ∈ R2n×2k which is chosen to be biorthogonal to V , i.e., WTV = I2k. The reduced-order

model (ROM) is derived with the requirement that the residual r(t, µ) vanishes in the space spanned

by the columns of the projection matrix, i.e., in our case

r(t, µ) =
d

dt
xrc(t, µ)− XH(xrc(t, µ), µ) ∈ R

2n, WTr(t, µ) = 02k×1, (6)

where 02k×1 ∈ R2k is the vector of all zeros. Due to the biorthogonality, this is equivalent to

d

dt
xr(t, µ) = WTXH(xrc(t, µ), µ) = WT

J2n∇xH(xrc(t, µ), µ), xr(t0, µ) = WTx0(µ). (7)

In the context of symplectic MOR, the ROB is chosen to be a symplectic matrix (3) which we call a

symplectic ROB. Additionally, the transposed projection matrix is the symplectic inverse WT = V+ and

the projection in (7) is called a symplectic projection or symplectic Galerkin projection [4]. The (possibly

oblique) projection reads

P = V
(

WTV
)-1

WT = V
(
V+V

)-1
V+ = VV+.

In combination, this choice of V and W guarantees that the Hamiltonian structure is preserved by

the reduction which is shown in the following proposition.

4
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Proposition 3 (Reduced autonomous Hamiltonian system). Let V be a symplectic ROB with the projection

matrix WT = V+. Then, the ROM (7) of a high-dimensional Hamiltonian system (R2n, ω2n,H) is a

Hamiltonian system (R2k, ω2k,Hr) on R2k with the canonical symplectic form ω2k and the reduced Hamiltonian

functionHr(xr, µ) = H(V xr, µ) for all xr ∈ R2k.

Proof. First, we remark that the symplectic inverse is a valid biorthogonal projection matrix since it

fulfils WTV = V+V = I2k. To derive the Hamiltonian form of the ROM in (7), we use the identity

WT
J2n = V+

J2n
(4)
= J

T
2kVT

J2nJ2n = −JT
2kVT = J2kVT, (8)

which makes use of the properties (2) of the Poisson matrix. It follows with (5), (7) and (8)

d

dt
xr(t) = WT

J2n∇xH(xrc(t)) = J2kVT∇xH(xrc(t)) = J2k∇xrHr(xr(t)),

where the last step follows from the chain rule. Thus, the evolution of the reduced state takes the form

of Hamilton’s equation and the resultant ROM is equal to the Hamiltonian system (R2k, ω2k,Hr).

Corollary 1 (Linear Hamiltonian system). Hamilton’s equation is a linear system in the case of a quadratic

HamiltonianH(x, µ) = 1/2 xTH(µ)x + xTh(µ) with H(µ) ∈ R2n×2n symmetric and h(µ) ∈ R2n

d

dt
x(t, µ) = A(µ)x(t, µ) + b(µ), A(µ) = J2n H(µ), b(µ) = J2nh(µ). (9)

The evolution of the reduced Hamiltonian system reads

d

dt
xr(t, µ) = Ar(µ)xr(t, µ) + br(µ),

Ar(µ) = J2k Hr(µ)
(8)
= WTA(µ)V ,

br(µ) = J2khr(µ)
(8)
= WTb(µ)V ,

Hr(µ) = VTH(µ)V ,

hr(µ) = VTh(µ),

with the reduced Hamiltonian functionHr(xr, µ) = 1/2 xT
r Hr(µ)xr + xT

r hr(µ).

Remark 1. We emphasise that the reduction of linear Hamiltonian systems follows the pattern of the classical

projection-based MOR approaches [9] to derive the reduced model with Ar = WTAV and br = WTb, which

allows a straightforward implementation in existing frameworks.

Since the ROM is a Hamiltonian system, it preserves its Hamiltonian. Thus, it can be shown that

the error in the Hamiltonian eH(t, µ) = H(x(t, µ), µ)−Hr(xr(t, µ), µ) is constant [4]. Furthermore,

there are a couple of results for the preservation of stability ([5], Theorem 18), ([4], Section 3.4.) under

certain assumptions on the Hamiltonian function.

Remark 2 (Offline/online decomposition). A central concept in the field of MOR for parametric systems is

the so-called offline/online decomposition. The idea is to split the procedure in a possibly costly offline phase and

a cheap online phase where the terms costly and cheap refer to the computational cost. In the offline phase, the

ROM is constructed. The online phase is supposed to evaluate the ROM fast. The ultimate goal is to avoid any

computations that depend on the high dimension 2n in the online phase. For a linear system, the offline/online

decomposition can be achieved if A(µ), b(µ) and x0(µ) allow a parameter-separability condition [9].

Remark 3 (Non-linear Hamiltonian systems). If the Hamiltonian function is not quadratic, the gradient

is nonlinear. Thus, the right-hand side of the ODE system (i.e., the Hamiltonian vector field) is nonlinear.

Nevertheless, symplectic MOR, technically, can be applied straightforwardly. The problem is that, without

further assumptions, an efficient offline/online decomposition cannot be achieved which results in a low or no

5
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reduction of the computational costs. Multiple approaches [10,11] exist which introduce an approximation of the

nonlinear right-hand side to enable an efficient offline/online decomposition.

For symplectic MOR, the symplectic discrete empirical interpolation method (SDEIM) was introduced

([4], Section 5.2.) and ([5], Section 4.2.) to preserve the symplectic structure throughout the approximation

of the nonlinear terms. The performace of these methods is discussed in in [4,5] for typical examples like the

sine-Gordon equation or the nonlinear Schrödinger equation.

Remark 4 (MOR for port-Hamiltonian systems). Alternatively to symplectic MOR with a snapshot-based

basis generation method, MOR for so-called port-Hamiltonian systems can be used [12,13]. The projection

scheme of that approach does not require symplecticity of the ROB but instead approximates the gradient of

the Hamiltonian with the projection matrix ∇xH(V xr) ≈ W∇xrHr(xr). That alternative approach, like

symplectic MOR, preserves the structure of the Hamiltonian equations, but, contrary to symplectic MOR, might

result in a non-canonical symplectic structure in the reduced system.

2.4. Finite-Dimensional, Non-Autonomous Hamiltonian Systems

The implementation of non-autonomous Hamiltonian systems in the symplectic framework is

non-trivial as the Hamiltonian might change over time. We discuss the concept of the extended phase

space [14] in the following, which redirects the non-autonomous Hamiltonian system to the case of an

autonomous Hamiltonian system. The model reduction of these systems is discussed subsequently in

Section 2.5.

Definition 5 (Finite-dimensional, non-autonomous Hamiltonian system). LetH : R×R2n ×P → R be

a scalar-valued function function that is continuously differentiable in the second argument. A non-autonomous

(or time-dependent) Hamiltonian system (R2n, ω2n,H) is of the form

x(t, µ) = J2n∇xH(t, x(t, µ), µ). (10)

We therefore callH(t, x) a time-dependent Hamiltonian function.

A problem for non-autonomous Hamiltonian systems occurs as the explicit time dependence of

the Hamiltonian function introduces an additional variable, the time, and the carrier manifold becomes

odd-dimensional. As mentioned in Section 2.1, symplectic vector spaces are always even-dimensional

which is why a symplectic description is no longer possible. Different approaches are available to

circumvent this issue.

As suggested in ([15], Section 4.3), we use the methodology of the so-called symplectic extended

phase space ([14], Chap. VI, Section 10) to redirect the non-autonomous system to an autonomous

system. The formulation is based on the extended Hamiltonian functionHe : R2n+2 → R with

He(xe) = H(qe, x) + pe, xe = (qe q pe p)T ∈ R
2n+2, x = (q p)T ∈ R

2n, qe, pe ∈ R. (11)

Technically, the time is added to the extended state xe with qe = t and the corresponding

momentum pe = −H(t, x(t)) is chosen such that the extended system is an autonomous

Hamiltonian system.

This procedure requires the time-dependent Hamiltonian function to be differentiable in the time

variable. Thus, it does for example not allow for the description of loads that are not differentiable in

time in the context of mechanical systems. This might, e.g., exclude systems that model mechanical

contact since loads that are not differentiable in time are required.

2.5. Symplectic Model Order Reduction of Non-Autonomous Hamiltonian Systems

For the MOR of the, now autonomous, extended system, only the original phase space variable

x ∈ R2n is reduced. The time and the corresponding conjugate momentum qe, pe are not reduced.
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To preserve the Hamiltonian structure, a symplectic ROB V ∈ R2n×2k is used for the reduction of

x ∈ R2n analogous to the autonomous case. The result is a reduced extended system which again

can be written as a non-autonomous Hamiltonian system (R2k, ω2k,Hr) with the time-dependent

HamiltonianHr(t, xr, µ) = H(t, V xr, µ) for all (t, xr) ∈ [t0, tend]×R2k.

An unpleasant side effect of the extended formulation is that the linear dependency on the

additional state variable pe (see (11)) implies that the Hamiltonian cannot have strict extrema. Thus,

the stability results listed in [4,5] do not apply if there is a true time-dependence in the Hamiltonian

H(t, x). Nevertheless, symplectic MOR in combination with a non-autonomous Hamiltonian system

shows stable results in the numerical experiments.

Furthermore, it is important to note that only the extended Hamiltonian He is preserved

throughout the reduction. The time-dependent Hamiltonian H(·, t) is not necessarily preserved

throughout the reduction, i.e.,He(xe(t)) = He
r (xe

r (t)) but potentiallyH(x(t), t) �= Hr(x(t), t).

3. Symplectic Basis Generation with the Proper Symplectic Decomposition (PSD)

We introduced the symplectic MOR for finite-dimensional Hamiltonian systems in the previous

section. This approach requires a symplectic ROB which is yet not further specified. In the following,

we discuss the Proper Symplectic Decomposition (PSD) as a data-driven basis generation approach.

To this end, we classify symplectic ROBs as orthogonal and non-orthogonal. The PSD is investigated

for these two classes in Sections 3.1 and 3.2 separately. For symplectic, orthogonal ROBs, we prove

that an optimal solution can be derived based on an established procedure, the PSD Complex SVD.

For symplectic, non-orthogonal ROBs, we provide a new basis generation method, the PSD SVD-

like decomposition.

We pursue the approach to generate an ROB from a collection of snapshots of the system [16].

A snapshot is an element of the so-called solution manifold S which we aim to approximate with a

low-dimensional surrogate ŜVW

S :=
{

x(t, µ)
∣∣ t ∈ [t0, tend], µ ∈ P

}
⊂ R

2n, ŜVW :=
{

V xr(t, µ)
∣∣ t ∈ [t0, tend], µ ∈ P

}
≈ S ,

where x(t, µ) ∈ R2n is a solution of the full model (5), V ∈ R2n×2k is the ROB and xr ∈ R2k is the

solution of the reduced system (7). In [4], the Proper Symplectic Decomposition (PSD) is proposed as a

snapshot-based basis generation technique for symplectic ROBs. The idea is to derive the ROB from a

minimization problem which is suggested in analogy to the very well established Proper Orthogonal

Decomposition (POD, also Principal Component Analysis) [1].

Classically, the POD chooses the ROB VPOD to minimize the sum over squared norms of all

ns ∈ N residuals (I2n − VPODVT
POD)xs

i of the orthogonal projection VPODVT
PODxs

i of the 1 ≤ i ≤ ns

single snapshots xs
i ∈ S measured in the 2-norm ‖•‖2 with the constraint that the ROB VPOD is

orthogonal, i.e.,

minimize
VPOD∈R2n×2k

ns

∑
i=1

∥∥∥
(

I2n − VPODVT
POD

)
xs

i

∥∥∥
2

2
subject to VT

PODVPOD = I2k. (12)

In contrast, the PSD requires the ROB to be symplectic instead of orthogonal, which is expressed

in the reformulated constraint. Furthermore, the orthogonal projection is replaced by the symplectic

projection VV+xs
i which results in

minimize
V∈R2n×2k

ns

∑
i=1

∥∥(I2n − VV+)xs
i

∥∥2

2
subject to VT

J2nV = J2k. (13)

We summarize this in a more compact (matrix-based) formulation in the following definition.

7
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Definition 6 (Proper Symplectic Decomposition (PSD)). Given ns snapshots xs
1, . . . , xs

ns
∈ S , we denote

the snapshot matrix as Xs = [xs
1, . . . , xs

ns
] ∈ R2n×ns . Find a symplectic ROB V ∈ R2n×2k which minimizes

minimize
V∈R2n×2k

∥∥(I2n − VV+)Xs

∥∥2

F
subject to VT

J2nV = J2k. (14)

We denote the minimization problem (14) in the following as PSD(Xs), where Xs is the given snapshot matrix.

The constraint in (14) ensures that the ROB V is symplectic and thus guarantees the existence

of the symplectic inverse V+. Furthermore, the matrix-based formulation (14) is equivalent to the

vector-based formulation presented in (13) due to the properties of the Frobenius norm ‖•‖F.

Remark 5 (Interpolation-based ROBs). Alternatively to the presented snapshot-based basis generation

techniques, interpolation-based ROBs might be used. These aim to interpolate the transfer function of linear

problems (or the linearized equations of nonlinear problems). For the framework of MOR of port-Hamiltonian

systems (see Remark 4), there exists an interpolation-based basis generation technique ([13], Section 2.2.). In the

scope of our paper, we focus on symplectic MOR and snapshot-based techniques.

3.1. Symplectic, Orthonormal Basis Generation

The foremost problem of the PSD is that there is no explicit solution procedure known so far due

to the high nonlinearity and possibly multiple local optima. This is an essential difference to the POD

as the POD allows to find a global minimum by solving an eigenvalue problem [1].

Current solution procedures for the PSD restrict to a certain subset of symplectic matrices and

derive an optimal solution for this subset which might be suboptimal in the class of symplectic

matrices. In the following, we show that this subclass almost exclusively restricts to symplectic,

orthonormal ROBs.

Definition 7 (Symplectic, orthonormal ROB). We call an ROB V ∈ R2n×2k symplectic, orthonormal (also

orthosymplectic, e.g., in [5]) if it is symplectic w.r.t. ω2n and ω2k and is orthonormal, i.e., the matrix V has

orthonormal columns

VT
J2nV = J2k and VTV = I2k.

In the following, we show an alternative characterization of a symplectic and orthonormal ROB.

Therefore, we extend the results given, e.g., in [17] for square matrices Q ∈ R2n×2n in the following

Proposition 4 to the case of rectangular matrices V ∈ R2n×2k. This was also partially addressed in ([4],

Lemma 4.3.).

Proposition 4 (Characterization of a symplectic matrix with orthonormal columns). The following

statements are equivalent for any matrix V ∈ R2n×2k

(i) V is symplectic with orthonormal columns,
(ii) V is of the form

V =
[

E J
T
2nE
]
=: VE ∈ R

2n×2k, E ∈ R
2n×k, ETE = Ik, ET

J2nE = 0k, (15)

(iii) V is symplectic and it holds VT = V+.

We remark that these matrices are characterized in [4] to be elements in Sp(2k,R2n) ∩ Vk(R
2n)

where Sp(2k,R2n) is the symplectic Stiefel manifold and Vk(R
2n) is the Stiefel manifold.

8
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Proof. “(i) =⇒ (ii)”: Let V ∈ R2n×2k be a symplectic matrix with orthonormal columns. We rename

the columns to V = [E F] with E = [e1, . . . , ek] and F = [ f1, . . . , fk]. The symplecticity of the matrix

written in terms of E and F reads

VT
J2nV =

[
ETJ2nE ETJ2nF

FTJ2nE FTJ2nF

]
=

[
0k Ik

−Ik 0k

]
⇐⇒

ET
J2nE = FT

J2nF = 0k,

−FT
J2nE = ET

J2nF = Ik.
(16)

Expressed in terms of the columns ei, fi of the matrices E, F, this condition reads for any

1 ≤ i, j ≤ k

eT
i J2nej = 0, eT

i J2n f j = δij, fT
i J2nej = −δij, fT

i J2n f j = 0,

and the orthonormality of the columns of V implies

eT
i ej = δij, fT

i f j = δij.

For a fixed i ∈ {1, . . . , k}, it is easy to show with JT
2nJ2n = I2n that J2n fi is of unit length

1 = δii = fT
i fi = fT

i J
T
2nJ2n fi = ‖J2n fi‖2

2 .

Thus, ei and J2n fi are both unit vectors which fulfill eT
i J2n fi = 〈ei, J2n fi〉R2n = 1. By the

Cauchy–Schwarz inequality, it holds 〈ei, J2n fi〉 = ‖ei‖ ‖J2n fi‖ if and only if the vectors are parallel.

Thus, we infer ei = J2n fi, which is equivalent to fi = JT
2nei. Since this holds for all i ∈ {1, . . . , k}, we

conclude that V is of the form proposed in (15).

“(ii) =⇒ (iii)”: Let V be of the form (15). Direct calculation yields

VT
J2nV =

[
ET

ETJ2n

]
J2n

[
E JT

2nE
]
=

[
ETJ2nE ETE

−ETE ETJ2nE

]
(15)
=

[
0k Ik

−Ik 0k

]
= J2k,

which shows that V is symplectic. Thus, the symplectic inverse V+ exists. The following calculation

shows that it equals the transposed VT

V+ = J
T
2kVT

J2n = J
T
2k

[
ET

ETJ2n

]
J2n =

[
−ETJ2n

ET

]
J2n =

[
−ETJ2nJ2n

ETJ2n

]
=

[
ET

ETJ2n

]
= VT.

“(iii) =⇒ (i)”: Let V be symplectic with VT = V+. Then, we know that V has orthonormal

columns since

Ik = V+V = VTV .

Proposition 4 essentially limits the symplectic, orthonormal ROB V to be of the form (15). Later in

the current section, we see how to solve the PSD for ROBs of this type. In Section 3.2, we are interested

in ridding the ROB V of this requirement to explore further solution methods of the PSD.

As mentioned before, the current solution procedures for the PSD almost exclusively restrict to

the class of symplectic, orthonormal ROBs introduced in Proposition 4. This includes the Cotangent

Lift [4], the Complex SVD [4], partly the nonlinear programming algorithm from [4] and the greedy

procedure presented in [5]. We briefly review these approaches in the following proposition.

Proposition 5 (Symplectic, orthonormal basis generation). The Cotangent Lift (CT), Complex SVD

(cSVD) and the greedy procedure for symplectic basis generation all derive a symplectic and orthonormal ROB.

The nonlinear programming (NLP) admits a symplectic, orthonormal ROB if the coefficient matrix C in ([4],

9
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Algorithm 3) is symplectic and has orthonormal columns, i.e., it is of the form CG = [G JT

2kG]. The methods

can be rewritten with VE = [E JT
2nE], where the different formulations of E read

ECT =

[
ΦCT

0n×k

]
EcSVD =

[
ΦcSVD

ΨcSVD

]
, Egreedy = [e1, . . . , ek], ENLP = ṼEG,

where

(i) ΦCT, ΦcSVD, ΨcSVD ∈ Rn×k are matrices that fulfil

ΦT
CTΦCT = Ik, ΦT

cSVDΦcSVD + Ψ
T
cSVDΨcSVD = Ik, ΦT

cSVDΨcSVD = Ψ
T
cSVDΦcSVD,

which is technically equivalent to ETE = Ik and ETJ2nE = 0k (see (15)) for ECT and EcSVD,
(ii) e1, . . . , ek ∈ R2n are the basis vectors selected by the greedy algorithm,

(iii) ṼE ∈ R2n×2k is an ROB computed from CT or cSVD and G ∈ R2k×r, r ≤ k, stems from the coefficient

matrix CG = [G JT

2kG] computed by the NLP algorithm.

Proof. All of the listed methods derive a symplectic ROB of the form VE = [E JT
2nE] which satisfies

(15). By Proposition 4, these ROBs are each a symplectic, orthonormal ROB.

In the following, we show that PSD Complex SVD is the solution of the PSD in the subset of

symplectic, orthonormal ROBs. This was partly shown in [4] which yet lacked the final step that,

restricting to orthonormal, symplectic ROBs, a solution of PSD([Xs − J2nXs]) solves PSD(Xs) and

vice versa. This proves that the PSD Complex SVD is not only near optimal in this set but indeed

optimal. Furthermore, the proof we show is alternative to the original and naturally motivates an

alternative formulation of the PSD Complex SVD which we call the POD of Ys in the following. To

begin with, we reproduce the definition of PSD Complex SVD from [4].

Definition 8 (PSD Complex SVD). We define the complex snapshot matrix

Cs = [qs
1 + ips

1, . . . , qs
ns
+ ips

ns
] ∈ C

n×ns , xs
j =

[
qs

j

ps
j

]
for all 1 ≤ j ≤ ns, (17)

which is derived with the imaginary unit i. The PSD Complex SVD is a basis generation technique that requires

the auxiliary complex matrix UCs ∈ Cn×k to fulfil

minimize
UCs∈Cn×k

∥∥Cs −UCs (UCs)
∗ Cs

∥∥2
F

subject to (UCs)
∗UCs = Ik (18)

and builds the actual ROB VE ∈ R2n×2k with

VE = [E J
T
2nE], E =

[
Re (UCs)

Im (UCs)

]
.

The solution of (18) is known to be based on the left-singular vectors of Cs which can be explicitly computed with

a complex version of the SVD.

We emphasize that we denote this basis generation procedure as PSD Complex SVD in the

following to avoid confusions with the usual complex SVD algorithm.

Proposition 6 (Minimizing PSD in the set of symplectic, orthonormal ROBs). Given the snapshot matrix

Xs ∈ R2n×ns , we augment this with “rotated” snapshots to Ys = [Xs J2nXs]. We assume that 2k is such that

10
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we obtain a gap in the singular values of Ys, i.e., σ2k(Ys) > σ2k+1(Ys). Then, minimizing the PSD in the set of

symplectic, orthonormal ROBs is equivalent to the following minimization problem

minimize
V∈R2n×2k

∥∥∥(I2n − VVT)
[

Xs J2nXs

]∥∥∥
2

F
subject to VTV = I2k. (19)

Clearly, this is equivalent to the POD (12) applied to the snapshot matrix Ys. We, thus, call this procedure the

POD of Ys in the following. A minimizer can be derived with the SVD as it is common for POD [1].

Proof. The proof proceeds in three steps: we show

(i) that (u, v) is a pair of left- and right-singular vectors of Ys to the singular value σ if and only if

(JT
2nu, JT

2ns
v) also is a pair of left- and right-singular vectors of Ys to the same singular value σ,

(ii) that a solution of the POD of Ys is a symplectic, orthonormal ROB, i.e., V = VE = [E JT
2nE],

(iii) that the POD of Ys is equivalent to the PSD for symplectic, orthonormal ROBs.

We start with the first step (i). Let (u, v) be a pair of left- and right-singular vectors of Ys to the

singular value σ. We use that the left-singular (or right-singular) vectors of Ys are a set of orthonormal

eigenvectors of YsYT
s (or YT

s Ys). To begin with, we compute

J
T
2nYsYT

s J2n = J
T
2n(XsXT

s + J2nXsXT
s J

T
2n)J2n = J

T
2nXsXT

s J2n + XsXT
s = YsYT

s ,

J
T
2ns

YT
s YsJ2ns = J

T
2ns

[
XT

s Xs XT
s J2nXs

XT
s J

T
2nXs XT

s Xs

]
J2ns =

[
XT

s Xs −XT
s J

T
2nXs

−XT
s J2nXs XT

s Xs

]
= YT

s Ys,
(20)

where we use JT
2ns

= −J2ns . Thus, we can reformulate the eigenvalue problems of YsYT
s and,

respectively, YT
s Ys as

σu = YsYT
s u = J2nJ

T
2nYsYT

s J2nJ
T
2nu

JT

2n ·|⇐⇒ σJT
2nu = J

T
2nYsYT

s J2nJ
T
2nu

(20)
= YsYT

s J
T
2nu,

σv = YT
s Ysv = J2nsJ

T
2ns

YT
s YsJ2nsJ

T
2ns

v
JT

2ns
·|

⇐⇒ σJT
2ns

v = J
T
2ns

YT
s YsJ2nsJ

T
2ns

v
(20)
= YT

s YsJ
T
2ns

v.

Thus, (JT
2nu, JT

2ns
v) is necessarily another pair of left- and right-singular vectors of Ys with the

same singular value σ. We infer that the left-singular vectors ui, 1 ≤ i ≤ 2n, ordered by the magnitude

of the singular values in a descending order can be written as

U = [u1 J
T
2nu1 u2 J

T
2nu2 . . . un J

T
2nun] ∈ R

2n×2n. (21)

For the second step (ii), we remark that the solution of the POD is explicitly known to be any

matrix which stacks in its columns 2k left-singular vectors of the snapshot matrix Ys with the highest

singular value [1]. Due to the special structure (21) of the singular vectors for the snapshot matrix Ys, a

minimizer of the POD of Ys necessarily adopts this structure. We are allowed to rearrange the order of

the columns in this matrix and thus the result of the POD of Ys can always be rearranged to the form

VE = [E J
T
2nE], E = [u1 u2 . . . uk], J

T
2nE = [JT

2nu1 J
T
2nu2 . . . J2nuk].

Note that it automatically holds that ETE = Ik and ET(J2nE) = 0k since, in both products, we use

the left-singular vectors from the columns of the matrix U from (21) which is known to be orthogonal

from properties of the SVD. Thus, (15) holds and we infer from Proposition 4 that the POD of Ys indeed

is solved by a symplectic, orthonormal ROB.

For the final step (iii), we define the orthogonal projection operators

PVE
= VE (VE)

T = EET + J
T
2nEET

J2n, P⊥VE
= I2n − PVE

.

11
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Both are idempotent and symmetric, thus
(

P⊥VE

)T
P⊥VE

= P⊥VE
P⊥VE

= P⊥VE
. Due to J2nJ

T
2n = I2n, it

further holds

J2n

(
P⊥VE

)T
P⊥VE

J
T
2n = J2nP⊥VE

J
T
2n = J2nJ

T
2n − J2nEET

J
T
2n − J2nJ

T
2nEET

J2nJ
T
2n = P⊥VE

=
(

P⊥VE

)T
P⊥VE

.

Thus, it follows

∥∥∥P⊥VE
Xs

∥∥∥
2

F
= trace

(
XT

s

(
P⊥VE

)T
P⊥VE

Xs

)
= trace

(
XT

s J2n

(
P⊥VE

)T
P⊥VE

J
T
2nXs

)
=
∥∥∥P⊥VE

J
T
2nXs

∥∥∥
2

F

and with Ys = [Xs JT
2nXs]

2
∥∥∥P⊥VE

Xs

∥∥∥
2

F
=
∥∥∥P⊥VE

Xs

∥∥∥
2

F
+
∥∥∥P⊥VE

J
T
2nXs

∥∥∥
2

F
=
∥∥∥P⊥VE

[Xs J
T
2nXs]

∥∥∥
2

F
=
∥∥∥P⊥VE

Ys

∥∥∥
2

F
,

where we use in the last step that for two matrices A ∈ R2n×u, B ∈ R2n×v for u, v ∈ N, it holds

‖A‖2
F + ‖B‖2

F = ‖[A B]‖2
F for the Frobenius norm ‖•‖F.

Since it is equivalent to minimize a function f : R2n×2k → R or a multiple c f of it for any

positive constant c ∈ R>0, minimizing
∥∥∥P⊥VE

Xs

∥∥∥
2

F
is equivalent to minimizing 2

∥∥∥P⊥VE
Xs

∥∥∥
2

F
=
∥∥∥P⊥VE

Ys

∥∥∥
2

F
.

Additionally, for an ROB of the form VE = [E JT
2nE], the constraint of orthonormal columns

is equivalent to the requirements in (15). Thus, to minimize the PSD in the class of symplectic,

orthonormal ROBs is equivalent to the POD of Ys (19).

Remark 6. We remark that, in the same fashion as the proof of step (iii) in Proposition 6, it can be shown that,

restricting to symplectic, orthonormal ROBs, a solution of PSD([Xs J2nXs]) is a solution of PSD(Xs) and vice

versa, which is one detail that was missing in [4] to show the optimality of PSD Complex SVD in the set of

symplectic, orthonormal ROBs.

We next prove that PSD Complex SVD is equivalent to POD of Ys from (19) and thus also

minimizes the PSD in the set of symplectic, orthonormal bases. To this end, we repeat the optimality

result from [4] and extend it with the results of the present paper.

Proposition 7 (Optimality of PSD Complex SVD). Let M2 ⊂ R2n×2k denote the set of symplectic bases

with the structure VE = [E JT
2nE]. The PSD Complex SVD solves PSD([Xs − J2nXs]) in M2.

Proof. See ([4], Theorem 4.5).

Proposition 8 (Equivalence of POD of Ys and PSD Complex SVD). PSD Complex SVD is equivalent to

the POD of Ys. Thus, PSD Complex SVD yields a minimizer of the PSD for symplectic, orthonormal ROBs.

Proof. By Proposition 7, PSD Complex SVD minimizes (19) in the set M2 of symplectic bases with the

structure VE = [E JT
2nE]. Thus, (16) holds with F = JT

2nE which is equivalent to the conditions on E

required in (15). By Proposition 4, we infer that M2 equals the set of symplectic, orthonormal bases.

Furthermore, we can show that, in the set M2, a solution of PSD([Xs − J2nXs]) is a solution of

PSD(Xs) and vice versa (see Remark 6). Thus, PSD Complex SVD minimizes the PSD for the snapshot

matrix Xs in the set of orthonormal, symplectic matrices and PSD Complex SVD and the POD of Ys

solve the same minimization problem.

We emphasize that the computation of a minimizer of (19) via PSD Complex SVD requires less

memory storage than the computation via POD of Ys. The reason is that the complex formulation

uses the complex snapshot matrix Cs ∈ Cn×ns which equals 2 · n · ns floating point numbers while the

solution with the POD of Ys method artificially enlarges the snapshot matrix to Ys ∈ R2n×2ns which are
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4 · n · ns floating point numbers. Still, the POD of Ys might be computationally more efficient since it is

a purely real formulation and thereby does not require complex arithmetic operations.

3.2. Symplectic, Non-Orthonormal Basis Generation

In the next step, we want to give an idea how to leave the class of symplectic, orthonormal ROBs.

We call a basis generation technique symplectic, non-orthonormal if it is able to compute a symplectic,

non-orthonormal basis.

In Proposition 5, we briefly showed that most existing symplectic basis generation techniques

generate a symplectic, orthonormal ROB. The only exception is the NLP algorithm suggested in [4]. It

is able to compute a non-orthonormal, symplectic ROB. The algorithm is based on a given initial guess

V0 ∈ R2n×2k which is a symplectic ROB, e.g., computed with PSD Cotangent Lift or PSD Complex SVD.

Nonlinear programming is used to leave the class of symplectic, orthonormal ROBs and derive an

optimized symplectic ROB V = V0C with the symplectic coefficient matrix C ∈ R2k×2r for some r ≤ k.

Since this procedure searches a solution spanned by the columns of V0, it is not suited to compute a

global optimum of the PSD which we are interested in the scope of this paper.

In the following, we present a new, non-orthonormal basis generation technique that is based

on an SVD-like decomposition for matrices B ∈ R2n×m presented in [6]. To this end, we introduce

this decomposition in the following. Subsequently, we present first theoretical results which link the

symplectic projection error with the “singular values” of the SVD-like decomposition which we call

symplectic singular values. Nevertheless, the optimality with respect to the PSD functional (14) of this

new method is yet an open question.

Proposition 9 (SVD-like decomposition [6]). Any real matrix B ∈ R2n×m can be decomposed as the product

of a symplectic matrix S ∈ R2n×2n, a sparse and potentially non-diagonal matrix D ∈ R2n×m and an orthogonal

matrix Q ∈ Rm×m with

B = SDQ, D =

p q p m−2p−q
⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

Σs 0 0 0 p

0 I 0 0 q

0 0 0 0 n−p−q

0 0 Σs 0 p

0 0 0 0 q

0 0 0 0 n−p−q

,
Σs = diag(σs

1, . . . , σs
p) ∈ R

p×p,

σs
i > 0 for 1 ≤ i ≤ p,

(22)

with p, q ∈ N and rank(B) = 2p + q and where we indicate the block row and column dimensions in D by

small letters. The diagonal entries σs
i , 1 ≤ i ≤ p, of the matrix Σs are related to the pairs of purely imaginary

eigenvalues λj(M), λp+j(M) ∈ C of M = BTJ2nB ∈ Rm×m with

λj(M) = −(σs
j )

2i, λp+j(M) = (σs
j )

2i, 1 ≤ j ≤ p.

Remark 7 (Singular values). We call the diagonal entries σs
i , 1 ≤ i ≤ p, of the matrix Σs from Proposition 9

in the following the symplectic singular values. The reason is the following analogy to the classical SVD.

The classical SVD decomposes B ∈ R2n×m as B = UΣVT where U ∈ R2n×2n, V ∈ Rm×m are

each orthogonal matrices and Σ ∈ R2n×m is a diagonal matrix with the singular values σi on its diagonal

diag(Σ) = [σ1, . . . , σr, 0, . . . , 0] ∈ Rmin(2n,m), r = rank(B). The singular values are linked to the real

eigenvalues of N = BTB with λi(N) = σ2
i . Furthermore, for the SVD, it holds due to the orthogonality of U

and V , respectively, BTB = VT
Σ

2V and BBT = UT
Σ

2U.
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A similar relation can be derived for an SVD-like decomposition from Proposition 9. Due to the structure

of the decomposition (22) and the symplecticity of S, it holds

BT
J2nB = QTDT

=J2n︷ ︸︸ ︷
ST

J2nS DQ

= QTDT
J2nDQ,

DT
J2nD =

p q p m−2p−q
⎛
⎜⎜⎝

⎞
⎟⎟⎠

0 0 Σ
2
s 0 p

0 0 0 0 q

−Σ
2
s 0 0 0 p

0 0 0 0 m−2p−q

. (23)

This analogy is why we call the diagonal entries σs
i , 1 ≤ i ≤ p, of the matrix Σs symplectic singular values.

The idea for the basis generation now is to select k ∈ N pairs of columns of S in order to

compute a symplectic ROB. The selection should be based on the importance of these pairs which

we characterize by the following proposition by linking the Frobenius norm of a matrix with the

symplectic singular values.

Proposition 10. Let B ∈ R2n×m with an SVD-like decomposition B = SDQ with p, q ∈ N from Proposition 9.

The Frobenius norm of B can be rewritten as

‖B‖2
F =

p+q

∑
i=1

(ws
i )

2, ws
i =

⎧
⎨
⎩

σs
i

√
‖si‖2

2 + ‖sn+i‖2
2, 1 ≤ i ≤ p,

‖si‖2 , p + 1 ≤ i ≤ p + q,
(24)

where si ∈ R2n is the i-th column of S for 1 ≤ i ≤ 2n. In the following, we refer to each ws
i as the weighted

symplectic singular value.

Proof. We insert the SVD-like decomposition B = SDQ and use the orthogonality of Q to reformulate

‖B‖2
F = ‖SDQ‖2

F = ‖SD‖2
F = trace(DTSTSD) =

p

∑
i=1

(σs
i )

2sT
i si +

p

∑
i=1

(σs
i )

2sT
n+isn+i +

q

∑
i=1

sT
p+isp+i

=
p

∑
i=1

(σs
i )

2
(
‖si‖2

2 + ‖sn+i‖2
2

)
+

q

∑
i=1

∥∥sp+i

∥∥2

2
,

which is equivalent to (24).

It proves true in the following Proposition Proposition 11 that we can delete single addends ws
i in

(24) with the symplectic projection used in the PSD if we include the corresponding pair of columns in

the ROB. This will be our selection criterion in the new basis generation technique that we denote PSD

SVD-like decomposition.

Definition 9 (PSD SVD-like decomposition). We compute an SVD-like decomposition (22) as Xs = SDQ

of the snapshot matrix Xs ∈ R2n×ns and define p, q ∈ N as in Proposition 9. In order to compute an ROB V

with 2k columns, find the k indices i ∈ IPSD = {i1, . . . , ik} ⊂ {1, . . . , p + q} which have large contributions

ws
i in (24) with

IPSD = argmax
I⊂{1,...,p+q}
|I|=k

(

∑
i∈I

(ws
i )

2

)
. (25)

14
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To construct the ROB, we choose the k pairs of columns si ∈ R2n from S corresponding to the selected indices

IPSD such that

V = [si1 , . . . , sik , sn+i1 , . . . , sn+ik ] ∈ R
2n×2k.

The special choice of the ROB is motivated by the following theoretical result which is very

analogous to the results known for the classical POD in the framework of orthogonal projections.

Proposition 11 (Projection error by neglegted weighted symplectic singular values). Let V ∈ R2n×2k

be an ROB constructed with the procedure described in Definition 9 to the index set IPSD ⊂ {1, . . . , p + q}
with p, q ∈ N from Proposition 9. The PSD functional can be calculated by

∥∥(I2n − VV+)Xs

∥∥2

F
= ∑

i∈{1,...,p+q}\IPSD

(ws
i )

2 , (26)

which is the cumulative sum of the squares of the neglected weighted symplectic singular values.

Proof. Let V ∈ R2n×2k be an ROB constructed from an SVD-like decomposition Xs = SDQ of the

snapshot matrix Xs ∈ R2n×2k with the procedure described in Definition 9. Let p, q ∈ N be defined as

in Proposition 9 and IPSD = {i1, . . . , ik} ⊂ {1, . . . , p + q} be the set of indices selected with (25).

For the proof, we introduce a slightly different notation of the ROB V . The selection of the columns

si of S is denoted with the selection matrix II2k
PSD
∈ R2n×2k based on

(
IIPSD

)
α,β

=

{
1, α = iβ ∈ IPSD,

0, else,
for

1 ≤ α ≤ 2n,

1 ≤ β ≤ k,
II2k

PSD
= [IIPSD

, JT
2n IIPSD

],

which allows us to write the ROB as the matrix–matrix product V = SII2k
PSD

. Furthermore, we can

select the neglected entries with I2n − II2k
PSD

(
II2k

PSD

)T
.

We insert the SVD-like decomposition and the representation of the ROB introduced in the

previous paragraph in the PSD which reads

∥∥(I2n − VV+)Xs

∥∥2

F
=
∥∥∥(I2n − SII2k

PSD
J
T
2k IT
I2k

PSD
ST

J2n)SDQ
∥∥∥

2

F
=
∥∥∥S(I2n − II2k

PSD
J
T
2k IT
I2k

PSD

=J2n︷ ︸︸ ︷
ST

J2nS)D
∥∥∥

2

F
,

where we use the orthogonality of Q and the symplecticity of S in the last step. We can reformulate

the product of Poisson matrices and the selection matrix as

J
T
2k IT
I2k

PSD
J2n = J

T
2k

[
IT
IPSD

IT
IPSD

J2n

]
J2n =

[
0k −Ik

Ik 0k

] [
IT
IPSD

J2n

−IT
IPSD

]
= IT
I2k

PSD
.

Thus, we can further reformulate the PSD as

∥∥(I2n − VV+)Xs

∥∥2

F
=

∥∥∥∥S

(
I2n − II2k

PSD

(
II2k

PSD

)T
)

D

∥∥∥∥
2

F

= ∑
i∈{1,...,p+q}\IPSD

(ws
i )

2 ,

where ws
i are the weighted symplectic singular values from (24). In the last step, we use that the

resultant diagonal matrix in the braces sets all rows of D with indices i, n + i to zero for i ∈ IPSD. Thus,

the last step can be concluded analogously to the proof of Proposition 10.

A direct consequence of Proposition 11 is that the decay of the PSD functional is proportional

to the decay of the sum over the neglected weighted symplectic singular values ws
i from (24). In the
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numerical example Section 4.2.1, we observe an exponential decrease of this quantities which induces

an exponential decay of the PSD functional.

Remark 8 (Computation of the SVD-like decomposition). To compute an SVD-like decompostion (22) of

B, several approaches exist. The original paper [6] derives a decomposition based on the product BTJ2nB which

is not good for a numerical computation since errors can arise from cancellation. In [3], an implicit version

is presented that does not require the computation of the full product BTJ2nB but derives the decomposition

implicitly by transforming B. Furthermore, Ref. [18] introduces an iterative approach to compute an SVD-like

decomposition which computes parts of an SVD-like decomposition with a block-power iterative method. In the

present case, we use the implicit approach [3].

To conclude the new method, we display the computational steps in Algorithm 1. All methods in

this algorithm are standard MATLAB R© functions except for [S, D, Q, p, q] = SVD_like_decomp(Xs)

which is supposed to return the matrices S, D, Q and integers p, q of the SVD-like decomposition (22).

The matrix Q is not required and thus, replaced with ∼ as usual in MATLAB R© notation.

Algorithm 1: PSD SVD-like decomposition in MATLAB R© notation.

Input: snapshot matrix Xs ∈ R2n×ns , size 2k of the ROB

Output: symplectic ROB V ∈ R2n×2k

1 [S, D,∼, p, q]← SVD_like_decomp(Xs) // compute SVD-like decomposition, Q is not required

2 σs ← diag(D(1 : p, 1 : p)) // extract symplectic singular values

3 r ← sum(power(S, 2), 1) // compute squares of the 2-norm of each column of S

4 ws ← times(σs, sqrt(r(1 : p) + r(n + (1 : p)))) // weighted sympl. singular values ws
1, . . . , ws

p

5 ws ← [ws, r(p + (1 : q))] // append weighted symplectic singular values ws
p+1, . . . , ws

p+q

6 [∼, IPSD]← maxk(ws, k) // find indices of k highest weighted symplectic singular values

7 V ← S(:, [IPSD, n + IPSD]) // select columns with indices IPSD and n + IPSD

3.3. Interplay of Non-Orthonormal and Orthonormal ROBs

We give further results on the interplay of non-orthonormal and orthonormal ROBs.

The fundamental statement in the current section is the Orthogonal SR decomposition [6,19].

Proposition 12 (Orthogonal SR decomposition). For each matrix B ∈ R2n×m with m ≤ n, there exists

a symplectic, orthogonal matrix S ∈ R2n×2n, an upper triangular matrix R11 ∈ Rm×m and a strictly upper

triangular matrix R21 ∈ Rm×m such that

B = S

⎡
⎢⎢⎢⎣

R11

0(n−m)×m

R21

0(n−m)×m

⎤
⎥⎥⎥⎦ = [Sm J

T
2nSm]

[
R11

R21

]
,

Si = [s1, . . . , si], 1 ≤ i ≤ n,

S = [s1, . . . , sn, JT
2ns1, . . . , JT

2nsn].

We remark that a similar result can be derived for the case m > n [6], but it is not introduced since

we do not need it in the following.

Proof. Let B ∈ R2n×m with m ≤ n. We consider the QR decomposition

B = Q

[
R

0(2n−m)×m

]
,

where Q ∈ R2n×2n is an orthogonal matrix and R ∈ R2n×m is upper triangular. The original Orthogonal

SR decomposition ([19], Corollary 4.5.) for the square matrix states that we can decompose Q ∈ R2n×2n
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as a symplectic, orthogonal matrix S ∈ R2n×2n, an upper triangular matrix R̃11 ∈ Rn×n, a strictly

upper triangular matrix R̃21 ∈ Rn×n and two (possibly) full matrices R̃12, R̃22 ∈ Rn×n

Q = S

[
R̃11 R̃12

R̃21 R̃22

]
and thus B = S

[
R̃11 R̃12

R̃21 R̃22

] [
R

0(2n−m)×m

]
= S

[
R̃11

R̃21

] [
R

0(n−m)×m

]
.

Since R is upper triangular, it does preserve the (strictly) upper triangular pattern in R̃11 and R̃21

and we obtain the (strictly) upper triangular matrices R11, R21 ∈ Rm×m from

⎡
⎢⎢⎢⎣

R11

0(n−m)×m

R21

0(n−m)×m

⎤
⎥⎥⎥⎦ =

[
R̃11

R̃21

] [
R

0(n−m)×m

]
.

Based on the Orthogonal SR decomposition, the following two propositions prove bounds for the

projection errors of PSD which allows an estimate for the quality of the respective method. In both

cases, we require the basis size to satisfy k ≤ n or 2k ≤ n, respectively. This restriction is not limiting

in the context of symplectic MOR as in all application cases k≪ n.

Similar results have been presented in ([20], Proposition 3.11) for PSD Cotangent Lift.

In comparison to these results, we are able to extend the bound to the case of PSD Complex SVD and

thereby improve the bound for the projection error by a factor of 1
2 .

Proposition 13. Let V ∈ R2n×k be a minimizer of POD with k ≤ n basis vectors and VE ∈ R2n×2k be a

minimizer of the PSD in the class of orthonormal, symplectic matrices with 2k basis vectors. Then, the orthogonal

projection errors of VE and V satisfy

∥∥∥(I2n − VEVT
E )Xs

∥∥∥
2

F
≤
∥∥∥
(

I2n − VVT

)
Xs

∥∥∥
2

F
.

Proof. The Orthogonal SR decomposition (see Proposition 12) guarantees that a symplectic, orthogonal

matrix S ∈ R2n×2k and R ∈ R2k×k exist with V = SR. Since both matrices V and S are orthogonal and

img(V) ⊂ img(S), we can show that S yields a lower projection error than V with

∥∥∥
(

I2n − SST
)

Xs

∥∥∥
2

F
=
∥∥∥
(

I2n − SST
) (

I2n − VVT
)

Xs

∥∥∥
2

F
=

ns

∑
i=1

∥∥∥
(

I2n − SST
) (

I2n − VVT
)

xs
i

∥∥∥
2

2

≤
∥∥∥I2n − SST

∥∥∥
2

2︸ ︷︷ ︸
≤1

ns

∑
i=1

∥∥∥
(

I2n − VVT
)

xs
i

∥∥∥
2

2
≤
∥∥∥
(

I2n − VVT
)

Xs

∥∥∥
2

F
.

Let VE ∈ R2n×2k be a minimizer of the PSD in the class of symplectic, orthonormal ROBs.

By definition of VE, it yields a lower projection error than S. Since both ROBs are symplectic and

orthonormal, we can exchange the symplectic inverse with the transposition (see Proposition 4, (iii)).

This proves the assertion with

∥∥∥
(

I2n − VVT
)

Xs

∥∥∥
2

F
≥
∥∥∥
(

I2n − SST
)

Xs

∥∥∥
2

F
≥
∥∥∥
(

I2n − VEVT
E

)
Xs

∥∥∥
2

F
.

Proposition 13 proves that we require at most twice the number of basis vectors to generate a

symplectic, orthonormal basis with an orthogonal projection error at least as small as the one of the
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classical POD. An analogous result can be derived in the framework of a symplectic projection which

is proven in the following proposition.

Proposition 14. Assume that there exists a minimizer V ∈ R2n×2k of the general PSD for a basis size 2k ≤ n

with potentially non-orthonormal columns. Let VE ∈ R2n×4k be a minimizer of the PSD in the class of

symplectic, orthogonal bases of size 4k. Then, we know that the symplectic projection error of VE is less than or

equal to the one of V , i.e.,

∥∥(I2n − VEV+
E )Xs

∥∥2

F
≤
∥∥(I2n − VV+)Xs

∥∥2

F
.

Proof. Let V ∈ R2n×2k be a minimizer of PSD with 2k ≤ n. By Proposition 12, we can determine

a symplectic, orthogonal matrix S ∈ R2n×4k and R ∈ R4k×2k with V = SR. Similar to the proof of

Proposition 13, we can bound the projection errors. We require the identity

(I2n − SS+)(I2n − VV+) = I2n − SS+ − VV+ + S

=I4k︷︸︸︷
S+S R︸ ︷︷ ︸
=V

J
T
2kRTST

J2n︸ ︷︷ ︸
=V+

= I2n − SS+.

With this identity, we proceed analogously to the proof of Proposition 13 and derive for a

minimizer VE ∈ R2n×4k of PSD in the class of symplectic, orthonormal ROBs

∥∥(I2n − VEV+
E )Xs

∥∥2

F
≤
∥∥(I2n − SS+)Xs

∥∥2

F
=
∥∥(I2n − SS+)(I2n − VV+)Xs

∥∥2

F

≤
∥∥(I2n − SS+)

∥∥2

2︸ ︷︷ ︸
≤1

∥∥(I2n − VV+)Xs

∥∥2

F
≤
∥∥(I2n − VV+)Xs

∥∥2

F
.

Proposition 14 proves that we require at most twice the number of basis vectors to generate

a symplectic, orthonormal basis with a symplectic projection error at least as small as the one of a

(potentially non-orthonormal) minimizer of PSD.

4. Numerical Results

The numerical experiments in the present paper are based on a two-dimensional plane strain

linear elasticity model which is described by a Lamé–Navier equation

ρ0
∂2

∂2t2
u(ξ, t, µ)− μL Δξu(ξ, t, µ) + (λL + μL)∇ξ

(
divξ (u(ξ, t, µ))

)
= ρ0 g(ξ, t)

for ξ ∈ Ω ⊂ R2 and t ∈ [t0, tend] with the density ρ0 ∈ R>0, the Lamé constants µ = (λL, μL) ∈ R2
>0,

the external force g : Ω× [t0, tend] → R2 and Dirichlet boundary conditions on Γu ⊂ Γ := ∂Ω and

Neumann boundary conditions on Γt ⊂ Γ. We apply non-dimensionalization (e.g., ([21], Chapter 4.1)),

apply the Finite Element Method (FEM) with piecewise linear Lagrangian ansatz functions on a

triangular mesh (e.g., [22]) and rewrite the system as a first-order system to derive a quadratic

Hamiltonian system (see Corollary 1) with

x(t, µ) =

[
q(t, µ)

p(t, µ)

]
, H(µ) =

[
K(µ) 0n

0n M-1

]
, h(t) =

[
− f (t)

0n×1

]
, (27)

where q(t, µ) ∈ Rn is the vector of displacement DOFs, p(t, µ) ∈ Rn is the vector of linear momentum

DOFs, K(µ) ∈ Rn×n is the stiffness matrix, M-1 ∈ Rn×n is the inverse of the mass matrix and f (t, µ) is

the vector of external forces.
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We remark that a Hamiltonian formulation with the velocity DOFs v(t) = d
dt x(t) ∈ Rn instead

of the linear momentum DOFs p(t) is possible if a non-canonical symplectic structure is used.

Nevertheless, in ([4], Remark 3.8.), it is suggested to switch to a formulation with a canonical symplectic

structure for the MOR of Hamiltonian systems.

In order to solve the system (27) numerically with a time-discrete approximation xi(µ) ≈ x(ti, µ)

for each of nt ∈ N time steps ti ∈ [t0, tend], 1 ≤ i ≤ nt, a numerical integrator is required.

The preservation of the symplectic structure in the time-discrete system requires a so-called symplectic

integrator [8,23]. In the context of our work, the implicit midpoint scheme is used in all cases for the

sake of simplicity. Higher-order symplectic integrators exist and could as well be applied.

Remark 9 (Modified Hamiltonian). We remark that, even though the symplectic structure is preserved by

symplectic integrators, the Hamiltonian may be modified in the time-discrete system compared to the original

Hamiltonian. In the case of a quadratic Hamiltonian (see Corollary 1) and a symplectic Runge–Kutta integrator,

the modified Hamiltonian equals the original Hamiltonian since these integrators preserve quadratic first

integrals. For further details, we refer to ([8], Chapter IX.) or ([24], Sections 5.1.2 and 5.2).

The model parameters are the first and second Lamé constants with µ = (λL, μL) ∈ P =

[35× 109, 125× 109] N/m2 × [35× 109, 83× 109] N/m2 which varies between cast iron and steel

with approx. 12% chromium ([25], App. E 1 Table 1). The density is set to ρ0 = 7856 kg/m3.

The non-dimensionalization constants are set to λc
L = μc

L = 81× 109 N/m2, ξc = 1 m, gc = 9.81 m/s2.

The geometry is a simple cantilever beam clamped on the left side with a force applied to the

right boundary (see Figure 1). The time interval is chosen to be t ∈ [t0, tend] with t0 = 0 s and

tend = 7.2× 10−2 s which is one oscillation of the beam. For the numerical integration, nt = 151 time

steps are used.

2 4 6 8

−2

2
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ξ1

ξ2

Figure 1. An exaggerated illustration of the displacements q(t, µ) of the non-autonomous beam model

(a) at the time with the maximum displacement (gray) and (b) at the final time (blue).

The symplectic MOR techniques examined are PSD Complex SVD (Definition 8), the greedy

procedure [5] and the newly introduced PSD SVD-like decomposition (Definition 9). The MOR

techniques that do not necessarily derive a symplectic ROB are called non-symplectic MOR techniques

in the following. The non-symplectic MOR techniques investigated in the scope of our numerical results

are the POD applied to the full state x(t, µ) (POD full state) and a POD applied to the displacement

q(t, µ) and linear momentum states p(t, µ) separately (POD separate states). To summarize the basis

generation methods, let us enlist them in Table 1 where SVD(•) and cSVD(•) denote the SVD and the

complex SVD, respectively.
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Table 1. Basis generation methods used in the numerical experiments in summary, where we use the

MATLAB R© notation to denote the selection of the first k columns of a matrix, e.g., in U(:, 1 : k).

method solution solution procedure ortho- sympl.
norm.

POD full Vk = U(:, 1 : k) U = SVD(Xs) ✓ ✗

POD separate
Vk =

⎡
⎣Up(:, 1 : k)

Uq(:, 1 : k)

⎤
⎦ Up = SVD ([p1, . . . , pns ]) ✓ ✗

Uq = SVD ([q1, . . . , qns ])

PSD cSVD V2k = [E(:, 1 : k) JT

2nE(:, 1 : k)] E =

⎡
⎣Φ

Ψ

⎤
⎦ , Φ + iΨ = cSVD (Cs) ✓ ✓

Cs = [p1 + iq1, . . . , pns + iqns ]

PSD greedy V2k = [E(:, 1 : k) JT

2nE(:, 1 : k)] E from greedy algorithm ✓ ✓

PSD SVD-like V2k = [si1
, . . . , sik

, sn+i1
, . . . , sn+ik

] S = [s1, . . . , s2n] from (22), ✗ ✓

IPSD = {i1, . . . , ik} from (25)

All presented experiments are generalization experiments, i.e., we choose nine different training

parameter vectors µ ∈ P on a regular grid to generate the snapshots and evaluate the reduced models

for 16 random parameter vectors that are distinct from the nine training parameter vectors. Thus,

the number of snapshots is ns = 9 · 151 = 1359. The size 2k of the ROB V is varied in steps of 20 with

2k ∈ {20, 40, . . . , 280, 300}.
Furthermore, all experiments consider the performance of the reduced models based on the error

introduced by the reduction. We do not compare the computational cost of the different basis generation

techniques in the offline-phase since the current (non-optimized) MATLAB R© implementation of the

SVD-like decomposition does not allow a meaningful numerical comparisons of offline-runtimes as

the methods using a MATLAB R©-internal, optimized SVD implementation will be faster.

The software used for the numerical experiments is RBmatlab (https://www.morepas.org/

software/rbmatlab/) which is an open-source library based on the proprietary software package

MATLAB R© and contains several reduced simulation approaches. An add-on to RBmatlab is provided

in the Supplementary Materials of the current paper which includes all the additional code to reproduce

the results of the present paper. The versions used in the present paper are RBmatlab 1.16.09 and

MATLAB R© 2017a.

4.1. Autonomous Beam Model

In the first model, we load the beam on the free end (far right) with a constant force which induces

an oscillation. Due to the constant force, the discretized system can be formulated as an autonomous

Hamiltonian system. Thus, the Hamiltonian is constant and its preservation in the reduced models

can be analysed. All other reduction results are very similar to the non-autonomous case and thus are

exclusively presented for the non-autonomous case in the following Section 4.2.

Preservation over Time of the Modified Hamiltonian in the Reduced Model

In the following, we investigate the preservation of the Hamiltonian of our reduced models.

With respect to Remark 9, we mean the preservation over time of the modified Hamiltonian. Since

the Hamiltonian is quadratic in our example and the implicit midpoint is a symplectic Runge-Kutta

integrator, the modified Hamiltonian equals the original which is why we speak of “the Hamiltonian”

in the following.
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We present in Figure 2 the count of the total 240 simulations which show a preservation (over

time) of the reduced Hamiltonian in the reduced model. The solution xr of a reduced simulation

preserves the reduced Hamiltonian over time if (Hr(xr(ti), µ)−Hr(xr(t0), µ))/Hrel(µ) < 10−10 for

all discrete times ti ∈ [t0, tend], 1 ≤ i ≤ nt whereHrel(µ) > 0 is a parameter-dependent normalization

factor. The heat map shows that no simulation in the non-symplectic case preserves the Hamiltonian,

whereas the symplectic methods all preserve the Hamiltonian which is what was expected from theory.

In Figure 3, we exemplify the non-constant evolution of the reduced Hamiltonian for three

non-symplectic bases generated by POD separate states with different basis sizes and one selected test

parameter (λ, μ) ∈ P . It shows that, in all three cases, the Hamiltonian starts to grow exponentially.
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240/240

240/240

240/240

POD full state

POD separate states

PSD complex SVD

PSD greedy

PSD SVD-like

Figure 2. Heat map which shows the preservation of the reduced Hamiltonian in the reduced model in

x of y cases (x/y).
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Figure 3. Evolution of the reduced Hamiltonian for POD separate states for a selected parameter

(λ, μ) ∈ P .

4.2. Non-Autonomous Beam Model

The second model is similar to the first one. The only difference is that the force on the free (right)

end of the beam is loaded with a time-varying force. The force is chosen to act in phase with the beam.

The time dependence of the force necessarily requires a non-autonomous formulation which requires

in the framework of the Hamiltonian formulation a time-dependent Hamiltonian function which we

introduced in Section 2.4.

We use the model to investigate the quality of the reduction for the considered MOR techniques.

To this end, we investigate the projection error, i.e., the error on the training data, the orthogonality

and symplecticity of the ROB and the error in the reduced model for the test parameters.

4.2.1. Projection Error of the Snapshots and Singular Values

The projection error is the error on the training data collected in the snapshot matrix Xs, i.e.,

el2(2k) =
∥∥∥(I2n − VWT)Xs

∥∥∥
2

F
,

POD : WT = VT,

PSD : WT = V+(= VTfor orthosymplectic ROBs, Proposition 4).
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It is a measure for the approximation qualities of the ROB based on the training data. Figure 4

(left) shows this quantity for the considered MOR techniques and different ROB sizes 2k. All basis

generation techniques show an exponential decay. As expected from theory, POD full state minimizes

the projection error for the orthonormal basis generation techniques (see Table 1). PSD SVD-like

decomposition shows a lower projection error than the other PSD methods for 2k ≥ 80 and yields a

similar projection error for k ≤ 60. Concluding this experiment, one might expect the full-state POD

to yield decent results or even the best results. The following experiments prove this expectation to

be wrong.

The decay of (a) the classical singular values σi, (b) the symplectic singular values σs
i (see Remark 7)

and (c) the weighted symplectic singular values ws
i (see (24)) sorted by the magnitude of the symplectic

singular values is displayed in Figure 4 (right). All show an exponential decrease. The weighting

introduced in (24) for ws
i does not influence the exponential decay rate of σs

i . The decrease in the

classical singular values is directly linked to the exponential decrease of the projection error of POD

full state due to properties of the Frobenius norm (see [1]). A similar result was deduced in the scope

of the present paper for PSD SVD-like decomposition and the PSD functional (see Proposition 11).
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Figure 4. Projection error (left) and decay of the singular values from Remark 7 and (24) (right).

4.2.2. Orthonormality and Symplecticity of the Bases

To verify the orthonormality and the symplecticity numerically, we consider the two functions

oV (2k) =
∥∥∥VTV − I2k

∥∥∥
F

, sV (2k) =
∥∥∥JT

2kVT
J2nV − I2k

∥∥∥
F

, (28)

which are zero/numerically zero if and only if the basis is orthonormal or symplectic, respectively. In

Figure 5, we show both values for the considered basis generation techniques and RB sizes.

The orthonormality of the bases is in accordance with the theory. All procedures compute

symplectic bases except for PSD SVD like-decomposition. PSD greedy shows minor loss in the

orthonormality which is a known issue for the J2n-orthogonalization method used (modified

symplectic Gram–Schmidt procedure with re-orthogonalization [26]). However, no major impact

on the reduction results could be attributed to this deficiency in the scope of this paper.

In addition, the symplecticity (or J2n-orthogonality) of the bases behaves as expected. All PSD

methods generate symplectic bases, whereas the POD methods do not. A minor loss of symplecticity is

recorded for PSD SVD-like decomposition which is objected to the computational method that is used

to compute an SVD-like decomposition. Further research on algorithms for the computation of an

SVD-like decomposition should improve this result. Nevertheless, no major impact on the reduction

results could be attributed to this deficiency in the scope of this paper.
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Figure 5. The orthonormality (left) and the J2n-orthogonality (right) from (28).

4.2.3. Relative Error in the Reduced Model

We investigate the error introduced by MOR in the reduced model based on 16 test parameters

distinct from the training parameters. The error is measured in the relative ∞-norm ‖•‖∞ in time

and space

e(2k, µ) :=

max
i∈{1,...,nt}

‖x(ti, µ)− V xr(ti, µ)‖∞

max
i∈{1,...,nt}

‖x(ti, µ)‖∞

, (29)

where 2k indicates the size of the ROB V ∈ R2n×2k, µ ∈ P is one of the test parameters, x(t, µ) ∈ R2n is

the solution of the full model (5) and xr(t, µ) ∈ R2k is the solution of the reduced model (7). This error

is used for testing purposes only since it requires the computation of the full solution x(t, µ). It may be

instead estimated in the online phase with an a posteriori error estimator as, e.g., in [9,27].

To display the results for all 16 test parameters at once, we use box plots in Figure 6. The box

represents the 25%-quartile, the median and the 75%-quartile. The whiskers indicate the range of data

points which lay within 1.5 times the interquartile range (IQR). The crosses show outliers. For the sake

of a better overview, we truncated relative errors above 100 = 100%.

The experiments show that the non-symplectic MOR techniques show a strongly non-monotonic

behaviour for an increasing basis size. For many of the basis sizes, there exists a parameter which

shows crude approximation results which lay above 100% relative error. The POD full state is unable

to produce results with a relative error below 2%.

On the other hand, the symplectic MOR techniques show an exponentially decreasing relative

error. Furthermore, the IQRs are much lower than for the non-symplectic methods. We stress that

the logarithmic scale of the y-axis distorts the comparison of the IQRs—but only in favour of the

non-symplectic methods. The low IQRs for the symplectic methods show that the symplectic MOR

techniques derive a reliable reduced model that yields good results for any of the 16 randomly chosen

test parameters. Furthermore, none of the systems shows an error above 0.19%—for PSD SVD-like

decomposition, this bound is 0.018%, i.e., one magnitude lower.

In the set of the considered symplectic, orthogonal MOR techniques, PSD greedy shows the best

result for most of the considered ROB sizes. This superior behaviour of PSD greedy in comparison to

PSD complex SVD is unexpected since PSD greedy showed inferior results for the projection error in

Section 4.2.1. This was also observed in [5].

Within the set of investigated symplectic MOR techniques, PSD SVD-like decomposition shows

the best results followed by PSD greedy and PSD complex SVD. While the two orthonormal procedures

show comparable results, PSD SVD like-decomposition shows an improvement in the relative error.

Comparing the best results of either PSD greedy or PSD complex SVD with the worst result of PSD

SVD-like decomposition considering the 16 different test parameters for a fixed basis size—which is
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pretty much in favour of the orthonormal basis generation techniques—, the improvement of PSD

SVD-like decomposition ranges from factor 3.3 to 11.3 with a mean of 6.7.
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Figure 6. Relative error in the reduced model.

5. Conclusions

We gave an overview of autonomous and non-autonomous Hamiltonian systems and the

structure-preserving model order reduction (MOR) techniques for these kinds of systems [4,5,15].

Furthermore, we classified the techniques in orthonormal and non-orthonormal procedures based on

the capability to compute a symplectic, (non-)orthonormal reduced order basis (ROB). To this end, we

introduced a characterization of rectangular, symplectic matrices with orthonormal columns. Based

thereon, an alternative formulation of the PSD Complex SVD [4] was derived which we used to prove

the optimality with respect to the PSD functional in the set of orthonormal, symplectic ROBs. As a new

method, we presented a symplectic, non-orthonormal basis generation procedure that is based on an

SVD-like decomposition [6]. First theoretical results show that the quality of approximation can be

linked to a quantity we referred to as weighted symplectic singular values.

The numerical examples show advantages for the considered linear elasticity model for symplectic

MOR if a symplectic integrator is used. We were able to reduce the error introduced by the reduction

with the newly introduced non-orthonormal method.

We conclude that non-orthonormal methods are able to derive bases with a lower error for both,

the training and the test data. However, it is still unclear if the newly introduced method computes the

global optimum of the PSD functional. Further work should investigate if a global optimum of the

PSD functional can be computed with an SVD-like decomposition.

Furthermore, the application of symplectic MOR techniques in real-time scenarios and multi-query

context should be further extended. This includes inverse problems or uncertainty quantification

which often require solutions of the model for many different parameters. A suitable framework for

uncertainty quantification in combination with symplectic MOR is, e.g., the approach discussed in [28].
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Abstract: The present work addresses a solution algorithm for homogenization problems based on

an artificial neural network (ANN) discretization. The core idea is the construction of trial functions

through ANNs that fulfill a priori the periodic boundary conditions of the microscopic problem. A

global potential serves as an objective function, which by construction of the trial function can be

optimized without constraints. The aim of the new approach is to reduce the number of unknowns as

ANNs are able to fit complicated functions with a relatively small number of internal parameters. We

investigate the viability of the scheme on the basis of one-, two- and three-dimensional microstructure

problems. Further, global and piecewise-defined approaches for constructing the trial function are

discussed and compared to finite element (FE) and fast Fourier transform (FFT) based simulations.

Keywords: machine learning; artificial neural networks; computational homogenization

1. Introduction

Artificial neural networks (ANNs) have attracted a lot of attention in the last few years due to

their excellent universal approximation properties. Originally developed to model nervous activity

in living brains [1,2], they nowadays grow popular in data-driven approaches. Tasks such as image

and speech recognition [3,4] or the prediction of users’ behavior on social and commercial websites

are characterized by a large amount of accessible data compared to a difficult analytic mathematical

description. The use of ANNs or other machine learning algorithms such as anomaly detection [5] and

support vector machines [6] is suited for such problems as it enables the fitting of even highly complex

data with high accuracy. Recent trends in machine learning concern the physical constraining of data

driven methods for even higher convergence rate and accuracy, as done in [7].

Due to the aforementioned advantages and improvements, machine learning algorithms gained

entry into the field of continuum mechanics and material modeling as well. Successful implementations

were performed for the prediction of material response based on the fitting of experimental data

through ANNs [8–10]. Another interesting application is the reduction of microstructure data of a given

material through pattern recognition in order to reduce computational demands (see, e.g., [11,12]).

In the present work, we employ ANNs to seek the solution of homogenization problems.

Homogenization aims for the prediction of the macroscopic response of materials that have

microstructures described on length scales far lower than the macroscopic dimension. In terms

of analytical homogenization, Voigt [13] and Reuss [14] were the first to provide bounds of effective

properties [15]. Hashin and Shtrikman [16] and Willis [17] improved the theory in terms of tighter

bounds. Further estimates were developed using the self-consistent method [18,19] and the

Mori–Tanaka method [20] afterwards.
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In the case of a rather fine microstructures with complex topology and non-linear material

behavior, those bounds are only able to make rough predictions on the effective properties. To

describe microscopic fields and effective properties in a more detailed and accurate fashion, several

computational approaches have been developed in the last decades. Two of the most commonly used

discretization techniques are finite element (FE) methods [21,22] and fast Fourier transform (FFT)

based solvers [23,24]. However, for materials with a microstructure that need fine discretization,

the memory cost and solution time of the solvers increases vastly, making multiscale simulations

uneconomical. Promising approaches to mitigate these problems are model order reduction methods

(see, e.g., [25,26]).

In the present work, a memory efficient solution scheme based on the discretization through

ANNs is presented. We therefore follow the idea of Lagaris et al. [27], who introduced a method for

solving differential equations through ANN-based trial functions. The functions are constructed in

a way that they a priori fulfill the given boundary conditions and the squared error residual of the

differential equation is used as an objective that needs to be optimized with respect to the ANNs’

weights. The construction of the trial function might be a difficult task for complicated boundary

value problems. However, in conventional homogenization problems, we usually deal with rather

simple boundary geometries. In the present work, we consider square representative volume elements

(RVE) under periodic boundary conditions, as described in Section 2. In Section 3.1, the concept of the

ANN-based trial function according to Lagaris et al. [27] is explained. In contrast to Lagaris et al. [27],

the optimization objective in our problem is not the squared error residual of a differential equation

but emerges from a global energy potential. Sections 3.2 and 3.3 give the ANNs’ structure used in

the present work as well as the derivatives necessary to optimize the objective function. Finally, in

Section 4, the robustness of the presented method is validated for one-, two- and three-dimensional

problems and is compared to FE- and FFT-based computations. Further, we compare a global with a

piecewise-defined approach for constructing the trial function. In the global approach, the solution is

represented by only one global function using several ANNs and the topology of the microstructure

must be learned by the neural networks itself. On the other hand, in a piecewise-defined approach, the

solution is represented by many neural networks that are piecewise defined on different sub-domains

of the RVE. A conclusion is provided in Section 5.

2. Homogenization Framework

In the present work, we consider first-order homogenization of electrostatic problems. The

fundamental laws of electrostatics and the corresponding variational formulation are given. In terms of

the homogenization framework, we assume separation of length scales between macro- and microscale

in the sense that the length scale at which the material properties vary quickly, namely the microscale,

is much smaller than the length scale at the same order of the body’s dimensions. A connection for the

micro- and macrofields is given by the celebrated Hill–Mandel condition [28], which allows for the

derivation of consistent boundary conditions for the microscopic boundary value problem.

2.1. Energy Formulation for Electrostatic Problems

We now recall the fundamental equations of electrostatics in the presence of matter [29]. The focus

lies on a variational formulation as the energetic potential is later needed in the optimization principle.

Assuming that there are neither free currents nor charges, the fundamental physics of electric fields in

a body B are governed by the reduced Maxwell equations

curl E = 0 and div D = 0 in B, (1)

where E denotes the electric field and D the electric displacement. In vacuum, the electric field and

displacement are connected through the vacuum permittivity κ0 ≈ 8.854 · 10−12 As
Vm as D = κ0E. In

the presence of matter, the permittivity κ = κ0 · κr must be adapted accordingly. To solve Equation (1),
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we choose the electric field as our primary variable and construct it as the negative gradient of some

scalar electric potential φ according to

E := − grad φ ⇒ curl E ≡ 0, (2)

and thus Equation (1)1 is automatically fulfilled. Next, we want to solve Equation (1)2 under some

boundary conditions. We therefore introduce an energy potential

Π(φ) =
∫

B
Ψ(E) dV +

∫

∂Bq

q φ dA and φ = φ∗ on ∂Bφ, (3)

where Ψ(E) is a constitutive energy density, ∂Bq and ∂Bφ denote boundaries along with electric charges

q and electric potential φ∗ as prescribed. From the latter potential, it can be shown that, for equilibrium,

i.e. δΠ = 0, Equation (1)2 is solved in a weak sense

δΠ(φ) = −
∫

B
(div D)δφ dV +

∫

∂Bq

(q + D · N) δφ dA = 0 with D = −∂Ψ

∂E
, (4)

for all δφ. Here, N denotes the unit normal vector pointing outwards of ∂B. By choosing Ψ =

−1/2κ E · E, the static Maxwell equations are recovered.

2.2. Microscopic Boundary Value Problem

In the present work, we consider homogenization problems governed by the existence of

so-called representative volume elements (RVEs). They are chosen in a way that they are statistically

representative for the overall microstructure of the material. Fields emerging on the microscale are

driven by macroscopic fields, which are assumed to be constant in the RVE due to the separation of

length scales. The separation of length scales leads to a degeneration of the RVEs to points on the

macroscale. Scale transition rules can be derived from the Hill–Mandel condition [28] by postulating

energy conservation between the microscopic RVE and a macroscopic observation in the form

Π = sup
E

1

|B|Π(φ), (5)

where the macroscopic energy potential Π is obtained at equilibrium of the microscopic energy

potential Π(φ). According to Equation (3), the internal energy density appearing in the potential is

now a function of the electric field. In line with the assumption of first-order homogenization and

separation of length scales, the electric field vector

E = E−∇φ̃ (6)

is decomposed into a macroscopic contribution

E =
1

|B|
∫

B
E dV, (7)

which is constant on the microscale, and the gradient of the fluctuative scalar electric potential φ̃ that

acts as primary variable. The system is closed by applying appropriate boundary conditions on the

RVE. There are several boundary conditions that fulfill the Hill–Mandel condition (5). In the present

work, we focus on periodic boundary conditions of the form

φ̃(x+) = φ̃(x−) and D · N(x+) = −D · N(x−) on ∂B, (8)
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where x± indicate opposite coordinates at the boundary of the RVE [30–32]. Note that we only need to

prescribe one of the two boundary conditions given in the latter equation as the other one will emerge

naturally in equilibrium.

3. Artificial Neural Network Based Solution Scheme

In this section, a solution procedure based on artificial neural networks (ANNs) for finding the

equilibrium state of the potential in Equation (3) is presented. Core idea is the construction of

trial functions, which consist of ANNs and multiplicative factors fulfilling the given set of boundary

conditions in Equation (8). We then recapitulate the two main ANN structures used in the present work,

namely the single layer perceptron net and the multilayer perceptron. Additionally, the derivatives of

those nets with respect to its inputs as well as with respect to its weights are given as they are needed

when using gradient descent methods.

3.1. Optimization Principle

Consider the previously introduced RVE occupying the space B. Our goal is to find the

microscopic equilibrium state of a given global potential for this body. Under prescribed periodic

Dirichlet boundary conditions in Equation (8)1, the potential in Equation (3) takes the form

Π(φ) =
∫

B
Ψ(x, E) dV. (9)

Having the physical problem covered, the question arises how to approximate the solution fields.

While finite element approaches employ local shape functions and Fourier transform based methods

use global trigonometric basis functions, in the present work, we want to investigate an approximation

method based on artificial neural networks. Following the idea of Lagaris et al. [27], we construct a

trial function φt using arbitrary artificial neural networks Ni(x, pi) as

φ̃t(x, p) = A0(x) + A1(x)N1(x, p1) + A2(x)N2(x, p2) + ... + An(x)Nn(x, pn), (10)

where Ai(x) are functions ensuring that the boundary conditions are fulfilled a priori. As a generic

one-dimensional example, one could think of a scalar electric potential that should fulfill the boundary

conditions φ̃(0) = φ̃(1) = 1. In this case, we would have A0 = 1 and A1 = x(1− x), yielding the trial

function according to Equation (10) as φ̃t(x, p) = 1 + x(1− x)N1(x, p1). The corresponding electric

field Et(x, p) in line with Equation (6) can be calculated analytically according to the neural network

derivatives given in Sections 3.2 and 3.3. Using the gradient field along with Equation (9) gives the

global potential in terms of the neural network’s parameters as follows

Π(p) =
∫

B
Ψ(x, Et(x, p)) dV. (11)

Finally, the objective function in our machine learning problem is obtained from the Hill–Mandel

condition in Equation (5) in combination with the global potential in Equation (11) approximated by

neural networks. It appears as

Π = sup
p

1

|B|Π(p), (12)

where the optimization is carried out with respect to the neural network’s parameters. By having the

periodic boundary conditions fulfilled by construction, the optimization can be carried out without

any constraints on the parameters p.
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3.2. Single Layer Perceptron (SLP)

The single layer perceptron (SLP) is one of the most basic versions of artificial neural networks [33].

It is a reduced version of the general structure depicted in Figure 1. An SLP only consists of one hidden

layer that connects the input and the output. Assuming an input vector x of dimension d, the response

N of an SLP is calculated as

N(x, p) =
H

∑
i=1

viσ(zi) + b with zi =
d

∑
j=1

wijxj + ui, (13)

where vi, wij, ui and b are the weights and biases of the hidden unit and the output bias, respectively,

and H is the overall number of neurons in the hidden layer. Those weights and biases are assembled

in the neural network parameter vector p. Here, σ denotes an activation function of a neuron. The

activation functions may be chosen problem-dependent and can have a large impact on the training

behavior of the artificial neural network. Figure 2 shows the three activation functions used in the

present work, namely the logistic sigmoid, the hyperbolic tangent and the softplus function. Despite

its popularity in machine learning tasks, we are not using the rectifier linear unit (ReLu) activation

function in the present work. First tests using the ReLu function resulted in poor convergence rates.

We suspect that this stems from errors in the numerical integration when using the ReLu function and

its discontinuous derivative. The derivatives of the SLP net with respect to its input then appear as

N,j =
∂N

∂xj
=

H

∑
i=1

viwijσ
′(zi), (14)

where σ′(zi) denotes the derivative of the sigmoid function with respect to its argument. The spatial

derivative can be perceived as an SLP with modified weights and activation function but it is now

a gradient field. To use efficient gradient based solvers when optimizing the weights of the neural

network, it is convenient to have the explicit derivatives of the ANNs with respect to the weights.

These can be obtained as

∂N

∂ui
= viσ

′(zi),
∂N,j

∂ui
= viwijσ

′′(zi),

∂N

∂wij
= vixjσ

′(zi),
∂N,j

∂wim
= xmviwijσ

′′(zi) + viσ
′(zi)δjm,

∂N

∂b
= 1,

∂N,j

∂b
= 0,

∂N

∂vi
= σ(zi),

∂N,j

∂vi
= wijσ

′(zi).

(15)

Note that, in the derivatives above, the indices are not treated by Einstein’s summation convention.

Indices appearing twice are rather multiplied pointwise in MATLAB [34] convention.

31



Math. Comput. Appl. 2019, 24, 40

Figure 1. General structure of a multilayer perceptron with input x, L hidden layers and output N.

Each neuron evaluates its inputs through predefined activation functions.

Figure 2. Different types of popular activation functions: logistic sigmoid, hyperbolic tangent and

softplus function.

3.3. Multilayer Perceptron (MLP)

The multilayer perceptron (MLP) works similarly to the single layer perceptron. However, it is

constructed by a higher number L of hidden layers. It can be shown that this deep structure enables

a more general approximation property of the neural network and might lead to better training

behavior [35]. In the present work, we focus on MLPs with only two hidden layers. The output is then

computed as

N(x, p) =
H2

∑
k=1

vkσ(rk) + b, rk =
H1

∑
i=1

θkiσ(zi) + ck with zi =
d

∑
j=1

wijxj + ui, (16)

where we have now additional weights θki and biases ck associated with the second hidden layer. The

spatial derivative of the MLP appears as

N,j =
∂N

∂xj
=

H2

∑
k=1

H1

∑
i=1

vkσ′(rk)θkiσ
′(zi)wij. (17)
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The derivatives of the MLP with respect to the weights are computed as

∂N

∂ui
=

H2

∑
k=1

vkσ′(rk)θkiσ
′(zi),

∂N,j

∂ui
=

H2

∑
k=1

[
vkσ′′(rk)θkiσ

′(zi)
H1

∑
i=1

[wijθkiσ
′(zi)]

+ vkσ′(rk)θkiσ
′′(zi)wij)

]
,

∂N

∂wij
=

H2

∑
k=1

vkσ′(rk)θkiσ
′(zi)xj,

∂N,j

∂wim
=

H2

∑
k=1

[
vkσ′′(rk)θkiσ

′(zi)xm

H1

∑
i=1

[wijθkiσ
′(zi)]

+ vkσ′(rk)θkiσ
′′(zi)wijxm

+ vkσ′(rk)θkiσ
′(zi)δim

]
,

∂N

∂ck
= vkσ′(rk),

∂N,j

∂ck
= vkσ′′(rk)

H1

∑
i=1

[wijθkiσ
′(zi)],

∂N

∂θki
= vkσ′(rk)σ(zi),

∂N,j

∂θki
= vkσ′′(rk)σ

′(zi)
H1

∑
i=1

[wijθkiσ(zi)]

+ vkσ′(rk)σ
′(zi)wij,

∂N

∂b
= 1,

∂N,j

∂b
= 0,

∂N

∂vk
= σ(rk),

∂N,j

∂vk
= σ′(rk)

H1

∑
i=1

[wijθkiσ
′(zi)].

(18)

4. Numerical Examples

In this section, we test the robustness and reliability of the proposed method on a set of one-, two-

and three-dimensional problems. The influence of global versus piecewise-defined constructions of

the trial functions as well as the impact of the neuron count on the simulation results are explored.

The one-dimensional example is implemented in MATLAB [34] while the two- and three-dimensional

examples are carried out by a Fortran 77 code that utilizes the L-BFGS-B optimization algorithms [36,37].

For the sake of simplicity, all the following simulations are performed with normalized units.

4.1. One-Dimensional Example

We first consider a one-dimensional problem to demonstrate the features of the proposed method.

The RVE is a simple two-phase laminate of unit length l = 1 and unit cross section, which is loaded

with a macroscopic electric field E = 0.01. The global potential takes the form

Π(φ) =
∫

B
Ψ(E, x) dx = −

∫

B

1

2
κE2 dx, (19)

where κ1 = 1 for x < 0.5 and κ2 = 2 for x > 0.5. Having the decomposition in Equation (6)

E = E− ∂φ̃

∂x
(20)

along with the boundary conditions φ̃(0) = 0 and φ̃(1) = 0, the analytical solution for the electric

field reads

E =

⎧
⎪⎪⎨
⎪⎪⎩

2κ2

κ1 + κ2
E 0 ≤ x < l/2

2κ1

κ1 + κ2
E l/2 < x ≤ l

(21)
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and for the electric potential

φ̃ =

⎧
⎪⎪⎨
⎪⎪⎩

E
κ1 − κ2

κ1 + κ2
x 0 ≤ x ≤ l/2

E
κ2 − κ1

κ1 + κ2
(x− l) l/2 ≤ x ≤ l

. (22)

4.1.1. Global Neural Net Approach on Equidistant Grid

To find the electric scalar potential that optimizes the energy potential in Equation (19), we

construct a global trial function according to Equation (10) that automatically fulfills the boundary

conditions given above as

φ̃t = Ao + A1(x)N(x, p) = x(1− x)N(x, p), (23)

where N is a neural network that takes x as an input and has the weights and biases p. The derivatives

in this case can be computed explicitly as

∂φ̃t

∂x
= (1− 2x)N(x, p) + x(1− x)

∂N(x, p)

∂x
. (24)

The derivatives then allow us to compute the global potential in terms of the neural network’s

weights and biases as

Π(p) = −
∫

B

1

2
κ(E− φ̃t

∂x
)2 dx. (25)

Finally, we need a numerical integration scheme to evaluate the integral. In the present work, we

use quadrature points in terms of equidistant grid points xk with distance Δx on the interval of [0, 1] as

{Δx/2, 3Δx/2, . . . , 1− Δx/2}, yielding the discrete objective

Π = sup
p

1

l ∑
0<xk<1.0

−1

2
κ(E− φ̃t

∂x
)2Δx. (26)

The maximum of this objective function can be found by means of the gradient descent method.

The gradients of the objective with respect to the weights p that are needed for such an iterative solver

can be computed using Equation (15). We then have everything at hand to carry out the first numerical

example. As for the ANN architecture, we use an SLP with H = 10 neurons in the hidden layer. As for

the activation function, the logistic sigmoid function σ(z) = 1/(1 + e−z) is chosen, and the weights

and biases p are randomly initalized with a uniform distribution between 0 and 1. Figure 3 shows

the result of the numerical experiment (green) compared to the analytical results (black). One can see

that the numerical scalar electric potential φ̃t is close to the analytical solution. However, having a

look at the gradients in the form of E reveals the occurrence of oscillations around the discontinuity.

The MATLAB [34] code that generates these results can be found in Appendix A. Note that the

tolerances for the step size and the optimality as well as the maximum number of function evaluations

and iterations is set different from the MATLAB [34] default values to obtain reasonable results. One

might decrease the oscillations by having even higher iteration numbers. However, the jump in the

solution at the vicinity of the material jump cannot be captured by the global smooth neural network

function. The more neurons we use, the better accuracy we obtain, which leads to a trade-off between

accuracy and speed.
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Figure 3. Numerical vs. analytical solution for a global trial function approach using an SLPs with

10 neurons and a random initialization of p(0) ∼ U (0, 1), where U (0, 1) denotes a vector of numbers

generated from a uniform distribution between 0 and 1. These parameters are statistically independent.

4.1.2. Piecewise-defined Neural Net Approach on Equidistant Grid

To overcome the oscillations observed in the global approach, we next construct a trial function

that is piecewise defined for the RVE’s different material regions

φ̃t =

⎧
⎨
⎩

xN1(x, p1) 0 < x ≤ 0.5

(0.5− x)(1− x)N2(x, p2) + 2(1− x)φ̃t(0.5) 0.5 < x ≤ 1.0

. (27)

Its derivatives can be computed according to

∂φ̃t

∂x
=

⎧
⎪⎪⎨
⎪⎪⎩

N1(x, p1) + x
∂N1(x, p1)

∂x
0 < x < 0.5

(2x− 1.5)N2(x, p2) + (0.5− x)(1− x)
∂N2(x, p2)

∂x
− 2φ̃t(0.5) 0.5 < x < 1.0

. (28)

The global potential in terms of the neural network’s weights and biases then appears as

Π(p) =
∫

B

1

2
κ(E− φ̃t

∂x
)2 dx. (29)

In analogy to the global approach, numerical integration is performed using equidistant grid

points xk with distance Δx as quadrature points in the interval [0, 1] to obtain the discrete objective

Π = sup
p

1

l

(

∑
0<xk<0.5

−1

2
κ1(E− φ̃t

∂x
)2 − ∑

0.5<xk<1.0

1

2
κ2(E− φ̃t

∂x
)2

)
Δx. (30)

The gradient of the objective function with respect to the parameters p can again be obtained

through the derivatives of Equation (15). However, the output and training behavior of artificial neural

networks is dependent on the initialization of the weights and biases p. In a first run, we set the

number of neurons in the two SLPs’ hidden layers to 10 and initialize the weights randomly between 0

and 1. As for the activation function, we choose the logistic sigmoid function σ(z) = 1/(1 + e−z).

Figure 4 shows the numerical results in green compared to the analytical results in black. There is

a distinct deviation between them. Having a look at the output layer of the SLP in Equation (13) and
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its derivative in Equation (14), one can see that the initial output for 10 neurons for an initialization

of all weights between 0 and 1 is far from the exact solution. This difference becomes even larger

for higher number of neurons. In contrast to the global approach, we use the default values of the

unconstrained MATLAB [34] minimizer and, apparently, there are too few iterations.

Figure 4. Numerical vs. analytical solution for 2 SLPs with 10 neurons each and a random initialization

of p(0) ∼ U (0, 1), where U (0, 1) denotes a vector of numbers generated from a uniform distribution

between 0 and 1. These parameters are statistically independent.

Next, we want to have fewer iterations of the solver within the default values by using an adaptive

way of initializing the weights. The key idea is to initialize the weights in a way that the net and its

derivative output values are roughly in the range of the values we would expect with respect to the

given macroscopic load. We therefore use a simple modification of the weight initialization given as

p(0),∗ ∼ E

H
∗U (0, 1), (31)

where U (0, 1) is a vector of random numbers uniformly distributed along 0 and 1. Please note that

we use boldface calligraphic U to indicate the vector notation instead of univariate distribution. The

results of the computation using the adaptive initialization method can be seen in Figure 5. The

results are closer to the analytical solution and are independent of the number of hidden neurons used,

making the overall method much more reliable. The MATLAB [34] code used for generating Figure 5

can be found in Appendix B.
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Figure 5. Numerical vs. analytical solution for 2 SLPs with 10 neurons each and a random initialization

of p(0),∗ ∼ E
H ∗ U (0, 1), where U (0, 1) denotes a vector of numbers generated from a uniform

distribution between 0 and 1. These parameters are statistically independent.

4.2. Two-Dimensional Example

Next, we consider a two-dimensional microstructure with a circular inclusion, as shown in

Figure 6. The radius of the inclusion is r0 = 0.178l, corresponding to 10% volume fraction. The global

energy potential per unit out-of-plane thickness is given as the integral of the internal energy density

over the RVE’s domain

Π =
∫

B
Ψ(E) dA = −

∫

B

1

2
κE · E dA. (32)

In this example, the material parameter is set to κ = 1 in the matrix and κ = 10 in the inclusion.

The square RVE of unit length l = 1 is loaded with the constant macroscopic field E1 = 1 and E2 = 0

under the periodic Dirichlet boundary conditions in Equation (8)1. For reference, a simulation using

the finite element method is performed for this optimization problem. The mesh is discretized by

linear quadrilateral elements with four Gauss points. The optimized global potential is calculated to

|Π|FEM = 0.588652. Figure 6 shows the contour plot of the microscopic field E1. The finite element

results serve as a reference for the neural network based approaches in the following examples.
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Figure 6. Microstructure of length l with a circular inclusion having the radius r0 = 0.178l. On the right,

a finite element solution for a phase contrast of 10 and a loading of E1 = 1 and E2 = 0 is displayed.

4.2.1. Global Neural Net Approach on Equidistant Grid

First, we want to build a global trial function, which is covering the whole RVE. As we want to

implement periodic boundary conditions, a set of three neural networks is used to construct the trial

function φt: Nx1
(x1) acting in the x1-direction, Nx2(x2) acting in the x2-direction and N1(x) acting in

both directions. The trial function then takes the form

φ̃t(x, p) = A1(x1, x2)N1(x, p1) + A2(x1)Nx1
(x1, px1

) + A3(x2)Nx2(x2, px2
)

= x1(1− x1)x2(1− x2)N1(x, p1)

+ x1(1− x1)Nx1
(x1, px1

) + x2(1− x2)Nx2(x2, px2
).

(33)

Figure 7 shows a visualization of the functions ensuring the boundary conditions. Here, we use

SLPs for the boundary networks and a two-layer MLP for the two-dimensional neural network. As for

the activation function for the neurons, the hyperbolic tangent σ(z) = tanh(z) is chosen. The negative

gradient of the trial function can then be computed to obtain the trial field

Et = E−∇φ̃t, (34)

where we drop dependencies on x and p in our notation. According to Equation (32), we arrive at the

global potential as an objective

Π = sup
p

1

|B|Π(p) = sup
p

1

|B|
∫

B
−1

2
κ(x)Et · Et dA. (35)

The spatial gradient of the trial function∇φ̃t as well as gradients of the global potential ∂Π(p)/∂p

used in optimization algorithms can be obtained analytically through the derivatives given in

Sections 3.2 and 3.3. We use equidistant grid points for establishing a regular mesh of elements

and employ nine Gauss points per element as the quadrature points for numerical integration. The

objective is optimized without any constraints on the parameters p, as we satisfy the boundary

conditions a priori by the construction of φ̃t.

38



Math. Comput. Appl. 2019, 24, 40

Figure 7. Visualization of the functions A1, A2 and A3 ensuring periodicity of the two-dimensional

trial function φ̃t in a square RVE of unit length l = 1. One can see that A1 covers the volume, A2

satisfies the periodicity in x1-direction and A3 satisfies the periodicity in x2-direction.

The simulation is carried out for a different number of neurons and integration points as follows:

(a) 51 × 51 elements, 15 neurons in each of the two hidden layers of the MLP and 5 neurons each in the

layer of the boundary SLPs; (b) 51 × 51 elements, 10 neurons in each of the two hidden layers of the

MLP and 5 neurons each in the layer of the boundary SLPs; and (c) 101 × 101 elements, 15 neurons

in each of the two hidden layers of the MLP and 5 neurons each in the layer of the boundary SLPs.

Additionally, all three set ups are run with a uniform initialization of the weights through

p(0) ∼ U (−1, 1). (36)

Figure 8 shows the contour plot of Et1 of the neural network after 20,000 iterations. One can

see that the neural network in Case (a) localizes in an unphysical state. This could be a problem

related to overfitting. Case (b), with the same amount of integration points but lower neuron count,

shows a qualitatively better result. The overall optimization seems to become more reliable as the

integration is performed more accurately, as seen in Case (c). Quantitatively, the global potentials

are: (a) |Π|(p) = 0.213522; (b) |Π|(p) = 0.590266; and (c) |Π|(p) = 0.589887 compared to the FEM

potential of |Π|FEM(E) = 0.588652, taken from the simulation that creates Figure 6. In two dimensions

and with complicated geometries at hand, it can be difficult to estimate the magnitude of the solution

fields appearing a priori. A rather simple approach for initializing the weights as described in the

one-dimensional case did not seem to significantly improve the method. Here, we test a second

approach of initializing the weights according to a normal distribution

p(0),∗ ∼ N (μ, σ2), (37)

where we set the mean μ = 0 and the variance σ2 = 1. Figure 8 shows the contour plot of Et1 of

the neural network after 20,000 iterations for the normal distribution. Case (a) now shows a more

physical state. The energies are calculated as: (a) |Π|(p) = 0.590054; (b) |Π|(p) = 0.592981; and (c)

|Π|(p) = 0.590544. At this point, there is surely some potential left for improving weight initialization.

This is subject to other fields of machine learning as well, especially in the context of training speed

and vanishing gradient problems [38].
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Figure 8. Contour plot of Et1 for a set of parameters: (a) 51 × 51 elements, 15 neurons per layer in N1

and 5 neurons each for Nx1 and Nx2 ; (b) 51 × 51 elements, 10 neurons per layer in N1 and 5 neurons

each for Nx1 and Nx2 ; and (c) 101 × 101 elements, 15 neurons per layer in N1 and 5 neurons each for

Nx1 and Nx2 .

4.2.2. Piecewise-Defined Neural Net Approach

To further improve the training and approximation properties of the trial functions, we next

construct it in a way that it captures the discontinuity of material properties in the microstructure a

priori. This is possible due to the simple topology of the microstructure at hand. However, for more

complicated microstructures, defining explicit expressions for the trial function might be difficult. We

now need a set of four ANNs for the construction of φt: Nx1
(x1) acting in the x1-direction, Nx2(x2)

acting in the x2-direction, N1(x) acting in the matrix and N2(x) acting in the inclusion. The global trial

function is defined piecewise in two sub-domains as follows

φ̃t =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x1(1− x1)x2(1− x2)N1(x, p1) + x1(1− x1)Nx1
(x1, px1

)
r ≥ r0

+x2(1− x2)Nx2(x2, px2
)

φ̃t(r0, ϕ) + (r0 − r)N2(r, p1) r < r0

. (38)

One can see that the above equations automatically fulfill periodicity at the boundaries as well

as the transition condition at the phase interface of the circular inclusion. Here, we implement the

trial function in Cartesian coordinates for the matrix and in polar coordinates for the inclusion. Thus,

the neural network of the inclusion takes the coordinate vector r = (r, ϕ) in terms of the radius r and

the angle ϕ as its input. Having the origin of our coordinate system in the bottom left corner, the

transformation used here takes the form

x1 = 0.5 + r cosϕ and x2 = 0.5 + r sinϕ. (39)
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With the coordinate transformation at hand, one can calculate the gradient in the matrix and

inclusion as

Et = −∇(−E · x + φ̃t), (40)

where E is the applied macroscopic electric field. For a more detailed derivation, see Appendix C.

Finally, the potential to optimize in this example takes the form

Π = sup
p

1

|B|Π(p) = sup
p

1

|B|

(
−
∫

Bmatr

1

2
κ1Et · Et dA−

∫

Bincl

1

2
κ2Et · Et dA

)
. (41)

As a numerical integration scheme, we use a simple one-point quadrature rule, where we have an

equidistant grid of 3240 integration points in the matrix and 3600 integration points in the inclusion.

The MLP N1(x, p1) has two layers with five neurons in each, the SLP N2(x, p2) has one layer with four

neurons and the boundary SLPs Nx1
(x1, px1

) and Nx2(x2, px2
) have seven neurons in the hidden layer.

This sums up to a total of 116 degrees of freedom p. In the present example, we use the hyperbolic

tangent σ(z) = tanh(z) as the activation function of the neurons. The initial weights are randomly

initialized with uniform distribution in the range of −1 to 1. As in the previous examples, the applied

macroscopic load in Equation (40) is E1 = 1.0 and E2 = 0.0.

Figure 9 shows the result for Et1 after 10,000 iterations for the local construction of the trial

function. Compared with the previous simulations using only one global trial function, the fields have

fewer oscillations. Additionally, the maximum energy after 10,000 iterations is |Π|(p) = 0.588414,

being lower than in the previous simulations and lower than the maximum energy computed with

finite elements. Interestingly, in the first iterations, the learning rates are higher for the global schemes,

whether the weights are initialized according to a normal distribution or a uniform distribution (see

Figure 9).

Figure 9. (left) Contour plot of Et1 for the piecewise-defined trial function in Equation (38) after 10,000

iterations in the optimization procedure; and (right) optimization of Π(p) vs. iteration count for the

piecewise-defined trial function with uniformly distributed weight initialization and the global trial

function (33) with uniformly and normally distributed weight initialization.

4.3. Three-Dimensional Example

In the present example, we apply the method to a three-dimensional cubic RVE of unit length

l = 1 with a spherical inclusion of radius r0 = 0.178l. We first construct a global trial function, for

which we need a set of seven neural networks: Nx1
(x1) acting in the x1-direction, Nx2(x2) acting in

the x2-direction, Nx3(x3) acting in the x3-direction, Nx12
(x1, x2) acting in the x1x2-plane, Nx13

(x1, x3)
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acting in the x1x3-plane, Nx23(x2, x3) acting in the x1x2-plane and N1(x) acting in the RVE’s volume

(see Figure 10). The trial function for the matrix then appears as

φ̃t(x, p) = A1 N1(x, p1) + A2 Nx12
(x1, x2, px12

) + A3 Nx13
(x1, x3, px13

)

+A4 Nx23(x2, x3, px23
) + A5 Nx1

(x1, px1
)

+A6 Nx2(x2, px2
) + A7 Nx3(x3, px3

),

(42)

where the functions Ai take the form

A1 = x1(1− x1)x2(1− x2)x3(1− x3), A5 = x1(1− x1),

A2 = x1(1− x1)x2(1− x2), A6 = x2(1− x2),

A3 = x1(1− x1)x3(1− x3), A7 = x3(1− x3),

A4 = x2(1− x2)x3(1− x3).

(43)

By construction, the trial function fulfills the periodic boundary conditions. The negative gradient

of the trial function can then be computed analytically according to Equation (40) (see also Appendix D

for a more detailed derivation). With the gradient at hand, we are able optimize the global potential in

Equation (32) with respect to the weights of the ANNs.

Figure 10. A representation of the artificial neural networks used in the construction of the trial function

φt. There are separate ANNs for the edges, surface boundaries and volumes. In the piecewise-defined

approach, there is one additional ANN acting in the inclusion.

As seen in the previous sections, the use of one global trial function might lead to oscillations

in the solution field. In line with Section 4.2.2, we additionally construct a piecewise-defined trial

function for comparison

φ̃t
∗
(x, p) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A1 N1(x, p1) + A2 Nx12
(x1, x2, px12

) + A3 Nx13
(x1, x3, px13

)

r ≥ r0+A4 Nx23(x2, x3, px23
) + A5 Nx1

(x1, px1
) + A6 Nx2(x2, px2

)

+A7 Nx3(x2, px3
)

φ̃t(r0, ϕ, θ) + A8 N2(r, p2) r < r0.

(44)

where we add an eighth neural network for the inclusion and the function

A8 = r0 − r. (45)
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The transformation between the spherical coordinates r = (r, ϕ, θ) and the Cartesian coordinates

x = (x1, x2, x3) is given as

x1 = 0.5 + r sinϕ cosθ, x2 = 0.5 + r sinϕ sinθ, x3 = r cosϕ. (46)

The gradient in Equation (40) can then be computed accordingly in Cartesian coordinates for the matrix

and in spherical coordinates for the inclusion, as derived in Appendix D, allowing us to optimize the

global potential

Π
∗
= sup

p

1

|B|Π
∗(p) = sup

p

1

|B|

(
−
∫

Bmatr

1

2
κ1E∗t · E∗t dV −

∫

Bincl

1

2
κ2E∗t · E∗t dV

)
. (47)

For our numerical experiment, the RVE depicted in Figure 10 is loaded with a macroscopic field

of E1 = 1.0, E2 = 0.0 and E3 = 0.0. The material parameters are chosen as κ1 = 1 and κ2 = 10. For the

global approach, the mesh consists of 43 × 43 × 43 equidistant integration points. The ANNs acting

on the edges and surface boundaries are SLPs, having four neurons along each edge ANN and five

neurons along each surface ANN. The ANN acting in the volume is a two-layer perceptron with eight

neurons in each layer. This trial function totals 256 parameters to optimize in the ANNs. As for the

activation function, we choose the softplus function, as it provides the best results in our examples. As

for the piecewise-defined trial function in Equation (44), the ANNs are constructed in the same way.

The additional ANN acting in the inclusion is an SLP with eight neurons and also has the softplus

activation function. The mesh used in this case consists of 32,768 integration points in the matrix and

16,384 integration points in the inclusion. Additionally, an FFT-based simulation [23] using a conjugate

gradient solver [24,39–42] is carried out for comparison, where the microstructure is discretized on a

43 × 43 × 43 grid.

Figure 11 shows the contour plot of Et1 for the approach using the global and the piecewise-defined

trial function after 20,000 iterations. In comparison to the FFT-based solution, both simulations produce

qualitatively good results. The global approximation scheme captures the expected jump of Et1

across the phase interface a little less distinctly compared with the piecewise-defined one. However,

the piecewise-defined approximation is more difficult to construct and will be quite challenging to

implement in the case of complicated microstructure geometries. Quantitatively, the optimized global

potentials after 20,000 iterations are quite close to each other, with |Π|(p) = 0.529926 for the global

approach and |Π|∗(p) = 0.529692 for the piecewise-defined approach, compared to a optimum energy

|Π|FFT = 0.527590 obtained by the FFT-based simulation.
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Figure 11. Contour plot of E1 for a global and a piecewise-defined construction of the trial function

as well as an FFT-based simulation for comparison. The results of the ANN simulations are close to

the FFT-based simulation. The jump discontinuity is more distinct in the piecewise-defined approach

compared with the global approach.

5. Conclusions

We presented a solution scheme to periodic boundary value problems in homogenization based

on the training of artificial neural networks. They were employed in tandem with the multiplicative

factors in a way that the resulted trial function fulfilled the boundary conditions a priori and thus we

arrived at the unconstrained optimization problem. The numerical examples showed that physically

reasonable results can be obtained with rather low amounts of neurons, which allows for low memory

demand. A construction of trial functions by defining them piecewise in separate sub-domains led

to lower oscillations and a generally more stable training behavior compared with a global approach

but was geometrically more challenging to construct. The scheme carried over to three dimensions

quite well. We assume this to stem from the ratio of neurons compared with the number of integration

points: In the considered example of a cube-shaped matrix with spherical inclusion, the solution could

be approximated using a quite low neuron count while the number of integration points grew a lot. For

future progress, the training speed of the neural network needs to be improved. More sophisticated
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ANN structures such as deep nets or recurrent nets might further improve the approximation and

training behavior of the method, while methods such as dropout or regularization might assist to

avoid problems of overfitting.
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Appendix A. Matlab Script for Global One-Dimensional Example

1 % Evaluat ion points in area

2 dx = 0 . 0 1 ;

3 x = dx /2: dx:1−dx /2;

4

5 % Applied macroscopic e l e c t r i c f i e l d

6 E0 = 0 . 0 1 ;

7

8 % E l e c t r i c p e r m i t t i v i t y in laminate

9 KK = zeros ( s i z e ( x ) ) ;

10 KK( x > 1/2) = 2 . 0 ;

11 KK( x < 1/2) = 1 . 0 ;

12

13 % Number of hidden neurons

14 nn = 1 0 ;

15

16 % I n i t i a l i z e weights and b i a s e s

17 wb0 = rand (3∗nn +1 ,1) ;

18

19 % Anonymous funct ion handle

20 f = @(wb) neuralapprox (wb,KK, E0 , x , dx , nn ) ;

21

22 % Cal l unconstrained minimizer

23 opts = optimoptions ( @fminunc , ’ Algorithm ’ , ’ quasi−newton ’ , . . .

24 ’ S tepTolerance ’ ,1 e−12, ’ Optimal i tyTolerance ’ ,1 e − 1 2 , . . .

25 ’ MaxFunctionEvaluations ’ , 1 0 0 0 0 , . . .

26 ’ Spec i fyObjec t iveGradient ’ , true , ’ CheckGradients ’ , true , . . .

27 ’ F i n i t e D i f f e r e n c e T y p e ’ , ’ c e n t r a l ’ , ’ MaxI terat ions ’ , 10000 ) ;

28 [wb, f ] = fminunc ( f , wb0 , opts )

29

30 funct ion [ f , g ] = neuralapprox (wb,KK, E0 , x , dx , nn )

31

32 % r e s t o r e weights and b i a s e s f o r ANN

33 u = wb( 1 : nn ) ;

34 w = wb( nn+1:2∗nn ) ;

35 b = wb(2∗nn+1) ;

36 v = wb(2∗nn+2:3∗nn+1) ;

37

38 % Neural network response f o r feedforward net (FFN) ( Eq . ( 1 3 ) )
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39 z = w∗x + u ;

40 sigmoid = (1 + exp(−z ) ) .^(−1) ;

41 ANN = sum( v . ∗ sigmoid ) + b ;

42

43 % S p a t i a l d e r i v a t i v e response f o r feedforward net ( Eq . ( 1 4 ) )

44 d_sigmoid = sigmoid . ∗ ( 1 − sigmoid ) ;

45 d_ANN = sum( v .∗w. ∗ d_sigmoid ) ;

46

47 % Derivat ive of 1 s t FFN and dFFN/dx w. r . t . i t s weights ( Eq . ( 1 5 ) )

48 d2_sigmoid = sigmoid . ∗ ( 1 − sigmoid ) .^2 − sigmoid . ^ 2 . ∗ ( 1 − sigmoid ) ;

49

50 xmatr = x .∗ ones ( s i z e ( z ) ) ;

51 ANN_du = v . ∗ d_sigmoid ;

52 ANN_dw = v . ∗ d_sigmoid .∗ xmatr ;

53 ANN_db = ones ( s i z e ( x ) ) ;

54 ANN_dv = sigmoid ;

55

56 d_ANN_du = v . ∗w. ∗ d2_sigmoid ;

57 d_ANN_dw = v . ∗ d_sigmoid + v . ∗w. ∗ d2_sigmoid .∗ xmatr ;

58 d_ANN_db = zeros ( s i z e ( x ) ) ;

59 d_ANN_dv = w.∗ d_sigmoid ;

60

61 % Der iva t ives of the t r i a l func t ion phi = x∗(1−x ) ∗N ( Eq . ( 2 4 ) &(15) )

62 d_phi_t = (1−2∗x ) .∗ANN + x .∗(1−x ) . ∗d_ANN;

63 d_phi_t_du = (1−2∗xmatr ) .∗ANN_du + xmatr .∗(1− xmatr ) .∗d_ANN_du;

64 d_phi_t_dw = (1−2∗xmatr ) .∗ANN_dw + xmatr .∗(1− xmatr ) .∗d_ANN_dw;

65 d_phi_t_db = (1−2∗x ) .∗ANN_db + x .∗(1−x ) . ∗d_ANN_db ;

66 d_phi_t_dv = (1−2∗xmatr ) .∗ANN_dv + xmatr .∗(1− xmatr ) .∗d_ANN_dv ;

67

68 % Cost funct ion and i t s d e r i v a t i v e s w. r . t . the weights ( Eq . ( 2 6 ) )

69 J J = 0 . 5∗KK. ∗ ( E0 − d_phi_t ) . ^ 2 ;

70

71 J J_du = −KK. ∗ ( E0 − d_phi_t ) . ∗ d_phi_t_du ;

72 JJ_dw = −KK. ∗ ( E0 − d_phi_t ) . ∗ d_phi_t_dw ;

73 J J_db = −KK. ∗ ( E0 − d_phi_t ) . ∗ d_phi_t_db ;

74 J J_dv = −KK. ∗ ( E0 − d_phi_t ) . ∗ d_phi_t_dv ;

75

76 g1 = [ JJ_du ; JJ_dw ; J J_db ; J J_dv ] ;

77

78 f = dx∗sum( J J ) ;

79 g = dx∗sum( g1 , 2 ) ;

80

81 end
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Appendix B. Matlab Script for Piecewise-Defined One-Dimensional Example

1 % Evaluat ion points in area

2 dx = 0 . 0 1 ;

3 x = dx /2: dx:1−dx /2;

4

5 % Applied macroscopic load

6 E0 = 0 . 0 1 ;

7

8 % E l e c t r i c p e r m i t t i v i t y in laminate

9 KK = zeros ( s i z e ( x ) ) ;

10 KK( x > 1/2) = 2 . 0 ;

11 KK( x < 1/2) = 1 . 0 ;

12

13 % Number of hidden neurons

14 nn = 1 0 ;

15

16 % I n i t i a l i z e weights and b i a s e s

17 wb0 = rand (6∗nn +2 ,1) ∗ ( E0/nn ) ;

18

19 % Anonymous funct ion handle

20 f = @(wb) neuralapprox (wb,KK, E0 , x , dx , nn ) ;

21

22 % Cal l unconstrained minimizer

23 opts = optimoptions ( @fminunc , ’ Algorithm ’ , ’ quasi−newton ’ , . . .

24 ’ Spec i fyObjec t iveGradient ’ , true , ’ CheckGradients ’ , true , . . .

25 ’ F i n i t e D i f f e r e n c e T y p e ’ , ’ c e n t r a l ’ , ’ MaxI terat ions ’ , 5 0 0 0 ) ;

26 [wb, f ] = fminunc ( f , wb0 , opts )

27

28 funct ion [ f , g ] = neuralapprox (wb,KK, E0 , xx , dx , nn )

29 %%% Cost funct ion f o r i n t e r v a l [ 0 , 0 . 5 ]

30

31 % Restore weights and b i a s e s f o r f i r s t ANN

32 u = wb( 1 : nn ) ;

33 w = wb( nn+1:2∗nn ) ;

34 b = wb(2∗nn+1) ;

35 v = wb(2∗nn+2:3∗nn+1) ;

36

37 % Quadrature points f o r i n t e g r a t i o n

38 x = xx ( 1 : f l o o r ( s i z e ( xx , 2 ) /2) ) ;

39 K = KK( 1 : f l o o r ( s i z e (KK, 2 ) /2) ) ;

40

41 % Neural network response f o r 1 s t feedforward net (FFN) ( Eq . ( 1 3 ) )

42 z = w∗x + u ;

43 sigmoid = (1 + exp(−z ) ) .^(−1) ;

44 ANN = sum( v . ∗ sigmoid ) + b ;

45

46 % S p a t i a l d e r i v a t i v e response f o r 1 s t feedforward net ( Eq . ( 1 4 ) )

47 d_sigmoid = sigmoid . ∗ ( 1 − sigmoid ) ;

48 d_ANN = sum( v . ∗w. ∗ d_sigmoid ) ;
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49

50 % Derivat ive of 1 s t FFN and dFFN/dx w. r . t . i t s weights ( Eq . ( 1 5 ) )

51 d2_sigmoid = sigmoid . ∗ ( 1 − sigmoid ) .^2 − sigmoid . ^ 2 . ∗ ( 1 − sigmoid ) ;

52

53 xmatr = x .∗ ones ( s i z e ( z ) ) ;

54

55 ANN_du = v . ∗ d_sigmoid ;

56 ANN_dw = v . ∗ d_sigmoid .∗ xmatr ;

57 ANN_db = ones ( s i z e ( x ) ) ;

58 ANN_dv = sigmoid ;

59

60 d_ANN_du = v . ∗w. ∗ d2_sigmoid ;

61 d_ANN_dw = v . ∗ d_sigmoid + v . ∗w. ∗ d2_sigmoid .∗ xmatr ;

62 d_ANN_db = zeros ( s i z e ( x ) ) ;

63 d_ANN_dv = w.∗ d_sigmoid ;

64

65 % FFN and d e r i v a t i v e s evaluated at the d i s c o n t i n u i t y ( Eq . ( 2 8 ) &(15) )

66 z_disc = w∗0 . 5 + u ;

67

68 sigmoid_disc = (1 + exp(−z_disc ) ) .^(−1) ;

69 d_sigmoid_disc = sigmoid_disc . ∗ ( 1 − sigmoid_disc ) ;

70

71 ANN_disc = sum( v . ∗ sigmoid_disc ) + b ;

72 ANN_disc_du = v . ∗ d_sigmoid_disc ;

73 ANN_disc_dw = v .∗ d_sigmoid_disc ∗ 0 . 5 ;

74 ANN_disc_db = 1 . 0 ;

75 ANN_disc_dv = sigmoid_disc ;

76

77 % Der iva t ives of the t r i a l func t ion phi = x∗N_1 ( Eq . ( 2 8 ) &(15) )

78 p h i _ t _ d i s c = 0 . 5 . ∗ANN_disc ;

79 d_phi_t_disc_du = ANN_disc_du ;

80 d_phi_t_disc_dw = ANN_disc_dw ;

81 d_phi_t_disc_db = ANN_disc_db ;

82 d_phi_t_disc_dv = ANN_disc_dv ;

83

84 d_phi_t = ANN + x .∗d_ANN;

85

86 d_phi_t_du = ANN_du + xmatr .∗d_ANN_du;

87 d_phi_t_dw = ANN_dw + xmatr .∗d_ANN_dw;

88 d_phi_t_db = ANN_db + x .∗d_ANN_db ;

89 d_phi_t_dv = ANN_dv + xmatr . ∗d_ANN_dv ;

90

91 % Cost funct ion and i t s d e r i v a t i v e s w. r . t . the weights ( Eq . ( 3 0 ) )

92 J J = 0 . 5∗K. ∗ ( E0 − d_phi_t ) . ^ 2 ;

93

94 J J_du = −K. ∗ ( E0 − d_phi_t ) . ∗ d_phi_t_du ;

95 JJ_dw = −K. ∗ ( E0 − d_phi_t ) . ∗ d_phi_t_dw ;

96 J J_db = −K. ∗ ( E0 − d_phi_t ) . ∗ d_phi_t_db ;

97 J J_dv = −K. ∗ ( E0 − d_phi_t ) . ∗ d_phi_t_dv ;

98
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99 g1 = [ JJ_du ; JJ_dw ; J J_db ; J J_dv ] ;

100

101 f = dx∗sum( J J ) ;

102 g = dx∗sum( g1 , 2 ) ;

103

104 %%% Cost funct ion f o r i n t e r v a l [ 0 . 5 , 1 . 0 ]

105

106 % Restore weights and b i a s e s f o r second ANN

107 u = wb(3∗nn+2:4∗nn+1) ;

108 w = wb(4∗nn+2:5∗nn+1) ;

109 b = wb(5∗nn+2) ;

110 v = wb(5∗nn+3:6∗nn+2) ;

111

112 % Quadrature points f o r i n t e g r a t i o n

113 x = xx ( f l o o r ( s i z e ( xx , 2 ) /2) +1: end ) ;

114 K = KK( f l o o r ( s i z e (KK, 2 ) /2) +1: end ) ;

115

116 % Neural network response f o r 2nd feedforward net (FFN) ( Eq . ( 1 3 ) )

117 z = w∗x + u ;

118 sigmoid = (1 + exp(−z ) ) .^(−1) ;

119 ANN = sum( v . ∗ sigmoid ) + b ;

120

121 % S p a t i a l d e r i v a t i v e response f o r 2nd feedforward net ( Eq . ( 1 4 ) )

122 d_sigmoid = sigmoid . ∗ ( 1 − sigmoid ) ;

123 d_ANN = sum( v .∗w. ∗ d_sigmoid ) ;

124

125 % Derivat ive of end FFN and dFFN/dx w. r . t . i t s weights ( Eq . ( 2 8 ) &(15) )

126 d2_sigmoid = sigmoid . ∗ ( 1 − sigmoid ) .^2 − sigmoid . ^ 2 . ∗ ( 1 − sigmoid ) ;

127

128 xmatr = x .∗ ones ( s i z e ( z ) ) ;

129

130 ANN_du = v . ∗ d_sigmoid ;

131 ANN_dw = v . ∗ d_sigmoid .∗ xmatr ;

132 ANN_db = ones ( s i z e ( x ) ) ;

133 ANN_dv = sigmoid ;

134

135 d_ANN_du = v . ∗w. ∗ d2_sigmoid ;

136 d_ANN_dw = v . ∗ d_sigmoid + v . ∗w. ∗ d2_sigmoid .∗ xmatr ;

137 d_ANN_db = zeros ( s i z e ( x ) ) ;

138 d_ANN_dv = w.∗ d_sigmoid ;

139

140 % Der iva t ives of the t r i a l func t ion

141 % phi = (0.5−x ) ∗(1−x ) ∗N_2 + 2∗(1−x ) ∗phi ( 0 . 5 ) ( Eq . ( 2 8 ) &(15) )

142 d_phi_t = (2∗x−1.5) . ∗ANN + (0.5−x ) .∗(1−x ) .∗d_ANN − 2∗ p h i _ t _ d i s c ;

143

144 d_phi_t_du = (2∗ xmatr−1.5) . ∗ANN_du + (0.5− xmatr ) .∗(1− xmatr ) .∗d_ANN_du;

145 d_phi_t_dw = (2∗ xmatr−1.5) . ∗ANN_dw + (0.5− xmatr ) .∗(1− xmatr ) .∗d_ANN_dw;

146 d_phi_t_db = (2∗x−1.5) . ∗ANN_db + (0.5−x ) .∗(1−x ) .∗d_ANN_db ;

147 d_phi_t_dv = (2∗ xmatr−1.5) . ∗ANN_dv + (0.5− xmatr ) .∗(1− xmatr ) .∗d_ANN_dv ;

148
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149 % Cost funct ion and i t s d e r i v a t i v e s w. r . t . the weights ( Eq . ( 3 0 ) )

150 J J = 0 . 5∗K. ∗ ( E0 − d_phi_t ) . ^ 2 ;

151

152 J J_du = −K. ∗ ( E0 − d_phi_t ) . ∗ d_phi_t_du ;

153 JJ_dw = −K. ∗ ( E0 − d_phi_t ) . ∗ d_phi_t_dw ;

154 J J_db = −K. ∗ ( E0 − d_phi_t ) . ∗ d_phi_t_db ;

155 J J_dv = −K. ∗ ( E0 − d_phi_t ) . ∗ d_phi_t_dv ;

156

157 J J_d isc_du = −K. ∗ ( E0 − d_phi_t ) . ∗ d_phi_t_disc_du ;

158 J J_disc_dw = −K. ∗ ( E0 − d_phi_t ) . ∗ d_phi_t_disc_dw ;

159 J J _ d i s c _ d b = −K. ∗ ( E0 − d_phi_t ) . ∗ d_phi_t_disc_db ;

160 J J _ d i s c _ d v = −K. ∗ ( E0 − d_phi_t ) . ∗ d_phi_t_disc_dv ;

161

162 g0 = [ J J_d isc_du ; JJ_disc_dw ; J J _ d i s c _ d b ; J J _ d i s c _ d v ] ;

163 g1 = [ JJ_du ; JJ_dw ; J J_db ; J J_dv ] ;

164

165 f = f + dx∗sum( J J ) ;

166 g = g − dx∗sum( g0 , 2 ) ;

167 g = [ g ; dx∗sum( g1 , 2 ) ] ;

168 end

Appendix C. Two-Dimensional Trial Function and Derivatives

Recalling Section 4.2, we have the trial function in the matrix and the inclusion defined as

φ̃t =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x1(1− x1)x2(1− x2)N1(x, p1) + x1(1− x1)Nx1
(x1, px1

)
r ≥ r0

+x2(1− x2)Nx2(x2, px2
)

φ̃t(r0, ϕ) + (r0 − r)N2(r, p1) r < r0

, (A1)

where the coordinate transformation between Cartesian and polar coordinates is performed as

x1 = 0.5 + r cosϕ and x2 = 0.5 + r sinϕ. (A2)

The negative gradient of the trial function in the matrix (r ≥ r0) in Cartesian coordinates then

appears as

Ẽt = −∇φ̃t =−
[

(1− 2x1)x2(1− x2)N1 + x1(1− x1)x2(1− x2)
∂N1
∂x1

(1− 2x2)x1(1− x1)N1 + x1(1− x1)x2(1− x2)
∂N1
∂x2

]

−
⎡
⎣ (1− 2x1)Nx1

+ x1(1− x1)
∂Nx1
∂x1

(1− 2x2)Nx2 + x2(1− x2)
∂Nx2
∂x2

⎤
⎦ .

(A3)

The gradient of the trial function in the inclusion (r < r0) in polar coordinates can be computed

through

Ẽt = −∇r φ̃t = −JT
0 ·
⎡
⎣

∂φ̃t
∂x1

∂φ̃t
∂x2

⎤
⎦

r0,ϕ

−
[
−N2 + (r0 − r) ∂N2

∂r
r0−r

r
∂N2
∂ϕ

]
, (A4)
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where the derivatives with respect to x1 and x2 are evaluated at x1(r0, ϕ) and x2(r0, ϕ). The Jacobian

for a radius of r0 takes the form

J0 =

[
0 − r0

r sinϕ

0 r0
r cosϕ

]
. (A5)

The integration of the global potential in Equation (41) is then piecewise carried out

Π(p) =
∫

Bmatr

1

2
κ1Et · Et dx dy +

∫

Bincl

1

2
κ2Et · Et r dr dϕ, (A6)

where the integration for the matrix is carried out in Cartesian coordinates and the integration for the

inclusion is carried out in polar coordinates.

Appendix D. Three-Dimensional Trial Function and Derivatives

Recalling Section 4.3, the piecewise-defined trial function is constructed as

φ̃t
∗
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A1 N1(x, p1) + A2 Nx12
(x1, x2, px12

) + A3 Nx13
(x1, x3, px13

)

r ≥ r0+A4 Nx23(x2, x3, px23
) + A5 Nx1

(x1, px1
) + A6 Nx2(x2, px2

)

+A7 Nx3(x3, px3
)

φ̃t(r0, ϕ, θ) + A8 N2(r, p2) r < r0

, (A7)

where the factors

A1 = x1(1− x1)x2(1− x2)x3(1− x3), A5 = x1(1− x1),

A2 = x1(1− x1)x2(1− x2), A6 = x2(1− x2),

A3 = x1(1− x1)x3(1− x3), A7 = x3(1− x3),

A4 = x2(1− x2)x3(1− x3). A8 = r− r0

(A8)

ensure the satisfaction of the boundary conditions. As the matrix material (r ≥ r0) is described in

Cartesian coordinates, the gradient can be straightforward computed as

Ẽ
∗
t = −∇φ̃t =−

⎡
⎢⎢⎣

∂A1
∂x1

N1 + A1
∂N1
∂x1

∂A1
∂x2

N1 + A1
∂N1
∂x2

∂A1
∂x3

N1 + A1
∂N1
∂x3

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

∂A2
∂x1

Nx12
+ A2

∂Nx12
∂x1

∂A2
∂x2

Nx12
+ A2

∂Nx12
∂x2

0

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

∂A3
∂x1

Nx13
+ A3

∂Nx13
∂x1

0

∂A3
∂x3

Nx13
+ A3

∂Nx13
∂x3

⎤
⎥⎥⎦

−

⎡
⎢⎢⎣

0

∂A4
∂x2

Nx23 + A4
∂Nx23

∂x2

∂A4
∂x3

Nx23 + A4
∂Nx23

∂x3

⎤
⎥⎥⎦−

⎡
⎢⎢⎢⎣

∂A5
∂x1

Nx1
+ A5

∂Nx1
∂x1

∂A6
∂x2

Nx2 + A6
∂Nx2
∂x2

∂A7
∂x3

Nx3 + A7
∂Nx3
∂x3

⎤
⎥⎥⎥⎦ ,

(A9)

51



Math. Comput. Appl. 2019, 24, 40

where the derivatives of the factors Ai take the form

∂A1

∂x1
= (1− 2x1)x2(1− x2)x3(1− x3),

∂A1

∂x2
= (1− 2x2)x1(1− x1)x3(1− x3),

∂A1

∂x3
= (1− 2x3)x1(1− x1)x2(1− x2),

∂A2

∂x1
= (1− 2x1)x2(1− x2),

∂A2

∂x2
= (1− 2x2)x1(1− x1),

∂A3

∂x1
= (1− 2x1)x3(1− x3),

∂A3

∂x3
= (1− 2x3)x1(1− x1),

∂A4

∂x2
= (1− 2x2)x3(1− x3),

∂A4

∂x3
= (1− 2x3)x2(1− x2),

∂A5

∂x1
= (1− 2x1),

∂A6

∂x2
= (1− 2x2),

∂A7

∂x3
= (1− 2x3).

(A10)

As for the inclusion, the transformation between the spherical coordinates r = (r, ϕ, θ) and the

Cartesian coordinates x = (x1, x2, x3) is given as

x1 = 0.5 + r sinϕ cosθ, x2 = 0.5 + r sinϕ sinθ and x3 = r cosϕ. (A11)

One could now either directly substitute the latter transformation into the trial function in

Equation (A7) and take the derivatives with respect to r. Alternatively, the Jacobian for the matrix can

be computed as

J0 =

⎡
⎢⎣

0 r0
r cosϕcosθ − r0

r sinθ

0 r0
r cosϕsinθ r0

r cosθ

0 − r0
r sinϕ 0

⎤
⎥⎦ , (A12)

which allows for the computation of the gradient of φ∗t in spherical coordinates through

Ẽt = −∇r φ̃t = −JT
0 ·

⎡
⎢⎢⎢⎣

∂φ̃t
∂x1

∂φ̃t
∂x2

∂φ̃t
∂x3

⎤
⎥⎥⎥⎦

r0,ϕ,θ

−

⎡
⎢⎢⎣

∂A8
∂r N2 + A8

∂N2
∂r

A8
r

∂N2
∂ϕ

A8
rsinϕ

∂N2
∂θ

⎤
⎥⎥⎦ . (A13)

Here, the partial derivative is simply ∂A8/∂r = −1. The integration of the global potential in

Equation (41) is then piecewise carried out

Π(p) =
∫

Bmatr

1

2
κ1Et · Et dx1 dx2 dx3 +

∫

Bincl

1

2
κ2Et · Et r2sinϕ dr dϕ dθ, (A14)

where one has to appropriately add the constant macroscopic loads to the fluctuations in Equations (A9)

and (A13) in Cartesian and polar coordinates.
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Abstract: An image based prediction of the effective heat conductivity for highly heterogeneous

microstructured materials is presented. The synthetic materials under consideration show different

inclusion morphology, orientation, volume fraction and topology. The prediction of the effective

property is made exclusively based on image data with the main emphasis being put on the 2-point

spatial correlation function. This task is implemented using both unsupervised and supervised

machine learning methods. First, a snapshot proper orthogonal decomposition (POD) is used to

analyze big sets of random microstructures and, thereafter, to compress significant characteristics

of the microstructure into a low-dimensional feature vector. In order to manage the related amount

of data and computations, three different incremental snapshot POD methods are proposed. In the

second step, the obtained feature vector is used to predict the effective material property by using

feed forward neural networks. Numerical examples regarding the incremental basis identification

and the prediction accuracy of the approach are presented. A Python code illustrating the application

of the surrogate is freely available.

Keywords: microstructure property linkage; unsupervised machine learning; supervised machine

learning; neural network; snapshot proper orthogonal decomposition
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1. Introduction

In material analysis and design of heterogeneous materials, multiscale modeling can be used

for the discovery of microstructured materials with tuned properties for engineering applications.

Thereby, it contributes to the improvement of the technical capabilities, reduces the amount of resources

invested into the construction and enhances the reliability of the description of the material behavior.

However, the discovery of materials with the desired material property, which is characterized by the

microstructure of the solid, constitutes a highly challenging inverse problem.

The basis for all multiscale models and simulations is information on the microstructure and

on the microscale material behavior. If at hand, physical experiments can be replaced by—often

costly—computations in order to determine the material properties by virtual testing [1–3]. Separation

of structural and microstructural length scales can often be assumed. This enables the use of the

representative volume element (RVE) [4] equipped with the preferable periodic fluctuation boundary

conditions [5]. The RVE characterizes the highly heterogeneous material using a single frame (or

image) and the (analytical or numerical) computation can be conducted on this frame.

The concurrent simulation of the underlying microstructure (e.g., through nested FE simulations,

cf., e.g., [6,7], or considering microstructure behavior in the constitutive laws, e.g., [8]) and of the

problem on the structural scale is computationally intractable. In view of the correlation between

computational complexity and energy consumption, nested FE simulations should be limited in

application for ecological reasons, too. Therefore, efficient methods giving reliable prediction of
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the material property are an active field of research: POD-driven reduced order models with

hyper-reduction (e.g., [9,10]), with multiple reduced bases spanning also internal variable [11,12]

and for finite strains [13,14] are a selection of recent examples. We refer also to general review articles

on the topic such as [15,16].

Supposing that two similar images representing microstructured materials are considered, it is

natural to expect similar effective properties in many physically relevant problems such as elasticity,

thermal and electric conduction to mention only two applications. The main task, thus, persists in

finding low-dimensional parameterizations of the images that capture the relevant information, use

these parameterizations to compress the image information and build a surrogate model operating

only on the reduced representation. A black-box approach, exploiting precomputed data for the

construction of the surrogate to link features to characteristics and using established machine learning

methods, is the topic of this paper.

As the no free lunch theorem [17] states, an algorithm can not be arbitrarily fast and arbitrarily

accurate at the same time. Hence, there has to be a compromise either in accuracy, computational

speed or in versatility. At the cost of generality, i.e., by focusing on subclasses of microstructures,

fast and accurate models can be deployed while still allowing for considerable variations of the

microstructures. This does not mean that these subclasses must be overly confined: For instance,

inclusion volume fractions ranging from 20 up to 80% are considered in this work. Using a limited

number of computations performed on relevant microstructure images, machine learned methods

can be trained for the subclass under consideration. The sampling of the data, the feature extraction

and the training of the machine learning (ML) algorithm constitutes the offline phase in which the

surrogate model is built. Typically, the evaluation of the surrogate can be realized almost in real-time

(at least this is the aspired and ambitious objective), thereby enabling previously infeasible applications

in microstructure tayloring, interactive user interfaces and computations on mobile devices.

To have a reliable prediction for a broader range of considered microstructures, the material

knowledge system (MKS) framework [18] is currently actively researched. Many branches thereof exist,

all trying to attain low-dimensional microstructure descriptors from the truncation of selected n-point

correlation functions. For instance, a principal component analysis (PCA) of the 2-point correlation

functions is performed, using the principal scores in a polynomial regression model, in order to predict

material properties. The MKS is actively researched for different material structures [19–21]. For

instance, [19,20] successfully predict the elastic strain and yield stress for the underlying microstructure

using the MKS approach, however they confine their focus on either the topological features of the

microstructure or a confined range of allowed volume fractions (0–20%), often held constant in

individual studies.

A different approach for target driven microstructure tayloring deploys reconstruction

techniques [22,23] to generate similar microstructures which fulfill certain criteria. In order to explicitly

find the optimal microstructure geometry, sensitivities of descriptors, as, e.g., the number of inclusions,

with respect to material property are obtained with machine learning [24,25]. With the sensitivities at

hand, target driven construction enables the generation of optimal microstructure topology for the

desired material property, even when considering a broad design space [26].

The goal of the present study is to make accurate image based predictions for RVEs spanning

large subclasses of all possible microstructured materials: Substantial variations of the volume fraction,

the morphology and of the topology are considered.

Similarly to key ideas of the MKS approach, a reduced basis is deployed to reduce the

dimensionality of the microstructural features contained in the n-point correlation functions. With

the sheer amount of samples required, conventional methods fail to capture the key features of all

considered microstructures. Therefore, we propose three novel incremental reduced basis updates to

make the computation possible. Combining these techniques with the use of synthetic microstructure

data, the costly training of the reduced basis and of the artificial neural network (e.g., [27]) become

feasible, thereby allowing the creation of a surrogate model for the image-property linkage. The
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surrogate accepts binarized image representations of bi-phasic materials as inputs. The outputs

constitute the effective heat conductivity tensor of the considered material.

In Section 2 the microstructure classification and the three different incremental snapshot POD

procedures used during feature extraction are presented (unsupervised learning). In Section 3 the

use of feedforward artificial neural networks for the processing of the extracted features is discussed.

Numerical examples are presented in Section 4 including different inclusion morphologies and an

investigation of the relaxation of the microstructure subclass confinement, of the procedure by using

mixed data sets, is made. A Python code illustrating the application of the surrogate is freely available

via Github.

2. Materials and Methods

2.1. Microstructure Classification

The microstructure is defined by the representative volume element (RVE) [4], which is one

periodic frame (or image) characterizing the heterogeneous material under consideration, see Figure 1

for examples of the microstructure and its 2-point spatial correlation function (see below for its

definition). Due to their favorable properties regarding the needed size of the RVE, periodic fluctuation

boundary conditions, e.g., [5], are used for the computations during the offline phase.

Figure 1. Depicting some exemplary microstructures with their respective 2-point spatial correlation

functions c2(r; b, b) below.

The n-point spatial correlation functions represent a widely used mathematical framework for

microstructural characterization [28,29]. Roughly described, the n-point correlation is obtained by

placing a polyline consisting of (n− 1) nodes defined relative to the first point by vectors r1, r2, . . . .

By placing the first point uniformly randomly into the microstructure and computing the mean

probability of finding a prescribed sequence of material phases at the nodes of the polyline (including

the initial point) denotes the n-point correlation cn(r1, r2, . . . , rn−1; m1, m2, . . . , mn), where mk is the

material label expected to be found at the kth node.

For example, the 1-point spatial correlation function, i.e., the probability of finding phase m

(m ∈ {a, b, . . . }), yields the phase volume fraction fm of phase m. In the present study bi-phasic

materials are considered. Here m = a corresponds to the matrix material (drawn blue in Figure 1) and

m = b to the inclusion phase (drawn yellow in Figure 1). The trivial relation

fa = 1− fb (1)

holds. The 2-point spatial correlation function (2PCF) c2(r; a, b) places the vector r in each pixel/voxel

x of the RVE and states the probability of starting in the matrix phase a and ending in the inclusion

phase b. Mathematically we have

c2(r; a, b) =
〈

χ(a)(x) χ(b)(x + r)
〉

x
(2)
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with χ(m) being the indicator function of phase m, r the point offset and 〈 • 〉x denoting the averaging

operator over the RVE. The 2PCF is efficiently computed in Fourier space by making use of the

algorithmically sleek fast Fourier transform (FFT) [30,31]

c2(r; a, b) = F
−1
(
F (χ(a))⊙F (χ(b))

)
, (3)

where F and F−1 denote the forward and backward FFT, • is the complex conjugate and⊙ denotes the

point-wise multiplication, respectively. For bi-phasic materials the three different two-point functions

c2(•; a, b), c2(•; a, a), c2(•; b, b) are related via

c2(r; a, a) = fa − c2(r; a, b) , c2(r; b, b) = fb − c2(r; a, b) . (4)

In view of computational efficiency, this redundancy can be exploited. Some key characteristics of

the non-negative 2PCF are

c2(0; a, a) = fa = max
r∈Ω

c2(r; a, a), (5)

c2(0; b, b) = fb = max
r∈Ω

c2(r; b, b), (6)

c2(0; a, b) = 0, (7)

c2(r; a, b) = c2(r; b, a) = c2(−r; a, b), (8)

〈c2(x; m, m)〉x = f 2
m (m = a, b) . (9)

In addition to that, a key property of the 2PCF is its invariance with respect to translations of the

periodic microstructure. This property is of essential importance when it comes to the comparison of

several images under consideration, i.e., during the evaluation of similarities within images.

Examples of c2(r; b, b) (referred to also as auto-correlation of the inclusion phase) are depicted

by the lower set of images in Figure 1. By the metric of vision, the following characteristics can

be observed:

• The maximum of c2(r; b, b) occurs at the corners of the domain (corresponding to r = 0);

• Preferred directions of the inclusion placement and/or orientation correspond to laminate-like

images (best seen in the third microstructure from the left);

• The domain around r = 0 partially reflects the average inclusion shape;

• Some similarities are found, particularly with respect to shape of the 2PCF at the corners and in

the center.

These observations hint at the existence of a low-dimensional parameterization of relevant

microstructural features. In the following this property is exploited by using a snapshot proper

orthogonal decomposition (snapshot POD) in order to capture reoccurent patterns of the 2PCF. By

working on the two-point function the afore-mentioned elimination of possible translations of the

images is an important feature.

The influence of higher order spatial correlation functions has been investigated in the literature,

e.g., [28,32]. These considerations often yield minor gains relative to the additional computations

and the increased dimensionality (for instance, the 3PCF takes to vectors r1, r2 ∈ Ω as inputs. Hence,

the full 3PCF is basically inaccessible in practice but only after major truncation). While it has been

demonstrated that the two point function does not suffice to uniquely describe the microstructure

in periodic domains [33], there is evidence that the level of microstructural ambiguity for identical

2PCF can be considered low. Therefore, only the n-point correlation functions up to second order are

accounted for in the present study.
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2.2. Unsupervised Learning via Snapshot Proper Orthogonal Decomposition

The snapshot POD [34] can be used to construct a reduced basis (RB) [35–37] that provides an

optimal subspace for approximating a given snapshot matrix S ∈ Rn×ns . The matrix S consists of ns

individual snapshots si ∈ Rn with the size n being the dimension of the discrete representation of

the unreduced field information. In the case of the 2PCF n denotes the total number of pixels within

the RVE, i.e., the discrete two-dimensional 2PCF (represented as image data) is recast into vector

format for further processing ( c0
2(m, m) ∈ Rn ). In the present study, the constructed RB is used for

information compression, i.e., for the extraction of relevant microstructural features from the image

data. The reduced basis B ∈ Rn×N retains the N most salient features of the data contained in S in a

few eigenmodes represented by the orthonormal columns of B.

The actual snapshot data stored in S is constructed from the discrete 2-point function data s0
i ∈ Rn

via scaling and shifting according to

si =
1

fb

(
s0

i − f 2
b 1
)

, (10)

where 1 ∈ Rn is a vector containing ones at all entries. This shift ensures a peak value of 1 in the corner

and the mean of 0 for every snapshot.

The reduced basis is computed under the premise to minimize the overall relative projection error

Pδ =
||S− B BT S||F
||S||F

(11)

with respect to the Frobenius norm ‖ • ‖F. The RB can be constructed with multiple methods, e.g.,

with the snapshot correlation matrix C
S

and its eigenvalue decomposition, which is given by

C
S
= ST S = V Θ VT . (12)

The following properties of the sorted eigenvalue decomposition hold

VT V = I R
ns×ns , Θij = θiδij , θ1 ≥ θ2 ≥ ... ≥ θns ≥ 0 , (13)

and δij denotes the Kronecker delta. The dimension of the reduced basis is determined by the POD

threshold, i.e., the truncation criterion is given by

δN =

√√√√∑
ns
j=N+1 θj

∑
ns
i=1 θi

=

√√√√∑
ns
j=N+1 θj

||S||2F
=

√√√√‖S‖2
F −

N

∑
j=1

θj

!
≤ ε , (14)

where ε > 0 is a given tolerance denoting the admissible approximation error. Then, the reduced basis

is computed via

B = S Ṽ Θ̃
− 1

2 (15)

after truncation of the eigenvalue and eigenvector matrices to reduced dimension N represented by

Θ̃ ∈ RN×N and Ṽ ∈ Rn×N , respectively. The sorting of the eigenvalues with their corresponding

eigenvectors leads to the property that the least recurrent information given in S is omitted. Hence, the

first eigenmode in B has the most dominant pattern, the second eigenmode the second most, etc.

The properties of the reduced basis computed with the snapshot correlation matrix remain the same as

for the singular value decomposition (SVD) introduced below.

The SVD [38] of the snapshot matrix is given by

S = U Σ WT (16)
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with the following properties (asserting ns ≥ n)

U ∈ R
n×ns : UT U = I , W ∈ R

ns×ns : WT W = I , Σ ∈ R
ns×ns : Σ = diag(σi) (17)

and the sorted non-negative singular values σi such that σ1 ≥ σ2 ≥ · · · ≥ σns ≥ 0. The criterion for

determining the reduced dimension N matching Equation (14) takes the form

δN =

√√√√∑
ns
j=N+1 σ2

j

‖S‖2
F

=

√√√√∑
ns
j=N+1 σ2

j

∑
ns
i=1 σ2

i

=

√√√√‖S‖2
F −

N

∑
j=1

σ2
j

!
≤ ε. (18)

Then the reduced basis is given by truncation of the columns of U yielding Ũ ∈ Rn×N

B = Ũ. (19)

More specifically, the left subspace associated with the leading singular values represents the RB.

Both introduced methods yield the exact same result for the same snapshot matrix S.

2.3. Incremental Generation of the Reduced Basis B

The RB is deployed in order to compress the information contained in ns snapshots into an

N-dimensional set of eigenmodes stored in the columns of B ∈ Rn×N , where N ≪ ns is asserted.

Since the RB is computed with the snapshot matrix alone, the information contained in S needs

to contain data representing the relevant microstructure range, i.e., covering the parameter range

used in the generation of the synthetic materials, in order for B to be representative for the problem

under consideration.

In the case of bi-phasic microstructural images containing n pixels, a ludicrous amount of 2n states

could theoretically be considered when allowing for fully arbitrary microstructures. When limiting

attention to certain microstructure classes, then less information is needed. Still, thousands of snapshots

are usually required, at least. In the following, attention is limited to synthetic materials generated using

random sequential adsorption of morphological prototypes with variable size, orientation, aspect ratio,

overlap and randomized phase volume fraction. Due to the high variability of such microstructures

(see, e.g., Figure 1), a large number of snapshots exceeding available memory would be needed, i.e., a

monolithic snapshot matrix S is not at hand in practice. While attention is limited to two-dimensional

model problems in this study, the problem aggravates considerably for three-dimensional images

which imply technical challenges of various sort (storage, processing time, data management, etc.).

In order to be able to generate a rich RB accounting for largely varying microstructural classes,

the incremental basis generation represents a core concept within the present work. It enables the

RB generation based on a sequence of input snapshots but without the need to store previously

considered data except for the current RB. Three different methods are proposed, two of which rely

on approximations of the snapshot correlation matrix C
S
, and one of which relies on the SVD of an

approximate snapshot matrix. The general incremental scheme depicted in Figure 2 remains the same

for all the procedures, i.e., the only difference is found during the step labeled ’adjust’.
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B

B Pδ

nδ

Pδ < ǫ

Pδ ≥ ǫ

nδ = n

nδ < n

nδ = 0

Figure 2. Graphical overview of the incremental update of the reduced basis.

The algorithm is initialized by a small sized set of initial snapshots of the shifted and scaled

2-point correlation function (cf. Equation (10) in Section 2.2). Further, the algorithmic variables nδ = 0

and ΔS = ∅ are set. The initial RB is computed classically using either the correlation matrix or the

SVD (see previous section for details). After computation of the RB, the snapshots are stored neither in

memory nor on a hard drive. The algorithm then takes input snapshots in the order of appearance,

i.e., the data gets abandoned. For each newly generated snapshot si the relative projection error with

respect to the current RB is computed

Pδ =
||si − B BT si||F

||si||F
. (20)

If Pδ is greater than the tolerance ε > 0 the snapshot is considered as inappropriately represented

by the existing RB. Consequently, si is appended to a buffer ΔS containing candidates for the next

basis enrichment and the counter nδ is incremented. Once the buffer contains a critical number of

na elements the actual enrichment is triggered and the buffer is emptied thereafter. Thereby the

computational overhead is reduced. The three different update procedures are described later on in

detail. The procedure is continued until nc > 0 consecutive snapshots were found to be approximated

up to the relative tolerance ε. Then the basis is considered as converged for the microstructure class

under consideration.

In the following three methods for the update procedure are described. Formally, the update of

an existing basis B with a block of snapshots contained in the buffer ΔS is sought-after. The new basis

is required to remain orthonormal.

2.3.1. Method A: Append Eigenmodes to B

A trivial enrichment strategy is given in terms of appending new modes to the existing basis

while preserving orthonormality of the basis. Therefore, the projection of ΔS onto the existing RB is

subtracted in a first step

ΔŜ = ΔS− B BTΔS. (21)

It is readily seen that ΔŜ is orthogonal to B. Then the correlation matrix of the additional data and

its eigen-decomposition are computed according to

ΔC = ΔŜ
T

ΔŜ = V Θ VT. (22)
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Eventually, the enrichment is given through the truncated matrices Ṽ and Θ̃

ΔB = ΔŜ Ṽ Θ̃
− 1

2 . (23)

The new basis is then obtained by appending the newly computed modes ΔB

B←
[

B ΔB
]

. (24)

Method A simply adds modes generated from the projection residual ΔŜ in a decoupled way, i.e.,

the existing basis is not modified. In order to compute the basis update, only the existing RB B and the

temporarily stored snapshots ΔS are required.

Remarks on Method A

A.1 The truncation parameter δN must be chosen carefully such that

‖ΔŜ− ΔB ΔBTΔŜ‖F

‖ΔS‖F
≤ δN . (25)

In particular, the normalization with respect to the original data prior to projection onto the

existing RB must be taken.

A.2 By appending orthonormal modes to the existing basis it is a priori guaranteed that the

accuracy of previously considered snapshots cannot worsen, i.e., an upper bound for the

relative projection error of all snapshots considered until termination of the algorithm is given

by the truncation parameter δN and na:

max
|si − B BTsi|
|si|

≤ √na δN . (26)

This estimate is, however, overly pessimistic and it must be noted that the enrichment will

guarantee a drop in the residual for all snapshots contained in ΔS

2.3.2. Method B: Approximate Reconstruction of the Snapshot Correlation Matrix

This update scheme is based on an approximation of the new correlation matrix

C =

[
STS ST ΔS

ΔST S ΔST ΔS

]
=

[
C

0
ST ΔS

ΔST S ΔST ΔS

]
. (27)

Here S denotes all snapshots considered in the RB so far and ΔS contains the candidate snapshots.

However, the previously used snapshots formally written as S are no longer available since they can

not be stored due to storage limitations. Using the previously computed matrices B, Ṽ, Θ̃ the following

approximations are available

ST S = C
0
≈ C̃

0
= Ṽ Θ̃ Ṽ

T
, B = S Ṽ Θ̃

− 1
2 , S ≈ B BT S , (28)

where the accuracy of the approximation is governed by the truncation threshold δN . Using these

approximations and using intrinsic properties of the spectral decomposition, the snapshot matrix S up

to the last basis adjustment is approximated by

S ≈ B Θ̃
1
2 Ṽ

T
. (29)
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Note that B ∈ Rn×N is stored anyway, Θ̃ ∈ RN×N is diagonal and Ṽ ∈ RnS×N is of manageable

size (here nS ≪ n is the number of snapshots with Pδ ≥ ǫ considered in the basis generation up to now).

The snapshot correlation matrix C that considers the additional snapshots can be approximated as

C ≈

⎡
⎢⎣

C̃
0

Ṽ Θ̃
1
2 BT ΔS

ΔST B Θ̃
1
2 Ṽ

T
ΔST ΔS

⎤
⎥⎦ =

[
Ṽ 0

0 I

]

︸ ︷︷ ︸
V∗

⎡
⎣ Θ̃ Θ̃

1
2 BT ΔS

sym. ΔST ΔS

⎤
⎦

︸ ︷︷ ︸
C

1

⎡
⎣Ṽ

T
0

0 I

⎤
⎦

︸ ︷︷ ︸
VT

∗

. (30)

In order to compute the updated basis, the inexpensive eigenvalue decomposition of C
1
∈

R(N+na)×(N+na) is computed

C
1
= V

1
Θ

1
VT

1
. (31)

Analogously to the previous RB computation in Equation (15), the adjusted and enriched basis is

computed by

B =
[
S ΔS

]
Ṽ Θ̃

− 1
2 ≈

[
B Θ̃

1
2 Ṽ

T
ΔS
]

V∗ Ṽ
1︸ ︷︷ ︸

W̃∈R(nS+na)×N

Θ̃
− 1

2

1
. (32)

To update the RB the truncated eigenvector matrix (B , Ṽ ← W̃ ∈ R(nS+na)×N) need to be stored

as well as the diagonal eigenvalue matrix Θ̃.

Remarks on Method B

B.1 The existing RB is not preserved but it is updated using the newly available information.

Thereby, the accuracy of the RB for the approximation of the previous snapshots is not

guaranteed a priori. However, numerical experiments have shown no increase in the

approximation errors of previously well-approximated snapshots.

B.2 In contrast to Method A the dimension of the RB can remain constant, i.e., a mere adjustment of

existing modes is possible. The average number of added modes per enrichment is well below

that of Method A.

B.3 The additional storage requirements are tolerable and the additional computations are of

low algorithmic complexity. In particular, the correlation matrix C
1

consists of a diagonal

block complemented by a dense rectangular block, rendering the eigenvalue decomposition

more affordable.

2.3.3. Method C: Incremental SVD

Method C is closely related to Method B. However, instead of building on the use of the correlation

matrix, it relies on the use of an updated SVD, i.e., an approximate truncated SVD is sought after

trunc svd
( [

S ΔS
] )
≈ B Σ WT . (33)

Since the original snapshot matrix S can not be stored, only an approximation of the actual

truncated SVD in (33) can be computed. Methods to compute an incremental SVD were, e.g., introduced

in [39,40], with the latter referring to Brand’s incremental algorithm [41] which is used in the present

study with minor modifications. With the previously computed basis B at hand, the approximation of

S is known

S ≈ B Σ WT . (34)

First, the projection residual ΔŜ of the enrichment snapshots ΔS and its SVD

ΔŜ = ΔS− B BT ΔS = U
S

Σ
S

WT

S
, (35)
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are computed. By using the truncated SVD to approximate the previous snapshots cf. Equation (34)

and accounting for the newly added snapshots via Equation (35), the new snapshot matrix including

the candidate snapshots can be approximated by

[
S ΔS

]
≈
[
B Σ WT ΔS

]
=
[
B U

S

]
[

Σ BT ΔS

0 Σ
S

WT

S

]

︸ ︷︷ ︸
Γ

[
W 0

0 I

]T
. (36)

The matrix Γ consists of a N × N diagonal block and a rectangular matrix of size (N + na)× na.

Due to this sparsity pattern, the SVD Γ = U
Γ

Σ
Γ

WT

Γ
∈ R(N+na)×(N+na) is inexpensive to compute. It

allows to rewrite Equation (36) as

[
S ΔS

]
≈
( [

B U
S

]
U

Γ︸ ︷︷ ︸
U∗

)
Σ

Γ︸︷︷︸
Σ∗

([
W 0

0 I

]
W

Γ

︸ ︷︷ ︸
W∗

)T

. (37)

It is easily shown that the matrices U∗ and W∗ are column-orthogonal and that Σ∗ is diagonal and

non-negative. Therefore, the three matrices constitute an approximate SVD of the enlarged snapshot

matrix at low computational expense. This implies the following updates after the enrichment step

B←
[

B U
S

]
U

Γ
Σ← Σ̃

Γ
W ←

[
W 0

0 I

]
W

Γ
(38)

after truncation of B, where the truncation criteria needs to ensure that B does not decrease in size.

To compute the enrichment of the RB, B ∈ Rn×N and the sparse singular values Σ ∈ RN×N after

truncation need to be stored.

Remarks on Method C

C.1 As highlighted for Method B (see remark B.1), the existing RB is not preserved but adjusted

by considering the newly added information. A priori guarantees regarding the subset

approximation accuracy can not be made, i.e., the approximation error of the previous

snapshots S could theoretically worsen. However, our numerical experiments did not exhibit

such behavior at any point.

C.2 In contrast to Method A the dimension of the RB can remain constant, i.e., a mere adjustment of

existing modes is possible. The average number of added modes per enrichment is well below

that of Method A.

C.3 Each update step in (38) is computed separately and, consequently, storing W is not required

since only the RB B is of interest.

C.4 The diagonal matrix Σ has low storage requirements corresponding to that of a vector in RN .
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3. Supervised Learning Using Feed Forward Neural Network

During the supervised learning phase, the machine is provided with data sets consisting of inputs

and the related outputs: We aim at learning an unknown function relating inputs (here: Image data

compressed into a low dimensional feature vector) to outputs (here: Effective thermal conductivity

tensors) without or with limited prior knowledge of the structure of this function. Artificial Neural

Networks (ANN) are a powerful machine learning tool which has gained wide popularity in the

recent years due to the surge in computational power [27,42] and the availability of easy to use

software packages (as a frontend in Python: Keras, Pytorch, TensorFlow or as graphical user interfaces

Neuraldesigner amongst many others).

The functionality of the ANN is inspired by the (human) brain, propagating a signal (input)

through multiple neurons where it is lastly transformed into an action (output). Various types of

neural networks have been invented, e.g., feedforward, recurrent or convolutional networks, being

applicable to almost any field of interest [43–46].

In the present study a regression model from the input, i.e., the feature vector ξ which is derived

with the converged basis B, to the output, i.e., the effective heat conduction tensor κ̄, is deployed with

a dense feedforward ANN.

In a dense feedforward ANN (Figure 3) a signal is propagated through the hidden layers where

every output of the previous layer al−1 affects the activation zl of the current layer l (l = 1, . . . , L + 1).

The activation of each layer gets wrapped into an activation function f where the output of each

neuron in the layers is computed, i.e., al = f (zl). Note that matrix/vector notation is used, where each

entry in the vectors denotes one neuron in the respective layer.

a
0 z

1
a
1

z
L

a
L

z
L+1

κ̄• • •

z
l
= W

l
a
l−1

+ b
l

z
1
= W

1
a
0
+ b

1
z
L+1

= W
L+1

a
L
+ b

L+1

L

Figure 3. The basic functionality of a dense feedforward neural network is depicted in simplified form.

The basic learning algorithm/optimizer usually employed for a feedforward ANN is the back

propagation algorithm [47] and modifications thereof. The learning of the network consists in

the numerical identification of the unknown weights W l and biases bl minimizing a given cost

function, where a random initialization defines the initial guess for all parameters. The cost function

gives an indication of the quality of the ANN prediction. The gradient back propagation computes

suitable corrections for the parameters of the ANN by evaluating the gradients of the cost function to

the weights.

The learning itself is an iterative procedure in which the training data is cycled multiple times

through the ANN (one run called an ’epoch’). In each epoch the internal parameters are updated with

the aim of improving the mapping relating input and output data, aiming at reduction of the cost

function. The optimization problem itself is (usually) high-dimensional. In most situations it is not

well-posed and local minima and maxima can hinder convergence to the global minimum. Therefore,

multiple random instantations of the network parameters are usually required to assure that a good

set of parameters is found, even if the network layout remains unaltered.

The training requires a substantial input data set as input-output tuples in order to allow for

robust and accurate predictions.

It is important to note that the (repeated) training of the ANN usually results in a parameter set

that is able to approximate the training data with high accuracy under the given meta-parameters

describing the network architecture (number of layers, number of neurons per layer, type of activation

function). However, the approximation quality of the ANN may be different for query points not

contained in the training set. Thus, it is important to validate the generality of the discovered surrogate
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for the underlying problem setting. Therefore, an additional validation data set is introduced, where

only the evaluation of the cost function is tracked over the epochs. Generally, when overfitting

occurs (overfitting relates to the fact that a subset of the data is nicely matched but small variations

in the inputs can lead to substantial loss in accuracy, similar to oscillating higher-order polynomial

interpolation functions), the errors for the validation set increase whereas the errors of the training set

decrease. The training should be halted if such a scenario is detected.

Since the choice of activation function as well as the number of hidden layers and the number

of neurons within the individual layers are arbitrary (describing the ANN architecture), these

meta-parameters should be tailored specifically for the desired mapping. Finding the best neural

network architecture is not straight-forward and usually relies on intuition, experience and a substantial

amount of numerical experiments. As mentioned earlier, the identification of a well-suited ANN

requires various random realizations (corresponding to different initial biases and weights) for

each ANN architecture under consideration. The optimum is then found as the best ANN over

all realizations over all tested architectures.

In the present study the ANN training is performed using TensorFlow in Python [48]. TensorFlow

is an open source project by the Google team, providing highly efficient algorithms for ANN

implementation. The ADAM [49] optimizer, which is a modification of the gradient back propagation,

has been deployed for the learning.

4. Results

4.1. Generation of Synthetic Microstructures

All of the used synthetic microstructures have been generated by a random sequential adsortion

algorithm with some examples shown in Figure 1. Two morphological prototypes were used: spheres

and rectangles. The deployed microstructure generation algorithm ensures a broad variability in the

resulting microstructure geometry. Indeed, any bi phasic microstructure image can be considered. The

parameters used to instantiate the generation of a new microstructure were modeled as uniformly

distributed variables:

M.1 The phase volume fraction fb of the inclusions (0.2–0.8);

M.2 The size of each inclusion (0.0–1.0);

M.3 For rectangles: The orientation (0–π) and the aspect ratio (1.0–10.0);

M.4 The admissible relative overlap ̺ for each inclusion (0.0–1.0).

For ̺ = 0 and the spherical inclusion, a boolean model of hard spheres is obtained. Setting

̺ = 1 induces a boolean model without placement restrictions, i.e., new inclusions can be placed

independent of the existing ones. The generated microstructures were stored as images with resolution

400× 400. After the generation of the RVE, the 2-point spatial correlation function was computed for

the RVE. This was then shifted and scaled, see Equation (10) in Section 2.2, and used as a snapshot si

for the identification of the reduced basis.

Additionally, a smaller random set of RVEs used for the supervised learning phase was simulated

using the recent Fourier-based solver FANS [3] in order to compute the effective heat conduction

tensor κ̄. The heat conductivity of the matrix and of the inclusion phase are prescribed as

κa = 1.0
[ W

m ·K
]

, κb =
κa

R

[ W

m ·K
]

. (39)

Here R > 0 denotes the material contrast. In the present study, R = 5 was considered, i.e., the

matrix of the microstructure has a five times higher conductivity than the inclusions. These values can

be seen as typical values for metal ceramic composites (Figure 4).
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Figure 4. The range of each κ entry computed with 15, 000 microstructures of the mixed set is shown.

Only 1000 discrete values are shown in each plot.

An inverse phase contrast has exemplarily been studied, i.e., inclusions with κb = 1 W m−1 K−1

and κa =
κb
5 (corresponding to R = 1

5 ) R = 1/5) has also been investigated. Qualitatively, the results

for the inverse phase contrast did not show any new findings or qualitative differences. Therefore, the

following results focus on R = 5, corresponding to rather insulating inclusions.

The symmetric tensor κ̄ can be represented as a three-dimensional vector κ̄ using the normalized

Voigt notation

κ̄ =

[
κ̄11 κ̄12

κ̄21 κ̄22

]
→ κ̄V =

⎡
⎢⎣

κ̄11

κ̄22√
2 κ̄12

⎤
⎥⎦ . (40)

For the supervised learning of the ANNs (see Section 3), multiple files each containing 1, 500 data sets

for different inclusion morphologies were generated (circle only; rectangle only; mixed; see following

section). Each data set contains the image of the microstructure, the respective autocorrelation of the

inclusion phase c2(•; b, b) and the effective heat conductivity κ̄V.

4.2. Unsupervised Learning

First, the reduced basis is identified using the iterative procedure presented in Section 2.3. All

three proposed methods were considered and for each of these, three different sets of microstructures

were used as inputs: The first set of microstructures consisted of RVEs with only circular inclusions, the

second set consisted of RVEs with only rectangular inclusions, and the third set was divided into equal

parts, each part consisting of RVEs with either circular or rectangular inclusions (i.e., each structure

contained exclusively one of the two morphological prototypes and the same number of realizations

for each prototype was enforced), respectively. Each type of microstructure was processed using each

of the three incremental RB schemes introduced in Section 2.3. Hence, a total of nine different trainings

were conducted, each using different randomly generated snapshots.

For the iterative enrichment process, the initial RB was computed from 200 snapshots S
0
.

Thereafter, snapshots were randomly generated and processed by the enrichment algorithm sketched

in Figure 2. The number of snapshots per enrichment step has been set to na = 75 and the number

of consecutive snapshots with Pδ < ε , used to indicate convergence, has been set to nc = 100. The

relative projection tolerance ε = 0.025 was chosen. Note that this corresponds to the maximum value

of the mean relative ‖ · ‖L2-error that is considered exact for the shifted and scaled snapshots. The

actual accuracy in the reproduction of the 2PCF c2(r; b, b) is significantly lower than this (results are

given in Figure 7).

Key attributes for each of the nine trainings are provided in Table 1. There is an obvious

discrepancy between Method A and the remaining methods in basically all outputs. While Method A

claims the lowest computing times, it yields approximately twice the number of modes. However,
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the number of snapshots needed is substantially lower which can be relevant if the generation of the

synthetic microstructures is computationally involved.

Table 1. Data of the unsupervised learning (incremental reduced basis (RB) identification) for the nine

considered scenarios; the parameters ε = 0.025 , nc = 100 and na = 75 were used. Some numbers are

rounded for easier readability.

Method
Final
Basis
Size

Snapshots
with

Pδ ≥ ε

Snapshots
with

Pδ ≤ ε

Enrichment
Steps

Time [s] Used
Microstructures

A 143 150 730 4 20

B 80 400 2400 7 70

C 96 800 7700 12 200

A 596 670 4500 11 150

B 294 2400 12,700 34 500

C 312 2600 16,500 37 550

A 464 560 2900 9 150

B 274 2000 16,100 29 500

C 244 1540 8000 22 280

Note that methods B and C yield similar results, although for the rectangular and circular training

Method C needed significantly more snapshots, Method B needed significantly more snapshots for

the mixed training. The outliers between methods B and C in the number of snapshots needed are

due to the randomness of the materials and the chosen convergence criterion. The resulting basis size

of methods B and C indicate very similar results from these methods. Note that methods B and C

yield identical results when operating on an identical sequence of microstructures used as inputs when

leaving aside perturbations due to numerical truncation.

In addition, note that the computational effort for the relative projection error Pδ grows linearly

with the dimension of the RB, i.e., the faster offline time of Method A can quickly be compensated by

the costly online procedure induced by the high dimension of the RB in comparison to the competing

techniques.

To compare the accuracy of the resulting basis as well as during the training, the relative projection

error Pδ of the snapshots used for the original basis construction S
0

are plotted in Figure 5.
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Figure 5. Development of the relative projection error Pδ of the snapshots S
0

with respect to the current

basis size N over the enrichment.

68



Math. Comput. Appl. 2019, 24, 57

While methods B and C do not, unlike Method A, a priori guarantee an improvement of the

relative projection error of S
0

over the enrichment, a strict downward trend is observed. The adjustment

of already existing eigenmodes in methods B and C allow for an improvement of the relative projection

error of S
0

for a constant basis size.

Method B and C seem to outperform Method A in most cases; however, the basis of Method A

achieves a lower projection error on convergence (not shown in the plot), but at the expense of a

considerably larger dimension of the RB.

Since there seems to be an obvious correlation between resulting accuracy and the final basis size

for the initial snapshots S
0

(see Figure 5, Table 1), the general quality for arbitrary stochastic inputs

must be investigated. In order to quantify the quality of the RB, the accuracy can be expressed in terms

of the relative projection error of approximating additional, newly generated snapshot data S as a

function of the Method (A, B, C) and the number of modes N ≥ 1 via

Pδ(N) =

√√√√ ||S− B(:, 1 : N) BT(:, 1 : N) S||2F
||S||2F

(41)

in Matlab notation.

This measure captures to what extend the first N basis functions represent the 2PCF of the

underlying microstructure class. In the current work sets of 1500 newly generated snapshots assure an

unbiased validation, i.e., the data was used in neither of the three training procedures. The results

are stated in Figure 6. Again, Method B and C yield similar results, achieving lower projection errors

with fewer eigenmodes compared to Method A, i.e., the basis produced by Method A cannot catch up

with its two competitors. On a side note, the rectangular inclusions apparently lead to significantly

richer microstructure information which can be seen by direct comparison of the left to the middle

plot in Figure 6. For methods B and C and for circular inclusions the relative error of 5% is reached for

approximately 15 modes while rectangular inclusions require more than 60 modes to attain a similar

accuracy. This is supported also by the rightmost plot determined from a sort of blend of the two

microstructural types.

trained and validated with
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Circular Inclusions
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)
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]
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)
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)
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Figure 6. Relative projection error for three different microstructure classes as a function of the number

of eigenmodes. The relative projection error is determined for a validation set of 1, 500 newly generated

microstructures for each class.

Since all of the previous error measures are given on the shifted snapshot according to

Equation (10), the true relative projection error on the unshifted snapshot is also investigated as

a function of the basis size. It describes the actual relative accuracy of the approximation of the

2PCF c2(r; b, b) as a function of the basis size. The errors in the shifted data (Figure 7, left) and the

corresponding reconstructed 2PCF (Figure 7, right) for five randomly selected snapshots show that
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the actual relative error in the 2PCF reconstruction is below 5% for 10 reduced coefficients even for

the challenging rectangular inclusion morphology, while the error in the shifted and scaled snapshots

is on the order of 50%. This highlights the statement made earlier regarding the choice of ε which

is not directly the accepted mean error in the 2PCF, but only after application of the shift. The high

discrepancy in the two relative projection errors is due to the fact that the shifted snapshots fluctuate

closely around 0, i.e., the homogeneous part of the 2PCF is obviously of high relevance.

shifted snapshot si

dimension of the RB: N [-]

P δ
(N

)
[%

]

true 2PCF c2(r; b, b)

dimension of the RB: N [-]

P
⋆ δ
(N

)
[%

]

dimension of the RB: N [-]

P δ
(N

)
[%

]

dimension of the RB: N [-]

P
⋆ δ
(N

)
[%

]

Figure 7. Using the RB of Method C, the relative projection error on the shifted snapshot Pδ is given

on the left for five random samples. For comparison the relative projection error of the reconstruction

of the actual 2-point correlation function P∗δ is given on the right for the same five samples.

The development, i.e., the stabilization of the mode shapes over the enrichment steps, of a few

selected eigenmodes is shown in Figure 8 using RVEs with circular inclusions for training of Method C.

Similar results are expected for Method B, whereas for Method A the eigenmodes would remain

unconditionally unchanged over the enrichment steps, i.e., a pure enlargement of the basis takes

place. The faster stabilization of the leading eigenmodes indicates a quick stabilization of the lower

order statistics of the microstructure ensemble, while the tracking of higher order fluctuations is

more involved.
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Figure 8. The development of a few selected eigenmodes over the enrichment are shown for the circular

inclusion morphology. Note that these results are generated with na = 15 and ε = 0.01 using Method C.

The procedure comprised a total of 87 basis enrichments/adjustment.

4.3. Supervised Learning

After the training of the RB, the input for the neural network, the feature vector ξ was derived

using the 1- and 2-point spatial correlation functions of the ith RVE as

ξ
i
=

[
fb,i

BT si

]
∈ R

(h+1) . (42)

The size of the feature vector is determined by the amount of reduced coefficients 1 ≤ h ≤ N, i.e.,

the snapshot is projected onto the leading h eigenmodes of B.

Since the inputs and outputs have a highly varying magnitude, they need to be shifted such that

they are equally representative. Therefore, each entry of the feature vector is separately shifted and

scaled such that its distribution of all samples has zero mean and a standard deviation of one. The

output is shifted combinedly such that the mean of κ̄V is 0. The transformed inputs and outputs are

then given to the ANN for the training phase. Thus, the outputs of the ANN need to undergo an

inverse scaling in order to yield the sought-after vector representation of the heat conduction tensor.

These shifts and scalings need to be extracted from the available training data. Hence, every data set

used for training purposes has its own parameters.

The training for the neural network has been conducted for all of the three microstructure classes,

i.e., using only RVEs with circular inclusions, only RVEs with rectangular inclusions and lastly using

RVEs with either circular or rectangular inclusions with equal number of realizations of each shape

within the mixed set. In order to derive the feature vector, the converged basis of Method C has been

used. Note that depending on the training set, either circular or rectangular or both inclusion shapes

(for the mixed set) contributed to the RB.

In order to find a good overall ANN, the network architecture has been intensely studied: The

accuracy of the prediction after the training has been evaluated with various sizes of the feature vector,

different network layouts and for different activation functions (Figure 9).
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Figure 9. The given error measures over the test sets are shown for the Gaussian Process Model (GPM)

(dashed lines) and the Artificial Neural Networks (ANN) (full lines) which achieved the lowest MSE

(cost) on the validation set for each number of reduced coefficients and training type.

The training of the ANN was conducted with an early stop algorithm, stopping the training

after 500 consecutive epochs of no improvement of the cost function with respect to the validation set.

The learning rate of the ANN has been held constant during the training, being randomly initialized

between 0.01 and 0.05. A network depth of up to 6 hidden layers and a network width of up to 100

hidden neurons have been considered and the number of neurons was chosen on a per layer basis.

Recall that a vanilla dense feedforward ANN has been deployed. In order to find the best ANN

architecture, 35 randomly initialized ANN trainings have been considered for each size of the feature

vector. A total amount of 1500 samples have been considered for each ANN training. These were

shuffled randomly and split into the training set (nt = 1000) and the validation set (nv = 500).

In the following, the error measurements used and the term of unbiased testing refers to the

prediction of 7500 unseen data points for each of the three microstructure classes named ’test sets’.

The prediction error is given by the 2-norm, i.e.,

ep = ||κV − κ
p
V||2 , (43)

with κ
p
V denoting the prediction of the regression model. The mean and maximum errors of the

prediction error for all test sets are shown in Figure 9. For comparison of the regression model, we

have deployed a Gaussian Process Model (GPM) [50], which reliably finds the global minimum of

the optimization for the kernel regression. The ANN is given with full lines and the GPM model is

given with dashed lines in Figure 9. Note that each ANN realization refers to a randomly initialized

ANN architecture.

The GPM model seems to achieve slightly lower errors than the ANN, however, in the interest of

computational speed the ANN regressor is preferred. Not only is the training significantly faster, the

prediction times for the GPM highly depend on the size of the input vector, whereas the prediction

times of the ANN mostly depend on the ANN architecture. More details are given in Section 5.
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The spikes in Figure 9 regarding the maximum error, are explained by each depicted ANN having

the lowest overall MSE of the validation set, which did not consider the maximum errors directly.

Though, only a few outliers yielded a high prediction error, as can be seen in Figures 10 and 11.
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Figure 10. A density map of the projection error of the reduced basis compared to the prediction error

of the ANN is given for all of the three training variants, for the prediction of the circle and rectangle

test set, respectively. Each with one exemplary ANN (basis dimensions are 23, 25 and 25, respectively,

from left to right).

Note that the ANN trained with rectangular RVE achieved lower maximum errors, whereas

the circular RVE training achieved lower mean errors (Figure 9). A possible explanation is that

rectangular inclusions allow for more complex geometries in the microstructure than perfectly, yet

overlapping spherical inclusions. This possibly allows the RB as well as the ANN to better learn about

microstructure geometries which, usually, lead to a high prediction error. The ANN trained with both

microstructure classes manages to nicely capture both training advantages of the RVE classes and

achieves a good mean accuracy as well as low maximum errors across the board.

The conductivity κ12 fluctuates mildly around zero for all inputs. In order to accurately capture

this fluctuation, only the specific training and RB dimensions of four or higher (h ≥ 4) are required cf.

Figure 12. Albeit the values can be considered small in comparison to the κ11 and κ22 errors.

The overall downward trend of the prediction errors validate our approach, implying that a

higher amount of reduced coefficients leads to more detailed information about the microstructure

geometry, allowing for a better prediction of the regression model. However, the prediction errors

do not seem to completely vanish, therefore the 2PCF alone does not suffice to perfectly describe the

microstructure geometry.
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Figure 11. Results for the best of all tested ANN for the test sets. The graphs represent a probability

distribution of the absolute error in each component of κ̄.
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Figure 12. The mean absolute error (MAE) of κ12 is given for each of the training types and test sets.

To further study the accuracy of our surrogate model, which is divided into two processes namely

the feature extraction with the RB and thereafter the prediction of the ANN, the error committed
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in each step is examined in Figure 10. Intuitively, a high projection error of the reduced basis is

expected to yield poor knowledge of the microstructure geometry and, as a consequence, lead to a high

prediction error of the ANN. On the contrary, microstructures with the highest projection errors still

allowed for accurate ANN predictions and the highest ANN prediction errors occurred for relatively

small projection errors. The comparison of the RB relative projection error plotted against the GPM

prediction error yielded very similar results. Note that the relatively high projection errors on the

circle-trained RB are due to the fact that the basis is significantly smaller, leading to an overall higher

projection error (Table 1). The relative projection errors have been measured on the shifted and scaled

2PCF which is a more pessimistic prediction than the actual 2PCF cf. the results shown in Figure 7.

An observation of the worst predictions for each ANN (Figure 13) shows, that the inclusions of

each RVE either just barely do not overlap, leaving a small gap for the matrix phase, or the inclusions

just barely perculate. This phenomena has a pronounced impact on the resulting effective heat

conductivity. Hence, a miniscule change in the image data can result in notable variation of the

conductivity tensor, which can lead to high prediction errors of the surrogate.

Circle ANN Rectangle ANN Mixed ANN

Figure 13. Representative volume element (RVE) with the highest prediction error for each of the ANN

models given in Figure 10.

A detailed study of various ANN architectures revealed, that almost every architecture was

suitable for the regression problem, e.g., an ANN with 2 hidden layers and a total of 13 hidden neurons

had almost identical prediction errors as an ANN with 5 hidden layers and roughly 230 hidden

neurons. The used activation functions were the sigmoid, relu, tanh and softplus, where only some

combinations delivered poor results. Not a clear trend of ANN architecture and quality of prediction

could be seen and, consequently, the best ANN were randomly found based on the lowest error on the

test set.

The prediction accuracies for each test set of three differently trained ANNs, which have been

deemed the best, is given in Figure 11. The training and architecture of the best ANNs in Figure 11 had

the following properties:

•Circular training: h = 23; 11, 206 epochs; 5 hidden layers

{5, 40, 77, 75, 74} hidden neurons

{sigm, softplus, sigm, softplus, softplus} activation functions

•Rectangular training: h = 29; 1, 054 epochs; 6 hidden layers

{10, 42, 56, 18, 63, 59} hidden neurons

{relu, sigm, relu, softplus, tanh, tanh} activation functions

•Mixed training: h = 26; 6, 177 epochs; 2 hidden layer

{6, 7} hidden neurons

{softplus, softplus} activation function

The shown error measures (Figure 11) are evaluated for each point in the whole test set, yielding a

kind of probability distribution for the prediction error. For an easier readability, the percentage mean

and max errors for each of the explicitly depicted ANN are given in Table 2. Note that since the values

of κ̄12 vary closely around 0 (Figure 4), relative errors are not sensible for the quantity of interest.
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Table 2. Percentage errors for κ̄11 and κ̄22 given for each of the best ANNs, evaluated over the complete

test set (7500 data samples).

Validated with
Circles Rectangles Mixed

Trained
with

Error
Measures

κ11 κ22 κ11 κ22 κ11 κ22

Circles
Mean [%] 1.58 1.57 2.60 2.62 2.11 2.14
Max [%] 12.8 12.5 13.9 13.0 14.7 11.7

Rectangles
Mean [%] 2.68 2.57 1.60 1.58 2.14 2.09

Max [%] 12.9 11.7 12.5 12.0 13.8 13.0

Mixed
Mean [%] 1.77 1.76 1.65 1.60 1.72 1.71

Max [%] 11.7 14.1 11.6 10.5 10.4 12.4

PARAGRAPH MOVED (after the table) As a side note, a descriptor based GPM has been trained

for RVEs with circular inclusions, using the average minimum distance of inclusions, average inclusion

radius, number of inclusions and volume fraction as an input, achieving mean relative errors of around

5% on the circle set.

A GUI code is provided in Github, where the user can choose between the three proposed

surrogate model, the input for the prediction is a 400× 400 image in matrix format written in a text file

or a TIFF image and the output is the prediction for the heat conduction tensor as described above.

In order to compile the code, Python3 with TensorFlow is required, additional required modules are

pillow, numpy and matplotlib, as well as the default modules os and tkinter. Some exemplary RVE

with their respective heat conductivity are uploaded in a subfolder.

5. Computational Effort

For the training and the deployment of the proposed surrogate model, the computational effort

can be split into online and offline part. The offline phase describes the building of the surrogate

model and is obviously computationally expensive due to the iterative nature of the supervised

as well as the unsupervised learning. However, since the cost of the offline phase has no impact

on the actual evaluation, i.e., prediction of the surrogate model, its impact is neglectable. All of

the following measured times have been documented while computing with only an AMD Ryzen

Threadripper 2920X 12-Core Processor, unless stated otherwise. In order to evaluate the surrogate

model in the online phase, firstly, the 2PCF of the RVE has to be computed. Therefore a FFT, complex

point-wise multiplication and lastly an IFFT is performed, summing up to a computational complexity

of O(2 n log n + n). Recall that n is the dimension of the unreduced problem, i.e., the total number of

voxels in the present study.

To derive the input for the ANN, the complexity for the computation of the reduced coefficients

is O(n h) together with a computation of the volume fraction with an additional effort of O(n). This

mounts up to a total computation effort of O(n (2 + h) + 2 n log n ) just to derive the input of the

regression model. To give sensitivity to the computational effort, the computation of the feature vectors

for one test set, i.e., 7500 images, took roughly 95 s.

As has been mentioned earlier, the ANN has been significantly faster than the GPM in the online,

as well as offline phase. The training of the regression model for each number of reduced coefficients

(i.e., 1–30) took roughly 12 hours for the ANN and about 31 hours for the GPM. Note that GPM

has been trained in R with the code provided by [50], whereas the ANN has been implemented in

Python with TensorFlow, using a Pali6GB D6 RTX 2060 GamingPro OC graphics card as well. As it

is more important, in the online phase the ANN has been significantly faster than the GPM. Each

prediction refers to the prediction of the three test sets, i.e., 3× 7500 data points with each output being

a three-dimensional vector. The prediction times for the GPM highly depends on the size of the input
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vector and takes from 0.82 s (with one reduced coefficient) up to 4.1 s to predict the test sets for an

input dimension of 31. In comparison, the ANN took on average roughly 0.24 s for any dimension of

the feature vector.

The computational complexity of the forward propagation in the ANN is governed by the

matrix multiplication of a complexity of O(n2
neuron) and the element wise evaluation of the activation

function for each neuron with the complexity O(nneuron). For a quick overview, assume that the

ANN has the same number of neurons in each layer, the computational complexity amounts to

O(nlayer (n
2
neuron + nneuron) ). Therefore, we have an a priori estimate of the prediction time required

for the ANN.

To compute the effective heat conductivity for 7500 images using the FANS solver [3], ≈ 4000 s

were required. Note that the deployed FFT solver for the heat conductivity is intrinsically fast. The

proposed method could be easily expanded to different material properties, yielding an even more

significant computational speedup. Since usually n ≫ nneuron, the main computational effort lies

within the computation of the feature vector, especially when considering the extension to the 3D case.

6. Conclusions

6.1. Summary and Concluding Remarks

The computational homogenization of highly heterogeneous microstructures is a challenging

procedure with massive computational requirements. In the present study a method to efficiently and

accurately predict the heat conductivity for any RVE with the image and no further information is

proposed. Key ideas of the Materials Knowledge System (MKS) [21,32] have been adopted in the sense

that a subset of the POD compressed 2-point correlation function is used to identify a low-dimensional

microstructure description. In contrast to [32] the 2PCF is not truncated to a small neighborhood, but

the full field information is considered. Similar to other works related to the MKS [18], a truncated

PCA of the 2-point information is used to extract microstructural key features.

However, the classical truncated PCA used, e.g., in [18] is not applicable to the considered rich

class of microstructures due to the high number of needed samples and the related unmanageable

computational resources. Therefore, our proposal is founded on a novel incremental procedure for the

generation of the RB of the 2PCF. Similar techniques have not been considered in the literature to the

best of the authors’ knowledge. The shifting and scaling of the images of 2PCF before entering the

POD is another feature that can help in reducing the impact of the inclusion volume fraction, i.e., the

shifted function has zero mean and a peak value of one. The authors would like to emphasize that

such scaling is relevant in the present study where the phase volume fractions varies in a wide range.

Other than in [32] no higher-order statistics are used. This is by purpose as the selection of the

relevant entries of the higher order PCF is ambiguous and a challenge in itself. Most notably it is based

on a priori selections of the relevant components of the higher spatial correlations which allows for

very limited insights to our understanding. Instead, the present study focuses on the variability of

the input images in terms phase volume fractions in a broad range (20–80%) alongside topological

variations (impenetrable, partial overlap, unrestricted placement) and different morphologies (circles

and rectangles). Generally speaking, a much higher microstructural variation is accounted for, than in

many previous studies. Therefore, the current study also investigates how the proposed technique

and similar MKS related approach can possibly generalize towards truly arbitrary input images (e.g.,

stemming from 3D micrographs of real materials) and for databases containing millions of snapshots

in order to build a powerful tool for material analysis and design.

In order to cope with the variability of the 2PCF, the classical truncated PCA or snapshot POD

operating on a monolithic snapshot matrix during the unsupervised learning phase is replaced by novel

incremental procedures for the construction of small-sized reduced microstructure parameterization.

Three incremental POD methods are proposed and their results are compared regarding the
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computational effort, the projection accuracy of the snapshots and the quality of the basis in view of

capturing random inputs.

The learned reduced bases are used to extract low-dimensional feature vectors. These are used

as inputs for fully connected feedforward Artificial Neural Networks. The ANN is used to predict

the homogenized heat conductivity of the material defined by the microstructure. The mean relative

error of the surrogate is well below 2% for the majority of the considered test data. This is remarkable

in view of the phase contrast R = 5 and the particle volume fractions ranging from 0.2–0.8, as

well as morphological and topological variations. Further, an immense speedup in computing time

is achieved by the surrogate over FE or FFT simulations (factors around 40 without tweaking the

projection operation).

Importantly, the presented methodology can immediately be adopted to different physical settings

such as thermo-elastic properties, fluid permeability, dielectricity constants, etc. The same holds for

three-dimensional problems. However, the limited number of samples in 3D could be problematic as

more features are likely required to attain a sufficiently accurate RB.

6.2. Discussion and Outlook

A weakness of the current approach remains the computational complexity of the method:

Although the feature vector is rather low-dimensional, it requires the evaluation of the 2PCF using

the FFT which is of complexity O(n log(n)) where n is the number of pixels/voxels in the image. In

order to extract the reduced coefficient vector from the 2PCF, the latter must be projected onto the RB.

This operation scales with O(n h). These two operations are at least linear to the number of pixels

or voxels of the image which can be critical, especially in three-dimensional settings. Consequently,

the computational effort of the feature vector computation heavily out-weights the computational

complexity of the regression model as can readily be seen from the provided timings (95 s vs.

0.08 s for the ANN for 7500 predictions). In the future, optimizations, e.g., in the spirit of reduced

cubature rules [51], will be explored to render the overall computation more efficient in view of 3D

microstructures at resolutions of 5123 and beyond.

Another extension of the current scheme could account for variable phase contrast R which was

fixed as R = 5 in this work. In particular, higher phase contrasts should be explored. Preliminary

investigations state that the accuracy of the machine learned surrogate deteriorates considerably for a

high phase contrast of R = 1/100. The source of error and the possible measures to cope with extreme

contrasts (R≪ 1 and R≫ 1) in the data-driven model should be studied in the future. Thereby, the

dimension of the feature vector must increase, even beyond the 2PCF. This could possibly lead to a data

scarcity dilemma: The number of input samples for the supervised learning should grow exponentially

with the dimension of the feature vector. However, this is not realizable in practice due to limited

computational resources. With the goal of predictions for nearly arbitrary 3D microstructures in mind,

in the authors’ opinion this dependence is the most pronounced short-coming of the method and

future studies should focus on limiting the number of required input samples in order to fight the

curse of dimensionality as more reduced coefficients require an exponential growth in the available

data, making the offline procedure unaffordable, today.

Advantages of the current scheme comprise the independence of the underlying simulation

scheme. This does allow for heterogeneous simulation environments, the use of commercial software,

multi-fidelity input data and blended sources of information (e.g., in silico data supported by

experimental results).
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Abstract: This work presents a novel approach to construct surrogate models of parametric

differential algebraic equations based on a tensor representation of the solutions. The procedure

consists of building simultaneously an approximation given in tensor-train format, for every output

of the reference model. A parsimonious exploration of the parameter space coupled with a compact

data representation allows alleviating the curse of dimensionality. The approach is thus appropriate

when many parameters with large domains of variation are involved. The numerical results obtained

for a nonlinear elasto-viscoplastic constitutive law show that the constructed surrogate model is

sufficiently accurate to enable parametric studies such as the calibration of material coefficients.

Keywords: parameter-dependent model; surrogate modeling; tensor-train decomposition; gappy

POD; heterogeneous data; elasto-viscoplasticity

1. Introduction

Predictive numerical simulations in solid mechanics require material laws that involve systems of

highly nonlinear Differential Algebraic Equations (DAEs). These models are essential in challenging

industrial applications, for instance to study the effects of the extreme thermo-mechanical loadings

that turbine blades may sustain in helicopter engines ([1,2]), as well as in biomechanical analyses [3,4].

These DAE systems are referred to as constitutive laws in the material science community.

They express, for a specific material, the relationship between the mechanical quantities such as the

strain, the stress, and miscellaneous internal variables and stand as the closure relations of the physical

equations of mechanics. When the model aims to reproduce physically-complex behaviors, constitutive

equations are often tuned through numerous parameters called material coefficients.

An appropriate calibration of these coefficients is necessary to ensure that the numerical model

mimics the actual physical behavior [5]. Numerical parametric studies, consisting of analyzing the

influence of the parameter values on the solutions, are typically used to perform the identification.

However, when the number of parameters increases and unless the computational effort required

for a single numerical simulation is negligible, the exploration of the parameter domain turns into

a tedious task, and exhaustive analyses become unfeasible. Moreover, defining an unambiguous

criterion measuring the fidelity of the model to experimental data is a challenge for models with

complex behaviors.

A common technique to mitigate the aforementioned challenges is to build surrogate models

(or metamodels) mapping points of a given parameter space (considered as the inputs of the model) to

the outputs of interest of the model. The real-time prediction of DAE solutions for arbitrary parameter

values, enabled by the surrogate model, helps the comprehension of constitutive laws and facilitates

Math. Comput. Appl. 2019, 24, 17; doi:10.3390/mca24010017 www.mdpi.com/journal/mca82
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the conducting of parametric studies. In particular, the robustness of the calibration process can be

dramatically improved using surrogate model approaches.

The idea of representing the set of all possible parameter-dependent solutions of ODEs and PDEs

as a multiway tensor was pioneered with the introduction of the Proper Generalized Decomposition

(PGD) [6–8]. In this representation, each dimension corresponds to a spatial/temporal coordinate or

a parameter coefficient. The resulting tensor is never assembled explicitly, but instead remains an

abstract object for which a low-rank approximation based on a canonical polyadic decomposition [9]

is computed. The PGD method further alleviates the curse of dimensionality by introducing a

multidimensional weak formulation over the entire parameter space, and the solutions are sought

in a particular form where all variables are separated. When differential operators admit a tensor

decomposition, the PGD method is very efficient because the multiple integrals involved in the

multidimensional weak form of the equations can be rewritten as a sum of products of simple integrals.

Unfortunately, realistic constitutive equations or even less sophisticated elasto-viscoplastic models

admit no tensor decomposition with respect to the material coefficients and the time variables.

An extension of the PGD to highly nonlinear laws is therefore non-trivial. However, many other tensor

decomposition approaches have been successfully proposed to approximate functions or solutions of

differential equations defined over high-dimensional spaces. We refer the reader to [10–12] for detailed

reviews on tensor decomposition techniques and their applications.

Among the existing formats—CP decomposition [9,13,14], Tucker decomposition [11,15], hierarchical

Tucker decomposition [11,16]—this work investigates the Tensor-Train (TT) decomposition [17,18].

The TT-cross algorithm, introduced in [17] and further developed in [19,20], is a sampling procedure

to build an approximation of a given tensor under the tensor-train format. Sampling procedures in

parameter space have proven their ability to reduce nonlinear and non-separable DAEs by using the

Proper Orthogonal Decomposition (POD) [21], the gappy POD [22], or the Empirical Interpolation Method

(EIM) [23,24]. These last methods are very convenient when the solutions have only two variables; hence,

they are considered as second-order tensors.

This paper aims to extend the sampling procedure of the TT-cross method to DAEs having

heterogeneous and time-dependent outputs. A common sampling of the parameter space is

proposed, though several TT-cross approximations are computed to cope with heterogeneous outputs.

These outputs can be scalars, vectors, or tensors, with various physical units. In the proposed algorithm,

sampling points are not specific to any output, although parameters do not affect equally each DAE

output. The proposed method is named multiple TT-cross approximation. Similarly to the construction

of a reduced integration domain for the hyper-reduction of partial differential equations [25] or for

the GNATmethod [26], the set of sampling points is the union of contributions from the various

outputs of the DEA. In this paper, the multiple TT-cross incorporates the gappy POD method, and the

developments are focused on the numerical outputs obtained through a numerical integration scheme

applied to the DAE.

2. Materials and Methods

The parametrized material model generates several time-dependent Quantities of Interest (QoI).

These quantities can be scalar-, vector-, or even tensor-valued (e.g., stress) and are generally of

distinct natures, namely expressed with different physical units and/or have different magnitudes.

For instance, in the physical model described in Appendix A, the outputs of the model are ε∼(t), ε∼vp(t),

σ∼(t), and p(t), where t is the time variable, ε∼, ε∼vp, σ∼ have six components each, and p is a scalar.

Therefore, the generated data will be segregated according to the QoI to which they relate. This will

also be structured in a tensor-like fashion to make it amenable to the numerical methods presented

in this paper. We restrict our attention to discrete values of d− 1 parameters and discrete values of

time instants, related to indices i1 . . . id, ik ∈ {1, . . . nk} for k = 1 . . . d. For instance, all the computable

scalar outputs p will be considered as a tensor A1 ∈ Rn1×···×nd−1×n1
d .
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For a given χ = 1, . . . , N denoting an arbitrary QoI, the tensor of order d, Aχ ∈ R
n1×···×n

χ
d

(denoted with bold calligraphic letters) refers to a multidimensional array (also called a multiway

array). Each element of Aχ identified by the indices (i1, . . . id) ∈ D1 × · · · × Dd−1 × D
χ
d is denoted by:

Aχ(i1, . . . , id) ∈ R

where Dk = [1 : nk] for k < d is the set of natural numbers from one to nk (inclusive) and D
χ
d = [1 : n

χ
d ].

The last index accounts for the number of components in each QoI. Therefore, the last index is specific

to each Aχ, while the others are common to all tensors for χ = 1, ..., N. Hence, a common sampling of

the parameter space D1 × . . .× Dd−1 can be achieved. The vector Aχ(i1, . . . , id−1, :) ∈ R
n

χ
d contains all

the components of output χ at all time instants used for the numerical solution of the DAE and for a

given point in the parameter space.

Matricization designates a special case of tensor reshaping that allows representing an arbitrary

tensor as a matrix. The qth matricization of Aχ denoted by 〈Aχ〉q consists of dividing the

dimensions of Aχ into two groups, the q leading dimensions and the (d − q) trailing dimensions,

such that the newly-defined multi-indices enumerate respectively the rows and columns of the

matrix 〈Aχ〉q. For instance, 〈Aχ〉1 and 〈Aχ〉2 are matrices of respective sizes n1-by-n2 . . . nd−1 n
χ
d and

n1n2-by-n3 . . . nd−1 n
χ
d . Their elements are given by:

〈Aχ〉1 (i1, j⋆) = Aχ(i1, . . . , id)

〈Aχ〉2 (i1 + (i2 − 1)n1, j⋆⋆) = Aχ(i1, . . . , id)

where j⋆ = 1 + ∑
d
k=2[(ik − 1)∏

k
l=2 nl ] enumerates the multi-index (i2, . . . , id) and j⋆⋆ = 1 + ∑

d
k=3[(ik −

1)∏
k
l=3 nl ] enumerates the multi-index (i3, . . . , id). Here again, these matricizations are purely formal

because of the curse of dimensionality.

The Frobenius norm is denoted by ‖.‖ without the usual subscript F . For Aχ ∈ R
n1×...n

χ
d , it reads:

‖Aχ‖ =
√

∑
i1,...,id∈D1×···×Dd−1×D

χ
d

Aχ(i1, . . . , id)2

The Frobenius norm of a tensor is invariant under all matricizations of a given tensor.

In [17], Singular-Value Decomposition (SVD) is considered in the algorithm called TT-SVD.

Because of the curse of dimensionality, the TT-SVD has no practical use, even if tensors have a low

rank. More workable approaches aim to sample the entries of tensors.

For instance, in the snapshot Proper Orthogonal Decomposition (POD) [21], the sampling

procedure aims to estimate the rank and an orthogonal reduced basis for the approximation of a

matrix A. The method consists of applying the truncated SVD on the submatrix Ã = A(:,Jpod)

constituted by a selection of columns Jpod of A. Hence, the accuracy of the resulting POD reduced

basis relies on the quality of the sampling procedure that generally introduces a sampling error.

This sampling procedure seems to be convenient when considering the first matricizations 〈Aχ〉q
if the product n1 n2 . . . nq and Card(Jpod) are reasonably small regarding the available computing

resources. However„ for large values of q, the curse of dimensionality makes the snapshot POD, alone,

intractable.

A more practical approach to construct an approximate TT decomposition effectively, called the

TT-cross method, is proposed in [17]. The TT-cross consists of dropping the concept of a POD basis and

using the Pseudo-Skeleton Decomposition (PSD) introduced in [27] as the low-rank approximation.
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Unlike the TT-SVD, the TT-cross enables building an approximation based on a sparse exploration of a

reference tensor. The PSD can be used to approximate any matrix A ∈ Rn×m and is written as:

A = A(:,Jpsd)
[

A(Ipsd,Jpsd)
]−1

A(Ipsd, :)
︸ ︷︷ ︸

= Tpsd

+Epsd (1)

where the sets Ipsd and Jpsd are respectively a selection of row and column indices. The definition

is valid only when the matrix A(Ipsd,Jpsd) is non-singular. In particular, the number s of rows and

columns has to be identical.

This approximation (1) features an interpolation property at the selected rows and columns:

Tpsd(Ipsd, :) = A(Ipsd, :) and Tpsd(:,Jpsd) = A(:,Jpsd) (2)

The PSD is a matrix factorization similar to the decomposition used in the Adaptive Cross

Approximation (ACA) [28] and the CURdecomposition [29,30]. Additionally, these references provide

algorithms to build the factorization effectively. That decomposition has also been used in the context

of model order reduction, for instance in the Empirical Interpolation Method (EIM) proposed in [23,24].

The condition that A(Ipsd,Jpsd) must be non-singular makes it difficult to share sampling points

for various matrices 〈Aχ〉q with χ = 1, . . . , N having their own rank.

The gappy POD introduced in [22] aims at relaxing the aforementioned constraint by combining

beneficial features of the snapshot POD and the PSD. Indeed, the gappy POD (a) relies on a POD basis

that remains computationally affordable, (b) requires only a limited number of rows of the matrix to be

approximated, and (c) enables reusing the set of selected rows for different matrices. These properties

are key ingredients for an efficient, parsimonious exploration of the reference tensors. The gappy POD

approximation Tgap of a matrix A ∈ Rn×m is given by:

A = V[V(Igap, :)]† A(Igap, :)
︸ ︷︷ ︸

= Tgap

+Egap (3)

where † denotes the Moore–Penrose pseudo-inverse [31] and Igap is a row selection of s rows and

where V ∈ Rn×r is a POD basis matrix of rank r such that:

A(:,Jpod) = V S WT + Epod (4)

In the sequel, because the simulation data in Aχ are outputs of a DAE system, it does not make

sense to sample the last index id during column sampling of 〈Aχ〉q. Each numerical solution of the

DAE system generates all the last components of each tensor Aχ. Hence, the column sampling is

restricted to indices iq+1, . . . id−1, and all the values of id in D
χ
d are kept. This special column sampling

is denoted by J χ
pod. It is performed randomly by using a low-discrepancy Halton sequence [32].

The matrix V(Igap, :) must have linearly independent columns to ensure that the approximation

is meaningful. Since V is a rank-r POD basis, there exists a set of s rows such that this property

holds as long as s ≥ r. Here, Igap contains at least the interpolation indices related to V. This latter

set is denoted by Iχ, such that V(Iχ, :) is invertible. In the numerical results presented hereafter,

Iχ is obtained using the Q-DEIM algorithm [33] that was shown to be a superior alternative to the

better-known DEIM procedure ([34], Algorithm 1).

Unlike the PSD, the gappy POD enables selecting a number of rows that exceeds the rank of the

low-rank approximation:

Igap = I1 ∪ . . . ∪ IN (5)
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This makes it possible to share sampling points between matrices having their own rank. In this

case, the interpolation property does not hold as in the PSD case (2).

Tgap is the approximation of A by the product of three matrices: V,
[
V(Igap, :)

]†
and A(Igap, :).

The TT-cross approximation can be understood as a generalization of such a product of matrices.

A tensor T ∈ Rn1×···×nd is said to be in Tensor-Train format (TT format) if its elements are given by

the following matrix products:

T (i1, . . . , id) = G1(i1) . . . Gd(id) ∈ R (6)

where the so-called tensor carriages (or core tensors) are such that for k = 1, . . . , d:

Gk(ik) ∈ R
rk−1×rk ∀ik ∈ Dk

In the original definition of the tensor-train format [17], the leading and trailing factors

(corresponding to G1(i1) and Gd(id) for any choice of i1 and id) are respectively row and column

vectors. Here, the convention r0 = rd = 1 is adopted so that row matrices G1(i1) and column matrices

Gd(id) can be interpreted as vectors or matrices depending on the context.

The TT format allows significant gains in terms of memory storage and therefore is well-suited

to high-order tensors. The storage complexity is O(nr̄2d) where r̄ = max(r1, . . . , rd−1) and depends

linearly on the order d of the tensor. In many applications of practical interest, the small TT-ranks rk

enable alleviating the curse of dimensionality [17].

The sequential computational complexity of the evaluation of a single element of a tensor in TT

format is O
(
dr̄2
)
. Assuming that r̄ is small enough, the low computational cost allows a real-time

evaluation of the underlying tensor. Therefore, in terms of online exploitation, this representation

conforms with the expected requirements of the surrogate model. Figure 1 illustrates the sequence of

matrix multiplications required to compute one element of the tensor train.

Figure 1. Illustration of the evaluation of one element of a fourth-order tensor (with four indices)

having a tensor train decomposition. G1, G2, G3, Gt are the tensor carriages of this decomposition.

T (2, 4, 1, 3) ∈ R is obtained by the product of one row vector G1(2), two matrices G2(4) and G3(1),

and one column vector Gt(3). The dimensions of these matrices are respectively 1× 7, 7× 3, 3× 5,

and 5× 1. G1(2), G2(4), G3(1), and Gt(3) are the extraction of one layer (identified by a darker shade)

in the tensor G1, G2, G3, Gt, respectively.

The objective of the proposed approach is to build for each physics-based tensor Aχ an

approximate tensor T χ given in TT format by using a nested row sampling of the simulation

data. Algorithm 1 provides the set of matrices {Gχ
1 , . . . , G

χ
d } that enable defining the tensor-train

decompositions and aggregate sets for row sampling. It is a sequential algorithm that navigates from

dimension one to dimension d− 1 of tensors Aχ.

The method provided by Algorithm 1 is non-intrusive and relies on the numerical solutions of

the DAEs in a black-box fashion.
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Algorithm 1: Multiple TT Decomposition.

Input: Tensors Aχ ∈ R
n1×···×nd−1×n

χ
d for χ = 1, . . . , N associated with a DAE system

Output: Sets of matrices
{

G
χ
1 , . . . , G

χ
d

}
for χ = 1, . . . , N.

Initialization:

For each χ, define the matrix A
χ
1 ∈ R

(s0n1)×(n2 ...nd−1n
χ
d ) with s0 = 1 as the first matricization of

the tensor Aχ:

A
χ
1 = 〈Aχ〉1 (7)

For k = 1, . . . , d− 1 do
Snapshot POD:

Define consistent sets of sampling columns J χ
k and evaluate the DAE to fill the matrices

Ã
χ
k defined as:

Ã
χ
k = A

χ
k

(
:,J χ

k

)
for χ = 1, . . . , N

Apply the truncated SVD (4) on each Ã
χ
k with the truncation tolerance ǫ to get the rank-r

χ
k

matrices:

Ã
χ
k = V

χ
k S

χ
k W

χ T
k + E

χ
pod k with

∥∥∥E
χ
pod k

∥∥∥ ≤ ǫ
∥∥Ã

χ
k

∥∥ (8)

V
χ
k ∈ R

(sk−1nk)×r
χ
k for χ = 1, . . . , N (9)

Row Sampling:

From each χ, select a set of rows Iχ
k applying the Q-DEIM algorithm [33] to the basis V

χ
k .

Define the union of all selected rows and the corresponding row selection matrix:

Ik =
N⋃

χ=1

Iχ
k (10)

and:
sk = Card(Ik) (11)

Output Definitions:

Compute the matrices G
χ
k ∈ R(sk−1nk)×sk such that:

G
χ
k = V

χ
k

[
V

χ
k (Ik, :)

]†

Tensorization:

Define, formally, the tensors Aχ,(k+1) ∈ R
sk×nk+1×···×nd−1×n

χ
d such that:

〈
Aχ,(k+1)

〉
1
= A

χ
k (Ik, :) ∈ R

sk×(nk+1 ...nd−1n
χ
d ) (12)

Matricization:

Define, formally, the matrix A
χ
k+1 ∈ R

(sknk+1)×(nk+2 ...nd−1n
χ
d ) as the second matricization of

the tensor Aχ,(k+1):

A
χ
k+1 =

〈
Aχ,(k+1)

〉
2

(13)

end

Finalization:

For each χ = 1, . . . , Nχ, define the matrix G
χ
d ∈ R(sd−1n

χ
d )×sd with sd = 1 such that:

G
χ
d = A

χ
d (14)
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At each iteration k = 1, . . . , d− 1, the snapshot POD method, used to build the POD reduced

basis (9), requires sampling a set J χ
k . The column sampling amounts to a parsimonious selection of

ñk points in the partial discretized parameter domain Dk+1 × · · · × Dd−1 and an exhaustive sampling

of the last dimension for each tensor Aχ. The considered submatrices Ã
χ
k = A

χ
k

(
:,J χ

k

)
are then

constituted of ñ
χ
k = ñkn

χ
d columns (see Figure 2).

Figure 2. Definition of the submatrix Ã
χ
k used to construct the POD reduced basis. In the illustration,

the snapshot POD sample size is ñk = 3.

In the row sampling step, specific sets of interpolant rows Iχ
k are first determined independently

for each output χ, but a common, aggregated set Ik (10) is then used to sample the entries of all outputs.

Indeed, computing the elements of all submatrices A
χ
k (Ik, :) requires mk calls to the DAE system solver

with: mk = Card(Ik−1) ñk with I0 = D1. Furthermore, the gappy POD naturally accommodates a

number of rows larger than the rank r
χ
k for each approximation of A

χ
k , and considering a larger sample

size for each individual χ is expected to provide a more accurate approximation.

The tensorization and matricization steps are purely formal. No call to the DAE system solver is

done here. They define the way the simulation data must be ordered in matrices to be approximated

at the next iteration. The recursive definition of the matrix A
χ
k implies that the latter is equal to the

kth matricization of a subtensor extracted from Aχ. Equivalently, the matrix A
χ
k corresponds to a

submatrix of the kth matricization of Aχ, as illustrated in Figure 3.

Figure 3. Definition of A
χ
k based on Aχ. In the illustration, the number of rows selected at the previous

iteration k− 1 is sk−1 = 3.

To quantify the theoretical accumulation of errors introduced at each iteration, Proposition 1 gives

an upper bound for the approximation error associated with a tensor-train decomposition built by the

snapshot POD followed by the row sampling steps, when a full column sampling is performed.

Proposition 1. Consider Aχ ∈ R
n1×···×nd−1×n

χ
d and its tensor-train approximation T χ constructed by

Algorithm 1. Assuming that for all k ∈ [1 : d− 1]:

∥∥∥
(
I−V

χ
k V

χ T
k

)
A

χ
k

∥∥∥ ≤ ǫ
∥∥A

χ
k

∥∥ (15)

the following inequality holds:

‖Aχ − T χ‖ ≤
d−1

∑
k=1

ǫ

σmin

(
V

χ
k (Ik, :)

)
k−1

∏
k′=1

min(σmax(V
χ
k′ (Ik′ , :)) + ǫ, 1)

σmin(V
χ
k′ (Ik′ , :))

‖Aχ‖ (16)

where σmin and σmax refer to the smallest and the largest singular values of its matrix argument.
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The proof is given in ([35], Proposition 12).

Proposition 1 suggests that the approximation error

‖Aχ − T χ‖

can be controlled by the truncation tolerances ǫ set by the user. However, the bound (16) tends to be

very loose, and the hypothesis (15) may be difficult to verify when the basis V
χ
k stems from a column

sampling of the matrix A
χ
k . Hence, the convergence should be assessed empirically in practical cases.

3. Results

3.1. Outputs’ Partitioning as Formal Tensors

The physical model described in Appendix A is represented as the relations between six (d = 7)

parameters (inputs of the model) and the time-dependent mechanical variables (outputs of the model):

(n, K, R0, Q, b, C) 	→
(

ε∼(t), ε∼vp(t), σ∼(t), p(t)
)

where ε∼, ε∼vp, σ∼ have six components each and pis a scalar. ε∼, ε∼vp, and p have the same units, but have

different physical meanings.

The surrogate model is defined by introducing N = 4 groups of outputs as tensors Aχ. The formal

tensors A1, ... A4 are related to p, ε∼, ε∼vp, and σ∼, respectively.

For each parameter, the interval of definition is discretized by a regular grid with 30 points:

n1 = n2 = n3 = n4 = n5 = n6 = 30

The time interval discretized is the one used for the numerical solution; it corresponds to a regular

grid with nt = 537 points. Then:

n1
7 = n2

7 = n3
7 = 6nt and n4

7 = nt

The snapshot POD sample sizes are:

ñ1 = ñ2 = ñ3 = ñ4 = ñ5 = 100 and ñ6 = 30

3.2. Performance Indicators

The truncation tolerance is chosen here to be ǫ = 10−3. The construction of the tensor-train

decompositions requires solving the system of DAEs ∑
d−1
k=1 sknkñk times with as many sets of parameter

values. In the proposed numerical example, it amounts to 514, 050 solutions. Fifteen hours were

necessary on a 16-core workstation to carry out the computations. Ninety eight percent of the effort

was devoted to the solution of the physical model and the remaining 2% to the decomposition

operations.

For a single simulation on a personal laptop computer, the solution of the physical model took

0.7 s, whereas the surrogate model was evaluated in only 1 ms, corresponding to a speed-up of 700.

Storing the multiple TT approximations requires 2,709,405 double-precision floating-point values.

For comparison purposes, storing a single solution (constituted by the multiple time-dependent

outputs) of the DAE system involves 10,203 values. Therefore, the storage of the tensor-train

decompositions is commensurate with the storage of 265 solutions, while it can express the

approximation of 306 solutions.

For χ = 1, . . . , 4, the rank r
χ
k is bounded from above by the theoretical maximum rank r

χ
max,k of

the matrix A
χ
k . More specifically, r

χ
max,k corresponds to the case where A

χ
k has full rank and is the kth

matricizations of the tensors Aχ. Given the choice of truncation tolerance ǫ = 10−3, the TT-ranks listed
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in Table 1 show that the resulting tensor trains involve low rank approximations. Table 2 emphasizes

that in practice, r
χ
k ≪ r

χ
max,k except for k = 1 where r

χ
max,k is already “small”.

Table 1. TT-ranks of the outputs of interest and theoretical maximum ranks.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

r1
k 7 9 10 24 27 30

r2
k 13 23 29 123 143 134

r3
k 11 17 20 67 90 100

r4
k 9 12 14 24 20 21

r1
max,k = r2

max,k = r3
max,k 30 302 303 304 6× 30nt 6× nt

r4
max,k 30 302 303 302nt 30nt nt

Table 2. Ratio between the theoretical maximum ranks and the TT-ranks of the outputs of interest.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

r1
max,k/r1

k 4.3 1.0× 102 2.7× 103 3.4× 104 3.6× 103 1.1× 102

r2
max,k/r2

k 2.3 3.9× 101 9.3× 102 6.6× 103 6.8× 102 2.4× 101

r3
max,k/r3

k 2.7 5.3× 101 1.4× 103 1.2× 104 1.1× 103 3.2× 101

r4
max,k/r4

k 3.3 7.5× 101 1.9× 103 2.0× 104 8.1× 102 2.6× 101

3.3. Approximation Error

The accuracy of the surrogate model is estimated a posteriori by measuring the discrepancy

between its own outputs and the outputs of the original physical model. The estimation is conducted

by comparing solutions associated with 20,000 new samples of parameter set values randomly selected

according to a uniform law on each discretized parameter interval. The difference between the

surrogate and the physical models is measured based on the following norms:

‖x‖2

[0,T]
=
∫ T

0
x2dt et

∥∥∥X∼
∥∥∥

2

[0,T]

=
∫ T

0
X∼ : X∼ dt

where x and X∼ are respectively scalar and tensor time-dependent functions.

For the mechanical variable Z (where Z can stand for any one of ε∼, ε∼vp, σ∼ and p), ZPM and ZTT

denote the output corresponding respectively to the solution of the DAEs and the surrogate model.

A relative error is associated with each mechanical variable, namely:

• Total Strain Tensor: eε =

∥∥∥ε∼
PM−ε∼

TT
∥∥∥
[0,T]∥∥∥ε∼PM

∥∥∥
[0,.]

;

• Viscoplastic Strain Tensor: eεvp =

∥∥∥∥ε∼
PM

vp
−ε∼

TT

vp

∥∥∥∥
[0,T]∥∥∥ε∼PM

∥∥∥
[0,.]

;

• Stress Tensor: eσ =

∥∥∥σ∼
PM−σ∼

TT
∥∥∥
[0,T]∥∥∥σ∼

PM
∥∥∥
[0,.]

;

• Cumulative Viscoplastic Deformation: ep =
‖pPM−pTT‖

[0,T]∥∥∥ε∼PM
∥∥∥
[0,.]

.

Depending on the parameter values, the viscoplastic part of the behavior may or may not be

negligible as measured by the magnitudes of ‖p‖ and
∥∥∥ε∼vp

∥∥∥ relative to
∥∥∥ε∼
∥∥∥. Hence, in the proposed

application, the focus is on comparing the norm of the approximation error for ε∼, ε∼vp, and p with

respect to the norm of ε∼.
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The histograms featured in Figure 4a–d present, for each mechanical variables, the empirical

distribution of the relative error for all simulation results. The surrogate model given by the tensor-train

decompositions features a level of error that is sufficiently low to carry out parametric studies such as

the calibration of constitutive laws where errors lower than 2% are typically tolerable.

(a) (b)

(c) (d)

Figure 4. Empirical distribution of the errors for every mechanical variable. (a) Empirical distribution

for eε. The size of the histogram bucket is 0.009%; (b) Empirical distribution for eεvp . The size of the

histogram bucket is 0.008%; (c) Empirical distribution for eσ. The size of the histogram bucket

is 0.024%; (d) Empirical distribution for ep. The size of the histogram bucket is 0.066%.

3.4. Convergence with Respect to the Truncation Tolerance

A first surrogate model is constructed from the physical model with the prescribed truncation

tolerance ǫ = 10−3. Then, this first surrogate model is used as an input for Algorithm 1. Running the

algorithm several times with different truncation tolerances:

ǫ ∈
{

1× 10−3; 2× 10−3; 4.6× 10−3; 1× 10−2; 2× 10−2; 4.6× 10−2; 1× 10−1
}

generates as many new surrogate models.

Figure 5a–d present the evolution of the relative error distribution (for the different mechanical

variables) with respect to the truncation tolerance based on a random sample of 20,000 parameter set

values chosen as in Section 3.3. Figure 6 details the graphical notations. The results empirically show

for each mechanical output that the relative error decreases together with ǫ. This is consistent with the

expected behavior of the algorithm.
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(a) Empirical distribution for eε (b) Empirical distribution for eεvp

(c) Empirical distribution for eσ (d) Empirical distribution for ep

Figure 5. Empirical distribution of the relative approximation error for every mechanical variable.

Q1 Q3

IQR

Q1 - 1.5 x IQR Q3 + 1.5 x IQR

Median

Outliers

Figure 6. The left and right sides are the first and third quartiles (respectively Q1 and Q3). The line

inside the box represents the median. The reach of the whiskers past the first and third quartiles is

1.5 times the Interquartile Range (IQR). The crosses represent the outliers lying beyond the whiskers.

The plots in Figure 7a,b show the dependence of the number of stored elements and the number

of calls to the physical model on ǫ.

(a) (b)

Figure 7. Dependence of computational cost and memory storage indicators on ǫ. (a) Dependence of

the number of calls to the physical model on ǫ; (b) Dependence of the number of stored elements on ǫ.

3.5. On Fly Error Estimation

Based on the physical model, the surrogate model gives an approximation of each output of

interest. However, the approximate outputs may be inconsistent with the physics in the sense that
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they may lead to non-zero residuals when introduced into (the discrete version of) the DAE system

describing the physical model.

A coherence estimator is an indicator that measures how closely the physical equations are

verified by the outputs of the surrogate model. It is reasonable to expect the accuracy of the metamodel

to be correlated with the coherence estimator.

Using Equation (A1), let:

σ∼
eq,TT =

E

1 + ν

(
ε∼

TT
e

+
ν

1− 2ν
Tr
(

ε∼
TT
e

)
I∼

)

and define the associated coherence estimator as follows:

ησ =

∥∥∥σ∼
TT − σ∼

eq,TT
∥∥∥
[0,T]∥∥∥σ∼

TT
∥∥∥
[0,T]

(17)

and the effectivity of the estimator as the following ratio:

ησ

eσ

Figure 8 displays the relation between the relative error for σ∼ and the effectivity of the estimator for

20,000 simulation results drawn randomly. The error increases with the final cumulative deformation,

that is when the material exhibits a more intense viscoplastic behavior.

Figure 8. Effectivity of the coherence estimator ησ (17) associated with σ. The color scale indicates the

final cumulative deformation.

Furthermore, the plot shows a correlation between the coherence estimator and the relative error.

In particular, the effectivity tends to be larger than one, which indicates that the coherence estimator

behaves like an upper bound of the relative error. Excluding a few outliers, the coherence estimator

does not overestimate the relative error by more than a factor of seven.

Finally, the effectivity of the coherence estimator empirically converges to one (that is, the estimator

becomes sharper) as the magnitude of the relative error increases.

This coherence estimator is very inexpensive to compute and only relies on the outputs of the

surrogate model. The results suggest that the coherence estimator could be used as an online error

indicator that increases the reliability of the surrogate model at the current point when exploring in

real time the parameter domain.

4. Discussion

The TT-cross decomposition enables building an approximation based on a sparse exploration of

a reference tensor, by using the gappy POD. Several outputs of a parametric DAE are approximated,

assuming they have d − 1 common indices and one specific index. The present work assesses

the performance of tensor-train representations for the approximation of numerical solutions of
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nonlinear DAE systems. The proposed method enables incorporating a large number of simulation

results (≃500,000 scalar values) to produce a metamodel that is accurate over the entire parameter

domain. More specifically, numerical results show that the multiple TT decomposition gives promising

results when used as a surrogate model for an elasto-viscoplastic constitutive law. For this particular

application, the surrogate model exhibits a satisfying accuracy given the moderate computational

effort spent for its construction and the data storage requirements. Moreover, the observed behavior of

the proposed empirical coherence estimator indicates that the latter could be exploited to assess the

approximation error in real time.

The application to more complex material constitutive laws of industrial interest and involving a

larger number of parameters [35] corroborates the aforementioned results in terms of compactness

and accuracy of the surrogate models. Surrogate models have the potential to transform the way of

carrying out parametric studies in material science. In particular, Reference [35] demonstrates that

the exploitation of models based on the multiple TT approach simplifies the process of the calibration

of constitutive laws. Future work will investigate the combination of the proposed method with the

“usual” model order reduction techniques such as hyper-reduction [36] in order to take into account

the space dimension.
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Abbreviations

The following abbreviations are used in this manuscript:

DAE Differential Algebraic Equation

DEIM Discrete Empirical Interpolation Method

EIM Empirical Interpolation Method

PGD Proper Generalized Decomposition

POD Proper Orthogonal Decomposition

PSD Pseudo-Skeleton Decomposition

SVD Singular-Value Decomposition

TT Tensor-Train

Appendix A. Elasto-Viscoplastic Model

The application case consists of a nonlinear constitutive law in elasto-viscoplasticity [37,38] linking

the following time-dependent mechanical variables:

• The strain tensor: ε∼= ε∼e
+ ε∼vp (dimensionless) (sum of an elastic part and a viscoplastic part);

• The stress tensor: σ∼ (MPa);
• An internal hardening variable: X∼ (MPa);
• The cumulative viscoplastic deformation: p (dimensionless).

where ε∼, ε∼e
, ε∼vp, σ∼, and X∼ are second-order tensors in R3×3.

The hypotheses of the infinitesimal strain theory are assumed to hold.

The model involves eight material coefficients: E, ν, n, K, R0, Q, b, and C. The Young and Poisson

coefficients are set to E = 200,000 MPa and ν = 0.3. Table A1 presents the range of variation of the

other material coefficients considered as input parameters of the model.
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Table A1. Parameter range of variations considered in the model. When applicable, the unit is

indicated between brackets. Note that the dimension of K depends on the parameter n according to

Equation (A2).

n K (MPa·s−n) R0 (MPa) Q (MPa) b C (MPa)

Lower Bound 2 100 1 1 0.02 150
Upper Bound 12 10,000 200 2000 2000 150,000

System of Equations

The elastic behavior is governed by:

σ∼ =
E

1 + ν

(
ε∼e
+

ν

1− 2ν
Tr
(

ε∼e

)
I∼

)
(A1)

The viscoplastic behavior is described by the Norton flow rule (A2) formulated with the von Mises

criterion (A5). The yield function and the normal to the yield function are given by (A3) and (A4). (A6)

gives the definition of the deviatoric stress tensor involved in (A5).

d

dt
ε∼vp = N∼

(
f

K

)n

+
(A2)

f = J
(

σ∼
D − X∼

)
− R (A3)

N∼ =
3

2

σ∼
D − X∼

J
(

σ∼
D − X∼

) (A4)

J
(

σ∼
D − X∼

)
=

√
3

2

(
σ∼

D − X∼
)

:
(

σ∼
D − X∼

)
(A5)

σ∼
D = σ∼−

1

3
Tr
(

σ∼
)
I∼ (A6)

where (.)+ denotes the positive part function.

The operator : denotes the contracted product defined as:

Z∼1:Z∼2 =
3

∑
i=1

3

∑
j=1

Z
ij
1 Z

ij
2 for Z∼1, Z∼2 ∈ R

3×3

The nonlinear isotropic hardening is modeled by (A7) where (A8) gives the viscoplastic

cumulative rate.

R = R0 + Q
(

1− e−bp
)

(A7)

dp

dt
=

√
2

3

d

dt
ε∼vp:

d

dt
ε∼vp (A8)

Finally, the linear kinematic hardening is given by:

X∼ =
2

3
Cε∼vp (A9)

The case of a uniaxial cyclic tensile testing driven by deformation is considered. The loading

is applied by imposing ε11(t) with the pattern shown in Figure A1 and σ12(t) = σ13(t) = σ23(t) =

σ22(t) = σ33(t) = 0.
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Figure A1. The applied strain component ε11(t) consists of a triangular pattern of period 400 s with a

peak-to-peak amplitude of 2% centered at zero.

The initial conditions for the internal variables are:

p(t = 0) = 0 and X∼(t = 0) = 0∼

The model is highly nonlinear. First, the isotropic hardening law introduces an exponential

nonlinearity. The most significant nonlinearity arises from the Norton law (A2) featuring the positive

part function. Capturing the resulting threshold effect is particularly challenging for surrogate models.
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Abstract: The computational homogenization of hyperelastic solids in the geometrically nonlinear

context has yet to be treated with sufficient efficiency in order to allow for real-world applications in

true multiscale settings. This problem is addressed by a problem-specific surrogate model founded

on a reduced basis approximation of the deformation gradient on the microscale. The setup phase

is based upon a snapshot POD on deformation gradient fluctuations, in contrast to the widespread

displacement-based approach. In order to reduce the computational offline costs, the space of relevant

macroscopic stretch tensors is sampled efficiently by employing the Hencky strain. Numerical results

show speed-up factors in the order of 5–100 and significantly improved robustness while retaining

good accuracy. An open-source demonstrator tool with 50 lines of code emphasizes the simplicity

and efficiency of the method.
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1. Introduction

1.1. Purpose

The description of solid mechanics under finite strains is of particular interest in both academia

and industry. It allows for accurate descriptions of rotations and stretches under mild assumptions.

Thus, many geometric effects can be captured. For instance, alignments and rearrangements of the

respective structures may trigger pronounced stiffening or softening effects.

In such cases where rotations and deformations are not suitable for linearization, dissipative

effects also play a notable role for many materials. Regardless of the kind of dissipation involved

in a certain process, hyperelasticity usually persists to a certain extent. Therefore, it is worthwhile

investigating this comparatively simple case at first, before introducing history dependence into the

description. Prominent examples of materials that require a hyperelastic description at finite strains

include carbon black-filled rubber [1] and amorphous glassy polymers [2], to name just two.

The main purpose of this work is the computationally efficient quasi-static homogenization of

hyperelastic solids with full account for geometric nonlinearities. The employed methodology is twofold.

First, a Reduced Basis (RB) model for the microscopic problem is established. The term Reduced Basis,

used in this work, is not to be confused with the homonymous method introduced by Barrault, Maday,

Nguyen, and Patera [3]. Once set up, it enables more efficient evaluations of the homogenized material

response as compared to the Finite Element Method (FEM). Second, an efficient strategy for sampling

of the space of macroscopic kinematic states is proposed. This renders the setup phase of the RB model

more rational.
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1.2. State of the Art

Efficiently determining the overall solid–mechanical properties of microstructures has been

investigated for decades, and a large body of literature is available. Comprehensive review articles,

such as [4] and [5], summarize the progress. Here, attention is restrained to few methods most similar

or relevant to the present work.

The FE2 method [6] is theoretically capable of performing realistic two-scale simulations

with arbitrary accuracy. Therefore, it serves as a reference method in the context of first-order

homogenization based on the assumption of separated length scales. In the FE2, the evaluations

of the unknown macroscopic constitutive law are approximated by microscopic FE simulations.

However, this comes along with computational costs that quickly exceed the capabilities of common

workstations, both at present and in the foreseeable future. Roughly speaking, the computational

effort required on the microscale multiplies with that of the macroscale, hence the method’s name. It is

thus worthwhile to develop order reduction methods for the microscopic problem.

A common approach within the field of computational homogenization (and well beyond) is to

extract essential information from provided in silico data. To this end, schemes based on the Proper

Orthogonal Decomposition (POD) compute correlations within snapshot data, [7]. Such methods

include the R3M [8] and can be further enhanced by the use of, e.g., the EIM, as in [9]. Numerical

comparisons of various schemes were conducted in [10,11]. To the best of the authors’ knowledge, all

published POD-based methods addressing the finite strain hyperelastic problem choose to reduce the

number of degrees of freedom (DOF) of the displacement field. This results in sometimes significant

speed-ups. Another important feature is that they allow for reconstruction of the microscopic

displacement fields. The application of the snapshot POD to gradients of the primal variables has

been studied—e.g., for infinitesimal strain hyperelasticity [12] and fluid mechanics [13]—but does not

appear to have been investigated for finite strain hyperelasticity yet.

Still, the solution of the reduced equations remains a complex task. It requires evaluations of

material laws and numerical integration over the microstructure. Promising progress has been made

in the field of efficient integration schemes, see for instance [14,15]. A main reason for the speed-up of

these methods is the reduced number of function evaluations.

The highest speed-ups are achievable if the computational effort of the determination of effective

microstructural responses can be fully decoupled from underlying microstructural discretizations.

Such homogenization methods directly approximate the effective material law by means of a dedicated

numerical scheme. Technically, this can be seen as the direct surrogation of unknown functions, e.g., of

the effective free energy or stress. For instance, the Material Map [16] interpolates the coefficients of an

assumed macroscopic material model. Another example is the NEXP method [17], where the effective

stored energy density is approximated using a tensor product of one-dimensional splines. The authors

treated the case of small strains by introducing the RNEXP method [12], where the effective stored

energy is interpolated by a dedicated kernel scheme.

However, interpolatory and regressional methods suffer the inherent drawback of not providing

any explicit information on the microscale. For instance, microscopic displacement or stress fields

cannot be reconstructed from the solutions of macroscopic interpolation. Another important open

question is how to provide the supporting data points for the interpolation in an efficient manner.

The data at these points is usually provided by the solution of a full-order model (FOM) and come

along with the corresponding numerical costs. Hence, the positions of data points in the parameter

space should be chosen carefully, as unnecessary or redundant solutions of the FOM should be avoided.

On the other hand, too sparsely seeded points might not capture the homogenized properties of the

microstructure appropriately.

1.3. Main Contributions and Outline

The present work generalizes parts of the previous paper [12] to the finite strain regime. It aims at

reducing the computational complexity for the determination of the homogenized microstructural

100



Math. Comput. Appl. 2019, 24, 56

response, which is parametrized by the macroscopic deformation gradient acting as a boundary

condition. This is achieved by means of a Reduced Basis approximation of the microscopic deformation

gradient. The basis is obtained with the aid of a POD of snapshots of fluctuation fields of the deformation

gradient. Thus, the application of the RB model does not necessitate the computation of gradients of

displacement fields, and even does not require the displacements to be available at all. In other words,

microscopic displacement fields are completely avoided. However, they can be reconstructed from the

RB approximation of the deformation gradient, uniquely up to rigid body motion.

Another key advantage is the sleek implementation of the method. A demonstration containing a

minimum working example of the RB model with 50 lines of MATLAB/Octave code is provided [18].

As for the setup phase, the snapshot data is created by means of an efficient sampling procedure for

the microscopic boundary condition. To this end, the set of macroscopic Hencky strains is identified

as a suitable linear parameter space, within which the sampling sites are placed based upon physical

interpretation. This allows for controlof the resolution of certain key characteristics of the effective

material response while keeping the total number of samples within bounds.

The Reduced Basis method is presented in Section 2. The basis identification is based on the

sampling strategy developed in Section 3. Numerical examples are presented in Section 4. Both the

numerical and the theoretical findings are summarized and discussed in Section 5.

1.4. Notation

The set of real numbers and the subset of positive numbers greater than zero are denoted by R

and R+, respectively. Matrices are marked by two underlines and vectors by one underline, e.g., A, a.

Vectors are assumed to be columns, and the dot product of two vectors of the same size is understood

as the Euclidean scalar product, x · y = xTy. First order and second order tensors in coordinate-free

description are denoted by bold letters, e.g., A, a. No conclusion can be drawn on the order of a

tensor based on its capitalization. Here, the underlying space is always the Euclidean space R3 with its

standard basis. First order and second order tensors can be represented as vectors and matrices, e.g.,

A↔ A ∈ R3 and B↔ B ∈ R3×3, respectively. Norms of vectors and matrices respectively denote the

Euclidean and the Frobenius norm. The norm of a tensor of second order equals the norm of its matrix

representation for the chosen basis. Fourth order tensors are denoted by blackboard bold symbols

other than R, e.g., C and I. Components of tensors of order M are with respect to the Euclidean

tensorial basis e(1) ⊗ e(2) ⊗ · · · ⊗ e(M), e.g., Aij, Bij for second order tensors A, B and Cijkl ,C
′
ijkl for C,

C′. The following contractions are defined:

A · B =
3

∑
i,j=1

AijBij , C · B =
3

∑
i,j,k,l=1

Cijkl Bkl e(i) ⊗ e(j) ,

A ·C =
3

∑
i,j,k,l=1

AijCijkl e(k) ⊗ e(l) , C ·C′ =
3

∑
i,j,k,l,m,n=1

CijmnC′mnkl e(i) ⊗ e(j) ⊗ e(k) ⊗ e(l) .

Let Ω ⊂ R3 be the domain occupied by a physical body undergoing elastic deformations, and

let Ω0 be its initial configuration. Then, x and X describe the coordinates of material points within

the current configuration Ω and within the reference state Ω0, respectively. Their difference is the

displacement u = x− X, see Figure 1. The gradient of a vector field v = v(X) is defined as a right

gradient and denoted by
∂v

∂X
= v⊗∇X. The divergence of a second order tensor field is the vector field

resulting from row-wise divergence. The boundaries of the respective configurations are denoted by ∂Ω

and ∂Ω0. The set of square-integrable Lebesgue functions on the reference domain is tagged L2(Ω0).
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u
Ω0 Ω

xX

Figure 1. Initial (Ω0) and current (Ω) configuration, with elementary kinematic quantities.

The displacement gradient H = u⊗∇X and the deformation gradient F = x⊗∇X are related

through F = H + I, where I is the second order identity tensor in three dimensions. The determinant

J = det F measures the relative volumetric change due to the present deformation.

Unimodular quantities, i.e., second order tensors with determinant ones, may be emphasized by

a hat, e.g., F̂ = J−1/3F. This multiplicative decomposition is sometimes attributed to Flory [19] and

also goes by the name Dilatational-Deviatoric Multiplicative Split (DDMS).

In the two-scale context, overlined symbols represent quantities on the macroscopic scale, e.g., A,

a, while symbols without overline correspond to their microscopic counterpart, e.g., A, a. Equivalently,

macroscopic quantities are called global and microscopic ones are called local. The volume average of a

general local field ϕ

〈ϕ〉 = 〈ϕ(•)〉 = 1

|Ω0|
∫

Ω0

ϕ(•)dV (1)

is essential to the theory. The dependence of a microscopic quantity A on both the microscopic

coordinates X and a macroscopic quantity B is denoted by A = A(X; B). In such a case, the

components of the macroscopic quantity B are called parameters of the microscopic function A(•; B).

The application of the volume averaging operator is abbreviated by 〈A〉 =
〈

A(•; B)
〉
. The case of a

concatenated function f (A) = f (A(X; B)) is analogous, i.e. 〈 f 〉 = 〈 f (A)〉 =
〈

f (A(•; B))
〉
, regardless

of the tensorial order of the image of the function f .

1.5. Material Models

In this work, hyperelastic materials are investigated. They are characterized by stored energy

density functions W = W(F). The first Piola–Kirchhoff stress

P(F) =
∂W

∂F
(F) (2)

and the corresponding fourth-order stiffness tensor

C(F) =
∂2W

∂F2
(F) (3)

characterize the material response.

Henceforth, for reasons of readability, the stored energy density function W will be spoken

of as an energy, and the terms stored and density will not always be mentioned explicitly. In the

infinitesimal strain framework, hyperelastic energies have been formulated to model deformation

plasticity (e.g., [12,17,20]). Although these models are only valid for purely proportional loading

conditions, they provide means to simulate highly nonlinear material behavior in certain scenarios

comparably easily within the context of hyperelasticity. Note that genuine dissipative processes require

additional state describing variables with corresponding evolution laws.

102



Math. Comput. Appl. 2019, 24, 56

The proposed method is suitable for any type of hyperelastic constitutive law. As the modeling of

complex material behavior is not the main focus of this study, the Neo–Hookean law

W(F) = WDDMS(J, F̂) =
K

4

[
(J − 1)2 + (ln J)2

]
+

G

2

(
tr( F̂

T
F̂)− 3

)
(4)

is used, with K the bulk modulus and G the shear modulus. The volumetric part of the energy is taken

from [21]. Using the DDMS, a decoupled dependence on the volumetric and isochoric part of the

deformation is assumed, which is a common way to model the distinct material behavior with respect

to these two contributions, see e.g., [22].

1.6. Problem Setting of First Order Homogenization

Assuming stationarity and separability of scales, the following coupled and deformation-driven

problems can be derived by means of asymptotic expansion of the displacement u and subsequent

first order approximation. This procedure is carried out in [23] with much detail. Here, the technical

process is omitted and only the resulting equations are stated.

1.6.1. Macroscopic Problem

Balance of linear momentum

DivX(P) + b = 0, (5)

where b denote bulk forces, and balance of angular momentum

F
−1

P = P
T

F
−T

, (6)

along with well-posed boundary conditions that constitute the macroscopic boundary value problem. This

system of equations is closed by means of the hyperelasticity law, cf. (2),

P(F) =
∂W

∂F
. (7)

Note that, in general, W is a priori not available and (7) is thus a purely formal relation. For reasons

of readability, the dependence of any quantity on the macroscopic material coordinate X is usually

spared, e.g., F = F(X), H = H(X), or u = u(X).

1.6.2. Microscopic Problem

The microscopic boundary value problem is given by the balance equations

DivX(P) = 0 (8)

F−1P = PTF−T (9)

and suitable boundary conditions, e.g., as discussed in [24]. In this work, periodic displacement fluctuation

boundary conditions are employed. The microscopic displacements take the form

u(X; F) = u + HX + w(X; F). (10)

Therein, the macroscopic displacement is independent of microscopic quantities. The second term,

HX, corresponds to a homogeneous deformation of the microstructure. The third term, w(X), is a

displacement fluctuation with the zero mean property 〈w〉 = 0. Hence, the deformation gradient reads

F(X; F) = F + H̃(X; F) = F + F̃(X; F), (11)
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where the fluctuation part H̃ = w⊗∇X = F̃, has the zero mean property

〈
F̃
〉
= 0. (12)

Thus, the volume average of the local deformation gradient equals its macroscopic counterpart,

F = 〈F〉 . (13)

This motivates the identification of F as the boundary condition to the microscopic problem (8). As for

the material response, the following relationships can be deduced:

W = 〈W〉 , (14)

P = 〈P〉 , (15)

C �= 〈C〉 . (16)

Equations (13) and (15) are called kinematic and static coupling relations, respectively. The inequality (16)

generally holds for heterogeneous microstructures, even in the most simple case of infinitesimal strains

and linear elasticity. More precisely, the volume average overestimates the effective stiffness in the

spectral sense,

x · 〈C〉 · x ≥ x ·C · x ∀ second order tensors x. (17)

2. Reduced Basis Homogenization for Hyperelasticity

2.1. Formulation

The Reduced Basis (RB) scheme is based on a direct approximation of the microscopic deformation

gradient F from Equation (11) without the need to explicitly have the corresponding displacement at

hand. The initial approximation is given by

Fξ(X; F, ξ) = F +
N

∑
i=1

B(i)(X)ξi. (18)

The arguments F and ξ ∈ RN are the boundary condition to (8) and the reduced coefficient vector,

respectively. Note that the macroscopic coordinate X is not assumed to influence the RB approximation,

i.e., the same approximation is made throughout the macrostructure. The set {B(i)}N
i=1 is linearly

independent within the space L2(Ω0) and is called RB of F. In a later context, it will also be referred to

as the set of ansatz functions. In order to enforce the relationship

〈
Fξ

〉
= F (19)

regardless of the reduced coefficients ξ, the basis functions are asserted to have the fluctuation property,

i.e., for i = 1, . . . , N

〈
B(i)

〉
= 0. (20)

For now, the RB is assumed to be given.

The ansatz (18) allows for evaluation of the energy at the macroscale as a function of the

macroscopic kinematic variable F and of the reduced coefficients ξ,

Wξ(F, ξ) =
〈
W(Fξ)

〉
. (21)
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By the principle of minimum energy, the optimal coefficients

ξ∗(F) = arg min
ξ∈RN

Wξ(F, ξ) (22)

are sought after. The unconstrained and unique solvability of this task is assumed for the moment and

will be addressed in Section 2.4. The solution of (22) defines the RB approximation of the deformation

gradient

FRB(X; F) = F +
N

∑
i=1

B(i)(X)ξ∗i (F). (23)

The microscopic energy, stress, and stiffness within the microstructure are then approximated by

WRB(X; F) = W(FRB(X; F)), (24)

PRB(X; F) =
∂W

∂F
(FRB(X; F)), (25)

C
RB(X; F) =

∂2W

∂F2
(FRB(X; F)), (26)

respectively. The resulting effective energy is readily given by

W
RB
(F) =

〈
WRB

〉
. (27)

Also, the effective responses P
RB
(F) and C

RB
(F) may now be calculated. However, before going into

detail on that, it is advantageous to first elaborate on the solution of the minimization problem (22).

This short survey will reveal essential properties of some occurring quantities that are important for

the determination of the effective material response.

The necessary, first order optimality conditions to (22) define the components of the residual

vector r ∈ RN ,

ri(F, ξ) =
∂Wξ

∂ξi
(F, ξ) =

〈
∂W

∂F
(Fξ) ·

∂Fξ

∂ξi

〉
=
〈

P(Fξ) · B(i)
〉
= 0 (i = 1, . . . , N). (28)

Note 1. The solution stress field PRB is L2(Ω0)-orthogonal to the RB ansatz functions {B(i)}N
i=1.

A viable choice for the solution of the minimization problem (22) is the Newton–Raphson scheme,

which necessitates the Jacobian D ∈ Sym(RN×N) with the components

Dij =

〈
B(i) · ∂P

∂ξ j
(Fξ)

〉
=
〈

B(i) ·C(Fξ) · B(j)
〉
= Dji (i, j = 1, . . . , N) . (29)

Then, the kth iteration to the solution ξ∗(F) reads

ξ(k) = ξ(k−1) −
(

D(k−1)
)−1

r(k−1) (k ≥ 1) . (30)

The initial guess ξ(0) can be zero or a more sophisticated alternative.
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The deduction of the effective material response by means of Note 1 and the Jacobian D is given

in Appendix B. The following list summarizes the homogenized quantities arising from the F-RB:

F =
〈

FRB
〉

see (19)

W
RB

=
〈

WRB
〉

see (27)

P
RB

=
〈

PRB
〉

see Appendix B.1

C
RB

=
〈
C

RB
〉
−

N

∑
i,j=1

D−1
ij

〈
C

RB · B(i)
〉
⊗
〈

B(j) ·CRB
〉

see Appendix B.2

In total, the problem of determining both the local field F and the homogenized material properties

depends only on N degrees of freedom, namely on the N coefficients ξi. Usually, the number of DOF

N is in the range of 10 to 150, which compares to the full order model’s complexity that can easily

reach more than 105 DOF.

Remark 1. Despite this impressive reduction of the number of DOF, the computational costs associated with

the assembly of the residual r and of the Jacobian D still relate to the number of quadrature points of the

microstructural discretization.

This method extends corresponding methods for the geometrically linear case, where the

infinitesimal strain tensor ε = sym(H) is considered. For more information on these topics, the

reader is referred to the authors’ previous work [12] or standard literature, such as ([25], part II.C).

2.2. Identification of the Reduced Basis

The basis {B(i)}N
i=1 is computed by means of a classical snapshot POD. In contrast to many other

POD based reduction methods, it is important to point out that here, the primal variable is not taken to

be the displacement field , u. Instead, the POD is performed on deformation gradient fluctuations, F̃.

During the snapshot POD, snapshots are first created by means of high-fidelity solutions to the

nonlinear microscopic problem (8) with different snapshot boundary conditions F
(j)

, j = 1, . . . , Ns, which

are also called training boundary conditions. Each of these boundary conditions leads to a solution

field F(j)(X; F). Typically, the Finite Element Method (FEM) or solvers making use of the Fast Fourier

Transform (e.g., [26]) are used to this end. The RB method presented here is independent of the

discretization method utilized to obtain full field solutions. It is merely necessary to know the

quadrature weights and the related discrete values of the solutions F(j)(X; F
(j)
). For better readability,

the continuous notation is maintained for the moment. The corresponding fluctuation fields are

computed by means of local subtraction of the macroscopic deformation gradient

F̃
(j)
(X; F

(j)
) = F(j)(X; F

(j)
)− F

(j)
(j = 1, . . . , Ns). (31)

Each of these Ns fluctuation fields F̃
(j)

represent one snapshot.

Second, the most dominant features of the snapshots are extracted. This is done by means of

the eigendecomposition of the correlation matrix. It consists of the mutual L2(Ω0) scalar products

of the snapshots,
〈

F̃
(i) · F̃(j)〉

(i, j = 1, . . . , Ns), cf. (1). The remaining procedure is standard, see for

instance [7] or [27]: the Ns eigenvalues λj, corresponding to the eigenvectors E(j) ∈ RNs , are sorted in

descending order and truncated by only considering the first N values, λ1 ≥ . . . ≥ λN . The decision

on a particular threshold index N is based on consideration of the Schmidt–Eckhard–Young–Mirsky

theorem. Finally, the RB is constructed as

106



Math. Comput. Appl. 2019, 24, 56

B(i)(X) =
Ns

∑
j=1

1√
λi

(
E(i)
)

j
F̃
(j)
(X) (i = 1, . . . , N) (32)

where the factor 1/
√

λi accounts for L2(Ω0) normalization of the base elements.We conclude that the

RB is a collection of L2(Ω0) orthonormal H̃-like quantities.

2.3. Mathematical Motivation of the Reduced Basis Model

Next, the obtained deformation gradient field FRB and the associated stress field PRB are shown

to weakly solve the original problem (8), DivX(P) = 0.

Let δw ∈ H1
0(Ω0) be an admissible test function, i.e., a once weakly differentiable periodic

displacement fluctuation field, and let δH = δw⊗∇X denote its gradient. Then, the well-known weak

form of (8) is equivalent to the principle of virtual work,

δW =
∫

Ω0

P · δH dV = 0. (33)

The residual r from (28) coincides with the integral of the weak form, if the test function δw is chosen

suitably. As the basis elements B(i) are linear combinations of deformation gradient fluctuations

w(j) ⊗∇X, cf. (32), the equivalence of (28) and (33) is obvious.

It follows that the Reduced Basis scheme is a Galerkin procedure, taking the displacement fields

corresponding to the RB elements B(i) as both ansatz and test functions. Hence, the RB model is

equivalent to the FEM, but with basis functions that are globally supported in Ω0\∂Ω0. In other words,

the basis functions of the RB method span a subspace of dimension N within the high-dimensional

space of FE basis functions. Although this property is shared with RB schemes based on POD of

displacement snapshots, a notable difference is that this novel approach directly operates on fields

entering the constitutive equations.

2.4. Details on the Coefficient Optimization

The coefficient optimization task (22) leads to a weak solution of the microscopic boundary value

problem, as was just shown. Hence, the well-established theories on which the FEM is built, e.g., the

calculus of variations, are applicable to the presented method just as much. This implies that the

well-known issues with suitable convexity conditions and with existence and uniqueness of minimizers

apply to the RB method, too. We focus on ad hoc numerical treatments of these issues. For more

details on the theoretical part, the reader is referred to standard literature, such as [28], and recent

developments in this matter, e.g., [29].

A constraint to the optimization problem is the physical condition

J = det(Fξ(X)) > 0 ∀X ∈ Ω0, (34)

which means that no singular (J = 0) or self-penetrating (J < 0) deformations shall occur. This reduces

the set of admissible coefficients ξ to a subset of RN that is nontrivial to access. The positiveness

of the microscopic determinant of the deformation gradient introduces a constraint to the, thus far,

unconstrained minimum problem (22), representing the weak form of (8) in the RB setting.

In case of a violation of the inequality (34), the implementation of the RB method is prone to

failure as soon as the constitutive law (4) is evaluated. This occurs only in the context of volume

averaging, i.e., for the assembly of the residual, the Jacobian, or the effective energy, stress, or stiffness.

The numerical quadrature approximating the volume averaging operation is
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〈•〉 = 1

|Ω0|
∫

Ω0

•(X)dV ≈ 1

|Ω0|
Nqp

∑
p=1

•(X p)wp. (35)

Here, Nqp, X p, and wp respectively denote the number of quadrature points, their positions, and

the corresponding positive weights. Moreover, even if the inequality (34) is satisfied everywhere,

the local field Fξ might possibly have some positive but overly small values of the determinant,

0 < det(Fξ(X)) ≪ 1, that are unphysical. In such a case, the energy optimization, cf. (22), would

be dominated by these nearly singular points. Instead of allowing the optimization to focus almost

exclusively on these exceptional points, we interpret unphysically small values of the determinant as

limitations to the reliability of the RB method. On the other hand, large values det(Fξ(X))≫ 1 are not

too detrimental to the functionality of the scheme, although such values are just as questionable.

Thus, the following weighted numerical quadrature rule is introduced:

〈•〉 ≈
(

Nqp

∑
p=1

•(X p) φ(Jp)wp

)
/

(
Nqp

∑
p=1

φ(Jp)wp

)
. (36)

Therein, the almost smooth cutoff function φ : R→ R≥0 is empirically defined by

φ(J) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if J > 0.6

0.5 erf(30 J − 15) + 0.5 if 0.4 < J ≤ 0.6

0 if J ≤ 0.4

. (37)

which makes use of the well-known error function. The cutoff function is depicted in Figure 2. This

reliability indicator could, in principle, be modified, e.g., the steepness, the smoothness, and its center

could be adjusted. Thus, it should be regarded as an example only.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  0.2  0.4  0.6  0.8  1
J

φ
(J

)

Figure 2. Cutoff function φ. Its value is used as a reliability factor in the numerical quadrature.

This weighted numerical quadrature rule is used henceforward for all numerical volume averaging

operations. Its application will not be noted explicitly. However, the theoretical derivation of the RB

method, as described in Section 2.1, is not affected by this, i.e., volume averaging operations remain

exact as far as the theory is concerned. The two most important consequences of this numerical

tweak are:

• The RB method is robust with respect to outlier values of the determinant. The modified

quadrature rule extends the set of coefficient vectors ξ for which effective quantities can be

computed, albeit approximately, to the whole space RN .
• The significance of local fields varies with the value of the cutoff function. When φ attains values

less than one, information is considered accordingly less reliable. In this sense, microscopic

information is filtered based on a trust region for J defined by φ can be seen as a reliability

indicator.

108



Math. Comput. Appl. 2019, 24, 56

3. Sampling

3.1. General Considerations

The proposed sampling strategy builds on the previous work [12], in which the authors proposed

an analogous sampling procedure for the small strain setting. However, substantial modifications

are required in order to account for the finite rotational part, R, of the macroscopic deformation

gradient, F, and the nonlinearity of the volumetric part of the deformation, J, with respect to the local

displacements, u. For the setup of the Reduced Basis model as described in Section 2.2, the space of

macroscopic deformation gradients,

F = {second order tensors F | det F > 0}, (38)

needs to be sampled, i.e., the discrete sampling set F s = {F(m)}Ns
m=1 ⊂ F is to be defined. Two

contradictory requirements need to be satisfied when constructing F s:

1. The samples should be densely and homogeneously distributed within the space of all admissible

macroscopic kinematic configurations. This is owing to the desire that the POD may extract

correlation information from a holistic and unbiased set. In other words, the samples should be

as uniformly random as possible within the anticipated query domain of the surrogate.
2. The sample number Ns should not exceed a certain limit. Only with this property may the RB be

identified within the bounds of available computational resources (e.g., memory and CPU time).

3.2. Large Strain Sampling Strategy

The set of admissible macroscopic deformation gradients F is a subset of a nine-dimensional

space (F ∈ R3×3 ∼ R9) restricted by the inequality

det F > 0. (39)

Therefore, a regular grid in the components of F might lead to a prohibitively large amount of samples,

and even to a violation of (39). For instance, such a grid with a rather moderate resolution of just 10

samples of each component would require 1 billion solutions of the FOM. Also, the subsequent POD

would involve a snapshot matrix and/or correlation matrix of accordingly huge dimensionality.

In order to decrease the dimension of the sampling space, recall the polar decomposition of

the deformation gradient, F = R U, where R is a rotation and U is the symmetric positive definite

(s.p.d.) stretch tensor. Material objectivity implies the energy function to be independent of the frame

of reference,

W(R U) = W(U), (40)

and the transformation behavior

P(R U) = R P(U) (41)

for the first Piola–Kirchhoff stress and

Cijkl(R U) =
3

∑
m,n=1

δikU
−1
lm Pmj(U) + RimCmjnl(U)Rkn (i, j, k, l = 1, 2, 3) (42)

for the components of the corresponding stiffness tensor C, see Appendix A. These known facts lead to
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Note 2. In order to collect representative samples of the hyperelastic response functions W, P, and C, it

suffices to evaluate them on samples of the stretch tensor U ∼ R6 instead of evaluating them on samples of the

deformation gradient F ∼ R9.

This effectively reduces the number of dimensions of F from nine to six. The same dimensionality

is attained when considering the response functions with respect to a symmetric measure of strain, e.g.,

as is done in [30] where the tangent stiffness is efficiently computed using a perturbation technique.

However, such measures are unsuitable for reduction by means of the proposed RB method.

The remaining six-dimensional space of s.p.d. tensors is not linear but a convex cone (which

does not include the zero element). Moreover, linearly combining elements within this space quickly

leads to values of J = det U describing unphysically large changes in volume. For instance, U = 1.3 I

equates to more than 100% volumetric extension, which is well beyond the regime of usual hyperelastic

materials that are often nearly incompressible. On the other hand, 100% deviatoric strain is within

the range of many standard materials, such as rubber. Hence, in order to describe the space of practically

relevant stretch tensors, we propose to apply the DDMS to the macroscopic stretch tensor,

U = J
1/3

Û. (43)

Let Û denote the manifold of unimodular macroscopic stretch tensors Û = (J)−1/3U.

The multiplicative split (43) is the basis for:

Proposition 1. The set of practically relevant macroscopic stretch tensors U can be sampled via sampling of

both the macroscopic determinants,

{
J
(m)
}Ndil

m=1
⊂ R+ ,

and the macroscopic unimodular stretch tensors,

{
Û

(j)
}Ndev

j=1

⊂ Û ,

where Ndil and Ndev are the numbers of the samples. The sampling set is determined by the product set

{(
J
(m)
)1/3

Û
(j)
}m=Ndil, j=Ndev

m,j=1

⊂ U . (44)

The choice of the dilatational samples is relatively straightforward. For many common materials,

the expected range of J is rather narrow, so a few equisized or adaptive sub-intervals around J = 1

deliver sufficient resolution.

For the space of unimodular s.p.d. matrices representing Û ∈ Û , basic results of Lie group theory

can be exploited. We restrict to stating well-known facts that are necessary at this point. For more

details, the interested reader is referred to standard text books, such as [31].

Corollary 1. Let

symsl =
{

Y ∈ R
3×3

∣∣Y = YT, tr(Y) = 0
}

be the tangent space and

SymSL+ =
{

U ∈ R
3×3

∣∣U = UT, det U = 1, xT U x > 0 ∀x ∈ R
3
}
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be the manifold of unimodular s.p.d. matrices. The matrix exponential maps the tangent space bijectively onto

the manifold,

exp : symsl→ SymSL+ .

The proof of this statement is standard, e.g., by means of the eigenvalue decomposition, and

does not necessitate the reference to the abstract setting of Lie groups. In fact, all of the following

arguments could be given without the notion of tangent spaces and manifolds. However, this notion is

a fundamental concept in nonlinear mechanics. For a very descriptive and comprehensive work on

this topic, the reader is referred to [32]. We choose to build upon this concept, as it comes along with

vivid interpretations of the function spaces U and Û .

The set SymSL+ is the set of matrix representations of the stretch tensors Û ∈ Û . The tangent

space symsl is the set of Hencky strains, which is linear. Hence, by virtue of the matrix exponential, the

sampling of the nonlinear manifold Û can be reduced to the sampling of a linear space. Moreover, the

restrictions of symmetry and zero trace render the tangent space five-dimensional. This property is, by

definition, shared with the manifold SymSL+.

The two-dimensional case is now addressed for the sake of visualization. In this setting, the

nonlinearity of the manifold and the structure of the sampling set U can be illustrated figuratively.

With the subscript (2) denoting two-dimensional quantities, a basis of the tangent space is given by

Y
(1)
(2)

=

√
1

2

[
1 0

0 −1

]
and Y

(2)
(2)

=

√
1

2

[
0 1

1 0

]
.

The stretch tensors are obtained through

U
(2)

= J
1
2 exp

(
t
(

αY
(1)
(2)

+ βY
(2)
(2)

))
=

[
a b

b d

]
.

A visualization of such samples is depicted in Figure 3. There, for the sake of visual clarity, the

determinant J is sampled by four equidistant (and rather unrealistic) values between 0.1 and 4.

The value t ∈ [−2, 2] is called deviatoric amplitude. A densely uniform sampling ϕ ∈ [0, 2π) yields the

coefficients α = cos ϕ and β = sin ϕ.

Figure 3. Visualizations of the family of U-manifolds with constant determinant J ∈ {0.1, . . . , 4.0}
for the two-dimensional case from two different perspectives. The green line represents the set

{λI | λ > 0}.
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This emphasizes the important role of the DDMS in the context of sampling, as utilized in (44)—it

allows for the identification of a physically meaningful sampling domain that is much smaller than

the surrounding space of all admissible stretch tensors. On a side note, the isodet surfaces are

perpendicular to the line representing the dilatational stretch tensors.

The proposed sampling procedure for U in three dimensions is given in Algorithm 1. For this

purpose, an orthonormal basis Y(1), . . . , Y(5) of the tangent space symsl is fixed, cf. Appendix C.

The numbers of different kind of samples Ndet, Ndir, and Namp relate to the quantities Ndil and Ndev

introduced in (44) by Ndet = Ndil and NdirNamp = Ndev.

Algorithm 1: Sampling of the macroscopic stretch tensor.

Input : Jmin, Jmax minimum and maximum determinant with Jmin < 1 < Jmax

tmax > 0 maximum deviatoric amplitude

Ndet number of macroscopic determinants

Ndir number of deviatoric directions

Namp number of deviatoric amplitudes

Output : NdetNdirNamp samples of U

1 Place Ndet determinants regularly between the extremal values,

Jmin = J
(1)

< . . . < 1 < . . . < J
(Ndet) = Jmax .

2 Generate any approximately uniform distribution of Ndir directions in R5, e.g., as in [12],

{
N(n)

}Ndir

n=1
⊂
{

N ∈ R
5 : ‖N‖ = 1

}
.

3 Place Namp deviatoric amplitudes regularly between 0 and the expected maximum value,

0 ≤ t(1) < . . . < t(Namp) = tmax .

4 Return the set of samples of U:

{(
J
(m)
)1/3

exp

(
t(p)

[
5

∑
k=1

(
N(n)

)
k

Y(k)

])}m=Ndet, n=Ndir, p=Namp

m,n,p=1

⊂ U (45)

The order of Steps 1 to 3 is interchangeable. Details on these parts are now presented:

Step 1. Uniform seeding of the determinants is actually not required, but any pattern implying the

sampling determinants {J
(k)}Ndet

k=1 to be dense in [Jmin, Jmax] as Ndet → ∞ works without loss

of generality. In this way, the dilatational response may be resolved adaptively.
Step 2. The generation of uniform point distributions on spheres is a research topic on its own,

see [33] for an overview. The method described in [12] is based on energy minimization,

which is also used in the present work. Some point sets of various sizes are included in

the example program [18]. More detailed investigations on this topic and an open-source

code of a point generation program are part of another work, [34]. Alternatively, Equal Area

Points [35] may be used as a rough but quickly computable approximation of such point sets.
Step 3. As in Step 1, the uniform placement of the deviatoric amplitudes, t(p), may be substituted by

adaptive alternatives. In [12], we have suggested to use an exponential distance function.

The result of Steps 2 and 3, i.e., the sampling of the tangent space, is exemplified in Figure 4 for

the two-dimensional case (u ∈ R2) and for Ndir = 5 and Namp = 3. There, an adaptive spacing of the
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deviatoric amplitudes is applied. This might be beneficial for capturing strongly changing material

behavior near the relaxed state.

t(1) t(2) t(3)

N (1)

N (2)

N
(3)

N (4)
N (5)

X
(1)

(2)

X
(2)
(2)

Figure 4. Example of a discretization of the two-dimensional tangent space. The samples are placed

along the equidistant (in higher dimensions—uniformly distributed) directions with nonuniformly

increasing amplitude.

In general, the vector N ∈ R5, ‖N‖ = 1, corresponding to a macroscopic Hencky strain

characterizes the direction of the applied stretch U, which we also coin the load case.

3.3. Application of the Stretch Tensor Trained Reduced Basis Model

Since the RB model is trained on only the rotationally invariant part of F but should be

applied to general deformation gradients, the transformation rules (41) and (42) are incorporated

during the evaluation of the surrogate model. Details on the procedure are given in Algorithm 2.

Algorithm 2: Online phase of the stretch tensor trained Reduced Basis method

Input : F macroscopic deformation gradient

Output : P
RB
(F), C

RB
(F) effective material response

1 Compute polar decomposition F = R U.

2 Compute approximations of effective stress P
RB
(U) and effective stiffness C

RB
(U).

3 Transform effective responses to correct frame P
RB
(F), C

RB
(F), using R, cf. (41), (42).

4. Numerical Examples

4.1. Reduced Basis for a Fibrous Microstructure

The applicability of the proposed RB method in combination with the sampling scheme is

now numerically studied for a fibrous microstructure roughly resembling polymers with woven

reinforcements. The goal is to prove the efficiency of the F-RB scheme in principle and under

“worst-case” conditions, the latter meaning that the phase contrast is chosen to be rather large. Yet,

at this stage, it is explicitly not aspired to provide fully realistic examples. These would require

investigations on the proper size of the microstructure and should employ dissipative material laws,

both of which are not within the scope of this work.

A cubical microstructure with two fibrous inclusions is considered, see Figure 5a and cf. [36] for a

related example. The inclusions are periodic and occupy approximately 0.7% of the volume. The mesh

contains 35, 516 nodes in 25, 633 quadratic tetrahedron elements (C3D10).

113



Math. Comput. Appl. 2019, 24, 56

(a) (b) (c) (d)

Figure 5. (a) fibrous microstructure. (b–d) random F-reduced basis (RB) elements.

For the matrix, the material constants are chosen to be Km = 400 MPa and Gm = 0.4 MPa,

resembling rubber-like material properties. For the fibers, the values are Kf = 800 MPa and

Gf = 240 MPa. The latter parameters approximate the behavior of stiffer polymers, such as

polyethylene. The phase contrast is 600 with respect to the shear moduli, and the Poisson ratios

are νm = 0.4995 and νf = 0.3636.

The training boundary conditions are defined with Ndir = 128 deviatoric directions, N(n), and

Namp = 10 deviatoric amplitudes, t(p), which are regularly distributed in the interval [0.05, 0.5]. In

order to also consider response to volumetric extension in the training data, an additional set of Ndet=10

boundary conditions of the form
(

J
(m))1/3

I is included in the training set, with the determinant J
(m)

being linearly increased from 1 to 1.02.

The validation load cases are 640 mixed dilatational-deviatoric boundary conditions. Along

Ndir = 64 new deviatoric directions, both the deviatoric amplitudes (t(p) = 0.05, . . . , 0.5) and the

dilatational amplitudes (J
(m)

= 0.9995, . . . , 0.995) are applied in 10 equidistant increments.

The results for various values N of the RB-size are compared with the results of FE simulations

with the same boundary conditions. To this end, the error measures

errW =
‖WRB −W

FEM‖
‖WFEM‖

and errP =
‖PRB − P

FEM‖
‖PFEM‖

(46)

are employed. Figures 6 and 7 visualize the results.

The distribution of the energy error, errW, improves monotonically as the RB is enriched from

N = 8 to N = 128 elements. This enrichment corresponds to the inclusion of additional subtrahends in

the computation of C
RB

, improving the spectral over-estimation by the volume average of the stiffness,

cf. (17). It is also noteworthy that the error tends to be higher for larger magnitudes of the applied

kinematic boundary condition, although that is not always the case.

In contrast to this, the stress error errP distribution monotonically improves only up to a certain

threshold value of the number of basis elements, which is N = 64 in this example. For the greater

bases with N = 96 and N = 128, the quality of the results deteriorates as far as the stress error is

concerned. This is most likely due to an excessively oscillatory nature of the higher order modes—at

some critical level 1 ≪ i = Ncrit < N, the POD constructs eigenvectors E(i) with the L2(Ω0)-norm√
λi ≪ 1. Therefore, the POD would construct basis vectors out of numerical fluctuations, which

would be unphysical. While the enrichment of the optimization space with unphysical information

cannot increase the minimum energy error errW, it might lead to fluctuations in the displacement field

that have significant impact on the overall stress response. This is especially the case for numerical

fluctuations within the stiff inclusion phase where low overall displacement errors still could lead to

notable impact on the effective stress.

Nonetheless, all observed errors are less than 20% and stay below 3% for the optimal sampled size

N = 64. For half the basis size, N = 32, the errors max at approximately 5%, which is still acceptable

considering the uncertainties involved in realistic two-scale simulations. Note that the maximum
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errors strongly depend on the maximum load amplitude, which is chosen to be very large in this

example (50% deviatoric strain and 0.5% compression).

The runtimes of the RB model for different sizes N are depicted in Figure 8. A nearly linear growth

of the runtime with respect to the basis size can be asserted. It is noteworthy that the online time of

the RB method is strongly dominated by the assembly of the Jacobian D. Therefore, a Quasi-Newton

implementation was chosen, resulting in only two assemblies per load increment.
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Figure 6. Cumulative energy error distribution per direction for the RB of the fibrous microstructure

under validation boundary conditions.
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Figure 7. Cumulative stress error distribution per direction for the RB of the fibrous microstructure under

validation boundary conditions.

Speed-ups become impressive when very large load increments are considered. In all examples

observed thus far, the RB converges to the final load amplitude in a single increment, requiring 7–13

Quasi–Newton iterations, with only 2–4 assemblies of the Jacobi matrix D and a runtime of 10–50 seconds.This

is in strong contrast to the FEM which is very sensitive to large load increments as they come along with

a high probability of a violation of the condition det(F) > 0. By means of standard implementation,

such occurrences are usually treated with cutbacks of the load increment, which is detrimental to the

runtime of the FEM.
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No rigorous speed-up analysis is intended at this point. Both the codes of the FEM and of the

RB method are fairly efficient in-house C/C++ developments and perform exact line searches. While

the FEM has not yet been equipped with a Quasi–Newton procedure, the linear solver makes use of

parallelization. This is in contrary to the current implementation of the RB method. Depending on

the microstructure (especially the geometry, material nonlinearities, and phase contrast), the loading

conditions, and the size N of the RB, speed-up factors are in the order of 5–100.
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Figure 8. Laptop computer runtimes of the RB model for the fibrous microstructure for various sizes N

of the basis. Each data point represents the time needed for all 10 load increments. The spread of the

individual times of the 64 validation cases around these average values is negligible.

4.2. Reduced Basis for a Stiffening Microstructure

The second example takes the “worst-case” approach further by considering a noncubical

microstructure with even higher phase contrast and significant topological nonlinearity. To this

end, a cuboid microstructure occupying the domain [−0.5, 0.5]× [−0.3, 0.3]× [−0.05, 0.05] ⊂ R3 and

containing a hash-like inclusion is investigated, see Figure 9a. The mesh is periodic and contains 33, 923

nodes in 21, 726 quadratic tetrahedron elements (C3D10). The reinforcement makes up approximately

13.3% of the volume. Due to this large volume fraction, a pronounced geometry-induced nonlinearity

of the effective response is expected under uniaxial loading conditions along the x-axis. As it is

elongated, the hashlike part is straightened and thus increasingly aligned with the external loading,

see Figure 9b. Such effects might be desirable when designing microstructures for functional materials.

(a) (b) (c)

Figure 9. (a) Cuboidal microstructure with hashlike inclusion phase. (b) Deformed state under uniaxial

tension loading. Only inclusion is shown, coloring indicates Pxx. (c) Straight inclusion substitute

microstructure, leading to a comparable effective stress.

The material parameters are Km = 19.867 MPa, Gm = 0.4 MPa, Kf = 19, 867 MPa, and

Gf = 400 MPa, implying a Poisson ratio of 0.49 in both materials and a phase contrast of 1000.

The training boundary conditions are the deviatoric ones of the set considered in Section 4.1,

i.e., Ndir = 128 deviatoric directions and Namp = 10 regularly spaced deviatoric amplitudes

from the interval [0.05, 0.5]. No dilatational training cases are considered, i.e., only points from

a five-dimensional submanifold of the space U are sampled.
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Uniaxial tension boundary conditions are applied for the validation. More precisely, the stretch

component Uxx is increased from 1.0 to 1.5 in 10 increments of equal size. The other components are

chosen such that all but the xx-component of the effective stress P vanish.

Figure 10 depicts the results for different sizes N of the RB. The influence of the stiffening effect on

the stress curve is emphasized by the black dashed line corresponding to a similar microstructure with

a straight, cuboid inclusion that leads to the same final stress value under these boundary conditions,

see Figure 9c.
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Figure 10. Stress curves for a microstructure with geometric stiffening (cf. Figure 9a), comparing

the FEM result to the RB for various number of basis elements N. A similar microstructure without

geometric stiffening but with the same final stress value (cf. Figure 9c) leads to the black dashed curve.

In this example, the geometric stiffening effect is captured by the RB with high accuracy, with as

few as N = 24 basis elements. For moderate stretches, even an RB size of N = 16 suffices. These results

are somewhat more impressive when noticing that the applied boundary condition contains more than

1.2% volumetric compression, i.e. the validation loading actually lies outside the submanifold covered

during training.

In order to examine the action of the cutoff function φ, the following two indicators are introduced:

cqp = # quadrature points with (φ(J) < 1) , (47)

Vexcl =

(
|Ω0| −

Nqp

∑
p=1

φ(Jp)wp

)
/|Ω0|. (48)

The first quantity, cqp, counts the number of quadrature points at which the cutoff function has an

influence. The second one, Vexcl, measures the relative excluded volume, interpreting the value of φ

as a scaling of the corresponding quadrature weight. The values of these indicators are depicted in

Figure 11.

Most notably, the cutoff function does not have any effect before the eighth load increment in

this example. Only for large load amplitudes does this numerical stability tweak become necessary.

Even then, the number of points at which it has an influence is small, considering the total number

of quadrature points, Nqp = 86, 904. This example is representative for all conducted numerical

experiments.
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Figure 11. (Left) Number of quadrature points at which the cutoff function φ attains a value less than

one. (Right) Relative excluded volume.

5. Discussion

5.1. Discussion of the Reduced Basis Method

5.1.1. Relation of the RB Homogenization to Analytical Estimates

Zero coefficients, ξ = 0, correspond to the Taylor homogenization, i.e., to the nonlinear counterpart

of the Voigt estimate [37], which provides an upper bound for the material response, cf. (17). Starting

with the initial guess ξ(0) = 0, the evolution of the coefficients corresponds to a (possibly not

monotonous) relaxation of this overly stiff response into a more natural state. In view of improved

computational efficiency, a nonzero initial guess ξ(0) combined with an exact line search has proven

reasonable and easy to realize. For instance, such a guess might stem from previous load steps or an

interpolation/extrapolation of available coefficient data.

5.1.2. Reconstruction of Displacement Fields

Given an RB approximation of the deformation gradient, FRB, one can reconstruct the

corresponding displacement field uniquely up to rigid body motion. This is possible due to the

linear dependence of the deformation gradient fluctuations on the displacement fluctuations. Recall

the definition of the RB in (32),

B(i) =
Ns

∑
j=1

1√
λi

(
E(i)
)

j
F̃
(j)

(i = 1, . . . , N).

The corresponding displacement fluctuations are

ũ
(i)
B =

Ns

∑
j=1

1√
λi

(
E(i)
)

j
ũ(j) (i = 1, . . . , N). (49)

The displacement fluctuation fields ũ(j) are defined by ũ(j)(X) = u(j)(X) − H
(j)

X, where the

displacement fields u(j) are the solutions computed during training, and H
(j)

= U
(j) − I. Thus,

a displacement field compatible to the RB result FRB(X; F) is given by

uRB(X; F) = HX +
N

∑
i=1

ξ∗i (F)ũ
(i)
B (X). (50)

The missing term u(X), cf. (10), cannot be reconstructed.
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5.1.3. Relation to Classical Displacement-Based POD Methods

In a certain sense, the entries of the correlation matrix used in the offline phase, cf. Section 2.2, are

“weighted” scalar products of the displacement fluctuation fields w̃(i) within the Sobolev space H1
0(Ω0).

“Weighted” is to be understood in that the zeroth order derivative is multiplied by zero. Classical

displacement-based POD methods compute correlations of the fluctuations w̃(i) within the Lebesgue

space L2(Ω0). The change to H1
0(Ω0)-like scalar products is physically motivated by the fact that the

local energy W = W(F) explicitly depends on the gradient of the displacement, F = u⊗∇X + I, but

not on the displacement, u.

5.1.4. Advantages Compared to General Displacement-Based Schemes

The proposed method is advantageous compared to both displacement-based POD methods and

the classical FEM for the following reasons:

• No gradients need to be computed from displacement fields, which displacement-based schemes always

require prior to the evaluation of the material law.
• The residual r and the Jacobian D are algorithmically sleek and trivial to implement.
• The absence of element formulations in the assembly of the reduced residual r and of the Jacobi

matrix D contributes to both the simplicity and the efficiency of the method—no incidence

matrices occur, allowing for linear memory access. Moreover, the algebraic operations associated

with reference element formulations are bypassed. This is also in favor of parallel computations.

Such an implementation is still outstanding for the problem at hand, but has been conducted for

related problems in the small strain setting in [38].

Although the storage of the basis {B(i)}N
i=1 requires 9NqpN double precision values, the basis is

compact enough to be completely loaded into random access memory of standard computers. For

instance, the bases considered in Section 4 occupy only ~200 Mb of memory for N = 32.

We now briefly address the algorithmic complexity associated with the proposed F-RB method and

with the u-RB method that was employed in previous works, such as [9] and [8]. To this end, the fully

discretized versions of the residual r and of the Jacobian D as well as discrete quantities associated

with the u-RB method are introduced in the following listing.

• P(X p) ∈ R9: Nine values of the stress P(Fξ(X p)) at the quadrature point X p ∈ Ω0

• C(X p) ∈ R9×9: Symmetric stiffness tensor

• B(X p) ∈ R9×N : F-RB matrix containing the nine values of each basis elements B(i) as columns
• wp: The quadrature weight at X p

• NDOF: Three times the number of nodes, ∼ Nqp

• r FE ∈ RNDOF : Global FE residual vector
• Bu ∈ RNDOF×N : u-RB matrix of which the columns contain the nodal displacement values
• K FE ∈ RNDOF×NDOF : Global FE stiffness matrix

Table 1 compares the algorithmic complexity of the presented F-RB method with that of standard

u-RB schemes. First of all, both methods share a quadratic dependence of their Jacobi matrices on the

number of modes, N. Therefore, the assembly of the Jacobian is usually the most costly operation.

Secondly, both approaches’ complexities suffer a linear dependency on the number of quadrature

points, Nqp. In the displacement-based approach, this is included in the assembly of the residual and

of the stiffness, which relate to the factor 9 and 92, respectively. Thirdly, the novel F-RB scheme spares

the computational overhead associated with FE formulations rFE and KFE. More details on this matter

are currently being investigated.
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Table 1. Algorithmic complexities of the well-established u-based RB method and the novel F-based

RB method. The assembly of the FE residual and of the FE stiffness depend on Nqp.

RB Method Quantity Complexity

F-based

r =
Nqp

∑
p=1

B(X p)
TP(X p)wp O(9NNqp)

D =
Nqp

∑
p=1

B(X p)
TC(X p)B(X p)wp O([92N + 9N2]Nqp)

u-based
r =

(
Bu
)T

rFE O(NNDOF) + assembly of rFE

D =
(

Bu
)T

KFEBu O(NN2
DOF + N2NDOF) + assembly of KFE

5.1.5. Outlook

Future research should aim at an application of the introduced Reduced Basis method within

realistic two-scale simulations, in analog to [12,38–40]. Hyperreduction methods, cf. [41], might give

rise to additional speed-ups in the online phase. Further, modifications of the cutoff function, φ, should

be investigated—a function with compact support might be more appropriate. The construction of the

RB from large sets of snapshots is computationally intense, as much data needs to be processed. In the

above examples, the POD consumed multiple hours of time. Hierarchical approximations, such as [42],

might mitigate the effects by enabling parallel computations. Overall, the long-term perspective is to

extend this RB framework efficiently to the context of dissipative materials.

5.2. Discussion of the Sampling Strategy

The proposed sampling strategy is meant to serve as a template. As exemplified in Section 4.1, the

samplings can be modified and still lead to a coverage of the set of macroscopic boundary conditions

that is sufficient for the problem at hand. The example of Section 4.2 took this idea further and showed

that it might not even be necessary to sample the macroscopic determinant. Hence, the sampling can

sometimes be reduced to the five-dimensional subspace of isochoric macroscopic stretch tensors.

In any case, the exact choice of both the inputs to Algorithm 1 and the distributions of the

deviatoric amplitudes and the macroscopic determinants remains to be based on knowledge and

sophisticated guesses, at least at the current state of the art. Further research on this matter might lead

to a refined alternative to Algorithm 1, possibly involving the evaluation of error estimators.
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The following abbreviations are used in this manuscript:

RB Reduced Basis

FE(M) Finite Element (Method)

POD Proper Orthogonal Decomposition

DOF degree(s) of freedom

FOM full-order model

s.p.d. symmetric positive definite

DDMS Dilatational-Deviatoric Multiplicative Split
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Appendix A. Material Objectivity

The components of the stiffness tensor C show the following transformation behavior.

Cijkl(F) =
∂Pij(F)

∂Fkl

(41)
=

3

∑
m=1

∂RimPmj(U)

∂Fkl
=

3

∑
m=1

(
∂Rim

∂Fkl
Pmj(U) + Rim

∂Pmj(U)

∂Fkl

)
(A1)

=
3

∑
m,n,o=1

(
δikU−1

lm Pmj(U) + Rim

∂Pmj(U)

∂Uno

∂Uno

∂Fkl

)
(A2)

=
3

∑
m,n,o=1

(
δikU−1

lm Pmj(U) + RimCmjno(U)Rknδol

)
(A3)

=
3

∑
m,n=1

(
δikU−1

lm Pmj(U) + RimCmjnl(U)Rkn

)
(A4)

Here, δij is the Kronecker symbol, and i, j, k, l = 1, 2, 3.

Appendix B. Effective Material Responses of the RB

Let I denote the fourth order identity tensor and let the arguments of the F-RB approximation

(23) be omitted, i.e. here FRB = FRB(X; F). Its derivative with respect to the boundary condition F is

∂FRB

∂F
= I+

N

∑
i=1

B(i) ⊗ ∂ξ∗i
∂F

(F). (A5)

Appendix B.1. Effective Stress

P
RB

=
∂W

RB

∂F
=

∂

∂F

〈
WRB

〉
=

〈
∂WRB

∂F
· ∂FRB

∂F

〉

(A5)
=
〈

PRB
〉
+

N

∑
i=1

〈
PRB ·

(
B(i) ⊗ ∂ξ∗i

∂F
(F)

)〉

=
〈

PRB
〉
+

N

∑
i=1

〈
PRB · B(i)

〉
⊗ ∂ξ∗i

∂F
(F)

(28)
=
〈

PRB
〉

(A6)

Appendix B.2. Effective Stiffness

C
RB

=
∂P

RB

∂F

(A6)
=

∂

∂F

〈
PRB

〉
=

〈
∂2WRB

∂F∂F

〉
=

〈
∂2WRB

∂F2
· ∂FRB

∂F

〉

(A5)
=
〈
C

RB
〉
+

N

∑
i=1

〈
C

RB ·
(

B(i) ⊗ ∂ξ∗i
∂F

(F)

)〉

=
〈
C

RB
〉
+

N

∑
i=1

〈
C

RB · B(i)
〉
⊗ ∂ξ∗i

∂F
(F)

(A7)
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For
∂ξ∗i
∂F

(F), we demand that the residual ri(F, ξ) from (28) is stable with respect to the boundary

condition F when converged to ri(F, ξ∗(F)) = 0,

∂ri

∂F
(F, ξ∗(F)) =

〈
B(i) · ∂PRB

∂F

〉

=

〈
B(i) ·

(
∂PRB

∂F

∂FRB

∂F

)〉

=
〈

B(i) ·CRB
〉
+

N

∑
j=1

〈
B(i) ·CRB · ∂FRB

∂ξ∗j

∂ξ∗j
∂F

〉

=
〈

B(i) ·CRB
〉
+

N

∑
j=1

〈
B(i) ·CRB · B(j)

〉

︸ ︷︷ ︸
Dij

∂ξ∗j
∂F

= 0.

(A8)

It follows that

∂ξ∗j
∂F

(F) = −
N

∑
i=1

(
D−1

)
ij

〈
B(i) ·CRB

〉
. (A9)

Appendix C. Basis for Symmetric Traceless Second Order Tensors

Y(1) =

√
1

6

⎡
⎢⎣

2 0 0

0 −1 0

0 0 −1

⎤
⎥⎦ Y(2) =

√
1

2

⎡
⎢⎣

0 0 0

0 1 0

0 0 −1

⎤
⎥⎦

Y(3) =

√
1

2

⎡
⎢⎣

0 1 0

1 0 0

0 0 0

⎤
⎥⎦ Y(4) =

√
1

2

⎡
⎢⎣

0 0 1

0 0 0

1 0 0

⎤
⎥⎦ Y(5) =

√
1

2

⎡
⎢⎣

0 0 0

0 0 1

0 1 0

⎤
⎥⎦

(A10)
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Abstract: The development and generalization of Digital Volume Correlation (DVC) on X-ray

computed tomography data highlight the issue of long-term storage. The present paper proposes

a new model-free method for pruning experimental data related to DVC, while preserving the

ability to identify constitutive equations (i.e., closure equations in solid mechanics) reflecting strain

localizations. The size of the remaining sampled data can be user-defined, depending on the needs

concerning storage space. The proposed data pruning procedure is deeply linked to hyper-reduction

techniques. The DVC data of a resin-bonded sand tested in uniaxial compression is used as an

illustrating example. The relevance of the pruned data was tested afterwards for model calibration.

A Finite Element Model Updating (FEMU) technique coupled with an hybrid hyper-reduction method

aws used to successfully calibrate a constitutive model of the resin bonded sand with the pruned

data only.

Keywords: archive; model reduction; 3D reconstruction; inverse problem plasticity; data science

1. Introduction

With the development and the generalization of digital image correlation (DIC) (see Chu et al. [1])

or digital volume correlation (DVC) (see Bay et al. [2]) techniques on Computed Tomography (CT)

data, the volume of data acquired has drastically increased. This raises new challenges, such as data

storage, data mining or the development of relevant experiments-simulations dialog methods such as

model validation and model calibration.

In experimental mechanics, the access to full 3D fields such as displacement or strain fields is far

richer than 1D load–displacement curves. These data can drive finite element simulations for model

calibration. Although extremely convincing, the increasing resolution of the full-field measurement

tools, such as X-ray Computed Tomography, leads to an explosion of the volume of data to store.

The long term storage of CT datasets is nowadays an issue (see Ooijen et al. [3]).

This paper proposes a numerical method for pruning 3D dataset related to DVC when it becomes

necessary to free up storage capacity. Often, when new experimental results need to be saved, storage

memory must be released. The pruned data contain information similar to the original data, but with

less memory required. The proposed approach aims to prune experimental data while preserving the

ability to identify constitutive equations (i.e., closure equations in solid mechanics) reflecting strain

localizations. It is a mechanical based approach to prune DVC data. Outside a reduced experimental

domain (RED), the experimental data are deleted. Original experimental data are preserved solely in

the RED. We also propose a calibration procedure whose computational complexity is consistent with

the pruning of the experimental data.
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Compression of data is known to be a convenient approach to restore storage capacity. For instance,

MP3 files are a fairly common way to reduce the size of audio files for daily use (see Pan [4]). However,

a non-negligible loss of information is needed, but controlled. The MP3 compression roughly consists in

filtering certain components of the non-reduced audio file that are actually non-audible for most people.

In other words, the MP3 algorithm was made to prune the audio data that are not absolutely necessary.

Usually, the compression rate is around 12. In the same philosophy, there can be a way to massively

compress the experimental data taken from experiments with a controlled loss of information based on

an algorithm that detects the pertinent information. This has been proposed in [5] by using a sensitivity

analysis with respect to variations of calibration parameters. These parameters are the coefficients of

a given model that should reflect the experimental observations. The result is that the pruned data

are dedicated to a given model. In this paper, a model-free approach is proposed. It aims to make

possible various calibrations with different models after data pruning. Here, the relevant information

are local but situated in regions submitted to strain localization. The data submitted to the pruning

procedure are the outputs of a Digital Volume Correlation that reconstructs the displacement field

u(x, t) from observations at time instants (tj)j=1,...,Nt
, over a spatial domain Ω, where x is a position

vector. The geometry of the experimental sample is approximated by a mesh and the determined

displacement is decomposed on finite element (FE) shape functions [6].

The proposed method can be linked to data pruning or data cleaning methods described in the

literature for machine learning [7]. The aim of these procedures are not to reduce data storage but to

improve the data quality by accurate outliers detection for instance [8]. In [9], a data pruning method

is employed to filter the noise in the dataset.

Using the FE approximation of the experimental fields paves the way to further simulations. In the

calibration procedure, the full-field measurements are used as inputs of an inverse problem that aims

to determine a given set of parameters µ = {μ1, . . . , μm}. These parameters are the coefficients of given

constitutive equations. Their values are unknown or not known precisely. The most straightforward

method is called Finite Element Model Updating (FEMU) (see Kavanagh and Clough [10] and

Kavanagh [11]). It is a rather common way to optimize a set of parameters taking into account

the experimental data and balance equations in mechanics. It consists in computing the discrepancy

between the FE approximation of the experimental fields and the FE simulations. Thus, an optimization

loop is done on µ where the FE method is used as a tool for assessing the relevance of the parameter set.

The objective function, or cost function, of the optimization can focus on the difference between the

computed and experimental displacement fields (FEMU-U), forces (FEMU-F, or force balance method),

or the strain fields (FEMU-ε) or a mix between all these sub-methods. A review of FEMU applications

can be found in [12]. The method is particularly suitable for:

• Non-isotropic materials (e.g., materials having mechanical properties that depend on their

orientation [13,14], such as the human skin [15]);

• Heterogeneous materials such as composites [16];

• Heterogeneous tests such as open-hole tests (e.g., [13,14]) or CT-samples [17];

• Special cases of local phenomena such as strain localization or necking (e.g., Forestier et al. [18],

Giton et al. [19]) or the illustrating case of the present paper;

• Multi-materials configurations (e.g., solder joints studied in [20] or heterogeneous material

identification done in [21]); and

• Determination of the boundary conditions [22].

One of the recent developments concerning FEMU is to couple this method with reduced order

models (ROMs) to cut down the computation time in the parameters optimization loop. An example of

such recent developments can be found in [23] where a method called FEMU-b is highlighted, or in [24].

The FEMU-b consists in determining an intermediate space of predominant empirical modes associated

to a reduction procedure, such as the Proper Orthogonal Decomposition (see Aubry et al. [25]) or the

Proper Generalized Decomposition (PGD) [26]. The discrepancy is computed between the experimental
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and simulated reduced variables, where the reduced variables are solutions of reduced equations.

In this paper, we show that the proposed data pruning method is consistent with a reduced order

modeling of the equations to be calibrated. A FEMU-b is introduced, so we take into account the lack

of experimental data due to the pruning procedure.

In [27], it has been shown that ROMs can be supplemented by a reduced integration domain

(RID), by following a hyper-reduction method. In this method, a RID is a subdomain of a body, where

the reduced equations are set up. In the proposed approach, we do not modify the cubature scheme

involved in mechanical equations, as proposed by Hernandez et al. [28], but we restrict the cubature

to a subdomain. This leads the way for data pruning methods that preserve calibration capabilities.

Here, the dimensionality reduction of experimental data enables the restriction of experimental data to

a RED. This RED is a subdomain of the specimen where the experimental data are sampled. It is not

necessarily a connected domain. The flowchart of the proposed approach to data pruning is shown

in Figure 1. After pruning, the data related to the domain occupied by a specimen, denoted by Ω,

are restricted to a RED denoted by ΩR. The way the model calibration is done, depends on the nature

of the data available in a storage system. If the data are not pruned, then a conventional calibration by

the FEMU method is possible. Otherwise, calibration by a FEMU-b method is recommended. In this

paper, the calibration capabilities after data pruning are assessed by using the FEMU with an hybrid

hyper-reduction method (H2ROM) [29]. Hence, the FEMU-b is not done on the complete domain but on

the RED determined by the data pruning. The result is a fast calibration procedure, with low memory

requirement and a validated data pruning protocol. Contrary to usual hyper-reduction methods,

the domain where the equations to be calibrated are setup is not generated by using simulation data.

It derives from the data pruning procedure applied to experimental data.

Figure 1. Pruning of experimental data related to DVC, via hyper-reduction. Calibration capabilities of

constitutive equations are preserved after data pruning. The experimental data related to the domain

occupied by a specimen, denoted by Ω, are restricted to a reduced experimental domain denoted

by ΩR. The way the model calibration is done, depends on the nature of the data available in the

storage system.

The remaining part of the paper is structured as follows. In Section 3, the proposed method for

data pruning is described. The DVC is recalled. A dimensionality reduction then hyper-reduction
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are performed to compute the pruned data. The pruning procedure is applied in Section 4 on a

resin-bonded sand tested in in situ uniaxial compression with X-ray tomography. In Section 5,

the calibration of an elastoplastic model enables validating the pruning protocol. Details on the

experimental data are available in the form of supplementary files. These data allow the proposed

data pruning to be reproduced.

2. Notations

Second-order tensors are denoted by a∼. Matrices are denoted by capital bold letters A and vectors

are denoted by bold lowercase characters a. The colon notation is used to denote the extraction of a

submatrix or a vector (at column i for example): a = A[:, i]. Sets of indices are denoted by calligraphic

characters A. The element of a matrix A at row i and column j is denoted Aij or Aα[i, j] when the

matrix notation Aα has a subscript. a is the restriction of a to the reduced experimental domain.

3. Data Pruning by Following an Hyper-Reduction Scheme

In the proposed approach, the experimental displacements observed on the domain occupied by

a specimen are restricted to the RED ΩR. The smaller is the extent of ΩR, the smaller is the memory

requirement to store the pruned data. Without any constraint, the best memory saving is obtained

by saving the parameters µ that best replicate the experimental data. In that situation, usual FEMU

methods are sufficient. Here, the following constraint is taken into consideration. The data pruning

should not prevent changes in the way constitutive equations are set up, as these equations may evolve

in the future. Knowledge in mechanics is evolving and so are models. Thus, after the data have been

pruned, the experimental data saved in the storage system must allow the calibration of constitutive

equations. To ensure consistency between the computational complexity of the calibration procedure

and the accuracy of the pruning data, we propose hyper-reduced equations for this calibration. In our

opinion, it does not make sense to perform complex simulations during such a calibration with a poor

representation of the experimental data.

3.1. Digital Volume Correlation

Let us consider a specimen occupying the domain Ω undergoing a certain mechanical test.

With image acquisition techniques, grayscale images are obtained in 3D. The Digital Volume Correlation

aims to determine the displacement field u at every position x in Ω at a given deformed state at time t.

f and g are the gray levels at the reference and deformed states. They are related by the equation:

g(x) = f (x + u(x, t)) (1)

The best displacement field is estimated via the minimization of the following residual:

φ2(u, t) =
∫

Ω
[u(x, t).∇ f (x) + f (x)− g(x)]2 dx (2)

where∇ f is the gradient of f . This is an ill-posed problem. To get a well-posed problem, the displacement

field can be restricted to a kinematic subspace. Here, the displacement field is assumed to be decomposed

over a set of vector functions ψj(x) that corresponds to the shape functions of a FE model defined on Ω.

u(x, t) =
Nd

∑
i=1

ai(t)ψi(x) (3)

where Nd is the number of degrees of freedom of the mesh, ai the ith nodal degree of freedom in the

FE model. a denotes the vector of degrees of freedom to be determined. With this restriction to the
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kinematic subspace, the function φ is now a quadratic form of the ai, and its minimization is a linear

system, set up for each observation of a deformed state:

Ma = h (4)

where the matrix M and the vector h are:

Mij =
∫

Ω
(ψi(x).∇ f (x))

(
ψj(x).∇ f (x)

)
dx (5)

hi =
∫

Ω
[g(x)− f (x)]ψi(x).∇ f (x)dx (6)

In the sequel, Nt observations of the specimen deformation at time instants tj, j = 1, . . . , Nt,

are considered. The DVC gives access to the final correlated displacement field u(x, tj) for each

observations, through the coefficient vector a(tj). From the displacement field, a strain field ε∼ is

extracted assuming small strains:

ε∼ =
1

2

(
∇∼ u +∇∼ uT

)
(7)

This strain is thus calculated at each Gauss point of the mesh used for the DVC. For pressure

dependent or plastic materials, it can be convenient to subdivide the strain field in its deviatoric part

and its hydrostatic part:

ε∼ = ε∼
s + ε∼

v, with ε∼
v = tr (ε∼)I∼ (8)

where I∼ is the unit tensor.

It is worth noting that the pruning procedure only focuses on the displacement and not on the

strain. It is considered that the strain can be computed in post-processing (thanks to Equation (7)) and

are not worth saving. The strain tensor is actually considered as temporary data used to compute a

reduced experimental domain.

3.2. Dimensionality Reduction

The first step of the pruning procedure consists in performing a dimensionality reduction of

the experimental data. It is based on singular value decomposition. This approach is similar to the

Principal Component Analysis (PCA). However, here, a reduced basis of empirical modes is obtained

without centering the data.

The experimental data from DVC are saved into two matrices, Qu and Qε defined as:

Qu[i, j] = ai(tj), i = 1, . . . , Nd, j = 1, . . . , Nt (9)

and

Qε[i, j] = εs
αβ(eγ , tj) (10)

Qε[i, j + Nt] = εv
αβ(eγ , tj) (11)

where eγ is the γth Gauss point, and:

i = β + 3(α− 1) + 9(γ− 1)

α = 1, . . ., 3, β = 1, . . ., 3, γ = 1, . . . , Ng

j = 1, . . . , Nt

with Ng being the number of integration points in the mesh. Qu is a Nd × Nt matrix and Qε is

a (9Ng) × (2Nt) matrix. For the sake of simplicity, we do not account for the symmetry of the

strain tensor.

130



Math. Comput. Appl. 2019, 24, 18

The first step of the pruning procedure consists in performing a first dimensionality reduction

of the DVC data. Only the reduced basis and coordinate are kept instead of the snapshot matrix Qu.

The procedure is also done on the snapshot matrix of the stain Qε but not in order to reduce storage

(as the stain data are not saved). The corresponding reduced basis is used as a temporary tool to

compute afterwards the reduced domain. The determination of the empirical modes is performed

thanks to a Singular-Value Decomposition (SVD):

Qu = VuSu(Wu)
T + Ru (12)

Qε = VεSε(Wε)
T + Rε (13)

where Vx ∈ RNd×Nx , with x = u or ε, is an empirical reduced basis for displacement or strain,

respectively, Nx ≤ rank(Qx), Sx = diag(σx1, . . . , σxNx ) ∈ RNx×Nx , σx1 ≥ σx2 ≥, . . . ,≥ σxNx and

Wx ∈ RNt×Nx . Both Vx and Wx are orthogonal. The residual Rx has a 2-norm such as:

‖Rx‖2 = σx Nx+1 < ǫtol σx1, x = u or ε (14)

where ǫtol is a numerical parameter (typically, 10−3). According to the Eckart–Young theorem,

the matrix Vx (Vx)T Qx is the best approximation of rank Nx for Qx by using the reduced basis Vx.

The relevance of the dimensionality reduction of the displacement data appears to be conditioned

by the difference between the number of time steps Nt and the order of the approximation Nu,

as Qu ∈ RNd×Nt and Vu ∈ RNd×Nu . In situ tests observed in X-ray CT tend to have few time steps

so the first dimensionality reduction may not be efficient. Moreover, due to the resolution of the

Computed Tomography, data have generally an important number of degrees of freedom. In other

words, the snapshot matrix Qu has a lot of lines (Nd) but few columns (Nt). The memory cost is mostly

due to the number of dof of the problem. That is why the proposed pruning protocol is based on a

hyper-reduction method in order to reduce significantly this number of dof.

3.3. Reduced Experimental Domain

The proposed pruning method has its roots in the hyper-reduction method [30]. We are not able

to prove that the proposed approach has a strong physical basis for pruning data according to an

appropriate metric. The proposed approach is heuristic, but it fulfills some mathematical properties.

A hyper-reduced order model is a set of FE equations restricted to a RID when seeking an approximate

solution of FE equations with a given reduced basis. In other words, this approach accounts for the

low rank of the reduced approximation to set up the reduced equations of a given FE model. Let us

denote by aFE ∈ RNd the solution of FE equations that aims to replicate the experimental vector a,

by using the same mesh. For a given reduced basis of rank NR V ∈ RNd×NR , the approximate reduced

solution of the FE equations is denoted by aR such that:

aR = V bR (15)

where bR ∈ RNR are the variables of the reduced order model. It turns out that the rank of the reduced

FE equations must be NR in order to find a unique solution bR. Since Nd is usually larger than NR,

few FE equations that preserve the rank of the reduced system exist. By following the hyper-reduction

method proposed in [30], this selection is achieved by considering balance equations set up on a RID.

In former works on hyper-reduction, the RID were generated by using simulation data.

Here, the RED is similar to a RID, but its construction uses solely experimental data, that is to say

that the reduced basis used to perform this row selection comes from Equations (12) and (13). That is

why the pruning method is called a model-free approach. One of the advantages of such method

is that the data pruning does not have to be performed again if the constitutive model is changed.

The RED is denoted by ΩR ⊂ Ω.
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In the hyper-reduction method, the RID is generated by the assembly of elements containing

interpolation points related to various reduced bases. These reduced bases are usually extracted from

simulation data generated by a given mechanical model for various parameter variations [30]. Here,

the RED construction is based exclusively on the reduced bases related to Qu and Qε. The RED is the

union of several subdomains: Ωu and Ωε generated from the reduced matrices Vu and Vε, a domain

denoted by Ω+ corresponding to a set of neighboring elements to the previous subdomains, and a

zone of interest (ZOI) denoted by Ωuser. In the sequel, Ωuser is set up to evaluate the force applied by

the experimental setup on the specimen.

Ωu is designed as if we would like to reconstruct experimental displacements outside Ωu by using

Vu and given experimental displacement in Ωu. On a restricted subdomain Ωu, we only have access to

a restricted set of nodal displacements. The set of their indices is denoted by Pu. The set of remaining

displacement indices is denoted byHu such that a[Hu] is the vector to be reconstructed by knowing

a[Pu]. Various approaches have been proposed in the literature to perform this kind of reconstruction.

They are related to data completion [31] or data imputation [32] for instance. Here, we have the

opportunity to choose the set Pu, because the reconstruction issue is only formal. By using the DEIM

method proposed in [33], we can obtain the set Pu such that Vu[Pu, :] is a square and invertible matrix.

Then, in that situation, the number of selected degrees of freedom in Pu is the number of empirical

modes in Vu. However, in the present application, this set could be too small to get robust calibrations

after data pruning. Then, we propose a modification of the DEIM algorithm in order to multiply the

number of selected indices by a given factor k. We name this algorithm k-Selection with empIrical

Modes (k-SWIM). The modified algorithm is shown in Algorithm 1. When k = 1, this algorithm is

exactly the same as the usual DEIM algorithm in [34]. The issue here is not to replicate experimental

data via an interpolation scheme, but via calibrated FE simulations (by using k > 1). In the sequel,

the set of selected indices by using k-SWIM is denoted by P (k)
u . The same reasoning is applied to the

reconstruction of the experimental strain tensors. The k-SWIM algorithm applied to Vε defines P (k)
ε .

For given sets of indices P (k)
u and P (k)

ε , the RED is:

ΩR := Ωu ∪Ωε ∪Ω+ ∪Ωuser, Ωu := ∪
j∈P (k)

u
supp(ψj) Ωε := ∪

j∈P (k)
ε

supp(ψε
j). (16)

where supp is the support of the function and ψε
j are the shape functions related to the strain tensor in

the FE model used to compute a.

Algorithm 1: k-SWIM Selection of Variables with EmpIrical Modes

Input : integer k, linearly independent empirical modes vl ∈ Rd, l = 1, . . . , M

Output : variables index set P (k)

1 set P0 := ∅, j = 0, U1 = [ ] ; // initialization

2 for l = 1, . . . , M do

3 rl ← vl −Ul ( (Ul [Pj, :])T Ul [Pj, :])−1 (Ul [Pj, :])T vl [Pj] ; // residual vector

4 for n = 1, . . . , k do

5 j← j + 1 ; // add the k largest value of the residual

6 ij ← arg maxi∈{1,...,d}\Pj−1
|rI [i]| ; // index selection

7 rl [ij]← 0 ; // variable already selected

8 Pj ← Pj−1 ∪ {ij} ; // extend index set

9 Ul+1 ← [v1, . . . , vl ] ; // truncated reduced matrix

10 set P (k) := Pj.

Algorithm 1 is properly defined if in Line 3 the matrix (Ul [Pj, :])T Ul [Pj, :] is invertible, for l > 1

with j = (l − 1) k, or equivalently if the following property is fulfilled.
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Theorem 1. Ul+1[Pj+k, :]T Ul+1[Pj+k, :] is invertible for l > 0 and j = (l − 1) k.

Proof. Let us assume that Ul [Pj, :]T Ul [Pj, :] is invertible for l > 1 and j = (l− 1) k. Then, we compute

rl . (vl)
M
l=1 is a set of linearly independent vectors. Thus, maxi∈{1,...,d} |rl [i]| > 0. Let us introduce

the first additional index, j⋆ = (l − 1) k + 1, Pj⋆ = Pj ∪ {arg maxi∈{1,...,d} |rl [i]|} and the following

residual vector:

r⋆l = vl [Pj⋆ ]−Ul [Pj⋆ , :] ( (Ul [Pj, :])T Ul [Pj, :])−1 (Ul [Pj, :])T vl [Pj]

Then, r⋆l = rl [Pj⋆ ] and ‖r⋆l ‖2 > |rl [j
⋆]| > 0. Thus, Ul+1[Pj⋆ , :] is full column rank. Since Pj⋆ ⊂

Pj+k, then Ul+1[Pj+k, :] is full column rank and Ul+1[Pj+k, :]T Ul+1[Pj+k, :] is invertible. In addition,

U2[Pk, :] = v1[Pk] is a non-zero vector. Then, U2[Pk, :]T U2[Pk, :] > 0 is invertible.

Another interesting property is the possible cancellation of the data pruning by using a large

value of the parameter k in the input of Algorithm 1. The following property holds.

Theorem 2. If k = Nd and if |Vu[i, 1]| > 0 ∀i = 1, . . . , Nd, then ΩR = Ω. The RED covers the full domain

and all the data are preserved.

Proof. By following Algorithm 1, for l = 1 with k = Nd and Vu as inputs (in the algorithm, d = Nd),

we obtain ql = Vu[:, 1]. If |Vu[i, 1]| > 0 ∀i = 1, . . . , Nd, then Pk = {1, . . . , Nd}. Hence, P (Nd)
u =

{1, . . . , Nd} and Ωu = Ω and ΩR = Ω.

The second theorem is quite restrictive. In practice, large values of k, with k < Nd, enable

preserving all the data. The value of k has to be chosen according to the size of the memory that we

would like the free up.

3.4. Experimental Data Restricted to the RED

For a given RED, ΩR, a set of selected degrees of freedom indices can be defined as:

F =

{
i ∈ {1, . . . , Nd}|

∫

Ω\ΩR

ψ2
i (x)dx = 0

}
(17)

The degrees of freedom in F are not connected to elements outside ΩR. We denote by I the

degrees of freedom on the interface between ΩR and Ω\ΩR:

I =

{
i ∈ {1, . . . , Nd}| i /∈ F ,

∫

ΩR

ψ2
i (x)dx > 0

}
(18)

The union of these two set is denoted by F :

F = I ∪ F (19)

It contains all the indices of the degree of freedom in ΩR.

We denote by Qu ∈ Rcard(F )×Nt the experimental data restricted to the RED, such that:

Qu = Qu[F , :] (20)

An additional SVD is performed on these experimental data such that:

Qu = VuS′u(W
′
u)

T + R′u (21)

bu(tj) = (Vu)
Ta(tj)[F ], j = 1, . . . , Nt (22)
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When the RED is available, the experimental data are restricted to ΩR and the data to be stored are:

1. The pruned reduced basis Vu, and the consecutive reduced coordinates (bu(tj))j=1,...,Nt
.

2. The full mesh of Ω and the mesh of ΩR (F and I).

3. The load history applied to the specimen on the subdomain Ωuser.

4. Usual metadata related to the experiment (temperature, material parameters, etc.).

It is also advised to store the statistical distribution of a value of interest in the full domain

and in the reduced domain. These data can be saved as histograms, for example. In this present

paper, the shear strain distribution was saved, as this variable is extremely interesting in the case of

strain localization. The additional memory cost is actually negligible as it consists in storing a few

hundred floats.

The data concerning the strains are not stored as they can be computed with the displacement

data thanks to Equation (7).

Generally, in-situ experiments observed in X-ray CT do not have numerous time steps, hence the

above dimensionality reduction via SVD does not reduce drastically the size of the data to store. This is

illustrated with the following example in Section 4. The hyper-reduction of the domain is actually the

predominant step for data pruning.

3.5. Reduced Mechanical Equations Set Up on the Reduced Experimental Domain

Let us denote by rFE the residual of the FE equations that have to be calibrated such that:

rFE(aFE) = 0 (23)

For the sake of simplicity, we do not introduce the parameters µ in the FE residual. Since the

experimental data are restricted to the RED by following a hyper-reduced setting, the mechanical

equations submitted to the calibration procedure are also hyper-reduced. We denote by rFE the partial

computation of the FE residual restricted to the RED. rFE is the FE residual computed solely on a mesh

of the RED. This mesh is termed reduced mesh. To account for the reduced mesh, a renumbering of

the set F , denoted by F ⋆, is defined such that:

F = F [F ⋆] (24)

where F ⋆ is the set of degrees of freedom related to the reduced mesh, that corresponds to F in the

full mesh. They are located in blue squares in Figure 2b. Similarly, we define I⋆ such that:

I = F [I⋆] (25)

where I⋆ is the set of degrees of freedom related to the reduced mesh that belongs to the interface

between the RED and the remaining part of the full domain. The various sets of degrees of freedom

are shown in Figure 2.

We assume that:

rFE(a′[F])[F ⋆] = rFE(a′)[F ] ∀a′ ∈ R
Nd (26)

This assumption means that the FE residuals at lines selected by F , for any prediction a′, can be

computed on the reduced mesh, where the residuals depend only on degrees of freedom in F. It is

relevant in mechanical problems without contact condition, in the framework of first strain-gradient

theory. We refer the reader to [35] for the extension of the hyper-reduction method to contact problems.
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Figure 2. Schematic view of the reduced experimental domain, with linear triangular elements. In both

figures, ΩR is red. On the left, there is the mesh of Ω. On the right, there is the reduced mesh (i.e.,

the mesh of ΩR only). In (a), the nodes having their degrees of freedom in I are on the green line,

the nodes having their degrees of freedom in F are in blue squares, and the grey nodes have their

degrees of freedom inR. In (b), the green line, the blue squares and the grey nodes are related to I⋆,

F ⋆ andR⋆, respectively.

Both simulation data and experimental data are incorporated in a reduced basis dedicated to the

calibration procedure, after the pruning of the experimental data. In the sequel, this reduced basis is

extracted from data restrained to the RED, by using the SVD. Let us denote by X all the data available

on the full mesh. Then, after the restriction of data to the reduced mesh, the empirical reduced basis is

related to X = X[F , :]:

X = V S W
T
+ R, V ∈ R

card(F )×NR (27)

with ‖R‖ < ǫtol max(diag(S)). V is not a submatrix of a given V. The way X contains both simulation

data and experimental data is user dependent. In the proposed example, we are using a derivative

extended proper orthogonal decomposition (see Schmidt et al. [36]) as explained in Section 5.2.

When the reduced basis contains empirical modes and few FE shape functions located in ΩR,

the method is termed hybrid hyper-reduction [29,35]. The hybrid FE/reduced approximation is

obtained by adding few columns of the identity matrix to V. In this hybrid approximation, we only

add FE degrees of freedom that are not connected to the degrees of freedom in I⋆. The resulting set of

degrees of freedom is denoted byR⋆ (see Figure 2). In [29] it has been shown that this permits to have

strong coupling in the resulting hybrid approximation. Let us define the subdomain connected to I :

ΩI = ∪i∈Isupp(ψi) ∩ΩR (28)

Then, we get:

R =

{
i ∈ F|

∫

ΩI

ψ2
i (x)dx = 0

}
(29)

andR⋆ is such that:

R = F [R⋆] (30)

The hybrid reduced basis is denoted by V
H

. It reads, by using the Kronecker delta (δji):

V
H
[:, 1 : NR] = V, V

H
[i, NR + k] = δR⋆

k i k = 1, . . . , card(R) (31)
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The equations of the hybrid hyper-reduced order model (H2ROM) [35] reads: find bH ∈
RNR+card(R) such that,

(V
H
[F ⋆, :])T rFE(V

H
bH)[F ⋆] = 0 (32)

If the reduced equations do not have a full rank, it is suggested to remove the columns of V,

in V
H

, that cause the rank deficiency. When using the SVD to obtain V from data, the last columns

have the smallest contribution in the data approximation. These columns must be removed first in

case of rank deficiency.

Theorem 3. When ΩR = Ω, then the hybrid hyper-reduced equations are the original FE equations on the

full mesh.

Proof. If ΩR = Ω, then I = ∅, F ⋆ = R⋆ = {1, . . . , Nd} and the reduced mesh is the original mesh.

In addition, all the empirical modes have to be removed from V
H

to get a full rank system of equations.

Hence, V
H

is the identity matrix. Thus, the hybrid hyper-reduced equation are exactly the original FE

equations. There is no complexity reduction.

Theorem 4. If ǫtol is set to zero; if both hybrid hyper-reduced equations and FE equations have unique solutions;

if the FE solution aFE belongs to the subspace spanned by the data X; and if there exists a matrix G such that

‖aFE − X G aFE[F ]‖ = 0 (i.e., the FE solution can be reconstructed by using the FE solution restricted to the

RED), with G = W S
−1

V
T

, then bH [1 : NR] = V
T

aFE[F ] and bH [1 + NR : card(R) + NR] = 0T
R, where

0R is a vector of zero in Rcard(R). This means that the hyper-reduced solution is exact and the FE correction in

the hybrid approximation is null.

Proof. Let us introduce the matrix V̂ = X W S
−1

. Then,

V̂[F , :] = X W S
−1

= V (33)

If ‖aFE − X G aFE[F ]‖ = 0 with G = W S
−1

V
T

, so ‖aFE − V̂ V
T

aFE[F ]‖ = 0, then ‖aFE[F ]−
V b̂FE‖ = 0 with b̂FE = V

T
aFE[F ] and [(b̂FE)T , 0T

R]
T fulfills the following equation:

rFE(V
H
[(b̂FE)T , 0T

R]
T)[F ⋆, :] = 0 (34)

Then, the balance equations of the hybrid hyper-reduced equations are fulfilled by [(b̂FE)T , 0T
R]

T .

If both hybrid hyper-reduced equations and FE equations have unique solutions, then the solution of

the hybrid hyper-reduced equations is bH = [(b̂FE)T , 0T
R]

T .

4. Illustrating Example: Polyurethane Bonded Sand Studied with X-ray CT

4.1. Material and Test Description

The material studied here is a polyurethane bonded sand used in casting foundry to mold the

internal cavities of foundry parts. The resin makes bonds between grains and improves drastically

the mechanical properties of the cores (stiffness, maximum yield stress, traction strength, etc.).

The material has been extensively studied with standards laboratory tests, focusing on macroscopic

displacement-force curves. This casting sand was experimentally investigated by Jomaa et al. [37],

Bargaoui et al. [38]. These macroscopic data are completed with an in-situ uniaxial compression test

studied in X-ray CT on an as-received sample. According to Bargaoui et al. [38], the process used to

make the cores (cold box process) guarantees the homogeneity of the material. In the sequel, the resin

bonded sand is supposed homogeneous.
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The sample is a parallelepiped (20.0 × 22.4 × 22.5 mm3). The load was increased (with a constant

displacement rate of 0.5 mm/min) and the displacement was stopped at several levels, noted Pi.

During these stopped displacement periods, the sample was scanned with a tension beam of 80 kV

and an intensity of 280 µA. P0 corresponds to the initial state, before the appliance of the load. Then,

seven tomography scans were performed at increasing compressed states. At P7, the sample is broken.

The bottom and top extremities were excluded from the images because of the artifacts induced by

the plates. A grayscale image of the tested cemented sand is displayed in Figure 3. During the test,

the reaction is measured at the top of the sample. It is plotted in Figure 4. The first six steps (non-broken

sample) are situated before the peak of the loading curve.

Figure 3. View of the sand.
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Figure 4. Measured top reaction.

4.2. DVC and Error Estimation

The displacement fields at these different stages were calculated using a 3D-digital image

correlation (DVC) software named Ufreckles, developed by LaMCos (see [6]). A finite element

continuum method is used to calculate the displacement field with a non-linear least square error

minimization method. The chosen element size is near 0.5 mm. The final region of interest is

20.0 × 22.4 × 15.8 mm3. The top of the sample has been excluded. The DVC is performed on a

parallelipedic mesh composed of around 470,000 degrees of freedom.

The DVC showed that the pre-peak displacement field is extremely non-homogeneous, as shown in

Figure 5. The test showed a complex and rich behavior of the material tested with a non-homogeneous
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displacement field and pre-peak strain bifurcations. The experimental data are very suited for testing the

ability of a given model to predict such phenomena.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Figure 5. Magnitude of the experimental displacements at the pre-peak steps (deformed × 75).

4.3. Building the Reduced Experimental Basis

For a precise data pruning procedure, the experimental displacement and strain snapshot matrices

are computed. The attention is drawn to the fact that the studied test does not have many time steps

(Nt = 7) and the experimental mesh is not that big. The DVC matrices Qu and Qε are, respectively,

474,405 × 7 and 1,774,080 × 14. If the truncated SVD is applied on these matrices, only six modes are

extracted for the displacement and 13 for strain. As the number of time steps is rather small, the use of

empirical modes does not reduce the size of the experimental data, as stated before.

In other words, the experimental data are not suited for the dimensionality reduction. This method

is efficient on matrices with numerous columns and rather few lines, whereas tomographic data tend

to have the exact opposite: few columns (time steps) and a lot of lines (degrees of freedom).

4.4. RED after DVC on the Specimen

During the test, the loading curve was measured at the top of the sample. To compare computed

and measured reactions for model assessment, the elements at the top of the mesh are considered as a

ZOI. In the remaining, Ω+ is one layer of elements around Ωu ∪Ωε ∪Ωuser.

The RED was determined varying the number k of selected lines in the k-SWIM Algorithm.

Its influence is assessed in Figure 6. For k = 1, the standard DEIM algorithm selects very few degrees

of freedom. Most of the RED is actually the ZOI. This is due to the relatively low number of modes

contained in the reduced basis (only 6). This apparent issue can be overcome by selecting more lines

during the k-SWIM algorithm. When increasing k, the number of degrees of freedom linearly rises.

The attention is drawn on the fact that the resultant RED for k = 25 or k = 50 are discontinuous, as is

usually the case when using hyper-reduction methods. The newly selected zones are situated in the

sheared regions. For the sake of reproducibility, the binary files related to Vu, bu and Pu are available

as supplementary files.

(a) k = 1 (b) k = 25 (c) k = 50

card (F )= 47,382
(10% of Nd)

card (F )= 73,911
(15.6% of Nd)

card (F )= 98,064
(20.5% of Nd)

Figure 6. Influence of k in the k-SWIM algorithm.

The final RED was arbitrarily selected with k = 25 (around 15.6% of the total domain Ω). It is

displayed in Figure 6b. The reduced domain construction is analyzed in Figure 7 where the subdomains

Ωu, Ωε, Ωuser and ΩI are displayed.
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(a) Ωu (b) Ωε (c) Ωuser (d) Ω+

Figure 7. Different subdomains for the selected RED for k = 25.

A summary of the different matrix sizes at each step is displayed in Table 1. As stated before,

it is clear that for this kind of data, the PCA analysis does not reduce significantly the memory

usage. The hyper-reduction scheme used allowed saving up to 85% of the memory space for the

illustrating example.

Table 1. Size of the matrix stored at each step of the data pruning.

Experimental Data Empirical Modes Pruned Data

Qu 474,405 × 7
Vu 474,405 × 6 Vu 73,911 × 6

bu 6 × 7 bu 6 × 7

Memory Saved 15% 85%

5. Assessing the Relevance of the Pruned Data via Finite Element Model Updating-H2ROM

In this section, the relevance of the pruned data for further usage is discussed. The experimental

data extracted from computed tomography can have various purposes. This paper focuses on its

use for model calibration, and is illustrated with the in-situ compressive test of a resin bonded sand

presented in the previous section. The main aim of this part is to prove that the RED computed thanks

to a model free procedure is relevant to assess or calibrate an arbitrary constitutive model.

The model used for the illustrating example is a constitutive elastoplastic model with m unknown

parameters to calibrate. The procedure employed is a Finite Element Model Updating (FEMU)

technique, coupled with an hybrid hyper-reduction method for the solution of approximate balance

equations. The use of such method is straightforward as the input data are actually hyper-reduced.

This approach is termed FEMU-H2ROM.

The FEMU-H2ROM method is resumed in the flowchart in Figure 8. The FEMU-H2ROM aims

to find the best parameter µ∗ that replicate the experimental data available on the RED by using

hyper-reduced equations. During the optimization procedure, the parameters are updated via hybrid

hyper-reduced simulations. After few adaptation steps, the optimality of the parameter is checked by

using a full FE simulation. If required, the reduced basis involved in the hyper-reduced simulation

are updated.

5.1. Constitutive Model MC-CASM

5.1.1. Presentation

The resin-bonded sand behavior is modeled with a relatively simple constitutive model based

on the Cemented Clay and Sand Model (C-CASM). It consists in the extension of the Clay And Sand

Model developed by Yu [39] for unbonded sand and clay to bonded geomaterials within the framework

developed by Gens and Nova [40]. The C-CASM has been extensively described in [41]. The Modified

Cemented Clay And Sand Model (MC-CASM) presented here has some modifications of the C-CASM:

• Addition of a damage law whose equation is phenomenological (based on cycled compressive

tests).
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• The hardening law of the bonding parameter b is different: A first hardening precedes the

softening. It is supposed here that the polyurethane resin goes through a first hardening before

breaking.

It is supposed here that the yield function was previously calibrated with standard laboratory

tests. The calibration concerns the parameters involved in the different damage and hardening laws

that can be more difficult to assess with macroscopic loading curves. In the continuation of the paper,

the equivalent von Mises stress is denoted q and the mean pressure p. The MC-CASM equations are

summarized hereafter.

Figure 8. Flowchart of the FEMU-H2ROM.

5.1.2. Yield Function and Plastic Flow

The yield function, f , of the constitutive model is defined by:

f (σ; pc, b) =

(
q

M(p + pt)

)n

+
1

ln r
ln

(
p + pt

pc(1 + b) + pt

)
(35)

where M, r, and n are constant parameters that control the shape of the yield function. pc is the

preconsolidation pressure, that is to say the maximum yield pressure during an isotropic compressive

test (see Roscoe et al. [42]). b is the bounding parameter modeling the amplification of the yield surface

due to intergranular bonding. pt is the traction resistance of the soil defined by Gens and Nova [40] as:

pt = αbpc (36)
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where α is a constant parameter modeling the influence of the binder on the traction resistance.

The yield function is supposed to be calibrated. This means that M, r, n, α and the initial values of

pc and b are known. The yield surfaces of the unbonded (blue) and bonded sand (red) are plotted in

Figure 9.

q

ppt pc(1+b)pc

f(b = 0) f(b > 0)

Figure 9. Yield surfaces in the (p, q) plane.

5.1.3. Hardening and Damage Laws

The model has two hardening variables: the preconsolidation pressure pc and the bonding

parameter b. The evolution of pc is directly controlled by the incremental plastic volumetric strain ε̇
p
v,

whereas b relies on a plastic strain damage measure h:

ṗc

pc
= μ1 ε̇

p
v (37)

ḃ = (−be−h + μ6μ7e−μ7h)ḣ (38)

The incremental value of h is defined as a weighting of the effects of the incremental plastic shear

strain and the incremental plastic volumetric strain:

ḣ = μ2|ε̇p
s |+ μ3|ε̇p

v| (39)

The model also includes a damage law whose formulation is purely phenomenological:

E = E0(1− D) (40)

D = μ4hμ5 (41)

The hardening and damage laws provide m = 7 unknown parameters to calibrate.

5.2. Calibration Protocol by Using the Hybrid Hyper-Reduction Method

The FEMU-H2ROM is preceded by an off-line phase similar to an unsupervised machine learning

phase. It consists in building the empirical reduced basis V that is mandatory to set up the hybrid

hyper-reduced equations. It is similar to the first step of the data pruning method: a snapshot matrix is

constructed based on simulations and experimental results (and not on experiments only).

The starting point of the off-line phase is to assess the parameter sensibilities of the model starting

from an initial guess µ0 = {μ0
1, . . . , μ0

m}. This guess can come from a previous calibration, or a

calibration done using macroscopic force–displacement curves of standard tests without predicting

strain localization.

The off-line calculations are performed on the full domain Ω and thus can be time consuming.

The boundary conditions are the experimental displacements taken from the computed tomography

imposed at the top and the bottom of the sample. The displacement field is not imposed inside the

sample because one of the aims of the model is to correctly capture the strain localization appearing

inside the sample during the test, under the constraint of balance equations. Imposing the displacement

field inside the specimen gives less balance equation to fulfill. m calculations are made on Ω. Attention
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is drawn to the fact that these calculations can be done in parallel. Only the displacement snapshot

matrices are needed. A total of m + 1 independent calculations are performed:

• One initial calculation where µ = µ0, which gives QFE
u (µ0);

• m parameters sensibility calculations where µ = µi = {μ0
1, . . . , μ0

i + δμ0
i , . . . , μ0

m}, which give

QFE
u (µi) for i = 1, . . . , m

Once done, these calculations are restricted to the reduced experimental domain ΩR. They are

denoted Q
FE
u (µi) for i = 0, . . . , m. All these results have to be aggregated in one snapshot matrix X

before the computation of the empirical modes V. Instead of concatenating the m + 1 matrices into one,

a DEPOD method is used (see Schmidt et al. [36]). This approach has been validated in previous works

on model calibration with hyper-reduction (see Ryckelynck and Missoum Benziane [43]). This allows

capturing the effects of each parameter variation.

X = [αVubu, Q
FE
u (µ0),

‖QFE
u (µ0)‖F

2 ‖QFE
u (µ1)−Q

FE
u (µ0)‖F

(Q
FE
u (µ1)−Q

FE
u (µ0)), . . . ,

‖QFE
u (µ0)‖F

2 ‖QFE
u (µm)−Q

FE
u (µ0)‖F

(Q
FE
u (µm)−Q

FE
u (µ0))] (42)

where ‖ · ‖F is the Frobenius norm. The first term αVubu corresponds to the pruned experimental

data. It is weighted by a custom parameter α that enables giving more impact to the experimental

fluctuations in the empirical modes. The finite element methods tends to smooth these fluctuations,

thus provoking a certain loss of information.

Empirical modes depending on the factor α are displayed in Figure 10. For α = 0, that is to

say without experimental data in the bulk, the empirical modes have strong fluctuations only at

the top and the bottom of the specimen, where the experimental boundary conditions are imposed.

This can be explained by the natural smoothing that ensures the finite element method with rather

elliptic equations. Increasing the importance of the experimental data tends to naturally perturb the

displacement field inside the sample. Even for strongly perturbed modes (α = 10), the last empirical

mode is roughly smooth: this is due to the POD algorithm that filters the data. In the sequel, we choose

α = 1. The experimental data are as important as simulation data related to FE balance equations.

α = 0

α = 1

α = 10

First mode Second mode Third mode Last mode

Figure 10. Magnitude of the displacement (
√

u2
1 + u2

2 + u2
3) for each DEPOD mode depending on α.

Once V is available, the hybrid reduced basis V
H

can be defined. Then, the experimental reduced

coordinates are projected on the empirical reduced basis to be compared during the optimization loop:

bH
u = (V

H
)T Vu bu (43)
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For the proposed example, there is a fast decay of the singular value (see Figure 11 where ǫPOD is

set to 10−4). When this decay is not sufficient to provide a small number of empirical modes, we refer

the reader to [44–46] to cluster the data in order to divide the time interval and construct local reduced

basis in time.

5 10 15 20 25

−6

−4

−2

Mode

log
(

λ(X)

λmax(X)

)

Figure 11. Singular values of X verifying λ(X) > ǫPODλmax(X).

5.3. Discussion on Dirichlet Boundary Conditions

After the data pruning, experimental data are available in all ΩR. When displacements are

constrained to follow the experimental data, we loose FE balance equations. The following theorem

helps to discuss the Dirichlet boundary conditions.

Theorem 5. If α > 0, ǫtol = 0; if the experimental data Qu = Vu bu fulfill the FE equations on ΩR with the

following additional Dirichlet boundary conditions:

aFE(tj, µ)[I ] = Qu[I∗, j]; (44)

and if both hybrid hyper-reduced equations and FE equations on ΩR are unique, then the solution of the

hybrid hyper-reduced equation is the exact projection of the experimental data on the empirical reduced basis

bH(µ) = [(V
T

Qu)
T , 0T

R]
T , with ‖Qu −V V

T
Qu‖ = 0.

Proof. If the solution of the FE equations in ΩR is unique with Dirichlet boundary conditions on I∗
equal to aFE(tj, µ)[I ], then this solution is aFE(tj, µ)[F ]. If Qu fulfills the FE equations on ΩR, with the

additional Dirichlet boundary conditions, then:

aFE(tj, µ)[F ] = Qu[:, j] j = 1, . . . , M

and

rFE(Qu[:, j])[F ⋆, :] = 0 j = 1, . . . , M

If α > 0 and ǫtol = 0, then

aFE(tj, µ)[F ] = V bFE(tj, µ) j = 1, . . . , M,

with

bFE(tj, µ) = V
T

Qu[:, j] = V
T

Vu bu(tj) j = 1, . . . , M

Then,

rFE(V
H

bH(tj, µ))[F ⋆, :] = 0 j = 1, . . . , M
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with bH(tj, µ) = [(bFE(tj, µ))T , 0T
R]

T . Thus, bH(tj, µ) is the unique solution of the hybrid

hyper-reduced equations, and the exact projection of the restrained FE solution.

The last theorem does not imply that imposing aFE(tj, µ)[I ] = Qu[I∗, j] as a boundary condition

to degrees of freedom in I∗ is the best way to fulfill FE balance equations on the full mesh. In fact,

with the additional boundary conditions on I∗, the maximum of available FE equations is card(F ⋆).

Theorem 4 means that if the empirical reduced basis is exact, then all the Nd FE balance equations are

fulfilled in Ω. In a sense, in the proposed calibration protocol, we better trust in FE balance equations

than in experimental data. Accurate FE balance equations can be obtained by a convenient mesh of Ω,

although noise is always present in experimental data.

5.4. Parameters Updating

In the optimization loop (Figure 8), a given set of parameters µ is assessed. The H2ROM

calculations provide the reduced coordinates associated with the empirical basis previously determined

on the RED denoted bH(µ). The top reaction FFE(µ) is also calculated as the average axial stress in

the ZOI.

In the example, the cost function that must be minimized, evaluates two scales of error:

the microscale error between experimental and computed reduced coordinates and the macroscale

error between the measured and computed top reactions. These error functions are, respectively,

denoted χ2
u(µ) and χ2

F(µ).

The microscale error is defined as:

χ2
u(µ) = (bH(µ)− (V

H
)T Vu bu)

T(bH(µ)− (V
H
)T Vu bu) (45)

The choice of the norm is user-dependent. The inverse covariance matrix of the displacement is

the best norm for a Gaussian noise according to [47,48] for a Bayesian framework. However, in this

present study, to keep the treated problem rather simple, a 2-norm has been chosen. The macroscale

error is defined as:

χ2
F(µ) = ‖FFE(µ)− F‖2

∂uΩ (46)

Here, ∂uΩ is the top surface of the ZOI, where the experimental load was measured and where

the experimental displacements are imposed as Dirichlet boundary conditions. The experimental

load measurements are supposed uncorrelated and their variance is denoted by σ2
F. In a Bayesian

framework, for a Gaussian noise corrupting the load measurements [23], the previous equation can be

written as:

χ2
F(µ) =

1

Ntσ2
F

(FFE(µ)− F)T(FFE(µ)− F) (47)

For the the optimization loop, the final objective function is a weighted sum of the two previous

sub-objective functions:

χ2(µ) = cuχ2
u(µ) + cFχ2

F(µ) (48)

where cu and cF are the weights. They can be chosen to balance the two cost functions or to

privilege one scale to another. In the illustrating example, the cost function is balanced. A classical

Levenberg–Marquardt algorithm is employed for the minimization of the error function and the update

of the parameters vector µ.

5.5. Model Calibration and FEM Validation

The optimization loop took 53 iterations. The speed ratio between FEM calculations and H2ROM

predictions is around 70. Moreover, the H2ROM predictions only needed around 3% of the FEM

calculation memory cost. The H2ROM predictions converge way more easily than the FEM calculations.

The problem simulated in the optimization loop is a displacement imposed problem. The use of the
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reduced basis to predict the displacement field facilitates drastically the convergence. That explains

also the important speed-up time that does not come only from the reduction of the integration domain.

Figure 12 displays the experimental and the computed top reactions (initial and optimized).

At the end of the optimization loop, it is mandatory to assess the relevance of the H2ROM prediction.

The FEMU-H2ROM is dependent on the initial guess µ0. This input determines the relevance of the

reduced basis of the model after the parameters sensibility study and the DEPOD analysis. When

updating the model, the parameter set may be too different from the initial guess. As a consequence,

the empirical reduced basis V
H

may not be accurate and the H2ROM predictions will not be admissible.

That is to say that the discrepancy between hyper reduced and Finite Element calculations may not

be negligible. That is why the optimized parameters set µ∗ must be validated with FEM calculations

on the full domain Ω. It is worth noting that, if the experimental data are included in the DEPOD,

the final H2ROM prediction should be close to the experiments.

1 2 3 4 5 6
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1,000
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Experiment

µ0

µ∗

FEM verification

Figure 12. Result of the H2ROM optimization.

In a similar manner to the optimization loop, an error function between both calculations can be

defined focusing on the microscale (displacement error) and macroscale (top reactions differences).

Concerning the microscale, the discrepancy is only computed in the RED, as H2ROM predictions

are only made on this domain and cannot be reconstructed in the full domain with this particular

approach. The microscale discrepancy is estimated by ru:

r2
u(µ
∗) =

(
aH(µ∗)− aFE(µ∗)[F ]

)T (
aH(µ∗)− aFE(µ∗)[F ]

)
, with aH(µ∗) = V

H
bH(µ∗) (49)

In the same manner, the macroscale discrepancy measure the norm of the difference between the

two prediction of the load applied to the specimen. This indicator is denoted by rF. The microscale

and macroscale errors should not exceed a few percents of the FEM calculations. In Figure 12, the FEM

top reaction is plotted in orange. It is clear that its value is extremely close to the one computed thanks

to H2ROM. The error is around 1% at each step.

This final verification is purely numerical. If the H2ROM predictions are validated, it is advised

to analyze deeper the full field FEM calculation.

In the case of notable differences between H2ROM prediction and FEM calculations, or between

FEM calculations and experiment, the FEMU-H2ROM is not validated. Two solutions are possible to

overcome this issue:

1. Perform again the whole parameters sensibility study with µ0 = µ∗.
2. Concatenate the previously determined matrix X from Equation (42) with Qu(µ

∗) and perform

a new truncated SVD to determine ultimately an enriched reduced basis V
H

. No new FEM

calculations are needed.
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The first solution should be performed in the case of strong differences between H2ROM

prediction and FEM calculations. The second option “only” costs a FEM calculation. It is also

possible to modify the optimization loop to include regularly FEM-H2ROM comparison and enrich

V
H

incrementally.

6. Discussion

6.1. Limitations of the Pruning Procedure

The present paper focused on DVC sets and not on the images themselves. Since each element

covers several voxels, the images are also known to be particularly heavy and perhaps more

problematic than the DVC data. The pruning procedure considers that they can be deleted. Actually,

it can be problematic. For instance, new DVC algorithm could improve the determination of the

displacement field (for example for complex problems involving cracks).

The images could be pruned too, in the sense that the only the pixels of the images inside the

determined RED can be conserved. However, we preconize to store only the reduced DVC data when

the data storage is an issue.

In the case of non homogeneous materials, the data concerning the inhomogeneity outside the

RED must be saved as well.

6.2. About the Reconstruction of Data outside the RED

Because of the proposed data pruning, experimental data outside the RED are no more available.

However, the finite element verification gives access to an estimation of these data via the finite

element model and the optimal parameters µ∗. For instance, the shear strain distribution can be

estimated by the finite element model with the optimal values of the parameter. In the illustrating

example, the computed and measured shear strain distributions, over the integration points in Ω,

were compared. The analysis is summarized in the histograms displayed in Figure 13 for the last

pre-peak step. The discrepancy between computed (via FE verification) and measured distributions

was considered here as satisfying.

Figure 13. Probability distribution of shear strain at the last pre-peak step in the whole domain Ω,

comparing FEM calculation (verification step) and experimental data.

6.3. Shear Strain Distributions in the RED

We can also consider the shear strain distributions is inside the whole domain Ω and the RED ΩR

for the illustrating example. It would be preferable that the pruning procedure stores in the RED the

most different configurations. The shear strain distributions in the whole domain and in the RED
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might be different (not the same mean value for example). Figures 14a and 15a present the shear strain

distributions at the first and last pre-peak step. It appears that the statistical distribution of the shear

strain inside the RED is not the same than the one inside the full domain. Nevertheless, zooms at both

histograms in Figures 14b and 15b reveal that the extremum values of the shear strain are conserved.

One can see that the RED contains nearly all the elements where the shear is maximal. Even if the

proposed procedure is model-free, it is intimately linked with the mechanics of solids: it will store

preferably the data that are mechanically more relevant. For strain localization phenomenon, it is the

most sheared zone. The proposed method is not statistical: it actually induces a sampling bias.

(a) (b)

Figure 14. Shear strain distributions (a) in the whole domain and (b) in the RED at the first step.

(a) (b)

Figure 15. Shear strain distributions (a) in the whole domain and (b) in the RED at the last step.

7. Conclusions

The present paper proposes a data pruning procedure for DVC data that is model free and

versatile. The k-SWIM algorithm, through its parameter k, enables the user to define the size of the

stored data.

The resultant data can still be used afterwards, for instance for calibration. The use of hybrid

hyper-reduction is particularly suitable for the pruned data as it enables a non-negligible reduction of

memory and time costs in the FEMU optimization loop. The FEMU-H2ROM method is thus a new

way to use massive DVC data for deeper mechanical studies.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2297-8747/24/1/18/s1
as supplementary files to make the output of Algorithm 1 reproducible. The ASCII file Node-iXYZ.txt contains the
node indices and the related coordinates. The files Vu.npy, bu.npy and Pu_reference.npy, are binary files related
to Vu, bu and Pu, respectively. They have been generated by using the NumPy instruction “save”. The ASCII file
k_swim.py contains Algorithm 1 written with SciPy instructions. In the ASCII file run_kswim.py, this algorithm is
applied to the data Vu.
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Abstract: The simulation of complex engineering structures built from magneto-rheological

elastomers is a computationally challenging task. Using the FE2 method, which is based on

computational homogenisation, leads to the repetitive solution of micro-scale FE problems, causing

excessive computational effort. In this paper, the micro-scale FE problems are replaced by

POD reduced models of comparable accuracy. As these models do not deliver the required

reductions in computational effort, they are combined with hyper-reduction methods like the

Discrete Empirical Interpolation Method (DEIM), Gappy POD, Gauss–Newton Approximated

Tensors (GNAT), Empirical Cubature (EC) and Reduced Integration Domain (RID). The goal of

this work is the comparison of the aforementioned hyper-reduction techniques focusing on accuracy

and robustness. For the application in the FE2 framework, EC and RID are favourable due to their

robustness, whereas Gappy POD rendered both the most accurate and efficient reduced models. The

well-known DEIM is discarded for this application as it suffers from serious robustness deficiencies.

Keywords: model order reduction; POD; DEIM; gappy POD; GNAT; ECSW; empirical cubature;

hyper-reduction; reduced integration domain; computational homogenisation

1. Introduction

The ongoing development of so-called smart materials over the last decades has given rise to

the quest for numerical models which enable predictive, fast and accurate simulations of engineering

structures. For smart materials, the desired constitutive behaviour is frequently architectured by

tailoring the microstructure of said material, e.g., fibre-reinforced composites, auxetic materials, metal

foams and many more. An established approach to model such structures is denoted multiscale

modelling for which commonly two scales, the micro- and macro-scale, are introduced. The geometric

complexities and advanced boundary conditions of engineering structures are modelled on the

macro-scale, whereas the microstructure is represented on the micro-scale. One way to consistently

couple micro- and macro-scale is the so-called FE2 method [1]. FE2 is a multi-level finite element

method that derives the constitutive response in every quadrature point of the macro-scale from an FE

simulation incorporating the microstructure using the framework of computational homogenisation [2].

Even though the everlasting increase in computational resources following Moore’s law has

enabled scientists to solve FE problems with 1013 DoFs [3], the numerical cost of FE2 simulations is

still prohibitive for most realistic problems. The idea of replacing the micro-scale FE simulation by a

less expensive model has brought together the fields of multiscale and reduced-order modelling.

In the last several years, several viable models targeted at reducing the multiscale FE simulation

have been developed. In this contribution, we focus on projection-based models using a reduced
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basis, but there are also alternatives like the Nonuniform Transformation Field Analysis [4,5] and

Proper Generalized Decomposition [6,7]. In projection-based reduced models, the reduced basis is

a set of few functions with global support that is constructed to approximate the solution manifold

of the problem in question. Projecting the governing equations onto the reduced basis yields a

considerable reduction in the number of unknowns compared to using the locally supported FE basis

functions. The most commonly used methods to construct the reduced basis are Proper Orthogonal

Decomposition (POD) [8–11] and the Reduced Basis Method [12–15]. Both rely on solutions of the

parametrised partial differential equation (pPDE), for POD, the pPDE is solved for a set of given

parameters, whereas the Reduced Basis Method employs a greedy algorithm equipped with an

a posteriori error estimator to determine the parameters adaptively. As there are hardly any efficient

and reliable error estimators for coupled nonlinear multi-physic problems, POD is the method of

choice in this work. In [16], a POD reduced basis was used for the first time in multiscale analysis of

nonlinear elasticity at finite strains, namely by reducing the micro-scale model. This was extended

in [17] by introducing the computation of a consistent tangent operator based on the reduced model.

For problems with nonlinearities or non-affine parameter dependence, the sole application of a

reduced basis does not render the desired computational savings as the nonlinearity or non-affine

parameter dependence has to be evaluated for the original model and subsequently projected onto

the reduced basis. A widely used method accelerating the computation of the nonlinearity is the

(Discrete) Empirical Interpolation Method (D)EIM [18,19]. DEIM approximates the nonlinearity by

a linear combination of collateral basis functions. The coefficients are computed using interpolation

based on values of the nonlinearity sampled at a relatively small number of points. In order to

improve the approximation, interpolation is replaced by linear regression for Gappy POD [20].

In [21], Petrov–Galerkin projection is used to increase the stability of reduced models. Together

with Gappy POD and possibly differing approximations of the reduced system matrix, this is referred

to as GNAT (Gauss–Newton Approximated Tensors). As DEIM, Gappy POD and GNAT use collateral

basis functions to approximate the nonlinearity, they are classified as collateral basis methods. Both

POD and DEIM have been applied previously to various mechanical problems: a simplified beam

model for multiscale modelling at small strains including damage [22], strain-softening viscoplasticity

at small strains [23] and structural mechanics using a variant of DEIM based on the unassembled

nonlinearity [24]. A collateral basis for the stresses instead of the nonlinearity was used in [25] for

homogenisation of elasto-plastic materials at small strains, together with Gappy POD and a tailored

method to determine the locations at which the stresses are evaluated in the reduced model. A detailed

survey of DEIM, Gappy POD and GNAT for homogenisation of hyper-elastic materials at finite strains

that focus on accuracy and robustness was performed in [26].

Cubature methods are another possibility of reducing the cost of computing the nonlinearity.

In this sense, a problem specific quadrature rule replaces the quadrature used to integrate the weak

form, e.g., Gaussian quadrature. This empirically determined quadrature uses only a subset of

the support points or elements of the original FE model and computes the weights accordingly.

This idea was put forward in [27] and later introduced to the field of computational homogenisation

as Energy-Conserving Sampling and Weighting (ECSW) [28]. A possibility to reduce the cost of

constructing the cubature was introduced in [29] together with the term Empirical Cubature (EC).

The accuracy and efficiency of EC was compared to a variant of DEIM/Gappy POD used in [25] for

homogenisation of elasto-viscoplastic materials in small strains [30].

The Hyper-Reduction method [31] makes use of a reduced integration domain (RID) to speed

up the computation of the nonlinearity. It defines test functions with support confined to the RID,

which in combination with trial functions obtained by POD results in a Petrov–Galerkin projection.

The expression hyper-reduction was coined in [31] but is now used as a term encompassing all

methods aiming at accelerating the computation of nonlinearities in the field of model reduction.

Therefore, we will refer to the Hyper-Reduction method [31] as RID to avoid any notational confusion.

The RID was used for the simulation of elasto-plasticity [32], the simulation of nonlinear thermal and
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mechanical problems involving internal variables [33] and the lifetime assessment of elasto-plastic

structures [34]. An algorithmic comparison with DEIM for the nonlinear heat equation was carried out

in [35]. Similarly, the Missing Point Estimation (MPE) method [36] computes the Galerkin projection

in a small subset of the computational domain to accelerate the assembly of the reduced problem.

An investigation of the MPE method is beyond the scope of this article and accordingly we refer the

interested reader to [37], where a detailed comparison of MPE, DEIM and Gappy POD was performed

for a predator–prey model.

In this contribution, we will show the first application of reduced-order modelling for

computational homogenisation in magneto-mechanics at finite strains. We will focus on reducing

the problem at the micro-scale, using POD to compute the reduced basis and applying following

hyper-reduction methods: DEIM, Gappy POD, GNAT, EC and RID. Through various numerical

studies, a thorough comparison between the techniques with emphasis on accuracy and robustness

will be drawn.

2. Homogenisation in Magneto-Mechanics

The simulation of engineering structures requires evaluations of a material law at the

engineering/macro-scale (≈mm–m). For magneto-rheological elastomers (MREs), the constitutive

behaviour on the macro-scale is determined by the underlying microstructure (≈nm–μm). Usually,

MREs are composite materials consisting of an elastomeric matrix with embedded magneto-active

particles [38] which induce changes in stiffness or deformations due to applied magnetic fields. Due to

the scale separation, a resolution of the microstructure in the discretisation of the macrostructure is

computationally not feasible. The tools of computational homogenisation offer an expedient to the

issue as the constitutive behaviour for any point on the macro-scale is computed from the solution of a

boundary value problem (BVP) representative for the microstructure. The material composition of the

microstructure is described by an RVE (Representative Volume Element) for which the constitutive

behaviour of the constituents is prescribed. In the context of magneto-mechanics, the macroscopic

deformation gradient F and the magnetic field ❍ are the input variables for the microstructural

BVP [39,40]. In the remainder, we use an over-bar to denote macro variables (•).
As is common in homogenisation, the micro displacement and scalar magnetic potential are

additively split into two parts, the macroscopic fields and the fluctuations:

u = F · X + ũ ② = ❍ · X + ②̃. (1)

The macroscopic fields depend linearly on the macroscopic deformation gradient F, the

macroscopic magnetic field❍ and the position vector X.

We use linear boundary conditions to fulfill the Hill–Mandel condition. Using the fluctuations ũ

and ②̃ as primary variables allows us to transform the linear into homogeneous boundary conditions.

The RVE occupies the domain B0 ⊂ Rd with its boundary ∂B0, where d denotes the space dimension.

The energy density Ψ (F,❍) is expressed in terms of the deformation gradient F and the magnetic

field❍ and used to define the constitutive relations for the Piola stress P and the magnetic induction❇.

The balance of linear momentum and Gauss’s law for magnetism (also known as conservation of

magnetic flux) complete the strong form of magneto-mechanics on the micro-scale [41]:

F = ∇X u = F +∇X ũ ❍ = ∇X② = ❍+∇X ②̃ in B0,

P =
∂Ψ (F,❍)

∂F
❇ = −∂Ψ (F,❍)

∂❍
in B0,

Div P = 0 Div❇ = 0 in B0,

ũ = 0 ②̃ = 0 on ∂B0.

(2)
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For the sake of an FE solution, the weak form

∫

B0

∇X δũ : P dV = 0 ∀δũ ∈
{

δũ ∈ H1(B0) : δũ = 0 on ∂B0

}

and
∫

B0

∇X δ②̃ ·❇dV = 0 ∀δ②̃ ∈
{

δ②̃ ∈ H1(B0) : δ②̃ = 0 on ∂B0

} (3)

is derived using the test functions δũ and δ②̃.

For the spatial discretisation, the standard Bubnov–Galerkin FEM is used. The continuum body

is approximated by a mesh B0 ≈ T =
M⋃

e=1
Ωe with Ωi ∩ Ωj = ∅ for i �= j and i, j ∈ [1, . . . , M],

where M denotes the number of elements. The displacement and potential fields in any finite

element Ωe are approximated by the piecewise continuous vector-valued polynomials Nu
i (X) and

scalar polynomials N②

i (X), respectively:

ũ
Ωe

:=
du

e

∑
i=1

ũi N
u
i (X), δũ

Ωe
:=

du
e

∑
i=1

δũi N
u
i (X),

②̃
Ωe

:=
d②e

∑
i=1

②̃i N
②

i (X), δ②̃
Ωe

:=
d②e

∑
i=1

δ②̃i N
②

i (X).

(4)

The scalars du
e and d②e are the numbers of mechanical and magnetic DoFs in the element Ωe. Using

these approximations results in the discrete weak form

R̂ =

[
R̂u ∈ RNu

R̂② ∈ RN②

]
=

M
A

e=1

[
eR̂u ∈ Rdu

e

eR̂② ∈ Rd②e

]
= 0 with

⎡
⎢⎢⎣

eR̂u[i] =
∫

Ωe

∇X Nu
i : P dV

eR̂②[i] =
∫

Ωe

∇X N②

i ·❇dV

⎤
⎥⎥⎦ for Ωe ∈ T . (5)

The sub-/superscripts (•)u/(•)u and (•)②/(•)
②

encode whether a variable is associated with

the mechanical or magnetic component and are used throughout the remainder of the paper.

The notation ˆ(•) is consistently used to differentiate between a continuous field and its discrete FE

counterpart, e.g., ũ is the displacement fluctuation and ˆ̃u is the vector containing the nodal coefficients

for the FE discretisation. To refer to single elements of any vector/first-order tensor X and of any

matrix/second-order tensor Y , the notation X[i] and Y [i, j] are used. The operator
M
A

e=1
represents the

assembly of the element contributions and the scalars Nu, N② and N = Nu + N② are the numbers of

DoFs employed in the FE discretisation.

The numerical solution of the system of nonlinear Equations (5) using the iterative

Newton–Raphson scheme requires its linearisation

KkΔ ˆ̃yk = −R̂k with ˆ̃yk+1 = ˆ̃yk + Δ ˆ̃yk and ˆ̃yk =

[
ˆ̃uk

ˆ̃②k

]
, (6)

introducing the iteration count k.

For the sake of notational clarity, the dependences of R̂k

(
ˆ̃yk; F,❍

)
and Kk

(
ˆ̃yk; F,❍

)
are dropped.

The tangent stiffness matrix K is given as

154



Math. Comput. Appl. 2019, 24, 20

K =

[
Kuu ∈ RNu×Nu Ku② ∈ RNu×N②

K②u ∈ RN②×Nu K②② ∈ RN②×N②

]
=

M
A

e=1

[
eKuu ∈ Rdu

e×du
e eKu② ∈ Rdu

e×d②e

eK②u ∈ Rd②e ×du
e eK②② ∈ Rd②e ×d②e

]

with

eKuu[i, j] =
∫

Ωe

∇X Nu
i :

∂P

∂F
: ∇X Nu

j dV

eKu②[i, j] =
∫

Ωe

∇X Nu
i :

∂P

∂❍
· ∇X N②

j dV

eK②u[i, j] =
∫

Ωe

∇X N②

i ·
∂❇

∂F
: ∇X Nu

j dV

eK②②[i, j] =
∫

Ωe

∇X N②

i ·
∂❇

∂❍
· ∇X N②

j dV

for Ωe ∈ T .

(7)

Once the solution of (5) is obtained, the output quantities P and ❇ are computed using

P =
1

V

∫

B0

P dV and ❇ =
1

V

∫

B0

❇dV, (8)

where the volume of the RVE is denoted by V.

3. Reduced-Order Modelling

3.1. Reduced Basis

Instead of using a large number N of compact trial functions, projection-based ROMs are built

upon a small number n of global functions spanning the space in which the solution manifold of

the pPDE resides. Consequently, the unknown fluctuation fields ũ and ②̃ are expressed as linear

combinations of the global trial functions with the reduced coefficients ũr
i and ②̃r

i :

ũ =
nu

∑
i=1

ϕu
i ũr

i and ②̃ =
n②

∑
i=1

ϕ②i ②̃
r
i . (9)

The reducibility of the problem, namely the conditions nu ≪ Nu and n② ≪ N②, is accepted

implicitly but has to be confirmed by numerical studies. To avoid scaling issues due to differently

chosen units, separate reduced bases are used for the mechanical and the magnetic fluctuation

fields. The numbers nu, n② and n = nu + n② are the numbers of reduced basis functions to be

taken into account.

A common method to compute the reduced basis for a pPDE is POD [9,42]. In order to do so, we

define the parameter domain of the microscopic problem

P =
(

F
min

[1, 1], F
max

[1, 1]
)
× · · · ×

(
F

min
[d, d], F

max
[d, d]

)

×
(
❍

min
[1],❍

max
[1]
)
× · · · ×

(
❍

min
[d],❍

max
[d]
)
⊂ R

d2+d
(10)

with reasonably chosen limits for the components of the macroscopic loading parameters. Each element

pi =
(

F i,❍i

)
∈ P comprises an instance of the macroscopic deformation gradient and magnetic field.

The parameter domain P is sampled using ns parameters gathered in the set

S =
{

p1, . . . , pns

}
⊂ P (11)

and the full-order model (FOM) (5) is solved for all elements in S . The solutions are collected in the

snapshot matrices

Su =
[

ˆ̃u(p1), . . . , ˆ̃u(pns
)
]
∈ R

Nu×ns and S② =
[

ˆ̃②(p1), . . . , ˆ̃②(pns
)
]
∈ R

N②×ns (12)
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and the subsequent application of

POD (Su)→ Bu =
[
ϕ̂u

1, . . . ,ϕ̂u
nu

]
∈ RNu×nu and POD

(
S②
)
→ B② =

[
ϕ̂
②

1 , . . . ,ϕ̂②n②

]
∈ RN②×n② (13)

gives the discrete reduced bases contained in the matrices Bu and B②. For details on POD, we refer

to [9,43].

3.2. Galerkin ROM

In the Galerkin reduced model, the same ansatz (9) as for the solution is used for the test functions

δũ =
nu

∑
i=1

δũr
iϕ

u
i and δ②̃ =

n②

∑
i=1

δ②̃r
i ϕ②i . (14)

Inserting (9) and (14) into (5) results in the weak form of the Galerkin reduced model

∫

B0

∇Xϕu
i : P dV = 0 ∀i = 1, . . . , nu and

∫

B0

∇X ϕ②i ·❇dV = 0 ∀i = 1, . . . , n②, (15)

where the dependences P
(

ũ, ②̃; F,❍
)

and ❇
(

ũ, ②̃; F,❍
)

are dropped for notational brevity.

Analogously, the discrete weak (16) form and its linearisation (17) are derived:

B⊤R̂ = 0 with B :=

[
Bu 0

0 B②

]
∈ R

N×n, (16)

B⊤KkBΔỹr
k = −B⊤R̂k with ỹr

k+1 = ỹr
k + Δỹr

k and ỹr
k =

[
ũr

k ∈ Rnu

②̃
r
k ∈ Rn②

]
. (17)

Even though the size of the system of linear Equations (17) is significantly smaller than in

Equation (6) and hence the cost of the linear solver reduces from O(N2) to O(n3), the speed-up is only

marginal as the assembly of (17) depends on the original problem size. The cost for evaluating the

constitutive law for every quadrature point is roughly O(Nn + nel
qpM), where nel

qp is the number of

quadrature points per element. The computational complexities of assembling and projecting B⊤R̂k

and B⊤KkB are proportional to O(nN) and O(n2N + nN), respectively. Therefore, the application of

hyper-reduction methods is imperative.

4. Hyper-Reduction

4.1. Discrete Empirical Interpolation Method

The Discrete Empirical Interpolation Method [19] is the standard hyper-reduction method for

non-affine or nonlinear pPDEs, for some problems even equipped with a posteriori and a priori error

estimators [44,45]. The first step is to approximate the discrete residuum

R̂ =

[
R̂u

R̂②

]
≈
[

HRu 0

0 HR②

] [
ru

r②

]
=: HRr,

with HRu =
[
φ̂Ru

1 , . . . , φ̂Ru

ru

]
∈ R

Nu×ru , HR② =
[
φ̂R②

1 , . . . , φ̂R②
r②

]
∈ R

N②×r② ,

ru ∈ R
ru , r② ∈ R

r② , HR ∈ R
N×r and r ∈ R

r

(18)

by a linear combination of collateral basis vectors contained in HR with r being the vector of coefficients.

Due to a different number range, it is advisable to approximate the mechanical and magnetic residua
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by two separate collateral bases HRu and HR② . The collateral basis is computed based on snapshots of

the residuum. For that purpose, (16) is solved for every parameter pi ∈ S and the residua

Tu
i =

[
R̂u

1

(
pi

)
, . . . , R̂u

ku

(
pi

)]
and T

②

i =
[

R̂
②

1

(
pi

)
, . . . , R̂

②

k②

(
pi

)]
(19)

are collected in the course of the Newton–Raphson process to build the matrices

SRu =
[

Tu
1 , . . . , Tu

ns

]
and SR② =

[
T
②

1 , . . . , T
②

ns

]
. (20)

As R̂u
j

(
pi

)
and R̂

②

j

(
pi

)
converge to the null vector during the iterative solution of (16), only residua

fulfilling
∥∥∥R̂u

j (pi)
∥∥∥/
∥∥∥R̂u

1(pi)
∥∥∥ > tol and

∥∥∥R̂②j (pi)
∥∥∥/
∥∥∥R̂②1 (pi)

∥∥∥ > tol are taken into account. The subsequent

application of POD (SRu)→ HRu and POD (SR②)→ HR② gives the collateral bases.

The coefficients in (18) are determined using interpolation

P
⊤
Ru R̂u = P

⊤
Ru HRu ru with PRu =

[
eρu

1
, . . . , eρu

ru

]
∈ N

Nu×ru ,

P
⊤
R② R̂② = P

⊤
R②HR②r② with PR② =

[
eρ②1

, . . . , eρ②r②

]
∈ N

N②×r② ,
(21)

meaning the approximation has to be equal to the residuum at the interpolation indices. The matrices

PRu and PR② are sampling matrices, where eρu
i

for i = 1, . . . , ru and eρ②j
for j = 1, . . . , r② are unit vectors

with only one non-zero component in the ρu
i -th and ρ②j -th entry.

Application of the DEIM Algorithm A1, provided in Appendix A, to the collateral bases
{

φ̂Ru

i

}ru

i=1

and
{

φ̂R②

i

}r②

i=1
returns the interpolation indices and guarantees the matrix products

[
P
⊤
Ru HRu

]
and

[
P
⊤
Ru HRu

]
to be non-singular. Consequently, the interpolation coefficients are calculated by

ru =
(
P
⊤
Ru HRu

)−1
P
⊤
Ru R̂u and r② =

(
P
⊤
R②HR②

)−1
P
⊤
R② R̂②. (22)

Introducing (18) and (21) into (16) gives the hyper-reduced weak form

Rr
k := B⊤HR

(
P
⊤
R HR

)−1
P
⊤
R R̂k = 0 with PR :=

[
PRu 0

0 PR②

]
∈ N

N×r (23)

and its linearisation becomes

B⊤HR

(
P
⊤
R HR

)−1

︸ ︷︷ ︸
precomputed: Rn×r

P
⊤
R KkBΔỹr

k = − B⊤HR

(
P
⊤
R HR

)−1

︸ ︷︷ ︸
precomputed: Rn×r

P
⊤
R R̂k.

(24)

The cost for evaluating the constitutive law for every quadrature point in elements containing

interpolation indices is reduced to approximately O(Nevaln + nel
qpm), where m is the number of

elements containing DEIM indices and Neval the number of DoFs associated with this elements.

The computational complexities of computing the residuum and tangent stiffness matrix are

proportional to O(rNeval) and O(nrNeval + rNeval), respectively. It is to be noted that an efficient

computation of the stiffness matrix utilises the sparsity of the FE matrix. Consequently, the assembly

and solution of (24) do not depend on the size of the FOM and should therefore result in the desired

speed-ups.

4.2. Gappy POD

Instead of interpolation, Gappy POD uses linear regression to determine the collateral basis

coefficients, meaning the residual is evaluated at more indices than coefficients. This is particularly
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beneficial for hyper-reduced models originating from FE models, as for the calculation of R̂u or R̂② at

each evaluation index ρu
i or ρ②i the solution (ũ, ②̃) and the respective constitutive components have

to be computed for every finite element containing the index. Hence, it is more economical to use all

DoFs attached to a node instead of possibly only one as for DEIM. The collateral basis coefficients are

computed solving

ru = arg min
a∈Rru

∥∥∥P⊤Ru R̂u −P
⊤
Ru HRu a

∥∥∥
2

2
with PRu =

[
eρu

1
, . . . , eρu

pud

]
∈ N

Nu×pud

and r② = arg min
a∈Rr②

∥∥∥P⊤R② R̂② −P
⊤
R②HR②a

∥∥∥
2

2
with PR② =

[
eρ②1

, . . . , eρ②p②

]
∈ N

N②×p② .

(25)

The integers pu and p② are the numbers of FE nodes at which the residua R̂u and R̂② are

computed and Nu and N② are the dimensions of the underlying FE model. For (25) to have unique

solutions, pud ≥ ru and p② ≥ r② have to hold. The solutions of (25) are obtained by computing the

pseudo-inverses
(
P
⊤
Ru HRu

)+
and

(
P
⊤
R②HR②

)+
rendering the explicit expressions

ru =
(
P
⊤
Ru HRu

)+
P
⊤
Ru R̂u and r② =

(
P
⊤
R②HR②

)+
P
⊤
R② R̂② (26)

for the collateral basis coefficients.

Inserting (26) into (16) gives the Gappy POD hyper-reduced weak form

Rr
k := B⊤HR

(
P
⊤
R HR

)+
P
⊤
R R̂k = 0 (27)

and the linearisation becomes

B⊤HR

(
P
⊤
R HR

)+

︸ ︷︷ ︸
precomputed: Rn×p

P
⊤
R KkBΔỹr

k = − B⊤HR

(
P
⊤
R HR

)+

︸ ︷︷ ︸
precomputed: Rn×p

P
⊤
R R̂k,

(28)

introducing p = pud + p②. In (28), the only difference to the DEIM hyper-reduced system (24) is

the appearance of the pseudo-inverse (•)+ instead of the inverse (•)−1. The cost for evaluating

the constitutive law is the same as for DEIM O(Nevaln + nel
qpm). The computational complexities

of computing the residuum and tangent stiffness matrix are proportional to O(pNeval) and

O(npNeval + pNeval).

To determine the FE nodes/indices, Algorithm A2, given in Appendix B, which is an advancement

of the algorithm proposed in [21] for multi-physic problems, is applied. Algorithm A2 uses normalised

maxima to cope with distinct domains and different units in multi-physic problems. Algorithm A2

is applied to
{

φ̂Ru

1 , . . . , φ̂Ru

ru

}
and

{
φ̂R②

1 , . . . , φ̂R②
r②

}
either separately or combined. In the latter case,

the same FE nodes are used for the gappy reconstruction of the residua R̂u and R̂②, resulting in more

efficient reduced models.

4.3. GNAT

To improve the accuracy and stability [21] of reduced models, the GNAT hyper-reduced model is

not based on Galerkin but on Petrov–Galerkin projection and therefore adopts different spaces for the

test and trial functions.

For accuracy reasons, the state-dependent test functions K
(

Byr
)

B are chosen and the discrete

weak form

B⊤K⊤R̂ = 0 (29)
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and its linearisation

B⊤K⊤k KkBΔỹr = −B⊤R̂k with ∑
i

R̂[i]
∂2R̂[i]

∂ŷ2
≈ 0 (30)

are obtained. Equation (30) is the normal equation for the associated least-squares problem

Δỹr
k = arg min

a∈Rn

∥∥∥KkBa + R̂k

∥∥∥
2

2
(31)

and therefore the solution of (29) is equivalent to solving the minimisation problem

minimise
a∈Rn

∥∥∥R̂ (Ba)
∥∥∥

2
(32)

with the Gauss–Newton method.

As the computation of (31) still depends on the original problem size, GNAT similarly to

Gappy POD uses collateral bases to approximate the nonlinearities and linear regression to determine

the coefficients:
R̂ = HRr and KB = HKk,

with r =
(
P
⊤
R HR

)+
P
⊤
R R̂ and k =

(
P
⊤
K HK

)+
P
⊤
K [KB] .

(33)

Numerical experiments have shown that the choice HR = HK and consequently PR = PK

renders reduced models of superior accuracy compared to models employing a separate basis for HK .

Putting (33) into (31) and multiplying from the left with H⊤R renders the least-squares problem to be

solved in every Gauss–Newton iteration

Δỹr
k = arg min

a∈Rn

∥∥∥∥∥
(
P
⊤
R HR

)+

︸ ︷︷ ︸
precomputed: Rr×p

P
⊤
R [KkB] a +

Rr
k︷ ︸︸ ︷(

P
⊤
R HR

)+

︸ ︷︷ ︸
precomputed: Rr×p

P
⊤
R R̂k

∥∥∥∥∥

2

2

(34)

and recalling p = pud + p②.

The complexity of assembling and solving (34) is similar to (28). As the Gauss–Newton method

does not converge quadratically like the classical Newton–Raphson scheme, more iterations are

necessary to minimise (32).

The computation of the collateral basis is similar to DEIM except that the residua are gathered

during the solution of (31). The matrix PR is determined using Algorithm A2 with the collateral bases

as input.

4.4. Empirical Cubature

Cubature methods aim at reducing the cost of computing the nonlinearity in (15) by defining an

empirical quadrature, which evaluates the integrand only in a limited number of quadrature points or

elements. Instead of summing up all element contributions, the nonlinearities are computed only in

the elements of the so-called reduced meshes Eu and E② and multiplied by positive weights:

[
B⊤u R̂u

]
[i] =

M

∑
e=1

∫

Ωe

∇Xϕu
i : P dV ≈ ∑

e∈Eu

ωu
e

∫

Ωe

∇Xϕu
i : P dV for i = 1, . . . , nu

and
[

B⊤②R̂②

]
[i] =

M

∑
e=1

∫

Ωe

∇X ϕ②i ·❇dV ≈ ∑
e∈E②

ω②

e

∫

Ωe

∇X ϕ②i ·❇dV for i = 1, . . . , n②,

with Eu =
{

e ∈ {1, . . . , M} : ωu
e > 0

}
and E② =

{
e ∈ {1, . . . , M} : ω②

e > 0
}

.

(35)
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In (35), each element e in Eu or E② is equipped with a positive weight ωu
e or ω②

e , whereas all the

other elements are assigned weights ωu
e = ω②

e = 0.

The approximation in (35) induces the errors

ueij = ∑
e∈Eu

ωu
e

∫

Ωe

∇Xϕu
i : Pj dV −

M

∑
e=1

∫

Ωe

∇Xϕu
i : Pj dV

and ②eij = ∑
e∈E②

ω②

e

∫

Ωe

∇X ϕ②i ·❇j dV −
M

∑
e=1

∫

Ωe

∇X ϕ②i ·❇j dV

(36)

for snapshots of the stress field
{

Pj

}ns

j=1
and the magnetic induction

{
❇j

}ns

j=1
. The reduced meshes Eu

and E② equipped with the weights {ωu
e }mu

e=1 and
{

ω②

e

}m②

e=1
are constructed by minimising the errors (36),

with mu and m② being the number of elements in the reduced meshes. Different algorithms for the

minimisation of (36) are discussed in [46].

Since this minimisation is numerically expensive, collateral bases [29]

P =
nP

∑
j=1

cP
j φP

j and ❇ =
n❇

∑
j=1

c❇j φ❇j (37)

for the stress and induction fields are introduced, where nP ≪ ns and n❇ ≪ ns should hold. For that

reason, (15) is solved for the parameters in S (11) and the snapshots of the stress and induction fields

are gathered in the matrices SP and S❇. A successive application of POD gives the collateral bases HP

and H❇:

POD (SP)→ HP =
[
φ̂P

1 , . . . , φ̂P
nP

]
∈ R

nqpd2×nP with SP =
[
P̂(p1), . . . , P̂(pns

)
]
∈ R

nqpd2×ns ,

POD (S❇)→ H❇ =
[
φ̂❇1 , . . . , φ̂❇n❇

]
∈ R

nqpd×n❇ with S❇ =
[
❇̂(p1), . . . , ❇̂(pns

)
]
∈ R

nqpd×ns .
(38)

The column vectors
{

P̂i

}ns

i=1
and

{
❇̂i

}ns

i=1
contain the components of P and ❇ at the nqp

quadrature points of the FE model.

By introducing (37) to (36) and recalling that the coefficients in (37) do not depend on the position

of the elements in the reduced meshes, we obtain alternative errors

uĕij = ∑
e∈Eu

ωu
e

∫

Ωe

∇Xϕu
i : φP

j dV −
M

∑
e=1

∫

Ωe

∇Xϕu
i : φP

j dV

and ②ĕij = ∑
e∈E②

ω②e

∫

Ωe

∇X ϕ②i ·φ❇j dV −
M

∑
e=1

∫

Ωe

∇X ϕ②i ·φ❇j dV.

(39)

For the details on minimisation of (39) in order to obtain the reduced meshes and the weights, the

interested reader is referred to Appendix C or [29]. In contrast to the method put forward in [29], the

EC introduced here uses elements instead of single Gauss points, resembling the ECSW method [28].

By doing so, the effective number of quadrature points employed in the reduced model increases, but

the implementation is less code invasive.

The linearisation of the weak form of the EC hyper-reduced model (35) becomes

⎡
⎢⎣

∑
e∈Eu

ωu
e

eB⊤u eKuu
k

eBu ∑
e∈Eu

ωu
e

eB⊤u eK
u②
k

eB②

∑
e∈E②

ω②e
eB⊤② eK

②u
k

eBu ∑
e∈E②

ω②e
eB⊤② eK

②②
k

eB②

⎤
⎥⎦
[

Δũr
k

Δ②̃r
k

]
= −

⎡
⎢⎣

∑
e∈Eu

ωu
e

eB⊤u eR̂u
k

∑
e∈E②

ω②e
eB⊤② eR̂

②
k

⎤
⎥⎦ , (40)

160



Math. Comput. Appl. 2019, 24, 20

where eBu and eB② are the restrictions of Bu and Bu to the finite element Ωe. For EC, the reduced system

matrix has the same properties, e.g., symmetry and positive definiteness, as the system matrix of the FE

model, as the weights are strictly positive. This property is not shared by the collateral basis methods.

The cost for evaluating the constitutive law in the elements of Eu ∪ E② is roughly

O(Nevaln + nel
qpm), where m is the number of elements in the union of the reduced meshes and Neval

the number of associated DoFs. The assembly of the residuum and the tangent matrix is proportional

to O(nNeval) and O(n2Neval + nNeval), respectively.

4.5. Reduced Integration Domain

For RID, two reduced integration domains Ωu
RID ⊂ T and Ω

②

RID ⊂ T are introduced, which are

used to define test functions δũ and δ②̃ with support only in Ωu
RID and Ω

②

RID. Hence, the nonlinearities

will be computed solely in Ωu
RID and Ω

②

RID, which provides the desired reduction of computational cost.

In the discrete setting, the test functions in BRID with confined support are expressed in terms of

the reduced bases B as

BRID :=

⎡
⎣P

u
RID

(
P

u
RID

)⊤
0

0 P
②

RID

(
P
②

RID

)⊤

⎤
⎦
[

Bu 0

0 B②

]
= PRIDP

⊤
RIDB

with P
u
RID =

[
eρu

1
, . . . , eρu

lu

]
∈ N

Nu×lu , P②RID =

[
eρ②1

, . . . , eρ②l②

]
∈ N

N②×l②

and PRID :=

[
P

u
RID 0

0 P
②

RID

]
∈ N

N×l,

(41)

where eρu
i
∈ RNu for i = 1, . . . , lu and eρ②j

∈ RNu for j = 1, . . . , l② are unit vectors with only one

non-zero component in the ρu
i -th and ρ②j -th entry. The indices

{
ρu

i

}lu

i=1
and

{
ρ②i

}l②

i=1
are the interior

DoFs of Ωu
RID and Ω

②

RID.

The reduced domains are generated from the gradients of the reduced bases

H∇X u :=
[
∇Xϕ̂u

1, . . . ,∇Xϕ̂u
nu

]
∈ R

nqpd2×nu and H∇X②
:=
[
∇Xϕ̂

②

1 , . . . ,∇Xϕ̂
②

n②

]
∈ R

nqpd×n② . (42)

The columns
{
∇Xϕ̂u

i

}nu

i=1
and

{
∇Xϕ̂

②

i

}n②

i=1
contain the components of the gradients of

{
ϕu

i

}nu

i=1

and
{

ϕ②i

}n②

i=1
in the nqp quadrature points of the FE model. Applying the DEIM Algorithm A1 to

H∇X u and H∇X②
returns the indices used to construct the reduced domains Ωu

RID and Ω
②

RID. Strictly

speaking, the reduced domains are the unions of elements containing these indices.

Using (41) in (16) renders the discrete weak from of the RID hyper-reduced model

Rr
k := B⊤PRIDP

⊤
RIDR̂k = 0 (43)

and its linearisation becomes

B⊤PRID︸ ︷︷ ︸
precomputed: Rn×l

P
⊤
RIDKkBΔỹr

k = − B⊤PRID︸ ︷︷ ︸
precomputed: Rn×l

P
⊤
RIDR̂k. (44)

The cost for evaluating the constitutive law is roughly O(Nevaln + nel
qpm), where m is the number

of elements of the union Ωu
RID ∪Ω

②

RID and Neval the number of DoFs associated with those elements.

The approximate costs of assembling the residuum and tangent stiffness matrix are O(lNeval) and

O(nlNeval + lNeval), respectively.
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For (43) to be a well-posed problem, BRID is required to have full column rank. If that is not

fulfilled or the accuracy of the model is poor, the l element layers surrounding Ωu
RID and Ω

②

RID are

included (cf. Algorithm A4 in Appendix D).

5. Numerical Results

5.1. Test Problem

The magneto-mechanical material model chosen for the numerical studies is of Neo-Hookean type

Ψ(F,❍) =
1

2
λ2 [F : F − d− 2 ln J] +

1

2
λ1 ln2 J − 1

2
μJ❍ · C−1 ·❍

using J = det F and C = F⊤ · F,
(45)

combining isotropic elastic with linear isotropic magnetic material properties. For further details

including expressions of the Piola stress P and the magnetic induction ❇, see [41].

The mesh used for all numerical tests is displayed in Figure 1, where 1840 quadratic finite elements

are used to discretise the continuum body B0, resulting in N = Nu +N② = 14,882 + 7441 = 22,323 DoFs.

For numerical integration, a 4× 4 Gaussian Quadrature is employed. The implementation of the tests

is based on the open–source FE library deal.II [47].

Figure 1. FE mesh of a Unit Cell discretised using M = 1840 elements with quadratic Ansatz functions

resulting in Nu = 14, 882 and N② = 7441 DoFs.

In Table 1, the dimensionless Lamé parameters λ1 and λ2 and magnetic permeability μ are given.

The inclusion/particle has ten times stronger material parameters than the matrix.

Table 1. Material parameters.

Matrix Inclusion

λ1 12 120
λ2 8 80
μ 0.001 0.01

Additionally, the parameter domain for the two-dimensional problem to be investigated is

prescribed by

P = (0.9, 1.2)︸ ︷︷ ︸
F[1,1]

× (−0.2, 0.2)︸ ︷︷ ︸
F[1,2]

× (−0.2, 0.2)︸ ︷︷ ︸
F[2,1]

× (0.9, 1.2)︸ ︷︷ ︸
F[2,2]

× (−10, 10)︸ ︷︷ ︸
❍[1]

× (−10, 10)︸ ︷︷ ︸
❍[2]

⊂ R
6. (46)

162



Math. Comput. Appl. 2019, 24, 20

The output of interest from the reduced-models are the homogenised Piola stress P and magnetic

induction ❇, for which the relative error measures

ErrP(V) = median

⎧
⎪⎨
⎪⎩

∥∥∥P
FOM
i − P

ROM
i

∥∥∥
F∥∥∥P

FOM
i

∥∥∥
F

⎫
⎪⎬
⎪⎭

|V|

i=1

and Err❇(V) = median

⎧
⎪⎨
⎪⎩

∥∥∥❇FOM
i −❇ROM

i

∥∥∥
2∥∥∥❇FOM

i

∥∥∥
2

⎫
⎪⎬
⎪⎭

|V|

i=1

(47)

are defined for any set of validation parameters V .

To validate the accuracy and robustness of the reduced models, two sets of randomly

chosen parameters

VI =
{

p1, . . . , p200

}
⊂ P and VII =

{
p1, . . . , p2000

}
⊂ P (48)

are defined and used in combination with (47).

The computation of P
ROM

and ❇
ROM

(8) requires ũ and ②̃ to be computed in all cells of the

FE mesh using (9). This can be done more efficiently using an auxiliary basis for P and ❇ together

with gappy reconstruction, but this renders an additional error. As our focus is on the numerical study

of the performance of the hyper-reduction methods, ũ and ②̃ are computed for the whole mesh and the

constitutive law is subsequently employed to obtain P
ROM

and ❇
ROM

.

It is established in the field of computational homogenisation that the application of linear

boundary conditions overestimates the energy compared to e.g., periodic boundary conditions,

in particular for small RVEs like the Unit Cell. This has been investigated extensively in [40] for

magneto-mechanics. As the choice of boundary conditions does not affect the hyper-reduction

methods, the findings from the numerical studies are expected to be valid for different types of

boundary conditions. Therefore, due to their simplicity, linear boundary conditions have been chosen

to carry out the numerical studies.

5.2. Validation of Galerkin ROM

In order to construct the reduced basis, the parameter space P has to be sampled. As the number

of sampling points increases exponentially with the dimension of the parameter domain for full tensor

grids, sparse grids [48,49] are employed. Sparse grids are based on one-dimensional quadrature rules

and a sparse tensor product, which alleviates the curse of dimensionality. For that reason, sparse grids

are frequently used in sampling, interpolation and integration of high dimensional functions.

In Figure 2, the sampling of the unit square using a full tensor grid and sparse grids is displayed.

Sparse grids built from the one-dimensional Gauss–Legendre quadrature are used to sample the

six-dimensional parameter domain P (46).

As the hyper-reduced models are built on top of an existing reduced basis, the accuracy of the

Galerkin reduced model (16) for varying cardinalities nu and n② of the reduced bases for the fluctuation

fields is displayed in Figure 3. For increasing nu and n②, the errors ErrP (VI) and Err❇ (VI) decrease

monotonously, though the impact of n② on ErrP (VI) becomes negligible for n② ≥ 10. The reduced

basis was constructed from ns = 4541 training simulations. As a compromise between accuracy and

efficiency, a reduced basis with nu = 20 and n② = 10 is chosen for all following numerical studies.
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Figure 2. Sampling of the two-dimensional parameter domain [0, 1]× [0, 1] using a full tensor grid and

two sparse grids based on a one-dimensional Gauss–Legendre quadrature with different sampling

densities.

Figure 3. Errors in homogenised quantities of interest for varying sizes of reduced bases nu and n②

computed from ns = 4541 training simulations.

The error of the Galerkin ROM is not only caused by the truncation of the POD basis but also

by an insufficient selection of training parameters S . In this case, insufficient refers to a too sparse

sampling of the parameter domain P . In Table 2, the errors ErrP (VI) and Err❇ (VI) for nu = 20 and

n② = 10 for three different training sets are given. The training set S with ns = 4541 is considered

sufficiently large as the errors for the two sets with greater cardinality are not significantly smaller.

Table 2. Output error for different numbers of training parameters ns for a reduced basis of fixed size

nu = 20 and n② = 10.

|S| 4541 12,841 33,193

ErrP (VI) 2.75× 10−6 2.59× 10−6 2.53× 10−6

Err❇ (VI) 1.55× 10−6 1.51× 10−6 1.62× 10−6

The results of a ROM for one element in VI are displayed in Figure 4. The errors in the

homogenised quantities are small O(10−6) and differences between the ROM and FOM in the primary

fields ũ and ②̃ can not be seen with the unaided eye. Due to the inclusions ten times larger mechanical

and magnetic material parameters, the Piola stress and magnetic induction inside the inclusion are

significantly larger.

164



Math. Comput. Appl. 2019, 24, 20

Figure 4. Results of a reduced model for F =

[
1.132 0.182

0.144 1.145

]
and ❍ =

[
−8.231

0.129

]
rendering

P
ROM

=

[
5.875 2.943

2.756 6.026

]
and❍

ROM
=

[
−1.123× 10−2

3.520× 10−3

]
using a reduced basis with nu = 20 and

n② = 10. The norm of the displacement fluctuations (a) the potential fluctuations; (b) the Frobenius

norm of the element averaged Piola stress; (c) and the norm of the element averaged magnetic

induction; (d) are depicted in the deformed Unit Cell. The errors for the homogenised quantities

‖PFOM − P
ROM‖F

‖PFOM‖F

= 3.4× 10−6 and
‖❇FOM −❇ROM‖2

‖❇FOM‖2

= 3.1× 10−6 are small. For better quality, we

point to the online version of the article.

5.3. DEIM

Based on a reduced basis with nu = 20 and n② = 10, the results of the DEIM hyper-reduced

model (23) are summarised in Figure 5, where the collateral basis HR is computed based on residua

collected during the solution of (16) for ns = 4541 training parameters. For the POD computations,

only residua fulfilling
∥∥∥R̂u

j (pi)
∥∥∥/
∥∥∥R̂u

1(pi)
∥∥∥,
∥∥∥R̂②j (pi)

∥∥∥/
∥∥∥R̂②1 (pi)

∥∥∥ > 10−4 with i ∈ [1, 4541] and the iteration

index j were taken into account.

It is well-established that DEIM models lack robustness for nonlinear pPDEs [26], which is

exposed in Figure 5a. There is just a small region of combinations of numbers of collateral reduced

basis functions
(
ru, r②

)
, for which the reduced model converged for all parameters in the validation

set VI. There are two possible causes that prevent the convergence of a model. The first is the occurrence

of unphysical deformations expressed by det F ≤ 0 during the solution process and the second is an

insufficient reduction of the residuum Rr
max/Rr

0 > 10−6, where max = 10 is the highest admissible

number of nonlinear solver iterations. From the 135,200 solutions of (23) for 676 different combinations

of
(
ru, r②

)
computed in this study, 11,992 failed to converge. It is remarkable that larger ru and r②

do not result in more robust models. Figure 5b,c show the output errors, where we have to note

that, for the calculation of ErrP (VI) and ErrP (VII), only the converged runs are taken into account.

The errors decrease with increasing ru and r② but certainly not monotonously. For a ROM with ru = 37

and r② = 25, small errors ErrP (VI) = 1.2× 10−3 and Err❇ (VI) = 5.5× 10−4 are obtained with one

simulation failing to converge. It is not reasonable to use greater ru and r② as the achievable reduction

of the errors is disproportionate to the increasing numerical cost of the ROM.
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Figure 5. (a) robustness and (b,c) output error analysis for varying numbers of DEIM indices ru and r②

for a reduced basis of size nu = 20 and n② = 10.

5.4. Gappy POD

For the Gappy POD study, the same collateral basis HR as in the DEIM study is used. In order to

have a fair comparison with DEIM, two sets of gappy points, one for the approximation of R̂u and the

other for R̂② in (28), are determined by applying Algorithm A2 separately to the collateral bases.

In Figure 6, the robustness and accuracy of Gappy POD is studied for different combinations

of
(
ru, r②

)
. To facilitate an adequately accurate approximation of the nonlinearities, large enough

numbers of gappy points
(
pu, p②

)
are employed. Figure 6a shows that linear regression improves

the robustness as more combinations of
(
ru, r②

)
exhibit no convergence failures compared to DEIM

(c.f. Figure 5). Nonetheless, 11,339 out of 135,200 simulation runs failed, mostly for smaller values of ru

and r②. For the failed runs, either the condition Rr
10/Rr

0 < 10−6 is not fulfilled after ten iterations or

unphysical deformations det F ≤ 0 are predicted.

Figure 6. (a) robustness and (b,c) output error analysis for varying numbers of residuum modes ru and

r② for sufficiently large numbers of gappy points pu = ⌈ru/2 + 10⌉ and p② = r② + 20 for a reduced

basis of size nu = 20 and n② = 10.

For ru = 36 and r② = 24, a combination yielding supposedly robust and accurate models is

chosen to investigate the errors for varying numbers of gappy points
(
pu, p②

)
(see Figure 7). Except

for pu ≤ 20, no robustness deficiencies occur. The error ErrP (VI) decreases with increasing pu and is

hardly affected by changes of p②. Similarly, Err❇ (VI) reduces for larger p② and is only minorly affected

by pu. For a reduced model using pu = 50 and p② = 58 gappy points, the errors ErrP (VI) = 3.6× 10−4

and Err❇ (VI) = 3.0× 10−4 were achieved.
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Figure 7. Influence of gappy point numbers pu and p② on (a) robustness and (b,c) accuracy for a

reduced basis of size nu = 20 and n② = 10 using ru = 36 and r② = 24 residuum modes.

5.5. GNAT

For the study of GNAT, the collateral bases contained in HRu and HR② are constructed by gathering

the residua from the solution of (32) and a subsequent application of POD. Only residua fulfilling∥∥∥R̂u
j (pi)

∥∥∥/
∥∥∥R̂u

1(pi)
∥∥∥,
∥∥∥R̂②j (pi)

∥∥∥/
∥∥∥R̂②1 (pi)

∥∥∥ > 5× 10−3 with i ∈ [1, 4541] and the iteration index j were taken

into account. The gappy points are obtained by applying Algorithm A2 separately to the collateral

mechanical and magnetic basis.

Similarly to the previous studies, the robustness and accuracy of GNAT is tested for different

combinations of
(
ru, r②

)
using a large enough number of gappy points. The results are depicted

in Figure 8. We never observed unphysical deformations det F ≤ 0 for GNAT hyper-reduced

models, the unsuccessful runs are due to reduced models failing to sufficiently reduce the residuum

Rr
15/Rr

0 < 10−3. As the Gauss–Newton scheme does not exhibit quadratic convergence, we allow

for up to 15 iterations to minimise the residuum. Furthermore, the solution of the nonlinear least

squares problem (32) does not render Rr ≡ 0 in general and consequently the convergence criterion is

set to 10−3. While the error ErrP (VI) in Figure 8b reduces with increasing ru and values in the order

of 10−3 can be achieved, the error Err❇ (VI) in Figure 8c increases for greater ru up to a certain point

and Err❇ (VI) ≈ 5× 10−2 seems feasible.

Figure 8. (a) robustness and (b,c) output error analysis for varying numbers of residuum modes ru and

r② for sufficiently large numbers of gappy points pu = ⌈ru/2 + 10⌉ and p② = r② + 20 for a reduced

basis of size nu = 20 and n② = 10.
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5.6. Empirical Cubature

In Figure 9, the accuracy of EC hyper-reduced models for different numbers of elements in the

reduced mesh is depicted. To construct the EC model 4541 snapshots of P and ❇ are taken from

the solution of (15) and processed into nP = 120 and n❇ = 100 POD modes. The singular value

distribution of the snapshot matrices is depicted in Figure 10, indicating that nP = 120 and n❇ = 100

POD modes are sufficient to represent the stress and induction state.

Thereafter, the weights and elements of the reduced meshes are determined by approximately

solving (A3) using Algorithm A3, given in Appendix C. Figure 9a shows that ErrP (VI) decreases for

greater mu and is barely affected by m②, whereas Err❇ (VI) decreases for greater values of both mu and

m②, but the dependence on m② is more pronounced. As EC does not employ collateral bases combined

with linear regression or interpolation, no convergence issues occur for the EC hyper-reduced models.

Figure 9. Output error analysis for varying numbers of elements mu and m② constituting the reduced

meshes Eu and E② built using nP = 120 stress and n❇ = 100 induction modes for a reduced basis of

size nu = 20 and n② = 10.

Figure 10. Normalised singular values of the stress SP and induction snapshot matrix S❇.

In Figure 11a, the weights used in a reduced mesh are plotted. Only a small number of elements

accumulate more than half of the total weight sum and that is the reason why the errors depicted in

Figure 9 decrease slowly with increasing mu and m②. The distribution of elements in the reduced

meshes with a focus on elements equipped with relatively large weights is shown in Figure 11b,c. It is

remarkable that the elements with large weights are all located inside the inclusion, whereas all the

other hyper-reduced models (DEIM, GappyPOD and RID) evaluate the nonlinearities in elements at

the boundary or in the vicinity of the interface between matrix and inclusion (c.f. Figure 12).
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Figure 11. (a) values and distribution of weights (b) ωu and (c) ω② in T for reduced meshes Eu and E②
with mu = 120 and m② = 110 elements. The yellow circles mark the boundary between matrix and

inclusion. For better quality, we point to the online version of the article.

a) DEIM b) Gappy POD c) EC d) RID

Figure 12. Elements in T relevant for the hyper-reduced models in Table 4.

5.7. Reduced Integration Domain

To construct the reduced integration domain, the gradients of
{

ϕu
}nu=20

i=1
and

{
ϕ②
}n②=10

i=1
are

computed and the application of Algorithm A4 yields the reduced domains Ωu
RID and Ω

②

RID. The errors

for three different choices of the number of surrounding layers l are listed in Table 3. As expected,

the errors decrease with increasing l but solving (43) becomes computationally more expensive. If no

surrounding layers are included, the reduced bases
{

ϕu
}nu=20

i=1
and

{
ϕ②
}n②=10

i=1
in Ωu

RID and Ω
②

RID are

linearly dependent and consequently (43) is not well-posed.

Table 3. Accuracy of RID depending on the number of neighbouring layers l for nu = 20 and n② = 10.

l 1 2 3

ErrP (VI) 9.5× 10−4 3.3× 10−4 1.5× 10−4

Err❇ (VI) 8.0× 10−4 3.2× 10−4 1.8× 10−4

As for EC, no convergence problems have been observed for RID hyper-reduced models.

5.8. Comparison of the Hyper-Reduction Methods

In Table 4, the performance statistics of reduced models for each hyper-reduction method except

GNAT are provided. The parameters for the models, which are listed in Table 5, were chosen based

on the results from the previous sections to achieve high accuracy at moderate computational cost.

We except GNAT from the comparison as these reduced models are inferior to Gappy POD models

with respect to robustness and accuracy. Most importantly, the error Err❇(V) produced by GNAT

models is too large.
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The number of elements in which either the mechanical or magnetic nonlinearity have to be

computed are denoted by mu and m②, respectively. The aforementioned elements are highlighted

in Figure 12. It is possible to use the same elements for the evaluation of the nonlinearities for all

hyper-reduction methods except DEIM, rendering supposedly slightly less accurate but more efficient

reduced models. However, for the sake of comparison of all introduced Hyper-Reduction methods, the

nonlinearities are treated separately, resulting in two distinct sets of elements. In all these elements, the

solution (ũ, ②̃) has to be computed based on the reduced solution (ũr, ②̃r) with Nu
eval and N②

eval denoting

the number of DoFs involved in these operation performed in every iteration of the nonlinear solver.

The errors obtained by DEIM, Gappy POD and RID are in the same range, whilst the errors for EC

are at least of one order of magnitude larger. The accuracy of Gappy POD is superior to DEIM as linear

regression performs better than interpolation and additionally increases the robustness. For DEIM, 18

out of 2000 runs failed to converge, whereas no such deficiencies are observed for the other methods.

The computation times were measured on a single core (AMD™ Ryzen™ 1950X CPU @4 GHz)

without using any kind of parallelisation. The speed-up is defined as the ratio of time needed to

solve the FOM and the ROM for the 2000 parameters in VII, which does not include the time to

calculate the homogenised quantities. The speed-up for DEIM is the greatest as the least number of

solution and nonlinearity evaluations had to be performed, with Gappy POD being second due to

more evaluations. The EC and RID reduced models are considerably slower as both methods need to

evaluate the nonlinearities for a larger number of elements to gain comparable accuracy.

Table 4. Comparison of selected hyper-reduced models using a reduced basis with nu = 20 and

n② = 10.

DEIM Gappy POD EC RID

mu & m② → m 50 & 33→ 71 69 & 75→ 112 120 & 110→ 219 129 & 72→ 183
Nu

eval & N②

eval 1000 & 500 1468 & 734 3400 & 1700 1938 & 969

ErrP (VII) 1.14× 10−3 3.86× 10−4 1.85× 10−2 5.99× 10−4

Err❇ (VII) 4.71× 10−4 2.78× 10−4 4.63× 10−3 5.18× 10−4

nfail 18 0 0 0
speed-up 208 131 23 32

Table 5. Parameters of the hyper-reduced models used in Table 4.

DEIM ru = 37 and r② = 25
Gappy POD ru = 36 and r② = 24, pu = 50 and p② = 58
EC mu = 120 and m② = 110
RID l = 1

6. Conclusions

In this work, we applied the tools of reduced-order modelling to the problems arising in

computational homogenisation in magneto-mechanics. The main focus was the investigation and

comparison of different hyper-reduction techniques with respect to accuracy and robustness. Collateral

basis methods like DEIM and Gappy POD are the fastest and most accurate, but are susceptible to

robustness deficiencies. This is particularly true for DEIM, for which we could not build sufficiently

robust models in the course of this work. Gappy POD diminishes that issue by using linear regression,

providing adequately robust models. Additionally, unlike Gappy POD, DEIM does not offer the option

to evaluate the mechanical and magnetic nonlinearity in the same elements, resulting in more expensive

reduced models. For those reasons, DEIM will not be considered in future studies. A disadvantage

shared among the collateral basis methods is that instances of the FE residuum have to be collected

from non-equilibrated states, which results in more expensive POD computations.

EC and RID solve the weak form in a subdomain, to which the first refers to reduced mesh and

the latter to reduced integration domain. To obtain similar accuracy as collateral basis methods, EC
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and RID have to perform more function evaluations and are therefore more expensive. However,

their robustness is superior to the collateral basis methods and hence they are particularly suitable for

multi-query frameworks like the FE2 method. For problems with stronger nonlinearities, e.g., due to

complex material models, rate-dependence, plasticity and many more, the robustness superiority will

be even more pronounced.

The next step is to equip the reduced models with an auxiliary basis to efficiently compute

the homogenised Piola stress and magnetic induction, which can be utilised in a perturbation-type

method [50] to obtain the macroscopic tangent moduli. Similarly, the macroscopic tangent moduli

could be computed adapting the method described in [51] for the reduced model.
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Abbreviations

The following abbreviations are used in this manuscript:

MRE Magneto-Rheological Elastomer

BVP Boundary Value Problem

RVE Representative Volume Element

ROM Reduced-Order Model

FEM Finite Element Method

DoF Degree of Freedom

FOM Full-Order Model

pPDE parametrised Partial Differential Equation

POD Proper Orthogonal Decomposition

SVD Singular Value Decomposition

EIM Empirical Interpolation Method

DEIM Discrete Empirical Interpolation Method

GNAT Gauss–Newton with Approximated Tensors

EC Empirical Cubature

ECSW Energy-Conserving Sampling and Weighting

RID Reduced Integration Domain

Appendix A. DEIM

The classical DEIM Algorithm A1 [19] determines the interpolation indices iteratively. In iteration

i, the index ρi to be added is the entry where the approximation of the basis vector φi by the preceding

vectors
{

φj

}i

j=1
exhibits the largest error. The basis vectors

{
φi

}r
i=1

have to be linearly independent,

which is guaranteed by using a basis computed by POD.
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Algorithm A1: DEIM Algorithm

Input:
{

φi

}r
i=1
⊂ RN

Output: ρ =
[
ρ1, . . . , ρr

]
∈ Nr, P

ρ1 = arg max
a=1,...,N

∣∣φ1[a]
∣∣

S =
[
φ1

]
, P =

[
eρ1

]
, ρ =

[
ρ1

]

for i=2 to r do

Solve for c in
(
P
⊤S
)

c = P
⊤φi

r = φi − Sc

ρi = arg max
a=1,...,N

∣∣φi[a]
∣∣

ρ←
[
ρ, ρi

]
, P←

[
P, eρi

]
, S←

[
S, φi

]

end

Appendix B. Gappy POD and GNAT

Like the DEIM Algorithm A1, the adapted point search Algorithm A2 [21] seeks to minimise

the error in approximating the bases

{{
φc

i

}rc

i=1

}ncomponents

c=1

and chooses the gappy points accordingly.

The algorithm processes nodes instead of indices and is therefore well-suited for vector-valued or

multi-physic problems. Differences in scale are taken care of by using normalised maxima for the

different fields.
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Algorithm A2: Greedy Point Search

Input: reduced bases

{{
φc

i

}rc

i=1

}ncomponents

c=1

, number of sampling points p

Output: {Pc}ncomponents

c=1

number of greedy iterations: g = min

({
r1, . . . , rncomponents , p

})

number of sampling points at iteration i: s(i)

s(i) =

⌊
w · p

g

⌋
with w =

⌈
g

p

⌉
; if w = 1 and i ≤ (p mod g) : s(i)← s(i) + 1

number of basis vectors to be added/processed at iteration i:

qc(i) =

⌊
rc

g

⌋
; if i ≤ (rc mod g) : qc(i)← qc(i) + 1 for c = 1, . . . , ncomponents

for c=1 to ncomponents do[
Sc

1, . . . , Sc
qc(1)

]
←
[
φc

1, . . . , φc
qc(1)

]
// vectors to be processed in first iteration

end

for i=1 to g do

for j=1 to s(i) do

for c=1 to ncomponents do

nc
max ← arg max

l∈{1,...,npoints}

qc(i)

∑
q=1

∥∥∥Sc
q [l]
∥∥∥

2
// location of component maximum

end

n← arg max
l∈{1,...,npoints}\N

ncomponents

∑
c=1

qc(i)

∑
q=1

∥∥∥Sc
q [l]
∥∥∥

2

∥∥∥Sc
q [n

c
max]

∥∥∥
2

// location of combined maximum

for c=1 to ncomponents do

Ic = DoFsc (n) // get set of component DoFs attached to point

Pc ←
[
Pc,
[
eIc [1], . . . , eIc [|Ic |]

]]

end

N ← N + n // update set of selected points

end

for c=1 to ncomponents do

for j=1 to qc(i) do

φ̃c
Qc+j = arg min

a

∥∥∥P⊤c
[
φc

1, . . . , φc
Qc

]
a−P

⊤
c φc

Qc+j

∥∥∥
2

2

Sc
j ← φc

Qc+j −
[
φc

1, . . . , φc
Qc

]
φ̃c

Qc+j // vectors processed in next iteration

end

Qc ← Qc + qc(i)

end

end

Appendix C. Empirical Cubature

To determine the reduced meshes and the weights, the minimisation problems based on (39)
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(ωu, Eu) = arg min
w∈Rmu

+
E⊂T

√√√√
nP

∑
j=1

nu

∑
i=1

(
uĕij(w, E)

)2
and

(
ω②, E②

)
= arg min

w∈Rm②
+

E⊂T

√√√√
n❇

∑
j=1

n②

∑
i=1

(
②ĕij(w, E)

)2
(A1)

have to be solved and read in matrix format as

(ωu, Eu) = arg min
w∈R

mu
+

E∈T

∥∥∥ J̆u
Ew− b̆u

∥∥∥
2

and
(
ω②, E②

)
= arg min

ω∈R
m②
+

E∈T

∥∥∥ J̆
②

Ew− b̆②
∥∥∥

2
, (A2)

with J̆u ∈ R
nunP×M, J̆② ∈ R

n②n❇×M, b̆u ∈ R
nunP and b̆② ∈ R

n②n❇ ,

J̆u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
Ω1

∇Xϕu
1 : φP

1 dV · · ·
∫

ΩM

∇Xϕu
1 : φP

1 dV

...
. . .

...∫
Ω1

∇Xϕu
nu

: φP
1 dV · · ·

∫
ΩM

∇Xϕu
nu

: φP
1 dV

...
. . .

...∫
Ω1

∇Xϕu
nu

: φP
nP

dV · · ·
∫

ΩM

∇Xϕu
nu

: φP
nP

dV

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b̆u =
M

∑
e=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
Ωe

∇Xϕu
1 : φP

1 dV

...∫
Ωe

∇Xϕu
nu

: φP
1 dV

...∫
Ωe

∇Xϕu
nu

: φP
nP

dV

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

J̆② =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
Ω1

∇X ϕ②1 : φ❇1 dV · · ·
∫

ΩM

∇X ϕ②1 ·φ❇1 dV

...
. . .

...∫
Ω1

∇X ϕ②n② ·φ❇1 dV · · ·
∫

ΩM

∇X ϕ②n② ·φ❇1 dV

...
. . .

...∫
Ω1

∇X ϕ②n② ·φ❇n❇ dV · · ·
∫

ΩM

∇X ϕ②n② ·φ❇n❇ dV

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b̆② =
M

∑
e=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
Ωe

∇X ϕ②1 ·φ❇1 dV

...∫
Ωe

∇X ϕ②n② ·φ❇1 dV

...∫
Ωe

∇X ϕ②n② ·φ❇n❇ dV

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that the problems in (A2) allow for the trivial solutions ωu = 0 and ωu = 0. Any POD

mode φ̂P
j or φ̂❇j is a linear combination of the snapshots

{
P̂1, . . . , P̂ns

}
or
{
❇̂1, . . . , ❇̂ns

}
and, as the

snapshots are taken from states of equilibrium, the right-hand sides become b̆u = 0 and b̆② = 0.

Therefore, problems (A2) are regularised by adding the constraints ∑
e∈Eu

ωu
e = V and ∑

e∈E②
ω②e = V.

By subtracting the volume averaged row-sums, the regularised minimisation problems (A3) are

obtained and approximately solved using Algorithm A3:
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(ωu, Eu) = arg min
w∈R

mu
+

E∈T

∥∥Ju
Ew− bu

∥∥
2

and
(
ω②, E②

)
= arg min

ω∈R
m②
+

E∈T

∥∥∥J
②

Ew− b②
∥∥∥

2
, (A3)

with Ju =

[
J̄u

1⊤

]
∈ R

(nunP+1)×M, J② =

[
J̄②

1⊤

]
∈ R

(n②n❇+1)×M, bu =

[
0

V

]
∈ R

nunP+1

and b② =

[
0

V

]
∈ R

n②n❇+1

J̄u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
Ω1

∇Xϕu
1 : φP

1 dV − 1

V

∫
Ω

∇Xϕu
1 : φP

1 dV · · ·
∫

ΩM

∇Xϕu
1 : φP

1 dV − 1

V

∫
Ω

∇Xϕu
1 : φP

1 dV

...
. . .

...
∫

Ω1

∇Xϕu
nu

: φP
1 dV − 1

V

∫
Ω

∇Xϕu
nu

: φP
1 dV · · ·

∫
ΩM

∇Xϕu
nu

: φP
1 dV − 1

V

∫
Ω

∇Xϕu
nu

: φP
1 dV

...
. . .

...
∫

Ω1

∇Xϕu
nu

: φP
nP

dV − 1

V

∫
Ω

∇Xϕu
nu

: φP
nP

dV · · ·
∫

ΩM

∇Xϕu
nu

: φP
nP

dV − 1

V

∫
Ω

∇Xϕu
nu

: φP
nP

dV

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

J̄② =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
Ω1

∇X ϕ②1 : φ❇1 dV − 1

V

∫
Ω

∇X ϕ②1 : φ❇1 dV · · ·
∫

ΩM

∇X ϕ②1 ·φ❇1 dV − 1

V

∫
Ω

∇X ϕ②1 : φ❇1 dV

...
. . .

...
∫

Ω1

∇X ϕ②n② ·φ❇1 dV − 1

V

∫
Ω

∇X ϕ②n② : φ❇1 dV · · ·
∫

ΩM

∇X ϕ②n② ·φ❇1 dV − 1

V

∫
Ω

∇X ϕ②n② : φ❇1 dV

...
. . .

...
∫

Ω1

∇X ϕ②n② ·φ❇n❇ dV − 1

V

∫
Ω

∇X ϕ②n② : φ❇n❇ dV · · ·
∫

ΩM

∇X ϕ②n② ·φ❇n❇ dV − 1

V

∫
Ω

∇X ϕ②n② : φ❇n❇ dV

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Algorithm A3: Greedy Mesh Sampling

Input: J, tol, m

Output: ω, E

initialisation: E← ∅, set of candidates C← {1, . . . , M}, r ← b

do

e = arg max
ẽ∈C

〈
J[ẽ]/

∥∥J[ẽ]
∥∥

2
, r/‖r‖2

〉
// determine new element

E← E ∪ e, C ← C \ e

build JE from columns of J based on E

ω = arg min
w∈R|E|

‖JEw− b‖2
2 // solve least-squares

if ω[i] < 0 for i = 1, . . . , |E| then

ω = arg min

w∈R|E|+

‖JEw− b‖2
2 // solve non-negative least-squares

E← E \ E0 with E0 =
{

e ∈ E : ω[e] = 0
}

C ← C ∪ E0

ω← ω(E)

end

r ← b− JEω // update residual

while
‖r‖
‖b‖ > tol ∧ |E| < m
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Appendix D. Reduced Integration Domain

Algorithm A4 constructs the reduced integration domain for a basis
{

φi

}r
i=1

. The application of

the DEIM Algorithm A1 helps to identify areas of interest, e.g., where the basis exhibits significant

gradients. At first, all elements containing DEIM indices form the reduced integration domain.

Hereafter, the elements in the surrounding layers can be included for accuracy reasons. It is noteworthy

that Algorithm A2 or alternatives can be used to determine the initial reduced domain.

Algorithm A4: Determining Reduced Integration Domain

Input: POD basis
{

φi

}r
i=1
⊂ RN, number of neighbouring element layers l

Output: PRID, ΩRID

get DEIM indices ρ ∈ Nr by applying Algorithm A1 to
{

φi

}r
i=1

ΩRID ← ContainingElements
(
ρ
)

// collect elements containing the DEIM indices

for i=1 to l do

ΩRID ← ΩRID ∪ NeighbouringElements (ΩRID) // add neighbouring elements

end

setup PRID based on interior DoFs (primary) in ΩRID
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Abstract: In the following paper, we consider the problem of constructing a time stable reduced

order model of the 3D turbulent and incompressible Navier–Stokes equations. The lack of stability

associated with the order reduction methods of the Navier–Stokes equations is a well-known problem

and, in general, it is very difficult to account for different scales of a turbulent flow in the same

reduced space. To remedy this problem, we propose a new stabilization technique based on an a

priori enrichment of the classical proper orthogonal decomposition (POD) modes with dissipative

modes associated with the gradient of the velocity fields. The main idea is to be able to do an a priori

analysis of different modes in order to arrange a POD basis in a different way, which is defined by

the enforcement of the energetic dissipative modes within the first orders of the reduced order basis.

This enables us to model the production and the dissipation of the turbulent kinetic energy (TKE) in

a separate fashion within the high ranked new velocity modes, hence to ensure good stability of the

reduced order model. We show the importance of this a priori enrichment of the reduced basis, on a

typical aeronautical injector with Reynolds number of 45,000. We demonstrate the capacity of this

order reduction technique to recover large scale features for very long integration times (25 ms in

our case). Moreover, the reduced order modeling (ROM) exhibits periodic fluctuations with a period

of 2.2 ms corresponding to the time scale of the precessing vortex core (PVC) associated with this

test case. We will end this paper by giving some prospects on the use of this stable reduced model in

order to perform time extrapolation, that could be a strategy to study the limit cycle of the PVC.

Keywords: reduced order modeling (ROM); proper orthogonal decomposition (POD); enhanced

POD; a priori enrichment; modal analysis; stabilization; dynamic extrapolation

1. Introduction

Reduced order modeling (ROM) of the complete Navier–Stokes equations by the projection

of these equations upon a reduced order space, that is generated by a minimal number of spatial

modes, is still an attractive research area especially when we consider turbulent flows such as the ones

encountered in aeronautical engines and that feature a large range of scales. The most important issue

to be addressed when performing an order reduction of the turbulent and unsteady Navier–Stokes

equations is the construction of a minimal reduced order space that could cover properly the large

range of scales of a turbulent fluid flow. If we find a minimal subspace that could verify these

properties, then we can do further studies concerning the efficient adaptivity of the associated reduced

order equations in terms of design and optimization of the components of an aeronautical engine, such

as the combustion chamber and the fuel injection system.
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The large vortices carry the major amount of the turbulent kinetic energy (TKE), while small

scales are responsible for the dissipation of TKE. The real time prediction of this physics, under strong

unsteadiness and variable constraints, is a big challenge for the industrial design in aeronautical

engineering. Reduced order modeling by proper orthogonal decomposition (POD) is a very good

candidate for solving such problems. It enables approximation of the high-fidelity (HF) partial

differential equations (PDE)s in a subspace of small dimension, which reproduces accurately the

energy of the coherent structures of a fluid flow. Nevertheless, the ROMs by POD for the turbulent

and incompressible Navier–Stokes equations suffer a time instability due to the misrepresentation of

the energy of the small vortices of these convection dominated equations, by the coherent energetic

POD modes. Many authors propose techniques to remedy time instability within ROMs by POD

of the Navier–Stokes equations. By time stable reduced order model, we mean the capacity of the

reduced equations to verify the energy balance and the mass conservation properties of the complete

Navier–Stokes equations.

Improvement of the Galerkin reduced order modeling using mathematical approaches such

as the stabilization based on the role of the neglected POD modes to enhance the dissipation of

the TKE [1], or reduced order models based on deconvolution methods for large-eddy simulation

(LES) have been proposed in the literature: Rowley et al. [2] proposed a Galerkin ROM-POD for

the compressible Navier–Stokes equations, constructed by projection via an energy-based inner

product. Codina et al. [3] proposed the enrichment of the ROM by increasing the dimension of

the projection POD subspace, and computing the new temporal weights amplitudes by a least square

minimization with respect to the initial temporal snapshots. The later sub-scale approach was applied

for an incompressible and turbulent flow around a cylinder of which the Reynolds number varies

from 32,000 to 74,000. Balajewicz et al. [4] proposed an enhanced Galerkin approximation by POD

of the compressible Navier–Stokes equations based on an a priori implementation of a traditional

eddy-viscosity based closure model in order to modify the overall eigenvalue distribution of the

dissipative linear operator within the Galerkin reduced order modeling. This technique was applied

for a 2D laminar airfoil at Reynolds 500. Xie et al. [5] proposed a deconvolution method for LES-based

reduced order models in order to model the subfilter stress-scale tensor within the reduced order

modeling. This approach was performed for the 1D Burgers equation and a 3D flow past a cylinder

at Reynolds 1000. In [6], the authors propose to study theoretically and numerically the influence of

different types of finite element on the ROM mass conservation. They tested the Taylor–Hood (TH)

element and the Scott–Vogelius (SV) element. They showed that the SV-ROM yields to more accurate

results when applied to a 2D flow past a circular cylinder at a Reynolds number Re = 100, especially

for coarser meshes and longer time intervals. We can find in literature also stabilization of reduced

order models based on operator splitting, specifically the streamline-upwind Petrov–Galerkin (SUPG)

stabilization method [7].

In the domain of model order reduction for finite volume numerics for computational fluid

dynamics, we cite the work of Carlberg et al. [8], where it has been proposed a method for

model reduction of finite-volume models that guarantees the resulting reduced-order model to be

conservative. The proposed reduced order model is associated with optimization problems that

explicitly enforce conservation over subdomains. In [9], the authors proposed a POD-Galerkin reduced

order methods for CFD using finite volume discretization. This was performed as a consequence

of the projection of the Navier–Stokes equations onto different reduced basis space for velocity and

pressure, respectively. Stabile et al. [10], developed finite volume POD-Galerkin stabilized reduced

order methods for the incompressible Navier–Stokes equations. These methods are based on the

pressure Poisson equation and supremizer enrichment which ensures that a reduced version of the

inf-sup condition is satisfied.

Among the work concerning the stabilisation of the POD-based ROM for turbulent fluids

dynamics, Amsallem et al. [11] have proposed to perform the POD-based model reduction using the

descriptor form of the discretized Euler or Navier–Stokes equations, i.e., the natural variables of these
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equations, whereas many computations are performed in CFD codes using the non-descriptor form

of these equations. In [12], the authors proposed to use the stability of the reduced-order Galerkin

models in incompressible flows in order to study the limit cycle of the hydrodynamic vortex acting on

a circular cylinder. Amsallem et al. [13] have proposed a stabilization of the projection-based linear

reduced order models because of a convex optimization problem that operates directly on available

reduced order operators. This method was tested for computational fluid dynamics-based model of a

linearized unsteady supersonic flow, the reduction of a computational structural dynamic system, and

the stabilization of the reduction of a coupled computational fluid dynamics–computational structural

dynamics model of a linearized aeroelastic system in the transonic flow regime.

Besides these reduced order techniques which are intrusive for the computational fluid dynamics

physics, there are some new non-intrusive reduced order ones, as they rely only on the available

snapshots data, without taking into account all the equations of physics as constraints, but rather

some physical properties as the turbulent kinetic energy conservation by learning the orthogonal

projection coefficients of the solutions over a POD basis using a metamodel or a neural network, see the

work of Wang et al. [14]. These non-intrusive techniques would take into account also the parameters

calibration of the closure terms and the turbulent sub-grid scale modeling in the large eddy simulation

models or the reynolds average Navier–Stokes equations ones, see the work of Lapeyre et al. [15].

There are also some research directions towards combining the machine learning non-intrusive reduced

order techniques with the physics based reduced order ones in order to improve the quality of these

latters, see the work of Xie et al. [16].

In this paper, we are interested in the stabilization of POD-Galerkin reduced order modeling for

the turbulent and incompressible Navier–Stokes equations and we propose a new stabilization and

purely physical approach for the POD-Galerkin approximation of the turbulent and incompressible

Navier–Stokes equations. More precisely, a simplified POD-Galerkin projection of the complete

Navier–Stokes equations is performed within an extended and minimal reduced order subspace, which

reproduces accurately all the scales contained in the different terms of the Navier–Stokes equations,

in order to recover a proper evolution of the fluctuating TKE. The proposed approach is based on the

POD representation of the velocity gradient. A solution for the issue due to the combination of POD

velocity and POD gradient modes is proposed. Moreover, we point out that the proposed stabilization

is based on the a priori analysis of the different velocity modes and gradient velocity modes, in order to

enforce the energetic dissipative modes within the first vectors of the new reduced order basis. This

a priori enrichment by scale seperation is a key point to our proposed approach, and this will lead to

the desired time stability of the reduced order model. We also point out that our proposed strategy is

different from the ones that propose a scalar product change while defining the correlations matrix

of the singular value decomposition (SVD) step of the POD method, in order to take into account the

gradient scales within the scalar product computations, typically as in [17].

The manuscript is organized as follows: the proposed theoretical framework for the construction

of the enhanced reduced order basis is detailed in Section 2. In this section, we motivate the use

of an a priori enhancement of the classical POD basis by POD modes associated with the gradient

velocity. All the numerical results are detailed in Section 3 for a benchmark problem of a typical

aeronautical injection system at Re = 45,000 and 14 millions mesh elements. The flow solver of the

High Fidelity Navier–Stokes equations is first exposed. Reduced order modeling via the enriched

POD is presented and analyzed. In Section 4, we show the dynamic temporal coefficients obtained

by running the enhanced fluid dynamics reduced order model for very long time integrations, even

longer than the one of the high-fidelity solutions that generated the enhanced reduced order basis.

In Section 5, we give some conclusions and prospects to this work. More precisely, we introduce our

future work concerning the use of this stabilization technique for the extrapolation of the reduced

order model in time so that, we can study efficiently the limit cycle of the PVC in an aeronautical

injector [18]. It is well known that the Q-criterion of the smallest vortices is larger than the one of the

large coherent structures, then the PVC is masked by small scales surrounding turbulence in the LES
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simulation. The enhanced ROM enables us to filter the PVC throughout the reduced order simulation

even for large values of Q-criterion and for very long integration times.

2. Theoretical Framework

2.1. POD-Galerkin Reduced Order Modeling Applied to the Unsteady and Incompressible
Navier–Stokes Equations

We denote by X = [L2(Ω)]3 the functional Hilbert space of the squared integrable functions over a

bounded 3D−open set Ω. The corresponding inner product is the kinetic energy-based one associated

with the X-functional norm. They will be denoted respectively by (., .) and ‖.‖. Consider v(t) ∈ X

the velocity field of an unsteady incompressible flow. Denote v̄(t) the filtered field obtained by

a given LES model. A reduced order POD subspace is obtained by the snapshots method [19].

More precisely, if we discretize the time interval to M points, then the snapshots set is given as follows:

S = {v̄(ti) i = 1, ..., M}. The associated POD eigenmodes Φn, n = 1, ..., M are solutions of the

following eigenvalues problems given the temporal correlations matrix:

Cij = (v̄ (ti) , v̄
(
tj

)
), (1)

of size M×M. We denote by An = (Ai,n)1≤i≤M for n = 1, ..., M, a set of orthonormal eigenvectors of

the matrix C. Then, the POD-eigenmodes associated with v̄, are given by:

Φn(x) =
1√

λn M

M

∑
i=1

Ai,nv̄(ti, x), ∀x ∈ Ω ∀n = 1, ..., M, (2)

where (λn)n=1,...,M is the decreasing sequence of the positive eigenvalues of the correlations matrix C.

To achieve the POD reduced order modeling of the filtered incompressible Navier–Stokes

equations, the approximated velocity field is expressed in the reduced order POD subspace:

ṽ(t, x) =
N

∑
n=1

an(t)Φn(x), ∀x ∈ Ω, (3)

where N << M denotes the number of retained high energetic POD modes, and a1(t), a2(t),..., aN(t)

are the temporal weights which are solutions of the following coupled dynamical system:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

dan

dt
+ (div(ṽ(t)⊗ ṽ(t)), Φn) = ν (Δṽ(t), Φn)−

1

ρ
(∇p(t), Φn)

(q, div(ṽ(t)))H0 = 0 ∀q ∈ H0

an(0) = (v0, Φn)

, (4)

where div denotes the divergence operator, p(t) is the pressure field, ρ the density, ν denotes the

kinematic viscosity, v0 is the initial condition of the velocity field and H0 is the subspace of the

divergence free X-functions.

We point out the fact that the equations upon which we perform the POD-Galerkin projection

are the continuous high-fidelity incompressible Navier–Stokes equations without any turbulence

model taken into account. So, our reduced order modeling formulation is the one associated with the

continuous Navier–Stokes equations. However, it is clear that the POD computation is associated with

High-Fidelity snapshots v̄(t) which are usually obtained from LES of the Navier–Stokes equations.

In general, the first POD mode Φ1(x) which describes the mean topology of the fluid flow is not

kept and a ROM of the fluid dynamics equations represents only the fluctuating part. However in

our case the first POD mode Φ1(x) is kept within the ROM. This could be very valuable when we are

interested in using the reduced order modeling in order to predict the flow with respect to parametric
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variations, or even for new geometries [20]. This enables the ROM to consider naturally the influence

of the velocity fluctuations on the velocity mean.

We point out the following two remarks concerning our formulation of the reduced

order modeling:

Remark 1. The POD modes contain only the energetic scales of the flow. The dissipative scales at the Taylor

macro-scale are not present in the basis.

Remark 2. The flow rate in the flow domain is not guaranteed except if penalization is added in the pressure

term to take into account the pressure difference between inlet and outlet.

We propose to tackle these remarks on account of a physical stabilization by satisfying the kinetic

energy budget.

2.2. Physical Stabilization by Satisfying the Kinetic Energy Budget

2.2.1. Enrichment of the POD-Galerkin ROM with the Flow Rate Driving Forces

If we integrate by part the pressure term in the reduced order model (4), then we get the

following equality:

(∇p(t), Φn) = − (p(t), div(Φn)) +
∫

δΩ
p(t)(Φn(x),
n(x))R3 dδΩ, (5)

where
n is the normal vector to the domain boundaries δΩ.

Using the fact that the incompressibility constraint is also verified by the velocity POD modes,

the pressure term could be written:

(∇p(t), Φn) =
∫

δΩ
p(t)(Φn(x),
n(x))R3 dδΩ. (6)

We propose to model the pressure difference between the inlet Γin and the outlet, because of a

penalization for the flow rate. This could be written mathematically as follows:

N

∑
m=1

am(t)
∫

Γin

(Φn(x), Φm(x))R3 dΓin =
∫

Γin

(
Φn(x), vΓin

(x)
)
R3 dΓin, ∀n = 1, ..., N, (7)

where vΓin
is the inlet boundary condition of the corresponding High-Fidelity Navier–Stokes equations.

The reduced order model satisfying the flow rate production forces is now written as follows:

∀ n = 1, ..., N,

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dan

dt
+ (div(ṽ(t)⊗ ṽ(t)), Φn) = ν (Δṽ(t), Φn)

+τ

[
N

∑
m=1

am(t)
∫

Γin

(Φn(x), Φm(x))R3 dΓin −
∫

Γin

(
Φn(x), vΓin

(x)
)
R3 dΓin

]
,

an(0) = (v̄(0), Φn)

(8)

where τ is the penalization coefficient and which has been chosen equal to 10,000 in the online

resolution of the reduced order modeling (8).

The flow rate penalization will enforce the following equality:

a1(t)Φ1(x) = V(x), ∀x ∈ Ω and ∀t,
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where V is a steady velocity field, that should represents the mean motion. Denote by vreduced(t) =
N

∑
n=2

an(t)Φn the fluctuating reduced order velocity, then the evolution of the turbulent kinetic energy

within the ROM (8) is given by:

1

2

d

dt

N

∑
n=2

a2
n = ν (Δṽ(t)), ṽ(t)) (9)

−
(

div(vreduced(t)⊗V), vreduced(t)
)
−
(

div(V ⊗V), vreduced(t)
)

(10)

−
(

div(V ⊗ vreduced(t)), V
)
−
(

div(vreduced(t)⊗ vreduced(t)), V
)

(11)

= ν (Δṽ(t)), ṽ(t)) (12)

−2
(

div(vreduced(t)⊗V), vreduced(t)
)
− 2

(
div(V ⊗V), vreduced(t)

)
(13)

The terms (13) in the assessment of the kinetic energy represents the production rate of the

kinetic energy.

2.2.2. Enrichment of the POD-Galerkin ROM with the Most Dissipative Scales Based on the
Velocity Gradient

To recover the dissipation rate of the fluctuating TKE in (8), we propose the following numerical

algorithm, based on the enrichment of velocity-based POD modes by gradient velocity-based POD

modes following a new a priori approach.

The proposed enrichment algorithm is the following:

• Compute the POD velocity modes Φn =
1√

λn M
∑

M
i=1 Ai,nv̄(ti), n = 1, ..., M and truncate at

N << M these POD modes. We note that N is intentionally chosen to be less than the needed

number of the POD modes to represent all the features of the coherent energetic scales of the

kinetic energy.

• Compute the fluctuating POD gradient modes Ψn =
1

√
βn M

∑
M
i=1 Bi,n∇v̄(ti), n = 1, ..., M

and truncate at N′ << M. Where Bn = (Bi,n)1≤i≤M for n = 1, ..., M, a set of

orthonormal eigenvectors of the temporal correlations matrix on the fluctuating velocity gradient:(
∇v̄(ti)−W,∇v̄(tj)−W

)
[L2(Ω)]9

, i, j = 1, ..., M (W the mean velocity gradient being removed

from these correlations), and (βn)n=1,...,M is the sequence of the eigenvalues of this latter matrix.

• Compute the following velocity basis functions: ΦE
n =

1
√

βn M
∑

M
i=1 Bi,nv̄(ti), n = 1, ..., N′.

• Perform the Gram–Schmidt orthonormalization process for the enriched set{
Φ1, ..., ΦN , ΦE

1 , ..., ΦE
N′
}

with respect to the energy-based inner product (., .). This step is

the key of the enforcement of dissipative energy modes with high singular values (βn)n=1,...,N′ in

early ranks of the reduced order basis, which is the opposite case when considering only the

classical velocity-based POD modes (dissipative energy modes are classified respectively with

very small singular values).

We will show that the new reduced order basis features new modes that represent larger ranges

of spatial scales than the ones encountered in the energetic classical velocity POD modes. We point out

also that the intentional a priori enforcement of these new modes within the first ranks of the reduced

order basis has a major role on the quality of the resulting reduced order model. We will show that it

ensures the stability of the reduced order model in an efficient fashion as a result of the availability of

the driving forces and the dissipative ones within a reduced number of velocity modes.
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3. Application of the Stabilization Approach to a Typical Aeronautical Injector

3.1. Flow Solver

For the present simulations, the low-Mach number solver YALES2 [21] for unstructured grids

is retained. This flow solver has been specifically tailored for the direct numerical simulation

and large-eddy simulation of turbulent reacting flows on large meshes counting several billion

cells using massively parallel super-computers [22,23]. It features a central fourth-order scheme

for spatial discretization while time integration of convective terms is performed with an explicit

fourth-order temporal scheme. The Poisson equation that arises from the low-Mach formulation of the

Navier–Stokes equations is solved with a highly efficient Deflated Preconditioned conjugated gradient

method [23].

3.2. Typical Aeronautical Injector of Re = 45,000 Lean Preccinsta Burner

3.2.1. Test Case Presentation

In what follows, we apply our new approach for a 3D unsteady, turbulent and incompressible fluid

flow in a fuel injection system. The main objective is to be able to have an efficient strategy in order to

compute precisely the aerodynamic field in the primary zone of the combustion chamber. The so-called

PRECCINSTA test case [24,25] is presented in Figure 1. This lean-premixed burner has been widely

studied in the combustion community to validate large-eddy simulation models [22,26–31].

Figure 1. The 3D unsteady turbulent and incompressible flow in a fuel injection system and in the

primary zone of the combustion chamber, given a constant inlet velocity, an outlet boundary condition

on the channel outlet and a wall boundary condition on the upper and lower walls of the channel.

The 3D turbulent flow in the complex configuration presented in Figure 1 is considered.

The kinematic viscosity ν = 10−5 m2/s yields a Reynolds number 45,000 based on the inlet velocity

and the length of the duct. The present High Fidelity simulation runs over 512 cores during 5 days in

order to obtain a physical simulation time equal to 250 ms. A velocity-based POD-Galerkin reduced

order modeling is performed, and an evaluation of its accuracy and efficiency is done before and after

applying the a priori enrichment by the dissipative modes. By efficiency, we mean the online time

needed to solve the mesh-independent ordinary differential Equation (8). In order to build the reduced

basis, 2500 snapshots of the solution and its gradient are taken, extracted at each time step of the

original HF simulation. We point out the fact that these 2500 snapshots are taken from 6644 time steps

of the high fidelity simulation corresponding to the final 25 ms of its total physical time. We precise

that these 25 ms represent two times the flow through time (FTT) of this test case.
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3.2.2. POD Modes Computation for the Preccinsta

The velocity-based and gradient velocity-based POD modes were computed through a distributed

snapshots POD performed in the YALES2 code. The CPU ressources needed for this computation

are 768 cores (24 nodes), to guarantee a memory availability to read the 2500 time snapshots.

The computation runs during 6 hours for the velocity-based POD modes and 9 hours for the gradient

velocity-based POD modes. These POD modes for the velocity and gradient velocity fields are shown

respectively starting from Figure 2–17.

Figure 2. Velocity proper orthogonal decomposition (POD) mode Φ1.

Figure 3. Velocity POD mode Φ2.

Figure 4. Velocity POD mode Φ3.

Figure 5. Velocity POD mode Φ4.

Figure 6. Velocity POD mode Φ5.
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Figure 7. Velocity POD mode Φ6.

Figure 8. Velocity POD mode Φ7.

Figure 9. Velocity POD mode Φ8.

Figure 10. Velocity POD mode Φ9.

Figure 11. Velocity POD mode Φ10.

Figure 12. Velocity POD mode Φ11.
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Figure 13. Velocity POD mode Φ12.

Figure 14. Fluctuating gradient velocity POD mode Ψ1.

Figure 15. Fluctuating gradient velocity POD mode Ψ2.

Figure 16. Fluctuating gradient velocity POD mode Ψ3.

Figure 17. Fluctuating gradient velocity POD mode Ψ4.

We can see that the velocity-based POD modes contain the high-scales of the principal coherent

structures of the flow.

Interestingly, compared to the velocity-based POD modes, the velocity gradient-based POD ones

feature high-scales in the dissipative regions such as in the wake of the two channels of the swirler and

in the wake of the combustion chamber.

Moreover, if we compare the cumulative kinetic energies (Figures 18 and 19) associated

respectively with the velocity-based POD modes and the gradient velocity-based ones, we can see

that fewer than 10 velocity-based POD modes are sufficient to reproduce 90% of the high-scales TKE,

however we need a larger number of velocity gradient-based POD modes in order to reproduce 90%

of the small and dissipatives scales of the TKE. Then, it is clear that the dissipative scales are not
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considered in the velocity-based POD modes and should be added in order to preserve the energy

conservation within the ROM.

Figure 18. Cumulative kinetic energy of the velocity-based POD modes.

Figure 19. Cumulative kinetic energy of the velocity gradient-based POD modes.

3.2.3. The Enhanced Reduced Order Basis

We apply our a priori enforcement of the dissipative velocity modes defined previously by our

new approach in the following fashion:

• We choose N = 4 and start the enforcement by the new velocity modes from the 5th rank.

This choice is made because we want to limit the number of classical global POD modes which

do not exhibit at the end very large features of spatial scales, as we can see on the modes Φ5, Φ6,

Φ7, Φ8 and Φ9.
• We choose N′ = 50 because, as already discussed, we need a large number of velocity

gradient-based POD modes in order to reproduce 90% of the small and dissipatives scales

of the TKE as shown on Figure 19.
• We perform the Gram–Schmidt orthonormalization process for the enriched set{

Φ1, ..., ΦN , ΦE
1 , ..., ΦE

N′
}

with respect to the energy-based inner product (., .).

By applying our proposed algorithm with the preceding choices, we get a new velocity-based

reduced order basis as shown from Figures 20–31.

We give some further remarks in what follows:

• We recall that the choice N = 4 is done intentionally in order to retrieve some dissipative modes

at earlier stages than in the classical POD technique where we can see that even after 12 modes

we do not have any modes of large scale’s features.
• The fact that the dissipative energy modes appear at late stages in the classical POD technique with

very small singular values is the reason why we are not able to exploit their physical significance

even if we increase the dimension of the classical POD reduced order model.
• We add starting n = 5 velocity-based modes of high singular values and large features of scales.
• This enrichment by small scale enforcement and separation is the key to multi-scale reproduction

within the reduced order modeling. We precise once more that this approach is very different

than the ones based on the change of the inner product that defines the matrix of the correlations

between the instanteneous snapshots, typically the approach where the H1 inner product is

considered instead of the L2 inner product. By our approach we enable scale separation, then
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small scale’s enforcement, which is very hard to distinguish when performing a H1 correlations

matrix and then retrieving a complete POD basis: the small scales will remain dominated by

the L2 correlated large scales even if we perform this inner product change. Some authors use

mathematical calibration in order to retrieve the small scales [17].

The new velocity-based modes ΦE
5 , ΦE

6 , ΦE
7 , ΦE

8 and ΦE
9 show very large features of spatial

scales which was not observed within the classical global POD modes Φ5, Φ6, Φ7, Φ8 and Φ9.

The margin of variation of these large features, as we can see on Figures 24–28, ranges from 0 to 380 (see

Figures 25, 27 and 28). Moreover, the largest scales exhibit local structures in the fluid domain which

are the small vortices carrying out the dissipative energy by analogy with the gradient velocity-based

POD modes (see Figures 14–17).

In what follows, we call “dissipative ROM” the reduced order model computed using the

proposed enriched basis
(
ΦE

n

)
n
, whereas “non-dissipative ROM” refers to the ROM using the classical

POD basis (Φn)n.

Figure 20. Velocity mode ΦE
1 = Φ1.

Figure 21. Velocity mode ΦE
2 = Φ2.

Figure 22. Velocity mode ΦE
3 = Φ3.

Figure 23. Velocity mode ΦE
4 = Φ4.

190



Math. Comput. Appl. 2019, 24, 45

Figure 24. Velocity mode ΦE
5 .

Figure 25. Velocity mode ΦE
6 .

Figure 26. Velocity mode ΦE
7 .

Figure 27. Velocity mode ΦE
8 .

Figure 28. Velocity mode ΦE
9 .

Figure 29. Velocity POD mode ΦE
10.
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Figure 30. Velocity mode ΦE
11.

Figure 31. Velocity mode ΦE
12.

3.2.4. The Temporal Coefficients and Kinetic Energy of the Enriched Reduced Order Model and the
Comparaison with the Classical POD-Galerkin Reduced Order Model

Figures 32–36 show the time history of the stabilized ROM amplitudes, when the stabilization

algorithm is performed by enrichment of N = 4 POD velocity modes with N′ = 50 dissipative

modes. We can see that these temporal coefficients obtained from the resolution of the reduced order

model for a time interval equal to 25 ms which corresponds to the total time from which our data set

was extracted in order to compute the POD modes for the velocity and the gradient velocity fields,

tend to stabilize at the end of this resolution (from time step 2000). This could be explained by the

order reduction using a limited number of modes, which means that the ROM needs to retrieve its

equilibrium before the conservation of the kinetic energy. The ROM exhibits periodic fluctuations

with a period of 2.2 ms which is the time scale of the precessing vortex core (PVC) associated with this

test case.

This proves that the dissipative modes play a major role in the evolution of the Turbulent Kinetic

Energy. Their introduction in the set of POD modes of the Galerkin ROM enables us to recover a better

time evolution of the TKE in the system with fewer modes, see Figure 37. If we compare on this plot

the kinetic energy evolutions respectively for the dissipative ROM and the non dissipative ROM, we

can see that in the non dissipative case the plot of the kinetic energy is far from stabilization on the

same time interval which is 25 ms.

Figure 32. Time histories of the modal weights a1(t) and a2(t) for 25 ms time resolution of stabilized

reduced order modeling (ROM)-POD.
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Figure 33. Time histories of the modal weights a3(t) and a4(t) for 25 ms time resolution of stabilized

ROM-POD.

Figure 34. Time histories of the modal weights a5(t) and a6(t) for 25 ms time resolution of stabilized

ROM-POD.

Figure 35. Time histories of the modal weights a7(t) and a8(t) for 25 ms time resolution of stabilized

ROM-POD.

Figure 36. Time histories of the modal weights a9(t) and a10(t) for 25 ms time resolution of stabilized

ROM-POD.
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Figure 37. On the left: evolution the turbulent kinetic energy (TKE) in the dissipative ROM for 25 ms

time resolution. On the right: evolution the TKE in the non-dissipative ROM for 25 ms time resolution.

These results are very encouraging to test the dynamic extrapolation of the stabilized reduced

order model, so that we could access in real time (without any further offline operations) the evolution

of the turbulent and incompressible flow outside the original snapshots data set. The first results of

the dynamic extrapolation are shown in Section 4 in what follows.

3.2.5. 3D Time Fields Obtained by the ROM and the High-Fidelity Model

In what follows we show in Figure 38 plots of the 3D reduced order velocity fields when the

stabilized ROM is applied, compared to the 3D high fidelity velocity fields obtained by LES. Large

scale features of the flow are clearly reproduced by the ROM even for very long time integrations.

Figure 38. X-magnitude of the high-fidelity simulation against reduced order velocity fields.

3.2.6. CPU Time for Offline and Online Computation

In Table 1, we evaluate the efficiency of the stabilized reduced order modeling with respect to

the High Fidelity simulation. Furthermore, we evaluate approximately the cost of the offline phase

(including the snapshots POD, the Galerkin projection and the stabilization when applied) and the

online ROM phase.

We precise that the speed-up is defined by the ratio of the ROM return time and the YALES2

return time. As a consequence of the proposed strategy we are able to enhance the accuracy of the

reduced order modeling with a very good efficiency, regarding the online resolution. Furthermore,

the offline effort associated with the additional stabilization algorithm scales with the high fidelity

YALES2 return time.

It is important to note that the steps which are the most CPU consuming in the offline stage are the

velocity-based POD and the gradient velocity-based one computations, followed by the stabilization
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by Gram–Schmidt. This took 18 h over 768 cores (24 nodes are required), because of the memory

cost needed to read all of the 2500 time snapshots. This operation was not well distributed over the

768 cores due to the following issue: a temporal snapshot was not post-processed as one file per

subdomain, i.e. the number of solution files per time step was less than the number of mesh partitions.

This means that the running cores are working the available memory on the saved nodes in order

to read lots of data per process. However, the Galerkin projection of the Navier–Stokes equations’

operators took only three minutes over 768 cores. This is a consequence of the fact that we do not need

to read any snapshots but, we read only the reduced number of the enhanced reduced order vectors

and, we perform distributed scalar product and classical differentiation operations which scale with

the mesh complexity but are very well parallelized due to distributed tasks on the mesh parts.

Table 1. Offline and online computational cost.

Operation Wall Clock Time

High-fidelity YALES2 solver (512 cores) 5 days
Velocity-based POD + Disipative modes computation (768 cores) 15 h

Stabilization by Gram–Schmidt (768 cores) 3 h
Galerkin projection (768 cores) 3 min

Time python ROM-POD solver (1 core) 3.7 s
Speed up factor 108

4. Temporal Extrapolation of the Dissipative ROM

Running the reduced order model for 250 ms (i.e., 10 times longer than 25 ms that is

the time interval over which the POD basis has been performed), yields the dynamic weight

coefficients (Figures 39–43) and the evolution of the turbulent kinetic energy represented on Figure 44.

These coefficients were obtained as a consequence of the run of the stable ROM over 1 core. In this

case, we can legitimately state that the speed up of the reduced order modeling is 108, due to the fact

that we are accessing physical solutions that were not seen by the offline phase and the learning phase

of the ROM.

Figure 39. Time histories of the modal weights a1(t) and a2(t) for 250 ms time resolution of stabilized

ROM-POD (ten times further than the total time of the snapshots data set).
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Figure 40. Time histories of the modal weights a3(t) and a4(t) for 250 ms time resolution of stabilized

ROM-POD (ten times further than the total time of the snapshots data set).

Figure 41. Time histories of the modal weights a5(t) and a6(t) for 250 ms time resolution of stabilized

ROM-POD (ten times further than the total time of the snapshots data set).

Figure 42. Time histories of the modal weights a7(t) and a8(t) for 250 ms time resolution of stabilized

ROM-POD (ten times further than the total time of the snapshots data set).
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Figure 43. Time histories of the modal weights a9(t) and a10(t) for 250 ms time resolution of stabilized

ROM-POD (ten times further than the total time of the snapshots data set).

Figure 44. Time history of the TKE evolution in the dissipative ROM for 250 ms (ten times further than

the total time of the snapshots data set).

5. Conclusions and Prospects

A new methodology is proposed for the stabilisation of Galerkin reduced order models by POD

for the turbulent and incompressible 3D Navier–Stokes equations. The method is based on adding the

necessary physics in the new reduced order space, so that all the scales modeled in the high-fidelity

Navier–Stokes equations are taken into account by the reduced order model. The only ingredient which

is not represented by the retained POD modes for the reduction process in the classical methodology,

is the small rank scales which are responsible for the dissipation of the turbulent kinetic energy.

This ingredient is added as a result of an a priori enrichment strategy and an enforcement to the

velocity-based POD modes, by a minimal number of new velocity modes which contain the low

dissipative energy in the new reduced order basis. This strategy shows a very good performance when

applied to an unsteady turbulent flow of Reynolds 45,000 in a typical aeronautical injection system.

The prospects of this work are the use of the proposed stable reduced model in order to perform

time extrapolation, that could be a way to study the limit cycle of the Precessing Vortex Core of an

aeronautical injection system.
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Abbreviations

The following abbreviations are used in this manuscript:

ROM Reduced order modeling

POD Proper orthogonal decomposition

PVC Precessing vortex core

SVD Singular value decomposition

HF High-fidelity

LES Large eddy simulation

FTT Flow through time

TKE Turbulent kinetic energy
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Abstract: The solution of structural problems with nonlinear material behaviour in a model order

reduction framework is investigated in this paper. In such a framework, greedy algorithms or

adaptive strategies are interesting as they adjust the reduced order basis (ROB) to the problem of

interest. However, these greedy strategies may lead to an excessive increase in the size of the ROB,

i.e., the solution is no more represented in its optimal low-dimensional expansion. Here, an optimised

strategy is proposed to maintain, at each step of the greedy algorithm, the lowest dimension of a

Proper Generalized Decomposition (PGD) basis using a randomised Singular Value Decomposition

(SVD) algorithm. Comparing to conventional approaches such as Gram–Schmidt orthonormalisation

or deterministic SVD, it is shown to be very efficient both in terms of numerical cost and optimality

of the ROB. Examples with different mesh densities are investigated to demonstrate the numerical

efficiency of the presented method.

Keywords: model order reduction (MOR); low-rank approximation; proper generalised

decomposition (PGD); PGD compression; randomised SVD; nonlinear material behaviour

1. Introduction

Numerical simulations appeal as an attractive augmentation to experiments to design and analyse

mechanical structures. Despite the recent developments in computational resources that makes it

feasible to solve systems with a substantial number of degrees of freedom efficiently, it is of common

interest to reduce the numerical cost of numerical models throughout model order reduction (MOR)

strategies [1]. The performance of MOR techniques has been shown in different fields such as their

application to nonlinear problems [2,3], real-time computations [4] or for performing cyclic, parametric

or probabilistic computations in which the information provided by some queries can be efficiently

reused to respond to other queries that exhibit some similarities [5,6].

A posteriori model reduction techniques such as the Proper Orthogonal Decomposition (POD)

is based on an offline training computations which extract a reduced order basis (ROB) from the

solution of a high fidelity model. This optimal basis is practically built through a singular value

decomposition (SVD) of a snapshot matrix. The singular vectors corresponding to the highest singular

values are used to build the ROB [7]. Then, the problem of interest is confined to this ROB resulting in

a drastic reduction in the numerical cost [1,8]. However, since the ROB has been defined as an optimal

basis for the training stage, some advanced adaptive approaches are required to enrich the basis to

tackle nonlinearities [9]. On the other hand, a priori MOR technique such as the Proper Generalized

Decomposition (PGD) is based on the assumption that the quantities of interest can be written as a

finite sum of products of separated functions, of generalised coordinates, which are sought in online

computations [8,10]. No prior knowledge of the system is required in such a case and the ROB is
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directly adapted to the problem of interest by using a greedy algorithm, which enriches the basis when

required [3,11]. However, an issue may be caused by the rapid growth of the ROB basis, whereas

the primary interest of MOR is to benefit from a small sized ROB which provides a nondemanding

temporal updating step. This step is equivalent to a POD step where the spatial modes are fixed and

only the temporal ones are updated. It has been observed that the basis can increase to count some

hundreds of modes for parametric studies of nonlinear cyclic loading [12], or some thousands for

parametric computations [13]. In [5], some advanced strategies have been proposed to use an optimal

parametric path allowing for controlling the basis expansion optimally.

In the context of reusing an ROB from a previous computation, a learning strategy has been

proposed in [14,15] to extract an optimal basis from the reduced order model (ROM) through a

Karhunen–Loève expansion. In a PGD framework, recompression based on SVD has been evaluated

in [16]. However, the SVD step turns out to be numerically expensive prohibiting its implementation

at each iteration. Therefore, it is common to let the basis increase and compress the results only at

convergence to decrease their storage requirements. Therefore, it appears of interest to investigate

probabilistic algorithms to compress the ROB on-the-fly without creating a bottleneck in the ROM.

A detailed review of the most established algorithms to compute an SVD is provided in [17,18].

These algorithms are not limited to conventional deterministic methods such as truncated, incremental

or iterative SVD but also randomised algorithms [19]. Different algorithms have been tested for POD

applications in the case of dynamical problems in [18]. It has been noticed that randomised SVD

algorithms can reduce drastically the numerical cost of the decomposition required after the training

stage. Even if this step occurs only once in the offline stage of POD based ROM, the number of degrees

of freedom and time steps can be vast for the high fidelity model so that the decomposition process

can be a bottleneck.

Our goal here is to maintain the flexibility of the greedy algorithm through the usage of PGD

while controlling the size of the ROB with a minimal numerical cost, by proposing to use a randomised

SVD algorithm that provides a nondemanding compressive step after each enrichment of the basis.

The numerical approach will be herein exemplified for the specific case of a fatigue computation

based on continuum damage mechanics in a large time increment (LATIN) framework. However,

the proposed numerical strategy can be generally used to optimise efficiently PGD basis for any

application.

This paper is structured as follows. An overview of the LATIN-PGD scheme is provided in

Section 2, followed by a discussion on the optimality of the PGD modes and the different algorithms

to ensure that in Section 3. Lastly, in Section 4, different numerical examples are presented to illustrate

the robustness and efficiency of the proposed algorithm.

Notation

The notation used in this paper is summarised in Table 1.

Table 1. Symbols and their representation.

Symbolic Representation Verbal Representation

a, ϕ scalars: lowercase letters
u, x first-order tensors: lowercase boldface letters
I, N second-order tensors: uppercase boldface letters
σ, ε second-order tensors: Greek boldface letters
C,H fourth-order tensor: blackboard bold letters
a column vector
A matrix
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2. An Overview of the LATIN-PGD Method

LATIN is a linearisation scheme that makes it easier to introduce PGD in nonlinear mechanical

computations. A review of the LATIN-PGD method and some of its recent extensions to nonlinear

solid mechanics problems can be found in [8,11].

The LATIN method is a fully discrete non-incremental solution scheme that inherits its efficiency

for mechanical problems from incorporating an a priori model order reduction technique, namely PGD.

It is shown in [20] that functions defined over space-time domain, with some regularities, may be

approximated by PGD. However, it is vital that the number of modes (approximating functions) is small

and the approximation error is low. A summary of the implemented framework is provided below.

For a generic structural problem defined over space-time domain Ξ = Ω× I = Ω× [0, T] in

an infinitesimal strain and quasi-static framework, the strong form to be solved is represented in

Figure 1 [21,22]. The equilibrium equation is linear in terms of the stress and the nonlinearity, in this

case, is introduced through the constitutive model, i.e., in the stress–strain (σ, ε) relationship.
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Dirichlet
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Strain ε
Dual
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Neumann
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Figure 1. Graphical representation of the strong form of a structural problem (Tonti Diagram).

In a standard incremental Newton–Raphson scheme, the constitutive relations along with the

kinematic relations are substituted into the balance equation resulting in a nonlinear problem in terms

of the primal variable. However, a different linearisation strategy, termed LATIN, consists of solving

the equilibrium equations along with kinematic relations in one step and solving the constitutive

relations in the following step. Then, a solution that satisfies both of these systems is sought. In such

a framework, two sets of equations are distinguished, the local equations described by constitutive

relations (evolution and state laws [23]) and the global equilibrium equation along with the kinematic

compatibility. Data flow between these two systems is required, i.e., to get statically admissible stress

and kinematically permissible strain or displacement, a relation between the stress and the strain

should be assumed. In the same manner, a decision should be taken on what data to pass back from the

global system to the local one; these relations are referred to as search direction equations because they

are affine equations in a 12-dimensional space hosting the stress and strain fields. The main advantage

of the LATIN linearisation scheme is confining the computational cost to the solution of a global linear

equation, which allows for introducing a model order reduction technique such as the PGD to reduce

this numerical cost [8].

PGD is often used in many query context and quick response simulations where the solution is

approximated by a finite sum of separated functions on each of the problem generalised coordinates,

e.g., the displacement field may be approximated by a finite sum of globally spatial and temporal

functions as

u(x, t) ≈
N

∑
j=1

vj(x) ◦ λj(t), vj(x) : Ω→ R
d, λj(t) : I → R, (1)

where d ≤ 3 is the spatial dimension, N ∈ N and ◦ is the entry-wise Hadamard or Schur multiplication

of vectors [8,24]. It is shown in [8] that a small number of pairs/modes is sufficient to approximate the
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solution of many problems with substantial savings in terms of CPU time and memory. In contrary

to POD based techniques that include a preliminary learning phase, PGD defines the basis of the

problem on-the-fly using a greedy algorithm such that additional pairs are added if necessary, i.e., the

approximation error is controlled by the successive enrichment of the generated basis [25].

The LATIN solution algorithm starts with an elastic initialisation followed by a sequence of two

stages, namely the local and the global ones. These two steps form one LATIN iteration, and they

are repeated until convergence is reached. Note that, at every local and global step, the quantities

of interest over all the space-time points are approximated. The space that belongs to the solution

manifold of the constitutive relations is denoted by Γ while A represents the admissible space that

satisfies the equilibrium equation (static admissibility) along with the kinematic relations (kinematic

admissibility). Hence, the exact solution is defined as a set s = {X, Ẏ} ∈ Γ ∩A, where X contains the

dynamic conjugate variables and Ẏ represents the evolution of the internal variables. For discussions

on the LATIN convergence behaviour, refer to [8,20,26].

The elastic solution s0 = {X0} takes all the boundary conditions into account, and the following

solutions are computed in terms of corrections to s0. Then, the constitutive model, consisting of the

nonlinear evolution equations in addition to the state equations, is solved and integrated within the

local stage at every space-time point. The outcome of this stage, at the ith iteration, is the solution

ŝi = {X̂ i,
ˆ̇Y i}, which is used in the following global stage to obtain si+1. The admissibility equations are

the only ones left to be solved in the global stage. The kinematic admissibility is satisfied by deriving

the strain as the symmetric gradient of the displacement field ε = ∇su with u = ū on ∂ΩD and the

static admissibility condition is obtained from the equilibrium equation, which reads [27]

∇·σ(x, t) + b = 0 ∀(x, t) ∈ Ω× I , (2)

with σ · n = t̄ on ∂ΩN , σ is Cauchy stress and b is the body force in the spatial domain Ω. The use of

the Hamilton’s law of varying action, which is the principle of virtual work integrated over time [28],

leads to the following weak form

∫

Ω×I
σ : ε(u∗) dΩ dt =

∫

Ω×I
b · u∗ dΩ dt +

∫

∂ΩN×I
t̄ · u∗ dS dt ∀u∗ ∈ U0, (3)

where U0 = {u(x, t) | u(x, t) ∈ H1
0(Ω)⊗C0(I), u = 0 on ∂ΩD × I}. As long as the boundary

conditions are satisfied by the elastic initialisation, the corrections in each iteration, in terms of

displacement, are defined as Δui+1 = ui+1 − ui, where the i and i + 1 subscripts refer to the previous

and the current global stage, respectively. The solution of Equation (3) is computationally expensive

due to the integration over the spatial domain. Therefore, the kinematically and statically admissible

fields are computed for the whole space-time domain with the help of PGD, where a separate

representation of the displacement and consequently the strain corrections is introduced as

Δu = v(x) ◦ λ(t), Δε = ∇v(x) ◦ λ(t). (4)

Note that the subscript i + 1 is dropped to simplify the notations, and it is assumed that only

one PGD term/pair is generated within one LATIN iteration. Following the derivations in [3,29] by

writing Equation (3) in terms of corrections and introducing the aforementioned PGD scheme results

in a spatial and a temporal problem. These two problems are solved iteratively in a staggered manner

using a fixed-point, alternated directions algorithm [8]. After introducing a Galerkin finite element

discretisation, for the spatial and the temporal domains, this algorithm renders a space problem, with

homogeneous boundary conditions,

γ K v = f γ ∈ R K ∈ R
n×n v, f ∈ R

n, (5)
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and a temporal problem, with zero initial conditions,

a λ = b a ∈ R λ, b ∈ R
nt , (6)

where (n, nt) are the spatial and temporal degrees of freedom and (v, λ) are the spatial and temporal

functions. The stiffness matrix is defined as K =
∫

Ω
BTC B dΩ, where B is a globally assembled

matrix containing the derivatives of the shape functions and C is a block diagonal matrix with 6× 6

diagonal blocks representing the elasticity tensor at each integration point. The scaling factor in front

of the stiffness is defined as γ =
∫
I λTλ dt and the right-hand side f = −

∫
Ω×I BT ( f̂ λ) dΩ dt,

where f̂ is a residual obtained from the previous local stage. The temporal problem is defined

by a =
∫

Ω
(B v)TC (B v) dΩ and b = −

∫
Ω

f̂
T
(B v) dΩ. Using μ modes at iteration i + 1, the

displacement field is approximated by, its discrete counterpart,

u
i+1

= u
0
+

μ

∑
j=1

vj λT

j , (7)

where u
0

corresponds to the elastic solution and the Hadamard multiplication is replaced by an outer

product of the discrete values of v(x) and λ(t). It is seen that the cost of the global stage is dominated

by the computational cost of the spatial problem, Equation (5), that has an identical dimension to the

linear elastic problem associated with the finite element discretisation. Thus, a trial, POD-like, step

is introduced at the beginning of the global stage that consists of reusing the previously generated

spatial modes while updating the temporal ones [30].

2.1. Temporal Modes Update

Starting with an ROB that consists of a certain number (μ) of previously generated PGD pairs,

the displacement correction is written as

Δu
i+1

=
μ

∑
j=1

vj︸︷︷︸
known

ΔλT

j , (8)

where Δλj(t) is the correction added to the temporal function λj(t). Introducing this assumption into

the temporal problem, Equation (6) leads to

Ã Λ̃
T
= B̃ Ã ∈ R

μ×μ B̃ ∈ R
μ×nt , (9)

where

Ãkl =
∫

Ω

(B vk)
TC (B vl) dΩ, Λ̃ = [Δλ1, · · · , Δλμ], B̃kl =

∫

Ω

(B vk)
T f̂

tl
dΩ. (10)

The cost of this step depends only on the temporal discretisation nt and the number of already

generated modes μ. If the computed approximation introduces a significant change to the original

temporal modes, measured by (‖Δλj‖/‖λj‖), then no further enrichment to the spatial modes is

required and the algorithm continues to the next local stage. Otherwise, this update is ignored so as

not to introduce unwanted numerical errors into the temporal functions and a new pair of temporal

and spatial modes is generated.
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3. Optimality of the Generated ROB

Recall that the correction/solution at the ith iteration of the LATIN algorithm, in matrix

notation, reads

Ũ =
μ

∑
j=1

vj λT

j = V ΛT ∈ R
n×nt , (11)

where V = [v1, · · · , vμ] ∈ Rn×μ and Λ = [λ1, · · · , λμ] ∈ Rnt×μ. The representation in Equation (11) is

referred to as an outer-product form [31], and such a form requires the storage of μ(n + nt) entries

only to represent Ũ with nnt entries. It is practical to orthonormalise the spatial functions vj before

generating the temporal ones in order to limit the ROB size, i.e., the PGD expansion. This is traditionally

done via a Gram–Schmidt (GS) procedure [3]. An orthonormalisation scheme based on a GS procedure

is summarised in Algorithm 1, where vTl vm = δlm is the inner product between the spatial modes, δlm

is the Kronecker delta and ‖vj‖2

2
= vTj vj.

Algorithm 1: Gram–Schmidt based orthonormalisation procedure

Data:
Previously generated modes {vj, λj} (j = 1, · · · , μ) with vTl vm = δlm

New pair of modes {vμ+1, λμ+1}

Result: Enriched basis {vj, λj} (j = 1, · · · , μ + 1) with vTl vm = δlm

for j← 1 to μ do

Calculate the inner product of vμ+1 and an existing mode via p = vTj vμ+1

Subtract the projection from the new mode via vμ+1 ← vμ+1 − p vj

Update existing temporal mode λj = λj + p λj+1

end

Normalise the new spatial mode vμ+1 ← vμ+1/‖vμ+1‖2
Update the new temporal mode λμ+1 ← λμ+1 ‖vμ+1‖2

While experimenting on the LATIN-PGD scheme in a three-dimensional finite element framework,

it has been noticed that reaching a small error required generating many modes, further discussion

about the computational cost is provided in Section 4. This confirms the findings in [2] that

orthonormality of the spatial modes is not enough to confine the PGD expansion, i.e., compressing the

spatial modes only, leaves the temporal ones susceptible to redundancy.

3.1. SVD Compression of PGD

As long as PGD is not a unique decomposition and does not ensure the optimality of the generated

modes in terms of a minimal expansion, an optimal decomposition can be obtained via an SVD of

the full solution [32]. An SVD of the solution provides a straightforward scheme to compress both

spatial and temporal information into a minimal set of modes, following Algorithm 2. This is similar

to compressing information from different spatial directions into a single spatial mode.

It is known via the Schmidt–Eckart–Young theorem that the solution Ũ has an optimal

approximation of rank k ≤ μ + 1 with respect to the Frobenius norm that satisfies [31]

‖Ũ − Ũ
(k)‖

F
=

μ+1

∑
j=k+1

s̃2
j . (12)

The corresponding approximation error in terms of the spectral norm reads

‖Ũ − Ũ
(k)‖

2
= s̃k+1. (13)
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Hence, the PGD expansion may be restricted to a maximum number of modes and Equation (12)

will give a measure of the approximation error due to this enforced truncation. Another way is to

prescribe a subjectively acceptable tolerance ǫtol that the approximation error should not exceed, e.g.,

in the spectral norm this renders to

‖Ũ − Ũ
(k)‖

2

‖Ũ‖
2

=
s̃k+1

s̃1
< ǫtol. (14)

Algorithm 2: SVD compression of a PGD expansion

Data:

Previously generated modes {vj, λj} (j = 1, · · · , μ)

New pair of modes {vμ+1, λμ+1}
Required number of modes / truncation threshold k ≤ μ + 1, ǫtol

Result: Enriched basis {vj, λj} (j = 1, · · · , k) with vTl vm = δlm

Compute the full solution Ũ = V ΛT

Compute a thin/truncated SVD of the solution Ũ
(μ+1)

=
μ+1

∑
j=1

s̃j ṽj λ̃
T

j

Truncate the decomposition based on s̃k+1/s̃1 < ǫtol or directly using k

Recover the outer-product representation:

V ← [ṽ1, · · · , ṽk] ∈ Rn×k

Λ← [s̃1 λ̃1, · · · , s̃k λ̃k] ∈ Rnt×k

The computation of a full SVD, in case of n > nt, requires O(nn2
t ) floating point operations (flops)

while seeking a truncated SVD requires O(nntk) flops. Due to the high computational cost of applying

an SVD at each enrichment step in a PGD context, a quasi-optimal iterative orthonormalisation scheme

was proposed in [2,16]. However, another appealing straightforward approach to provide a direct

compression of the PGD modes into a minimal set is utilised here. It consists of using a randomised

SVD algorithm [19] to compress the PGD expansion.

3.2. Randomised SVD (RSVD) Compression of PGD

Low-rank matrix decompositions may be computed efficiently using randomised algorithms as

illustrated in this section for an SVD case. Such methods are based on random sampling to approximate

the range of the input matrix, i.e., a subspace that captures most of the matrix effect. Then, the matrix

is restricted to this subspace, and the low-rank approximation of this reduced matrix is sought using

classical deterministic schemes. If Ũ is a dense matrix, the required flops are reduced from O(nntk)

to O(nnt log (k)), where k is the number of the sought dominant singular values of an n× nt matrix.

It is worth mentioning that, even when randomised algorithms require a higher number of flops, they

exploit modern multi-processors architecture more efficiently than standard deterministic schemes [19].

It has been shown in [18] that a randomised SVD algorithm can outperform a truncated SVD one with

a speed-up factor over 50 when k = 10. An overview of the randomised SVD algorithm applied in a

PGD context is briefed in Algorithm 3.

Algorithm 3 can be straightforwardly extended to sample the rows of Ũ when nt is large. However,

this is not the case in the current study. It is also possible to exploit the PGD decomposition of the

solution when computing its SVD or RSVD [31]; see Algorithm 4 for details.

Algorithm 4 utilises a rank revealing QR-decomposition in order not to rebuild the full matrix Ũ.

Further algorithmic details of the presented deterministic and randomised algorithms may be found

in [17–19]. However, the goal of this study is to investigate the behaviour, robustness and efficiency of

the presented algorithms in a PGD framework.
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Algorithm 3: RSVD compression of a PGD expansion

Data:
Previously generated modes {vj, λj} (j = 1, · · · , μ)

New pair of modes {vμ+1, λμ+1}

Result: Enriched basis {vj, λj} (j = 1, · · · , k) with vTl vm = δlm

Compute the full solution Ũ = V ΛT ∈ Rn×nt

Approximate a basis E of range(Ũ) via E← Ũ Q ∈ Rn×k̃ with

Q ∈ Rnt×k̃ is a random matrix, k̃ = k + p and p is an oversampling factor taken

experimentally to be in the range of 5 ∼ 10 [19].

Orthonormalise the columns of E such that Ũ ≈ E ETŨ.

Restrict Ũ to the span{col(E)} to get a small matrix S = ETŨ ∈ Rk̃×nt

Compute a truncated SVD S ≈ S(k) = ˜̃V S̃ Λ̃
T

with k ≤ μ + 1

Expand S to span{col(Ũ)}, i.e., Ũ ≈ E S(k) =E ˜̃V S̃ Λ̃
T
= Ṽ S̃ Λ̃

T

Recover the outer-product representation:

V ← [ṽ1, · · · , ṽk] ∈ Rn×k

Λ← [s̃1 λ̃1, · · · , s̃k λ̃k] ∈ Rnt×k

Algorithm 4: RSVD compression that exploits the PGD expansion (RSVD-PGD)

Data:

Previously generated modes {vj, λj} (j = 1, · · · , μ)

New pair of modes {vμ+1, λμ+1}
Required number of modes / truncation threshold k ≤ μ + 1, ǫtol

Result: Enriched basis {vj, λj} (j = 1, · · · , k) with vTl vm = δlm

QR-decomposition:

V = Q
v

R
v

∼ O((μ + 1)2 n)

Λ = Q
λ

R
λ

∼ O((μ + 1)2 nt)

Compute R
v

RT

λ
∈ R(μ+1)×(μ+1)

Apply Algorithm 3 to approximate R
v

RT

λ
as

k

∑
j=1

s̃j ṽj λ̃
T

j

Recover the outer-product representation:

V ← Q
v

Ṽ ∈ Rn×k

Λ← Q
λ

Λ̃ S̃
T ∈ Rnt×k

4. Numerical Results

The different algorithms are tested in the case of a modified unified viscoplastic viscodamage

model, in an infinitesimal strain settings, derived from [3,23,33,34]. The analysis is carried out on a

three-dimensional plate made of Cr–Mo steel at 580 ◦C [35] with a central groove. One-eighth of the

plate with symmetric boundary conditions is shown in Figure 2. The plate geometry is defined by its

length, width and depth being (40, 20, 2)mm while the length and width of the groove are (10, 4)mm.

This plate is subjected to a uniformly distributed displacement field of the form Ud = U0 sin
(

2π
T t
)

with t and T being the time and the time period, respectively.

Three examples are discussed below. Firstly, the effect of the temporal functions update is

investigated; see Section 2.1. Then, the PGD behaviour with different orthonormalisation schemes

is analysed to illustrate the optimality of the ROB. Lastly, the computational requirements of the

orthonormalisation schemes and their effect on the temporal functions update are discussed.
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Figure 2. A plate with a central groove subjected to cyclic loading.

4.1. POD-Like Temporal Functions Update

The analysis of the plate, shown in Figure 2, is carried out on a mesh that consists of

387 hexahedron elements, with eight integration points in each element, resulting in 1884 spatial

displacement degrees of freedom. The model is subjected to a uniformly distributed displacement

field with an amplitude U0 = 0.00606 mm and a time period T = 10 s. The temporal discretisation

is chosen such that the domain [0, T] is discretised into 33 time steps. Since the whole time domain

is computed at once, a total of 62, 172 degrees of freedom are being sought. The commonly used

GS scheme (Algorithm 1) is utilised in this example and the convergence criterion is considered to

be 10−10.

The purpose of this test case is to evaluate the importance of the updating step in a PGD approach.

Hence, the number of generated modes along with the number of the LATIN iterations, with and

without this POD-like step, is illustrated in Figure 3.
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Figure 3. The size of the generated ROB. (a) ROB size without the updating step; (b) ROB size with the

updating step.

It is seen in Figure 3 that the required number of LATIN iterations is not affected by this updating

step, but the computational cost is sharply decreased. Moreover, such a step is crucial to limit the

size of the PGD expansion. With the updating step, only half the number of modes were generated in

comparison with the approach without any update. Due to this favourable nature, the updating step is

implemented in the rest of the examples.

4.2. PGD Behaviour with Different Orthonormalisation Schemes

The previous example with the same spatial discretisation is subjected to 12 load cycles with

different amplitudes, in the range of [0.0033, 0.0066]mm. The temporal domain is divided into

12 intervals, each corresponding to one cycle, and the ROB generated within one cycle is reused

in the following cycles. The convergence criterion is considered to be 10−4.

The nonlinearity and the rapid damage evolution can be seen in Figure 4a where the damage

value at the end of each cycle is plotted with respect to the number of cycles. The first PGD temporal

function of each cycle, after convergence, is illustrated in Figure 4b.
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Figure 4. Damage evolution and the first PGD temporal mode in each cycle. (a) damage w.r.t. number

of cycles; (b) first temporal function.

The simulation is carried out using Algorithms 1–4 and the resulting number of PGD modes with

respect to the number of cycles is depicted in Figure 5. It is shown in Figure 5a that using Algorithm 1

resulted in an ROB with 18 modes while Algorithms 2–4 reduced this number to 11 modes by adding

a maximum of one supplementary mode for each cycle. It is emphasised that Algorithms 2–4 provide

the same ROB. However, their computational cost differs as illustrated in Section 4.3.
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Figure 5. Number of PGD modes in each cycle using different orthonormalisation schemes. (a) number

of PGD modes using GS; (b) number of PGD modes using (R)SVD.

It is observed that an SVD compression provides optimality of the ROB. It also has interesting

properties such as not rejecting any mode in the current example. In other words, due to the optimality

of the generated ROB, the POD-like step plays a noticeable role in convergence and there is no need

for further enrichment of the ROB.

The inner product of the spatial modes in each case, after the last cycle, with their corresponding

SVD of the acquired solution is shown in Figure 6. As expected, the GS modes are far from the optimal

SVD ones while, trivially, Figure 6b depicts an almost diagonal matrix. The off-diagonal entries are

caused by the temporal functions update at the final iterations.

It is of interest to point out that an excessive (R)SVD, termed e(R)SVD, step after the temporal

functions update, which seems to be an unnecessary step, restricts the ROB to six modes only as

illustrated in Figure 6c.
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Figure 6. ROB optimality w.r.t. an SVD of the resulting solution. (a) GS; (b) (R)SVD; (c) e(R)SVD.

4.3. Relative Performance of the Different Orthonormalisation Schemes

The ensured optimality of the ROB is of interest when used with challenging examples such

as in many-query context, due to the expected slow growth of the ROB. In order to investigate the

robustness and the behaviour of the ROB, in a many-query context with a large number of degrees

of freedom, the plate model is discretised into 13,812 hexahedron elements, with eight integration

points in each element, resulting in 50, 547 spatial displacement degrees of freedom. The temporal

discretisation consists of 33 time steps in each cycle resulting in 1, 668, 051 degrees of freedom in each

cycle. The plate is subjected to a uniformly distributed displacement field with a uniformly distributed

random amplitudes in the range of [18, 22]× 10−5 mm and a time period T = 10 s. The convergence

criterion is considered to be 10−4.

The resulting number of PGD modes with respect to the number of cycles using GS and SVD

algorithms is illustrated in Figures 7 and 8. It is seen that using a GS algorithm allows the ROB to grow

to contain 126 pairs of modes while SVD algorithms confine this size to 21 modes, using a truncation

threshold of 10−8. Accepting a bigger approximation error with a truncation threshold of 10−5 reduces

the number of modes to 11 pairs while an e(R)SVD scheme introduces further reduction to seven

modes without any rejection or truncation due to the maintained optimality of the ROB.

It is worth noting that, in this example, the SVD orthonormalisation schemes, other than e(R)SVD,

were invoked 53 times only compared to 125 times with the GS algorithm. Hence, this explains the

low computational requirements of Algorithms 2–4 in comparison with Algorithm 1 as summarised

in Figure 9b. The e(R)SVD scheme was invoked in each LATIN iteration. However, due to the small

number of generated modes, the required time to update the temporal functions is drastically decreased

in comparison with the other schemes; see Figure 9a for a profiler summary.

It is worth noting that the timing for each algorithm depends on the available computational

resources. However, we expect their relative performance not to change. The RSVD algorithm is

implemented in MATLAB® and uses its built-in SVD routine.
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Figure 7. ROB size using different orthonormalisation algorithms. (a) number of PGD modes using GS;

(b) number of PGD modes using (R)SVD (ǫtol = 10−8).
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Figure 8. ROB size using different orthonormalisation algorithms. (a) number of PGD modes using

(R)SVD (ǫtol = 10−5); (b) number of PGD modes using e(R)SVD.
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Figure 9. The required time to perform the temporal update and the orthonormalisation steps.

(a) timing of the temporal functions update; (b) timing of orthonormalisation schemes.

5. Conclusions and Further Research

Different orthonormalisation techniques were investigated to ensure the optimality of the PGD

decomposition. These techniques and their effect on the PGD greedy algorithm are illustrated

throughout examples with a varying number of degrees of freedom. It is found that a randomised SVD

algorithm is a promising scheme to ensure the optimality of PGD expansions. It introduces beneficial

time saving by limiting the number of modes compared to a Gram–Schmidt procedure and, at the

same time, it shows a drastic speed-up compared to a deterministic SVD scheme. Another promising

approach is proposed here where the randomised SVD scheme is invoked at each LATIN iteration,

after the temporal update or the basis enrichment. This approach is referred to, in the current work,

as e(R)SVD and it shows desired properties such as ensuring an optimal basis in each iteration and

reducing the enrichment of basis functions to a minimum, i.e., no modes are rejected. The proposed

numerical strategy, though it is presented in a LATIN-PGD framework, can be used to optimise PGD

basis for any application.
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Abbreviations

The following abbreviations are used in this manuscript:

flops Floating point operations

GS Gram–Schmidt

MOR Model order reduction

ROM Reduced order model

ROB Reduced order basis

POD Proper orthogonal decomposition

PGD Proper generalised decomposition

SVD Singular value decomposition

RSVD Randomised singular value decomposition

e(R)SVD Excessive SVD/RSVD applied at each iteration after ROB enrichment or temporal update

LATIN Large time increment
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Abstract: The industrial application motivating this work is the fatigue computation of aircraft

engines’ high-pressure turbine blades. The material model involves nonlinear elastoviscoplastic

behavior laws, for which the parameters depend on the temperature. For this application,

the temperature loading is not accurately known and can reach values relatively close to the creep

temperature: important nonlinear effects occur and the solution strongly depends on the used

thermal loading. We consider a nonlinear reduced order model able to compute, in the exploitation

phase, the behavior of the blade for a new temperature field loading. The sensitivity of the solution

to the temperature makes the classical unenriched proper orthogonal decomposition method fail.

In this work, we propose a new error indicator, quantifying the error made by the reduced order

model in computational complexity independent of the size of the high-fidelity reference model.

In our framework, when the error indicator becomes larger than a given tolerance, the reduced order

model is updated using one time step solution of the high-fidelity reference model. The approach

is illustrated on a series of academic test cases and applied on a setting of industrial complexity

involving five million degrees of freedom, where the whole procedure is computed in parallel with

distributed memory.

Keywords: nonlinear reduced order model; elastoviscoplastic behavior; nonlinear structural

mechanics; proper orthogonal decomposition; empirical cubature method; error indicator

1. Introduction

The application of interest for this work is the lifetime computation of aircraft engines’

high-pressure turbine blades. Being located immediately downstream the combustion chamber,

such parts undergo extreme thermal loading, with incoming fluid temperature higher than the

material’s melting temperature. These blades are responsible for a large part of the maintenance

budget of the engine, with temperature creep rupture and high-cycle fatigue [1,2] as possible failure

causes. Various technological efforts have been spent to increase the durability of these blades as much

as possible, such as thermal barrier coatings [3], advanced superalloys [4] and complex internal cooling

channels [5,6], see Figure 1 for a representation of a high-pressure turbine blade.

Computing lifetime predictions for high-pressure turbine blades is a challenging task: meshes

involve large numbers of degrees of freedom to account for local structures such as the internal

cooling channels, the behavior laws are strongly nonlinear with many internal variables, and a large

number of cycles has to be computed. Besides, the temperature loading is poorly known in the outlet

section of the combustion chamber. Our team has proposed in [7] a nonintrusive reduced order model

Math. Comput. Appl. 2019, 24, 41; doi:10.3390/mca24020041 www.mdpi.com/journal/mca214
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(ROM) strategy in parallel computation with distributed memory to mitigate the runtime issues:

a domain decomposition method is used to compute the first cycle, and the reduced order model

is used to speed up the computation of the following cycles, which can be considered as a reduced

order model-based temporal extrapolation. As pointed out in [7], errors are accumulated during this

temporal extrapolation. Moreover, quantifying the uncertainty on the lifetime with respect to some

statistical description of the temperature loading using an already constructed reduced order model

would introduce additional errors. In this context, error indicator-based enrichment of reduced order

models is the topic of the present work.

Figure 1. Illustration of a high-pressure turbine blade [8]. The internal channels create a protective

layer of cool air to protect the outer surface of the blade.

Error estimation for reduced model predictions is a topic that receives interest in the scientific

literature. The reduced basis method [9,10] for parametrized problems is a reduced order modeling

method that intrinsically relies on efficient a posteriori error bounds of the error between the reduced

prediction and the reference high-fidelity (HF) solution. This method consists of a greedy enrichment

of a current reduced order basis by the high-fidelity solution at the parametric value that maximizes

the error bound on a rich sampling of the parametric space. Being intensively evaluated, the error

bound must be computed in computational complexity independent of the number of degrees of

freedom of the high-fidelity reference. Initially proposed for elliptic coercive partial differential

equations [11], where the error bound is the dual norm of the residual divided by a lower bound

of the stability constant, the method has been adapted to problems of increased difficulty, with the

derivation of certified error bounds for the Boussinesq equation [12], the Burger’s equation [13], and the

Navier–Stokes equations [14]. Numerical stability of such error estimations with respect to round-off

error can be an issue in nonlinear problems, which was investigated in [15–18].

Even if it is not a requirement for their execution, error estimation is a desired feature for all the

other reduced order modeling methods. In proper generalized decomposition (PGD) methods [19],

error estimation based on the constitutive relation error method is available [20–22]. In proper

orthogonal decomposition (POD)-based reduced order modeling methods [23,24], error estimators

have been developed for linear-quadratic optimal control problems [25], the approximation of

mixte finite element problems [26], the optimal control of nonlinear parabolic partial differential

equations [27], and for the reduction of magnetostatic problems [28] and Navier–Stokes equations [29].

To reduce nonlinear problems, the POD has been coupled with reduced integration strategies

called hyperreduction, for which error estimates in constitutive relation have been proposed [30,31].

A priori sensitivity studies for POD approximations of quasi-nonlinear parabolic equations are also

available [32].
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The contribution of this work consists in the construction of a new error indicator, adapted to the

model order reduction of nonlinear structural mechanics, where we are interested in the prediction

of the dual quantities such as the cumulated plasticity or the stress tensor. These dual quantities

need a reconstruction step to be represented on the complete structure of interest, usually done using

a Gappy-POD algorithm based on the reduced solution. We illustrate that the ROM-Gappy-POD

residual of the quantities of interest is highly correlated to the error in our cases. From this observation,

we propose a calibration step, based on the data computed during the offline stage of the reduced

order modeling, to construct an error indicator adapted to the considered problem and configuration.

This error indicator is then used in enrichment strategies that improve the accuracy of the reduced

order model prediction, when nonparametrized variations of the temperature field are considered in

the online stage.

The problem of interest, the evolution of an elastoviscoplastic body under a time-dependent

loading, in presented in Section 2. Then, the a posteriori reduced order modeling of this problem is

detailed in Section 3. Section 4 presents the proposed error indicator, and the enrichment strategy

based upon it. The performances of this error indicator and its ability to improve the quality of the

reduced order model prediction via enrichment are illustrated in two numerical experiments involving

elastoviscoplastic materials in Section 5. Finally, conclusions and prospects are given in Section 6.

2. High-Fidelity Elastoviscoplastic Model

We consider the model introduced in [7], which we briefly recall below for the sake of

completeness. The structure of interest is noted Ω and its boundary ∂Ω, where ∂Ω = ∂ΩD ∪ ∂ΩN such

that ∂ΩD ∩ ∂ΩN = ∅, see Figure 2.

∂ΩN

∂ΩD

Ω

Figure 2. Schematics of the considered structure Ω.

Prescribed zero displacements are imposed on ∂ΩD, prescribed tractions TN are imposed on

∂ΩN and volumic forces are imposed to the structure Ω, in the form of a time-dependent loading.

Assuming small deformations, the evolution of the structure Ω is governed by equations

ǫ(u) =
1

2

(
∇u +∇Tu

)
in Ω× [0, T] (compatibility), (1a)

div (σ) + f = 0 in Ω× [0, T] (equilibrium), (1b)

σ = σ(ǫ(u), y) in Ω× [0, T] (behavior law), (1c)

u = 0 in ∂ΩD × [0, T] (prescribed zero displacement), (1d)

σ · n = TN in ∂ΩN × [0, T] (prescribed traction), (1e)

u = 0, y = 0 in Ω at t = 0 (initial condition), (1f)

where σ is the Cauchy stress tensor, ǫ is the linear strain tensor, n is the exterior normal on ∂Ω, y denotes

the internal variables of the behavior law, and u is the displacement solution.

Consider H1
0(Ω) = {v ∈ L2(Ω)| ∂v

∂xi
∈ L2(Ω), 1 ≤ i ≤ 3 and v|∂ΩD

= 0}. We introduce a finite

element basis {ϕi}1≤i≤N , such that V := Span (ϕi)1≤i≤N is a conforming approximation of
[
H1

0(Ω)
]3

.
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In what follows, bold symbols are used to refer to vectors. Using the Galerkin method, problem (1a)–(1f)

leads to a system of nonlinear equations, numerically solved using the following Newton algorithm:

DF
Du

(
uk
) (

uk+1 − uk
)
= −F

(
uk
)

, (2)

where uk ∈ V is the k-th iteration of the discretized displacement field at the considered time-step and

uk =
(

uk
i

)
1≤i≤N

∈ RN is such that uk =
N

∑
i=1

uk
i ϕi,

DF
Du

(
uk
)

ij
=
∫

Ω
ǫ
(

ϕj

)
: K
(

ǫ(uk), y
)

: ǫ (ϕi) , 1 ≤ i, j ≤ N, (3)

where K
(

ǫ(uk), y
)

is the local tangent operator, and

Fi

(
uk
)
=
∫

Ω
σ
(

ǫ(uk), y
)

: ǫ (ϕi)−
∫

Ω
f · ϕi −

∫

∂ΩN

TN · ϕi, 1 ≤ i ≤ N. (4)

The Newton algorithm stops when the norm of the residual divided by the norm of the external

forces vector is smaller than a user-provided tolerance, denoted ǫHFM
Newton.

In Equation (2), f , TN , uk and y from Equation (4) are known quantities and contain the

time-dependency of the solution. Notice that the computation of the functions
(

uk, y
)
	→ σ

(
ǫ(uk), y

)

and
(

uk, y
)
	→ K

(
ǫ(uk), y

)
requires solving ordinary differential equations, whose complexity

depends on the behavior law modeling the considered material.

In our application, the quantities of interest are not the displacement fields u, but rather the dual

quantities stress tensor field σ and cumulated plasticity field, denoted p. The finite element software

used to generate the high-fidelity solutions u is Zebulon, which contains a domain decomposition

solver able to solve large scale problems, and the behavior laws are computed using Z-mat; both solvers

belong to the Z-set suite [33].

3. Reduced Order Modeling

Reduced order modeling techniques are usually decomposed in two stages: the offline stage,

where information from the high-fidelity model (HFM) is learned, and the online stage, where the

reduced order model is constructed and exploited. In the offline stage, computationally demanding

tasks occur, whereas the online stage is required to be efficient, in the sense that only operations in

computational complexity independent of the number N of degrees of freedom of the high-fidelity

model are allowed.

In what follows, we consider a posteriori reduced order modeling, which means that our reduced

model involves an efficient Galerkin method no longer written in the finite element basis (ϕi)1≤i≤N ,

but on a reduced order basis (ψi)1≤i≤n, with n ≪ N, adapted to the problem at hand. To generate

this basis, the high-fidelity problem (1a)–(1f) is solved for given configurations. In the general

case, the variations between the candidate configurations are quantified using a low-dimensional

parametrization, leading to a parametrized reduced order model. In this work, we consider

nonparametrized variations between the configurations of interest, which we call variability and denote

μ. The variability contains the time step, as well as a nonparametrized description of the configuration,

which in our case is the loading referred as a label. For instance, μ = {t = 3, “computation 1”},
means that we consider the third time step of the configuration “computation 1”, for which we have

a description of the loading (center, axis and speed of rotation, temperature, and pressure fields in our

applications). We denote by Poff. the set of variabilities encountered during the offline stage.
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The reduced Newton algorithm reads

DFμ

Du

(
ûk

μ

) (
ûk+1

μ − ûk
μ

)
= −Fμ

(
ûk

μ

)
, (5)

where ûk
μ ∈ V̂ := Span (ψi)1≤i≤n is the k-th iteration of the reduced displacement field for the

considered time-step and ûk
μ =

(
ûk

μ,i

)
1≤i≤n

∈ Rn is such ûk
μ =

n

∑
i=1

ûk
μ,iψi,

DFμ

Du

(
ûk

μ

)
ij
=
∫

Ω
ǫ
(
ψj

)
: K
(

ǫ(ûk
μ), yμ

)
: ǫ (ψi) , 1 ≤ i, j ≤ n, (6)

and

Fμ,i

(
ûk
)
=
∫

Ω
σ
(

ǫ(ûk
μ), yμ

)
: ǫ (ψi)−

∫

Ω
fμ · ψi −

∫

∂ΩN

TN,μ · ψi, 1 ≤ i ≤ n. (7)

The reduced Newton algorithm stops when the norm of the reduced residual divided by the

norm of the reduced external forces vector is smaller than a user-provided tolerance, denoted ǫROM
Newton.

In Equations (5)–(7), the online variability μ consists in the considered time step, the pressure field

TN,μ, the centrifugal effects fμ, and the temperature field in the internal variables yμ.

Ensuring the efficiency of Equation (5) can be a complicated task, in particular for nonlinear

problems, that requires methodologies recently proposed in the literature. For instance, the integrals

in Equations (6) and (7) are computed in computational complexity dependent on N in the general

case. We briefly present the choices made in our previous work [7]: the offline stage is composed of

the following steps

• Data generation: this corresponds to the generation of the numerical approximation of the

solutions to Equation (1a)–(1f), using the Newton algorithm (2). Multiple temporal solutions can

be considered, for different loading conditions. The set of theses solutions {uμi
}1≤i≤Nc

is called

the snapshots set.
• Data compression: this corresponds to the generation of the reduced order basis, usually obtained

by looking for a hidden low-rank structure of the snapshots set. In this work, we consider the

snapshot POD, see Algorithm 1 and [23,24].
• Operator compression: this step enables the efficient construction of (5), usually by replacing

the computationally demanding integral evaluations by adapted approximation evaluated in

computational complexity independent of N. In this work, we consider the empirical cubature

method (ECM, see [34]), a method close to the energy conserving sampling and weighting (ECSW,

see [35–37]) proposed earlier. Consider the vector of reduced internal forces appearing in (7):

F̂int
μ,i :=

∫
Ω

σ
(
ǫ(ûμ), yμ

)
(x) : ǫ (ψi) (x)dx ≈ ∑e∈E ∑

ne
k=1 ωkσ

(
ǫ(ûμ), yμ

)
(xk) : ǫ (ψi) (xk), 1 ≤ i ≤ n, (8)

where the right-hand side is the high-fidelity quadrature formula used for numerical evaluation.

In (8), the stress tensor σ
(
ǫ(ûμ), yμ

)
for the considered reduced solution ûμ at variability μ and

internal variables yμ is seen as a function of space, and E denotes the set of elements of the

mesh, ne denotes the number of integration points for the element e, ωk and xk are the integration

weights and points of the considered element. The ECM consists of replacing this high-fidelity

quadrature (8) by an approximation adapted to the snapshots {uμi
}1≤i≤Nc

and the reduced order

basis {ψi}1≤i≤n, and involving a small number of integration points:

F̂int
μ,i (t) ≈

d

∑
k′=1

ω̂k′σ
(
ǫ(ûμ), yμ

)
(x̂k′) : ǫ (ψi) (x̂k′), 1 ≤ i ≤ n, (9)

where d≪ ∑
e∈E

ne, the reduced integration points x̂k′ , 1 ≤ k′ ≤ d, are taken among the integration

points of the high-fidelity quadrature (8) and the reduced integration weights ω̂k′ are positive.
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We now briefly present how this reduced quadrature formula is obtained and we refer to [7,34]

for more details. We denote hq := σ
(

ǫ(uμ(q//n)+1
), y
)

: ǫ
(

ψ(q%n)+1

)
∈ L2(Ω), where // and %

are respectively the quotient and the remainder of the Euclidean division, Z is a subset of [1; NG]

of size d, with NG the number of integration points, and JZ ∈ RnNc×d and g ∈ NnNc are such that

for all 1 ≤ q ≤ nNc and all 1 ≤ k′ ≤ d,

JZ =

(
hq(xZk′ )

)

1≤q≤nNc , 1≤k′≤d

, g =

(∫

Ω
hq

)

1≤q≤nNc

, (10)

where Zk′ denotes the k′-th element of Z and where we recall that n is the number

of snapshot POD modes. Let ω̂ ∈ R+d
. From the introduced notation, (JZ ω̂)q =

d

∑
k′=1

ω̂k′σ
(

ǫ(uμ(q//n)+1
), y
)
(xZk′ ) : ǫ

(
ψ(q%n)+1

)
(xZk′ ), 1 ≤ q ≤ nNc, which is a candidate

approximation for
∫

Ω
σ
(

ǫ(uμ(q//n)+1
), y
)

: ǫ
(

ψ(q%n)+1

)
= gq, 1 ≤ q ≤ nNc. The best reduced

quadrature formula of length d for the reduced internal forces vector is obtained as (c.f. [34],

Equation (23))

(ω̂,Z) = arg min
ω̂′>0,Z ′⊂[1;NG ]

∥∥JZ ′ ω̂
′ − g

∥∥
2

, (11)

where ‖·‖2 stands for the Euclidean norm. Taking the length of the reduced quadrature formula

in the objective function yields a NP-hard optimization problem, see ([35], Section 5.3), citing [38].

To produce a reduced quadrature formula in a controlled return time, we consider a nonnegative

orthogonal matching pursuit algorithm, see ([39], Algorithm 1) and Algorithm 2 below, a variant

of the matching pursuit algorithm [40] tailored to the nonnegative requirement.

A reduced quadrature is also used to accelerate the integral computation in (6). The remaining

integral computations in (5) are
∫

Ω
fμ · ψi and

∫

∂ΩN

TN,μ · ψi. They do not depend on the current

solution, but only on the loading of the online variability μ, which is no longer efficient for

nonparametrized variabilities. However, in our context of large scale nonlinear mechanics,

these integrals are computed very fast with respect to the ones requiring behavior law resolutions,

see Remark 1.

Algorithm 1: Data compression by snapshot proper orthogonal decomposition (POD).

Input: tolerance ǫPOD, snapshots set {uμi
}1≤i≤Nc

Output: reduced order basis {ψi}1≤i≤n

1 Compute the correlation matrix Ci,j =
∫

Ω
uμi
· uμj

, 1 ≤ i, j ≤ Nc

2 Compute the n largest eigenvalues λi, 1 ≤ i ≤ n, and associated orthonormal eigenvectors ξi,

1 ≤ i ≤ n, of C such that n = max (n1, n2), where n1 and n2 are respectively the smallest

integers such that
n1

∑
i=1

λi ≥
(

1− ǫ2
POD

) Nc

∑
i=1

λi and λn2 ≤ ǫ2
PODλ0

3 Compute the reduced order basis ψi(x) =
1√

λi Nc

Nc

∑
j=1

uμj
(x)ξi,j, 1 ≤ i ≤ n
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Algorithm 2: Nonnegative orthogonal matching pursuit.

Input: J, b, tolerance ǫOp.comp.

Output: ω̂k, x̂k, 1 ≤ k ≤ d

1 Initialization: Z = ∅, k′ = 0, ω̂ = 0 and r0 = g while ‖rk′‖2 > ǫ ‖g‖2 do

2 Z ← Z ∪max index
(

JT
[1:NG ]

rk′

)

3 ω̂← arg
ω̂′>0

min ‖g − JZ ω̂′‖2
2

4 rk′+1 ← g − JZ ω̂

5 k′ ← k′ + 1

6 end

7 d← k′

8 x̂k := xZk
, 1 ≤ k ≤ d

For the primal quantity displacement u, we can identify the solution of the reduced problem

ûk
μ ∈ Rn with the reconstruction on the complete domain Ω: ûk

μ =
n

∑
i=1

ûk
μ,iψi. For the dual quantities,

such identification does not exist. However, the behavior law has already been evaluated at the

integration point of the reduced quadrature x̂k, 1 ≤ k ≤ d. Since the evaluations are computed

during the resolution of the reduced problem, we denote them by hats. For instance for the cumulated

plasticity, p̂μ ∈ Rd is such that p̂μ,k is computed by the online evaluation of the behavior law solver

at the reduced integration points x̂k, 1 ≤ k ≤ d. To recover the cumulated plasticity on the complete

structure Ω, a ROM-Gappy-POD procedure is used to reconstruct the fields on the complete domain,

see Algorithms 3 and 4 and [41] for the original presentation of the Gappy-POD. In step 2 of Algorithm 3,

EIM denotes the empirical interpolation method [42,43] and the set of integration point whose indices

have been selected is still denoted {x̂k}1≤k≤mp , where np ≤ mp ≤ np + d. The dual quantities predicted

by the reduced order model and reconstructed on the complete structure are denoted with tildes,

for instance p̃μ for the cumulated plasticity.

The ROM-Gappy-POD reconstruction is well-posed, since the linear system considered in the

online stage of Algorithm 4 is invertible, see ([7], Proposition 1).

An interesting feature of our framework is the ability for it to be used sequentially or in

parallel with distributed memory. Independently of the high-fidelity solver, the solutions can be

partitioned between some subdomains and the reduced order framework can treat the data in

parallel. The MPI communications are limited to the computation of the scalar products in line

1 of Algorithm 1 for the offline stage, and the scalar products in (6) and (7) in the online stage.

Furthermore, these scalar products are well adapted to parallel processing: each process computes

its independently contribution on its respective subdomain, and the interprocess communication is

limited to an all-to-all transfer of a scalar. All the remaining operations in our framework are treated in

parallel with no communication, in particular in the operator compression step, reduced quadrature

formulae are constructed independently. A natural use for the parallel framework is in coherence

with domain decomposition solvers (potentially from commercial codes), which conveniently produce

solutions partitioned in subdomains. Actually in our framework, the three steps of the offline stage

(data generation, data compression and operator compression), the online stage, the post-treatment

and the visualization are all treated in parallel with distributed memory, see [7] for more details.
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Algorithm 3: Dual quantity reconstruction of the cumulated plasticity p: offline stage of the

reduced order model (ROM)-Gappy-POD.

Input: tolerance ǫGappy−POD, cumulated plasticity snapshots set {pμi
}1≤i≤Nc

, indices of the

integration points of the reduced quadrature formula

Output: indices for online material law computation, ROM-Gappy-POD matrix

1 Apply the snapshot POD (Algorithm 1) on the high-fidelity snapshots {pμi
}1≤i≤Nc

to obtain

the vectors ψ
p
i , 1 ≤ i ≤ np, orthonormal with respect to the L2(Ω)-inner product

2 Apply the EIM to the collection of vectors ψ
p
i , 1 ≤ i ≤ np, to select np distinct indices and

complete (without repeat) this set of indices by the indices of the integration points of the

reduced quadrature formula

3 Construct the matrix M ∈ Nnp×np
such that Mi,j = ∑

mp

k=1 ψ
p
i (x̂k)ψ

p
j (x̂k) (Gappy scalar product

of the POD modes)

Algorithm 4: Dual quantity reconstruction of the cumulated plasticity p: online stage of

the ROM-Gappy-POD.

Input: online variability μ, indices for online material law computation, ROM-Gappy-POD

matrix

Output: reconstructed value for p on the complete domain Ω

1 Construct bμ ∈ Rnp
, where bμ,i = ∑

mp

k=1 ψ
p
i (x̂k) p̂μ,k, and p̂μ ∈ Rmp

is such that p̂μ,k is the online

prediction of p at variability μ and integration point x̂k (from the online evaluation of the

behavior law solver)

2 Solve the (small) linear system: Mzμ = bμ

3 Compute the reconstructed value for p on the complete subdomain Ω as p̃μ := ∑
np

i=1 zμ,iψ
p
i

4. A Heuristic Error Indicator

We look for an efficient error indicator in this context of general nonlinearities and

nonparametrized variabilities. In model order reduction techniques, error estimation is an important

feature, that becomes interesting under the condition that it can be computed in complexity

independent of the number of degrees of freedom N of the high-fidelity model.

4.1. First Results on Errors and Residuals

We recall some notations introduced so far: bold symbols refer to vectors (pμ is the vector of

components the value of the HF cumulated plasiticity field at reduced integration points), hats refer

to quantities computed by the reduced order model (ûμ is the reduced displacement and p̂μ is the

vector of components the value of the reduced cumulated plasticity at the reduced quadrature points),

whereas tildes refer to dual quantities reconstructed by Gappy-POD (for instance p̃). Bold and tilde

symbols, for instance p̃μ, refer to the vectors of components the reconstructed dual quantities on the

reduced integration points: p̃μ,k = p̃μ(x̂k), 1 ≤ k ≤ mp. Notice that in the general case, p̃μ �= p̂μ: this

discrepancy is at the base of our proposed error indicator. A table of notations is provided at the end

of the document.

A quantification for the prediction relative error is defined as

E
p
μ :=

⎧
⎪⎪⎨
⎪⎪⎩

‖pμ− p̃μ‖L2(Ω)

‖pμ‖L2(Ω)
if‖pμ‖L2(Ω) �= 0

‖pμ− p̃μ‖L2(Ω)

max
μ∈Poff.

‖pμ‖L2(Ω)
otherwise,

, (12)

221



Math. Comput. Appl. 2019, 24, 41

where we recall that pμ and p̃μ are respectively the high-fidelity and reduced predictions for the

cumulated plasticity field at the variability μ, and Poff. is the set of variabilities encountered during

the offline stage.

Define the ROM-Gappy-POD residual as

E p
μ :=

⎧
⎪⎨
⎪⎩

‖p̃μ−p̂μ‖2

‖p̂μ‖2
if‖p̂μ‖2 �= 0

‖p̃μ−p̂μ‖2

max
μ∈Poff.

‖p̂μ‖2
otherwise,

, (13)

where ‖ · ‖2 denotes the Euclidean norm. Notice that the relative error E
p
μ involves fields and L2-norms

whereas the ROM-Gappy-POD residual E p
μ involves vectors of dual quantities in the set of reduced

integration points and Euclidean norms. In (13), ‖p̃μ − p̂μ‖2 is the error between the online evaluation

of the cumulated plasticity by the behavior law solver: p̂μ, and the reconstructed prediction at the

reduced integration points x̂k: p̃μ, 1 ≤ k ≤ mp. Let B ∈ Rmp×np
such that Bk,i = ψ

p
i (x̂k), 1 ≤ k ≤ mp,

1 ≤ i ≤ np; by definition, p̃μ,k =
np

∑
i=1

zμ,iψ
p
i (x̂k) =

(
Bzμ

)
k
, 1 ≤ k ≤ mp. From Algorithm 3, M = BT B

and from Algorithm 4, bμ = BT p̂μ, so that zμ =
(

BT B
)−1

BT p̂μ, which is the solution of the following

unconstrained least-square optimization: zμ := arg
z′∈Rn

min‖Bz′ − p̂μ‖2
2. Hence, in (13), ‖p̃μ − p̂μ‖2 is

the norm of the residual of the considered least-square optimization.

Suppose K := {pμ, for all possible variabilities μ} is a compact subset of L2(Ω) and define the

Kolmogorov n-width by dn(K)L2(Ω) := inf
dim(W)=n

d(K, W)L2(Ω), where d(K, W)L2(Ω) := sup
v∈K

inf
w∈W

‖v−

w‖L2(Ω), with W a finite-dimensional subspace of L2(Ω). The Kolmogorov n-width is an object from

approximation theory; a presentation and discussion in a reduced order modeling context can be found

in [44]. Denote also Πμ :=

((
pμ, ψ

p
i

)
L2(Ω)

)

1≤i≤np
∈ Rnp

, where we recall that
{

ψ
p
i

}
1≤i≤np

are the

Gappy-POD modes obtained by Algorithm 3 and where (·, ·)L2(Ω) denotes the L2(Ω) inner-product. All

the dual quantities being computed by the high-fidelity solver at the NG integration points, they have

finite values at these points. Unlike the primal displacement field, the dual quantities are not directly

expressed in a finite element basis, but through their values on the integration points. For pratical

manipulations, we express the dual quantity fields as a constant on each polyhedron obtained as

a Voronoi diagram in each element of the mesh, with seeds the integration points; the constants

corresponding to the value of the dual quantity on the corresponding integration point.

We first control the numerator in the relative error E
p
μ with respect to the numerator in the

ROM-Gappy-POD residual E p
μ in Proposition 1.

Proposition 1. There exist two positive constants C1 and C2 independent of μ (but dependent on np) such that

∥∥pμ − p̃μ

∥∥2
L2(Ω)

≤ C1‖Bzμ − p̂μ‖2
2 + C1‖pμ − p̂μ‖2

2 + C2d(K, Span{ψp
i }1≤i≤np)2

L2(Ω). (14)
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Proof. There holds

∥∥pμ − p̃μ

∥∥2

L2(Ω)
≤ 2

∥∥∥∥∥
np

∑
i=1

((
pμ, ψ

p
i

)
L2(Ω)

− zμ,i

)
ψ

p
i

∥∥∥∥∥

2

L2(Ω)

+ 2

∥∥∥∥∥pμ −
np

∑
i=1

(
pμ, ψ

p
i

)
L2(Ω)

ψ
p
i

∥∥∥∥∥

2

L2(Ω)

(15a)

= 2
np

∑
i=1

((
pμ, ψ

p
i

)
L2(Ω)

− zμ,i

)2
+ 2 inf

w∈Span{ψp
i }1≤i≤np

∥∥pμ − w
∥∥2

L2(Ω)
(15b)

≤ 2
np

∑
i=1

(
Πμ,i − zμ,i

)2
+ 2 sup

v∈K

inf
w∈Span{ψp

i }1≤i≤np

‖v− w‖2
L2(Ω) (15c)

= 2
∥∥∥M−1 M

(
Πμ − zμ

)∥∥∥
2

2
+ 2d(K, Span{ψp

i }1≤i≤np )2
L2(Ω)

(15d)

= 2
∥∥∥M−1BT

(
BΠμ − pμ + pμ − p̂μ + p̂μ − Bzμ

)∥∥∥
2

2
+ 2d(K, Span{ψp

i }1≤i≤np )2
L2(Ω)

(15e)

≤ 6
∥∥∥M−1BT

∥∥∥
2

2

(
‖BΠμ − pμ‖2

2 + ‖pμ − p̂μ‖2
2 + ‖Bzμ − p̂μ‖2

2

)
+ 2d(K, Span{ψp

i }1≤i≤np )2
L2(Ω)

(15f)

≤ C1‖Bzμ − p̂μ‖2
2 + C1‖pμ − p̂μ‖2

2 + C2d(K, Span{ψp
i }1≤i≤np )2

L2(Ω)
, (15g)

where the triangular inequality and the Jensen inequality on the square function have been applied

in (15a), and between (15e) and (15f). In (15g), the term ‖BΠμ − pμ‖2
2 has been incorporated in the

term C2d(K, Span{ψp
i }1≤i≤np)2

L2(Ω)
. This can be done since

‖BΠμ − pμ‖2
2 =

mp

∑
k=1

(
pμ(x̂k)−

np

∑
i=1

(
pμ, ψ

p
i

)
L2(Ω)

ψ
p
i (x̂k)

)2

≤ 1

min
1≤k′≤mp

νk′

Ng

∑
k=1

νk

(
pμ(xk)−

np

∑
i=1

(
pμ, ψ

p
i

)
L2(Ω)

ψ
p
i (xk)

)2

=
1

min
1≤k′≤mp

νk′

∫

Ω

(
pμ(x)−

np

∑
i=1

(
pμ, ψ

p
i

)
L2(Ω)

ψ
p
i (x)

)2

dx

≤ 1

min
1≤k′≤mp

νk′
d(K, Span{ψp

i }1≤i≤np)2
L2(Ω),

(16)

where νk denotes the volume of the cell of the Voronoi diagram associated with integration point x̂k.

We now control the numerator in the ROM-Gappy-POD residual E p
μ with respect to the numerator

in the relative error E
p
μ in Proposition 1, leading to Corollary 1, which provides a sense a consistency:

without any error in the reduced prediction, the ROM-Gappy-POD residual E p
μ is zero.

Proposition 2. There exist two positive constants K1 and K2 independent of μ such that

‖p̃μ − p̂μ‖2
2 ≤ K1

∥∥pμ − p̃μ

∥∥2
L2(Ω)

+ K2‖pμ − p̂μ‖2
2. (17)

Proof. There holds

‖p̃μ − p̂μ‖2
2 ≤ 2 ‖Bzμ − pμ‖2

2 + 2 ‖pμ − p̂μ‖2
2

≤ 2

min
1≤k′≤mp

νk′

mp

∑
k=1

νk

(
pμ(x̂k)−

np

∑
i=1

zμ,iψ
p
i (x̂k)

)2

+ 2 ‖pμ − p̂μ‖2
2

≤ 2

min
1≤k′≤mp

νk′

∫

Ω

(
pμ(x)−

np

∑
i=1

zμ,iψ
p
i (x)

)2

dx + 2 ‖pμ − p̂μ‖2
2

=K1

∥∥pμ − p̃μ

∥∥2
L2(Ω)

+ K2‖pμ − p̂μ‖2
2.

(18)
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Corollary 1. Suppose that the reduced solution is exact up to the considered time step at the online variability

μ: pμ = p̃μ in L2(Ω). In particular, the behavior law solver has been evaluated with the exact strain tensor

and state variables at the integration points xk, leading to p̂μ(x̂k) = pμ(x̂k), 1 ≤ k ≤ md. From Proposition 2,

‖p̃μ − p̂μ‖2 = 0, and E p
μ = 0.

4.2. A Calibrated Error Indicator

As we will illustrate in Section 5, the evaluations of the ROM-Gappy-POD residual E p
μ (13) and

the error E
p
μ (12) are very correlated in our numerical simulations. Our idea is to exploit this correlation

by training a Gaussian process regressor for the function E p
μ 	→ E

p
μ. At the end of the offline stage,

we propose to compute reduced predictions at variability values {μi}1≤i≤Nc
encountered during the

data generation step, and the corresponding couples
(

E
p
μi

, E p
μi

)
, 1 ≤ i ≤ Nc. A Gaussian process

regressor is trained on these values and we define an approximation function

E p
μ 	→ Gprp(E p

μ ) (19)

for the error E
p
μ at variability μ as the mean plus three times the standard deviation of the predictive

distribution at the query point E p
μ . This is our proposed error indicator. If the dispersion around

the learning data is small for certain values E p
μ , then adding three times the standard deviation

will not change very much the prediction, whereas for values with large dispersions of the

learning data, this correction aims to provide an error indicator larger than the error. We used the

GaussianProcessRegressor python class from scikit-learn [45]. Notice that although some operations in

computational complexity dependent on N are carried-out, we are still in the offline stage, and they

are much faster than the resolutions of the large systems of nonlinear Equations (2). If the offline stage

is correctly carried-out and since E p
μ is highly correlated with the error, only small values for E p

μ are

expected to be computed. Hence, in order to train the Gaussian process regressor correctly for larger

values of the error, the reduced Newton algorithm (5) is solved with a large tolerance ǫROM
Newton = 0.1.

We call these operations “calibration of the error indication”, see Algorithm 5 for a description and

Figure 3 for a presentation of the workflow featuring this calibration step.

Algorithm 5: Calibration of the error indicator.

Input: outputs of the data generation, data compression and operator compression steps of

Section 3

Output: Approximation function E p
μ 	→ Gprp(E p

μ ) of the error E
p
μ

1 Initialization: X = ∅

2 for i← 1 to Nc do

3 Construct and solve the reduced problem (5) with ǫROM
Newton = 0.1

4 Compute the reconstructed plasticity p̃μi
using Algorithm 4 and E p

μi
using (13)

5 Compute the error E
p
μi

using (12)

6 X ← X ∪
(
E p

μi
, E

p
μi

)

7 end

8 Construct an approximation function E p
μ 	→ Gprp(E p

μ ) of the error E
p
μ using a Gaussian process

regression and the data from X
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Figure 3. Workflow for the offline stage with error indicator calibration.

We recall that in model order reduction, the original hypothesis is the existence of

a low-dimensional vector space where an acceptable approximation of the high-fidelity solution lies.

The hypothesis is formalized under a rate of decrease for the Kolmogorov n-width with respect to the

dimension of this vector space. The same hypothesis is made when using the Gappy-POD to reconstruct

the dual quantities, which are expressed as a linear combination of constructed modes. For both the

primal and dual quantities, the modes are computed by searching some low-rank structure of the

high-fidelity data. The coefficients of the linear combination for reconstructing the primal quantities

are given by the solution of the reduced Newton algorithm (5). After convergence, the residual is small,

even in cases where the reduced order model exhibits large errors with respect to the high-fidelity

reference: this residual gives no information on the distance between the reduced solution and the

high-fidelty finite element space. However, in the online phase of the ROM-Gappy-POD reconstruction

in Algorithm 4, the coefficients p̂μ,k contain information from the high-fidelity behavior law solver.

Moreover, an overdetermined least-square is solved, which can provide a nonzero residual that

implicitly contains this information from the high-fidelity behavior law solver. Namely the distance

between the prediction from the behavior law and the vector space spanned by the Gappy-POD

modes (restricted to the reduced integration points): this is the term ‖Bzμ − p̂μ‖2 in (14). Hence,

the ability of the online variability to be expressed on the Gappy-POD modes is monitored through

the behavior law solver on the reduced integration points. When the ROM is solved for an online

variability not included in the offline variabilities, then the new physical solution cannot be correctly

interpolated using the POD and Gappy-POD modes. Hence, the ROM-Gappy-residual becomes large.

From Proposition 2, if ‖Bzμ− p̂μ‖2 = ‖p̃μ− p̂μ‖2 is large, then the global error
∥∥pμ − p̃μ

∥∥
L2(Ω)

and/or

the error at the reduced integration points x̂k is large, which makes ‖Bzμ − p̂μ‖2 a good candidate

for a enrichement criterion for the ROM. A limitation of the error indicator can occur if the online

variability activates strong nonlinearities on areas containing no point from the reduced integration

scheme, namely through the term C2d(K, Span{ψp
i }1≤i≤np)2

L2(Ω)
in (14).

We recall that the error indicator (19) is a regression of the function E p
μ 	→ E

p
μ. In the online phase,

we only need to evaluate E p
μ and do not require any estimation for the other terms and constants

appearing in Propositions 1 and 2.

Equipped with an efficient error indicator, we are now able to assess the quality of the

approximation made by the reduced order model in the online phase. If the error indicator is too large,

an enrichment step occurs: the high-fidelity model is used to compute a new high-fidelity snapshot,

which is used to update the POD and Gappy-POD basis, as well as the reduced integration schemes.

Notice that for the enrichment steps to be computed, the displacement field and all the state variables
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of the previous time step need to be reconstructed on the complete mesh Ω to provide the high-fidelity

solver with the correct material state. The workflow for the online stage with enrichment is presented

in Figure 4.
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Figure 4. Workflow for the online stage with enrichment.

Remark 1 (Online efficiency). The computation of the ROM-Gappy-POD residual (13) is efficient, since p̃μ

and p̂μ are already computed for the reconstruction, and mp depending only on the approximation of σ : ǫ and

p, it is independent of N. The evaluation of Gprp(E p
μ ) is also in computational complexity independent of N.

If the enrichment is activated during the online phase, a high-fidelity solution is computed, which is

a computationally demanding task. This is the price to add high-fidelity information in the exploitation

phase. We will see in Section 5 that without this enrichment in our applications, the considered online

variability on the temperature field strongly degrades the accuracy of the reduced order model prediction.

The nonparametrized variability also induces online pretreatments in computational complexity depending on N,

namely the precomputation of
∫

Ω
fμ · ψi and

∫

∂ΩN

TN,μ · ψi in (7), which is in practice much faster than other

integrals that require behavior law resolutions.

Notice that the online stage can be further optimized by replacing the data compression and offline

Gappy-POD steps by incremental variants, such as the incremental POD [46]. For the operator compression,

the Nonnegative Orthogonal Matching Pursuit described in Algorithm 2 is not restarted from zero, but initialized

by the current reduced quadrature scheme. Notice also that for the moment, the reduced order model is enriched

using a complete precomputed reference high-fidelity computation, so that no speedup is obtained in practice. We

still need to consider restart strategies to call the high-fidelity solver only at the time step of enrichment, from a

complete mechanical state reconstructed from the prediction of the reduced order model at the previous time step,

which will be the subject of future work.

When the framework is used in parallel, with subdomains, the calibration of the error indicator is

local to each subdomain, so that the decision of enrichment in the full domain during the online stage

can be triggered by a particular subdomain of interest.
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5. Numerical Applications

We consider two behavior laws in the numerical applications:

(elas) Isotropic thermal expansion and temperature-dependent cubic elasticity: the behavior law

is σ = A :
(

ǫ− ǫth
)

, where ǫth = αth (T − T0) I, with I the second-order identity tensor and

αth the thermal expansion coefficient in MPa.K−1 depending on the temperature. The elastic

stiffness tensor A does not depend on the solution u and is defined in Voigt notations by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y1111 y1122 y1122 0 0 0

y1122 y1111 y1122 0 0 0

y1122 y1122 y1111 0 0 0

0 0 0 y1212 0 0

0 0 0 0 y1212 0

0 0 0 0 0 y1212

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

where the temperature T is given by the thermal loading, T0 = 20 ◦C is a reference

temperature and the coefficients y1111, y1122 and y1212 (elastic coefficients in MPa) depend on

the temperature. This law does not feature any internal variable to compute.
(evp) Norton flow with nonlinear kinematic hardening: the elastic part is given by σ = A :(

ǫ− ǫth − ǫP
)

, where A and ǫth are the same as the (elas) law, ǫP is the plastic strain tensor.

The viscoplastic part requires solving the system of ODEs:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ǫ̇P = ṗ

√
3

2

s− 2
3 Cα√(

s− 2
3 Cα

)
:
(
s− 2

3 Cα
) ,

α̇ = ǫ̇P − ṗDα,

ṗ =

〈
fr

K

〉m

,

, (21)

where p is the cumulated plasticity, fr =
√

3
2

√(
s− 2

3 Cα
)

:
(
s− 2

3 Cα
)
− R0 defines the yield

surface, α (dimensionless) is the internal variable associated to the back-stress tensor X = 2
3 Cα

representing the center of the elastic domain in the stress space, s := σ− 1
3 Tr(σ)I (with Tr the

trace operator) is the deviatoric component of the stress tensor, and 〈·〉 denotes the positive

part operator. The yield criterion is fr ≤ 0. The hardening material coefficients C (in MPa)

and D (dimensionless), the Norton material coefficient K (in MPa.s
1
m ), the Norton exponential

material coefficient m (dimensionless), and the initial yield stress R0 (in MPa) depend on the

temperature. The internal variables considered here are ǫP, α and p, and the ODE’s initial

conditions are ǫP = 0, α = 0 and p = 0 at t = 0.

Two test cases are considered: an academic one in Section 5.1 and a high-pressure turbine blade

setting of industrial complexity in Section 5.2.

5.1. Academic Example

We consider a simple geometry in the shape of a bow tie, to enforce plastic effects on the tightest

area, see Figure 5. The structure is subjected to different variabilities of the loading (temperature,

rotation, pressure), described in Figures 5–7. The axis of rotation is located on the left of the object

along the x-axis, and the pressure field is represented in Figure 5. The rotation of the object is not

computed: only the inertia effects are modeled in the volumic force term f in (1b). Four temperature

fields are considered, two of them are represented in Figure 6 (“temperature_field_1” is a uniform

20 ◦C field, “temperature_field_2” is a 3D Gaussian with a maximum in the thin part of the object, close

to an edge, “temperature_field_3” is proportional to “temperature_field_2”, “temperature_field_4”
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obtained from “temperature_field_2” by random perturbation of 10% magnitude independently at

each point). Notice that the irregularity of “temperature_field_4” will lead to small scaled structures in

the cumulated plasticity and stress fields involving this variability. Notice also that the temperature

field are not computed during the simulation: they are loading data for the mechanical computation.

Figure 7 presents the three variabilities considered: computation 1 and computation 2 encountered

in the offline phase, and new encountered in the online phase. The pressure loading is obtained by

multiplying the pressure coefficient by the pressure field represented in Figure 5 (normals on the

boundary are directed towards the exterior) and at each time step, the temperature field is obtained by

linear interpolation between the previous and following fields in the temporal sequence. Notice that

computation 1 and computation 2 are not defined on the same temporal range.

Figure 5. Academic test case: mesh and pressure field represented on its surface of application; the

axis of rotation is located on the left of the object along the x-axis.

“temperature_field_2” “temperature_field_4”

Figure 6. Two different variabilities for the temperature loading (in ◦C) used in the academic test case.
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Figure 7. Considered loading variabilities for the academic test case. (left) Rotation speed ( ) and

pressure coefficient ( ) with respect to time. (right) Temporal sequence for the temperature field.

The characteristics for the academic test cases are given in Table 1.

Table 1. Characteristics for the academic test case.

number of dofs 78,120
number of (quadratic) tetrahedra 16,695

number of integration points 81,375
number of time steps computation 1: 50, computation 2: 40, new: 50

behavior law evp (Norton flow with nonlinear kinematic hardening)

The correlations between the ROM-Gappy-POD residual E (13) and the error E (12) on the dual

quantities cumulated plasticity p and first component of the stress tensor σ11 are investigated in Table 2.

The reduced solutions used for E correspond to the calibration step in the offline stage, in the second

row of Figure 3, where we recall that the reduced Newton algorithm (5) is computed with a large

tolerance ǫROM
Newton = 0.1 on the variabilities encountered in the data generation step. For the cumulated

plasticity field, the values before the first plastic effects are neglected. A strong correlation appears in

all the considered cases, although outliers are observed for the last time steps, where the building of

residual stresses at low loadings are more difficult to predict with the ROM.
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Table 2. Illustration of the correlation between the reduced order model (ROM)-Gappy-proper

orthogonal decomposition (POD) residual E (13) and the error E (12) on the dual quantities cumulated

plasticity p and first component of the stress tensor σ11.
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We now illustrate the quality of the error indicator (19), and its ability to increase the accuracy of

the reduced order model when used in an enrichment strategy as described in the workflow illustrated

in Figure 4. In Tables 3 and 4, we compare the error indicator (19) with the error (12) for various

offline and online variabilities respectively without and with enrichment of the reduced order model.

Although our error indicator is not a certified upper bound, we observe that thanks to the calibration

process, its values are in the vast majority larger than the exact error, except in two regimes: (i) when

the errors are very large (the calibration has been carried-out for mild errors, since we used the

references from the offline variabilities and enforced reasonable errors in line 3 of Algorithm 5), and (ii)

sometimes in the last time steps where the residual stresses build up and where we identified outliers

in the Gaussian regressor process. In Table 3, we observe that without enrichment the errors are

controlled whenever the online variability is contained in the offline variability. In the other cases,

the error becomes very large, and the ROM prediction becomes useless. In Table 4, at the times when

the ROM is enriched, both the error indicator and the error are set to zero, since the ROM prediction

is replaced by a HF solution. The ROM is enriched when the Gprp(E p) > 0.2 or Gprσ11(Eσ11) > 0.2.

We observe that for cases where the online variability is included in the offline variability, the errors are

still controlled and no enrichment occurs. In the other cases, the enrichment occurs a few times, so that

the errors remain controlled below 0.2. For the online variability new, the ROM is enriched six times

for an offline variability computation 1 and only three times for an online variability computation 1

and computation 2; in the latter case, the initial reduced order basis generates a larger base and needs

less enrichment.

We now compare the reference HF prediction of the considered online variability with the ROM

prediction without and with enrichment, in a case where this online variability is included in the offline

variability (Figure 8) and in a case where it is not included (Figure 9). In Figures 8 and 9, dual quantities

with index “ref.” refers to the HF reference at the considered offline variability, “nores.” to the ROM

without enrichment and the absence of index to the ROM with enrichment. In the first case, the ROM

predictions with and without enrichment are accurate (the magnitude of σ11 is small with respect to

the ones of σ22, so that the small differences observed in the second plot of Figure 8 are very small

with respect to the magnitude of the tensor σ). In the second case, the ROM without enrichment leads
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to large errors, whereas the enrichment allows a good accuracy. We notice that due to the particular

profile of the temperature loading “temperature_field_4” (c.f. Figure 6), the field σ11 is irregular. Even

in such an unfavorable case, only three enrichment steps by HFM solutions allows a good accuracy for

the ROM.

Table 3. Comparison of the error indicator (19) with the error (12) for various offline and online

variabilities, without enrichment of the reduced order model. The category “offline” for the columns

refers to the variabilities used in the data generation step of the offline stage, whereas the category

“online” for the rows refers to the variability considered in the online stage.
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Table 4. Comparison of the error indicator (19) with the error (12) for various offline and online

variabilities, with enrichment of the reduced order model.
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Table 4. Cont.
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Figure 8. Offline variability: computation 1 and computation 2; online variability: computation 1.

(top) Representation of dual fields for the reference high-fidelity (HF) prediction of the online variability,

the reduced order model (ROM) without enrichment, and the ROM with enrichment ((left) p at t = 50 s

and (right) σ11 at t = 25 s). (bottom) Comparison of p, σ11 and σ22 at the point identified by the green

arrow on the top-left picture.
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Figure 9. Offline variability: computation 1 and computation 2; online variability: new. (top)

Representation of dual fields for the reference HF prediction of the online variability, ROM without

enrichment, and ROM with enrichment ((left) p at t = 50 s and (right) σ11 at t = 25 s). (bottom)

Comparison of p, σ11, and σ22 at the point identified by the green arrow on the top-left picture.

5.2. High-Pressure Turbine Blade

We consider a simplified geometry of high-pressure turbine blade, featuring four internal cooling

channels, introduced in [7]. The lower part of the blade, referred as the foot, is modeled by an elastic

material (we are not interested in predicting the plastic effects in this zone since it does not affect

the blade’s lifetime) whereas the upper part is modeled by an elastoviscoplastic law. The HFM is

computed in parallel using Z-set [33] with an Adaptive MultiPreconditioned FETI solver [47], see

Figure 10.

evp law

elas law

sd 28

sd 47

Figure 10. (left) Structure split in 48 subdomains—the top part of the blade’s material is modeled by

an elastoviscoplastic law and the foot’s one by an elastic law; (right) mesh for the high-pressure turbine

blade with a zoom around the cooling channels.

The loading is different from the application of [7] and is represented in Figure 11: 10 temperature

fields were considered, the coolest were applied for the lowest rotation speeds, whereas the hottest

were applied for the highest rotation speeds. The online variability differs from the offline variability
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during the three time steps located around the last three maxima of the rotation speed profile, where

only the temperature fields changed as indicated by the two pictures at the right side of Figure 11.

The maximum of the temperature is moved from the center to the front of the top part of the blade.

As we will see, this local modification will lead to large errors for the ROM if no enrichment strategy

is considered.
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Figure 11. High-pressure turbine test case: (left) rotation speed with respect to time; (right)

representation of maximum temperature fields used in the offline and online computations; the

axis of rotation is located below the blade along the x-axis.

The characteristics for the high pressure turbine blade case are given in Table 5.

Table 5. Characteristics for the high-pressure turbine blade test case.

number of dofs 4,892,463

number of (quadratic) tetrahedra 1,136,732

number of integration points 5,683,660

number of time steps 50

behavior law for the foot
elas (temperature-dependent cubic elasticity

and isotropic thermal expansion)

behavior law for the blade evp (Norton flow with nonlinear kinematic hardening)

The computation procedure is presented in Table 6, all steps being computed in parallel with

distributed memory, using MPI for the interprocess communications (48 processors within two nodes).

The visualization is also parallel with distributed memory using a parallel version of Paraview [48,49].

Table 6. Description of the computational procedure.

Step Algorithm

Data generation AMPFETI solver in Z-set, ǫHFM
Newton = 10−5

Data compression Distributed Snapshot POD, ǫPOD = 10−5

Operator compression Distributed NonNegative Orthogonal Matching Pursuit, ǫOp.comp. = 10−4

Reduced order model ǫROM
Newton = 10−4

Dual quantities reconstruction Distributed Gappy-POD, ǫGappy−POD = 10−5

The correlations between the ROM-Gappy-POD residual E (13) and the error E (12) on the dual

quantities cumulated plasticity p and stress tensor σ are investigated in Table 7. This time, we carry-out

the calibration process independently on each subdomain. The same conclusion as the academic test
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cases can be drawn for the correlations between the ROM-Gappy-POD residual E and the error E on

the subdomains 28 and 47 (see Figure 10 for the localization of these subdomains).

Table 7. Illustration of the correlation between the ROM-Gappy-POD residual E (13) and the error

E (12) on the dual quantities cumulated plasticity p and a component of the stress tensor σ.
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In Table 8, we compare the error indicator (19) with the error (12) for the considered offline and

online variabilities. As for the academic test cases, the values of the error indicator are larger than the

error except for very large errors (for which the ROM is useless), and sometimes in the last time steps,

as residual forces build up. Without enrichment, the ROM makes very large error. We observe that the

subdomain for which the enrichment criterion is used enables to control the error on the corresponding

subdomain, whereas the error is larger in the other subdomain. This illustrates that local (in space)

quantities of interest can be considered to prevent the enrichment steps to occur too often when it’s

not needed.

Table 8. Comparison of the error indicator (19) with the error (12) for the considered offline and online

variabilities. The category “plot” for the columns refers to the subdomain for which the error indicator

and the error are plotted, whereas the category “enrichment” for the rows refers to the subdomain of

whom the indicator is used to decide the enrichment step.
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Table 8. Cont.
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In Figures 12 and 13 are illustrated various predictions of dual quantities: the index “off.” refers

to the HF prediction for the offline variability, “ref.” to the HF reference for the online variability,

“nores.” to the ROM without enrichment, “sd28” to the ROM with enrichment while monitoring

the error indicator on subdomain 28, and “sd47” to the ROM with enrichment while monitoring the

error indicator on subdomain 47. We observe that without enrichment, the ROM suffers from large

errors. With enrichment, the monitored subdomain enjoys an accurate ROM prediction. Particularly in

Figure 13, the conclusions hold when the HF reference for the online variability is visually different

from the HF prediction for the offline variability.

poff. pref.

p̃nores. p̃sd28 p̃sd47

σ22,off. σ22,ref.

σ̃22,nores. σ̃22,sd28 σ̃22,sd47

Figure 12. Cont.
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−400
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0
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σ22,off., σ22,ref., σ22,nores., σ22,sd28, σ22,sd47

Figure 12. (top) Diverse HF and ROM dual quantity fields at t = 43.5 s for subdomain 28, (left) p,

(right) σ22; (bottom) comparison at the point identified by the green arrow on the top-left picture.

The components of the stress tensor are in MPa.

poff. pref.

p̃nores. p̃sd28 p̃sd47

σ11,off. σ11,ref.
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σ11,off., σ11,ref., σ̃11,nores., σ̃11,sd28, σ̃11,sd47

Figure 13. (top) Diverse HF and ROM dual quantity fields at t = 43.5 s for subdomain 47, (left) p,

(right) σ11; (bottom) comparison at the point identified by the green arrow on the top-left picture.

The components of the stress tensor are in MPa.

Finally, we represent various predictions of dual quantities on the complete structure in Figure 14.

The ROM without enrichment shows a cumulated plasticity with large errors around the cooling

channel, whereas the stress prediction has large errors on the complete structure.
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poff. pref.

p̃nores. p̃sd28

σoff. σref.

σ̃nores. σ̃sd28

Figure 14. Complete ROM dual quantity fields at t = 43.5 s, with enrichment by monitoring subdomain

28. (left) Cumulated plasticity; (right) magnitude of the stress tensor.

The test cases presented in this section enable us to make two following observations:

[O1] in the a posteriori reduction of elastoviscoplastic computation, online variabilities of the

temperature loading not encountered during the offline stage can lead to important errors,
[O2] the ROM-Gappy-POD residual (13) is highly correlated to the error (12), so that the proposed

error indicator (19) can be used in the online stage as described in the workflow illustrated in

Figure 4 to correct online variabilities of the temperature loading not encountered during the

offline stage.

6. Conclusions and Outlook

In this work, we considered the model order reduction of structural mechanics with

elastoviscoplastic behavior laws, with dual quantities such as cumulated plasticity and stress tensor

as quantities of interest. We observed in our numerical experiments a strong correlation between the

ROM-Gappy-POD residual of the reconstruction of these dual quantities and the global error. From this

observation, we proposed an efficient error indicator by means of Gaussian process regression from

the data acquired when solving the high-fidelity problem in the learning phase of the reduced order

modeling. We illustrated the ability of the error indicator to enrich a reduced order model when the

online variability cannot be predicted using the current reduced order basis, leading to an accurate

reduced prediction.

For the moment, the reduced order model is enriched using a complete reference high-fidelity

computation, and the POD and Gappy-POD are recomputed. In future work, we need to consider

restart strategies to call the high-fidelity solver only at the time step of enrichment, from a complete

mechanical state reconstructed from the prediction of the reduced order model at the previous time

step, which can introduce additional errors. We also need to consider incremental strategies for the

POD and Gappy-POD updates.
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Abbreviations

The following abbreviations are used in this manuscript:

POD Proper orthogonal decomposition

HF(M) high-fidelity (model)

ROM reduced order model

The following notations are used in this manuscript:

u high-fidelity displacement field

û reduced displacement field

p high-fidelity cumulated plasticity field

p̃ reduced cumulated plasticity field reconstructed by Gappy-POD

p vector of component the value of the high-fidelity cumulated plasticity field at the reduced

integration points

p̂ vector of component the cumulated plasticity computed by the behavior law solver at the

reduced integration

points during the online phase. Notice that this vector is not obtained by taking the value of

some field at the

reduced integration points.

p̃ vector of component the value of the reduced cumulated plasticity field reconstructed by

Gappy-POD at

the reduced integration points

Ep relative error, defined in (12)

E p ROM-Gappy-POD residual, defined in (13)

Gprp (E p) proposed error indicator, defined in (19)

poff reference high-fidelity cumulated plasticity field at the considered offline variability

pref reference high-fidelity cumulated plasticity field at the considered online variability

p̃nores reduced cumulated plasticity field reconstructed by Gappy-POD without enrichement

(no restart)

The same notations as the ones on the cumulated plasticity are used for all the dual quantities.
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