Ry

carbon
~ Related Issues

Edited by

Wen-Hsien Tsai
Printed Edition of the Special Issue Published in Energies

=z
www.mdpi.com/journal/energies rM\D\Py




Modeling and Simulation of Carbon
Emission Related Issues






Modeling and Simulation of Carbon
Emission Related Issues

Special Issue Editor

Wen-Hsien Tsai

MDPI e Basel o Beijing ¢ Wuhan e Barcelona e Belgrade

mI\DPI



Special Issue Editor
Wen-Hsien Tsai
National Central University

Taiwan

Editorial Office

MDPI

St. Alban-Anlage 66
4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Energies
(ISSN 1996-1073) from 2018 to 2019 (available at: https://www.mdpi.com/journal/energies/special

issues/carbon_emission)

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,
Page Range.

ISBN 978-3-03921-311-5 (Pbk)
ISBN 978-3-03921-312-2 (PDF)

Cover image courtesy of Wen-Hsien Tsai.

© 2019 by the authors. Articles in this book are Open Access and distributed under the Creative
Commons Attribution (CC BY) license, which allows users to download, copy and build upon
published articles, as long as the author and publisher are properly credited, which ensures maximum
dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons
license CC BY-NC-ND.




Contents

About the Special Issue Editor . . . . . ... ... ... .. ... . 0 L L o
Preface to "Modeling and Simulation of Carbon Emission Related Issues” . . . . . . ... ...

Wen-Hsien Tsai
Modeling and Simulation of Carbon Emission-Related Issues
Reprinted from: Energies 2019, 12, 2531, d0i:10.3390/en12132531 . . . . . .. ... ... ... ...

Yong Wang, Guangchun Yang, Ying Dong, Yu Cheng and Peipei Shang

The Scale, Structure and Influencing Factors of Total Carbon Emissions from Households in 30
Provinces of China—Based on the Extended STIRPAT Model

Reprinted from: Energies 2018, 11, 1125, d0i:10.3390/en11051125 . . . . . .. ... ... ... ...

Rui Huang, Shaohui Zhang and Changxin Liu

Comparing Urban and Rural Household CO, Emissions—Case from China’s Four Megacities:
Beijing, Tianjin, Shanghai, and Chongging

Reprinted from: Energies 2018, 11, 1257, d0i:10.3390/en11051257 . . . . . .. ... ... ... ...

Yong Wang, Yu Zhou, Lin Zhu, Fei Zhang and Yingchun Zhang
Influencing Factors and Decoupling Elasticity of China’s Transportation Carbon Emissions
Reprinted from: Energies 2018, 11, 1157, d0i:10.3390/en11051157 . . . . . . . ... ... ... ...

Yu Zhang, Xiaojiao Zou, Caifen Xu and Qingshan Yang

Decoupling Greenhouse Gas Emissions from Crop Production: A Case Study in the
Heilongjiang Land Reclamation Area, China

Reprinted from: Energies 2018, 11, 1480, do0i:10.3390/en11061480 . . . . . .. ... ... ... ...

Allen H. Hu, Chia-Hsiang Chen, Lance Hongwei Huang, Ming-Hsiu Chung, Yi-Chen Lan
and Zhonghua Chen

Environmental Impact and Carbon Footprint Assessment of Taiwanese Agricultural Products:
A Case Study on Taiwanese Dongshan Tea

Reprinted from: Energies 2019, 12, 138, d0i:10.3390/en12010138 . . . . . . .. ... .. ... .. ..

Xinhua Zhu, Nan Li, Yu Sun, Hongfei Zhang, Kai Wang and Sang-Bing Tsai

A Study on the Strategy for Departure Aircraft Pushback Control from the Perspective of
Reducing Carbon Emissions

Reprinted from: Energies 2018, 11, 2473, d0i:10.3390/en11092473 . . . . . . . ... ... ... ...

César O. Peralta P, Giovani T. T. Vieira, Simon Meunier, Rodrigo J. Vale, Mauricio B. C.
Salles and Bruno S. Carmo

Evaluation of the CO, Emissions Reduction Potential of Li-ion Batteries in Ship Power Systems
Reprinted from: Energies 2019, 12, 375, d0i:10.3390/en12030375 . . . . . . .. ... .. ... .. ..

Pruethsan Sutthichaimethee and Kuskana Kubaha

A Relational Analysis Model of the Causal Factors Influencing CO, in Thailand’s Industrial
Sector under a Sustainability Policy Adapting the VARIMAX-ECM Model

Reprinted from: Energies 2018, 11, 1704, d0i:10.3390/en11071704 . . . . . . . ... ... ... ...

Lin Zhu, Lichun He, Peipei Shang, Yingchun Zhang and Xiaojun Ma

Influencing Factors and Scenario Forecasts of Carbon Emissions of the Chinese Power Industry:
Based on a Generalized Divisia Index Model and Monte Carlo Simulation

Reprinted from: Energies 2018, 11, 2398, d0i:10.3390/en11092398 . . . . . .. ... ... ... ...



Ying Wang, Peipei Shang, Lichun He, Yingchun Zhang and Dandan Liu

Can China Achieve the 2020 and 2030 Carbon Intensity Targets through Energy
Structure Adjustment?

Reprinted from: Energies 2018, 11, 2721, d0i:10.3390/en11102721 . . . . . .. ... ... .. .. .. 182

Ming Meng, Lixue Wang and Qu Chen

Quota Allocation for Carbon Emissions in China’s Electric Power Industry Based Upon the
Fairness Principle

Reprinted from: Energies 2018, 11, 2256, d0i:10.3390/en11092256 . . . . . .. ... ... ... ... 214

Songyi Wang, Fengming Tao and Yuhe Shi

Optimization of Inventory Routing Problem in Refined Oil Logistics with the Perspective of
Carbon Tax

Reprinted from: Energies 2018, 11, 1437, d0i:10.3390/en11061437 . . . . . .. ... ... ... ... 230

Weiguo Fan, Zhicheng Gao, Nan Chen, Hejie Wei, Zihan Xu, Nachuan Lu, Xuechao Wang,
Peng Zhang, Jiahui Ren, Sergio Ulgiati and Xiaobin Dong

It is Worth Pondering Whether a Carbon Tax is Suitable for China’s Agricultural-Related Sectors
Reprinted from: Energies 2018, 11, 2296, d0i:10.3390/en11092296 . . . . . .. ... ... ... ... 247

Wen-Hsien Tsai

A Green Quality Management Decision Model with Carbon Tax and Capacity Expansion under
Activity-Based Costing (ABC)—A Case Study in the Tire Manufacturing Industry

Reprinted from: Energies 2018, 11, 1858, d0i:10.3390/en11071858 . . . . . .. ... ... ... ... 273

Wen-Hsien Tsai

Green Production Planning and Control for the Textile Industry by Using Mathematical
Programming and Industry 4.0 Techniques

Reprinted from: Energies 2018, 11, 2072, d0i:10.3390/en11082072 . . . . . . . ... ... ... ... 303

Wen-Hsien Tsai
Carbon Taxes and Carbon Right Costs Analysis for the Tire Industry
Reprinted from: Energies 2018, 11,2121, d0i:10.3390/en11082121 . . . . . .. ... ... ... ... 327

Yanbin Li, Min Wu and Zhen Li

A Real Options Analysis for Renewable Energy Investment Decisions under China Carbon
Trading Market

Reprinted from: Energies 2018, 11, 1817, d0i:10.3390/en11071817 . . . . . . . ... ... ... ... 349

Qiang Zhai, Linsen Zhu and Shizhou Lu
Life Cycle Assessment of a Buoy-Rope-Drum Wave Energy Converter
Reprinted from: Energies 2018, 11, 2432, d0i:10.3390/en11092432 . . . . . .. ... ... ... ... 359

Gillian Foster
Ethylene Supply in a Fluid Context: Implications of Shale Gas and Climate Change
Reprinted from: Energies 2018, 11, 2967, d0i:10.3390/en11112967 . . . . . . . ... ... ... ... 374

Pruethsan Sutthichaimethee and Kuskana Kubaha

The Efficiency of Long-Term Forecasting Model on Final Energy Consumption in Thailand’s
Petroleum Industries Sector: Enriching the LT-ARIMAXS Model under a Sustainability Policy
Reprinted from: Energies 2018, 11, 2063, d0i:10.3390/en11082063 . . . . . .. ... .. ... .. .. 391

vi



About the Special Issue Editor

Wen-Hsien Tsai is a distinguished professor of accounting and information systems in the
Department of Business Administration at National Central University, Taiwan. He has served as
a guest editor for Special Issues of the journals Energies and Sustainability and as an associate editor
of the journal Decision Support Systems. He is also a certified consultant of SAP financial modules. He
received his Ph.D. degree in industrial management from the National Taiwan Science and
Technology University. He received his MBA degree and his M.Sc. degree in industrial
engineering from the National Taiwan University and National Tsing-Hwa University, respectively.
His research interests include Industry 4.0, carbon emissions, carbon tax, activity-based costing
(ABC), ERP implementation and auditing, green production and optimization decision, and the
International Financial Reporting Standards (IFRS). He has published several papers in high-
quality international journals, such as Energies, Sustainability, Decision Support Systems, European
Journal of Operational Research, Omega, Transportation Science, Industrial Marketing Management,
Journal of the Operational Research Society, Computers and Operations Research, Journal of Cleaner
Production, International Journal of Production Economics, Computers and Industrial Engineering,

International Journal of Production Research, etc.

vii






Preface to "Modeling and Simulation of Carbon
Emission Related Issues”

Carbon emissions reached an all-time high in 2018, when global carbon dioxide emissions
from burning fossil fuels increased by about 2.7%, after a 1.6% increase in 2017. Thus, we
need to pay special attention to carbon emissions and work out possible solutions if we still
want to meet the targets of the Paris climate agreement. This Special Issue collects 16 carbon
emissions-related papers (including 5 that are carbon tax-related) and 4 energy-related papers using
various methods or models, such as the input-output model, decoupling analysis, life cycle impact
analysis (LCIA), relational analysis model, generalized Divisia index model (GDIM), forecasting
model, three-indicator allocation model, mathematical programming, real options model, multiple
linear regression, etc. The research studies come from China, Taiwan, Brazil, Thailand, and United
States. These researches involved various industries such as agricultural industry, transportation
industry, power industry, tire industry, textile industry, wave energy industry, natural gas industry,
and petroleum industry. Although this Special Issue does not fully solve our concerns, it still provides
abundant material for implementing energy conservation and carbon emissions reduction. However,
there are still many issues regarding the problems caused by global warming that require research.
Finally, I am grateful to MDPI for the invitation to act as the Guest Editor of this Special Issue and I
am indebted to the editorial office of Energies for the kind cooperation, patience, and committed
engagement. I would like to thank the authors for submitting their excellent contributions to this
Special Issue. My thanks are extended to the reviewers for evaluating the manuscripts and providing
helpful suggestions. Sincere thanks also go to the editorial team of MDPI and Energies for providing
the opportunity to publish this book and helping in all possible ways.

Wen-Hsien Tsai
Special Issue Editor
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1. Introduction

According to the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report in
2013 (IPCC, 2013) [1], global warming is mainly caused by several greenhouse gases, such as carbon
dioxide (CO;), methane, nitrous oxide, and ozone, which are emitted by human activities in a variety
of ways. Baroness Anelay, the former UK Minister of State of the Foreign and Commonwealth Office,
said: “The threat of climate change needs to be assessed in the same comprehensive way as nuclear
weapons proliferation.” [2]. In addition, both former Vice-President Al Gore and former President
Barack Obama of United States deemed that climate change was a more dangerous threat to the world
than international terrorism [3]. The Paris Agreement was signed by 195 nations in December 2015
to strengthen the global response to the threat of climate change, following the 1992 United Nations
Framework Convention on Climate Change (UNFCC) and the 1997 Kyoto Protocol. In Article 2 of the
Paris Agreement, the increase in the global average temperature is anticipated to be held to well below
2 °C above pre-industrial levels, and efforts are being employed to limit the temperature increase to
1.5 °C above pre-industrial levels [4].

It is estimated that about 72% of the totally emitted greenhouse gases is carbon dioxide (CO,), 18%
methane, and 9% nitrous oxide [5]. Therefore, carbon dioxide (CO;) emission (or carbon emission) is the
most important cause of global warming. The vast majority of anthropogenic carbon emissions come
from the combustion of fossil fuels, principally coal, oil, and natural gas, with additional contributions
coming from deforestation, changes in land use, soil erosion, and agriculture [6]. The United Nations
had made possible efforts on greenhouse gas emissions mitigation. In Article 6 of the Paris Agreement,
three cooperative approaches were presented that countries can take in attaining the goal of their carbon
emission reduction, including direct bilateral cooperation, new sustainable development mechanisms,
and non-market-based approaches [7].

For the carbon emission reduction, several related issues and practical technologies were proposed,
such as carbon footprint, carbon tax, cap and trade, carbon right purchasing, carbon emission cost
analysis, internal carbon pricing, and so on. Cap and trade is one method for regulating and ultimately
reducing the amount of carbon emission [8]. The government sets a cap on carbon emission, limiting the
amount of carbon dioxide that companies are allowed to release. Companies that can more efficiently
reduce carbon emission can sell any extra permits in the emission market. Thus, the carbon trading
markets were set up. Currently there are five trading in carbon allowances: the European Climate
Exchange, NASDAQ OMX Commodities Europe, PowerNext, Commodity Exchange Bratislava,
and the European Energy Exchange [9].

However, Harvey stated that, “A report released yesterday by a consortium of researchers known
as the Global Carbon Project finds that global carbon dioxide emissions from burning fossil fuels are
likely to have increased by about 2.7% in 2018, after a 1.6% increase in 2017” [10]. We need to pay
special attention to carbon emissions and work out the possible solutions if we still want to meet the
targets of the Paris climate agreement. In this urgent time for carbon emission reduction, this special
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issue collects 20 related papers concerning carbon emissions from household to various industries by
using various models and methods.

2. Summary Information of 20 Papers in the Special Issue

Table 1 shows the summary information of 20 papers in this special issue, including Research
Topic, Papers” Author, Method/Model, Research Object, and Industry/Field. From Table 1, we can
see that this special issue has 16 carbon emissions-related papers (including five that are carbon
tax-related) and four energy-related papers in various industries by using various methods or models.
In carbon emissions, it explores household, transportation, and agricultural carbon emissions, carbon
emissions reduction, carbon emissions forecasting, and quotas allocation for carbon emissions. In
energy, it discusses renewable energy and energy consumption forecasting. These papers will be
reviewed in the next section.

3. Review of the Special Issue
3.1. Carbon Emissions

3.1.1. Household Carbon Emissions

Wang et al. [11] used the carbon emissions coefficient method and Consumer Lifestyle Approach
(CLA) to calculate the total carbon emissions of households in 30 provinces of China from 2006
to 2015, and adopted the extended Stochastic Impacts by Regression on Population, Affluence,
and Technology (STIRPAT) model to analyze the factors influencing the total carbon emissions of
households. The findings indicate that the energy and products’ carbon emissions from China’s
households had demonstrated a rapid growth trend over the past 10 years and primarily derived from
residents” high carbon emission categories: residences, food, transportation, and communications.

Huang et al. [12] analyzed the direct and indirect CO, emissions by urban and rural households
in Beijing, Tianjin, Shanghai, and Chongqing. The results show that urban total household carbon
emissions are larger than rural total household carbon emissions for the four megacities. Electricity
and hot water production and supply is the largest contributor of indirect household carbon emissions
for both rural and urban households. Besides, Beijing, Tianjin, Shanghai, and Chongging outsource a
large amount of indirect carbon emissions to their neighboring provinces.

3.1.2. Transportation Carbon Emissions

Transportation is an important source of carbon emissions in China. Wang et al. [13] analyzed the
drivers of carbon emissions in China’s transportation sector from 2000 to 2015 by using the Generalized
Divisia Index Method (GDIM). The findings show that the added value of transportation, energy
consumption, and per capita carbon emissions in transportation have always been major factors
affecting China’s carbon emissions from transportation. The carbon intensity of the added value and
the energy intensity have a continuous effect on carbon emissions in transportation.

3.1.3. Agricultural Carbon Emissions

Zhang et al. [14] utilized decoupling analysis to construct a decoupling index based on carbon
footprint and crop yield, and evaluated the relationship between crop production and greenhouse
gas emissions using the most modern grain production base in China as a case study. The findings
show that a weak but variable decoupling trend occurs from 2001 to 2015, and that there is a weak
decoupling across the study period. Besides, rice production constituted 80% of the regional carbon
footprint in a crop’s life cycle.
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Huetal. [15] evaluated the environmental impact and carbon footprint of Dongshan tea from Yilan
County in Taiwan. The results indicate that climate change has the largest impact upon it, followed
by human health, natural resources, and ecosystem quality. It is also found that the environmental
impact of Taiwanese tea mainly came from fertilizer input during the raw material phase, electricity
use during manufacturing, and electricity use during water boiling in the consumer-use phase.

3.1.4. Carbon Emissions Reduction

Zhu et al. selected Shanghai Honggiao Airport to explore the control strategy for aircraft
departure [16]. In this paper, the influence of the number of departure aircraft on the runway utilization
rate, the takeoff rate, and the departure rate of flight departures under the conditions of airport
runway capacity constraints are studied. A time prediction model of aircraft departure taxiing time
is established in this study by using a multivariate linear regression equation, and the experimental
results indicate that without reducing the utilization rate of the runway and the departure rate of flights,
implementing a reasonable pushback number for the control of departing aircraft during busy hours
can reduce the departure taxiing time of aircraft by about 32%, which will reduce the fuel consumption
and pollutant emissions during taxiing on the airport surface.

Peralta et al. [17] analyzed the potential implementation of Li-ion batteries (lithium titanate
or lithium iron phosphate) in a platform supply vessel system through simulations using HOMER
software (Hybrid Optimization Model for Multiple Energy Resources). They also analyzed the potential
emissions reduction for different parts of a mission to an offshore platform for different configurations
of the ship power system.

3.1.5. Carbon Emissions Forecasting

Sutthichaimethee and Kubaha [18] used a Relational Analysis Model and VARIMAX-ECM Model
to forecast carbon emissions in Thailand for the period between 2018-2029. The research results
indicate that carbon emissions will continue to increase steadily by 14.68%, or 289.58 MtCO,eq. by
2029, which is not in line with Thailand’s carbon emissions reduction policy.

Zhu et al. [19] adopted Generalized Divisia Index Model (GDIM) and Monte Carlo simulation
to explore the influencing factors and scenario forecasts of carbon emissions of the Chinese power
industry. The results show that the output scale is the most important factor leading to an increase in
carbon emissions in China’s power industry from 2000 to 2015, followed by the energy consumption
scale and population size. The results also indicate that China’s power industry still has great potential
to reduce carbon emissions, and the focus can be placed on the innovation and development of energy
saving and emissions reduction technology.

Wang et al. [20] used the Gray model (GM (1, 1)), Generalized Regression Neural Network (GRNN),
Markov forecasting model, and non-linear programming to evaluate whether China can achieve the
2020 and 2030 carbon intensity targets set by government through energy structure adjustment. The
conclusions are that in 2020, the optimal energy structure will enable China to achieve its carbon
intensity target under three scenarios. However, in 2030, the optimal energy structure cannot fully
achieve China’s carbon intensity target under any of the three scenarios.

3.1.6. Quotas Allocation for Carbon Emissions

The electric power industry is the first sector that was introduced into the Carbon Emissions
Trading market, which is being constructed in China. Meng et al. [21] utilized a hybrid trend forecasting
model and a three-indicator allocation model to propose a quota allocation scheme for carbon emissions
in China’s electric power industry in 30 provinces from 2016 to 2030. The research findings indicated
that nine provinces are expected to be the buyers in the Carbon Emissions Trading market. These
provinces are mostly located in eastern China, and account for approximately 63.65% of China’s carbon
emissions generated by the electric power sector.
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3.2. Carbon Tax

Implementing a carbon tax is one method of carbon pricing to mitigate carbon emissions.
Wang et al. [22] used Low-Carbon Inventory Routing Problem (LCIRP) model for the inventory routing
problem in the distribution process of refined oil with the perspective of carbon tax, and proposed an
improved adaptive genetic algorithm combined with greedy algorithm to solve the model. Fan etal. [23]
utilized a 3BEAD-CGE (economy—energy-environmental-agricultural-dynamics Computable General
Equilibrium) model to analyze the degree of carbon tax on the macroenvironment, macroeconomy,
and agricultural sectors during the period 2020-2050, in order to investigate whether carbon tax is
suitable for China’s agricultural-related sectors. This research provides detailed data that supports the
views of most people against the imposition of a carbon tax on agricultural-related sectors.

Tsai [24] proposed a green quality management decision model with carbon tax under
Activity-Based Costing (ABC) in the tire manufacturing industry. The optimal green quality production
portfolio can be selected via a mathematical programming model. Activity-Based Costing (ABC) is used
to assess green quality management and production cost. Tsai [9] also considered the environmental
issues of carbon emissions, energy recycling, and waste reuse, and proposed a green production
planning and control model with carbon tax. Tsai [25] used a mathematical programming model with
Activity-Based Costing (ABC) and the Theory of Constraints (TOC) to achieve the optimal product mix
to maximize profit under various resource, production, and sale-related constraints.

Cap and trade is one method for regulating and ultimately reducing the amount of carbon
emissions. The government sets a cap on carbon emissions for the whole country, and then limited the
amount of carbon dioxide that companies are allowed to release. A company that can more efficiently
reduce carbon emission can sell any extra permits in the emission market to companies that cannot
easily afford reducing carbon emissions. Tsai [26] combined mathematical programming, Theory of
Constraints (TOC), and Activity-Based Costing (ABC) to formulate the green production decision
model with carbon taxes and carbon right costs under the cap-and-trade scheme, in order to achieve
the optimal product-mix decision under various constraints. This paper proposed three different
scenario models with carbon taxes and carbon right, and used them to evaluate the effect on profit of
changes in carbon tax rates.

3.3. Energy

3.3.1. Renewable Energy

Renewable energy is safe, abundant, and clean to use when compared to fossil fuels. However,
many forms of renewable energy are location-specific and require storage capabilities. Even regarding
this, renewable energy has great potential investment value. Li et al. [27] adopted a real option model
considering carbon price fluctuation as a tool for renewable energy investment. Considering optimal
investment timing and carbon price, the model introduces a carbon price fluctuation as part of the
optimization paper.

Zhai et al. [28] applied Life Cycle Inventory (LCI) analysis and Life Cycle Impact Analysis (LCIA)
to conduct a life cycle assessment (LCA) study for a buoy-rope-drum (BRD) wave energy converter
(WECQ).

Foster [29] utilized the Vector Error Correction model (VECM) and Multiple Linear Regression
model (MLR) to projects the United States” (U.S.) future ethylene supply in the context of two
megatrends: the natural gas surge and global climate change. The results indicated that the availability
of shale gas in the U.S. and low-priced feedstocks from natural gas relative to crude oil were key factors
influencing ethylene supply.
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3.3.2. Energy Forecasting

Sutthichaimethee and Kubaha [30] applied LT-ARIMAXS (the Long Term-Autoregressive
Integrated Moving Average with Exogeneous variables and Error Correction Mechanism model)
to conduct energy consumption long-term forecasting for the petroleum industry in Thailand.

4. Concluding Remarks

Since carbon emissions reached an all-time high in 2018, where global carbon dioxide emissions
from burning fossil fuels have increased by about 2.7% in 2018, after a 1.6% increase in 2017. We need
to pay special attention to carbon emissions and work out the possible solutions if we still want to meet
the targets of the Paris climate agreement. This special issue collects 16 carbon emissions-related papers
(including five that were carbon tax-related) and four energy-related papers in various industries
by using various methods or models. Although this special issue did not fully satisfy our needs,
it still provides abundant related material for energy conservation and carbon emissions reduction.
However, there still are many research topics waiting for our efforts to study to solve the problems of
global warming.
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Abstract: Household carbon emissions are important components of total carbon emissions.
The consumer side of energy-saving emissions reduction is an essential factor in reducing carbon
emissions. In this paper, the carbon emissions coefficient method and Consumer Lifestyle Approach
(CLA) were used to calculate the total carbon emissions of households in 30 provinces of China from
2006 to 2015, and based on the extended Stochastic Impacts by Regression on Population, Affluence,
and Technology (STIRPAT) model, the factors influencing the total carbon emissions of households
were analyzed. The results indicated that, first, over the past ten years, the energy and products
carbon emissions from China’s households have demonstrated a rapid growth trend and that regional
distributions present obvious differences. Second, China’s energy carbon emissions due to household
consumption primarily derived from the residents’ consumption of electricity and coal; China’s
products household carbon emissions primarily derived from residents’ consumption of the high
carbon emission categories: residences, food, transportation and communications. Third, in terms of
influencing factors, the number of households in China plays a significant role in the total carbon
emissions of China’s households. The ratio of children 0-14 years old and gender ratio (female = 100)
are two factors that reflect the demographic structure, have significant effects on the total carbon
emissions of China’s households, and are all positive. Gross Domestic Product (GDP) per capita plays
a role in boosting the total carbon emissions of China’s households. The effect of the carbon emission
intensity on total household carbon emissions is positive. The industrial structure (the proportion
of secondary industries” added value to the regional GDP) has curbed the growth of total carbon
emissions from China’s household consumption. The results of this study provide data to support the
assessment of the total carbon emissions of China’s households and provide a reasonable reference
that the government can use to formulate energy-saving and emission-reduction measures.

Keywords: household consumption; total carbon emissions; CLA Model; influence factor;
STIRPAT model

1. Introduction

According to the International Energy Agency (IEA) [1], China surpassed the US as the world’s
largest emitter of carbon in 2007, and according to data on carbon dioxide emissions released by the
BP World Energy Statistics Yearbook (2017) [2], China’s global share of carbon emissions rose from
20.9% in 2005 to 27.5% in 2014 and remains on the rise. China, the largest developing country in the
world, has undergone vigorous and rapid development over the past 40 years, and the increased
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large-scale, mechanized production, growing consumer demand, and improved living standards have
caused China’s carbon dioxide emissions to increase every year. To reduce carbon emissions, China has
established a series of emissions reduction plans: at the World Climate Conference in Copenhagen in
2009, China vowed that by 2020 its carbon intensity would decrease by 40-45% from the 2005 amount.
In 2014, China increased its goal of peak carbon emissions to approximately 2030. In 2015, at the Paris
summit, China reaffirmed its commitment of peak carbon emissions to approximately 2030; China has
also proposed that to approximately 2030, non-fossil energy consumption would account for about
20% of primary energy consumption, and carbon intensity would be 60 to 65% lower than 2005, and
forest stock would be about 4.5 billion cubic meters more than in 2005. In December 2017, China
officially launched the national carbon emission trading system [3], taking an important step on the
path of reducing emissions. Therefore, how to achieve energy savings and emissions reduction and
how to develop an appropriate path for China’s low-carbon development have become timely issues
for scholars.

Currently, most of our efforts to reduce emissions are committed to the field of industrial
production. Recent years have seen diminishing marginal benefits of industrial emission reductions,
and changing consumption patterns have been an effective manner by which to mitigate climate
warming. All types of research on carbon emissions at the production level have gradually shifted
to the consumption level. At present, household carbon emissions account for more than 40% [4] of
China’s total carbon emissions and increase yearly. In 2012, China’s GDP growth rate was 7.7% [5],
farewell to the past more than 30 years average of 10% per cent growth, indicating that China’s
economic growth phase has undergone a fundamental shift in the economic development of the
“new normal”. An important manifestation of the new normal of economic development is that the
contribution rate of consumption to economic growth is obviously increased. In 2010, consumption
contributed 61.9% [6] to China’s economic growth, surpassing investment for the first time since 2006.
In 2016, the contribution of consumption to China’s economic growth increased to 64.6% [6]. Therefore,
expanding domestic demand and promoting consumption are important pillars for economic growth.
Changes in the size and structure of residents” consumption will have significant impacts on China’s
carbon emission. It is of great practical significance to study the carbon emissions of households
and their influencing factors. To determine whether residents directly generate carbon emissions
when they consume products and services, we can divide household consumption carbon emissions
into energy carbon emissions of households and products carbon emissions of households. Energy
carbon emissions of households are produced by residents’ direct consumption of energy products.
Products carbon emissions of households are generated by the residents” consumption of products
and services that consume energy in all aspects of production and sales. The combination of energy
and products carbon emissions of household consumption is called total household carbon emissions.
This paper calculates the energy and products carbon emissions of household consumption and
comprehensively analyses the present situation and influencing factors on total carbon emissions of
China’s household consumption.

2. Literature Review

At present, the research on the carbon emissions of households is divided into two areas: scale
calculation and influential factor analysis. The measurement of scale is divided into the calculation
of the energy carbon emissions of household consumption and calculation of the products carbon
emissions of household consumption, and research on the influencing factors of carbon emissions
from households primarily concentrates on the population, per capita income and technical levels.
Currently, studies have focused on several areas, which are discussed in the following sections.

2.1. Measurement of the Size of Carbon Emissions of Household Consumption

Existing research primarily uses the carbon emission coefficient method to calculate the energy
carbon emissions of household consumption. There are three methods for calculating products
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carbon emissions from households: Input-Output Analysis (IOA), Life-Cycle Analysis (LCA) and the
Consumer Lifestyle Approach (CLA). @ The input-output analysis method, proposed by Professor
Leon (Wassily Leontief) in 1936, was applied to the quantitative analysis of the American economic
system in the same year [7], and the theoretical setting and empirical application were further analyzed
in 1937 [8]. Herendeen [9] first applied it to the analysis and calculation of energy consumption
in the United States in 1976. Druckman [10] established a quasi-multi-region-input-output model
to study the carbon emissions produced by British residents from consumer products and services
from 1990 to 2004; the results indicated that more than one-fourth of the UK household consumption
carbon emissions in 2004 came from recreational and leisure consumption. Peng et al. [11] developed a
non-competitive input-output model to calculate the carbon emissions caused by Chinese residents’
consumption and their sectoral distribution from 1992 to 2007. Their results indicated that during
the period of inspection, residents” consumption and carbon emissions indicated a rapid growth
trend, which is an important component of China’s total carbon emissions. Based on the statistical
data from Shanghai from 1997 to 2010, Wu, Guo et al. [12] used the input-output model to calculate
the products carbon emissions from Shanghai residents’ consumption, and the study observed that
the products carbon emissions of Shanghai residents’ consumption was increasing, which was the
primary source of the total carbon emissions of residents’ consumption. Tian et al. [13] used the
input-output model to calculate the products carbon emissions of residents in Liaoning Province in
1997, 2002 and 2007. The study determined that the products carbon emissions from urban residents’
consumption were the primary component of products carbon emissions of residents” consumption.
@ Life-Cycle Analysis examines the effect of a product or service on the environment throughout its
life cycle. Liu et al. [14] used the life-cycle analysis method to construct the sustainable consumption
evaluation model, and those authors analyzed the ecological influence of the Chinese urban household
consumption behavior in 2000 and compared the contribution of different consumption behaviors
to the ecological effect. Yiao et al. [15] accounted for the total amount of products carbon dioxide
emitted by Chinese residents from 1997 to 2007 using the comprehensive life-cycle analysis method
and determined that the products carbon emissions from urban residents was the primary component
of household consumption products emissions. 3 The Consumer Lifestyle Approach (CLA), based on
household consumer goods, calculates the carbon emissions from each type of consumption activity
according to the expenditure of each category of consumer goods. Bin et al. [16] analyzed the relation
between the energy consumption and carbon emissions of American residents using the consumer
lifestyle approach and presented a detailed calculation method of the energy and products carbon
emissions of residents” consumption. Wei et al. [17] studied carbon emissions from the end energy
consumption of rural and urban residents in China from 1999 to 2002 using the consumer lifestyle
approach and determined that the total carbon emissions of residents” consumption accounted for
approximately 30% of the total carbon emissions. Fan and Wang [18] adopted the consumer lifestyle
method to measure the products carbon emissions of Chinese residents from 1993 to 2007 as well as
the trend in consumption carbon emissions of urban and rural residents per capita.

2.2. Study of the Factors Influencing the Consumption Carbon Emissions of Households

The research methods of the factors influencing household consumption carbon emissions
primarily include two types. The first type is decomposition analysis, including Index Decomposition
Analysis (IDA) and Structural Decomposition Analysis (SDA). The other type is the environmental
effect (I) = population (P) x affluence (A) x technology (T) (IPAT) equation or STIRPAT model.
Greenring et al. [19] used Di’s index method to analyse 10 countries in the OECD regarding their
carbon emissions from residential terminal services and private transport sectors from 1970 to 1993.
It was determined that the effects of the energy structure of terminal consumption, fuel composition
and energy intensity on the reduction of the intensity of carbon emissions were different. Using the
LMDI model, Chai [20] constructed a complete decomposition model of carbon emissions of urban
residents and evaluated the factors influencing the daily carbon emissions of Chinese urban residents
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from the perspectives of the consumption pattern, income and family size. Du [21] calculated and
analyzed the influence of the urban-rural structure, consumption carbon intensity, consumption level
and consumption structure on the products carbon emissions of Chinese residents from 2000 to 2015
using the LMDI model. Wang and Xia [22] used the SDA Model to analyse the factors influencing
consumption carbon emissions of Chinese residents from 1995 to 2009, and the study determined
that the carbon emissions generated by residents’ consumption were generally increasing during the
study period. However, from the perspective of structure and influence factors, Chinese residents’
consumption remains in the area of low-carbon development (low-carbon development is a sustainable
development model characterized by low energy consumption, low pollution and low emission, which
is of great significance to the sustainable development of economy and society.). Based on the IPAT
equation, Hubacek et al. [23] analyzed the influence factors of environmental change and carbon
emissions in China and India from 1960 to 2000, and the results indicated that the influence of wealth
factors on carbon emissions increased and that the influence of technical factors on carbon emissions
decreased. Hubacek et al. [24] used the IPAT model to analyse the influence factors of China’s carbon
emissions from 1978 to 2008. The article reported that the increase in economic levels rendered
residents inclined to consume products that generate more carbon emissions in the production process,
leading to increased carbon emissions. Fu et al. [25] analyzed the factors influencing the products
carbon emissions of Chinese residents from 1996 to 2011 using the STIRPAT model and determined
that per capita output, the energy intensity and energy structure were the primary factors influencing
the products carbon emissions of residents” consumption. Tang et al. [26] calculated the energy
carbon emissions of Chinese residents from 1990 to 2014 and used the STIRPAT model to quantify the
effects of variables such as the population size, energy structure, household consumption level and
urbanization rate on China’s consumption of energy carbon emissions. Based on China’s provincial
data from 2003 to 2012, Ji et al. [27] constructed the dynamic panel data model of the influencing
factors of energy carbon emissions from households using the extended STIRPAT model. Based on
the extended STIRPAT model, Richard [28] analyzed the influencing factors of energy consumption
in 14 countries in the EU from 1960 to 2000. The study found that the total population, urbanization
rate, per capita GDP, and the proportion of people over 65 years of age had catalytic effects on
energy consumption, and the impact of GDP per capita on energy consumption was consistent with
the Kuznets hypothesis. To examine the determinants of nitrogen oxides (NOx) emissions in the
Community of Madrid in Spain, which is one of the most densely populated regions in Europe,
Tiziana et al. [29] used an extended STIRPAT model to analyse the effects of the total population,
income level, the population over 64 years of age and the proportion of male population aged 22-55 to
the emission of NOx. Rosalia et al. [30] extended the classic Pressure-State-Response model. And the
effects of GDP, urbanization rate, 0-14-year-old children’s ratio on the emission of carbon monoxide
(CO), nitrogen oxides (NOx) and volatile organic compounds (VOC) in European Union countries in
1995-2005 were analyzed. Brantley [31] summarized the literatures, which used the STIRPAT model
to study the impacts of total population, age structure, family size and urbanization rate on carbon
emissions. This paper summarizes the methods, conclusions, and limitations of existing studies as
presented in Table 1.

On the whole, the majority of the literature concerns the total carbon emissions of household
consumption and their influencing factors at the national level or in the single area. There are few
studies on the provincial level, which cannot fully reflect the consumption carbon emissions of Chinese
residents from the spatial scope. In the selection of influencing factors, most scholars use a single
population to examine the effect of demographic changes on the total carbon emissions of household
consumption without analyzing the demographic structure. With the development of human society,
population structure has become an important component of the population problem and should be
included in the field of investigation.
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This paper measured the total carbon emissions of China’s households from 2006 to 2015 at the
provincial level. Therefore, this paper can provide support for a comprehensive forecast of the future
development trend of China’s household consumption total carbon emissions and guidance on the
government’s policy for formulating targeted emission reduction policies according to the differences
in the total carbon emissions of households in different regions. This article introduced the ratio of
children 0-14 and gender ratio. These two factors can be used to study the effect of demographic
changes on the total carbon emissions of household consumption. China is now vigorously pursuing a
comprehensive fetus policy, and China’s current gender ratio is seriously unbalanced (in 2015, it was
105.02). In this context, it is possible to provide theoretical guidance for China to specify a reasonable
population policy to promote sustainable low-carbon development by studying the 0-14-year-old
children’s ratio and gender ratio.

The following sections of this article are arranged as follows: the third section introduces the
calculation method of the total carbon emissions of household consumption, presents the model
construction of the factors affecting the total carbon emissions of household consumption and provides
a data explanation. The fourth section analyses the results of the total carbon emissions of household
consumption and the results of the model construction. The fifth section, the discussion section,
compares the similarities and differences between this article and previous research and discusses the
limitations of this article. The sixth section includes the conclusions and suggestions for future research.

3. Research Methods and Data Explanation

3.1. Calculation Model of Total Carbon Emissions from Households

Total carbon emissions from households Cr are expressed as Equation (1):
Cr=Cp+Cin 1)

In Equation (1), Cp and Cjy indicate energy consumer carbon emissions and products consumer
carbon emissions, respectively.

The method of calculating energy carbon emissions of household consumption adopts the method
of the carbon emission coefficient, and Cp is expressed as Equation (2):

n
Cp =) FEEi @
i=1

In Equation (2), F; is the carbon emission factor for various energy sources. E; indicates the
population’s consumption of various energy sources. Data were from the regional energy balance
table in the China Energy Statistics Yearbook (2007-2016) [32]. i=1, 2, ..., 5 were used to indicate
the five types of energy that residents consume in their lives: coal, petroleum, natural gas, electricity
and heat. Choosing these five kinds of energy products to calculate the energy carbon emission of
Chinese residents’ consumption was mainly based on the previous research [12] and consideration of
the residents” demand for energy products in real life. The direct consumption of coal by residents is
primarily used for cooking and heating. Especially in rural China, the use of coal is more common; the
direct consumption of petroleum by residents is mainly used for providing fuel (petrol) to vehicles
and cooking (liquefied petroleum gas). It is necessary to emphasize that there are various kinds
of petroleum products. This paper mainly refers to gasoline and liquefied petroleum gas (LPG);
natural gas is mainly used by residents for cooking. There is a greater demand for natural gas in
urban areas; electricity and heat are essential civil energies in residents’ life. The carbon emission
coefficients of the three primary energy sources of coal, petroleum and natural gas are presented in
Table 2. Electricity and heat are two energy sources that do not directly produce carbon emissions
in the process of consumption but produce carbon emissions during production. Thus, the carbon
emission coefficients of electricity and heat (Table 3) must be computed in conjunction with the carbon
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emissions generated by electricity and heat in the production process and their yields, and the formula
for calculating the carbon emission coefficients of electricity is expressed as Equation (3):

3
Y FA;
Fuectriity = 7——— 3
clectricity Ielectricity
In Formula (3), FEjectricity tepresents the carbon emission factor of the electricity F; represents the
carbon emission factor of coal, petroleum and natural gas. A; represents the amount of coal, petroleum
and natural gas consumed by electricity generation. These data were derived from the regional energy
balance table in the China Energy Statistics Yearbook (2007-2016) [32], i = 1, 2, 3. Igjectricity represents
the total supply of electricity.
Similarly, the formula for calculating the carbon emission coefficient of heat is expressed as
Equation (4):
3
LEA
]
Fheat = I 4)
heat
In Equation (4), Fp, indicates the carbon emission coefficient of heat. F; represents the carbon
emission factor of coal, petroleum and natural gas. A; indicates the amount of coal, petroleum and
natural gas consumed by heating, j = 1, 2, 3. Ij,,;; represents the total supply of heat.

Table 2. Carbon emission coefficients for all types of primary energy (ton carbon/ ton tce).

Data Sources Carbon Emission Carbon Emission Carbon Emission
Coefficient of Coal Coefficient of Petroleum Coefficient of Natural Gas
DOE [33]/EIA [34] 0.70 0.48 0.39
ORNL [35] 0.72 0.59 0.40
IPCC [36] 0.76 0.59 0.45
National Science and Technology
Commission Climate Change Project [37] 073 058 041
National Development and Reform
Commission Energy Research Institute [38] 075 058 044
Average 0.73 0.56 0.42

Table 3. Carbon emission coefficients of electricity and heat.

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Carbon emission coefficient of electricity
(million t carbon/billion kW-h)
Carbon emission coefficient of heat
(million t carbon/10 ~ 10 kJ)

2.6584 24873 25100 2.5525 24424 24236 24937 24301 22887 22255

0.0326  0.0329 0.0322 0.0318 0.0329 0.0335 0.0382 0.0343 0.0332 0.0333

Note: The electricity carbon emission coefficient is calculated by Equation (3), and the heat carbon emission
coefficient is calculated by Equation (4).

The calculation of products carbon emissions of household consumption primarily refers to the
research method of Wei [17]. Using the CLA method to calculate the products carbon emissions of
household consumption, the formula is expressed as Equation (5):

n
Civ =) (QiP) x L )

i=1
In Equation (5), Q; indicates that residents buy consumer goods per capita of consumption
expenditure (data are from the China Statistical Yearbook (2007-2016) [39]). P; indicates the carbon
emission factor for each consumer product (Table 4). L is the total population (data are from the
China Statistical Yearbook (2007-2016) [39]). Finally,i=1, 2, ... , 8 indicates the type of the eight
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major categories of consumer goods: food, clothing, residences, household appliances and supplies,
transportation and communications, culture and entertainment, health care and others. The official
statistics of China divide the household consumption into eight categories, and the eight categories
are subdivided into many small categories. Considering the availability of data, the paper no longer
accounts for the products carbon emissions of residents according to the small subdivided categories.

Table 4. Consumption of consumer goods carbon emission factor table [40] (unit: ton carbon/million).

Consumption Type Carbon emission Factor Consumption Type Carbon Emission Factor
(Ton Carbon/Million) (Ton Carbon/Million)
Food 0.66 Transportation and communications 11
Clothing 121 Culture and entertainment 0.6
Residences 2.21 Health care 0.9
Household appliances and supplies 0.52 Others 0.3

3.2. Analysis Model of Factors Affecting Total Carbon Emissions from Households

3.2.1. STIRPAT Model

The IPAT model, can be used to study the effects of demographic, economic and technological
factors on environmental pressure. The IPAT model has been widely used since it was introduced in
the 1970s. However, the IPAT model has limitations, by changing only one of the factors to analyse the
problem, the effect of various factors on the dependent variable is of equal proportions. To overcome
this limitation, Dietz & Rosa (1994) [41] expanded the model into a random form, the STIRPAT model,
the expression of which is Equation (6):

I =aP?A°TY (6)

In Equation (6), I represents the environmental effect. P, A and T represent the population, wealth
and technology, respectively; a is constant, and b, c and d are indices that can be used to analyse
the nonproportional effects of the changes of various factors on the environment. ¢ is a random
perturbation term.

In the empirical analysis, we generally take the logarithm of the two sides and obtain the
following models:

Inl=Ina+bInP+clnA+dInT+Ine¢ )

In Equation (7), the logarithm of the three exponents b, c and d in the model can be estimated
as parameters, and the various influencing factors can be decomposed and analyzed appropriately,
which provides a theoretical basis for studying the effects of various factors on the environment.

The studies of Du [21], Hubacek [23] and Ji [27] found that population size, living standards,
carbon intensity and industrial structure had significant impacts on consumer carbon emissions.
In addition to these factors, Richard [28] and Rosalia [30] introduced age structures in the study of
carbon emissions. Considering the existing research and the actual situation in China, this paper
adds the variable of gender ratio. It is primarily due to the imbalance of gender ratio at present in
China, which leads to differences in consumption habits and consumption structure. Thus, this paper
constructs an extended STIRPAT model of the influence factors of total carbon emission in residents’
consumption, which is expressed as Equation (8):

ln Cit = :BO + ‘B] ln pSIZE,t + :BZ ln CHIZ't + '33 ln SEX,tJr

8
B4In RGDP;, + B5In GDPCjy + B In INSTy; + a; + piy ®)

In Equation (8), (i =1, 2, L, 30) represents 30 provinces in mainland China except Tibet. In this
formula, t(t = 2006, 2007, L, 2015) is the sample observation period. C is the total carbon emissions
of residents’ consumption. PSIZE is the size of the population. CHI is the 0-14-year-old children’s
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ratio. SEX is the gender ratio (female = 100). RGDP is GDP per capita. GDPC is the carbon emissions
intensity. INST is the industrial structure. The data of the population size, 0—14-year-old children’s
ratio, gender ratio, GDP per capita, carbon intensity and industrial structure were all derived from
the Statistical Yearbook of China (2007-2016) [39], and some transformations and calculations have
been made.

3.2.2. Variable Description

1.

Population sizes (PSIZE). This paper used the number of households to represent the population
size factor. Related research indicates that as the household numbers increase, two factors change
in residents” consumption: one is the increase in the basic unit of consumption, which inevitably
leads to the expansion of the consumption scale and an increase in households’ total carbon
emissions. The second factor is that as the number of households increases, the households shrink
and consumption of some common consumer goods increases, which can also lead to an increase
in the total carbon emissions of household consumption. Therefore, in theory, the increase in
household numbers leads to an increase in the total carbon emissions of household consumption.
Zero-to-fourteen-year-old children’s ratio (CHI). In this paper, the proportion of the 0-14-year-old
children of the total population is represented by CHI. This indicator is a factor that reflects
the demographic structure. These children are not part of the working age population, their
consumption type and consumption psychology have particularity, and their proportion changes
inevitably lead to changes in residents’” consumption. The introduction of this variable is of
practical significance because of the widespread implementation of the fetus policy.

Gender ratio (SEX). The gender ratio in this article is calculated by the female population = 100.
A higher gender ratio indicates a larger male population. Males and females have different
consumption propensities, and a change in the gender ratio leads to changes in the total carbon
emissions of household consumption. Considering the reality of the gender imbalance in China,
it is also of practical significance to introduce this variable.

Per capita income level (RGDP). This paper used GDP per capita to express RGDP. Based on the
2006-year base period, the GDP per capita was reduced by the gross domestic product index,
excluding the effect of the price factor on GDP per capita. If people’s per capita income level is
different, then they have different requirements for environmental and material consumption,
which leads to differences in the total carbon emissions of household consumption. This paper
presents the index as a wealth factor in the STIRPAT model.

Carbon emissions intensity (GDPC). Carbon intensity refers to the amount of carbon emitted by
the one million GDP, or “carbon emissions per unit of GDP”. This index can be used as a technical
factor in the STIRPAT model. If this indicator is low, it will inhibit the total carbon emissions of
household consumption.

Industrial structure (INST). In this paper, the proportion of the second industrial added value
to the GDP was used to express the INST. Production determines consumption; differences in
industrial structures lead to different consumption structures, and differences in consumption
structures affect the total household carbon emissions. Therefore, in addition to the above
variables, which are used to embody the three factors of population, wealth and technology
in the model, this paper introduces the industrial structure, which can reflect changes in the
production structure.

The independent variables mentioned above are presents in Table 5 in original units.
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The method model and research concept of this paper are presented in Figure 1.

{ Theory framework I

Calculation of the household consumption
carbon emissions from 2006 to 2015

Step one:Use the carbon emission coefficient method to
caleulate energy carbon emissions of household
consumption:

The first | f»-{l’ﬁ

Stage | Step two:Use the CLA method to calculate products
carbon emissions of houschold consumption:

Gy -Z’fgg JxL
Step three:Add the previous two values together,we

obtain the total carbon emissions of household
consumption:

G, =Cy+C,

Analysis of the factors affecting the household
consumption total carbon emissions
Step one:Take the logarithm of the STIRPAT model:

Inl=lng+HaP+cind+dtal -Ins

The second | Step two:Put the six influence factors into the STIRPAT
stage model

|C, = 8+ A PUIE, + 8,10 CH, + f,InSEY, + §,1nRGDF, + AInGDEC, + f,InINST, +a, + g,

Step three:Use the HAUSMAN test to selecting model.

Step four:Use the stata 12.0 to estimating model
paraments.

The formation of
overall research

Figure 1. Method flowchart.

4. Results and Analysis
4.1. Calculation and Analysis of the Total Carbon Emissions of China’s Household Consumption

4.1.1. Analysis of The Scale and Composition of the Total Carbon Emissions of China’s
Household Consumption

According to Equation (2), we can estimate the energy carbon emissions of China’s household
consumption from 2006 to 2015, and according to Equation (5), we can estimate the products’ carbon
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emissions of China’s household consumption from 2006 to 2015; the total carbon emissions of China’s
households can be obtained by adding the two together. The changes in the size and composition of
the total carbon emissions of China’s households from 2006 to 2015 are presented in Figure 2.

According to the general trend of change, the energy carbon emissions of China’s household
consumption, products carbon emissions of China’s household consumption and total carbon
emissions of China’s household consumption from 2006 to 2015 are increasing. In 2006, the energy
carbon emissions from China’s households were 190.74 million tons; in 2010, the energy carbon
emissions reached 258.72 million tons, which reflected an average annual growth rate of 7.92%. In 2015,
the energy carbon emissions of China’s household consumption grew to 333.44 million tons, with an
average annual growth rate of 5.21% from 2010 to 2015.

Energy carbon emissions

300000 -
2% b= Eneray carbon emissions Products carbon emissions
- Taltzl carbon emissions
3™ ol
515 B
8 =, 200000
Z 10 £
= £
S 150000
= 3 =
§ E
U L T T T = 100000
AT T T TPt Ty gt T B £
FH$ SIS S £
el g I’ v 3 50000
o
2006 2007 2008 2005 2010 2011 2012 2013 2014 2015
) Energy Products Total
Products carbon emissions carbon carbon carbon
emissions emissions emissions
Average
annual - o 2 a7
7.92 14 67 13. 27
growth rate
of 06-10(%)
N+ Average
i : annual = -
o A @ AD ) D AR 5.21 15.12 13. 56
F P FF I growth rate
of 10-15{%)

Figure 2. The scale and structural change of the total carbon emissions of China’s household
consumption from 2006 to 2015.

In 2006, the products carbon emissions from China’s households were 670.68 million tons; by
2010, the emissions had increased to 1159.52 million tons, an average annual growth rate of 14.67%.
By 2015, the products carbon emissions of China’s household consumption had increased further
to 2344.90 million tons; the annual average growth rate from 2010 to 2015 was 15.12%. In 2006, the
total carbon emissions from China’s households were 861.41 million tons, reaching 1418.24 million
tons in 2010, with an average annual growth rate of 13.27%. In 2015, the total carbon emissions of
China’s household consumption grew to 2678.35 million tons, with an average annual growth rate
of 13.56% from 2010 to 2015. Thus, the rate of the products carbon emissions of China’s household
consumption grew faster than that of the energy carbon emissions of China’s household consumption.
In the future, the products carbon emissions of China’s household consumption will increase further,
which is the primary force stimulating the total carbon emissions from China’s households. In terms of
structural changes, the products carbon emissions of China’s household consumption have accounted
for more than 70% of the total carbon emissions from China’s households from 2006 to 2015. In 2006,
it was 77.86% and grew to 87.55% by 2015. The proportion of energy carbon emissions of China’s
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household consumption has hovered at approximately 20%, and there has been a downward trend
in recent years. With the rapid development of China’s economy and the improvement of living
standards, the people’s desire to consume is strengthened. Thus, the products carbon emissions of
China’s household consumption and total carbon emissions of China’s household consumption are
bound to demonstrate rapid growth. Simultaneously, progress in science and technology and the
promotion of clean energy, such as wind and water, have slowed the growth of the energy carbon
emissions of China’s household consumption.

4.1.2. Analysis of the Regional Characteristics of Total Carbon Emissions from China’s
Household Consumption

Because of the vastness of the Chinese territory, the region’s economic development status,
living habits, population distribution and geographical locations have extremely large differences.
Thus, China’s regional residents’ consumption and consumption structure differ greatly, leading
to regional differences in total carbon emissions from China’s household consumption. Figure 3
presents the spatial distribution of total carbon emissions from China’s household consumption in
2015. Figure 3 indicates clear regional differences in total carbon emissions from China’s household
consumption. There are ten provinces with a total carbon footprint of more than 1 billion tons, whereas
households in the lower provinces consume approximately 10 million tons of total carbon emissions.
Rounding out the top five are Guangdong (274.92 million tons), Jiangsu (196.05 million tons), Shandong
(176.82 million tons), Zhejiang (167.89 million tons) and Henan (136.93 million tons). The common
characteristics of these provinces are their vast areas and large populations. Although Beijing and
Shanghai do not have the advantages of area and population, they do have developed economies and
population flow; their household consumption total carbon emissions reached 99.87 million tons and
111.59 million tons, which were located in the forefront of 30 provinces. The bottom five were Qinghai
(9.98 million tons), Ningxia (10.98 million tons), Hainan (14.29 million tons), Gansu (35.22 million tons)
and Xinjiang (42.19 million tons); the majority of these provinces are located in the midwest, in which
there is less population and economic development is relatively backward.

Because products” carbon emissions accounted for approximately 80% of the total carbon
emissions from China’s household consumption, they are a major component of China’s household
consumption carbon emissions. The geographical distribution of products carbon emissions is identical
to that of the total carbon emissions from China’s households. The same provinces are at the top and
bottom of the list of China’s household consumption products carbon emissions and China’s household
consumption total carbon emissions. The geographical distribution of the energy carbon emissions
of China’s households is quite different from that of the former two. The regional distribution of the
energy carbon emissions of China’s households indicates a significant difference between the north
and south, and the energy carbon emissions of households in northern areas are higher than those
in the south, which indicates that the total carbon emissions of China’s households and the products
carbon emissions of China’s households are greatly influenced by the economic development level
and population factors, whereas the regional distribution of the energy carbon emissions of China’s
households is relatively more vulnerable to the geographical location. Heating in the north consumes
more fossil energy in winter, leading to more energy carbon emissions from households in the north
than in the south as a whole. Liaoning Province, a typical area, ranked thirteenth in the products
carbon emissions of households (81.15 million tons) and fourth in the energy carbon emissions of
household consumption (17.82 million tons).
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Figure 3. The spatial distribution of the total carbon emissions of China’s household consumption
in 2015.

4.1.3. Analysis of the Sources of Energy Carbon Emissions from China’s Household Consumption

The energy carbon emissions of household consumption refer to the carbon emissions produced
by residents’ consumption of energy products in their daily lives. The energy products here refer to
coal, petroleum, natural gas, electricity and heat. Because different energy products have different
levels of cleanliness, different energy consumption combinations affect carbon emissions.

Figure 4 is the contribution of five energy sources to the energy carbon emissions of China’s
household consumption. As seen in Figure 4, from 2006 to 2015, the carbon emissions generated by
the electricity supply were the primary source of the energy carbon emissions of China’s household
consumption; the proportion of the change was not small, between 40% and 50%. The second-highest
contribution to the energy carbon emissions of China’s household consumption was carbon emissions
from coal consumption; however, the proportion was in a downward trend from 2006 to 2015 and was
reduced to 15.73% by 2015. Carbon emissions from coal consumption are already lower than those
generated by petroleum and heat consumption. Of the three primary sources of energy, coal has the
highest carbon emission coefficient. The reduction of coal consumption is due to the optimization of
the energy consumption structure, which has a certain inhibitory effect on the energy carbon emissions
of China’s household consumption. The total carbon emissions generated by these three types of
energy, petroleum, natural gas and heat, account for approximately 30% of the energy carbon emissions
of China’s household consumption. Although the proportion is not large, it is increasing. In general,
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the carbon emissions generated by residents’ consumption of various energy sources continue to grow,
and the pressure on the environment cannot be ignored.

Primary energy

o)

Propartion®

petrodeun Natural gas W Electricity

aattllbLLd
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Secondary energy

Figure 4. The contribution of five energy sources to the energy carbon emissions of China’s
household consumption.

4.1.4. Analysis of the Sources of Products Carbon Emissions from China’s Household Consumption

The products carbon emissions of household consumption refer to the carbon emissions generated
by the consumption of non-energy products in daily life. The products carbon emissions of household
consumption come from household consumption of food, clothing, residences, household appliances
and supplies, transportation and communications, culture and entertainment, health care and other
types of consumer goods.

In this paper, the products carbon emissions of eight types of consumer goods were divided
into a high carbon group and a low carbon group. The high carbon group included residences,
food, transportation and communications. The low carbon group included clothing, culture and
entertainment, health care, household appliances and supplies. Figure 5 presents the change in
products carbon emissions of eight consumer goods and indicates clear differences in products carbon
emissions from different client categories. The largest average amount of carbon emissions comes from
the residence category, and its annual products carbon emissions is 448,060 tons, which is increasing
yearly. In 2006, the products carbon emissions of residences was 1904.3 million tons, which increased
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to 1034.56 million tons in 2015, with an average annual growth rate of 20.69%. The residence rate
was followed by food (316.49 million tons) and transportation and communications (19,849 million
tons). Products carbon emissions from the first three high carbon sequestrations accounted for 71.78%
of the products carbon emissions of all eight types of consumer goods. Products carbon emissions
from other and household appliances and supplies were low, accounting for only 4.21 percent of the
total products carbon emissions of household consumption. Clearly, the products carbon emissions
of China’s household consumption are characterized by a high concentration in the consumption
category. In general, the products carbon emissions of eight consumer products are increasing yearly,
which places increasingly more pressure on the environment.
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Figure 5. The change in products carbon emissions of eight consumer goods.

Summary: The total carbon emissions of China’s household consumption increased during
the study period, and the regional differences are clear. The consumption mix of different
energy and non-energy products significantly affected the total carbon emissions of China’s
household consumption.

4.2. Analyses of the Factors Influencing the Total Carbon Emissions of China’s Household Consumption

4.2.1. Parameter Estimation Results of Panel Data Model

Based on panel data of 30 provinces in China from 2006 to 2015, this paper used the developed
STIRPAT model to analyse the factors influencing the total carbon emissions of China’s household
consumption using Statal2.0 software.

In order to determine whether the impact of GDP per capita on China’s consumption of total
carbon emissions was consistent with the Kuznets hypothesis, the square of GDP per capita was
introduced as an explanatory variable in model (1) [25]. If the coefficient of the square of GDP per
capita was negative and the t-test under a given condition was adopted, it indicates that the impact
of GDP per capita on the total carbon emission of Chinese residents was consistent with the Kuznets
hypothesis. The Hausman test results of model (1) and model (2) were shown in Table 6, and both
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model (1) and model (2) chose fixed effect model. The estimation results of the fixed effect model were
presented in Table 7. In the model (1), the coefficient of the square of GDP per capita did not pass the
t-test, which showed that the impact of GDP per capita on the consumption of carbon emissions by
Chinese residents did not conform to the Kuznets hypothesis. Further, the square of GDP per capita
was removed from the model (1) to obtain the model (2). From the estimation results of model (2),
regression models adjusted R? is close to 1, and the overall significance test of the model of the F test
indicated that the p value was less than 0.05; thus, the overall model fitting effect was good. All of the
coefficients of the explanatory variables passed the t test under the given condition, and the fitting
effect of each coefficient was good.

Table 6. Hausman Test.

Inspection Chi square Statistic p Value
Model (1) 93.69 0.0000
Model (2) 79.99 0.0000

Table 7. Estimated results of fixed effect model.

Statistics Model (1) Model (2)
InPSIZE 0.7735 *** (8.46) 0.7903 *** (9.05)
InCHI 0.5572 *** (6.28) 0.5729 *** (6.74)
InSEX 0.3097 * (1.66) 0.3282 * (1.79)
InRGDP 1.1009 *** (27.75) 1.1215 *** (50.48)
(InRGDP)? 0.0132 (0.63)
InGDPC 0.0839 *** (4.08) 0.08389 *** (4.09)
InINST —0.5685 *** (—8.09) —0.5831 *** (—8.81)
Bo (constant) 9.6374 *** (9.00) 9.4422 *** (9.22)
Individual effects yes yes
Time effect no no
N 300 300
Adjusted R? 0.9649 0.9649
F 1033.5500 1208.6400
P 0.0000 0.0000

Note: *** and * indicate that the statistical quantity is significant at the significance level of 1% and 10%, respectively.

4.2.2. Analysis of Influencing Factors

1.

The influence coefficient of the number of households is 0.7903, which indicates that the increase in
the number of households will lead to an increase in total carbon emissions of China’s household
consumption. First, the increase in the number of households indicates the increase in the number
of basic units of consumption, which will lead to the expansion of the consumption scale and
hence to an increase in total household carbon emissions. Second, the increase in the number of
households represents, to a certain extent, shrinking family units and some increase in the public
consumption of consumer goods, which will lead to an increase in the total carbon emissions
from China’s households.

The influence factor of the age structure factor of the 0-14-year-old children’s ratio was 0.5729.
Considering other invariable factors, each additional unit will lead to a 0.5729 increase in total
carbon emissions from China’s households, with a significant effect on the total carbon emissions
of China’s household consumption. This is because education expenditure accounts for about
7% [6] of household consumption expenditure, which has a great impact on family consumption
tendency. The effect of increasing the ratio of total carbon emissions from household consumption
is more complicated [42]: in the short term, education expenses will stimulate the growth of
household consumption and thus lead to an increase in the total carbon emissions from household
consumption. In the long run, the increase in the number of children will increase social and
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economic burdens, such as parents meeting their children’s consumption needs, which may
inhibit the fulfilment of the parents” own needs. At the national level, society as a whole must
devote more human, physical and financial resources to protecting and raising children and
adolescents, which will certainly reduce investment in other areas. Thus, the increase in the
number of children in the long term will inhibit economic growth, thereby indirectly reducing
total carbon emissions from households. At present, the role of Chinese children in the total
carbon emissions from household consumption is primarily reflected in the short-term effects
(the influence coefficient is positive); thus, with the implementation of the fetus policy, the total
carbon emissions of China’s household consumption will be further increased.

3. The influence coefficient of the gender ratio was 0.3282, indicating that with other factors
unchanged, the total carbon emissions of China’s household consumption will increase by
0.3282 units per unit of increase in the gender ratio. Compared with the age factor, the gender
ratio has a weaker effect on the carbon emissions from China’s household consumption. People
of different genders have different needs for consumer goods, which leads to the difference
of consumption carbon emissions. According to a previous article, of the eight consumer
products of residents, the high-carbon group includes residences, food and transportation and
communications, accounting for 71.78% of the products carbon emissions of China’s household
consumption. Among these three types of consumer goods, the consumption of residences is
mostly family public consumption, and the gender difference does not have much influence in
this area. In terms of food consumption, for physiological reasons, men consume more food than
women and are more likely to consume meat, leading to higher products carbon emissions from
food consumption than women. In the area of transportation and communications, the majority
of people who buy private cars are male, which leads men to consume more than women in this
area. Products carbon emissions from men’s consumption in transportation and communications
are higher than women’s. With the implementation of the fetus policy, the imbalance of the
gender ratio will improve; in the long run, the development trend of China’s gender ratio is
conducive to reducing the total carbon emissions of household consumption.

4. The absolute value of the effect coefficient of the per capita GDP is the largest (1.1215) and has
the most significant effect on the total carbon emissions of China’s household consumption. First,
the per capita GDP is higher, indicating that the living standards of the residents in the region are
higher and that they are more inclined to high-energy consumption and high-carbon emission
products. Second, GDP per capita reflects the overall level of economic development in the
region. Higher levels of economic development lead to greater production and consumption
demands supported by the entire region’s economic development and the inevitable increase in
total carbon emissions from household consumption.

5. The influence coefficient of the technical factor of the carbon emission intensity is 0.0839, which
trends in the same direction as the total carbon emissions of China’s household consumption.
Therefore, the improvement of technology can promote the improvement of energy use efficiency,
thereby inhibiting the total carbon emissions of household consumption, which is an effective
manner in which to reduce the total carbon emissions of household consumption.

6.  The influence coefficient of the industrial structure on the total carbon emissions of household
consumption is -0.6236. In recent years, with the development of China’s economy and the
upgrading of the industrial structure, tertiary industry has developed rapidly. The improvement
in people’s living standards has caused people to no longer be satisfied with the basic necessities of
food and clothing and has increased the consumption demand for entertainment and enjoyment,
which are mostly in tertiary industries. Therefore, the development trend of China’s industrial
structure and the total carbon emissions of China’s household consumption are moving in the
reverse direction.

Summary: The number of households, 0-14-year-old children’s ratio, gender ratio, GDP per
capita and carbon emissions intensity are moving in the same direction as the total carbon emissions of
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China’s household consumption. The industrial structure and carbon emissions of China’s household
consumption are moving in the opposite direction.

5. Discussion

5.1. Comparisons between this Paper and Previous Studies

This paper measures the total carbon emissions from household consumption in 30 provinces
in China from 2006 to 2015 and analyses their influencing factors based on the STIRPAT model.
The research results of this paper have similarities with and differences from previous studies.

With regard to the scale and composition of total carbon emissions of China’s household
consumption, this paper and the studies of Peng [11], Wu [12], Wei [17], and Tang [26] observed
that the total carbon emissions of China’s household consumption increased during the study period.
Products carbon emissions from households are the primary component of the total carbon emissions
from households. This is because as the standard of living of Chinese residents increases, people’s
consumption increases and they tend to consume products that produce more carbon emissions in
the production process; therefore, the total carbon emissions of household consumption is increasing.
However, this article observed that carbon emissions from residents’ consumption of electricity are
the focal components of energy carbon emissions from China’s households. In products carbon
emissions of China’s household consumption, products carbon emissions from residents’ consumption
of transportation and communications occupy three of the eight categories of consumer goods.
Products carbon emissions from residents’ consumption of culture and entertainment are ranked
fifth. The research results of Wei et al. [17] indicated that the energy carbon emissions of China’s
household consumption were primarily from residents’ consumption of coal. In products carbon
emissions of China’s household consumption, the residents” products carbon emissions from culture
and entertainment consumption were higher than the residents” products carbon emissions from
transportation and communications consumption. This is because the research period of Wei et al. [17]
was from 1999 to 2002, and the research period of this paper was from 2006 to 2015. As time passed,
residents’” consumption of energy products diversified; residents tended to consume more clean
energy and consume less coal. In recent years, traffic communication products have rapidly been
popularized, and private cars and mobile phones have caused residents’ consumption of transportation
and communications to increase significantly.

The analysis of the factors influencing the total carbon emissions of China’s household
consumption, consistent with Du [21], Fu [25], and Ji [27] et al., determined that the population
size, per capita GDP and carbon emission intensity have a driving effect on China’s household
consumption total carbon emissions. However, this paper argues that the effect of the per capita GDP
on China’s household consumption total carbon emissions has exceeded the population size factor,
which differs from previous research. The effects of economic development on total carbon emissions
from household consumption extends beyond the demographic factor: this gap will widen further
in the future, and the effect of economic factors on the total carbon emissions of China’s household
consumption will be increasingly more significant.

5.2. Significance of This Study in Other Countries and the Limitations of This Study

The methods and the conclusions of this paper not only apply to China but also to other countries.
In recent years, the birth rate in developing countries has remained high. Residents” consumption
presents a new and changing characteristic, which will lead to further aggravation of carbon emissions
from household consumption. Richard et al. [28] found that the increase in total population was the
main factor that led to the increase of energy consumption in EU countries. This is consistent with
the conclusion of this paper, which shows that the impact of total population on energy consumption
and carbon emissions is the same in different countries. Yeh et al. [43] found that the increase in
population and the proportion of the working-age population will lead to an increase in energy
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consumption in Taiwan. This is consistent with the findings of this study, which show that changes
in population and population structure have significant effects on energy consumption and carbon
emissions. Because of the diminishing efficiency of industrial emissions reduction, it is obviously more
effective and reasonable to reduce carbon emissions from the consumer side. To measure the products
carbon emissions of China’s household consumption in consecutive years, this paper adopted the
Consumer Lifestyle Approach (CLA), which measures the products carbon emissions from terminal
consumption. Because there is no combination of an input-output table and a lack of dependence on
industry, products carbon emissions from household consumption may be underestimated.

6. Conclusions and Suggestions

6.1. Conclusions

In this paper, the carbon emissions coefficient method and Consumer Lifestyle Approach (CLA)
were used to measure the total carbon emissions of China’s household consumption from 2006 to
2015. This paper analyzed the spatio-temporal characteristics of total carbon emissions from China’s
households and the sources of total carbon emissions from China’s households. On this basis, using
the STIRPAT model as the theoretical basis, this paper expanded the model by introducing factors
such as the number of households, 0-14-year-old children’s ratio, gender ratio, per capita GDP, carbon
emissions intensity and industrial structure; constructed the panel data model of the total carbon
emissions of China’s household consumption; and analyzed the effects of six factors on the total carbon
emissions of China’s household consumption. Main conclusions of this paper are shown in Table 8.
The research of this paper resulted in the following conclusions:

First, in terms of the scale and structural changes of total carbon emissions from China’s
households, energy and products carbon emissions and total carbon emissions from China’s
households have been increasing in recent decades. Products carbon emissions from China’s
households are the primary source and primary driving force of the total carbon emissions of China’s
household consumption. With the further development of the economy, the total carbon emissions of
China’s household consumption will continue to increase over a long period of time.

Second, in terms of the spatial distribution of the total carbon emissions from China’s households,
the results indicated that the high-carbon platoon is primarily distributed in the east and the middle
region and that the carbon emissions level is low in the western region, which is primarily influenced
by regional economic development levels. The regional distribution of energy carbon emissions from
China’s households is also affected by geographical factors, such as the geographical location; its
regional distribution demonstrates clear north-south differences, and the energy carbon emissions
from households is higher in the north than in the south.

Third, with regard to the source of total carbon emissions from China’s households, the proportion
of carbon emissions generated by electricity and coal consumption in energy carbon emissions from
China’s household consumption is greater, representing 47% and 22% of energy carbon emissions from
China’s household consumption in the past decade, respectively. For products carbon emissions of
China’s household consumption, residences, food, and transportation and communications belong
to the high carbon emissions group. Products carbon emissions of these three types of high-carbon
emission products account for more than 70% of the total products carbon emissions.

Finally, with regard to the effects of the variables on the total carbon emissions from China’s
households, the number of households, 0-14-year-old children’s ratio, gender ratio, GDP per capita
and carbon emissions intensity were positively correlated with the total carbon emissions of China’s
household consumption. The industrial structure was negatively correlated with the total carbon
emissions of China’s household consumption.
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6.2. Suggestions

According to the study, consumption carbon emission of Chinese residents was still on the rise,
and the regional distribution was obviously different. Demographic, economic and technological
factors had significant impacts on Chinese residents’ consumption of carbon emissions. Therefore, in
terms of policy design, the first step should be to formulate targeted policies to guide and encourage
residents to adopt low-carbon consumption patterns, and secondly, to improve energy use efficiency
and reduce carbon intensity by promoting technological innovation.

In response to a series of emission reduction policies and plans currently formulated by the
Chinese government, combined with the existing research, this article specifically put forward the
following recommendations:

(1) Many of China’s current administrative policies have helped curb the increase in consumer
carbon emissions, but further improvements are needed. The carbon intensity regulation policy
can promote the production sector to optimize the energy supply structure, and increase the
supply of the energy with lower carbon emission factor. So the policy plays a guiding role in the
consumption of residents. Such a policy would also increase the price of energy products with
higher carbon emissions, leading residents to voluntarily choose clean energy. But at present,
China mainly promotes the implementation of carbon intensity control by administrative means,
lack of legislative support. Therefore the government should strengthen the formulation of
supporting legal system in the future; low-carbon labeling policies can help consumers identify
low-carbon products, but such policies need to be complemented by promotional and price
incentives. Therefore, the government should increase the low carbon propaganda, expand
low-carbon propaganda channels. Advocacy through the popular mobile phone app is a good
choice. The Government should also increase the subsidy for the residents to buy low energy
products; Step electricity price policy can promote the residents to form a low-carbon lifestyle,
and can be extended to the heating aspect; China’s two-child policy and the prohibition of illegal
gender identification policy in the long run are conducive to curb the increase in consumer carbon
emissions. So these policies should be continued to be implemented, and supplemented by
public propaganda.

(2) The policies of energy saving and emission reduction based on market regulation mainly includes
establishing carbon trading market and levying carbon tax. China has set up a nationwide carbon
trading market, but has not yet implemented a carbon tax policy. As with carbon intensity
regulation, carbon trading markets also indirectly regulate consumer carbon emissions through
the production sector. The establishment of a carbon trading market can promote the optimal
distribution of carbon emission rights, which will undoubtedly reduce the cost of China’s emission
reduction. But China’s carbon trading market has been established late, a series of regulatory and
regulatory policies are not yet standardized, the Chinese government needs improve it based on
the actual situation and draw on the experience of developed countries; Carbon tax policy is also
an effective way to promote the early completion of carbon peak in China, but the levy of the
carbon tax needs to consider the issue of fairness and public acceptance. It is a good choice to
carry out a progressive tax rate and return the carbon tax to companies and residents.
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Abstract: CO, emissions caused by household consumption have become one of the main sources
of greenhouse gas emissions. Studying household CO, emissions (HCEs) is of great significance to
energy conservation and emissions reduction. In this study, we quantitatively analyzed the direct and
indirect CO; emissions by urban and rural households in Beijing, Tianjin, Shanghai, and Chonggqing.
The results show that urban total HCEs are larger than rural total HCEs for the four megacities.
Urban total per capita household CO, emissions (PHCEs) are larger than rural total PHCEs in Beijing,
Tianjin, and Chonggqing, while rural total PHCEs in Shanghai are larger than urban total PHCEs.
Electricity and hot water production and supply was the largest contributor of indirect HCEs for both
rural and urban households. Beijing, Tianjin, Shanghai, and Chongging outsourced a large amount of
indirect CO, emissions to their neighboring provinces.

Keywords: household CO, emissions (HCEs); per capita household CO, emissions (PHCEs);
input-output model

1. Introduction

CO; is increasing rapidly due to human activities. Cities are related to about 70-80% of the global
carbon emissions: as the main locus of human economic activities and energy consumption, cities
play an important role in implementing carbon reduction policies [1-3]. Inhabitants of cities are a
key driving force of greenhouse gas (GHG) emissions due to global urbanization development [4].
Biesiot and Noorman [5] proposed that “most of the environmental load in an economy can be
allocated to households”. The consumption of goods and services in households plays a key role for
energy use and CO, emissions, especially for developing countries [6]. The activities of consumers
(i.e., personal transportation, personal services, and homes) accounts for 45-55% of total energy
consumption [7]. Among the key determinants of household energy requirements are socio-economic,
demographic, geographic and residential factors [8,9]. Therefore, the consumption patterns of
households differ widely within countries, because household characteristics vary (e.g., personal
income, household size and related age, the level of education). These factors usually indicate
variance in rural and urban areas, meaning that the trajectory of energy consumption in these areas
is different [10]. As such, it is significant to study urban and rural energy consumption and CO,
emissions at a city scale.
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China has promised to achieve peak CO, emissions around 2030 and to make their best efforts to
achieve this goal earlier (National Development & Reform Commission of China, 2015). Given that
China’s regions have different resource endowments, energy structures, and economic development
levels, China has delegated emissions reduction targets to the lower administrative units [11,12].
Tackling global climate change needs to be integrated into city management [13]. Beijing, Tianjin,
Shanghai, and Chongging, as the four municipalities of China, are the economic leaders for other
provinces and cities. Thus, these four metropolitan areas” household CO, emissions (HCEs) and
per capita household CO; emissions (PHCEs) need to be studied as examples for other provinces to
make policies about energy conservation and emission reduction. On the other hand, the existing
research on HCEs at a micro level are mostly based on survey data [14], which provides useful
and detailed information for community and households. However, the indirect CO, emissions
caused by consuming goods and services have not been considered. Park and Heo [15] quantified
the direct and indirect energy use of Korean households from 1980 to 2000 and found that the share
of indirect household energy consumption accounts for above 60% of the total energy consumption.
Markaki et al. [16] found that indirect emissions of Greek households accounted for more than 70%
of the total carbon footprint. Therefore, it is essential to evaluate the indirect CO, emissions when
making policies for household emission reduction. In addition, due to the characteristics of survey
data, the results have great uncertainties. It may be difficult for city planners and policy-makers to
establish and implement united environmental practices. In light of the above, we adopted the data
from the National Bureau of Statistics and an input—output table in this study to estimate direct and
indirect CO, emissions of urban and rural households in Beijing, Tianjin, Shanghai, and Chongqing.

Household energy consumption is a subject that has attracted considerable scholarly
interest. Frequently, studies of household energy consumption, household carbon/CO, emissions,
and household carbon footprints have been springing up. Some scholars made cross-national
comparative studies. For example, Reinders et al. [17] investigated both the direct and indirect energy
use of households in 11 EU member countries. Sommer and Kratena [18], and Ivanova et al. [19]
calculated the household carbon footprint in the EU27. Lenzen et al. [20] comparatively analyzed
the energy requirements of the household sector in Australia, Brazil, Denmark, India, and Japan.
Maraseni et al. [21] compared the household carbon emissions between China, Canada, and the UK.
Kerkhof et al. [6] examined the household CO; emissions of Netherlands, UK, Sweden, and Norway.
Brizga et al. [22] estimated the household CO, emissions for the three Baltic States (Estonia, Latvia,
and Lithuania). Their results show that per capita household CO, emissions (PHCEs) in developing
countries were much lower than developed countries, while the indirect energy consumption in the
sectors of housing, food, beverages, and tobacco, and recreation and culture, and hotel, cafes and
restaurants vary significantly per country.

Some research based on a national scale has also been widely studied [23-32]. For instance,
Baiocchi et al. [33] pointed out that private households accounted for 75% of the total UK CO,
emissions, whereas China’s household energy consumption was about 25% of the total final energy
consumption [34]. With the economic development and improvement of peoples’ living standards,
the share of household CO, emissions is supposed to increase; for example, carbon footprint per
household in Norwegian increased by 26% between 1999 and 2012 [35].

There are some household CO; emissions studies at the micro scale, such as Sydney, Australia [36],
Melbourne, Australia [1], Xiamen, China [37], Tianjin, China [38], and Noakhali, Bangladesh [10].
In China, due to the regional differences between economic structure, resource endowment, industry
structure, consumption structures and patterns, urban household CO, emissions in eastern regions
were much larger, while the provinces in undeveloped western regions had the smallest carbon
footprint [39,40].

The analysis of social structures and their evolution trends could inform the government planners
and households [41]. In order to find out the impacts of socio-economic factors on household CO,
emissions, many variables, such as population, affluence, energy intensity, the urbanization level,
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employment rate, and the share of the tertiary industry, are considered. A large amount of research
has shown that household energy requirements, carbon emissions and carbon footprint are closely
related to income [42], level of education [43], age [36], gender [38], occupation [14], household
size [44], urbanization [45], car ownership [43], urban density [46,47], consumption patterns [48,49],
and imports [50]. Different methods, such as index decomposition analysis (IDA) [51], logarithmic
mean Divisia index (LMDI) [52], and Stochastic Impacts by Regression on Population, Affluence,
and Technology (STIRPAT)model [53,54] were adopted. More discussions can be seen in the review by
Zhang et al. [2]. However, the similarities and differences of the direct and indirect HCEs between the
urban and rural households are the focus in this study.

2. Materials and Methods

2.1. Household CO, Emissions

Household CO, emissions include both direct and indirect components of energy consumption.
Direct energy consumption refers to the end use of energy, such as for lighting and space heating.
Indirect energy, also referred to as “embodied energy,” is the amount of energy use throughout the
production of goods and services used by households [55,56]. The framework of household CO,
emissions accounting is shown in Figure 1.

Direct energy consumptions Input-Output Table

Direct CO2 emissions Indirect CO2 emissions

|
|

|

I Fe 3
1
| - .

Dircet CO2 emissions per capita Indirect CO2 emissions per capita

Sector 1 Sector2 s -

Figure 1. The framework of household CO, emissions accounting.

2.1.1. Direct CO, Emissions

For direct energy consumption in Beijing’s households, we mainly consider coal, oil, natural
gas, electricity, and heat. In order to calculate CO, emissions for a given energy type, we multiplied
its use by a carbon emission coefficient and then added up the results. Expressed mathematically,
the procedure is as follows:

DC =) EC;eCoef; 1)
i
where DC represents the direct CO, emissions and EC; denotes direct energy consumption of each

energy variety i. Coef; is the CO, coefficient for each energy variety i. According to Equation (1), we
can calculate the direct CO, emissions of urban and rural households, respectively.
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2.1.2. Indirect CO, Emissions

Based on the input-output model, a region’s indirect CO, emissions can be obtained by
IndC = InCoefe(I — A) oY ©)

where [ndC denotes the indirect CO, emissions, InCoef is the CO; coefficient of each sector, I is the
identity matrix, A is the intermediate consumption coefficients, and Y is the household final demand.

2.1.3. Total CO, Emissions

Total CO, emissions are obtained by summing the direct CO, emissions and the indirect CO,
emissions, as shown in Equation (3). TC represents the total CO, emissions for urban or rural
households. We calculated both urban and rural households” CO; emissions in this study.

TC = DC + IndC 3)

2.1.4. Total CO, Emissions Per Capita

Total CO, emissions per capita are obtained by total CO, emissions divided by the population:
PC=TC/P )
where PC and P denote the PHCEs and population, respectively.

2.2. Data

In this paper, energy consumption data are obtained from the China Energy Statistical
Yearbook [57] compiled by the Department of Energy Statistics, National Bureau of Statistics
(2008-2016). Direct CO; coefficients are obtained from the IPCC report as shown in Table 1. Heat value
is adjusted according to principles for calculation of total production energy consumption in 2008 in
China. The China Multi-Regional Input-Output Table 2007 [58] and 2012 [59] are used to calculate
indirect CO, emissions, including 30 sectors. The indirect CO, emissions of each province at a sectoral
level are obtained from China Emission Account and Datasets (CEADs, http://www.ceads.net/).
Population data are from the Beijing Statistical Yearbook (2016) [60], Tianjin Statistical Yearbook
(2016) [61], Shanghai Statistical Yearbook (2016) [62], and Chongqing Statistical Yearbook (2016) [63],
as shown in Table 2. Due to the lack of data regarding Shanghai’s urban and rural population, its
rural population is represented by agricultural population and urban population is obtained by total
population minus its agricultural population. Although Beijing and Shanghai municipal governments
have adopted the strictest household registration system to control their population, the population
still increased to a large extent. For example, Beijing’s urban population increased by 32.6% from 2007
to 2012, while rural population increased by 12.8%.

Table 1. Direct CO, emissions coefficients.

Fuel Unit Heat Value Carbon Content Oxidation Rata CO; Emission Factor Unit (Kg/G]J)
Coal GJ/t 2091 274 94% 94.44
Oil GJ/t 41.82 20.1 98% 72.73
Natural gas GJ/ 10* Nm? 38.93 153 99% 55.54
Heat - - - - 110
Electricity - - - - 873
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Table 2. Population data (10,000 person).

Urban Population Rural Population

Beijing Tianjin  Shanghai Chongqing Beijing Tianjin = Shanghai Chonggqing

2007 1416 851 1882 1361 260 264 182 1455
2008 1504 908 1966 1419 267 268 174 1420
2009 1581 958 2046 1475 279 270 165 1384
2010 1686 1034 2145 1530 276 266 157 1355
2011 1741 1090 2196 1606 278 264 152 1313
2012 1784 1152 2234 1678 286 261 146 1267
2013 1825 1207 2272 1733 290 265 143 1237
2014 1859 1248 2286 1783 293 269 139 1208
2015 1878 1278 2280 1838 293 269 136 1178
3. Results

3.1. Urban and Rural Direct HCEs

3.1.1. Direct HCEs

Direct household CO; emissions (HCEs) of Beijing, Tianjin, Shanghai, and Chongqing are shown
in Figure 2. Beijing’s total direct HCEs increased by approximately 60% from 49.1 Mt in 2007 to 78 Mt in
2015. Shanghai’s total direct HCEs increased by approximately 47.7% from 48.7 Mt in 2007 to 71.9 Mt in
2015. The total direct HCEs in Tianjin and Chongqing were smaller than that of Beijing and Shanghai;
for example, Tianjin’s total direct HCEs were around 59% of that of Beijing in 2015, and Chongqing’s
total direct HCEs were about 73% of that in Shanghai in 2015. However, total direct HCEs of Tianjin
and Chonggqing increased by 89.8% and 84.2% from 2007 to 2015, respectively.
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Figure 2. Direct household CO, emissions (HCEs).
Urban direct HCEs were much larger than rural direct HCEs for the four megacities; for instance,
Shanghai’s urban direct HCEs were more than 18 times larger than rural direct HCEs in 2015, which

accounted for about 95% of its total direct HCEs. Beijing’s rural and urban HCEs show different trends.
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These can be divided into two phases. The first phase is from 2007 to 2011. During this phase, both
rural and urban direct HCEs kept a similar increasing trend. However, they have showed different
trends since 2012. Urban direct HCEs increased sharply in 2012. After that, they kept increasing
steadily. On the contrary, rural direct HCEs declined significantly in 2012, then remained about the
same. Tianjin’s urban direct HCEs increased rapidly during 2007-2015 with an annual increase rate
of 9%, while the annual increase rate of rural direct HCEs were 7%, whereas Chongging’s urban and
rural direct HCEs kept the same annual increase rate, which was 8%.

3.1.2. Direct Energy Consumption Structure

Energy consumption structure for direct HCEs are shown in Figure 3. The energy consumption
structure of Beijing’s urban households remained stable from 2007 to 2015. By contrast, rural
households’ energy consumption structure had a large fluctuation during 2008-2011. Due to the
global financial crisis, coal prices rose sharply [64]. The coal consumption of rural households dropped
significantly. In 2011, the share of coal was only 20.6%. After the financial crisis, coal consumption rose
and stayed stable with a relatively lower coal price. Heat consumption in Tianjin’s urban households
accounted for 26-29% of their total direct energy consumption, which was much higher than Beijing.
It is unexpected to find that the oil consumption of Shanghai’s rural households accounted for about
one third of their total direct energy consumption. After the financial crisis, the share increased to
more than 60%. By contrast, the household energy consumption structure in Chongging was cleaner.

®=coal ®oil ®nmunalgas ®heat  * electricity mcoal  ®Woil = ostural gas = heat electricity
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Figure 3. Energy structure of direct HCEs.

3.1.3. Direct PHCEs

Direct PHCEs in Beijing, Tianjin, Shanghai, and Chongqing from 2007 to 2015 are shown in
Figure 4. It is interesting to find that the direct PHCEs of rural and urban households were getting
close in the last three years for the four cities. For example, direct PHCEs of Beijing’s rural households
were larger than that of urban households. In 2011, the former was 2.85 times larger than the latter.
Since 2012, PHCESs of urban and rural household were about 1 ton of CO, (tC) per person, which is the
smallest. PHCESs of urban and rural households in Tianjin and Shanghai were approximately three
times that of Beijing.
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Figure 4. Direct per capita HCEs (PHCE:).

3.2. Urban and Rural Indirect HCEs

3.2.1. Indirect HCEs and PHCEs

By adding urban and rural indirect HCEs, we can obtain the total indirect HCEs of each city.
Total indirect HCEs of Beijing, Tianjin, and Shanghai, respectively, decreased by 2.96%, 27.54%,
and 16.67% from 2007 to 2012, while Chongging’s total indirect HCEs increased by 32.36%. Urban and
rural indirect HCEs and PHCEs are shown in Figure 5. We can see that urban indirect HCEs were
much larger than that of rural households. For example, Beijing’s urban indirect HCEs were more than
13 times those of rural households in 2015. Chonggqing’s urban indirect HCEs were more than four
times that of rural households in 2015.

From the perspective of per capita, urban and rural indirect PHCEs of Beijing and Tianjin
decreased from 2007 to 2012, while urban and rural indirect PHCEs of Chongqing increased. Urban
indirect PHCEs of Shanghai were two times that of rural indirect PHCEs in 2007. However, they were
about the same in 2012.
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Figure 5. Indirect HCEs and PHCEs.
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3.2.2. Sectoral Indirect HCEs

Sectoral abbreviation and indirect HCEs are shown in Table A1. Indirect HCEs from electricity
and hot water production and supply were much larger than other sectors for all the four cities.
For instance, rural and urban indirect HCEs from electricity and hot water production and supply in
Tianjin accounted for 63.3% and 69.4% in 2012, respectively. Thus, to better express the indirect HCEs
at sectoral level, we give the percentage-stacked bar chart of indirect HCEs from all the sectors except
electricity and hot water production and supply, as shown in Figure 6.
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Figure 6. Sectoral indirect HCEs.

For Beijing, Tianjin, Shanghai, and Chongqing, the indirect HCEs from agriculture, coal mining,
food processing and tobacco, petroleum refining, coking, etc., chemical industry, nonmetal products,
metallurgy, construction, transport and storage increased. The share of indirect HCEs from agriculture
were relatively large and increased from 2007 to 2012 for both urban and rural residents in Chongging.
The share of indirect HCEs from coal mining decreased from 2007 to 2012 in Shanghai, Tianjin,
and Chongqing; however, the share of indirect HCEs from petroleum refining, coking, etc. increased.
For Beijing, Shanghai, and Chonggqing, the share of indirect HCEs from transport and storage increased
from 2007 to 2012, but the share decreased by 5.9% and 6.7% for rural and urban residents in Tianjin,
respectively. However, the share of indirect HCEs from metallurgy respectively increased by 4.5% and
3% for rural and urban residents in Tianjin.

3.2.3. Outsourced Indirect HCEs

Due to the difference of regional resource endowment and industrial structure, the four cities
outsourced large amounts of CO, emissions to other provinces to meet their own demands for products
and services through inter-regional trade. For example, outsourced indirect HCEs accounted for 73.7%
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for Beijing in 2007, and the share increased to 87.6% in 2012. Similarly, the share of outsourced indirect
HCEs in Chonggqing increased from 43.9% in 2007 to 59.7% in 2012. On the contrary, the share of
outsourced indirect HCEs in Shanghai and Tianjin decreased by 6.9% and 8.7%, respectively. However,
the outsourced indirect HCEs in Shanghai and Tianjin still accounted for more than 60%.

The outsourced indirect HCEs of Beijing, Tianjin, Shanghai, and Chongqing in 2012 are shown in
Figure 7. Beijing, Tianjin, Shanghai, and Chongqing respectively outsourced 142 Mt, 127.1 Mt, 108.6 Mt,
and 130.6 Mt indirect HCEs to other provinces in 2012, most of which were neighboring provinces with
rich resources and less developed economic structure. For example, Inner Mongolia, Hebei, and Shanxi
were the top three contributors to Beijing’s outsourced indirect HCEs; the shares were 17.8%, 17.4%,
and 8.6%, respectively. 26.8% of Chongging’s outsourced indirect HCEs were from Guizhou, Yunnan,
and Sichuan.
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Figure 7. Outsourced indirect HCEs.

3.3. Urban and Rural Total HCEs and PHCEs

The total CO, emissions can be obtained by summing up urban and rural households” direct and
indirect CO, emissions. Chongqing’s total CO, emissions increased significantly with the increase rate
of 49.71% from 64.63 Mt in 2007 to 96.76 Mt in 2012. Beijing’s total CO, emissions increased by 20.2%
from 100.79 Mt in 2007 to 121.15 Mt in 2012. Shanghai’s total CO, emissions increased by 6.21% from
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129.45 Mt in 2007 to 137.49 Mt in 2012, whereas Tianjin’s total CO, emissions decreased slightly from
77.75 Mt in 2007 to 77.53 Mt in 2012.

Rural and urban households” HCEs and PHCEs are shown in Figure 8. The urban—rural total
HCEs gap in Shanghai is the largest, followed by Beijing and Tianjin. Chongqing’s urban-rural total
HCEs gap is the smallest. From the amount of total HCEs, Chongqing has the largest rural HCEs
and the smallest urban HCEs. On the contrary, Shanghai has the smallest rural HCEs and the largest
urban HCEs.
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Figure 8. Total HCEs and total PHCEs.

From the perspective of total PHCEs, Chongging’s rural and urban PHCEs increased by
73.59% and 21.01%, respectively. Beijing’s rural and urban PHCEs decreased by 10.69% and 1.19%.
Rural PHCESs in both Tianjin and Shanghai respectively increased by 8.03% and 38.72%, while urban
PHCESs decreased by 27.10% and 10.89%, respectively.

PHCE:s in our study and other studies are compared in Table 3. PHCEs in Beijing, Tianjin,
Shanghai, and Chongqing were larger than the national average household footprint shown by
Wiedenhofer et al. [65], Fan et al. [66], and Qu et al. [67], but much smaller than the U.S. [68]
and European countries [18,69,70]. Compared to the results of Tian et al. [71] and Fry et al. [72],
Beijing’s total PHCESs in our results were 31.56% and 29.02% smaller, respectively, due to different
research methods and data sources. Shanghai’s total PHCEs in our results were close to other cities in
the Yangtze River delta region [14].
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Table 3. Results comparison (ton of CO,).

Sources Study Area Carbon Footprints Study Period

This study Beijing 5.75 2012

Tianjin 491 2012

Shanghai 6.31 2012

Chongqing 3.14 2012

Wiedenhofer et al. [65] China 1.7 2012

Fan et al. [66] China 2 2005

Qu etal. [67] China 1.75 2011

Jones and Kammen [68] Us 20 2005

Isaksen et al. [69] Norway 12.2 2007
West Germany 19.8

Weber and Perrels [70] Netherlands 18.7 1990
France 129

Sommer and Kratena [18] EU27 15.7 -

Tian et al. [71] Jingjin region 8.4 2007

Fry etal. [72] Beijing 8.1 2011

Xu et al. [14] Nanjing, Ningbo, and Changzhou 6.0 2010

Lin et al. [73] Xiamen, China 3.9 2009

Tian et al. [74] Liaoning 3.5 2007

Quetal. [75] Northwestern china arid-alpine 14 2008

regions

4. Discussion

In this study, we considered both direct and indirect emissions caused by rural and urban household
consumption (as shown in Figure 1). Total emissions are obtained by summing direct CO, emissions and
indirect CO, emissions [56]. The direct CO, emissions mainly refer to the consumption of coal, oil, gas,
electricity, and heat from China energy statistical yearbook, while the indirect CO, emissions are caused
by the consumption of products and services, which is also named embodied emissions [40,72].

Urban direct HCEs were much larger than rural direct HCEs. There are several reasons for this: (1) in
terms of both quantity and variety, urban residents have more household equipment than rural residents;
(2) urban citizens have more cars, which not only brings about severe traffic problems, but also consumes
lots of gasoline and produces more emissions; and (3) the population of urban areas is larger than that of
rural areas. With rapid urbanization, more and more people flood into the city. For example, Beijing’s
urban population was six times larger than the rural population in 2014.

For both urban and rural households in Beijing, Tianjin, and Chonggqing in China, CO, emissions
caused by electricity consumption accounted for the largest proportion of their direct CO, emissions:
the most carbon-intensive categories were electricity and hot water production and supply. For instance,
the shares of direct HCEs from electricity in Beijing were 71.3% and 58.2% in 2007 for urban and rural
household, respectively, and increased to 73.7% and 62.3% in 2012, respectively. An increased level
of income or consumption increased the probability of the use of electricity [76,77]. Thus, the result
reflects the improvement of the income and living standard of urban and rural household and the
widespread use of household electrical appliances with the rapid development of economy.

For rural households in Beijing and Shanghai, direct HCEs from coal and oil consumption
occupied a larger relative proportion. This is related to the large amounts of coal use for heating
and cooking in rural areas of Beijing. Oil is the main energy consumption in rural areas of Shanghai,
and the share of direct HCEs from oil consumption was approximately 60% in 2015. Affected by the
financial crisis and post-crisis, the coal and oil price rose dramatically and the consumption of coal
and oil of rural household declined, thus direct HCEs decreased significantly in 2012. Increasing the
price of coal and oil may be an effective way to control fossil energy use and reduce CO, emissions,
such as the through implementation of a carbon tax or environmental tax [78]. However, to avoid the
economic loss and urban-rural household welfare losses caused by carbon tax, the optimal carbon tax
rate should be formulated carefully.
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Large amounts of CO, emissions are outsourced to other provinces to meet the demand of local
residents. For example, about 68.5% of Beijing’s household emissions were outsourced to other provinces
in 2007, which is consistent with Feng et al. [79]. The share increased to 81.7% in 2012. The Chinese
government has taken active measures to improve the capacity of key areas to adapt to climate change
and mitigate the adverse effects of climate change on economic and social development and people’s
livelihood. The National Development and Reform Commission (NDRC) started the pilot work of carbon
emissions trading in Beijing, Tianjin, Shanghai, Chongqing, Hubei, Guangdong, and Shenzhen in 2011.
The completion of the reduction of carbon dioxide emission intensity is included in the comprehensive
evaluation system of economic and social development in various regions and the system of cadre
performance assessment [80]. To reduce Beijing’s CO, emissions and environmental pressure, Beijing
adjusted its industrial structure: heavy industries were moved to its neighboring provinces, such as Hebei,
Inner Mongolia, and Shanxi. Through interregional trade, products and services are imported to meet the
demands of local household. Government should pay more attention to interprovincial carbon leakage
to make an equitable and effective regional emissions reduction scheme. To reduce China’s total CO,
emissions, energy efficiency improvement and clean energy development are significant.

Urban total HCEs increased to a large extent with the increase of urban population. For example,
urban population increased by 23.27% in Chongqing from 2007 to 2012, while its urban total HCEs
increased by 49.16%. In our study, urban households contributed 72.81-92.65% of total HCEs in 2012.
Yang et al. [81] find that urban households contribute 92.6% of the particulate matter 2.5 (PM 2.5) footprint
of Beijing’s households. Therefore, it is urgent to control urban population. City planners should promote
economic development and increase the job opportunities in rural areas and the rural-urban fringe zone
to reduce the migrants who move to the city and seek jobs. For example, on 1 April 2017, the State Council
of China has decided to build Xiongan New Area, which is a new area of national significance after
Shenzhen Special Economic Zone and Pudong New Area of Shanghai. It is expected to relieve the stress
of Beijing’s population and environment.

5. Conclusions

We examined the direct and indirect CO, emissions of urban and rural households in Beijing, Tianjin,
Shanghai, and Chongging in this study. The results showed that total PHCESs were larger than the national
average level, but much smaller compared to developed countries such as the US and EU countries [82].
Direct HCEs caused by electricity consumption account for a large proportion of emissions. Despite the
urban/rural differential for both groups, the most carbon-intensive categories were electricity and hot
water production and supply, agriculture, coal mining, food processing and tobacco, petroleum refining,
coking, etc., chemical industry, nonmetal products, metallurgy, construction, transport and storage.

Most household CO, emissions are contributed by urban HCEs in Beijing, Tianjin, Shanghai,
and Chongqing. Chonggqing’s total HCEs are approximately 70-80% of Beijing and Shanghai in 2012;
however, this increased by about 50% from 2007 to 2012. With the acceleration of urbanization, this is
supposed to increase in future. Therefore, it is important to advocate low carbon consumption patterns to
control household CO, emissions.

Measuring and understanding energy consumption helps in forming a proper policy to motivate
the citizens of metropolitan areas to become “greener” consumers and promote renewable energy
development. This “greener” character needs to be achieved, as urban cities are environmentally
compromised regions because of their metropolitan character [83]. Therefore, the following suggestions
are proposed for city planners and policy makers: (1) continue to promote low-carbon green lifestyles and
encourage residents to use low-carbon and renewable energy to save energy with the aid of the media;
(2) control cities” populations: promote the development of neighbouring districts, create more jobs and
opportunities in the neighbouring districts, and divert migrant workers; (3) in the process of urbanization,
encourage the development of low-carbon infrastructure, along with the use of materials that improve
building quality and sustainability; and (4) judge government performance on the basis not only of GDP,
but also of energy efficiency and technical progress.
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Appendix A

Table A1. Indirect CO, emissions of urban and rural household in 2012 (10,000 tons).

Rural Urban

Abbreviation Beijing Tianjin ~ Shanghai Chongqing Beijing Tianjin ~ Shanghai Chongging

Agriculture Agri 15.80 14.59 17.73 121.28 217.41 136.95 314.11 410.59
Coal mining Coal 10.01 5.74 13.00 49.64 126.23 55.35 187.89 186.31
Petroleum and gas Petr 1.64 3.83 420 3.37 22.81 38.56 69.87 23.54
Metal mining Meta 0.23 0.22 0.20 0.79 3.23 2.20 3.33 3.70
Nonmetal mining Nonm 0.25 0.20 0.20 0.68 3.49 1.75 3.30 2.74
Food processing and Food 14.63 7.39 10.76 22,08 183.13 75.33 197.05 82.99
tobacco
Textile Text 0.57 1.87 1.59 221 10.32 18.92 31.31 18.38
Cl"th‘“g'eiiaﬂ‘er' fur, Clot 046 033 0.62 025 9.04 338 15.10 2.02
Wood processingand vy, 0.17 0.19 0.18 0.16 245 2.76 3.99 0.73
furnishing
Paper making,
printing, stationery, Pape 1.08 1.10 153 5.63 15.32 11.03 34.15 24.53
ete.
Petroleum refining, Perc 10.32 12.96 15.04 39.75 14391 12727 27521 148.75
coking, etc.
Chemical industry Chem 9.58 7.04 8.14 30.89 124.74 64.56 147.35 171.91
Nonmetal products Npro 9.59 9.15 9.99 48.13 131.25 65.25 180.55 144.45
Metallurgy Melu 17.78 18.62 19.50 4222 255.95 188.25 331.14 194.87
Metal products Mpro 0.29 0.44 0.26 0.70 4.21 4.03 4.77 2.72
General and specialist Gene 037 037 0.36 071 512 3.63 6.46 344
machinery
Transport equipment Tran 0.29 0.33 0.50 0.59 4.50 3.63 7.62 3.01
Electrical equipment Ecal 0.15 0.23 0.18 0.40 1.98 211 291 1.92
Electronic equipment Enic 0.08 0.08 0.09 0.07 1.08 0.98 1.79 0.29
Instrument and meter Inst 0.01 0.01 0.01 0.09 0.13 0.06 0.15 0.60
Other manufacturing Oman 0.14 0.06 0.17 0.39 1.89 0.53 3.07 2.00
Electricity and hot
water production and Ehwp 214.24 199.05 268.23 384.03 2739.07 2467.62 3562.09 1988.70
supply
Gas and water
. Gasw 0.69 0.33 2.73 0.63 7.89 3.47 29.38 3.79
production and supply
Construction Cons 0.31 0.22 0.37 0.32 525 3.45 7.70 1.65
Transport and storage Tras 24.53 14.72 26.30 74.21 362.53 145.55 579.24 324.73
Wholesale and Whol 499 394 499 13.66 69.66 4047 96.68 59.56
retailing
Hotel and restaurant Hote 3.17 3.04 1.61 8.69 56.30 32.69 37.62 54.32
Leasing and Leas 122 0.63 137 0.85 25.05 655 3543 6.07
commercial services
Scientific research Scie 0.20 0.06 0.08 0.13 3.11 0.52 1.39 0.60
Other services Oser 9.78 7.63 10.10 8.83 131.26 50.39 141.01 41.87
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Abstract: Transportation is an important source of carbon emissions in China. Reduction in carbon
emissions in the transportation sector plays a key role in the success of China’s energy conservation
and emissions reduction. This paper, for the first time, analyzes the drivers of carbon emissions
in China’s transportation sector from 2000 to 2015 using the Generalized Divisia Index Method
(GDIM). Based on this analysis, we use the improved Tapio model to estimate the decoupling
elasticity between the development of China’s transportation industry and carbon emissions. The
results show that: (1) the added value of transportation, energy consumption and per capita carbon
emissions in transportation have always been major contributors to China’s carbon emissions from
transportation. Energy carbon emission intensity is a key factor in reducing carbon emissions in
transportation. The carbon intensity of the added value and the energy intensity have a continuous
effect on carbon emissions in transportation; (2) compared with the increasing factors, the decreasing
factors have a limited effect on inhibiting the increase in carbon emissions in China’s transportation
industry; (3) compared with the total carbon emissions decoupling state, the per capita decoupling
state can more accurately reflect the relationship between transportation and carbon emissions in
China. The state of decoupling between the development of the transportation industry and carbon
emissions in China is relatively poor, with a worsening trend after a short period of improvement;
(4) the decoupling of transportation and carbon emissions has made energy-saving elasticity more
important than the per capita emissions reduction elasticity effect. Based on the conclusions of
this study, this paper puts forward some policy suggestions for reducing carbon emissions in the
transportation industry.

Keywords: carbon emissions; influencing factors; decoupling elasticity; Generalized Divisia Index;
Tapio’s model

1. Introduction

Since the beginning of this century, the concentration of greenhouse gases in the atmosphere,
represented by carbon dioxide, has been steadily increasing, leading to global warming and more
frequent natural disasters. Climate change has become one of the greatest challenges to mankind in
the 21st century. Currently, all countries in the world are constantly seeking solutions and striving
to achieve the goal of lower carbon emissions: the United Nations (UN) has held many international
negotiations on climate change and formulated the “United Nations Framework Convention on
Climate Change” [1] and the “Kyoto Protocol” [2]; in 2016, leaders from more than 170 countries
jointly signed the Paris Agreement [3] focusing on climate change issues at the UN Headquarters.
As the world’s largest developing country, with its rapid economic development, China’s carbon
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emissions remain high. China’s carbon emissions account for about one-third of the world’s total
carbon emissions and rank first in the world in carbon emissions [4]. The research data of the Global
Carbon Project [5], an international carbon emission research institution, shows that in 2015, China’s
carbon emissions accounted for 28.65% of the world’s total carbon emissions, far exceeding the second
highest in the United States (14.93%) and the third largest in the European Union (9.68%). To this end,
the Chinese government has actively shouldered its responsibility and obligation to reduce emissions,
and successively formulated numerous energy-saving and emission reduction policies [6-9].

The transportation industry is an indispensable key link in daily life and social production
and a basic industry for economic development in China. Along with the increasing demand for
transportation in China, the transportation industry, while promoting economic growth and facilitating
human life, has also caused a great deal of energy consumption and carbon emissions. The energy
consumption of China’s transportation industry increased from 114,470,000 tons of coal equivalent in
2000 to 383,180,000 tons of coal equivalent in 2015. At the same time, China’s transportation sector
accounts for approximately one-quarter of the carbon emissions, second only to the third largest
carbon sector in the energy and industrial sectors [10]. Moreover, with the continuous progress
of urbanization in China and the increasing number of motor vehicles, carbon emissions in the
transportation industry are still on the rise. At present, China’s transportation industry is at a critical
period of rapid development and transition. By accurately analyzing the drivers of changes in carbon
emissions in the transportation sector, the relationship between transportation development and
carbon emissions can be explored. This is of great and far-reaching practical significance for the early
realization of low-carbon transportation.

Factor decomposition and decoupling are important parts of research on carbon emission.
There are deficiencies in the methods used to decompose and decouple the carbon emission in
the transportation industry, and indicators in the decoupling—causal chain need to be improved.
The deficiencies of the existing research are described in detail in Section 2.3. Therefore, this paper
innovates the research methods of carbon emission factor decomposing and the selection of
decoupling—causal chain indicators in transportation industry, and provides a new research
perspective for accurately analyzing the relationship between the development of transportation
industry and carbon emissions. Specific innovations and improvements in this article are detailed in
Section 2.3.

The remainder of this article is arranged as follows: Section 2 presents a literature review; Section 3
introduces the measurement of carbon emissions; Section 4 builds the index decomposition model
of the historical evolution of transportation carbon emissions and the decoupling model of carbon
emissions from transportation development; Section 5 analyzes the driving factors and the decoupling
situation; Section 6 presents the discussion and analysis and finally Section 7 presents the conclusions
and suggestions.

2. Literature Review

This paper studies the influencing factors and decoupling elasticity of China’s transportation
carbon emissions. The factor decomposition is used to analyze the specific driving effect of factors
that have impacts on carbon emissions. The decoupling is used to explore the correlation between the
development of the transportation industry and carbon emissions. Therefore, based on the purpose of
this paper, the literature review contains two aspects, one is the influencing factors of carbon emissions,
and the other is the decoupling of carbon emissions and economic development.

2.1. Literature Review of the Influencing Factors of Carbon Emissions

An analysis of influencing factors is an important part of the research on carbon emissions
in the transportation industry. Wang et al. [11] investigated the influence mechanism of people’s
activity travel scheduling on transportation energy consumption and emissions on holidays in China.
Hao et al. [12] comprehensively measured energy efficiency in China’s transportation sector and
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identifies the opportunities for further energy efficiency improvements. Wei et al. [13] discussed
carbon dioxide abatement for 29 provinces in China, and concluded that industry composition, energy
mix, openness degree affected carbon dioxide abatement potential. Lugauer et al. [14] estimated the
impact of age distribution on carbon emissions by exploiting demographic variation in a panel of
46 countries. Yang et al. [15] analyzed the allocation of carbon intensity reduction target by 2020
among industrial sectors in China. The factor decomposition method is gradually being used in
research on carbon emissions addressing an impact mechanism that was originally applied primarily
to examine energy consumption [16]. Factor decomposition of changes in carbon emissions includes
structural decomposition and index decomposition. The structural decomposition method requires
an input-output model as its basis so it’s not convenient to analyze in practice. Compared with the
structural decomposition method, the index decomposition method is widely used in environmental
economics because it is suitable for decomposing time series data and models with fewer factors [16].

In general, the index decomposition methods mainly include the Laspeyres decomposition
method, Arithmetic Mean Divisia Index (AMDI) method and Logarithmic Mean Divisia (LMDI)
method. Sun [17] proposed a complete decomposition model, also known as the improved Laspeyres
decomposition method, and used it to analyze the factor for the change of energy intensity and energy
consumption in the world. Riistemoglu et al. [18] applied the refined Laspeyres index model to
analyze the impact of four main factors, such as economic activity, employment, energy intensity,
and carbon intensity in carbon emissions changes in Brazil and Russia. Hatzigeorgiou et al. [19]
dealt with the decomposition analysis of energy-related carbon emissions in Greece using the AMDI
technique, and concluded that the income effect was the most important factor contributing to the
increase of carbon emissions. Although the Laspeyres decomposition method has been improved
to solve the original residual problem well, the calculation process becomes very complicated when
the influencing factor of the decomposition is more than 3 [20]. AMDI has residual problems and
does not apply to cases in which there is a value of 0 in the data. Compared with the above two
exponential decomposition methods, LMDI solves their existing problems well, and the model is
simple. Therefore, it has been widely used in academia to study the influencing factors of carbon
emissions in transportation and other fields. Gambhir et al. [21] used the LMDI decomposition method
to determine the main factors of China’s road transportation sector carbon emissions and set different
scenarios to estimate changes in costs and carbon emissions. M'raihi et al. [22] investigated the effects
of the main driving factors of carbon emissions changes from road freight transportation in Tunisia
using decomposition analysis, mainly the LMDI, and the results showed that economic growth and
average petroleum emissions were the main driving factors.

Shi et al. [23] took four Chinese megacities (Beijing, Tianjin, Shanghai, and Chongqing) as case
studies, and decomposed per capita urban carbon emissions into manufacturing, transportation and
construction sectors using LMDI method. Du et al. [24] used LMDI model to analyze the change
of carbon emissions in China’s metallurgy industry, and the empirical results showed that main
factors were labor productivity, energy intensity and industry size. Ma et al. [25] built an LMDI
method with a higher technical resolution and applied it to decompose the growth of energy-related
carbon emissions in China. Wang et al. [26] used LMDI method based on the extended Kaya identity
to explore the main driving factors for energy-related carbon emissions in Guangdong province
annually. De Freitas et al. [27] conducted LMDI decomposition of carbon emissions change from
energy consumption in Brazil. The results demonstrated that economic activity and demographic
pressure were the leading forces explaining emission increase. On the other hand, carbon intensity
reductions and diversification of energy mix towards cleaner sources were the main factors contributing
to emission mitigation. Kharbach et al. [28] used LMDI to analyze the drivers for carbon emissions’
increase in Moroccan road transportation sector, and found that population growth and increase
in vehicles ownership were the main causes. Zhu et al. [29] applied LMDI decomposition method
combined with Tapio decoupling model to study the driving factors and decoupling effects of the
transportation sector’s carbon emissions in the Beijing-Tianjin-Hebei area, China. Zhang et al. [30]
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conducted an empirical analysis of urban traffic energy consumption in Beijing, Shanghai and
Guangzhou using the LMDI method. The main factors affecting the energy consumption of Beijing’s
passenger traffic are the number of daily trips per capita followed by the proportion of motorized trips.
The main factor in Shanghai is the urban population, followed by the average single trip distance.
The main factor affecting Guangzhou is the urban population, followed by the number of daily trips
per capita. Shen et al. [10] used the LMDI method to study the drivers of carbon emissions in China’s
transportation sector and found that the main positive drivers were urbanization, the tertiary industry’s
share of the total secondary and tertiary industries, and the total population. The main negative drivers
are the traffic volume per unit of GDP, the energy consumption per unit of traffic volume, the total
secondary and tertiary industries per urban resident population, and the contribution of tertiary
industry to GDP. Zhou et al. [31] carried out LMDI decomposition of transportation carbon emissions
and considered that economic growth is the most influential factor. Traffic energy conservation is
the second most important factor contributing to the reduction of transportation carbon emissions,
but the driving effect is not stable enough. However, the effect of traffic emissions reduction is the
most limited.

With the growing academic research on index decomposition, the defects of LMDI have also
gradually appeared. Vaninsky [32] noted problems that exist in index decomposition methods such
as LMDI: the model cannot contain multiple relative and absolute factors simultaneously, and the
result of decomposition depends on the interdependence of factors and may lead to results that conflict
with economic common sense. To solve these shortcomings, Vaninsky [32] proposed a new index
decomposition model, that is, Generalized Divisia Index Decomposition (GDIM). The GDIM model
can simultaneously contain the impact of multiple absolute and relative variables on carbon emissions,
solve the problems of other index decomposition methods, and more accurately and objectively analyze
the contribution of each driving force to changes in carbon emissions. Currently, Shao Shuai et al. have
used GDIM to disaggregate the historical evolution of China’s manufacturing [33] and mining [34]
carbon emissions and, respectively, have reached the following conclusions: (1) the main driver of
the increase in manufacturing carbon emissions is the investment scale, and the key factors in the
reduction of manufacturing emissions are the output carbon intensity and the carbon intensity of
investment; (2) the primary factor of the promotion of the increase in the mining carbon emissions is
the scale of output with the conclusion that the carbon intensity of the output contributes the most to
the mining carbon emissions reduction.

2.2. Literature Review of Carbon Emissions Decoupling

Factor decomposition of the evolution of the trend of carbon emissions can determine the impacts
of various factors on carbon emission changes. The decoupling analysis is helpful to explore the
relationship between economic growth and carbon emissions to provide a practical solution for
the realization of low-carbon development. According to the Environmental Kuznets Curve (EKC)
hypothesis, economic growth generally leads to increased environmental pressures and resource
consumption. However, when effective policies and new technologies are adopted, the result may
be lower environmental pressures and resource consumption in return for the same or even faster
economic growth; this process is called decoupling. The decoupling of carbon emissions in the
transportation industry is the idealized process of continuously weakening or even causing the
disappearance of the relationship between transportation development and carbon emissions, that is,
realizing the growth of the transportation industry while gradually reducing energy consumption.
To date, scholars have conducted a great deal of research on the decoupling of carbon emissions from
the economy.

Li et al. [35] conducted a decoupling analysis of the added value of Shanxi’s industrial sector
and energy consumption and carbon emissions. They concluded that the province’s industrial GDP,
energy consumption and carbon emissions showed an expansive coupling status. Yang et al. [36] used
the decoupling theory to analyze the characteristics of carbon emissions and economic growth in the
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western region and concluded that the major factor contributing to the increase in carbon emissions
is the rapid growth of the economy, while the impacts of industrial structure, energy intensity and
energy structure on carbon emissions are not the same. Wu et al. [37] discussed decoupling trends in
world economic growth and carbon emissions based on decoupling theories. Lin et al. [38] calculated
the decoupling trend of carbon emissions from China’s heavy industry by presenting a theoretical
framework for decoupling. Diakoulaki et al. [39] analyzed the decoupling relationship between
industrial economic growth and carbon emissions in 14 EU countries and the efforts and achievements
made by various countries. Li et al. [40] analyzed the decoupling state between the carbon emissions of
the construction industry in Jiangsu Province and the province’s economic growth based on the Tapio
decoupling model. Roman et al. [41] used the decoupling elasticity approach to analyze the importance
of energy consumption changes in relation to the GDP changes in Colombia. The results showed that
current decoupling-oriented measures were steps in the right direction but efforts made to achieve
decoupling energy consumption from economic growth were not at all effective. Freitas et al. [42]
examined the occurrence of a decoupling between economic activity and carbon emissions from
energy consumption in Brazil. Grand [43] introduced different types of decoupling models in detail
and used them to analyze the decoupling of economic activities and carbon emissions in Argentina.
Roinioti et al. [44] analyzed the decoupling relationship between carbon emissions and economic
growth in Greece with the use of the decoupling index. The results indicated that the decoupling
progress achieved was intercepted during the years of intense recession. Wang et al. [45] studied
China’s industrial carbon emissions based on decoupling elasticity and the Tapio decoupling model.
Hu et al. [46] used the non-competitive I-O model and the Tapio decoupling model to comprehensively
analyze the decoupling relationship between the output of the product sector in China and its embodied
carbon emissions under trade openness. Wan et al. [47] studied the decoupling relationship between
carbon emissions and economic growth of the equipment manufacturing industry in China. As energy
and the environment are facing increasingly serious forms, some domestic and foreign scholars have
shifted their attention from decoupling the relationship between the total carbon emissions and
economic growth to the transportation industry, a high-energy-consuming and high-emission industry,
and they have researched decoupling economic growth from carbon emissions in transportation.

Tapio [48] studied the relationships among transportation volume, greenhouse gases and
transportation economic growth in Europe from 1970 to 2001 by constructing a decoupling model.
Gray et al. [49] studied the decoupling of traffic, carbon emissions and economic growth in Scotland.
Loo et al. [50] explored the potential and the reality of decoupling transportation from economic
growth in 15 major countries such as China, Russia and Canada. Zhao et al. [51] analyzed the
relationship between transportation growth and carbon emissions associating the decomposition
technique with the decoupling elasticity in Guangdong province, China. Using the Tapio elasticity
analysis method, Liu et al. [52] explored the decoupling between transportation development and
economic growth. The results show that there is a clear interaction between the economy and traffic
volume, and they are mutually dependent. Zhou et al. [31] constructed causal chains by introducing
intermediate variables and analyzed the decoupling relationship between economic growth and carbon
emissions based on Tapio’s decoupling model from the perspectives of the decoupling elasticity of
traffic emissions reduction, decoupling elasticity of traffic energy-savings and decoupling elasticity of
traffic development. Table 1 summarizes representative studies on the influencing factors of carbon
emissions and the decoupling from economic development.
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2.3. The Deficiencies of the Existing Studies and the Innovations of this Article

Currently, scholars have laid a solid foundation for future exploration with their studies of
the factor decomposition of carbon emissions in transportation and economic development and the
decoupling elasticity. However, taken together, the existing research has the following deficiencies:

(1) Decomposition methods of influencing factors of transportation carbon emissions are flawed.
Most of the studies focused on index decomposition of the influencing factors of carbon emissions
in the transportation sector use the Logarithmic Mean Divisia Index (LMDI) method. The method
itself has some defects that cause inaccuracies in the decomposition result. Vaninsky [32] noted
that there are two problems with the existing index decomposition methods, including LMDIL
First, the methods decompose the carbon emissions into the product of various factors according
to the Kaya identity. For example, carbon emissions are usually decomposed into the product of
energy carbon emission intensity, energy intensity, GDP per capita and population, while at most
one absolute factor (such as population) can be considered in the decomposition. When other
absolute factors change, such as when energy consumption increases, while other factors remain
unchanged, the model does not show an increase in carbon emissions; it simply reduces the
energy carbon intensity and increases the energy intensity. This is contradictory. Second, due to
the interdependence of various factors, when different factor decomposition models are used,
the methods may lead to different decomposition results.

(2) The choice of influencing factors of transportation carbon emissions is not comprehensive
enough. In analyzing the changes that affect the carbon emissions in the transportation sector,
the limitations inherent in the selected decomposition method make the factors of the study less
comprehensive. Some studies have expanded the basic decomposition model in order to analyze
more selected factors. Although this can increase the research factors, the selection of factors is
still subject to the Kaya identity; this cannot arbitrarily select the relative factor and the absolute
factor, and at most, it can only study the impact of an absolute factor [32]. This leads to typical
factors, such as the energy consumption and the value added of the sector, not being taken into
account, leaving the final conclusion insufficiently comprehensive.

(3) The causal chain model of decoupling in transportation is insufficient. Existing research mainly
analyzes the decoupling situation of carbon emissions from economic growth in the transportation
industry by constructing a causal chain. The Tapio model divides the decoupling into eight
types according to the magnitude of the decoupling elasticity. This fine division means that
the calculation results of the decoupling elasticity will be classified into different categories
with little accuracy. In addition, although the existing research can analyze the reasons for
the decoupling of carbon emissions from the energy-saving elasticity and emissions-reducing
elasticity of transportation, the total amount of carbon emissions in the model is too macroscopic
and does not take into account the differences among individuals. It also makes the calculation
results of the decoupling elasticity not accurate enough and cannot respond sensitively to changes
in the decoupling state, which may lead to deviation in the final analysis.

Based on the status of existing research, this paper first uses GDIM to factor the changes in carbon
emissions in China’s transportation industry, then analyzes the situation of decoupling transportation
development from carbon emissions. The improvements and innovations in this article are as follows:

(1) In terms of research methods, this paper is the first to analyze the driving factors of changes
in carbon emissions in China’s transportation industry using the Generalized Divisia Index
Method (GDIM) proposed by Vaninsky [32]. Based on the Kaya identity, GDIM constructs a
decomposition model that contains multiple absolute and relative variables by deforming Kaya
identities. There are three advantages to analyzing the driving factors of carbon emissions changes
in the transportation industry based on GDIM: (1) GDIM avoids the inherent flaws of other index
decomposition methods and breaks through limitations when selecting factors. Furthermore,
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GDIM expands the analysis scope of Kaya’s identity, breaks the formal interdependence of
various influencing factors, can reveal the impact of more than one absolute factor of change on
carbon emissions in particular, and fully considers the factors that have an impact on carbon
emissions that are implicit in the decomposition process; @ GDIM overcomes the contradictions
in the existing index decomposition methods, doesn’t produce results that are inconsistent with
economic common sense and breaks the current situation of interdependence when selecting
factors. Moreover, GDIM avoids the factor decomposition results depending on the selection
of influencing factors, and makes it impossible to produce paradoxical conclusions when using
different factor decomposition forms; 3 Using GDIM can examine the implicit environmental
impact factors, and its decomposition result can distinguish the correlation of all the factors
without any double counting problem. Therefore, this paper examines a full range of eight key
factors such as carbon intensity of added value, energy intensity and per capita carbon emissions
in the transportation industry. In particular, it examines three absolute factors that the current
literature fails to pay attention to at the same time, but cannot be ignored: population size, energy
consumption, and added value of transportation industry. This paper uses GDIM to accurately
and comprehensively quantify the actual contribution of the different factors in transportation
carbon emissions, and draws more reasonable decomposition results.

In order to more intuitively demonstrate the reasons for selecting the GDIM model in this paper

and the advantages of the GDIM model, the GDIM model is compared with other typical factor
decomposition methods, as shown in Table 2.

Table 2. Comparison of typical factor decomposition methods.

Methods Features

It is based on an input-output model, which has higher
Structural decomposition method requirements on data, and the decomposition result can only be an
additive form. So it’s not convenient to analyze in practice [20].

When the number of influencing factors exceeds 3, the calculation

Laspeyres decomposition method process becomes complicated.

The model contains residuals; it cannot be used when there are

AMDImethod zero values in the data.
The result of decomposition depends on the interdependence of
LMDI method factors and the choice of factors is limited.
CDIM It breaks the formal interdependence of various influencing factors

and makes the results more comprehensive and accurate.

@)

In the selection of indicators, this paper adopts per capita carbon emissions in the transportation
industry in the causal chain of decoupling elasticity for the first time. This paper doesn’t use the
indicator of total carbon emissions in the decoupling causal chain model of the transportation
industry, but instead innovatively decomposes per capita decoupling elasticity into per capita
emissions reduction elasticity and energy-saving elasticity. This can further explore the key
reasons for the decoupling of the development of the transportation industry from carbon
emissions, fully take into account the differences among individuals, and reflect the individual’s
role and value. In addition, it can more truly reflect the actual situation of carbon emissions in
China’s transportation industry and the evolution trend of decoupling state over time than the
previous decoupling causal chain model, avoid the misjudgment of the decoupling situation
caused by the mistake of the calculation result, and make up for the deficiency of the existing
decoupling model.
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3. Estimation of Carbon Emissions in China’s Transportation Industry

Currently, China’s official statistical agencies have not released data on carbon emissions in the
transportation sector and need to calculate them. According to China’s current statistical standards and
the “Industrial classification for national economic activities of 2017” [58] published by the National
Bureau of Statistics, the transportation industry in this paper includes transportation, storage and
postal services. Among them, transportation includes railway transportation, road transportation,
water transportation, air transportation, pipeline transportation, multimodal transportation and
transportation agency industry. It should be pointed out that some people still have misunderstandings
about the scope of the transportation industry and believe that the production of transportation goods,
such as vehicles, fuels and infrastructure, also belong to the transportation industry. However, in the
“Industrial classification for national economic activities of 2017”, production of transportation goods
belongs to the manufacturing industry, and the use of vehicles belongs to the transportation industry.
This article uses the official classification, and the definition of the transportation industry in this paper
is also widely used in other studies, such as Zhao et al. [51], Wang et al. [59], and Hao et al. [12].

The carbon emissions from human activities mainly come from the consumption of fossil fuels,
while most of the carbon emissions data are calculated indirectly through energy consumption.
The fossil fuel energy consumed by the transportation industry mainly includes raw coal, coke,
gasoline, diesel oil, and natural gas. Based on fossil energy consumption data, this paper used
the calculation method of carbon emissions from energy consumption described in the IPCC GHG
Inventories Guide, and combined various coefficients published by the Chinese government to measure
carbon emissions from the transportation industry. The carbon emission calculation method used in this
paper is currently widely used by academics, such as Wei et al. [13], Freitas et al. [42], Zhou et al. [31].
The specific formula is (1):

CO, =Y E; x CV; x CCF; x (1 —CS;) x O; x (44/12) (1)
i

In Equation (1): i = 1,2,---,8 indicates the type of energy. To ensure the accuracy of the
estimation results, this paper fully considers eight kinds of fossil fuels, including raw coal, coke, crude
oil, fuel oil, gasoline, kerosene, diesel oil and natural gas; CO; is the total carbon emissions from
transportation energy consumption in units of 10* tons; E; is the consumption of fossil fuels in units of
10* tons or one hundred million cubic meters; CV; is the average low calorific value in units of kJ/kg
or kJ/m?3; CCF; is the unit of carbon content of calorific value in tons/TJ; CS; is the carbon fixation rate;
O, is the rate of carbon oxidation; 44 is the molecular weight of CO,; and 12 is the atomic weight of C.

The carbon emissions of China’s transportation industry are calculated according to Equation (1).
The values of the coefficients are derived from the literature [31] and reference “China Energy
Statistical Yearbook” [60] (2000-2015), “A Study on City Greenhouse Gas Emissions Inventory” [61]
and “2006 IPCC Guidelines for National Greenhouse Gas Inventories” [62]. The sequence length of
each fossil energy consumption in transportation is 2000-2015, and the data are from “China Energy
Statistical Yearbook”. Considering that the electricity does not directly produce CO,, in order to avoid
double counting, the electricity consumed by the transportation industry has not been included in
our calculation.

4. Methods

4.1. Decomposition Model of Influencing Factors of Carbon Emissions in the Transportation Industry—GDIM

We have considered the defects of the decomposition methods such as LMDI. Thus, in order to
comprehensively investigate the driving factors of changes in carbon emissions, this paper uses the
GDIM proposed by Vaninsky [32].
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(1) Creating an expression of carbon emissions and related factors. The index Z is a function of
the influencing factors X1,Xy, ... ,X;, and X; varies with time #: X; = X;(t); they are related to each
other by Equation (2):

Z = f(X) = f(X,..., Xe), °
(X1, Xn) =0,j=1,...,k

In this paper, let Z = CO,, X3 = GDP;, Xp = (CO2/GDPy), X3 = E, X4 = (CO2/E), X5 = P,
X6 =(CO2/P), X7 = (GDP;/P), and Xg = (E/GDP}), where CO; is the transportation carbon emissions
(10* tons), GDP; is the transportation added value (100 million yuan), CO, /GDP; is the carbon intensity
of added value (tons/10* yuan), E is the energy consumption (10* tons of coal equivalent), CO,/E is
the energy carbon emission intensity (ton/ton of coal equivalent), P is the population size (10* persons),
CO,/P is the per capita carbon emissions in the transportation industry (ton/person), GDP;/P is
the per capita added value of transportation (10* yuan/person), and E/GDP; is the energy intensity
(tons of coal equivalent/10* yuan). The transportation carbon emissions and related factors are
expressed by Equations (3)—(5):

Z=X1X» = X3Xy = X5Xs 3
Xy = X6/ X 4)
Xs = Xa/Xy 5)

Further, Equations (3)—(5) are transformed into the form of the system of Equations (2); these are
Equations (6)-(10):

Z=X1X> (6)
X1Xp — X3X4 =0 @)
X1 X — X5Xg = 0 ®)

X; — XsXy = 0 )
X3 — X1 Xg = 0 (10)

(2) Constructing the Jacobian matrix of influential factors. For factor X, let Z(X) denote its

contribution to the change in carbon emissions. Constructing a Jacobian matrix ®x composed of

various influencing factors from Equations (6)-(10), where (‘bX)zj = %, i=12,...8j=12,... 4

X, X, X, -X3 0 0 0 0 \'
X» X; 0 0 -X¢ —X5 O 0
Dy = 11
X 1 0 0 0 -X, 0 -Xs5 0 (1)
~Xs 0 1 0 0 0 0 -Xi

(3) Discovering the changes in carbon emissions and the contribution of various influencing
factors. According to the principle of GDIM, the variation in carbon emissions AZ is decomposed into
the following sum of contributions of each factor of Equation (12):

AZ[X|®] = [ VZT(I - &xD})dX (12)
L

In Equation (12), L refers to the time span; VZ = (fl’,...,f,/,)T, fi = g—}i, ie.,

VZ = (Xy,X,0,0,0,0,0,0); I is the unit matrix; dX = diag(X}, X}, ..., X},)dt; “+” refers to the
generalized inverse matrix; <I>§ = (CID}T(CD X) 1<1>)T( if the columns in the Jacobian matrix ®x are
linearly independent, and the coordinates of the row vector AZ[ X|®] are the decomposition AZx; of
each factor.

From Equation (12), the variation AZ of carbon emissions is divided into the sum of eight effects:
AZx,, AZx,, AZx,, AZx,, AZx,, AZx,, AZx,, and AZx,. Among them, the three absolute factors AZy,,
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AZy, and AZx, represent the impact of changes in the added value of transportation, changes in
energy consumption and changes in the population size on carbon emissions in the transportation
sector, respectively. In terms of relative factors, AZx, represents the impact of low-carbon changes in
transportation development on changes in carbon emissions; AZx, represents the impact of energy
structure adjustment on changes in carbon emissions; and AZx, reflects changes in carbon emissions
caused by low-carbon changes in people’s travel; AZy, reflects the impact of changes in per capita
added value of transportation on changes in carbon emissions; and AZx, shows the impact of changes
in energy efficiency on changes in carbon emissions.

The paper uses the data of China’s transportation industry from 2000 to 2015. The added value
of transportation and population size come from the “China Statistical Yearbook” [63] (2000-2015),
and the energy consumption comes from the “China Energy Statistical Yearbook” [60] (2000-2015).
To maintain the comparability of data, the added value of the transportation sector is adjusted at
constant 2000 prices to eliminate the impact of price fluctuations.

4.2. The Decoupling Model of Carbon Emissions from Transportation Development—Tapio

“Decoupling” is the phenomenon of a breakdown in the coupling between economic development
and environmental pressure [64]. If economic development did not lead to increased environmental
pressure and even less environmental pressure, then “decoupling” could be found. Based on
the Organization for Economic Co-operation and Development (OECD) decoupling model, Tapio
introduced the concept of “decoupling elasticity” to construct the decoupling index, which solves
the difficulty of the OECD decoupling model in the selection of the base period. It comprehensively
and carefully divides the decoupling state and is the most widely used decoupling relationship
research method.

According to Tapio’s theory of decoupling, this paper constructs a decoupling model between the
economic growth of transportation and carbon emissions, and in order to further explore the reasons
for the decoupling between the two, a causal chain is constructed for the decoupling model:

RO = Rt X TACH (13)
In Equation (13), %ACO,, %AGDP; and %AE represent the percentages of changes in carbon

emissions, value added and energy consumption in transportation, respectively; % represents

the decoupling elasticity between economic growth and carbon emissions in transportation; % "D/Anggz

represents the elasticity of emission reduction between transportation energy consumption and carbon
emissions; and % represents the energy-saving elasticity between transportation economic
growth and energy consumption.

Most of the studies on the decoupling of transportation industry refer to Equation (13).
To overcome the shortcomings of the model, the total carbon emissions in Equation (13) are replaced
by per capita carbon emissions in the transportation industry:

%A(CO>/P) _ %A(CO2/P) . %AE (14)
%AGDP;, %AE %AGDP;

In Equation (14), %A(CO,/P) represents the percentage change in carbon emissions per
capita in the transportation industry; %‘%g) represents per capita decoupling elasticity between

. . o %A P . .
transportation economic growth and carbon emissions; and % represents per capita emissions

reduction elasticity between transportation energy consumption and carbon emissions.

According to the Tapio decoupling elastic value of the division, the decoupling situation of
development of transportation from carbon emissions is subdivided into eight kinds of states [48].
This division standard is also widely used in other studies at present, such as Roman et al. [41],
Zhao et al. [51] and Jiang et al. [65]. The specific divisions and their meanings are shown in Table 3.
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Table 3. Division of the decoupling of transportation development from carbon emissions.

. Per Capita .
o o
Decoupling State ~ %A(CO,/P) %AGDP; Decoupling Elasticity Meaning
Strong decoupling - + (—00,0) Economic growth, decreasing carbon emissions

Economic growth, increased carbon emissions,
Weak decoupling + + [0,0.8) carbon emissions increased less than the rate of
economic growth

Economic recession, carbon emissions

Recessive (1.2, +00) decreasing, but the decrease in carbon
decoupling - emissions is greater than the economic
recession

Strong negative

) + - (—00,0) Economic recession, carbon emissions increase
decoupling

Economic recession, carbon emissions decrease,
- - [0,0.8) but the decrease in carbon emissions is less
than the magnitude of economic recession

Weak negative
decoupling

Economic growth, increased carbon emissions,

Expansive negative o .
P & + + (1.2, +00) carbon emissions increased more than

decouplin .
ping economic growth
Expansive Economic growth, increased carbon emissions,
pans + + [0.8,1.2] the increase in carbon emissions is greater than
coupling

or equal to the economic growth rate

Economic recession, carbon emissions decrease,
Recessive coupling - - [0.8,1.2] carbon emissions are less than or equal to the
magnitude of economic recession

4.3. Model Summary

The research methods and models of the influencing factors and the decoupling of carbon
emissions from transportation development are summarized in Figure 1.

Theory framework

. The study of drivers of carbon emissions in China's transportation |
i s . 1
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Figure 1. The summary of research methods and models.
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5. Analysis of Results
5.1. Analysis of the Factors Affecting Carbon Emissions in the Transportation Industry

5.1.1. Concrete Analysis of the Factors Affecting Carbon Emissions in the Transportation Industry

The time range of this study is from 2000 to 2015. To facilitate the analysis of the results,
it is divided into three sub-stages: 2000-2005, 2005-2010 and 2010-2015. Using the R software
(Ri386 3.4.1) [32] to decompose the driving force of carbon emissions in transportation by the
generalized Divisia index method, the result of factorization can be calculated according to
Equations (8) and (12) as shown in Figure 2.
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Figure 2. Staged factor decomposition results of the evolution of transportation carbon emissions.

As seen in Figure 2, among the eight factors affecting transportation carbon emissions, the added
value of transportation, energy consumption, population size and per capita carbon emissions in the
transportation industry have all shown an increasing effect on carbon emissions. However, the energy
carbon emission intensity and per capita added value in the transportation industry show a declining
effect on carbon emissions. The increasing and decreasing effects of carbon intensity on the added
value and energy intensity have emerged:

(1) The driving factors for the growth of carbon emissions in the transportation industry are
strong. Among the various factors that promote growth in carbon emissions, the growth-enhancing
effect of the added value of transportation industry is constantly increasing. In 2000-2005, 2005-2010
and 2010-2015, the added value of transportation contributed to 45,883,200 tons, 61,226,800 tons and
66,330,900 tons of carbon emissions, respectively. This is mainly due to the rapid growth of China’s
economy, which has led to the ever-increasing length of its transportation routes. The average annual
growth rate of regular-service airline routes in the transportation routes has even reached 8.79%. At the
same time, the transportation equipment is also growing, resulting in a corresponding increase in
carbon emissions.

The effect of energy consumption on increased transportation carbon emissions also shows an
increasing trend, reflecting the continuous growth of China’s high-energy transportation modes and
the high share of all transportation modes. For instance, the proportion of passenger traffic of civil
aviation increased from 0.45% in 2000 to 2.24% in 2015, and the proportion of passenger traffic on
railways increased from 7.11% in 2000 to 13.04% in 2015. Although the proportion of passenger
traffic on the road has decreased, it has still retained approximately 80% of the share in recent years.
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At the same time, with the improvement in people’s living standards and quality of life, people’s
demand for transportation is increasing. The number of motor vehicles such as private cars is rapidly
increasing, and the courier and take-out industries are developing rapidly, which greatly increases the
consumption of transportation energy so that the corresponding amount of carbon emissions continues
to increase.

The evolutionary trend of the effect of population size on the promotion of carbon emissions in
the transportation industry is identical to the above two factors, from 2.4918 million tons in 2000-2005
to 4.3635 million tons in 2010-2015. The reason for this is that the absolute number of the Chinese
population is constantly increasing and is accompanied by an increase in the rate of urbanization.
This has increased the rigid demand for transportation and has led to a continuous increase in carbon
emissions in transportation. Quantitatively speaking, the effect of population size on the increase in
carbon emissions is relatively small. This is due to China’s implementation of the family planning
policy, which limits the natural increase in the population.

The per capita carbon emissions in the transportation industry show greater volatility in
promoting the growth of transportation carbon emissions, decreasing from 50.9032 million tons in
2000-2005 to 47.4734 million tons in 2005-2010 and then increasing to 63.7025 million tons in 2010-2015.
This is because under the impact of the 2008 international financial crisis, the economic downturn
caused a decrease in people’s willingness to spend, leading to a drop in consumption-based travel,
such as tourism, in approximately 2008 and resulting in a decrease in the increasing effect of per capita
carbon emissions.

(2) The effect of each reduction factor on the suppression of carbon emissions growth is weaker.
Among all the factors contributing to the decrease, the declining effect of energy carbon emission
intensity has been steadily increasing from 80,200 tons in 2000-2005 to 2,611,700 tons in 2005-2010,
then increasing to 3,760,800 tons in 2010-2015. This shows that the optimization of the energy structure
in China’s transportation industry shows obvious results. Among them, the energy structure showed a
significant low-carbon adjustment in 2005-2010 thanks to China’s goal of optimizing energy structure
proposed during The Eleventh Five-Year Plan period. The proportions of coal and petroleum dropped
by 3.0 and 0.5 percentage points, respectively; natural gas and other renewable energy sources
increased by 2.5 and 0.3 percentage points, respectively. In recent years, China’s high-speed rail
construction has developed rapidly, and the electrification rate has thus been upgraded. As a result,
this objectively optimizes the energy structure of the transportation industry and promotes a decrease
in carbon emissions.

The per capita added value of transportation has a more stable effect on reducing carbon emissions.
In 2000-2005, 2005-2010 and 2010-2015, the per capita added value of the transportation industry led
to decreases of 10,886,100 tons, 12,160,400 tons and 10,700,800 tons of carbon emissions, respectively.
It seems counterintuitive that the per capita added value of the transportation industry has a negative
effect on carbon emissions, and the absolute value is small relative to other factors. Vaninsky [32] stated
that per capita added value in the transportation sector is a relative quantity factor and includes two
indicators that have an impact on carbon emissions: the added value of transportation and population
size. Changes in these indicators affect their carbonization, and they are also energy-related. As the per
capita added value of the transportation industry is correlated with some indicators, its change affects
all through Equations (6)—(10). In this way, changes in per capita added value in the transportation
industry are allocated to all of these indicators. Only part of its own change is due to changes
in per capita added value and is calculated by Equation (12) in the impact on changes in carbon
emissions. The remaining part is included in the impact of other indicators and accordingly adjusts
the response level of the resulting indicator, Z. Therefore, even if the per capita added value of the
transportation industry increases the carbon emissions, if the value is not large enough, it may show
a negative value. On the other hand, with the rapid economic growth in China, the state gradually
extends the welfare of the people from the most basic medical care to transportation and other fields.
For instance, the government subsidizes transportation to impoverished laborers working across
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provinces. The negative impact of per capita added value of transportation on carbon emissions shows
that the motivation of people’s welfare lags behind the development of the national transportation
economy [32].

The carbon intensity of added value contributed to the increases of 4,879,900 tons and 460,000
tons of carbon emissions in 2000-2005 and 2010-2015, respectively, while the effect of declining
in 2005-2010 is very obvious, with 8,956,500 tons. This is because for the first time in China’s
“The Eleventh Five-Year Plan”, energy conservation and emissions reduction were binding targets,
and an energy-savings and emissions reduction indicator system, a testing system, an assessment
system and a target responsibility system were established to make the transportation industry’s
energy conservation and emissions reduction efforts continue to strengthen and effectively enhance the
carbon productivity of the transportation industry and raise the low-carbon level of its development.
In the period of 2010-2015, due to a lack of overall planning and promotion of standards and policies
related to transportation, the carbon intensity of added value shows a weak increasing effect.

In the period of 2000-2005, the effect of the decrease in energy intensity was 467,400 tons.
In 2005-2010, it increased the carbon emissions by 186,900 tons. Finally, carbon emissions were
restrained by 229,600 tons in 2010-2015. This shows that the energy efficiency of China’s transportation
industry has improved in recent years. This can be attributed to the fact that China attached great
importance to energy development during The Twelfth Five-Year Plan period and set a target of
16% reduction in energy intensity per unit of GDP by 2015 to guide the transportation industry
to continuously improve energy efficiency, avoid the unnecessary waste of energy, and extend the
duration of energy use under a given supply.

5.1.2. Cumulative Contribution Analysis of Factors Affecting Carbon Emissions in the
Transportation Industry

To more clearly and comprehensively reflect the dynamic impacts of the above eight factors on
the changes in carbon emissions from 2000 to 2015, the contribution of each factor to carbon emissions
was accumulated year by year. Based on 2000, the cumulative effect of each factor was calculated,
as shown in Figure 3.
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Figure 3. Cumulative contribution of drivers of changes in carbon emissions in transportation.
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(1) The cumulative growth of transportation carbon emissions is larger. Figure 3 shows that
during the period of 2000-2015, the cumulative carbon emissions from transportation increased by
464,478,100 tons, and the cumulative growth after 2000 was both positive and increasing. This is
because after China acceded to the World Trade Organization in 2001, the transportation industry
enjoyed many opportunities for development, resulting in the expansion of the transportation market.
The industry, including warehousing, concentrated transportation and other industries related to
transportation, was open to the outside world, and international trade was frequent. At the same
time, the process of urbanization in China entered a phase of an all-round promotion since 2002.
The population and area of cities constantly expanded, and the demand for transportation rapidly
increased. Together, these factors contributed to the rapid development of the transportation sector
and consumed a large amount of energy, resulting in a substantial increase in the accumulated carbon
emissions of the transportation industry.

(2) The cumulative contribution of each factor to carbon emissions is different in size and trend.
Figure 3 shows that the added value of transportation and energy consumption are the primary
factors driving the increase in carbon emissions. Carbon emissions from transportation added value
increased from 6,137,100 tons in 2001 to 161,496,400 tons in 2015, an average annual growth rate of
26.31%. Total energy consumption increased by 162,401,800 tons of carbon emissions in 2000-2015.
Per capita carbon emissions in the transportation sector are also an important factor in promoting the
growth of carbon emissions. However, the growth-boosting effect of per capita carbon emissions was
surpassed by the added value of the transportation industry in 2007 and maintained its rapid growth
at an average annual rate of 39.78%. The effect of population size on carbon emissions growth was
relatively weak. By 2015, its cumulative result was 10,892,500 tons of carbon emissions. Per capita
added value of transportation and energy carbon emission intensity are the main factors of carbon
emissions reduction. Among them, the effect of energy carbon emission intensity gradually emerged
after 2008, and the effect of its reduction increased rapidly from 2008 to 2015 at an average annual
rate of 34.81%. The carbon intensity of added value has generally reduced carbon emissions in
2000-2015, reducing a total of 3.5895 million tons of carbon emissions, but its volatility was greater.
Energy intensity had a small effect on reducing carbon emissions, and its growth rate was relatively
slow; it reduced 934,300 tons of carbon emissions cumulatively by 2015. From the above results,
we can see that the added value of transportation and energy consumption still play a significant
role in the growth of carbon emissions. The adjustment of energy structure and the improvement
in energy efficiency in the transportation sector, which are highly valued by China, have achieved
initial success in their contribution to carbon emissions reduction but are still far from the expected
targets and still have much room for improvement. Since economic development is the driving force of
national rejuvenation and the guarantee of people’s livelihood, the countermeasures to reduce carbon
emissions by sacrificing the economic growth rate are not in keeping with the fact that China is still in
a ‘developing country’s’ situation; however, this is not conducive to achieving energy conservation,
emissions reduction and sustainable development in the transportation industry. Therefore, based on
the above results, in the future, China’s transportation industry should focus on improving energy
efficiency, increase the proportion of clean energy in the energy mix and actively implement a carbon
reduction policy that focuses on low-carbon and energy-saving development.

Summary: The eight factors studied have different effects on carbon emissions, and the driving
effect of the increasing factors are more obvious. The decreasing factors still have a lot of room for
improvement in curbing carbon emissions in China’s transportation industry.

5.2. Analysis of the Decoupling Elasticity between Transportation Development and Carbon Emissions

By decomposing the evolving trend of carbon emissions in the transportation sector, the present
study investigated the actual contribution of each factor to the change in carbon emissions in the
transportation industry. Decoupling can help to explore the interaction between carbon emissions and
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economic development. In the following section, we further analyze the decoupling situation between
transportation development and carbon emissions based on factor decomposition.

Based on Equation (14), we calculated the per capita decoupling elasticity, per capita emissions
reduction elasticity and energy-saving elasticity of transportation development and carbon emissions
from 2001 to 2015. To more clearly reflect the size of each decoupling indicator and the relationships
among them, we created a trend graph, as shown in Figure 4.
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Figure 4. The decoupling of carbon emissions from transportation development and the trend of
decoupling elasticity.

As can be seen in Figure 4, the decoupling of the development of China’s transportation industry
and carbon emissions has fluctuated greatly. This is similar to the existing studies, such as the study
by Zhao et al. [51] and Zhou et al. [31] on the decoupling of the development of transportation
industry and carbon emissions in Guangdong Province and the whole country. In Figure 4, we can see
that during the period of 2001-2015, there are three types of decoupling between the development
of transportation industry and carbon emissions: “weak decoupling”, “expansive coupling” and
“expansive negative decoupling”. Among them, more than half of the years experience “expansive
coupling” and “expansive negative decoupling”, indicating that the decoupling of carbon emissions
from transportation development is poor, and the economic growth of the transportation industry is
accompanied by an increase in carbon emissions.

Overall, during the period of 2001-2015, the decoupling of carbon emissions from transportation
development shows a tendency to deteriorate first, then to improve, and then to slightly deteriorate
again. The years 2001-2004 were a period of deterioration in decoupling; 2005-2009 was a period of
improvement, and 2010-2015 was a period of slight deterioration in decoupling. () From 2001 to 2004,
the period was dominated by expansive negative decoupling, namely, the increase in carbon
emissions was greater than the economic growth of the transportation sector. This is mainly due
to the improvement in the global economic situation and the expansion of the economic scale of
China’s transportation industry. For the purpose of boosting domestic demand and increasing
investment, China implemented a proactive macro-economic policy and launched a large number of
high-energy-consuming and repetitive infrastructure projects [31]. In addition, online sales, such as

68



Energies 2018, 11, 1157

Taobao, developed rapidly during this period. However, these basic projects and online sales led to a
sharp increase in demand and the consumption of energy while promoting the development of the
transportation industry [31], but the state lacked effective emissions reduction measures to control
this. (@ During 2005-2009, in 2006 only, the decoupling state was expansive coupling. During the rest
of the years, there was weak decoupling, meaning that the growth rate of the transportation carbon
emissions was less than the rate of economic growth. This is mainly because during the period when
China developed its transportation industry, China increased its emphasis on carbon emissions, set a
hard target for energy conservation and emissions reduction, and promulgated a number of laws and
regulations such as the “Renewable Energy Law”. At the same time, China’s overall improvement in
the level of opening up provided ample opportunities for high and new technology industries to speed
up the development of high and new technology industries, which have the characteristics of high
added value and low transportation density [66], thus optimizing the decoupling of transportation
development from carbon emissions and transforming the economic growth mode from extensive to
intensive. (3) During the period of 2010-2015, the transportation carbon emissions showed obvious
signs of increases compared with the previous period. The decoupling state was mainly dominated
by expansive coupling and even showed expansive negative decoupling in 2012. This shows that the
transportation industry’s energy-saving emissions reduction efforts were insufficient at this stage and
did not reach the desired state. Under the background of the problem that traffic congestion is difficult
to solve and there has been a rapid increase in the number of motor vehicles, the road toward energy
conservation and emissions reduction in China’s transportation industry is still full of bumps.

After replacing total carbon emissions with per capita carbon emissions in the transportation
sector, the decoupling status in 2002 and 2008 is different from the previous calculation. In 2002,
the decoupling state of total carbon emissions was expansive negative decoupling, while the per capita
decoupling state was expansive coupling. In 2008, the decoupling state of total carbon emissions
was expansive coupling, while the per capita decoupling state was weak decoupling. China formally
joined the World Trade Organization in late 2001, causing an increase in the traffic demand in 2002
and an increase in carbon emissions. At the same time, the state analyzed in depth the opportunities
and challenges brought by the accession to the World Trade Organization for energy development in
The Tenth Five-year Plan for Energy Development and formulated energy development strategies that
focused on optimizing the energy structure and making efforts to improve energy efficiency. It guided
the transportation industry to gradually pursue energy-saving emissions reduction and to some extent
slowed the increase in carbon emissions. Therefore, the per capita decoupling state was changed from
weak decoupling in 2001 to expansive coupling in 2002. With the continuous opening up of China,
the transportation industry faced increasingly fierce price competition, especially in the impact of road
transportation. Therefore, compared with the growth rate of the transportation economy, the increase
in its carbon emissions was larger, leading to a worsening per capita decoupling status in the next
two years, from expansive coupling in 2002 to expansive negative decoupling. In 2008, the global
economic crisis caused a great impact on China’s transportation industry. Coupled with the continuous
progress of energy conservation and emissions reduction, the per capita decoupling status showed
weak decoupling. It can be seen from this that the per capita decoupling state can more accurately
and subtly reflect the relationship between the development of the transportation industry and carbon
emissions compared with the decoupling state calculated through the transportation of total carbon
emissions, so we can conduct a better and more comprehensive analysis and provide a reference for
the formulation of energy conservation and emissions reduction policies by the state.

There is a relatively large gap between the trend of the energy-saving elasticity and per capita
emissions reduction elasticity. As seen in Figure 4, the volatility of energy-saving elasticity is relatively
large, especially in the sharp increase in energy-saving elasticity in 2001-2002. After a period
of fluctuation, the energy-saving elasticity has also picked up in recent years, indicating that the
transportation industry is more dependent on energy consumption and that energy efficiency needs
to be improved. Per capita emissions reduction elasticity fluctuated relatively more in 2008-2010
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and almost overlapped with per capita decoupling elasticity, which shows that per capita emissions
reduction elasticity, which is the energy consumption structure, has a more important impact on
decoupling the development of transportation from carbon emissions during this period. However,
per capita emissions reduction elasticity changed little in general, tended to be stable, and had little
effect on the decoupling status. Within the entire period of 2001-2015, the trends of energy-saving
elasticity and per capita decoupling elasticity were almost the same, both rising and falling, indicating
that compared with per capita emissions reduction elasticity, energy-saving elasticity played a more
crucial role in decoupling the development of transportation from carbon emissions. This is consistent
with the analysis of energy intensity in the factor decomposition above. Energy intensity showed a
declining effect on carbon emissions in 2001, 2005, 2007, 2009 and 2014. Although energy intensity
showed a stimulus-increasing effect in 2008, its value was relatively small, only 2770 tons. However,
the decoupling of transportation development from carbon emissions has shown weak decoupling in
the past few years.

Summary: The causal chain model of the per capita decoupling elasticity accurately reflects that
the decoupling state of carbon emissions from the development of China’s transportation industry is
relatively poor. And energy-saving elasticity plays a more important role in decoupling than the per
capita emissions reduction elasticity.

6. Discussion and Analysis

6.1. Discussion on the Comparison between the Results of This Paper and the Existing Research Results

This study explores the factors influencing carbon emissions in China’s transportation industry
and the decoupling relationship between carbon emissions and the development of the transportation
industry. Many scholars have done similar research on these two aspects. The following two
representative articles were selected to compare with the results of this study.

(1) Comparing driving factors of the evolution of China’s transportation carbon emissions.
Zhou et al. [31] conducted an LMDI decomposition of China’s transportation carbon emissions from
1995 to 2012, extending the Kaya identity and discussing the impact of five factors on carbon emissions.
Three of them are the same as the research factors in this paper, namely, energy carbon emission
intensity, energy intensity and population size. The comparison of the results is shown in Table 4.

Table 4. Comparison of the results of driving factors. Unit: 10* tons

Energy Carbon Emission

Years Intensity Effect Energy Intensity Effect Population Size Effect
Comparative 10 ) i COMPArative i article  COMPAratve i 4 cle
Literature Literature Literature
2001 —163.28 —54.03 —1124.04 —5.76 150.57 48.38
2002 157.67 44.81 —233.32 —1.60 146.24 47.57
2003 —505.51 —146.47 1916.89 —45.10 149.20 49.37
2004 131.51 83.39 843.15 —13.73 168.30 55.50
2005 449.20 111.62 —206.91 -1.18 194.37 64.37
2006 3.16 43.59 108.76 0.63 193.57 63.09
2007 17.09 —51.12 —1291.05 —4.26 207.09 66.69
2008 —412.6 —110.16 —1186.17 0.28 215.37 70.43
2009 —213.71 —119.30 —335.39 —0.75 212.77 70.68
2010 —112.07 —48.33 101.38 —3.37 222.65 72.27
2011 —387.76 —172.46 —187.74 0.17 243.08 79.12
2012 258.27 50.14 1793.08 —15.28 275.97 89.92

As seen in Table 4, (1) the direction of the effect of energy carbon emission intensity on the carbon
emissions in the transportation sector is almost the same in the two studies, with the opposite direction
in 2007 only. The comparative study shows the promotion effect, and this paper shows the inhibitory
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effect. Considering that the two studies are basically consistent with the overall change trend of energy
carbon emission intensity in terms of transportation carbon emissions and that the gap before and after
is one year only in the turning year in which the energy carbon emission intensity plays a role, this is
acceptable. @) In both papers, there is a big gap between the magnitude of the effect of energy intensity
on transportation carbon emissions. In recent years, China has focused on energy development and
has guided the transportation industry to improve the efficiency of energy utilization so that energy
intensity has a negative effect on carbon emissions in most years. However, although the adjustment
of energy intensity is effective, it does not reach the expected level, making the effect of reducing
energy intensity weaker and in some years even showing a slight increase in the effect. Therefore,
the maximum declining effect of the energy intensity in this paper is only 451,000 tons in Table 4,
and the increasing effect does not exceed 10,000 tons. (3) The population size in both papers contributed
to carbon emissions. This is due to the huge population base in China at present, but the sizes of
the two studies are quite different. China’s family planning policy, which has been implemented for
several decades, has greatly limited the increase in the natural population growth rate and causes the
population scale to promote carbon emissions, but its value is not great.

From the above comparative analysis, it can be seen that compared with the paper using the
LMDI decomposition method used in previous studies to study the influencing factors, using GDIM to
explore the drivers of transportation carbon emissions can not only allow more key factors to be chosen
but also shows more reasonable decomposition results and helps to develop practical policy measures.

At present, there are studies on the factors of carbon emissions in the transportation industry,
such as Tunisia and Morocco. M'raihi et al. [22] used LMDI to decompose Tunisia’s carbon emissions
from road freight from 1990 to 2006 into average oil emissions, oil consumption share of road freight,
oil consumption intensity of road fright, road freight intensity, and GDP. The results show that economic
growth is a major factor in the increase of carbon emissions in the transportation industry, which is
the same as the study in this paper. In addition, the paper also analyzes the cumulative contributions
of various influencing factors and can more clearly reflect the dynamic impact of economic growth
on carbon emissions changes. Kharbach et al. [28] used LMDI to decompose the carbon emissions
from the road transportation industry in Morocco into the average fleet emission factor, energy use,
motor vehicle ownership, and population. The study found that population growth and the increase
in motor vehicle ownership have a catalytic effect on carbon emissions, which is the same as this paper.
In addition, the paper also studied the carbon emissions per capita and found that per capita carbon
emissions contributed significantly to the growth of carbon emissions.

(2) Comparing the decoupling between the development of China’s transportation industry
and carbon emissions. Based on the Tapio decoupling model, Zhou Yinxiang [57] studied the
decoupling relationship between the development of the transportation industry and carbon emissions
in 1990-2013 and their evolution and constructed the causal chain to explore the influencing factors of
decoupling. In the same manner as in this present paper, Zhou Yinxiang concluded that whether the
development of the transportation industry can be decoupled from carbon emissions depends more
on energy-saving elasticity, but the decoupling status in individual years is different. The comparison
of the results is shown in Table 5.

As seen in Table 5, the decoupling status is the same for most years, but the change in the
decoupling status in this study is slightly greater than that in the reference study, mainly due to
the per-capita carbon emission indicator that allocates the transportation carbon emissions to each
individual, specifically considers the changes in individual carbon emissions, and truly reflects the
actual situation of China’s carbon emissions. Thus, per capita decoupling elasticity can more accurately
reflect the relationship between transportation development and carbon emissions and capture changes
in the decoupling status more sensitively and subitly.
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Table 5. Comparison of research results of the decoupling state.

Years Decoupling State
Comparative Literature This Article
2001 Weak decoupling Weak decoupling
2002 Expansive coupling Expansive coupling
2003 Expansive negative decoupling Expansive negative decoupling
2004 Expansive negative decoupling Expansive negative decoupling
2005 Expansive coupling Weak decoupling
2006 Expansive coupling Expansive coupling
2007 Weak decoupling Weak decoupling
2008 Weak decoupling Weak decoupling
2009 Weak decoupling Weak decoupling
2010 Expansive coupling Expansive coupling
2011 Weak decoupling Expansive coupling
2012 Expansive negative decoupling Expansive negative decoupling
2013 Expansive negative decoupling Expansive coupling

At present, there are few studies on the decoupling of transportation development and
carbon emissions in other countries. Loo et al. [50] studied the decoupling of transportation
and economic growth in 15 countries, including Russia and Canada. The results showed that
decarbonisation of the transportation sector were more difficult to achieve than the reduction in
the levels of transportation-related fatalities. Alises et al. [67] compared the decoupling of road freight
transportation between the United Kingdom and Spain. Studies have shown that Spain’s decoupling
rate is much lower than that of the United Kingdom driven by economic structure changes. It can thus
be seen that the decoupling of the transportation industry is not particularly optimistic in China and
other countries.

6.2. The Reference Meaning of This Study

(1) The research in this present paper can provide some reference to other countries. All the
selected indices in this paper are widely applicable indices, such as the added value of transportation
and total energy consumption. All of these factors play a vital role in the transportation carbon
emissions both in developed and developing countries. An accurate understanding of the situation
can help to develop a realistic carbon reduction policy for one or more of these factors. In today’s
world, all countries are actively developing the transportation industry. With the increasing number of
motor vehicles and the ever-increasing number of trips and distances traveled by residents, the rapid
growth of carbon emissions in the transportation industry has become an important issue that cannot
be ignored. If we can grasp the decoupling relationship between the development of transportation
and carbon emissions and block the coupling between the two, this will significantly improve the
status of the continued increase in global carbon emissions.

(2) The research of this paper can provide a reference to other industries. The industrial sector,
represented by electricity and machinery, has far more carbon emissions than transportation and is
an important area for China’s carbon emissions. Its development is accompanied by an increase in
carbon emissions. Using the research methods of this paper, we can determine the factors that have a
significant impact on carbon emissions, understand the decoupling state between carbon emissions
and industrial development, and take effective measures to save energy and reduce emissions.

6.3. The Deficiency of This Research and Directions of Improvement

Due to the lack of data on various energy consumption in the transportation sector before
2000, this paper only studies the situation of carbon emissions in the transportation industry from
2000 to 2015 and fails to expand the study period, which is not conducive to a more accurate and
comprehensive grasp of the law of changes of China’s transportation carbon emissions. In the study
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of the drivers of carbon emissions in the transportation industry, the selected indicators are the most
common key factors, such as the added value of the industry. In the future, we can try to make
innovations in terms of the factors studied.

7. Conclusions and Suggestions

7.1. Main Conclusions

The transportation industry is a large source of energy consumption and carbon emissions
in China. The transportation industry must shoulder the heavy responsibility of reducing carbon
emissions and strive to find practical ways to save energy and reduce emissions. This is, to a large
extent, related to whether China’s carbon emission reduction targets and low-carbon sustainable
development vision can be successfully achieved as soon as possible. In this paper, GDIM is first
used to decompose the evolution of China’s carbon emissions from 2000 to 2015 in the transportation
industry, and then, the decoupling of carbon emissions from transportation development is analyzed
based on the Tapio decoupling theory. Then, the interaction between carbon emissions and economic
development is further explored. The main conclusions of this study are as follows:

(1) The added value of transportation, energy consumption and per capita carbon emissions in
the transportation industry are the major factors leading to the increase in carbon emissions.
The energy carbon emission intensity is the key factor leading to a reduction in carbon emissions.
Among other factors, population size has a positive effect on carbon emissions, while per capita
added value of transportation, energy intensity and carbon intensity of added value have a
decreasing effect on carbon emissions.

(2) The decreasing factors have a limited effect on the suppression of carbon emissions in the
transportation industry, and this effect is far less than the contribution of the increasing factors to
the increase in carbon emissions.

(3) The decoupling state between the development of China’s transportation industry and the carbon
emission is poor, and it gradually shows a deteriorating trend after a short period of improvement.

(4) Per capita decoupling elasticity can reflect the decoupling status between transportation
development and carbon emissions more accurately and subtly than the decoupling elasticity of
total carbon emissions.

(5) Compared with the effect of per capita emissions reduction elasticity, energy-saving elasticity
plays a more crucial role in decoupling the development of transportation from carbon emissions.

7.2. Policy Suggestions
Based on the above research results, we propose the following policy suggestions:

(1)  Optimize the traffic structure. From the analysis of Figures 24, the added value of transportation
industry is the main factor that promotes increases in carbon emissions, and the expansion of
the economic scale also leads to deterioration of the decoupling state. The continuous economic
growth has become the bottleneck of low-carbon development in China’s transportation industry,
but at the same time it is also the goal of sustainable development of our country and the
guarantee of people’s material well-being. Transportation carbon emissions reduction at the
expense of economic development is not desirable, but the state can adjust the structure of
the transportation industry, optimize the combination of various modes of transportation and
the proportion of investment, gradually develop high-tech industries, and rationally plan the
construction of low-carbon transportation infrastructure.

(2)  Optimize the energy structure of the transportation industry. From the analysis of Figures 2 and 3,
the energy carbon emission intensity is a key factor in reducing carbon emissions. Therefore,
the government should focus on the following: optimizing the energy structure of the
transportation industry in the future; reducing the consumption of traditional energy, such as

73



Energies 2018, 11, 1157

®)

©

petrol and diesel, by adjusting prices and taxes; phasing out the high-energy-consumption and
high-emissions transportation vehicles; increasing the investment in the use of clean energy,
such as solar energy; and encouraging and promoting the development of new energy sources
for transportation.

Improve the energy efficiency of the transportation industry. Through the analysis of Figures 2-4,
it can be seen that energy intensity has a decreasing effect on carbon emissions, and energy-saving
elasticity plays an important role in decoupling the development of transportation from
carbon emissions. Therefore, energy efficiency must be taken seriously. At present, the
enhancement of energy efficiency in the transportation industry has a very limited effect
on curbing carbon emissions and has not reached a satisfactory level. In the future, there
will still be much room for improvement. Increasing energy efficiency plays an important
role in decoupling the carbon emissions from the development of transportation and can
achieve the effect of reducing carbon emissions in a relatively short period of time rather than
optimizing the energy structure. In the future, the government should increase investment
in and development of energy-saving technologies, actively develop and promote low-carbon
transportation technologies, optimize the transportation system, and enhance the intelligence of
transportation to reduce energy consumption.

Increase public transportation system construction. Through the analysis of Figures 2—4, it can be
seen that energy consumption is the main factor that promotes carbon emissions, and the large
increase in energy consumption also hinders the decoupling process of China’s transportation
industry. With the advancing urbanization in China, the problems of the increase in the number
of private cars, traffic congestion, slow driving and so on are becoming increasingly prominent.
As a result, the demand and consumption of energy continues to increase, leading to more
serious carbon emissions in the transportation sector. However, promoting public transportation
construction is a fast and effective way to solve this problem. Therefore, the government should
give priority to the development of public transportation, accelerate the construction of urban
rail transit such as subways and skyrails, and rationally plan bus lanes and bus routes to facilitate
citizens’ travel and transfer.

Enhance citizens’ low-carbon traffic awareness. From Figures 2 and 3, it can be seen that the
population size has a positive effect on carbon emissions and the per capita carbon emissions is
the main factor that lead to an increase in carbon emissions. Therefore, the population cannot be
ignored in the carbon emissions reduction in transportation industry. Although China implements
the family planning policy and controls the natural population growth rate, the huge population
base still causes the population size to promote an increase in carbon emissions, making citizens’
choices of modes of transportation especially important for reducing carbon emissions. Therefore,
the government should step up the publicity of low-carbon traffic, conduct lectures on the
theme of low-carbon transportation, hold related art performances, carry out bicycle riding and
other activities in schools, work units and communities, broadcast more of these public service
advertisements and formulate corresponding incentive measures for citizens” environmental
protection behaviors in different degrees to raise citizens’ awareness of environmental protection
and promote citizens’ green travel.

The main conclusions of this paper on the influencing factors and decoupling elasticity of China’s

transportation carbon emissions are shown in Table 6.
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Abstract: Modern agriculture contributes significantly to greenhouse gas emissions in several ways.
From the perspective of sustainability assessment, it is not enough to evaluate mitigation measures
that rely only on emissions reductions. In this article, we use the method of decoupling analysis to
construct a decoupling index based on carbon footprint and crop yield and evaluate the relationship
between crop production and greenhouse gas emissions using the most modern grain production
base in China as a case study. The results indicate that a weak but variable decoupling trend occurred
from 2001 to 2015 and that each branch achieved on average a weak decoupling across the study
period. In addition, rice production constituted 80% of the regional carbon footprint in a crop’s
life cycle. The results of our analysis of rice production show that weak decoupling was the most
common outcome but was not consistent because a weak coupling occurred in 2015. Each branch
on average achieved a weak decoupling except for the SH branch. Our research indicates that
high agricultural material inputs with low utilization efficiency contributed to the poor relationship
between crop production and greenhouse gas emissions in the study area. Fertilizer, especially N
fertilizer, was an important contributor to the total greenhouse gas emissions of crop production.
As a supplement to carbon footprint assessment, this decoupling analysis helps local decision-makers
diagnose the level of green growth, identify key options to mitigate greenhouse gas emissions from
agriculture, and adopt more targeted interventions towards sustainable agriculture.

Keywords: decoupling analysis; greenhouse gas emissions; carbon footprint; low-carbon agriculture

1. Introduction

The relationship between economic growth and environmental pressure has been intensively
discussed [1-3]. In recent years, green economic growth has attracted worldwide attention as a way
to maintain rapid economic development while limiting environmental degradation. Like the term
“green economy,” “decoupling” refers to the ability of an economy to grow without a corresponding
increase in environmental pressure [4]. Today, decoupling environmental impacts from human
well-being has been widely acknowledged by policy-makers, industry leaders, and civil society as
a key issue to address in meeting sustainable development goals [5]. In the field of sustainability
studies, following the environmental Kuznets curve (EKC) hypothesis [6], decoupling analysis has
become increasingly popular, and there is a growing body of literature on the decoupling method
and indicators of decoupling [7-12]. Indeed, as a policy goal, decoupling environmental impact from
economic growth has been adopted by the European Union (EU) and the Green Economy Initiative of
the United Nations Environment Program (UNEP) [13].

Climate change is one of the greatest challenges to mankind today. The increases in anthropogenic
greenhouse gases (GHGs), including carbon dioxide (CO;,), methane (CHy), and nitrous oxide (N,O),
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have important effects on global warming [14,15]. Many studies have empirically assessed the
potential impact of human activities or production sectors on global warming by quantifying the
carbon footprint (CF) [16-18]. Modern agriculture is usually accompanied by high material inputs,
high energy consumption, and high release of pollutants, which all play an important role in GHG
emissions [19]. Extensive studies have evaluated agricultural CFs associated with material inputs or
based on life cycle assessment (LCA). LCA is a commonly used environmental management tool to
assess a product or service from “cradle to grave” [20]. The literature on evaluating the CFs of crop
production generally quantified the GHG emissions from sowing to harvest, including the indirect
emissions from agricultural material inputs and the direct emissions from energy consumption for
farm mechanical operations, NoO from N fertilizer use or the CH4 emissions from rice paddies [21-24].
Studies of CFs for a diverse range of crops have been performed at different geographical scales using
national statistical data or farm survey data [17,25-28], and other studies have described a certain
crop’s CF in more detail, such as for rice [29-31], spring barley [32], and wheat [33]. In addition, GHG
emissions under different cropping systems and farm management practices have been addressed in
detail [21-23,34,35], and the CFs of crop production have also been compared across countries [27].
All these studies have helped to further explore measures to mitigate agricultural GHG emissions and
have put forward potential solutions to develop low-carbon agriculture.

China is a major agricultural producer, and GHG emissions in the agricultural sector account for
17% of the national total [36]. According to previous studies, the CFs of crop production in China [37]
were higher than those in the USA [27] and the UK [17] based on national statistical data. From the
perspective of sustainability assessment, it is not enough to evaluate mitigation measures depending
only on emissions reduction; similarly, it remains difficult to examine if one farming region has taken
effective measures to reduce the carbon intensity of agriculture. The Heilongjiang land reclamation
area (HLRA) is both the most modern grain production base and the largest green grain production
base in China, the application of chemical fertilizers and pesticides in the HLRA is far below the
national standard, and its crop yield per unit area exceeds that of the US [38]. However, it is not clear
if its high crop yield occurs at the expense of high GHG emissions. In this study, we use this area as an
example to estimate the extent to which GHG emissions are decoupled from crop production.

The objectives of this study are, first, to quantify the CFs of crop production (including rice, maize,
soybeans, and wheat) using the LCA approach in the HLRA during 2001-2015; second, to determine
the relationship between crop production and GHG emissions based on a decoupling index; and, last,
to analyze the composition of the CFs of crop production and further provide targeted suggestions for
decision-making for low-carbon agriculture.

The flowchart for the decoupling analysis is shown in Figure 1.

Data from statistical yearbook

Data from the literature Data from field research

v

[ CFs of crop production (CF) ]

v

Crop yield (Y) "'[ DI = %ACF / %AY J
v

[ Decoupling analysis of greenhouse gas emissions from crop production ]

Figure 1. Steps in the decoupling analysis.
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2. Materials and Methods

2.1. Carbon Footprint Calculation

The carbon footprint of crop production was expressed in this study in CO, equivalents (CE)
following the LCA approach. GHG emissions included the direct and indirect emissions from crop
production. The indirect emissions were attributed to the manufacture of agricultural material inputs
(e.g., fertilizers, pesticides and plastic films) and electricity used for rice irrigation; the direct emissions
were attributed to energy consumption from farm mechanical operations including seeding, tillage,
transportation and harvesting as well as N,O from N fertilizer use and CHy emissions from rice
paddies [25].

GHG emissions from agricultural material inputs or sources were expressed as CF; (in tCE) using
Equation (1):

CF, = Y (I; x EE), 1)

where ; is the amount of each agricultural input or source i, including fertilizers (in t), pesticides (in
t), seed (in t), plastic films (in t), electricity for rice irrigation (in kWh) and diesel for machinery (in t),
and EF; is the GHG emission factor in this study (Table 1).

The direct N,O emissions from fertilizer N use were expressed as CFyy0 (in tCE) using Equation (2):

CFyn,0 = Iy X EFyy0 X % x 298, @)
where Iy represents the amount of N fertilizer used (in t), EFny0 is the emission factor for N,O
emissions caused by N fertilizer used (in tN. »O-Nt~1) [39,40], 44/28 is the ratio of molecular weights of
N2O to Ny, and 298 is the net global warming potential of N,O over a 100-year period [40].
The CH4 emissions from a submerged rice paddy in a single season were expressed as CFcya
(in tCE) using Equation (3):
CFcp, = EF; x T x A x 25, 3)

where EF, is a daily emission factor (in tCEha~!day '), T is the rice growing period (in days), A is the
planting area (in ha), and 25 is the relative molecular warming forcing of CHy in a 100-year period [40].
Here, EF; was estimated by Equation (4) due to the restricted condition of data:

EFy = EF. x SFy % SFy X SFy, @)

where EF, is the basic emission factor for fields flooded without organic amendment; SF;;, and SF,
are scaling factors for different hydrological conditions over the rice growing period and before rice
transplanting, respectively; and SF,, is a scaling factor for quantifying organic amendment used for
rice production [41]. All of the above emission factors for agricultural inputs or sources are shown in
Table 1.

The total carbon footprint CF; (in tCE) was calculated for rice production and for dry crop
production (maize, soybeans, and wheat) by Equations (5) and (6), respectively:

CF; =CF + CFNZO + CFCH4 5)

CF; = CF; + CFn,0. (©)

Based on the estimated CF;, carbon intensity in crop yield, CFy (in tCEt_l), and the carbon
intensity in crop area, CF4 (in tCEha~1), were calculated using Equations (7) and (8), respectively,
in terms of crop yield (Y, in t) and crop planting area (A, in ha).

CF

Ry == %
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_ CF
CFy = a (8)

Table 1. Emission factors for agricultural inputs and sources.

Emission Source Abbreviation Emission Factor Reference

1.53 tCEt—1 (N fertilizer); 1.63 tCEt—!

Fertilizer EFf (P fertilizer); 0.66 tCEt—! (K fertilizer) (301
. 0.20 tCEt—! (Herbicide); 16.60 tCEt!
Pesticide EFp (Insecticide) [30]
Plastic film EFpf 22.70 tCEt—1 [30]
Seed EF, 0.58 tCEt—1 [26]
Electricity for irrigation EF. 1.23 x 10—3 tCEKWh—! [26]
Diesel for machinery EF4q 0.89 tCEt—1 [30]
ENTER .
N fertilizer-induced N,O EFn20 ggé;?é\%g&ﬁt—g)(gs:;zﬁg;)’ [39,40]
ggs emissions from rice EFc 1.30 x 10—3 tCH4 ha—1day—1 [41]
SFw 0.52 [41]
SFP 0.68 [41]
SFm 1 [41]

2.2. Decoupling Index
In this article, the decoupling index (DI) is used to indicate the degree of decoupling of GHG
emissions from crop production, following Equation (9):

DI = %ACE/%AY = (CF/CFj_1 — 1)/(Y;/Yj1 — 1), ©)

where %ACF is the percentage change in GHG emissions from crop production, and CF; and CF;_;
denote GHG emissions in a target year j and the base year j — 1; %AY is the percentage change in crop
yield, and Y; and Y; ; denote the crop yield in a target year j and the base year j — 1, respectively.
Six decoupling index values are shown in Table 2.

Table 2. Degrees of decoupling GHG emissions from crop production.

Decoupling Degree Relationship between GHG Emissions and Crop Production
Strong decoupling AY>0,ACF<0,DI<0

Weak decoupling AY>0,ACF>0,0<DI<1

Recessive decoupling AY<0,ACF<0,DI >1

Expansive coupling AY>0,ACF>0,DI > 1

Weak coupling AY <0,ACF<0,0<DI<1

Strong coupling AY <0,ACF>0,DI<0

2.3. Study Area and Data Sources

The HLRA is located in northeast China and includes nine branches with an area of 57,600 km?
(Figure 2). There are four main grain crops in the study area: rice, maize, soybeans, and wheat. Rice
and maize are main crops generally grown in the humid eastern branches, whereas soybeans and
wheat are the main crops grown in the semi-humid western branches. These four crops accounted for
97% of the total output in 2015. The comprehensive utilization rate of agricultural mechanization is
over 94%, and these commodity grains achieve 91% of their annual crop yield in the HLRA, which has
improved national food security.
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Figure 2. Location of the study area.
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Data for quantifying GHG emissions from agricultural inputs or sources were collected from
the National Cost-Benefit Survey for Agricultural Products (2001-2015). Crop yield and planting
area data were collected from the Statistical Yearbook of the Heilongjiang Land Reclamation Area
(2002-2016), and data for quantifying CH4 emissions from the rice paddy, including the rice cultivation
and growing periods, were obtained from field research and existing literature [26,30,39-41].

3. Results and Analysis

3.1. Relationship between Crop Yield and Carbon Footprint

The changes in the crop yields and the CFs of four crops in the HLRA (2001-2015) are shown
in Figure 3; the correlation coefficient, R, between crop yield and the CF was 0.994 at a significance
level of 0.01. Using crop yield as the independent variable, x, and the CF as the dependent variable, y,
the best-fit linear equation relating these two variables was y = 0.2227x + 72.383. The R? and adjusted
R? values of this equation were 0.988 and 0.987, respectively, which indicated a close relationship
between GHG emissions and crop production in the HLRA.

®=(rop yield —®Carbon footprint
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Figure 3. Relationship between carbon footprint and crop yield in the HLRA (2001-2015).
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3.2. Decoupling GHG Emissions from Crop Production

According to Table 2, the results of decoupling GHG emissions from crop production during
2001-2015 in the HLRA are shown in Table 3, and the results based on the average value in the period
2001-2015 are shown in Table 4.

Table 3. Decoupling GHG emissions from crop production in the HLRA.

Crop Yield Growth Rate of Growth Rate of

Year a0ty Crop Yield (%) CF (10* tCE) CF (%) DI Decoupling Degree
2001 832.17 - 255.72 - -

2002 761.31 —8.52 254.98 —0.29 0.03 Weak coupling
2003 717.41 -5.77 226.22 —11.28 1.95 Recessive decoupling
2004 901.22 25.62 262.11 15.87 0.62 Weak decoupling
2005 973.10 7.98 275.83 523 0.66 Weak decoupling
2006 1065.11 9.46 316.12 14.61 1.54 Expansive coupling
2007 1210.07 13.61 360.04 13.89 1.02 Expansive coupling
2008 1337.51 10.53 381.27 59 0.56 Weak decoupling
2009 1631.90 22.01 415.27 8.92 0.41 Weak decoupling
2010 1794.78 9.98 467.96 12.69 1.27 Expansive coupling
2011 2014.16 12.22 512.72 9.56 0.78 Weak decoupling
2012 2085.14 3.52 560.7 9.36 2.66 Expansive coupling
2013 2109.67 1.18 559.8 —-0.16 —0.14 Strong decoupling
2014 2165.06 2.63 542.11 —3.16 -1.2 Strong decoupling
2015 2146.15 -0.87 537.46 —0.86 0.99 Weak coupling

Table 4. Decoupling GHG emissions from crop production in the HLRA (average of the
years 2001-2015).

Crop Yield Growth Rate of Growth Rate of

Branch 10ty Crop Yield (%) CF (10* tCE) CF (%) DI Decoupling Degree
BQL 220.33 6.56 57.72 524 0.8 Weak decoupling
HXL 283.32 7.13 70.3 3.67 0.51 Weak decoupling

JS) 438.37 9.58 125.94 8.72 0.91 Weak decoupling
MDJ 277.5 5.33 73.87 3.71 0.7 Weak decoupling
BA 12237 11.79 21.5 3.91 0.33 Weak decoupling
Js 93.06 11.15 12.81 1.39 0.12 Weak decoupling
QQH 67.357 9.82 15.56 6.21 0.63 Weak decoupling
SH 41.46 6.72 11.98 3.84 0.57 Weak decoupling
HB 12.68 11.93 4.84 8.37 0.7 Weak decoupling

According to Table 3, during 2001-2015, strong decoupling occurred for two years, weak
decoupling occurred for five years, and recessive decoupling occurred for one year, which indicated
that changes in carbon intensity were variable during this period and largely composed of weak
decoupling. GHG emissions of crop production did not increase in proportion with crop yield in the
HLRA for 2013 and 2014. Expansive coupling occurred for four years, and weak coupling occurred for
two years. One of these weakly increasing years, 2015, followed two years of strong decoupling, which
suggests that HLRA continues to face both challenges and opportunities as low-carbon agriculture
continues to develop.

According to Table 4, from the perspective of the branch scale, all branches experienced weak
decoupling between crop production and GHG emissions when considering the mean change from
2001-2015. This analysis revealed the potential for the HLRA to experience strong decoupling with
continued progress.

3.3. Example: Decoupling GHG Emissions from Rice Production

Rice in the HLRA is economically and environmentally important to China, both as the largest
green food base and because of its high-quality rice varieties. On average, rice acreage was 48% of
the total grain-planting area, and rice accounted for 62% of the total grain yield in the HLRA during
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2001-2015. During these years, GHG emissions from rice production accounted for 80% of the total
HLRA CF, with maize, soybeans, and wheat contributing 11%, 7%, and 2% to the total CF, respectively.
Further results of decoupling GHG emissions from rice production with regard to the whole HLRA
and the branch scale over 2001-2015 are shown in Tables 5 and 6.

Table 5. Decoupling GHG emissions from rice production in the HLRA.

Rice Yield  Growth Rate of CF of Rice Growth Rate of

Year (1040 RiceYield (%)  (10°tCE)  CFofRice(%) D! ~ DecouplingDegree
2001 527.42 - 194.14 - -

2002 452.77 —14.15 197.92 1.94 —0.14 Strong coupling
2003 424.16 —6.32 165.73 —16.26 2.57 Recessive decoupling
2004 528.62 24.63 195.99 18.26 0.74 Weak decoupling
2005 573.43 8.48 209.58 6.93 0.82 Weak decoupling
2006 682.5 19.02 250.45 19.5 1.03 Expansive coupling
2007 798.07 16.93 288.25 15.09 0.89 Weak decoupling
2008 842.18 5.53 307.51 6.68 1.21 Expansive coupling
2009 927.32 10.11 322.21 478 0.47 Weak decoupling
2010 1094.39 18.02 373.24 15.84 0.88 Weak decoupling
2011 1278.91 16.86 422.52 13.2 0.78 Weak decoupling
2012 1370.42 7.16 464.38 991 1.38 Expansive coupling
2013 1385.67 1.11 464.6 0.05 0.05 Weak decoupling
2014 1329.35 —4.06 443.6 —4.52 111 Recessive decoupling
2015 1291.51 —2.85 435.93 —-1.73 0.61 Weak coupling

Table 6. Decoupling GHG emissions from rice production at the branch scale of the HLRA (average of
the years 2001-2015).

Rice Yield  Growth Rate of CF of Rice Growth Rate of

Branch a0ty Rice Yield (%)  (10°tCE)  CFofRice(%) D\  Decoupling Degree
BQL 127.57 7.68 45.46 6.79 0.88 Weak decoupling
HXL 151.36 445 54 3.24 0.73 Weak decoupling

JSJ 384.88 11.03 117.57 9.95 0.9 Weak decoupling
MDJ 205.39 391 64.17 3.39 0.87 Weak decoupling
BA 37 57.74 4.62 5.38 0.09 Weak decoupling
JS 3.54 41.43 4.26 10.15 0.24 Weak decoupling
QQH 40.09 10.23 13.01 6.74 0.66 Weak decoupling
SH 16.18 1.3 717 2.36 1.82 Expansive coupling
HB 6.44 8.35 3.50 7.85 0.94 Weak decoupling

According to Table 5, weak decoupling was the most common outcome, observed for seven years
of the study period, whereas recessive decoupling was observed for two years. No strong decoupling
was observed, but expansive coupling was observed for three years, and both strong coupling and
weak coupling were observed for one year each. In 2003 and 2014, when the growth rate of CF of
rice production decreased by —16.26% and —4.52%, respectively, rice yield decreased accordingly by
—6.32% and —4.06% compared with the previous year, respectively. The desired decoupling between
GHG emissions and rice production was therefore not observed during these years. Worse than that,
strong coupling was observed in 2002, when the CF of rice production increased by 1.94%, despite
a decrease in rice yield of 14.15%. Both increases and decreases in carbon intensity in rice production
were observed; even weak coupling occurred, most recently in 2015, and there was no clear trend
across the time series.

Seen from the branch scale over 2001-2015 (Table 6), on average, each branch except the SH
branch achieved a weak decoupling of GHG emissions from rice production. However, the rate of rice
yield growth (1.3%) failed to exceed that of the rice CF growth rate (2.36%) in the SH branch, which led
to the degree of expansive coupling.
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4. Discussion

Generally, we can evaluate GHG emissions based on the reduction in the carbon footprint;
however, some indeterminacy remains when diagnosing the effective quantity of emissions reduction,
and we thus need to link it with the economic development process. As a supplementary method,
the frame of decoupling focuses on the relationship between economic growth and environmental
pressure, which helps to create a better understanding of the nature of green growth, further remove
barriers to decoupling, and encourage policies towards decoupling [5]. Recently, many studies have
used a panel VAR approach or a log mean division index (LMDI) decomposition method to analyze
the factors that affect GHG emissions in the manufacturing or transport sector [12,42-45]; however,
these methods are addressed less in the decoupling of GHG emissions from the agricultural sector.
In this discussion section, we compare the carbon footprint of crop production in the HLRA within
different countries, analyze the composition of carbon footprint, and further focus on rice production.

4.1. Comparative Analysis of Carbon Footprint

According to Equation (7) for carbon intensity in crop yield, the CFy in the HLRA varied by crop.
On average, rice production possessed the highest CFy (0.36 tCEt~!), maize production possessed the
lowest CFy (0.12 tCEt™ 1), and the CFy for soybean and wheat production showed intermediate values
of 0.19 tCEt ! and 0.21 tCEt ™!, respectively. Compared with existing research results (Table 7), most
CFy values of crop production in the HLRA were lower than the average value in China, except for
soybeans (0.10 tCEt~1), and the CFy of soybean and wheat production in the HLRA was close to that
of the USA.

Table 7. Comparison of international carbon intensity in crop yield.

Country/Region Crop CFy (tCEt™')  Reference
HLRA Rice 0.36
Maize 0.12
Soybeans 0.19
Wheat 0.21
China Rice 0.80 [25]
Maize 0.33 [25]
Soybeans 0.10 [46]
Wheat 0.65 [25]
USA Maize 0.12-0.25 [47]
Wheat 0.25-0.35 [47]
Canada Wheat 0.27-0.50 [48]
India Rice 1.2-15 [49]
Wheat 0.12 [49]

We observe a better relationship between crop production and GHG emissions in the HLRA than
in other regions of the world. However, as various values of the decoupling index were observed,
it did not appear that the carbon intensity of agriculture in the HLRA steadily decreased.

4.2. Composition Analysis of Carbon Footprint

The compositions of the CFs for the four major crops in the HLRA during the period 2001-2015 are
shown in Figure 4. On average, CHy was the biggest contributor (41%) to the total CF, which indicated
that rice production was the main source of GHG emissions in the HLRA. Direct N,O emissions
and indirect emissions from N fertilizer input together represented the second-biggest contributor
(25%), with electricity for irrigation (11%) representing the third-largest contributor to the CF. All other
sources, including P fertilizer (4%), seed (4%), plastic films (6%), diesel (7%), and K fertilizer and
pesticides (1%), were minor contributors to the HLRA CF.
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Figure 4. Composition of CFs for crop production in the HLRA (2001-2015). A: Plastic film;
B: Electricity; C: Pesticide; D: P fertilizer; E: K fertilizer; F: Seed; G: Diesel; H: CHy; It N fertilizer + N,O.

Agricultural material inputs or sources to the HLRA CF are shown in Figure 5. For rice production,
51% of the CF was derived from CH, emissions, followed by the sum of direct N,O emissions and
indirect emissions from N fertilizer use (16.06%), electricity for irrigation (13.98%) and plastic film
(8.89%). The remaining five inputs and farming operations amounted to 10.07% of the total CF.

In contrast, the sum of direct N,O emissions and indirect emissions from N fertilizer use was
the largest contributor to the CFs of dry crops (maize, soybeans, and wheat), accounting for 72.9%,
44%, and 49.5% of the CF for maize, soybean, and wheat production, respectively. The second largest
contributor to the total CFs for both maize and soybean production was diesel (12.28% and 22%,
respectively), and seed was the second largest contributor for wheat production (23.3%), followed by
diesel (12.05%). Overall, N fertilizer input and N, O from N fertilizer use were the dominant sources of
GHG emissions in dry crop production, although CHy4 was the dominant source of GHG emissions in
rice production. In contrast, pesticides contributed a small amount to each crop’s CF, especially for
rice production (0.4%).
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Figure 5. Composition of CFs based on crop structure in the HLRA. (Average of the years 2001-2015).
A: Plastic film; B: Electricity; C: Pesticide; D: P fertilizer; E: K fertilizer; F: Seed; G: Diesel; H: CHy;
I: N fertilizer + N,O.
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4.3. Analysis of the CF of Rice Production

As reported above, rice production played an important role in the HLRA and constituted the
vast majority of the CF in this region (80%). In recent decades, eight branches (except the SH branch)
experienced a weak decoupling between crop production and GHG emissions (Table 6). Here, we take
the JSJ branch and the SH branch of the HLRA for comparative analysis (Figures 6 and 7).
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Figure 6. Carbon intensity in area for rice production in the JSJ branch and the SH branch (2001-2015).

The JS] branch is the largest branch in the HLRA, and its rice planting area and rice yield occupied
41% and 43% of the HLRA total. In contrast, the rice planting area and rice yield in the SH branch each
occupied 2% of the HLRA total. There was a distinct difference in trends between CF and rice yield
between these two branches (Figure 6). According to Equation (8) for carbon intensity per area, the
CFy of rice production in the JS] branch fluctuated from 2539 kgCEha~" to 2775 kgCEha~!, which was
below the average CF, in the HLRA (2919 kgCEha '), whereas the CF of rice production in the SH
branch fluctuated from 3323 kgCEha~! to 4503 kgCEha~!.
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Figure 7. Carbon intensity per area for rice production in the JSJ branch and the SH branch (average of
the years 2001-2015).

The SH branch required more electricity for irrigation, more fertilizer input (especially more
N fertilizer), and more diesel input per unit area, all of which contributed to a higher CF4 for rice
production (Figure 7). It is clear that high material inputs with low utilization efficiency contributed to
its degree of expansive coupling. Based on this result, we suggest targeted measures for the SH branch
to mitigate GHG emissions from rice production, such as decreasing agricultural material inputs
(including fertilizers, electricity for irrigation, diesel, and plastic films), improving the utilization
efficiency of agricultural material inputs and increasing agricultural productivity.
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5. Conclusions

In this paper, a decoupling index based on carbon footprint and crop yield was used to examine
the relationship between crop production and GHG emissions in the HLRA during the years 2001-2015.
The results indicated that various decoupling degrees (including strong decoupling, weak decoupling,
and recessive decoupling) occurred during more than half of the study phase across the entire HLRA,
although each branch showed weak decoupling based on the average value from 2001 to 2015.
In addition, rice production constituted 80% of the total CF in the HLRA, and weak decoupling
occurred more frequently at the scale of the entire study area and at the branch scale (except for the SH
branch, which showed expansive coupling).

Seen from the results of the decoupling analysis, although a high appearance frequency of weak
decoupling occurred during 2001-2015 in the HLRA, the status of weak decoupling was not steady,
which highlights both pressures and challenges for the HLRA as it develops towards green growth.
We also found that high material inputs with low utilization efficiency contributed to a poor relationship
between crop production and GHG emissions and that fertilizer was an important contributor to the
total CF of crop production. Since it is the major source of GHG emissions from agriculture in the
HLRA, we should pay more attention to rice production, in particular for the SH branch.

The current work of decoupling analysis aims to examine the relationship between GHG emissions
and crop production, using HLRA as an example. In fact, there is a limitation to the decoupling concept,
which lacks a direct contact with the environmental process. Based on the results of decoupling analysis,
next we will borrow from the experience of others and use the LMDI decomposition methodology
to analyze factors that affect GHG emissions in crop production processes, in view of the activity
effect, the structure effect, and the intensity effect. Further integrating more detailed information about
GHG emissions from crop production processes could contribute to more targeted suggestions for
low-carbon agriculture.
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Abstract: Climate change is an important global environmental threat. Agriculture aggravates
climate change by increasing greenhouse gas (GHG) emissions, and in response, climate change
reduces agricultural productivity. Consequently, the modern agricultural development mode has
progressively transformed into a kind of sustainable development mode. This study aimed to
determine the environmental impact and carbon footprint of Dongshan tea from Yilan County.
Environmental impact was assessed with use of SimaPro version 8.0.2 and IMPACT2002+. Results
showed that climate change has the largest impact upon it in general, followed by human health,
natural resources, and ecosystem quality. Furthermore, with use of the IPCC 2007 100a method for
carbon footprint of products (CFP), conventional tea was found to have a CFP of 7.035 kgCO;-e, and
its main contributors are the raw material (35.15%) and consumer use (45.58%) phases. From this case
study, we found that the hotspots of the life cycle of environmental impact of Taiwanese tea mainly
come from fertilizer input during the raw material phase, electricity use during manufacturing, and
electricity use during water boiling in the consumer use phase (which contributes the largest impact).
We propose the ways for consumers to use of highly efficient boiling water facilities and heating
preservation, and the government must market the use of organic fertilizers in the national policy
subsidies, and farmers have to prudent use of fertilizers and promote the use of local raw fertilizers,
and engagement in direct sales for reducing the environmental impacts and costs of agricultural
products and thus advancing sustainable agriculture development.

Keywords: tea; climate change; sustainable agriculture; environmental impact; carbon footprint

1. Introduction

The IPCC Fifth Assessment Report states that greenhouse gas (GHG) emissions from human
activity have been the major factor for global warming since the middle of the 20th century. Agriculture
and relevant land use transition contributed 17% of the world’s anthropogenic GHG emissions in
2010 [1]. FAO [2] predicts a population of nine billion people by 2050, and to have sufficient food supply,
agricultural production should increase by 60% by the same year. This assumption has resulted in the
over-intensification of agriculture production systems that fail to consider the environmental impact
of agricultural activities, causing several adverse effects on environment, such as water pollution,
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soil degradation and erosion, biodiversity loss, and deforestation [3,4]. Environmental sustainability
is a challenge for agriculture, given that the latter is a major contributor of global environmental
impacts, especially land degradation, freshwater depletion, nutrient and pesticide pollution, and GHG
emissions [5,6]. Climate change can interfere with food availability; for example, temperature rise,
precipitation pattern changes, extreme weather events, crop pests, disease outbreaks, and water
shortage may result in the reduction of agricultural productivity [7,8]. Therefore, weakening the risks
posed by climate change to food security is a major challenge.

Sustainable agriculture is based on emphasizing environmental quality, improving agronomic
productivity, and minimizing global climate change. It is a type of agriculture that uses external
energy inputs lightly and efficiently and may involve decreases in industrial mineral fertilizers,
agrochemical input, and increases in the profit margins of farming systems [9,10]. Sustainable
agricultural systems will require a conversion from the dominant industrial agriculture formation
to one that conserves water and land, along with plant and animal genetic resources, and that
is environmentally non-degrading, economically viable, technically appropriate, and socially
acceptable [11,12]. Sustainable agriculture can raise productivity and meet sustainability criteria
to satisfy increasing human needs meanwhile contributing to the recovery and sustainability of
landscapes, the biosphere, and the earth systems [13].

Life cycle assessment (LCA) is a suitable and powerful means to evaluate environmental impact.
It links up with a product, producing process, or activity during its life cycle from raw material
extraction or production to final disposal, namely, “cradle to grave.” Moreover, LCA is the method
that can assess the whole life cycle of a product or service. In the last few years, this methodology
has begun to concentrate on agriculture and its affected environmental impacts, such as climate
change, eutrophication, acidification, nutrients, fertilizers, and crops [14-16]. However, studies
rarely consider the entire agricultural system, which comprises various activities (e.g., cropping,
breeding, nutrient leaching) and materials (e.g., fertilizer, feeds), which would provide a systematic
analysis and comprehensive strategies [17]. Environmental LCA is a significant method for presenting
environmental improvements, given that it quantifies sources of impacts throughout a product’s
life cycle for various environmental impacts, thereby allowing environmental improvements to be
determined and ranked; this method has been confirmed to be useful [18-21]. The concept of circular
economy is changing our awareness on waste. Life cycle assessment (LCA) is a method to assess
environmental impacts by recycling, recycling and recycling from cradle to cradle to narrow the
generation of waste [22].

Taiwan imports more than 90% of its energy and suffers from the effects of climate change,
including sea level rise and the resulting energy instability and GHG emission offset, which are
now serious problems facing the country [23]. Environmental sustainability is a challenge for
agriculture, given that the latter substantially contributes to global environmental impacts, especially
land degradation, freshwater scarcity, pesticide pollution, and GHG emissions [24]. Tea is an important
domestic economic crop in Taiwan [25]. Therefore, Dongshan tea was selected as the object of this study,
and the study region was Yilan County. This work specifically aimed to accomplish the following:

(1) Comprehend the environmental impact from the carbon emission and life cycle of Dongshan tea
via LCA;

(2) Determine the carbon emission sources from Dongshan tea from cradle to grave according to the
results of LCA;

(3)  Assess the study results and propose proper countermeasures for reducing environmental impact
and carbon emission.

Tea is primarily produced from the leaves of the plant Camellia sinensis and is the oldest and
a commonly consumed beverage in the world because of its refreshing effect and mild stimulant
properties, as well as the medicinal and general health-promoting properties produced by three major
characteristic secondary metabolites (catechins, theanine, and caffeine); tea has had enormous medical,
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economic, and cultural importance since ancient times [26,27]. Tea production is geographically limited
to a few areas around the world. In 2009 to 2013, global tea production grew 20 percent rate to reach
5.06 million tonnes, as shown in Figure 1 [28]; furthermore, world tea production is projected to reach
8.07 million tonnes in 2027 [29]. Recently, the production and consumption of tea have dramatically
increased. Over two billion people drink tea in more than 125 countries [30]. Its remarkable health
benefits are the main reason for its consumption [31,32]. However, many studies have discovered that
tea expansion causes disturbances to ecosystems, threatens biodiversity preservation, and increases
carbon dioxide emissions [33]. The interaction between agriculture and the natural environment
is strong, and investigations on the contribution of farming systems to environmental degradation
have been increasing gradually in regions with intensive agriculture practices. As for the increasing
consumer awareness and interest in sustainability issues, the assessment of environmental impact and
the usage of resources in distribution systems and food production have become indispensable [34].
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Figure 1. System boundaries and process of Dongshan tea.

The life cycle concept is being increasingly emphasized and regarded as a main idea in ensuring
the transition to sustainable production and consumption patterns. LCA has been used broadly for
assessing agricultural systems and food processing and manufacturing activities for ensuring sufficient
and thorough support in decision-making under business and policy development circumstances [15].
Therefore, an extensive review of literature was conducted by the current work to sort out studies that
contained subjects related to LCA for the same agricultural products. Then, their assessment tools
were assessed for the main applying direction for the cases that use LCA. Results are shown in Table 1.

Table 1. Comparison of LCA in agricultural products.

System

Boundaries Method Results

Reference Product/Country

Most pollutant inputs were machinery and

Farshad et al. [35] Tea/Iran Cradle to grave CML-IA diesel fuel.

Energy use was the highest in the consumer
Munasinghe et al. [36] Tea/Sri Lanka Cradle to grave LCA use phase, whereas CO, emission was
highest in the packaging phase.

CO, emission was highest in the consumer

Azapagic et al. [37] Tea/Kenyan Cradle to grave IPCC 100 use phase.
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Table 1. Cont.

System

Reference Product/Country . Method Results
Boundaries
Fertilizer use in raw material phase and
Chen et al. [38] Tea/Taiwan Cradle to grave PAS 2050 energy use in consumer use phase were
hotspots.
Lietal. [39] Vegetables/China Farm gate to USEtox 2.01 Vegeta{ble mulhcropp}ng system use would
farm gate result in reduced environmental impacts.
Shen et al. [40] Vegetables/China Farm gate to LCA Venlo-greenhouse environmental impact was
farm gate the most serious.
Theurl et al. [41] Vegetables/Austria ~ Cradle to market ~ Ecoinvent v2.2 }i‘;;i?fd winter vegetable production was
Liu et al. [42] Pear/China Cradle to market pcCoopy  Using manure for biogas production and
organic farming can reduce GHG emission.
Ingrao et al. [43] Peach/Sicilian Cradletograve  IMPACT2002+  LArsestimpacts were due to huge volumes of
water and energy used by irrigation.
Longo et al. [44] Apple/Italy Cradle to gate ILCD 2011 Largest energy and environmental impacts

were due to fertilizers, pesticides, and diesel.

Researches on LCA for tea have generally focused on cradle to grave in environmental impact and
overall sustainability analyses. Farshad et al. [35] worked on an environmental-economic analysis of
tea’s life cycle in Iran from cradle to grave. LCA results indicated that the major pollutant inputs were
machinery and diesel fuel in farms and factories, whereas the three-layer packaging design had the
smallest environmental impact. Munasinghe et al. [36] focused on environmental impacts, economic,
social, and overall sustainability of the tea sector in Sri Lanka from cradle to grave. Their results
showed that energy use was highest during the consumer use phase; CO, emission was highest
(44-47%) during the packaging phase; labor use was highest during the cultivation phase; and cost
was highest in the cultivation and purchasing phases. Chen et al. [38] studied the Organic Tea Product
Supply Chain Process Map and Carbon Footprint of Taiwan from cradle to grave. LCA results found
that the carbon footprint of tea was 12.53 COyeq/kg, which was highest (48.87%) during the raw
material phase, followed by the consumer use phase (31.8%). Fertilizer use during the raw material
phase and energy use during the consumer use phase were the identified hotspots.

In the field of LCA research on vegetables, Li et al. [39] studied a highly diverse vegetable
multi-cropping system in Fengqiu County (China) from farm gate to farm gate. Results showed that
a vegetable multi-cropping system would cause even fewer environmental impacts compared with
a single-cropping system. Shen et al. [40] studied the three facility modes of vegetable production
in China from farm gate to farm gate. LCA results indicated that the serious impact on fresh water
depletion and human, fresh water, and terrestrial toxicity is solar greenhouse. Furthermore, the
venlo-greenhouse environmental impacts are 101 and 740 times more serious than the solar greenhouse
and pollution-free approaches, respectively. Theurl et al. [41] studied unheated, soil-grown winter
vegetables in Austria via LCA from “cradle to gate”. LCA results found that unheated winter vegetable
production was more feasible than existing systems in Austria and Italy.

In the field of LCA research on fruits, Liu et al. [42] studied fossil energy use and greenhouse
emission in Chinese pear production from cradle to gate. LCA results showed that GHG emissions
in the pear production chain can be reduced by the use of manure in biogas production, transition
from conventional farming to organic farming, and reducing of mechanical cultivation. For reducing
environmental impacts, LCA could be applied as a means to conduct selections of agricultural inputs.
The work of Ingrao et al. [43] highlighted environmental hotspots in Sicilian peach production systems
from cradle to grave. LCA results found that irrigation methods had the most serious impact due to the
use of large volumes of water and energy. With improvements in irrigation methods, the production
process and usage of agricultural machinery can reduce GHG emissions. Longo et al. [44] studied
organic and conventional apple supply chains in the north of Italy from cradle to gate. LCA results
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showed that a considerable share of the overall energy and environmental impacts in farming was
because of the diesel consumption of agricultural machines and the use of fertilizers and pesticides.

Research on the sustainability of tea production and consumption shall produce important
information about means of improving the global tea industry and about output key experiences for a
broad range of other agri-industries and contribute greatly to make development more sustainable [36].
According to Table 1, environmental LCA is a useful means for reporting environmental improvements,
given that it quantifies causes of impacts across the product’s life cycle for a range of environmental
impacts and provides relevant facts and information that can guide decisions on practice change.
By contrast, substantial research methods of LCA are available, but most of them are complex and
time consuming. Therefore, the simplification and standardization of LCA methods will assist in the
development of sustainable agri-industries.

2. Materials and Methods

2.1. Study Scope and Goal

Defining system boundaries on the basis of related goals is the first step in LCA (Figure 2).
Dongshan Township (Yilan County) in the east of Taiwan was the main field in this study. Tea is
the major crop in the area, which measures approximately 0.41 hectare and tea production volume
is approximately 150 kg. Teas have been produced here since 1987, and tea saplings originate from
Nantou. Even without applications for organic certification, mountain spring water is being used for
irrigation, and soybean meal is being applied as base fertilizer, aided with a few chemical fertilizers
and pesticides. The cultivation method is relatively eco-friendly [45].

Field investigation and literature collection were conducted for assessing the cradle-to-grave
data, including materials obtained, manufacturing, distribution and transportation, consumer use,
and disposal and recycling phases. A PAS 2050-based LCA approach was used to evaluate the
environmental impact and carbon emission from each phase through SimaPro 8.0.2 (PRé Consultants
B.V., Amersfoort, the Netherlands), and the concept of LCA was employed for determining the
environmental impact and carbon emission of the product and for proposing countermeasures for
carbon emission reduction.

Raw materials Manufacture Distribution Consumer use Disposal

« Sapling

Fertilizer Withering Farmers
. B asspciation

Pesticides Uee | | Disposal |
= Biocontrol

i Waste
1 e

l Materials Waste |
e =
Packa;
materials [ L oe Transport
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Figure 2. System boundaries and process of Dongshan tea.
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2.2. Life Cycle Inventory (LCI) Analysis and Limited

LCI analysis is the second step in LCA; it aims to obtain an accurate study of product carbon
footprint. Although PAS 2050, TS-Q 0010, and Product Life Cycle Accounting and Reporting Standard
and ISO14067 all consider that treatments of specific emissions and removals are given of land use
change, renewable power resources, and carbon storage, as well as delayed emissions, these approaches
are different and incomplete [46]. Inventory data for the study were obtained from face-to-face
interviews, databases, and other studies; however, the inventory of land use change, delayed emissions,
renewable power resources, and carbon storage was excluded from this study due to limited manpower
and material resources [46], and CO, absorption by growing plants was not considered [47].

Data collected from tea sapling acquisition, transport, and disposal phases were from the
factories. Data for cultivation (Compound fertilizer (15-15-15 = 15% nitrogen, 15% phosphorus,
and 15% potassium), Soybean meal (6.8-1.5-2.3), pesticide (herbicide), gasoline for transport, PE barrel,
and PVC tube) and manufacturing (withering, rolling, fermenting, drying, sorting, and packaging)
were collected from factories and other in-country studies [48]. At the consumer use phase, relevant
emissions, such as boiling water used to brew tea, were assessed. In this study, 1 kg tea was assigned as
the functional unit; 10 g tea and 0.5 L water were assigned for the consumer use phase; and 0.06 kWh
from using an electric kettle with grid electricity for boiling a pot of water and 0.35 L wastewater was
assumed to be energy consumption for assessment. The LCI result for a 150 kg production in 0.41 ha
land use is shown in Table 2.

Table 2. Inventory of data for Dongshan tea LCI.

Processing Material/Energy Quantity Unit
Sapling transport 23.25 TKM
Machine (diesel) 1.5 L
Machine (gasoline) 55.6 L
R terial Compound fertilizer (15-15-15) 240 kg
aw materials Soybean meal (6.8-1.5-2.3) 60 kg
Pesticide (herbicide) 0.5 L
PE (tube and barrel) 13.99 kg
PVC tube 1.99 kg
Machine (electricity) 172.42 kWh
Manuf Kerosene 5 L
anufacture Liquefied petroleum gas 51.81 L
Polythene bag 15 kg
Distribution Finished product transport 8.25 TKM
Boiling of water 900 kWh
Consumer use Tap water 7.5 m?
Wastewater 5.63 m3
. Retort pouch (landfill) 50 kg
Disposal Papers (incineration plant) 60 kg

2.3. Carbon Footprint Analysis

For quantifying the GHG impact of a product, PAS 2050, TS-Q 0010, Product Life Cycle Accounting
and Reporting Standard, and 15014067 provide principles and requirements. Although methodologies
and procedures of these standards are similar, some differences still exist; quantization evolving from
GHG activity data multiplied by GHG emission or removal factors is recommended and in common
use [46]. In this study, this equation was used to quantify the carbon footprint for Dongshan tea from
cradle to grave.

Emission factors were mainly obtained from the database of Taiwan Environmental Protection
Administration, and the rest were based on the SimaPro 8.0.2 database and other public data. The GWP
value was used on the basis of IPCC 2007 100a, and the carbon dioxide emissions generated from
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electricity consumption (0.532 kg CO,e/KWh) were determined by Taiwan’s National Greenhouse
Gas Registry website [49].

2.4. Life Cycle Impact Assessment (LCIA)

Environmental impacts were assessed using IMPACT2002+, with an assessment pattern involving
five steps, namely, characterization, damage assessment, normalization, weighting, and single score
computation [50]. This assessment method indicates a workable implementation of a combined
midpoint and damage approach, integrating all kinds of life cycle inventory results from 13 midpoint
categories to four damage categories. These midpoint categories can make the interpretation easier
and more useful for optimizing the damage categories [51].

The 13 midpoint categories of IMPACT 2002+ are carcinogens, respiratory, noncarcinogens,
inorganics, ozone layer depletion, ionizing radiation, respiratory organics, terrestrial ecotoxicity,
aquatic ecotoxicity, terrestrial acidification/nutrification, land occupation, nonrenewable energy,
global warming potential, and mineral extraction. The four damage categories are climate change,
human health, ecosystem quality, and resources. Jolliet et al. [51] introduced the set of normalization
factors, which were applied to change each category value into a new damage unit to conquer the
problems. The relations between impact categories and damaged categories are shown in Table 3.

Table 3. IMPACT 2002+ damage unit values.

Damage Categories

Value/Damage Unit Midpoint Category Value Damage Unit
Carcinogens 1.45 x 10~° DALY /kg CoH;Cl
Human health Nloncarci-nogens ) 1.45 x 10:2 DALY/kg CoH3Cl
0.0077 Respiratory inorganics 7.00 x 10 DALY/kg PM; 5
DALY /pers/yr Ozonfe %ayer de;plgtion 1.05 x 1073 DALY /kg CFC-11
Tonizing radiation 2.10 x 10710 DALY/Bq C-14
Respiratory organics 213 x 1076 DALY /kg CoHy
Aquatic ecotoxicity 8.86 x 107° PDF x m? x yr/kg TEG water
Ecosystem quality Terrestrial ecotoxicity 8.86 x 107° PDF x m? x yr/kg-TEG soil
4650 Terrestrial 2
PDF x m? x yr/pers/yr  acidification/nutrification 1.04 PDF x m® x yr/kg SO,
Land occupation 1.09 PDF x m? x yr/m?org.arable
Climate change .
9950 Gl"bzlté’;iirg‘mg 1 kg CO,/kg CO,
Kg CO, /pers/yr P
Resources Nonrenewable energy 5.10 x 102 M]J primary/M] primary
152,000
M] primary/pers/yr Mineral extraction 45.6 M] primary/M] surplus

3. Results and Discussion

3.1. Carbon Footprint Analysis Results

In the case study of Dongshang tea, the carbon footprint is approximately 7.035 CO,eq/kg, and
the ratio is roughly in accordance with the study of cradle to grave from local experts [38]. Details are
specified in Figure 3. Our study found that consumer use, accounting for 45.58% of the total, is the
major source of carbon emissions in the tea product life cycle. The raw material phase is the second
main source of carbon emissions, accounting for 35.15% of the total, followed by the manufacturing
phase, which accounts for 18.67% of the total. Distribution and disposal phases have a low percentage
of emissions.
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Figure 3. Overall carbon emission (kgCO,eq/kg) contribution.

In this study, the raw material phase, which involves machinery use, fertilizer application,
sapling transport, and pesticide use, contributes 2.473 CO,eq/kg per kg of tea, and nitrogen fertilizer
inputs into planting and growing was identified as a hotspot. Since the 1850s, a large volume of
anthropogenic nitrogen fertilizer has been applied to agricultural land to facilitate crop production.
Improper nitrogen fertilizer management causes various ecological and environmental problems,
and compared with the production of phosphate and potash fertilizers, that of nitrogen fertilizers
demands more energy requirement. Therefore, carbon footprint can be reduced via the efficient use of
nitrogen fertilizers [52,53].

The manufacturing phase contributes 1.313 CO,eq/kg per kg of tea, and the use of LPG roller
fixation machine and electricity consumption for hot air drying were identified as hotspots. The four
main types of tea are black, green, white, and Oolong. Although they all originate from C. sinensis,
they are produced with varying fermenting degrees. Black tea is fully fermented; Oolong tea is
semifermented; white tea is low fermented, and green tea is nonfermented [54].

At the consumer use phase, tap water, boiling of water, and wastewater contribute 3.207 CO,eq/kg
from 10 g tea and 0.5 L water. The main source of carbon emissions in the tea product life cycle is
electricity consumption from boiling a pot of water at 0.06 KWh using an electric kettle with grid
electricity. Results in this study confirmed the findings of Munasinghe et al. [36], Azapagic et al. [37],
and Doublet and Jungbluth [55]. Therefore, carbon footprint can be reduced through the minimization
of the frequency of boiling water (such as heat preservation) or use of highly efficient boiling water
facilities. The Taiwan Bureau of Energy, Ministry of Economic Affairs initiated the voluntary Energy
Label program in order to urge manufacturers to invest in research and development of energy-efficient
products and promote the deployment of energy efficiency technologies. A consumer environment that
values highly energy-efficient products could be created, given that consumers could easily recognize
such products through the “Energy Label.”

3.2. LCIA Results

The software SimaPro was used in this study to calculate the environmental impact of Dongshan
tea, and the calculation was performed via the IMPACT 2002+ assessment method. Figure 4 shows the
normalization environmental impact category of Dongshan tea. The figure indicates that the biggest
environmental impact categories are human health, climate change, resources in the raw material
phase, and climate change in the consumer use and manufacturing phases.
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Figure 4. Normalization environmental impact of Dongshan tea.

This study found that 96% of the impact of resource categories comes from the raw material
phase, the main midpoint being nonrenewable energy. The impact of climate change categories is quite
similar with carbon footprint analysis; 46%, 35%, and 19% come from the consumer use, raw material,
and manufacturing phases, respectively. The distribution and disposal phases have a lower percentage
of environmental impacts due to the concept of local use and consumption, which minimizes food
miles and waste materials through the use of large packing sizes for tea. Ecosystem quality yielded
a negative value in the raw material phase, given that mountain spring water and soybean meal are
used as base fertilizer and only minimal amounts of chemical fertilizers and pesticides are applied;
the cultivation method in this tea farm is relatively eco-friendly.

This study found that 97% of the impact of human health categories comes from the raw material
phase, and the largest midpoint is respiratory inorganics, which contributes 76%. Paramesh et al. [56]
also reported that the life cycle assessment pointed out on-farm emissions are the hotspot for
respiratory inorganics, whereas fertilizers are a potential hotspot. With increased chemical fertilizer
inputs and adoption of new technologies, crop yields have increased steadily, and food security has
improved, although it results in soil deterioration, GHG emissions, and water contamination [57,58].
Fertilizers are held responsible as the main factor for that category; however, compared to climate
change and fossil fuel depletion, these emissions are relatively low. With an optimized fertilization
strategy (including use compound fertilizer, and shorten transportation distances), the environmental
burden can be reduced [47]. Although the influence of organic fertilizers on crop yield is gradual
and changeable in a short period of time [59], the application of organic fertilizers, instead of
chemical fertilizers, is economically practical, contributes considerably to environmental sustainability,
and increases agricultural production [60]. In addition to spreading awareness about the importance of
environmental sustainability, national policy subsidies must market the use of organic fertilizers [61,62].
For encouraging the development of organic agriculture in the country, organic agriculture and
eco-friendly farming promotion have been included in 10 key policies of the new agriculture policy by
the Taiwan Council of Agriculture. Since 2017, subsidies for organic and eco-friendly farming have
been in place; a user receives NTD 3 per kg by using the recommended fertilizer brand, and for every
10 t organic fertilizer applied on a hectare of land, a user receives NTD 30,000.

4. Conclusions and Perspectives

This study investigated the environmental impact of Taiwanese Dongshan tea, the carbon footprint
assessment of growth in Yilan, and the consumption of tea in Taipei, covering the raw material,
manufacturing, distribution and transportation, consumer use, and disposal and recycling phases.
LCA results showed that energy used in the consumer use phase is the main hotspot in the case of
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Dongshan tea, and the biggest environmental impact in the human health category comes from the
use of fertilizers in the raw material phase. Therefore, a national policy of subsidizing use of organic
fertilizers and optimized fertilization strategy can reduce the environmental impact.

The largest energy consumption and life cycle environmental impact during tea processing is
contributed by black tea (versus Oolong and green) [63]. Dongshan tea is a kind of black tea, where the
emissions of LCA is the remaining 18.67% in the manufacture phase. In this case, solar power can be
utilized directly or indirectly during leaf drying and withering, thus reducing energy use.

Tea is the most widely consumed nonalcoholic beverage in the world apart from water [64];
therefore, improving sustainability in the tea industry will facilitate sustainable production and
consumption. Hence, we propose some measures for reducing carbon footprint and environmental
impact, including the use of highly efficient boiling water facilities and heating preservation.
The implementation of these measures will minimize the frequency of boiling water in the consumer
use phase and decrease the use of nitrogen fertilizers in the raw material phase.

An entire change of the economic model is impracticable; thus, a progressive conversion of
consumer behavior is feasible in achieving an environmentally sustainable society [65]. In summary,
LCA is an internationally recognized approach for the environmental assessment of products and
processes [66]. The methods, results, and conclusions in this study can be used as a reference by
future researchers. In addition, this study provides a complete impact analysis and identifies relevant
hotspots. Results provide essential data for policymakers, tea producers, and consumers, and the
suggested measures for the reduction of environmental impact can contribute toward a low-carbon
and sustainable agricultural development and consumption.
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Abstract: In order to reduce the taxiing time of departing aircraft and reduce the fuel consumption
and exhaust emissions of the aircraft, Shanghai Honggiao Airport was taken as an example to study
the control strategy for aircraft departure. In this paper, the influence of the number of departure
aircraft on the runway utilization rate, the takeoff rate, and the departure rate of flight departures
under the conditions of airport runway capacity constraints are studied. The influence of factors,
such as the number of departure aircraft, the gate position of the aircraft, and the configuration
of airport arrival and departure runways, on the aircraft taxiing time for departure is analyzed.
Based on a multivariate linear regression equation, a time prediction model of aircraft departure
taxiing time is established. The fuel consumption and pollutant emissions of aircraft are calculated.
The experimental results show that, without reducing the utilization rate of the runway and the
departure rate of flights, implementing a reasonable pushback number for control of departing
aircraft during busy hours can reduce the departure taxiing time of aircraft by nearly 32%, effectively
reducing the fuel consumption and pollutant emissions during taxiing on the airport surface.

Keywords: aircraft; taxi time; takeoff rate; pushback control; green transportation; carbon emissions;
reducing carbon emissions

1. Introduction

With the rapid development of air transportation, the number of flights at major airports in China
has been increasing, making airport surface runways congested. This, in particular, causes the aircraft
on airport surfaces to take a long time to taxi, and an excessive number of flights to wait in line at the
entrance to the runway. Due to premature pushback of aircraft and waiting on crowded taxiways,
an additional 10-20 kg of fuel consumption is added for each additional minute of taxi time [1,2],
resulting in an increase in aircraft exhaust emissions affecting the air quality around the airport.

A series of studies have been conducted by scholars at domestic and foreign terminals to control
the number of aircraft departing from airport surfaces and reduce the congestion time in aircraft
taxiing. In 2007, Balakrishnan H and Jung Y [3] studied the airport surface operation of Dallas—Fort
Worth airport by establishing an integer programming model. This study shows that using the
method of delaying the pushback time of departing aircraft can reduce the number of airport surface
taxiing aircraft and reduce congestion, thereby reducing the average taxiing time of departing aircraft,
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and using airport surface aircraft taxiway optimization methods can significantly reduce the waiting
time for aircraft crossing the runway, thereby reducing the average taxiing time of arriving aircraft.
In 2009, Simaiakis I et al. [4] analyzed the key factors affecting the taxi time of departing aircraft. Taking
the Boston International Airport (BOS) as an example, a forecasting analysis of the departure taxiing
time of aircraft was made, and a queuing theory model based on the departure process of aircraft
was proposed. Using this queue-pushback strategy for departing aircraft can reduce the departure
taxiing time and, thus, reduce aircraft pollutant emissions. In 2010, Jung YC et al. proposed the Spot
Release Planner (SRP) and Runway Scheduler (RS) [5]. The SRP aims to reduce an aircraft’s taxiing
time by keeping the runway productivity at the maximum level by sorting the order of departure of the
departing aircraft on the apron and controlling the pushback time of each aircraft to control the time that
the aircraft enters the maneuvering area. The RS is designed to sort and time-allocate departing aircraft
and arriving flights across the takeoff runway to achieve maximum runway utilization. Jung YC et al.
combined the proposed two strategies to optimize the operation of busy airport surfaces. In 2010,
Lee H [6] proposed two ways to optimize the operation of airport surfaces: delayed pushback and
path optimization. Delayed pushback refers to the control of off-board aircraft that is applied during
an airport congested period to control the airport’s congestion. The path optimization optimizes the taxi
path of all aircraft at the airport based on the delayed pushback. With the application of airport surface
monitoring equipment, it makes it possible to analyze the airport surface trajectory of the aircraft in
detail using the airport surface monitoring data. In 2011, I. Simaiakis et al. [7] applied Airport Surface
Detection Equipment Model-X (ASDE-X) data from the monitoring equipment at Boston International
Airport. They considered the impact of the airport runway configuration, the different type series
in the fleet, meteorological conditions, and other factors on the airport runway capacity. A study
on aircraft pushback rate control at the airport was conducted. In 2013, S Ravizza [8] and others
calculated the required taxiing distance, the total steering angle, the type of departing and arriving
aircraft, the number of aircraft in operation on the airport surface, the usage configuration of departure
and arrival runways, and the position of the gate. The establishment of a multiple linear regression
model helped to provide a more accurate prediction of the aircraft into and out of the required taxi
time. In 2015, Tang Y [9] elaborated on the concept of the Advanced Surface Movement Guidance
and Control System (A-SMGCS) proposed by International Civil Aviation Organization (ICAO) in his
doctoral dissertation and conducted a comprehensive study on an aircraft’s initial taxi route planning,
real-time optimization of aircraft taxiing routes, and A-SMGCS three-dimensional (3D) simulation.
In addition, Xiangling Z et al. [10] studied the issue of virtual pushback queues for departing flights
at the gate position and the issue of decision-making for collaborative pushback of departing flights.
In 2016, Nan L and Hongzhe L [11] analyzed the surveillance data of Honggiao Airport, used support
vector machines to classify and determine the trajectory of taxi aircraft, and applied data mining
technologies to the prediction of airport surface aircraft taxi time, the determination of airport surface
taxi hotspots, and conflict zone determination.

Under the same runway configuration conditions, as the number of aircraft pushback into the
apron and taxi systems increases, more flights are added to the takeoff queue, resulting in a gradual
increase in runway utilization and departures from flights. However, due to the effect of aircraft wake
spacing, when a certain number of taxiing departing aircraft is reached, the runway capacity becomes
the limiting factor and the number of taxiing departing aircraft will continue to increase. The runway
utilization rate and takeoff and departure rate of flights will only tend to change smoothly. Therefore,
in practice, the tower controllers are more concerned with a reasonable number of departing aircraft
operations in a given runway usage configuration. This paper uses the airport surface monitoring data
from Shanghai Hongqiao Airport to study the influence of the number of different departing aircraft
within the apron and taxi systems on the takeoff and departure rate of the flights, the departure taxiing
time, and the runway utilization rate under runway capacity constraints. A departure time prediction
model for departing aircraft is established. A reasonable control strategy is implemented for departing
aircraft within the busy airport departure period without reducing the operating efficiency of the
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runway, thereby reducing the aircraft departure taxiing time and reducing aircraft fuel consumption
and pollutant emissions.

2. Airport Surface Operation Data Analysis and Definition

2.1. Airport Surface Monitoring Data Analysis

While the airport surface monitoring system assists controllers in performing aerodrome control
services more safely and efficiently, the equipment also records real-time aircraft trajectory data.
The aircraft movement trajectory data recorded by the airport surface monitoring system includes
a time stamp and the aircraft’s position, altitude, speed, and so forth, and by combining these with the
airport topology data, we can identify the operational status of the aircraft, such as its pushback, taxiing,
takeoff, and landing; calculate parameters, such as taxi distance and taxi time; identify the taxi path;
and provide a data foundation for studying aircraft airport surface operation and optimization [12,13].

Through the data analysis of the Shanghai Honggqiao Airport’s March 2015 airport surface
monitoring system, we have sorted out the full arrival and departure trajectories for flights when using
the 18 L/18 R configuration on the departure and arrival runway (18 L runway for approach and 18 R
runway for departure calculated as two complete tracks during the stop-and-depart process).

2.2. Airport Surface Operation Data Definition

Aircraft departure taxiing refers to the entire process of the pushback of the aircraft from the
gate position, the taxiing to the departure runway, and the wait for takeoff. In order to analyze the
operation of airport surfaces, this paper gives the following definitions of the quantitative indicators
for measuring airport surface operations:

1.  Departure taxiing time: the total time of the aircraft’s pushback from the parking position to the
time of taxiing to the departure runway, including the aircraft’s pushback, apron and taxiway
taxiing, and the holding time the entrance of the runway (unit: minute).

2. Number of airport surface aircraft: the total number of departing and arriving aircraft taxiing
(including taxi wait) or undergoing pushback in the apron and taxiway systems (unit: flight).

3. Number of departure aircraft: the number of departing aircraft that are taxiing (including the taxi
wait) or undergoing pushback in the apron and taxiway systems (unit: flight).

4. Runway utilization rate: the ratio of the length of time the runway is accumulatively occupied
over a period of time to the length of the time period of the calculation.

5.  Takeoff and departure rate of flights: the number of departing aircraft per unit of time (unit:
flights/minute).

When calculating the runway utilization rate over a period of time, first of all, it is necessary to
find out the total time taken for the runway to be occupied during this period. In general, the time
spent on the following operations of the aircraft is accumulated into the occupied time of the runway.

6.  Takeoff running: the duration from the point where a departing aircraft accelerates for takeoff on
the runway until the aircraft’s landing gear tires are off the ground;

7. Departure waiting: the departing aircraft waits for takeoff clearance on the runway;

8. Final Approach: the duration from an arriving aircraft’s being at its final approach phase of
2.5 nm (nautical miles) from the runway’s end to the landing of the aircraft on the runway;

9. Landing: the duration of an arriving aircraft’s starting to land to when it is off the runway;

10. Cross-taxi: the aircraft crosses over the runway:.

For an airport with only one runway, when calculating the runway utilization rate of the airport,
the cumulative time of the five operations (6)—(10) of the aircraft needs to be taken into account as the
occupied time of the runway.
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For airports with multiple runways, if aircraft arrivals and departures run on different runways,
the time taken on the departure runway will only take into account the aircraft operations (6), (7),
and (10), and only the aircraft operations (8)-(10) need to be considered when the approach runway
is occupied.

3. Runway Capacity Analysis

This section applies the airport surveillance data to analyze the actual airport operational data.
Honggiao Airport is a narrow-distance, dual-runway airport; 18 L is mainly used for arrival, 18 R is
mainly used for departure, and its taxiway system network is shown in Figure 1.
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Figure 1. Network diagram of the Shanghai Honggiao Airport taxiway system.
3.1. Runway Utilization Rate Analysis

This paper analyzes the main runway configuration of Hongqiao Airport, namely the 18 L
approach and the 18 R departure configuration. Figure 2 shows the relationship between the
utilization of the departure 18 R runway and the number of departing aircraft on the airport surface.
The calculation of the runway utilization rate is based on a statistical period of every 15 min, because
the number of departing aircraft on the airport surface changes slightly every 15 min and this can
avoid statistical errors caused by excessive changes in the number of departing aircraft. Additionally,
a 15 min statistical period is not too short and the average runway utilization rate can be calculated
during this period so as to avoid statistical errors due to excessive statistical fluctuations caused by the
statistical time being too short.

Runwary utilization rute(®)

1 2 3 4 5 &
Number of departing awcraft(N)

Figure 2. The relationship between runway utilization and the number of departing aircraft.
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The horizontal axis in Figure 2 shows the number of departure aircraft on the airport surface and
the vertical axis shows the runway utilization rate of 18 R. It can be seen that when the number of
departure aircraft on the airport surface is N < 6, the number of aircraft departing the airport surface
at this time is small, and the runway utilization rate of the departure runway 18 R increases with the
number of airport surface departure aircraft. When the number of airport surface departure aircraft is
N =7, the runway utilization rate is already close to 1, indicating that under the operating scale of the
number of departing aircraft, the 18 R departure runway has been basically used efficiently. When the
number of departure aircraft in operation on the airport surface is N > 8, the runway utilization
rate fluctuates at a value close to 1, indicating that the departure runway 18 R is continuing to be
used efficiently.

3.2. Analysis of Flight Takeoff Rate

Figure 3 shows the takeoff rate of flights from departure runway 18 R as a function of the number
of departure aircraft on the airport surface. The takeoff rate statistics for the runway are also based
on a 15 min statistical period, and then the takeoff rate average of each departing aircraft quantity
is calculated.

4 6
the mumber of departure sirerft(N)

Figure 3. The relationship between the takeoff rate and the number of departure aircraft.

When the number of departing aircraft is N < 6, the number of departure aircraft on the airport
surface at this time is small, and the number of arriving and departing flights per unit of time increases
with the increase in the number of departure aircraft on the airport surface. When the number of
departure aircraft is N = 7, the takeoff rate of flights has reached its maximum. Correspondingly,
from Figure 2, it can also be seen that the runway utilization rate is close to 1, indicating that the
arrival and departure of the flights began to be restricted by the runway capacity; the arrival and
takeoff rates of flights reach 0.52 flights/min (31 flights/h). When the number of departure aircraft
on the airport surface is N > 9, the takeoff rate of flights calculated by the statistics shows a slight
downward trend. However, this does not simply indicate that the takeoff rate will decrease when the
number of departure aircraft on the airport surface is large in correspondence with Figure 2. When the
performance is N > 9 compared to N = 7-8, the runway utilization is also close to 1, indicating that the
runway is still fully utilized. However, the percentage of waiting time for the aircraft at the runway’s
end increases when N > 9 in Figure 2 compared with the case when N = 7-8, indicating that the
decrease in the takeoff rate is due to the increase in the holding time for takeoff at the runway’s end.
Through further analysis of the arrival and departure flight data, it was found that because the double
runways of Hongqiao Airport are narrow parallel runways, the arriving and departing aircraft of
the two runways cannot take off and land at the same time because of the aircraft wake spacing.
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This means that the two runways cannot operate independently. Therefore, the continuous arrival
of multiple aircraft will affect the aircraft taking off, resulting in a decrease in the takeoff rate of the
runway 18 R and a cumulative increase in the number of departure aircraft on the airport surface,
such as the number of departure aircraft on the airport surface reaching 12. This situation is reflected
in the performance of N > 9 in Figures 2 and 3. Although the takeoff rate of flights has decreased,
the percentage of time that an aircraft is waiting to take off at the runway entrance has increased in the
runway utilization histogram.

Figures 2 and 3 can be summarized as follows: in the fixed runway configuration, the number of
departure aircraft that undergo pushback into the apron and taxiway systems increases as more flights
are added to the takeoff queue. The runway utilization rate and takeoff rate have gradually increased.
However, aircraft takeoff will be limited by the time interval. When the number of departure aircraft on
the airport surface reaches a critical value or if the number of departure aircraft on the airport surface
continues to increase, the runway capacity will become a limiting factor. The runway utilization rate
and the takeoff rate will only tend to have stable fluctuations and will no longer increase significantly.

4. Aircraft Departure Time Prediction

4.1. Factors Affecting Departure Taxiing Time

Analysis of the departure taxiing process shows that the aircraft departure taxiing time is related
to the airport current runway configuration, the gate of the aircraft apron, and the congestion status
of the departure taxiway through the apron and the taxiway systems. Under certain runway usage
configurations, the influence of the gate of the apron on the taxi time of the departing aircraft can be
expressed by a taxi distance parameter. The influence of the apron and taxiway systems’ congestion
conditions on the taxi time of departing aircraft can be expressed by the parameter of the number of
aircraft on the airport surface.

Through the data analysis of the Shanghai Honggiao Airport March 2015 airport surface
monitoring system, we select the flights in UTC time 04:00-06:00 (Local Time 12:00-18:00), which is the
busy time. The full sample contains 1469 departure flights and 1399 arrival flights. The data in Table 1
summarizes the statistics for the departure flight sample.

Table 1. Summary of Statistics for the departure flight Sample.

Standard

Mean Median N Max. Min.
Deviation
the Departure Taxiing Time (Minutes) 16.32 14.19 7.05 30.94 2.73
the Number of the Departure Aircraft (Flights) 5.90 6 2.55 11 1
the Taxiing Distance (Meters) 2232.37 2278 458.06 3055 1005

4.2. Impact of the Number of Aircraft on the Airport Surface

Figure 4 is a scatter plot of the departure taxiing time of aircraft and the number of aircraft on the
airport surface when each aircraft underwent pushback on 9 March 2015, UTC time 4:00-6:00. From the
scatter plot, it can be clearly seen that the departure taxiing time of aircraft gradually increases with
the increase in the number of aircraft on the airport surface.
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Figure 4. The scatter diagram of the relationship between the departure taxiing time and the number
of aircraft.

Considering that there are large differences in the taxi path between the arriving and departing
aircraft, the number of arriving aircraft has little influence on the taxiing time of the departing aircraft.
Therefore, all the arriving aircraft in the statistical data of Figure 4 are excluded and the scatter plot of
the departure taxiing time of aircraft and the number of departing aircraft on the aircraft surface is
obtained in Figure 5.
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Figure 5. The scatter diagram of the relationship between the departure taxiing time and the number
of departing aircraft.

The linear correlation coefficient between the aircraft departure taxiing time and the number
of aircraft on the airport surface is Ry = 0.62; the linear correlation coefficient between the aircraft
departure taxiing time and the number of departure aircraft on the airport surface is R, = 0.79.
By comparing R; and Ry, it is shown that the aircraft departure taxiing time has a stronger linear
relationship with the number of departure aircraft on the airport surface at the time of aircraft pushback.
Therefore, the number of departure aircraft on the airport surface can be used as a predictor variable
of the aircraft departure taxiing time.
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4.3. Effect of Aircraft Departure Taxiing Distance

The effect of the airport runway configuration and an aircraft’s gate position on the aircraft's
departure taxiing time is reflected in the distance required for the aircraft to taxi from the apron to
the takeoff runway entrance. Figure 6 is the scatter plot of the aircraft departure taxiing time and the
required taxi distance for departure on 9 March 2015, UTC time 4:00-6:00. From the scatter plot, it can
be seen that the departure taxiing time increases gradually with an increase in the taxiing distance.
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Figure 6. The scatter diagram of the relationship between the flight taxi time and the taxi distance.

In apron and taxiway systems, the aircraft generally taxis at a low and uniform speed. Therefore,
under an ideal no-taxiing-collision condition, when the aircraft is taxiing at a constant speed, the taxiing
time is positively related to the taxiing distance. The linear correlation coefficient between the aircraft
departure taxiing time and departure taxiing distance is R3 = 0.77. This indicates that the aircraft
departure taxiing time and the departure taxiing distance have a strong linear relationship. Therefore,
the aircraft departure taxiing distance can be used as a predictor of aircraft departure taxiing time.

4.4. Departure Taxiing Time Prediction Model

The aircraft departure taxiing time T can be divided into two parts:
T =t +1i, 1)

where 1, represents the time taken by the aircraft to taxi from the apron to the departure runway
without conflict, and the magnitude of the value is related to the taxiing distance d; and ¢, indicates the
amount of time spent escaping and waiting for each aircraft during the taxiing process due to mutual
influence. The magnitude of the value reflects the degree of airport congestion and is related to the
number (N) of aircraft departures on the airport surface.

From the analysis in the previous section, the departure taxiing time of aircraft is linearly related
to the number of aircraft departing the airport surface and the departure taxiing distance. Table 2
shows the correlation data. According to the correlation coefficient r of the independent variable,
when r is close to 1, there is a strong linear relationship between the two independent variables.
It represents only a judgment on collinearity between two independent variables. Therefore, multiple
linear regression models could be used to predict the aircraft departure taxiing time.
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Table 2. Correlation Data.

the Number of the Taxiing Distance

Departure Aircraft
the Number of Departure Aircraft 1 0.66551
the Taxiing Distance 0.66551 1

The multiple linear regression equation can be expressed as
y=m(x1,%,...,%p) +¢ 2

Since the linear regression assumes that m(x1, x, ..., xp) is a linear function of the random
variables (x1, X2, . .. , Xp), in this paper, the aircraft departure taxiing time T is linearly related to the
number of departure aircraft on the airport surface N and the departure taxiing distance d. Therefore,
the multivariate linear regression equation expression of the aircraft departure taxiing time prediction
model can be expressed as

T =PBo+ B1N + Bod + ¢, 3)

In this formula, By, B1, and pB; are the linear regression coefficients to be solved. For convenience
of description, Equation (3) is represented by the matrix expression below (Equation (4)):

Y =XB+e, )

To ensure correct statistics, it is usually necessary to make multiple observations on the
independent variable and the dependent variable corresponding to the independent variable. Assume
that the observation statistics are performed n times, where Y and ¢ are n-dimensional column vectors,
Bisa (p + 1)-dimensional column vector, and the independent variable X isann x (p + 1)-dimensional
matrix whose first column is all 1. Additionally, take p = 2 corresponding to Equation (3).

In order to obtain the best-estimated vector parameter 3, we make the sample X estimation as
close as possible to the observed value Y, making the error term ¢ as small as possible. Using least
squares estimation, we can see that when 8 = (X Tx ) 71XTY, the square of e-mode

llel* = (v — XB)" (Y — XB)
P 2 ®)
(Ili —Bo *]_; xijﬁj)

reaches the minimum, so the best linear unbiased estimate is

It

1

B=(X"x)"'xTy, ©)

The adjusted coefficient of determination Ri gj can be used to measure how well the model fits
the data. The expression is as follows:

L (-9 (n—p—1)
Rig=1-"5 , : )
Li—-y)/(n-1)

Lo

In this formula, 7 is the number of observations, that is, the number of departure aircraft counted;
yi is each observation value of the dependent variable, that is, the ith aircraft departure taxiing time; i/ is
the average of the dependent variable observations, that is, the average departure taxiing time of the
aircraft calculated; and yj; is the estimated value of the dependent variable for each observation, that is,
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the multiple linear regression model prediction of the departure time of the ith aircraft. R gj values
between 0 and 1, with values closer to 1 indicating a better fit [14].

To sum up, we assume that the number of airport surface departure aircraft is N and the required
departure taxiing distance is d. Equations (3) and (6) can then be used to obtain the fitting prediction
formula for the aircraft departure taxiing time T as

T = —8+1.35N + 6.94, @)

Table 3 shows the parameters of the multiple linear regression. By Equation (7), the goodness
of fit is described by an Adjusted R? = 0.835, which shows that the aircraft departure taxiing time
prediction model is reasonable.

Table 3. The tables of the parameters for regression.

Variable Coefficient t-Statistic Sig
C —8.078409 —2.81201 b
N 1.353452 4.748534 i
d 6.958 4.259463 e

Sig. indicates if the p-value is 0.05 (*), 0.01 (**), or 0.001 (***).

5. Pushback Strategy for Departure on the Airport Surface

5.1. Implementation of Control Strategies

Taking the departing flight of the No. 2 apron of Hongqiao Airport shown in Figure 1 as
an example, data analysis is conducted to compare the flight departure taxiing time, the runway
utilization rate, and the takeoff rate under different departure aircraft numbers on the airport surface.

When the airport runway configuration is 18 L/18 R, the average departure taxiing distance of
the No. 2 apron departing flight is 2.25 km, and we substitute the taxiing distance into Equation (8).
Thus, the correspondence between the departure taxiing time of the flight and the number of departure
aircraft on the airport surface can be obtained. Then, the corresponding relationship between the
runway utilization rate, the flight takeoff and departure rate, and the number of departure aircraft on
the airport surface can be calculated according to the statistics of Figures 2 and 3. Thus, Table 4 can
be obtained.

Table 4. The operating parameters for different numbers of departure aircraft.

Airport Surface Takeoff and
Departure Aircraft Taxi Time (min) Departure Rate Runway Utilization (%)

Number (N) (flight/min)

1 8.87 0.11 32.0

2 10.2 0.21 47.5

3 11.6 0.29 61.5

4 129 0.37 72.1

5 14.3 043 83.3

6 15.6 0.49 94.0

7 16.9 0.53 98.9

8 18.3 0.53 97.3

9 19.7 0.50 97.0

10 21.0 0.44 98.5

11 22.3 0.42 100

According to Table 4, when the number of aircraft departures on the airport surface is N < 6,
the number of departure aircraft is small and the flight departure taxiing time, runway utilization
rate, and takeoff and departure rate of flights increase with an increase in the number of aircraft
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departures on the airport surface. When the number of aircraft departures on the airport surface is
N =7, the average departure taxiing time of No. 2 apron flights is 16.9 min, the runway utilization rate
begins to be close to 1, the takeoff and departure rate is 0.53 flight/min, and the flight departure process
begins to be controlled by the runway capacity limits. When the number of airport surface departure
aircraftis N > 8, the runway utilization rate and the flight takeoff and departure rate no longer increase,
while the average taxi time of departure flights on the No. 2 apron no longer increases. Therefore,
when the number of airport surface departure aircraft is N < 7, the tower aircraft controller can act in
accordance with the first-come first-service (FCFS) principle based on the pushback request clearance
issued by the flight. When the number of airport surface departure aircraft is N > 8, the controller can
first control the aircraft pushback at the gate position, and then set up a virtual pushback sequence
for these departure flights. When N < 7, the departure flights will be queued according to the virtual
pushback sequence. The implementation of the departure control strategy for the aircraft did not
reduce the runway utilization rate and flight takeoff and departure rate, but it slowed the airport
surface congestion so that the departure taxiing time can be effectively reduced without increasing the
total delay in departure flights.

5.2. SIMMOD Simulation

The SIMMOD software was used to simulate the use of the departure control strategy. SIMMOD
is a discrete-time simulation software released by the U.S. Federal Aviation Administration. SIMMOD
provides dynamic decisions based on user-defined rules, and each process of a flight is controlled
based on user rules. Its performance indicators are: the flight time of the aircraft, the capacity per unit
of time, delays, etc. [15-19].

The SIMMOD simulation model relies mainly on a detailed description of the airport and airspace
network, and the traffic flow moves on the nodes and connections of the network. The operating path
of the aircraft can be specified either by the user or automatically by the Dijkstra Algorithm [20-23].

First, the Computer Aided Design (CAD) map of Honggiao Airport is imported into SIMMOD to
establish the airport topology map and the waypoints are inputted to establish the arrival and departure
procedures and routes. Then, according to the flight plan of on 9 March 2015, UTC time 4:00-6:00 (local
time 12:00-14:00), the arrival and departure flight information is established. The departure control
strategy simulation is implemented.

The simulation results show that the average wait time of the 52 departure flights was 2.24 min,
the total taxi time was decreased by 119 min, and the maximum waiting time for the gate was 14 min.
As shown in Figure 7, the blue line represents the case where the departure control is not used, and the
red line represents the case where the departure control is used. It can be clearly seen from the figure
that by the use of the departure control strategy, the total departure taxi time is reduced.

The taxi time predicted in Section 5.1 by the Section 4 multiple linear regression prediction method
is basically consistent with the taxi time obtained by the Section 5.2 SIMMOD simulation
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Figure 7. The scatter diagram of the relationship between the flight taxi time and the taxi distance.

5.3. Analysis of Fuel Saving and Emission Reduction Data

During the busy hours of airport operation, the number of departure aircraft on the airport
surface was controlled at N = 7. Compared with N = 9-11, the runway utilization rate and the takeoff
and departure rate did not change substantially; however, the average departure taxiing time of each
aircraft on the No. 2 apron decreased by 2.8-5.4 min, accounting for 16.7-31.9% of the aircraft departure
taxiing time at this time.

Taking the CFM56-5B4/P engine of the Airbus A320 as an example, the total amount of fuel
oil and pollutant gas emissions consumed for each departing aircraft’s taxiing on the No. 2 apron
is calculated when the aircraft implements different departure control strategies [24,25] as shown
in Table 5.

Table 5. The total fuel consumption and total pollutant emissions of departing aircraft under different
departure control strategies.

Airport Surface Departure Fuel Consumption (kg) Pollutants Total Emissions (kg)

Aircraft Number (N)
6 194.6 6.28
7 2109 6.81
8 2284 7.37
9 245.9 7.94
10 262.1 8.46
11 278.3 8.98

As can be seen from Table 2, when the number of airport surface departure aircraft is controlled
to be N =7, the fuel consumption per A320 departure flight is reduced by 35 kg to 67 kg compared to
N =9-11. Gas emissions decreased by 1.13-2.17 kg.

For other common aircraft types on the apron, when the airport implements a departure control
strategy with N = 7 during busy hours, the reduction in fuel consumption and total pollutant emissions
per flight is shown in Figure 8.
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Figure 8. The fuel consumption reduction graph.

From Figures 8 and 9, it can be seen that the fuel consumption and pollutant emissions of each
type are greatly reduced. Therefore, the departure control strategy was adopted during the busy hours
of airport operation, which effectively reduced the fuel consumption during the taxiing stage of the
aircraft and reduced their pollutant emissions.
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Figure 9. The reduction in the pollutant emissions.
6. Conclusions

In this paper, the Shanghai Honggiao Airport is taken as an example to study the control strategy
for departure aircraft pushback on the airport surface. The influence of the different numbers of
departure aircraft within the apron and taxiway systems on the runway utilization rate and the takeoff
rate was studied under airport runway capacity constraints. Additionally, the influence of factors, such
as the number of departure aircraft in the apron and taxiway systems, the position of the apron, and
the configuration of airport arrival and departure runways, on the departure taxiing time of aircraft
was analyzed. Multiple linear regression equations were used to establish an aircraft taxi departure
time prediction model and the reductions in fuel consumption and pollutant emissions were calculated.
The results show that reasonable control of the pushback of departing aircraft during the airport’s
busy hours can reduce the aircraft departure taxiing time without reducing the runway utilization
rate and takeoff and departure rate of the aircraft, thereby reducing aircraft fuel consumption and
pollutant emissions during the taxiing phase.
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Abstract: Greenhouse gas emissions are one of the most critical worldwide concerns, and multiple
efforts are being proposed to reduce these emissions. Shipping represents around 2% of global
CO; emissions. Since ship power systems have a high dependence on fossil fuels, hybrid systems
using diesel generators and batteries are becoming an interesting solution to reduce CO, emissions.
In this article, we analyze the potential implementation of Li-ion batteries in a platform supply
vessel system through simulations using HOMER software (Hybrid Optimization Model for Multiple
Energy Resources). We evaluate the impact of battery characteristics such as round trip efficiency,
rated power, and energy capacity. We also evaluate the potential CO, emissions reduction that could
be achieved with two of the most common types of Li-ion batteries (lithium titanate, lithium iron
phosphate). Furthermore, we consider that the Li-ion batteries are installed in a 20 ft container.
Results indicate that the lithium iron phosphate battery has a better performance, even though
the difference between both technologies is lower than 1% of total emissions. We also analyze the
potential emissions reduction for different parts of a mission to an offshore platform for different
configurations of the ship power system. The most significant potential CO, emissions reduction
among the analyzed cases is 8.7% of the total emissions, and it is achieved by the configuration
including the main and auxiliary diesel engines as well as batteries. Finally, we present managerial
implications of these results for both companies operating ships and ship building companies.

Keywords: CO, emissions; HOMER software; hybrid ship power systems; Li-ion battery; shipping

1. Introduction

In recent years, concerns about greenhouse gas emissions have risen and discussions took place
to decide each country’s strategy to reduce these emissions. Kyoto Protocol and Paris Agreement are
the results of these discussions.

The Kyoto protocol was adopted in 1997 at the Kyoto conference. This protocol was the first to
introduce emissions limits and an agenda to prevent further global warming [1]. Moreover, the Kyoto
protocol brought in some mechanisms such as the International Emission Trading (IET), the Joint
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Implementation Mechanism, and the Clean Development Mechanism (CDM) [2]. IET allowed
industrialized countries, included in Annex B of the protocol, to buy and sell their assigned emissions.

The Joint Implementation Mechanism allowed governments to develop projects that reduced
emissions in other countries to earn emission reduction units (ERUs). In addition, the Clean
Development Mechanism focuses on the relations between countries of Annex B and developing
countries. Thanks to this mechanism, developing countries could sell Certified Emission Reduction
(CER) units to an industrialized nation. Certified Emission Reduction units could be earned by
obtaining the certification that a given project, promoted by a developing country, reduced emissions.
Unfortunately, the final deal did not set an objective for emissions reduction in the international
shipping sector.

The Paris agreement entered into force on the 4th of November 2016; its main ambition is to
keep the temperature increase below 2 °C [3]. Countries have presented their national situation and
their target to reduce global greenhouse gases in the intended nationally determined contributions [4].
Moreover, the International Panel on Climate Change (IPCC) also wrote a report about the impacts
that would be caused by an increase of 1.5 °C of the global temperature. Every potential solution is
required to attain this reduction level.

These international agreements helped to bring out the discussion about emissions in the
transports sector and more particularly shipping emissions, which are the focus of this work. As can be
seen in Figure 1, shipping accounts for 2% of global CO, emissions, shipping emissions are equivalent
to the ones of Canada, and shipping emits 20% more than aviation. A recent study by the European
Parliament shows that shipping emissions should be reduced of 13% by 2030 and 63% by 2050 from
2005 level, in order to stay below 2 °C. However, maritime emissions have increased by 3% per year
between 1990 and 2010 [5], this is higher than the increase of global Greenhouse Gas (GHG) emissions,
which is of 1.1%.
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Figure 1. Global CO, emissions ranking according to the Emission Database for Global Atmospheric
Research (EDGAR) report [6].

Figure 2 shows the rise of the world seaborne trade. We observe that the crude oil loaded trade
has remained stable during the 37 years analyzed and that the trade involving petroleum products
and gas has slightly increased. We also observe that the dry cargo ship loaded trade has increased
very significantly.
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Figure 2. Annual world seaborne trade from 1970 to 2017 according to the United Nations Conference
on Trade and Development [7].

The fact that ships are responsible for 90% of global trade [8] combined with the rapid growth in
maritime trade (Figure 2) highlights the urgency of lowering CO, emissions from this sector.

The following articles have studied the potential CO, emissions reduction in the shipping sector,
notably by investigating energy dispatch strategies in ships.

In [9], Miyasaki et al. proposed a model to calculate fuel savings and the emissions reduction
potential, considering various constraints. Even though this article presents good results, such as a fuel
consumption reduction of around 45%, it neither clearly describes the missions that are considered nor
evaluates CO, emissions for a full routine of the ship. Compared to [9], our article presents a mission
routine with a load curve that clearly shows the power variations that the generators need to support
during the whole mission. Moreover, we pursue the analysis for each part of the mission highlighting
the parts that present the highest CO, emissions reduction potential.

In [10], Miyasaki et al. presented a model of a hybrid power system and validated it experimentally.
The authors evaluated the effect of the battery efficiency, considering a variation of the efficiency from
80% to 100%. However, since there is no commercially available battery for ships that achieves 100%
efficiency and battery efficiency can drop below 80%, we consider a variation of the round trip efficiency
from 70 to 96%. Moreover, our article also studies the impact of different C-rates and discharge times
on emissions reduction.

In [11], Kanellos presented an algorithm to optimize the energy dispatch in an all-electric ship
considering some constraints such as power balance, generator loading, GHG emissions, and ramp
rates. The article included a cost to start the generators, which is not considered in our article. On the
other hand, [11] neither studied the potential of hybrid power systems nor investigated the influence
of the minimum load level of generators.

Section 2 presents the methodology used in this work. In section 3, sensitivity analyses are
performed showing the effects on CO, emissions reduction of changes in power system characteristics
such as round trip efficiency, battery power, battery capacity, and minimum generators load level.
Section 4 presents a comparison between two Li-ion battery technologies (i.e., lithium-titanate,
lithium iron phosphate). In Section 5, the potential reduction in CO, emissions that can be achieved for
each part of a mission is evaluated. We notably study the potential impact of using auxiliary generators
during low load parts of the mission, since they could allow to disconnect bigger generators which are
working at lower efficiency points.

The originalities of this article include the consideration of different technologies of batteries,
a sensitivity analysis over parameters that were not considered previously, the study of new power
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system architectures including batteries and auxiliary generators, and the computation of CO,
emissions reduction during different parts of a mission to an offshore platform.

These aspects are worth considering since there are multiple battery technologies with different
round trip efficiencies and several ship power system architectures. In addition, requirements for each
part of the mission are different, which implies that the use of batteries and auxiliary generators could
also differ for each part.

2. Methodology

This section presents the general methodology for the simulations, the software used and the
range of analyzed parameters. The different architectures used in the simulation cases are shown in
Figure 3.
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Figure 3. Power system diagram of the Platform Supply Vessel (PSV) considered. The base case
analyzed is in black. The components connected to the base case to evaluate the potential of
auxiliary generators are in red. The ones related to batteries are in blue. The last analysis pursued
(auxiliary generators + batteries) comprises all the elements of this figure.

2.1. Simulation Cases

The performance of a generic Platform Supply Vessel (PSV) is analyzed by simulating multiple
architectures of a hybrid system including diesel generators, energy storage systems, and auxiliary
generators. Figure 3 shows the electrical diagram of the hybrid system [12]. The main group of
generators is composed of four 1850 kW diesel generators and is connected to a bus-bar providing
energy to different types of loads such as thrusters (bow and azimuth thrusters), base load, service load,
and to batteries.
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The optimal dispatch of the available energy to supply the demand is performed using HOMER
(Hybrid Optimization Model for Multiple Energy Resources) software. HOMER uses a proprietary
derivative-free optimization method to find the system with the lowest cost considering combinations
of available energy sources and the load profile.

Following general procedures to analyze isolated systems such as island electrical systems [13,14]
and general recommendations to implement Li-ion batteries in ships [15], we developed a general
methodology to evaluate CO, emissions.

A base case is defined using the load demand profile shown in Figure 4. The minimum load level
for three 1850 kW diesel generators is set at 50%, for the other diesel generator the minimum load level
is set at 10%. Minimum load means that the generator will be switched on only if the power it would
produce is higher than 50% or 10% of its rated power. No batteries or auxiliary generators are used in
the base case. In this article, we use “Diesel” to refer to the main generators and “Diesel Aux” to refer
to the auxiliary ones. We simulate four identical 1850 kW diesel generators, two additional auxiliary
generators (450 kW) and multiple Li-ion batteries with different round trip efficiency, rated power,
rated capacity, and C-rate. CO, emissions are evaluated for all cases. The time step of the simulations
is 30 min.

Sensitivity analyses compare CO, emissions reduction potential that can be achieved by four
main parameters:

e  Round trip efficiency. The total round trip efficiency of batteries and charge converter is combined
under one parameter which varies from 70% to 96%.

e  Minimum load level of diesel generators. We simulate minimum load levels of 30%, 40%, and 50%.

e  Battery C-rate. The energy capacity of the battery system is fixed at 1000 kWh to simulate multiple
cases with different C-rates from 0.2 to 2.

e  Battery energy capacity. The energy storage system is fixed at 1000 kW of rated power. Multiple
cases are simulated for different energy capacities, therefore influencing the time that the storage
would last if we discharge it at the rated power. This discharge time varies from 12 min to 120 min.

We investigate the implementation of lithium iron phosphate and lithium titanate batteries in a
typical 20 ft container. Some considerations are taken into account to estimate the effective volume
available for batteries inside the container.

In Section 5, we present the results of the individual simulations for each part of the mission
(loading in port, laden voyage, DP operation, partial load voyage, standby). It allows the evaluation of
the CO, emissions reduction potential of each configuration proposed in this article for each part of
the mission.

The following configurations including auxiliary generators and batteries are evaluated:

e  Diesel + Battery. There are four 1850 kW diesel generators and a 1000 kW-1000 kWh battery system.

e Diesel + Diesel Aux. There are four 1850 kW diesel generators and two 450 kW auxiliary
generators at minimum load level 50%, which are included only during loading in port and
standby operations.

e Diesel + Battery + Diesel Aux. There are four 1850 kW diesel generators, a 1000 kW-1000 kWh
battery system, and two 450 kW generators during loading in port and standby.

The full mission and individual mission parts are simulated for each configuration.
For configurations including batteries, the state of charge at the end of one part of the mission is
used as initial state of charge for the next part of the mission.
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Figure 4. Power demand during the different parts of the mission.
2.2. Mission Profile Considered

The power demand during the different parts of the mission is presented in Figure 4. This load
profile is considered for the different simulations performed in this article. The mission starts in the
port, where the ship is fully loaded with goods that should be transported to the offshore platform.
Then it begins a voyage to the platform and, since the vessel is fully loaded, this part of the mission is
called “laden voyage”. When the ship stops at the platform, if the climate conditions are appropriate,
the ship starts the Dynamically Positioned (DP) operation. During this operation, the DP control
system receives all the information about wind and tidal current speed and calculates the power that
each thruster should dispatch to keep the ship steady.

The thrusters of this PSV are the bow thrusters, that only move the ship forward and backward,
and the azimuth thrusters, that can drive the vessel in any direction. The DP control system sends
the exact direction towards which the azimuth thrusters should move the ship to counterbalance the
forces that tend to make the ship drift, keeping the ship steady.

After the DP operation the ship starts a voyage back to the port. During this voyage, the ship is
not fully loaded and it is therefore called partial load voyage. As can be seen in Figure 4, the partial
load voyage requires less power than the laden voyage. Finally, the ship arrives close to the port area
but receives a message to wait because the port does not have a space available to receive the vessel.
During this time, the vessel is in standby operation.

As shown in Figure 4, even though the ship is keeping a position in DP operation and standby,
the restriction of movement during DP operation is more power demanding. Indeed, the tidal and
wind forces are stronger during the DP operation than during the standby operation, as the ship is
further away from the shore. Moreover, the ship does not have to remain completely steady during
the standby operation.

2.3. Batteries Charge-Discharge Cycles

An additional consideration related to batteries is their total number of full charge-discharge
cycles. Since batteries present erratic states of charge (SoC) through the whole mission, it is difficult
to directly determine the total number of cycles for a battery. We decided to estimate the number of
cycles by calculating equivalent battery cycles per mission. For this step we take the total energy Er
cycled through the battery and divide it by the actual available battery energy. The result, shown in
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Equation (1), is an equivalent of total full charge-discharge cycles during the mission and is one of the
variables evaluated for multiple cases in this article.

Er

Number of cycles = ————
fey Eg0% — E20%

o
where:

Et: Total cycled energy through the battery (kWh)
Egge,: Battery capacity at 90% SoC (kWh)
Eyge,: Battery capacity at 20% SoC (kWh)

Battery states of charge 90% and 20% are selected to increase battery life, following the
recommendations provided by Xu et al. [16]. Indeed, using batteries at very high state of charge
increases their capacity loss and deeply discharging batteries decreases their lifetime.

2.4. Optimization Performed with HOMER

HOMER [17] is a software for modeling and optimizing small grids connected or not connected
to the main grid. HOMER software is a commercial program developed by the National Renewable
Energy Laboratory (NREL) and now managed by HOMER Energy LLC. HOMER uses available
information about:

1. Energy resources (e.g., fuel-powered generators, solar photovoltaic, wind turbine, biomass power,
fuel cell);

2. Energy storage (e.g., batteries, flywheel, hydrogen);

3. Loads (i.e., load demand profile)

Figure 5 shows the 1850 kW generators efficiency curve used in HOMER simulations. HOMER
allows the evaluation of multiple system configurations, which combine elements of these three types,
calculating energy balance for each time step and then calculating the energy flow for each component
ensuring that the demand is always met.
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Figure 5. Efficiency curve for the 1850 kW diesel generators used in simulations.

To determine which element is dispatched at each time step, HOMER compares the energy cost
of each element considered in the configuration, dispatching elements with the lowest energy cost first.
For example, for fuel generators [18], the required data include the capital cost ($) the replacement
cost ($), the O&M cost ($/h/year), and the fuel cost ($/1). With this information, HOMER calculates
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fixed and marginal costs. Fixed energy cost is the cost of running the generator for one hour. Marginal
energy cost is the cost of every kilowatt-hour produced. A similar procedure to generators is followed
for batteries, calculating fixed and marginal costs (from capital cost, replacement cost, O&M cost,
cost of stored energy when it comes from a fuel generator). However, in this article battery fixed costs
and O&M costs are not considered.

Thanks to all these information, HOMER performs an optimization to find the cheapest
configuration amongst all simulated cases. HOMER also provides the CO, emissions associated
to the different simulated cases. In this article, we always select the cheapest configuration and give
the associated CO, emissions.

3. Sensitivity Analysis

3.1. Round Trip Efficiency

This section describes a sensitivity analysis considering a variation from 70% to 96% in the
battery round trip efficiency. The minimum load of diesel generators for simulations is 50%, since it
is recommended to operate generators above this level [19]. The sensitivity analysis aims at finding
out a round trip efficiency value which presents better results in comparison to the base case of
vessel operation without battery. Figure 6 shows CO, emissions comparing the with and without
battery cases.
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Figure 6. Changes in CO, emissions and number of cycles caused by a variation in the round trip
efficiency. Battery power and capacity fixed at 1000 kW-1000 kWh. In red: CO, emissions reduction in
the case of four diesel generators with batteries in comparison to the base case (four diesel generators
and no batteries). In black: Number of battery cycles.

CO; emissions reduction vary from 4.5% to 8.6%. The number of battery cycles remains almost
constant for the whole range.

The total energy generated varies with the round trip efficiency, as can be seen in Figure 7.
Even though the total energy generated is higher in the case of the hybrid system than in the case with
diesel only, batteries enable the operation of generators at higher efficiency points. This explains why
the introduction of batteries allows to reduce fuel consumption and CO; emissions.
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Figure 7. Total generation variation with the round trip efficiency for the case of four diesel generators
with batteries in comparison to the base case.

3.2. Minimum Load Level of Diesel Generators

Diesel generators have predefined minimum load levels below which they cannot operate.
To evaluate the effect of minimum load level on CO, emissions reduction, full mission simulations
for three cases are performed. These simulations consider minimum load operation of 30%,
40%, and 50% for the 1850 kW diesel generators. Moreover, the batteries parameters are set as
following: power 1000 kW, capacity 1000 kWh, round trip efficiency 92%. A value of 92% is considered
for the efficiency because it is the average between the round trip efficiencies of lithium titanate and
lithium iron phosphate batteries (see Table 2), two very common battery technologies. We compare the
results with the base case.

According to Tufte [19], marine engineers sometimes operate with diesel generator load lower than
50%, even though low-load operations (i.e., under 50%) for more than 8 hours are not recommended
by some engine manufacturers. There is evidence that operating under that limit can cause a negative
impact related with the incomplete combustion of fuel in the inner part of the engine components due
to low cylinder pressure [19]. If the low-load operation lasts for a long time, it is recommended to
operate for at least 30 min at 50% after the low-load operation. Results on CO, emissions and the total
energy produced for the three minimum loads are shown in Figure 8.

The evolution of CO, emissions with the load level is explained by the fact that, for lower
minimum levels, generators operate more frequently at lower power resulting in overall higher
fuel consumption and CO, emissions. Indeed, generators efficiency decreases as operating power
decreases (see Figure 5). In any case, results do not show a high impact of the generators minimum
load level on CO, emissions and generated energy. Given this result and the problems that may be
caused by running at a low load level, lowering the minimum load level does not appear to be an
interesting strategy.
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Figure 8. CO, emissions reduction and total energy generated increase for the case with four diesel
generators and batteries in comparison to the case with four diesel generators without battery.
The round trip efficiency is kept at 92% for the three minimum load levels simulated. The generators
minimum load levels simulated are 30%, 40%, and 50%, the equivalent number of battery cycles during
the operation are 43.8, 41.9, and 41.6, respectively.

3.3. Battery C-rate and Energy Capacity

Another sensitivity analysis is made in order to account for the impact of battery power and
energy capacity. First, the energy capacity of the battery is fixed at 1000 kWh to simulate multiple
cases with different C-rates from 0.2 to 2. Results of this evaluation are shown in Figure 9.
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Figure 9. CO; emissions reduction in the case of four diesel generators with batteries in comparison
to the base case (four diesel generators and no battery). The energy capacity of the battery system
is fixed at 1000 kWh and the round trip efficiency at 92%. Multiple cases with C-rates from 0.2 to 2
are simulated.

A 0.2 C-rate is equivalent to a rated power of 200 kW for the current battery capacity of 1000 kWh.
Similarly, a 2.0 C-rate is equivalent to a rated power of 2000 kW. For C-rates under 0.6, CO, emissions
reduction is lower than 2%. However, emissions reduction is higher than 5% for C-rates higher or
equal to 0.6.
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Figure 10 shows the CO, emissions variation with rated battery energy capacity. Indeed, as the
rated power is fixed at 1000 kW, a rated energy capacity of 200 kWh is equivalent to 12 min of discharge
time and 2000 kWh to 120 min.
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Figure 10. CO, emissions reduction in the case of four diesel generators with batteries in comparison
to the base case (four diesel generators and no battery). Battery rated power is fixed at 1000 kW.
Multiple cases are simulated for different energy capacities, varying the time that the storage would
last if we discharge it at the rated power. Every 12 min of discharge time is equivalent to 200 kWh of
battery capacity.

As can be seen in Figure 10, the reduction of CO, emissions considerably increases from 12 to
36 min, but after that the rate of increase is reduced. The gain obtained by the increase of the discharge
time after 36 min is triggered by the reduction of the number of cycles. The reduction of the number
of cycles has a significant impact on the increase of the battery life. Results show that a battery with
12 min capacity of discharging at rated power is almost not used, indicating that for the current load
demand a 200 kWh-1000 kW battery system is considered not worth to dispatch by the optimization
method. At the same time, since energy is limited by feasible generators and load demand, it is
expected that there is a saturation level over which increasing battery energy capacity and rated power
would not affect CO, emissions.

4. Lithium Iron Phosphate and Lithium Titanate Batteries Comparison

With the increasing installation and use of energy storage systems in PSV and other ship power
systems, space and standardization of batteries have become relevant to minimize their time for
installation and maintenance. Overall, the most suitable installation method of batteries that has
also gained popularity in the last years is their installation in a 20 ft container. Li-ion batteries are
among the preferred technologies used in power systems around the world. Figure 11 shows examples
of rated power and operating duration of Li-ion battery systems connected to the grid in operation
worldwide [20].

Zubi, Dufo-Lépez, Carvalho and Pasaoglu [21] highlight that the production structure of
lithium-ion batteries can be divided into three tiers. Tier 1 includes the battery cells and the battery
pack usually used in Battery Management Systems (BMS). Tier 2 comprises the cell components such
as: Cathode, anode, separator, and electrolyte. Tier 3 covers materials such as lithium, aluminum,
graphite, and cobalt. Valence Technology, Sony, ATL, Panasonic, A123 System, GS Yuasa, Lishen,
Hitachi Vehicle Energy, Samsung, Kokam, SK Innovation, BYD Company, Tesla, Johnson Controls,
EnerDel, and LG Chem are the major manufacturers of the Li-ion battery industry [21].
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Figure 11. Li-ion battery technologies from 500 kW to 5 MW of power and 10 to 180 min of operating

duration that are in operation worldwide [20].

For our analysis, a standard 20 ft container is used with the following dimensions: L x W x H
6.058 x 2.438 x 2.591 m. Li-ion batteries used are lithium titanate (LiTiO) and lithium iron phosphate
(LiFePO4). The main characteristics of these batteries are given in Table 1.

Table 1. Parameters of Li-ion batteries.

Li-ion Battery ~ Volumetric Energy (kWh/m®  Cycle Life [22,23] Round Trip Efficiency (%) [23] Recharge Rates [24]

LiFePO4 211-620 [23,25] 1000-2000 92 2C-1C
LiTiO 120-620 [22,23] 3000-7000 96 3C-1C

The effective container volume used is estimated to determine the characteristics of these two
Li-ion batteries containers. Considering distribution [26-28] and arrangement of battery racks in a
container [29-31], a typical battery container layout is shown in Figure 12.

/

Figure 12. Plane view of a typical arrangement of battery racks in a 20 ft container.

Two volume factors are used to calculate the rated power and energy of Li-ion batteries inside
the 20 ft container. One factor represents the space occupied by cells in the battery rack, and the other
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factor considers the space occupied by the battery racks in the container. Since battery cells inside racks
need additional space for proper electrical and thermal installation [32], the effectively utilized rack
volume by battery cells is of 57%. The estimated effective volume occupied by battery racks varies from
30% for layouts similar to Figure 12 with two battery racks up to 52% for containers with three battery
racks [29-31]. A layout with two battery racks is used with a volume factor of 30%. Considering these
two factors and the parameters of lithium iron phosphate and lithium titanate batteries, the rated
parameters of the energy storage system in a 20 ft container, used in simulations, are shown in Table 2.

Table 2. Rated parameters of Li-ion batteries in a 20 ft container.

Li-ion Battery Rated Power (kW) Energy Capacity (kWh) Total Round Trip Efficiency (%)

LiFePO4 1285 1285 90%
LiTiO 948 948 94%

Additionally, efficiency losses due to the converter are considered. It is estimated that for different
topologies, converter losses vary from 0.4% up to 1.56% [33]. A conservative value of 2.0% for efficiency
losses is therefore used in simulations. This explains why the round trip efficiencies presented in
Table 2 are 2.0% lower than the ones of Table 1. Similar to the analysis in previous sections, an entire
mission is considered and a minimum load of 50% for the diesel generators is chosen.

CO, emissions and total energy produced by the diesel generators are shown in Figure 13.
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Figure 13. Variation of CO, emissions and total energy production using Lithium Titanate (LiTiO) and
Lithium Iron Phosphate (LiFePO4) batteries in a 20 ft container.

LiFePO4 battery presents better results compared to LiTiO battery. For the considered ship load
demand, although lithium titanate has the highest round trip efficiency, the lithium iron phosphate
battery with higher capacity and power presents lower CO, emissions. All things considered,
the difference between these two batteries is relatively small; other elements should be taken into
consideration when selecting a suitable battery for a ship system. For instance, maintenance and
replacement cost may also play essential roles in the choice of a battery technology and they are out of
the scope of this article.

5. Evaluation of CO; Emissions Reduction per Part of the Mission

In this section, an analysis is performed to evaluate the CO, emissions reduction that can be
achieved in each part of the mission pursued by the platform supply vessel.
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Figure 4 shows the variation in power demand of each part of the mission of the PSV. This mission
load demand is designed according to [34].

Four cases are simulated considering each part of the PSV routine, separately. The first case
considers the elements shown in black in Figure 3. These elements include 4 x 1850 kW diesel
generators, one service load, one base load, 2 x 910 kW bow thrusters, and 2 x 2 MW azimuth
thrusters. This configuration is based on a real platform supply vessel [12]. It is used to measure the
difference in CO, emissions triggered by adding components highlighted in blue and red in Figure 3.

The real configuration, in black in Figure 3, is not optimal for the different missions that a standard
PSV pursues. Considering that during a 112 hours mission, the ship pursues low power demand 35%
of the time (loading in port and standby) and that the rated power of the PSV’s main diesel engines is
1850 kW, one of the generators is forced to operate with the minimum load set at 10%. This operation at
low load is not advisable [19]. Battery connection allows all diesel generators to operate with minimum
load of 50% since the excess of power generation can be used to charge the batteries. Later, the stored
energy can be used to power the ship, which allows to disconnect diesel generator for some time.

The second case considers the inclusion of batteries, shown in blue in Figure 3. The battery system
considered in this analysis has 1000 kW of rated power and 1000 kWh of energy. During the missions
that require a low level of power from generators, this battery system allows generators to operate at
higher efficiency points. It also permits to disconnect generators at times when the battery can run the
operation alone. Moreover, batteries can offer support of reliability for the ship power system during
DP operation.

The third case evaluates the connection of two small auxiliary diesel generators of 450 kW each,
in red in Figure 3, that will operate only during loading in port and standby. This case does not include
batteries since the focus is to analyze the potential of the small auxiliary diesel generators to reduce
CO; emissions.

The last case appraises the reduction capacity that two auxiliary diesel generators of 450 kW each
can offer when combined with a 1000 kW /1000 kWh battery system. It comprises all the elements
shown in Figure 3.

Battery and Auxiliary Generators Configurations

Results for the three additional cases per part of the mission are shown in Figure 14.

As can be seen in Figure 14, batteries have a higher potential to reduce CO, emissions when used
in loading in port and standby. When we compare the difference of slope in the loading in port and
standby operations, we can see that the case that considers the connection of auxiliary diesel generators
and batteries to the real PSV power system has the lowest slope, on the other hand the real PSV that
only considers the four 1850 kW diesel generators has the highest slope. Implementation of batteries
and auxiliary generators decreases CO, emissions growth over time. However, batteries have a lower
impact on CO; emissions during laden voyage, partial load voyage and DP operation. During loading
in port and standby, the use of the batteries allows the disconnection of generators during a period of
time. When these generators are connected they operate at a higher power than the power required by
the load in order to charge the batteries. Figure 14 also indicates that the operations that require more
power, laden voyage and partial load voyage, are also the missions that generate the largest share of
the CO, emissions, considering the slope of both lines.

A results summary for the three cases is shown in Figure 15.

Loading in port and standby have the highest reduction in CO, emissions compared to other parts
of the mission. However, despite the fact that the use of batteries and auxiliary generators achieves a
reduction of 34%, these two parts of the mission have overall low energy demand resulting in a low
impact on the total reduction for the whole mission (lower than 9%).
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Figure 14. Accumulated CO, emissions for the four cases simulated in contrast to the demand curve.
The most inclined segments represent the mission parts that have the highest CO, emissions, while the
difference between the curves at the beginning and at the end of the mission part shows the periods
that have the highest reduction of CO, emissions. The round trip efficiency of the battery is kept at 92%.
In the case that includes only the diesel generators, the minimum load level of the generators is 10% for
one diesel generator and 50% for the other three diesel generators when the ship is in loading in port
and standby and 50% for all diesel generators when the ship is in laden voyage, DP operation, and
partial load voyage. In the case that includes diesel generators and batteries, the minimum load level is
50% for all generators. The case considering diesel generators and auxiliary diesel generators has a
minimum load level fixed at 50% for all generators. In the case that considers the diesel generators,
batteries, and the auxiliary diesel generators, the minimum load level is also 50%.
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Figure 15. Reduction of CO, emissions in each mission part of the ship routine. Loading in port
and standby, which are the operations with the lowest power requirements, also present the highest
reduction when the batteries and /or auxiliary generators are used. When only diesel generators are
used (base case), these mission parts are run at low efficiency points in the specific fuel oil consumption
curve of the 1850 kW diesel generators. The impact of the reduction in these mission on the total
reduction remains small because the sum of the CO, emitted during loading in port and standby
represents less than 15% of the total CO, emitted during the mission. The low reduction during laden
voyage and partial load voyage pulls the total emissions results down since these operations represents
more than 56% of the emissions in all of the cases simulated.
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Figure 15 also shows that the system using diesel + auxiliary generators has a lower reduction
of the CO; emissions when compared to the case that comprises diesel + batteries. When auxiliary
generators and batteries are combined, they present the highest CO, emissions reduction. However,
the reduction achieved by this combination is much lower when compared to the sum of the reductions
achieved independently by the auxiliary generators and by the batteries. The CO, emissions reduction
achieved are: 5.7% for diesel + auxiliary generators; 7.4% for diesel + battery system; and 8.9% for a
diesel + battery + diesel aux.

For the PSV mission studied in this article, during laden voyage and partial load voyage the four
diesel generators operate close to their full rated power; hence there is no available energy to charge
batteries and generators already operate at high-efficiency points. This explains why the presence of
batteries does not affect CO, emissions during laden voyage and partial load voyage (see Figure 15).

6. Conclusions, Managerial Implications and Discussion

We investigated several CO, emissions mitigation strategies in a platform supply vessel.
We simulated several architectures of the power system including batteries and auxiliary generators.
In addition, we performed sensitivity analysis considering several battery parameters: battery power
ranging from 200 kW to 2000 kW, battery capacity ranging from 200 kWh to 2000 kWh, and
round trip efficiency (70% to 96%). We also considered the use of two Li-ion technologies: LiTiO
and LiFePO4. Additional analyses for the different parts of the mission (e.g., loading-in-port,
DP operation, etc) were performed to evaluate CO, emissions with batteries and auxiliary generators
on every segment separately.

Batteries can reduce CO, emissions by enabling a more efficient use of diesel generators. Indeed,
diesel generators can charge batteries at times of low demand (where generators had to operate at
lower power low-efficiency points) allowing generators to operate at higher power high-efficiency
points. Although the total energy generated by diesel generators is higher using batteries compared to
a system with no batteries, energy storage elements allow generators to operate at higher efficiency
points, reducing fuel consumption and therefore CO, emissions. Later, this stored energy is released
allowing the disconnection of generators.

Sensitivity analysis show the impact on CO, emissions of different characteristics such as battery
round trip efficiency, minimum generators load, rated battery power, and rated battery capacity.
Our simulations indicate that round trip efficiency has a direct impact on CO, emissions. The analyses
on generators minimum load level do not show a high impact on generated energy and reduction
of CO, emissions, although at lower load levels it is more likely that generators operate at lower
efficiency points.

Evaluating impact of maximum battery C-rate shows that for 0.2 and 0.4 C-rate there is a small
reduction of CO; emissions (lower than 2%). However, for C-rates higher than 0.6, CO, emissions
reduction is higher than 5%. For C-rates higher than 1.4, CO, emissions reduction begins to stabilize
around 9%. Low rated power batteries have a lower number of total cycles during the mission since
they take more time to complete a full charge discharge cycle. The total number of cycles per mission
varies from 15 to 55 approximately.

Energy capacity variation shows increments of CO, reduction at higher available discharge times.
However for discharge times higher than 60 min, CO, emissions variation remains lower than 1%.
At this energy capacity level, the rated power of the battery restricts the amount of energy that can be
dispatched by the energy storage system during each cycle. The total number of cycles per mission
varies from 22 to 75 approximately, not taking into account the 200 kWh battery that does not have a
significant number of equivalent cycles.

Two Li-ion technologies were studied and simulated. Lithium iron phosphate and lithium titanate
batteries were used as if they were installed in a 20 ft container. Although both batteries present
reduction of CO, emissions compared to the base case, lithium iron phosphate battery (1289 kW-kWh)
has higher CO, emissions reduction compared to its lithium titanate counterpart (948 kW-kWh).
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Opverall, Li-ion batteries present benefits for all of the studied cases and represent a viable solution to
reduce CO, emissions in ship power systems.

During parts of the mission of low demand such as loading-in-port and standby, configurations
using batteries and auxiliary generators present a reduction of CO; emissions ranging from 34.6%
to 47%. However, since these two part of the mission have lower energy consumption compared to
other parts of the mission, the total CO;, emissions reduction varies from 5.7% to 8.9%. The use of
auxiliary generators increases the reduction of CO; emissions, allowing the disconnection of the main
generators during times of low load. However, when auxiliary generators and batteries are combined,
their impacts on CO, emissions do not add up linearly.

The results provided in this study have significant managerial implications for both companies
operating ships and ship building companies. This article shows that the use of batteries and/or
auxiliary generators reduces fuel consumption, equipment renewal and CO, emissions. Moreover,
auxiliary generators and batteries can be easily integrated into current ship power systems, notably
since batteries can be installed in 20 ft containers.

The reduction of fuel consumption and equipment renewal allows to lower ship operational
cost. In addition, low levels of CO; emissions is now a requirement in many ports. Therefore hybrid
power systems, including batteries and auxiliary generators, may allow companies operating ships to
increase their revenue. It may also give them the opportunity to enter more ports and extend their
operations. As a result, the demand for ships powered by hybrid systems may increase. Ship building
companies may therefore be interested in retrofitting existing ships by integrating batteries and/or
auxiliary generators in their power system or in building new ships with hybrid power systems. To this
end, this article highlights the influence of key design parameters of hybrid power systems on fuel
consumption.

Future work could consider different load mission profiles, diesel generators efficiencies, and
operating times for batteries, allowing shorter charge-discharge time while operating generators
during longer times to avoid frequent connections and disconnections. All these elements align toward
our mutual goal to reduce global CO, emissions.

Author Contributions: Conceptualization, C.O.P.P,, G.T.T.V., M.B.C.S,, B.S.C., S.M.; methodology, C.O.P.P,
M.B.C.S,; software, C.O.PP,; validation, C.O.P.P, S.M., M.B.C.S.; formal analysis, C.O.P.P. and G.T.T.V,; investigation,
C.O.PP, G.T.T.V. and RJ.V, resources, C.O.P.P. and G.T.T.V,; data curation, C.O.P.P,; writing—original draft
preparation, C.O.PP. and G.T.T.V,; writing—review and editing, C.O.P.P. and S.M.; visualization, G.T.T.V.;
supervision, M.B.C.S.; project administration, B.S.C. and M.B.C.S.; funding acquisition, B.S.C.

Funding: This research was funded by FAPESP and Shell through the Research Centre for Gas Innovation,
FAPESP Grant Processes 2014/50279-4 and 2014/05261, TOSHIBA Scholarship Program—grant 2014/Dr-01
(TOSHIBA-EPUSP), the French National research Agency (ANR) as part of the « Investissement d’Avenir »
program, through the “IDI 2015” project funded by the IDEX Paris-Saclay, ANR-11-IDEX0003-02 and the
Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior—Brazil (CAPES)—Finance Code 001.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

CDM  Clean Development Mechanism
CER  Certified Emission Reduction
IET International Emission Trading

137



Energies 2019, 12, 375

GHG

Greenhouse Gas

HOMER  Hybrid Optimization Model for Multiple Energy Resources

ERU Emission Reduction Unit

IPCC International Panel on Climate Change
DP Dynamically Positioned

PSV Platform Supply Vessel
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LiFePO4 Lithium Iron Phosphate

Refe
1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

rences

Springer, U. The market for tradable GHG permits under the Kyoto Protocol: A survey of model studies.
Energy Econ. 2003, 25, 527-551. [CrossRef]

Bohringer, C. The Kyoto protocol: A review and perspectives. Oxf. Rev. Econ. Policy 2003, 19, 451-466.
[CrossRef]

Rogelj, ].; Den Elzen, M.; Hohne, N. Paris Agreement climate proposals need a boost to keep warming well
below 2 C. Nature 2016, 534, 631. [CrossRef] [PubMed]

Hulme, M. 1.5 C and climate research after the Paris Agreement. Nat. Clim. Chang. 2016, 6, 222. [CrossRef]
Cames, M.; Graichen, J.; Siemons, A. Emission Reduction Targets for International Aviation and Shipping;
Technical Report; European Parliament: Brussels, Belgium, 2015.

Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D. Fossil COy & GHG Emissions of All World Countries;
Technical Report; European Commission: Brussels, Belgium, 2017.

United Nations Conference on Trade and Development. World Seaborne Trade by Types of Cargo and by
Group of Economies, Annual. Available online: http://unctadstat.unctad.org/wds/TableViewer/tableView.
aspx?Reportld=32363 (accessed on 26 October 2018).

Green, J.E. Why do We Need New Rules on Shipping Emissions? Well, 90 Percent Of Global Trade Depends
on Ships. Available online: https://www.washingtonpost.com/news/monkey-cage/wp/2018/04/17 /why-
do-we-need-new-rules-on-shipping-emissions-well-90-of-global-trade-depends-on-ships / ?noredirect=
on&utm_term=.2b5726dc9e76 (accessed on 5 October 2018).

Miyazaki, M.R.; Serensen, A.J.; Vartdal, B.]. Reduction of Fuel Consumption on Hybrid Marine Power Plants
by Strategic Loading With Energy Storage Devices. IEEE Power Energy Technol. Syst. |. 2016, 3, 207-217.
[CrossRef]

Miyazaki, M.R.; Serensen, A J.; Lefebvre, N.; Yum, K.K; Pedersen, E. Hybrid modeling of strategic loading
of a marine hybrid power plant with experimental validation. IEEE Access 2016, 4, 8793-8804. [CrossRef]
Kanellos, ED. Optimal Power Management With GHG Emissions Limitation in All-Electric Ship Power
Systems Comprising Energy Storage Systems. IEEE Trans. Power Syst. 2014, 29, 330-339. [CrossRef]

Fujian Shipbuilding. 87M Platform Supply Vessel. Available online: http://www.fujianshipbuilding.com/
87m-platform-supply-vessel (accessed on 26 September 2018).

Peralta, C.; Salles, M. Advanced energy storage systems to increase the penetration of renewable energies in
Fernando de Noronha Island. In Proceedings of the 2017 6th International Conference on Clean Electrical
Power (ICCEP), Santa Margherita Ligure, Italy, 27-29 June 2017; pp. 392-396.

Kroposki, B.; Burman, K.; Keller, J.; Kandt, A.; Glassmire, J.; Lilienthal, P. Integrating high levels of
renewables into the lanai electric grid. Contract 2012, 303, 275-3000.

Lloyd, D.N.V.G. Handbook for Maritime and Offshore Battery Systems; Technical Report; DNV-GL: Oslo,
Norway, 2016.

Xu, B.; Oudalov, A.; Ulbig, A.; Andersson, G.; Kirschen, D.S. Modeling of lithium-ion battery degradation
for cell life assessment. IEEE Trans. Smart Grid 2018, 9, 1131-1140. [CrossRef]

HOMER Energy. HOMER Pro User Manual; 2016. Available online: https:/ /www.homerenergy.com/pdf/
HOMERHelpManual.pdf (accessed on 15 November 2018).

Lambert, T.; Gilman, P.;; Lilienthal, P. Micropower system modeling with HOMER. Integr. Alternative
Sources Energy 2005, 379-418. [CrossRef]

138



Energies 2019, 12, 375

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Tufte, E.D. Low Load Operation of Modern Four-Stroke Diesel Engines in Generator Configuration. Master’s
Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2014.

Department of Energy of the United States of America. Global Energy Storage Database. Available online:
https:/ /www.energystorageexchange.org/ (accessed on 27 October 2018).

Zubi, G.; Dufo-Lépez, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future
perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292-308. [CrossRef]

Linden, D.; Reddy, T.B. Handbook of Batteries; McGraw-Hill Education: New York, NY, USA, 2002.
International Renewable Energy Agency IRENA. Electricity Storage and Renewables: Costs and Markets to
2030. Technical Report; 2017. Available online: http:/ /www.irena.org/-/media/Files/IRENA/Agency /
Publication/2017/Oct/IRENA_Electricity_Storage_Costs_2017.pdf (accessed on 5 October 2018).

DNV GL. Battery Energy Storage Study for the 2017 IRP. Technical Report; 2016. Available online:
http:/ /www.pacificorp.com/content/dam/pacificorp/doc/Energy_Sources/Integrated_Resource_Plan/
2017_IRP/10018304_R-01-D_PacifiCorp_Battery_Energy_Storage_Study.pdf (accessed on 20 September 2018).
EEMB CO., LTD. Lithium Iron Phosphate Battery Specification. Technical Report; 2014. Available online:
https:/ /datasheetspdf.com/pdf-file /1281808 /EEMB/LP903395F /1 (accessed on 14 September 2018).
Corvus Energy. Containerized Energy Storage System. Available online: https://corvusenergy.com/
containerized-energy-storage-system (accessed on 14 November 2018).

Delta Electronics Inc. Delta Lithium-ion Battery Energy Storage Container. Available online: http://www.
deltaww.com/filecenter /Products/Download /18/1805/0803%20DMO05-Container-201807.pdf (accessed on
14 November 2018).

Sonoda, M. Development of Containerized Energy Storage System with Lithium-ion batteries. In Mitsubishi
Heavy Industries Technical Review; 2013; pp. 36—41. Available online: https:/ /www.mhi.co.jp/technology/
review /pdf/e503/e503036.pdf (accessed on 18 November 2018).

Tesvolt. Tesvolt TPS 200-864kWh Lithium Battery Storage. Available online: https://zerohomebills.
com/product/tesvolt-tps-200-864kwh-lithium-battery-storage-all-in-one-20ft-container (accessed on
15 November 2018).

Corvus Energy.  Containerized: Energy Storage System. Available online: https://corvusenergy.
com/wp-content/uploads/2016/04/Corvus-Energy_Containerized-Solution_Nov2015.pdf (accessed on
17 November 2018).

Dudek. Technical Memorandum. Available online: https://www.sandiegocounty.gov/content/dam/
sdc/pds/ceqa/Soitec-Documents/Final-EIR-Files /00_AIS_Combined_OPT_January%?202015_Part3.pdf
(accessed on 13 November 2018).

Avo Reinap, IEA/LU. Battery Pack Design. Available online: http://www.ht.energy.lth.se/fileadmin/ht/
Kurser/MVKF25/MVKF25-vt17_BatPackDes.pdf (accessed on 17 November 2018).

Trintis, I. Grid Converters for Stationary Battery Energy Storage Systems. Ph.D. Thesis, Aalborg University,
Aalborg, Denmark, 2011.

Morales Vésquez, C.A. A methodology to select the electric propulsion system for Platform Supply Vessels
(PSV). Master’s Thesis, Universidade de Sao Paulo, Sao Paulo, Brazil, 2014.

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

139



energies MBPY

Article

A Relational Analysis Model of the Causal Factors
Influencing CO; in Thailand’s Industrial Sector under
a Sustainability Policy Adapting the

VARIMAX-ECM Model

Pruethsan Sutthichaimethee * and Kuskana Kubaha

Division of Energy Management Technology, School of Energy, Environment and Materials, King Mongkut’s
University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand;
kuskana.kub@kmutt.ac.th

* Correspondence: pruethsan.sut@gmail.com; Tel.: +66-639-645-195

Received: 2 June 2018; Accepted: 27 June 2018; Published: 1 July 2018

Abstract: Sustainable development is part and parcel of development policy for Thailand, in order
to promote growth along with economic growth, social advancement, and environmental security.
Thailand has, therefore, established a national target to reduce CO, emissions below 20.8%, or not
exceeding 115 Mt CO, Equivalent (Eq.) by 2029 within industries so as to achieve the country’s
sustainable development target. Hence, it is necessary to have a certain measure to promote effective
policies; in this case, a forecast of future CO, emissions in both the short and long run is used to
optimize the forecasted result and to formulate correct and effective policies. The main purpose
of this study is to develop a forecasting model, the so-called VARIMAX-ECM model, to forecast
CO; emissions in Thailand, by deploying an analysis of the co-integration and error correction
model. The VARIMAX-ECM model is adapted from the vector autoregressive model, incorporating
influential variables in both short- and long-term relationships so as to produce the best model for
better prediction performance. With this model, we attempt to fill the gaps of other existing models.
In the model, only causal and influential factors are selected to establish the model. In addition,
the factors must only be stationary at the first difference, while unnecessary variables will be discarded.
This VARIMAX-ECM model fills the existing gap by deploying an analysis of a co-integration
and error correction model in order to determine the efficiency of the model, and that creates an
efficiency and effectiveness in prediction. This study finds that both short- and long-term causal
factors affecting CO, emissions include per capita GDP, urbanization rate, industrial structure,
and net exports. These variables can be employed to formulate the VARIMAX-ECM model through a
performance test based on the mean absolute percentage error (MAPE) value. This illustrates that the
VARIMAX-ECM model is one of the best models suitable for the future forecasting of CO, emissions.
With the VARIMAX-ECM model employed to forecast CO, emissions for the period of 2018 to 2029,
the results show that CO, emissions continue to increase steadily by 14.68%, or 289.58 Mt CO,
Eq. by 2029, which is not in line with Thailand’s reduction policy. The MAPE is valued at 1.1%
compared to the other old models. This finding indicates that the future sustainable development
policy must devote attention to the real causal factors and ignore unnecessary factors that have no
relationships to, or influences on, the policy. Thus, we can determine the right direction for better
and effective development.

Keywords: causal factors; CO, emissions forecasting; VARIMAX-ECM model; sustainable
development; economic growth; population growth
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1. Introduction

Thailand is currently in the midst of accelerating economic growth in order to develop the
country. Along the way, it has found that the current GDP (gross domestic product) has increased as a
result of the promotion and expansion of various areas, such as the support of export activities,
a continual increase of private consumption, a rise in government spending, an acceleration of
foreign investment, and the promotion of industrialization and urbanization. Throughout these
enforcements, the environment is being affected as the amount of CO, emissions from the country’s
energy consumption rose by 1.3% in 2016. CO, emissions have been seen to increase in almost all
economic sectors, including industrial, transportation, and other economic sectors. Concerning CO,
emissions per unit of electricity production (kWh) and per GDP in the sectors, they continue to increase
beyond the global average. Among the different economic sectors, CO; emissions in the industrial
sectors are at the highest rate, equivalent to 27%, while their growth rate is at 4.3%. During the year of
2017, compared to 2016, the petroleum sector contributed the highest CO, emissions [1].

Thailand produces total CO, emissions of 69.9 Mt CO, Eq. under the industrial sectors, with a
growth rate (2017/2016) of 4.3% due to economic growth. Moreover, CO, is emitted by the energy
sector at 88.7% with a 10.3% growth rate (2017/2016). This reflects that this sector produces the highest
amount of greenhouse gas. Generally, it releases up to 90% of carbon dioxide and 75% of other
greenhouse gases out of the total greenhouse gases [1,2].

Sustainable development is the national roadmap that Thailand aims to follow. It aims to boost
the economy, along with social improvement, while the environment is simultaneously enhanced.
The above roadmap has to be given full attention and carefully implemented. This is because economic
and social growth are likely to negatively affect the environment. Nevertheless, the vital action of
creating efficiency in planning and sustainability in implementation is to analyze the relationship of
various variables which can influence, and have an impact on, policy-making. Thus, the analysis
outcome can provide future predictions so as to facilitate in both short- and long-term policy-making
and action planning.

Energy consumption evolves around producing more and more CO, that is emitted into the air,
causing natural damage and climate change. Thus, forecasting future energy consumption is becoming
an important task, as it represents another way to determine what actions need to be taken in order to
minimize CO, emissions and achieve the national reduction goal. By reviewing various studies across
the region, it is evident that CO, emissions are associated with various forces, and energy consumption
is an integral part of the emission level. Therefore, a forecasting strategy would be instrumental for the
energy consumption industry.

Many studies have attempted to generate different approaches and applications to support energy
consumption, production, and optimization. For example, the studies of Ren et al. [3], Xu et al. [4],
Jeong and Kim [5], Gonzalez et al. [6,7], Xu et al. [8], Wang et al. [9], Tian et al. [10], and Lin and
Long [11] focused on the attributes or characteristics of energy consumption by using an analysis
of logarithmic mean Divisia index (LMDI) factor decomposition. Among them, Wang et al. [9] also
proposed a new method of LMDI, and this method was structured based on five perspectives of
effect: labor, economic structure, investment, energy mix, and energy intensity. This study was
conducted in China’s energy consumption sector, and its result showed that the energy intensity
does help to decrease energy consumption. As the energy intensity plays an important role in energy
consumption, BaleZentis et al. [12] started exploring the energy intensity trends in the Lithuanian
economy under different economic sectors from 1995 to 2009, and their study reported that energy
efficiency increased when the economy exhibited a downward trend. Therefore, certain measures
should be issued as policies in order to enhance the energy intensity in Lithuania, as suggested by
the study. Gonzalez et al. [6] explored the underlying factors causing changes in aggregate energy
consumption by using LMDI, and their study showed that the enhancement in energy efficiency
was not sufficient to lower the economic pressure of European activity with regard to aggregate
energy consumption. In recent years, many countries have put forth efforts to increase production,
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which requires a higher energy consumption, so as to boost their economic growth. However, a study
by Mulugeta et al. [13] showed that energy consumption is an important driving force towards growth
in the economy, which they investigated by forming an economic growth hypothesis. For a particular
country, such as Saudi Arabia, Alkhathlan and Javid [14] investigated the relationship between
economic growth, energy consumption, and CO, emissions, and they found that the rise of CO,
emissions was influenced by the increment of income per capita. On the other hand, Khan et al. [15]
analyzed the relationship of studied variables for the period of 1975 to 2011, and they witnessed that
energy consumption had a significant impact on the CO, emissions in Pakistan in particular.

Other studies, such as that of Arouri et al. [16], studied the relationship between the real GDP,
CO; emissions, and energy consumption in 12 selected Middle East and North African countries
(MENA) using a bootstrap panel method. They found clear evidence that CO, emissions are
significantly affected by energy consumption. Additionally, Acaravci and Ozturk [17] initiated a
study of the causality between various factors, including energy use, economic growth, and CO,
emissions, with a sample size of 19 European countries. By using a technique of autoregressive
distributed lag (ARDL) and the error-correction Granger causality test, they were able to find only the
long-run relationship between those factors in certain countries, such as Iceland, Switzerland, Denmark,
Portugal, Germany, Greece, and Italy. In addition, Menyah and Wolde-Rufael [18] conducted a similar
study on the causality between energy consumption, pollutant emissions, and economic growth in
South Africa with the same approach of ARDL. As of the result, a long-run relationship between
the variables was revealed. Ohlan [19] performed an analysis of the impact of energy consumption,
population density, trade openness, and economic growth on the emissions of CO, in India for
the period of 1970-2013. For this analysis, the researcher employed the ARDL approach, and its
result showed that those three studied factors had a great positive influence on CO, emissions in
both the short and long term. With the same method of analysis, the ARDL method, Sulaiman
and Abdul-Rahim [20] conducted an investigation of a three-way linkage relationship between
economic growth, CO, emissions, and energy consumption in Malaysia during the period of 1975-2015.
The examination’s result revealed that the rise of both factors; energy consumption and economic
growth, do contribute to the rise of CO, emissions.

In order to determine other evidence of association with CO, emissions, Akpan and Akpan [21]
found in their study conducted in Nigeria that economic growth improves when carbon emissions are
rising, and this rise of CO, emissions is positively associated with electricity consumption. In the same
area of study with the application of the Toda and Yamamoto causality test, Sulaiman [22] claimed that
CO; emissions do support economic growth, while energy consumption contributes to the increase
of CO, emissions. However, Manu and Sulaiman [23] adapted the simple ordinary least squares
(OLS) approach to examine the relationship between economic growth, energy consumption, and CO,
emissions in Malaysia. This study covered the period of 1965-2015, and found that CO, emissions are
reduced when the income is raised. In the meantime, it increases when the trade openness increases.

In addition to those factor relation studies, it is necessary to mention the grey system and
autoregressive integrated moving average by Lotfalipour, Falahi, and Bastam [24]. They optimized the
above model to predict CO, emissions in Iran. Their findings showed that the models could produce
a more accurate result than any other method, and estimated up to 925.68 million tons of carbon
dioxide emissions by 2020, equivalent to 66% growth compared to 2010. Liang [25] discussed China’s
multi-region energy consumption and CO, emissions under an input-output model. Additionally,
his findings were portrayed through a scenario analysis for 2010 and 2020. For a shorter-term
forecasting coverage, Li [26] evaluated the CO, emissions reduction under different scenarios for the
years of 2016 and 2020 in Beijing. He applied a back propagation (BP) neural network optimized by
the improved particle swarm optimization algorithm. However, his investigation showed that the
model was not effective enough to provide high precision. Meanwhile, Zhao, Huang, and Yan [27]
forecasted CO, emissions in China from 2017 to 2020 with the deployment of some selected models:
the single LSSVM model, the LSSVM model enhanced by the particle swarm optimization algorithm
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(PSO-LSSVM), and the back propagation (BP) neural network model. The above prediction verified
that structural factors will have a significant impact on CO, emissions by 2020. Potentially, this allows
China to keep its promise to reduce greenhouse gas emissions by 2030. Consequently, Dai, Niu,
and Han [28] proposed to adapt the MSFLA-LSSVM model in CO; emissions prediction in China from
2018 to 2025. They concluded that China’s CO, emissions would exhibit a slow growth trend for the
next few years. With this in mind, China’s CO, emissions could be effectively controlled in the future,
which could start to reduce the greenhouse effect. In another approach, Lin et al. [29] incorporated
the grey forecasting model to estimate CO, emissions from 2010 to 2012 in Taiwan. According to the
forecasting results, they found that the CO; emissions of Taiwan would decline for the next three years.

The Government of Thailand aims to establish a future reduction goal for CO, emissions, whereby
Thailand should reduce emissions below 20.8% or not exceed 115 Mt CO, Eq. by 2029. However,
over the years, CO, emissions produced from energy consumption have been continuously increasing.
Industrial sectors, in particular, have the highest increase of up to 27%, while the growth rate is
increasing continuously every year. Also, it is observed that the petroleum sector is the major
contributor and is emitting the most CO,. This is seen to contradict Thai government policy and
planning, and the CO, emissions reductions are not improving [2]. Hence, the author sees this as
an issue that needs to be tackled, and this study has, therefore, been carried out. The study focuses
on the policy framework, which reflects the fact that Thailand still lacks a forecasting model which
can produce good results and make effective predictions in both the short- and long-term. As for the
existing forecasting models used in Thailand’s policy formulation, they are models without proper
processing and with ineffective research. In addition, most of the models are too common, such as
multiples regression, the ARMA model, and many more. As a result, the previous predictions have
become spurious and erroneous. In the same model forecasts, the causal factors that actually affect the
CO; emissions have not been analyzed or taken into account.

Based on a review of previous studies, many studies share similarities in metrology, research
methodologies, and various analytical outcomes. In this study, unlike any other studies, a new research
focus is introduced, which constitutes an investigation of the relationship of causal factors of various
variables. The analytical outcome is later driven into further forecasting for both short- and long-term
use. In fact, this research is designed to support sustainable development policy-making, create
analysis guidelines, as well as to open new areas for those interested in exploring and expanding
sustainable development in the future; be it Thailand or any other country. This research provides
guidance in the process of establishing the country’s sustainable development policy as it allows
the determination of effective management and working processes. The research’s guideline flow is
as follows.

(1)  Analyze the causal variables that can influence the change of CO, emissions with the Augment
Dickey Fuller theory [30] only at the same level. This analysis is within the framework of
sustainable development, using data from 1990 to 2017. Moreover, only crucial and influential
variables are used in the forecasting model.

(2) Place the stationary causal variables at the same level in the analysis of long-term relationship
based on the Johansen Juselius concept [31].

(3) Create a forecasting model by adapting the advance statistics of the so-called vector autoregressive
model, with full consideration of the relationship of all causal variables, both in terms of the
error correction model and co-integration, consisting of significant causal variables towards
the change of CO, emissions. Additionally, a forecasting pattern for both the short- and long-
term must be taken into account so as to produce the best and most effective model with the
least errors. The average relative errors between the simulation and actual data are measured
through an output comparison of relevant models, namely the ARMA model, ARIMA model,
and GM-ARIMA model.

(4) Forecast CO, emissions from the VARIMAX-ECM model for the period of 2018 to 2029, totaling
12 years, with certain selected causal factors. Discard unnecessary variables.
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The flowchart of the VARIMAX-ECM model is shown in Figure 1.

Determine related variables for model formation
under the scope of Sustainable Development

|

Unit Root Test at level 1(0) through
Augmented Dickey and Fuller

I | !

~‘ If Unit Root exists, perform If Unit Root is not

First Difference at Level [(1) found, perform another
underlying analysis

If any variable is | | If any

found nol to be variable is
Stationary at ¥ found not to
Level 11}, drop Perform Co-integration at the same Level be Stationary
that variable |« through Johansen Juselius theory at Level I{0),

from modelling drop that
l variable from

madelling

Form a VARIMAX-ECM Model

l

Forecasting Result

Figure 1. The flowchart of the VARIMAX-ECM model.

The main structures of this article flow as follows: the second section introduces the forecasting
model of VARIMAX-ECM. The third section carries out the empirical analysis to prove the practicality
and validity of the proposed model for CO, emissions forecasting, and to predict the CO; emissions in
Thailand’s industrial sector from 2018 to 2029. The fourth section summarizes the discussion.

2. The Forecasting Model

2.1. Unit Root Test

We analyze the data for the stationary process by testing the unit root according to the Augment
Dickey Fuller concept [30].

Stationary Process

The stationary, or stationary stochastic, process [32,33] is the series of time data with the mean or
expected value, variance, constant overtime, and covariance. The expected value and constant variance
in the context of et lacks the property of being white noise, meaning that it has the autocorrelation
property where the correlations are high or the order of the autoregressive process is higher. Hence,
a test like the Augmented Dickey Fuller test (ADF) is required. The lagged variables are added into the
equation in the higher level to eliminate the autocorrelation, heteroskedasticity, and multicollinearity,
as shown below:

p
AYe= 81Xt + ) BiAY i1 + & M
i=
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P
AYe= a1 +8Yi 1 + Y, BiAY i1 + & (2)
i=2
P
AYp= o1 + 00T + 8Yiq + Y BiAY 41 + & (3)
i=2

From the equations above, the value of p seems to be the lagged values of first difference to
the variable, which is verified by testing the unit root with the Augmented Dickey Fuller method.
With the above equation, three problems are considered and taken into account. In particular, the
autocorrelation in ¢ is set to have the property of white noise, and the error term has the mean of 0
and is constant under the following hypotheses:

Hypotheses 1 (Hy). b = 0, non-stationary;
Hypotheses 2 (Hy). 6 < 0, stationary.

If tau-statistics of the efficiency o are in the form of the absolute term, there must be more critical
values appearing in the ADF table. This denies the major hypothesis, meaning that the time series of the
variables are stationary. Thus, it can be said that AY; integrated numbered is represented by AY ~I(d).

2.2. VARIMAX-ECM Model

The VARIMAX-ECM model is a new model adapted from the vector autoregressive model,
incorporating influential variables in both short-term and long-term relationships so as to produce the
best prediction model with the maximum performance and least error.

2.2.1. VARIMAX-ECM and Co-Integrating Vector

In this section, we consider the segment of the deterministic component in a time series of the
VAR model [34]. In order to simplify the concept for a better understanding, we consider the VAR
model as follows:

Xe= A1Xi—1 + o + it + ue 4)

where y is the vector of the parameter representing a constant value in the VAR(p) model, y, is the
vector of the parameter indicating a defined trend in the VAR(p) model, and vectors p and p; are
shown below:

Ho1 H11
Ho2 Hi2
Ho = . ;M = .
Hon nx1 Hin nx1

When vectors 1 and 11 are not zero, Equation (4) reflects that at least one time series in the
VAR (1) model must be a deterministic component, in which it can either be a constant or a defined
trend, or both forms. The above VAR(p) model can be converted into the VARIMAX-ECM model as
shown below:

AXp = af'Xeo1 + po + 1t + u ®)

From the above equation, it can be observed that vectors iy and p, exist in both the VAR and
VARIMAX-ECM models, and that both AX; and 'X;_1 have to be stationary in the deterministic area.

However, to observe a deviation out of the long-term co-integration of j (j=1,2, ... , r) denoted
as vector B'X;_1, the mean of the above deviation must be zero. In order to obtain such a result,
the deterministic component must be eliminated from the deviation out of long-term balance (B'X;_1)
by separating vectors iy and p; in the VARIMAX-ECM model, as illustrated in Equation (6), and by
combining them into p'X;_1 as explained below.
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Vector ny and vector p; can be separated into the sum of the two vectors by using the
following equation:

(/o) 'B B (o 1BL) o = ©)
where 3| and o are the orthogonal matrices with p and «, respectively. Here, it is seen that ' | = 0
and &’ = 0.
When we multiply vector iy with Equation (6), the result is obtained from:

-1
«(B'o) g + B (@ 1BL) o iHo= ko )
If given:
Bo= (B'®) "B'ug ®)
-1
Yo= Bu(a'BL) o iug ©)

We substitute Equations (8) and (9) into Equation (7), we obtain:

Ho = afp + Yo (10)

At the same time, if we use vector 11 to multiply with Equation (6), obtaining:
o= oafy+v; 11

—1
where B, = (Bloc)flﬁlpl andy{=f | (oc'lﬁj_) oy -
If we substitute Equations (10) and (11) into Equation (5), we obtain:

AXy = aB'Xe1 + xBo + aprt + vo + vit + K (12)
Equation (12) can be restructured as follows:
AXe= (B X1+ Bot Brt) + Yo +vit + w (13)

where AX; is the n x 1 vector, X, is the n x 1 vector, o is the n X r matrix, and f is the n x r matrix. 3y
is the r X 1 matrix, 31 is the r X 1 matrix, y( is the n x 1 matrix, v is the n x 1 matrix, and p, is the
n x 1 matrix. n is the number of time series in vector X,.

Equation (13) shows that if vector X; determines (i, + pyt), there is a possibility that
the VARIMAX-ECM model determines (y, + vit) and the long-term co-integration determines
(B + B1t). In addition, Equation (13) can be rewritten as:

Xi-1

_ !
M=o B Bo By ] ! + Yo+ Vit + t (14)

(n+2)x1

~ ~ !
Let [3, = [ B By By },Xt,l = [ Xie1 10t } ,and we can then structure another equation as:

AXe= oB Xt +vo + vt + u (15)

The above equation contains the following characteristics:

E(AX,) = vy + V1t E(E'XH> =0 (16)
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Moreover, Equation (15) explains the connection between the deterministic area of the
VARIMAX-ECM model and the long-term co-integrating vector, which can be classified into
five situations.

Situation 1: If yg = vy = pgor (ug = py = O0) for both the VARIMAX-ECM model and the
long-term co-integrating vector (deviation out of long-term balance), they are not deterministic or
can be expressed as E(AX,) = Oand E( ’)~(t,1) = 0. Therefore, the VARIMAX-ECM model in this
position is:

AXe = oB'Xe1 + u 17)

The case of iy = p; = 0 indicates a time series in vector X; and is not deterministic (it is not
constant nor a defined trend) in the equation.

Situation 2: If yo = 0, vy = B; = 0 (or 1 = 0) but By # 0, then the vector of the long-term
co-integration reflects a constant value (B # 0) or can be written as E(f /Xt,l) = By- Meanwhile,
the VARIMAX-ECM model is not deterministic at all, or can be written as E(AX,) = 0. In order to
remove the constant value out of the long-term co-integration, the VARIMAX-ECM model must be in
the form of:

(8X,) = B X1 + (18)

where E, = { B Bo ] and X;_; = [ Xiop 1 } ,. Thus, we can retrieve E(B'/y(t,l) = 0.

The case of 1y = Oandyy = 0, but 3y # 0, indicates at least one time series in vector X; and is
constant (but it is not a defined trend) in the equation.

Situation 3: If y; = B; = 0 (or p; = 0) butyy # 0and By # 0, the vector of the long-term
co-integration is not a defined trend but is constant (B¢ # 0), or can be written as E(f ’Xt,l) = By-
If the VARIMAX-ECM model is found to be constant, yg # 0, or can be written as E(AX,) = v,
and the above fixed value in the long-term co-integrating vector can be removed by using the long-term
co-integration B,)N(t_l in the VARIMAX-ECM model, as illustrated below:

AX¢ = fxgly(tfl + Yo + ut (19)
~ - ’
where p = { 8" Bo ] and X;_; = [ X 1
The case of u; = 0, butyy # 0and By # 0 indicates that at least one time series is a defined trend.
Situation 4: If y; = 0, but yo # 0, g # 0 (or g # 0), and By # 0, the long-term
co-integration p'X;_1 cannot eliminate the constant value and defined trend, and it can be rewritten
as E(B'Xi_1) = By + B1t. This can be described in such a way that the long-term co-integration is a
stationary trend, while the VARIMAX-ECM model is found to have a fixed value of v, # 0 or can be
written as E(AX,) = v,. The fixed value and defined trend that exist in the long-term co-integrating
vector could be removed by using a E,y(t,l long-term co-integration in the VARIMAX-ECM model
as follows:

AXe = o X1+ vo + ue (20)
., N X1 ,
where B = | B’ By By ] and X;—1 = 1 , which can also be written as [ Xee1 10t ] .
t

The case of p; # 0 and y; = 0 but 1 # 0 demonstrates that at least one time series in vector X;
has to be constant and a defined linear trend, but it is not a quadratic trend.

Situation 5: If y; # 0,y # 0, Bg # 0, and B¢ # 0, this shows that the long-term co-integration
has to be a stationary trend (B + B1t), while the VARIMAX-ECM model has to be constant and
defined trend (y + y1t) which can be written as below:

AXe = of' X1 +vo+ vit + ue @1)
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~ ~ !/
where [5/ = [ B By By ] and X;_1 = [ Xi—1 1 t | . Thecase of ny # 0 and p; # 0 occurs

when at least one time series in vector X; has to be defined by a quadratic trend (4 it + uztz).

2.2.2. An Estimation of the Co-Integrating Vector with the Use of Various Equations [33]
Consider the VARIMAX-ECM model as follows [35]:

AXt: O(ng/i‘-,]Jrr]AXt,]#»rzAXt,z +... +Fp,1AXt,(p,1)+(th+ut (22)

where E/ = [ B By By ] is the r x (n + 2) matrix, B is the n x r matrix, By and 3, are ther x 1
~ !/
vector, X;_1 = [ Xeop 10t } is the (n +2) x 1 vector, « is the n x r matrix, and rank («) = rank

(E) = r. Additionally, D; is the matrix indicating a deterministic component.

The estimation of the parameter of the long-term co-integrating vector {3 can be achieved with
the application of maximum likelihood by assuming vector u; ~ Normal (0, }°) 0 is zero, and }_ is
the variant matrix of u;. Johansen (1995) proved that the estimation of vector anr with this method
would result in an eigenvector in accordance with the eigenvalue from the minimum to maximum
value. This is achieved using the equation below:

AS11 — S10Sp5S01| = 0 (23)

Sjj = %RitR]-'t, i =0,1,andj = 0, 1; where T is the number of data used in the VARIMAX-ECM
model. Ry, is the n x T matrix of the residual retrieved from a regression equation with a variable of
AXt, and the independent variable is AX; 1, AX; -2, ..., AX;_p+1, Dt Ry is the (n +2) x T matrix of
the residual retrieved from a regression equation with a variable of X;_;, and the independent variable
is AX¢—1, AX¢_2, -+ , AX¢—p+1, De.

IfAGi=12.. .,n)11 is the eigenvalue computed from Equation (24) where 1 > A; > A,

> ...> Ay >0, let the eigenvector consistant with the eigenvalue 5\1, A2, ..., An be written as
V= [ Vi V2 oo Vn ] . Therefore, we can obtain the estimator of the co-integrating
(n+2)x(n+2)
vector as follows:
V=% % 0] 24
1 2 r (n+2)xr ( )

Commonly, there are two popular patterns of forming primary and secondary assumptions
pertaining to the number of the long-term co-integration.

Pattern 1: Hj is the maximal number of vectors indicating the long-term co-integration equivalent
to r. Hy is the number of vectors indicating the long-term co-integration greater than r.

In theabove,r = 0, 1, 2, ..., n—1,and the statistical value to testify the above assumption
is trace statistic Agrace, Which can be computed using the equation below:

Mrace(r) = —T Z (l*)A\i) (25)
i=r+1

Pattern 2: Hj is the maximal number of vectors indicating the long-term co-integration equivalent
to r. Hy is the number of vectors indicating the long-term co-integration equivalent to r + 1.

Intheabove,r= 0, 1, 2, ..., n—1,and the statistical value to testify the above assumption
is maximum eigenvalue Agace, Which can be computed using the equation below:

Amax(r,1+1) = =T(1 = A1) (26)

148



Energies 2018, 11, 1704

I+ + T =1
A={T,-1,, 2<i<-1 (27)
_fpfl J=p

After that, we use the VARIMAX-ECM forecasting model of the time series in vector X; by using
the same concept, which is the forecasting of the minimum mean square error. Hence, the forecast of
1,2,...,h pre-timing of the time series in the vector X; can be illustrated as:

Xry1 = AXp +Ao0Xr_1 +ApX7_p i (28)
Xry2 = AXry1 +A0Xr_1 +ApXT_pi2 (29)
Xrih = AiXrino1 A Xripo + .o+ ApXr_ (30)

where )A(T+j = A1XT+]' lf] < 0.

2.2.3. Measurement of the Forecasting Performance

In order to evaluate the forecasting effect of each model, we employ the mean absolute percentage
error (MAPE) to compare the forecasting accuracy of each model. The calculated equations are shown
as follows:

Yi—Vi

1 n
MAPE = -}
n Yi

i=1

(C)

3. Empirical Analysis

3.1. Screening of Influencing Factors for Model Input

In this paper, we tested the causal factors in the context of Thailand’s sustainable development
policy. Here, we deploy the time series data of the period of 1990-2017. The tested factors consist of
seven variables, namely CO, emission (In(CO,)), population growth (In(Population)), per capita GDP
(In(GDP)), urbanization rate (In(UR)), industrial structure (In(IS)), total coal consumption (In(CC)),
and total exports and imports (In(X — E)). The test was conducted based on the Augment Dickey
Fuller theory at Level I (0) and Fist Difference I (1), as illustrated in Table 1.

Table 1. Unit root test at Level I (0) and First Difference I (1).

MacKinnon Critical Value

ADF Test at Level I (0) ADF Test at First Difference I (1)
1% 5% 10%
In(CO,) —3.41 Aln(CO,) —4.90 —4.12 —3.27 —-3.05
In(Population) —2.05 Aln(Population) —3.02 —4.12 —3.27 —3.05
In(GDP) —381 Aln(GDP) —5.69 —412 —327 ~3.05
In(UR) -325 Aln(UR) —471 —412 —327 ~3.05
In(IS) —-3.72 Aln(IS) —4.65 —4.12 -3.27 -3.05
In(CC) —245 Aln(CC) —3.01 —412 —327 ~3.05
In(X — E) —3.64 Aln(X —E) —464 —412 —327 ~3.05

Note: In(CO,) is the natural logarithm of CO, emissions; In(Population) is the natural logarithm of population
growth; In(GDP) is the natural logarithm of per capita GDP; In(UR) is the natural logarithm of urbanization rate;
In(IS) is the natural logarithm of industrial structure; In(CC) is the natural logarithm of total coal consumption;
In(X — E) is the natural logarithm of total exports and imports, and A is the first difference.

Table 1 shows that all variables under the unit root test are non-stationary at Level I (0), and this
explains the non-significance at 5% and 1%. Therefore, the First Difference I (1) is required to carry
on. The finding here indicates that when the variables are tested through the unit root test at Level I
(1) with a significance level of 5% and 1%, or stationary identification, the variables appear to be CO,
emissions, per capita GDP, urbanization rate, industrial structure, and total exports and imports. Thus,
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these variables are carried forward for a co-integration analysis. The other two variables, population
growth and total coal consumption, are non-stationary at Level I (1). Therefore, the researcher tests the
two variables in pairs with other variables. The outcome shows that the variables do not represent any
correlation to the changes in CO, emissions at significance levels of 5% and 1%. Accordingly, the two
variables are dropped out of the model. Meanwhile, those stationary variables at the First Difference
are brought forth to investigate the long-term relationship (co-integration) as demonstrated in Table 2.

3.2. Analysis of Co-Integration

Table 2 shows that all variables have a long-term relationship (co-integration), because the results
of the trace test are 210.25 and 70.55, which are higher than the critical values at significance levels of 1%
and 5%. The maximum eigenvalue test results are 130.55 and 75.46, which are higher than the critical
values at the same significance levels. Consequently, those variables are used to form a forecasting
model by adapting the ARIMAX-ECM model and applying short- and long-term relationships into the
model. For a better understanding, the model is presented in the form of a regression line, so as to
show the influence of variables as seen in Table 3.

Table 2. Co-integration test by Johansen Juselius.

MacKinnon MacKinnon
i Critical Val -Ei Critical Val
Variables Hl\)lrpotfl-[é;l(zse)d s Tra.ceT ritical Value sMa.x }.Elg;n ritical Value Status
oo tatistic Test 1% 5% tatistic Test 1% 5%
Aln(CO,),
Aln(GDP),  Nope 21025 1975 1541 130.55 1568  14.07 11)
Aln(UR),
Aln(IS),
Aln(X—E)  AtMost1* 70.55 5.75 3.16 75.46 5.75 3.16 1(1)

** denotes significance « = 0.01.

3.3. Formation of Analysis Modeling with the VARIMAX-ECM Model

Table 3 illustrates the parameters of the VARIMAX-ECM Model at a statistically significant level
of 1% and 5%. The findings show that per capita GDP (In(GDP)) causes a change in CO, emissions
(In(CO,)), which covers both short- and long-terms at a statistically significant level of 1%. At the
same significant level and effect coverage, the urbanization rate (In(UR)), total coal consumption
(In(CQC)) and total exports and imports (In(X — E)) are also found to cause changes in CO, emissions
(In(CO,)). Hence, this study suggests that the above causal factors have an influence over changes in
CO, emissions with the parameter size shown in the table.

Table 3. The result of the VARIMAX-ECM model.

Direction of Causality

D dent

\2111122 Short Term Long Term

Y Aln(CO Y Aln(GDP Y. Aln(UR Y Aln(IS Y Aln(X - E ECM;_

2

Aln(CO,) 6.43 ** 4.76 ** 3.42%* 513 ** —2.15**

Aln(GDP) 4.31* 3.05 ** 5.77 ** 6.65 ** —2.05**

Aln(UR) 3.76 * 3.44* 6.59 ** 4.61** —1.97 **

Aln(IS) 4.71** 2.78* 3.49 ** 711 —1.51**

Aln(X—E) 245% 2.98 ** 6.78 ** 4.62** —2.77 **

In the above, ** denotes significance « = 0.01, * denotes significance « = 0.05, R-squared is 0.92, adjusted R-squared
is 0.91, the Durbin-Watson statistic is 2.02, the F-statistic is 275.05 (probability is 0.00), the ARCH test is 30.45
(probability is 0.1), the LM test is 1.55 (probability is 0.10), and the response test (x> > critical) represents
the significance.

However, this study also reveals that the changes in per capita GDP (In(GDP)), urbanization
rate (In(UR)), total coal consumption, and total exports and imports (In(X — E)) are caused by the
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factors shown in Table 4 at a statistically significant level of 1% and 5%, respectively, for both short-
and long-terms with the parameter size stated in the table.

In addition to this, the author has compared some selected forecasting models in terms of their
effectiveness with MAPE as indicated in Table 4. The comparison takes the VARIMAX-ECM model
compared with other models, including the ARMA model, ARIMA model, and GM-ARIMA model,
as follows.

Table 4. The performance monitoring of the forecasting model.

Forecasting Model MAPE (%)
ARMA Model 7.44
ARIMA Model 5.75

GM-ARIMA Model 2.25

VARIMAX-ECM Model 1.01

Table 4 shows that the VARIMAX-ECM model has the lowest MAPE value at 1.01%. Accordingly,
the GM-ARIMA model, ARIMA model, and ARMA model have MAPE values of 2.25%, 5.75%,
and 7.44%, respectively. Based on the findings of the study, it has shown that the VARIMAX-ECM
model used by the author is the most effective one. This can be observed from the value of the mean
absolute percentage error (MAPE) was found to be lowest compared to the old model. Moreover,
the study has also found that the VARIMAX-ECM model is suitable for long-term forecasting unlike
other previously conducted studies, which were mostly old models proved only to be feasible for
short-term forecasting. In addition to this, the VARIMAX-ECM model is a forecasting model which
captures, with detail and prudency in the analysis process, by selecting the only stationary causal
variables at the same level, as well as securing the same level of co-integration in order to create the
best model. If any of the variables does not meet the set conditions, it would not be taken into account.
Therefore, the VARIMAX-ECM model becomes the right forecasting model suitable for long-term
policy-making and management planning in order to achieve a sustainable development in the future.
Therefore, the VARIMAX-ECM model is used to forecast CO, emissions in the following step.

3.4. COy Emissions Forecasting Based on the VARIMAX-ECM Model

Figure 2 shows that CO, emissions from 2018 to 2029 in Thailand are continuously increasing
with changes up to 14.68% or 289.58 Mt CO, Eq. The result shown is beyond the target and deviates
from the reduction policy; CO, emissions are expected to reduce by 20.8%, or be less than 115 Mt CO,
Eq. in the industrial sectors so as to attain sustainable development.

Forecasting results of CO, emission (Mt CO2 Eq)

[
— [
,_.--"""'""A

=

© 240.00

230.00

Years

Figure 2. The forecasting results of CO, emissions from 2018 to 2029 in Thailand.
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4. Conclusions and Discussion

This study disclosed new knowledge and guidelines for future research. The forecasting model
must emphasize the causal factors that can influence CO, emissions in both the short- and long-term.
In addition, the to-be-used variables must be stationary at the same level. It is important to drop or
ignore unnecessary variables, which have no direct influence on the dependent variables, so as to
produce the best performing model with the most effective prediction outcomes. At the same time,
this will facilitate the formulation of effective sustainable development policies. The newly-introduced
model in this study attempts to fill the gaps or weaknesses of most existing forecasting models.
Additionally, it provides more accurate output with fewer errors, which is instrumental for both the
academic world and the country in enhancing policy-making for future sustainable development.

From this study’s findings, both the short- and long-term causal factors affecting CO, emissions are
per capita GDP, urbanization rate, industrial structure, and total exports and imports. These variables
can be employed to formulate the VARIMAX-ECM model through a performance testing based on
MAPE values. Here, the test’s results indicate this model’s higher quality and efficiency compared to
other existing models, such as the ARMA, ARIMA, and GM-ARIMA models. This illustrates that the
VARIMAX-ECM model is one of the best models suitable for the future forecasting of CO, emissions.
Deploying the data of 2018 to 2029, we found that CO, emissions continue to increase by 14.68%,
which is not in line with Thailand’s reduction policy, in which Thailand aims to reduce CO, emissions
to be lower than 20.8% by 2029.

This study produced new findings and, thus, differentiates itself from other existing studies,
including those studies in the above literature review. Specifically, this study generated a forecasting
model with the ability to provide a long-term forecast over more than 10 years (2018-2029) and perform
effectively. In addition, this study is one of the first reports to introduce the VARIMAX-ECM model.
This model is basically adapted from the existing concept and theory. Based on previous studies,
the VARIMAX-ECM model is the best model appropriate for long-term forecasting. Unlike many
existing and relevant studies, this study makes long-term forecasting possible. This can be observed
from the review of relevant studies with the capability of only short-term prediction. For instance,
Dai, Niu, and Han [28] put forth the GM (grey model) and least squares support vector machine
(LSSVM), along with the optimization of the modified shuffled frog-leaping algorithm (MSFLA)
(MSFLA-LSSVM), to forecast CO; emissions in China. Their study was conducted only for the period
of 2018 to 2025, which is less than 10 years of evaluation. Lin et al. [29] used the grey model to
estimate CO, emissions in Taiwan for only three years, from 2010 to 2012. Additionally, Zhao, Huang,
and Yan [27] proposed a CO, forecasting model called SSA-LSSVM, which was structured based on
the Salp Swarm Algorithm (SSA) and least squares support vector machine (LSSVM) model to forecast
CO; emissions in China from 2017 to 2020, covering only four years. For five years of prediction
coverage, Li [26] used a BP neural network with the improved particle swarm optimization algorithm
to examine CO, emissions reduction in Beijing under different scenarios for 2016 and 2020. Meanwhile,
Liang [25] obtained a longer forecast from 2010 until 2020 with the application of the input-output
model on China’s multi-region energy consumption and CO, emissions. With the same coverage of
prediction, Lotfalipour, Falahi, and Bastam [24] employed the grey and ARIMA models in their study
to forecast CO, emissions in Iran for the period of 2010 to 2020.

With those studies taken into consideration, it can be observed that the efficiency of the
VARIMAX-ECM model is superior, that it is suitable for long-term, yet accurate, forecasting,
and that it produces fewer errors (absence of heteroskedasticity, multicollinearity, and autocorrelation).
These findings are in parallel with those of Manu and Sulaiman [23]. Additionally, this study differs
from other studies in term of the causal factors, as it focuses and selects only the true influencing
factors for CO, emissions.

Hence, unnecessary factors, such as population growth and total coal consumption, are eliminated
from the study in order to reduce potential errors. The reason behind this elimination is because
the variables are non-stationary factors at the level and first difference, and incompetent for the
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co-integration. If the said variables are included in this research the model will be false and it may
incur errors denoted by issue alignment to heteroskedasticity, multicollinearity, and autocorrelation at
the same time. If the above issues become problematic, it will affect, and have a negative influence
over, the forecasting process. However, from the previous policy-making of Thailand (in 1970-2017),
the mentioned factors were used in the model and, as a result of that inclusion, there was an absolute
failure because the application failed in the forecasting and future planning. Thus, the government
should emphasize the issue and prioritize on those causal factors with a direct influence on CO,
emission to be used in the forecasting model. This is to create the best forecasting model capable
for both short- and long-term predictions, though the factors share the same characteristics under
the sustainable development policies of many other countries and Thailand, as claimed by Dai, Niu,
and Han [28], and Chindo and Abdul-Rahim [20]. This study opens another arena to explore, which
can be further developed for future study. At the same time, the findings of this study can be deployed
in formulating long-term development strategies so as to boost both the economy and environment in
the most efficient and effective way possible.

However, the limitation of this research is that the author is not able to apply the energy price in
the model. This is due to the government’s continuous control of energy prices and the use of energy
funds. Therefore, it has become impossible to perceive the true changes in energy prices, which may
affect energy consumption. In addition to this, past policies have not deployed the energy price factor
as a causal factor in its policy formulation. Nonetheless, if the government allows the energy price to
change according to the current global trend and market movements, it would enable us to know the
impact of changes in energy prices on CO, emissions forecasting.

As for future research, it is suggested to consider more causal influential variables that are
relevant to the national policies of particular countries, so as to align sustainable development
policies with the national management and direction of the country. This research indicates that
both variables, population growth and total coal consumption, should not be included by Thailand
in its VARIMAX-ECM model, as evidenced by the relevant studies. Through the study of the policy
framework of Thailand, the author instead recommends that other variables need to be taken into
account so as to have an appropriate and most effective forecasting model. Some of these variables
are like domestic and foreign private investment, energy consumption structure, energy intensity,
carbon emissions intensity, and many more. In fact, encouraging the use of low carbon technologies,
like energy utilization efficiency, abatement equipment, and renewal energy, would greatly help in CO,
emissions reduction with an energy consumption amount maintained and, therefore, simultaneously
obtaining sustainable economic growth.
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Abstract: The power industry is the industry with the most direct uses of fossil fuels in China and
is one of China’s main carbon industries. A comprehensive and accurate analysis of the impacts of
carbon emissions by the power industry can reveal the potential for carbon emissions reductions in
the power industry to achieve China’s emissions reduction targets. The main contribution of this
paper is the use of a Generalized Divisia Index Model for the first time to factorize the change of
carbon emissions in China’s power industry from 2000 to 2015, and gives full consideration to the
influence of the economy, population, and energy consumption on the carbon emissions. At the same
time, the Monte Carlo method is first used to predict the carbon emissions of the power industry
from 2017 to 2030 under three different scenarios. The results show that the output scale is the most
important factor leading to an increase in carbon emissions in China’s power industry from 2000
to 2015, followed by the energy consumption scale and population size. Energy intensity levels
have always promoted carbon emissions reduction in the power industry, where energy intensity
and carbon intensity effects of energy consumption have great potential to mitigate carbon levels.
By setting the main factors affecting carbon emissions in the future three scenarios, this paper predicts
the carbon emissions of China’s power industry from 2017 to 2030. Under the baseline scenario,
the maximum probability range of the potential annual growth rate of carbon emissions by the power
industry in China from 2017 to 2030 is 1.9-2.2%. Under the low carbon scenario and technological
breakthrough scenario, carbon emissions in China’s power industry continue to decline from 2017 to
2030. The maximum probability range of the potential annual drop rate are measured at 1.6-2.1%
and 1.9-2.4%, respectively. The results of this study show that China’s power industry still has great
potential to reduce carbon emissions. In the future, the development of carbon emissions reduction in
the power industry should focus on the innovation and development of energy saving and emissions
reduction technology on the premise of further optimizing the energy structure and adhering to the
low-carbon road.

Keywords: power industry; carbon emissions; Generalized Divisia Index; scenario forecast;
Monte Carlo method
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1. Introduction

The increase of greenhouse gas emissions is the main reason for the sharp rise in global
temperatures. Compared with the 19th century, the global temperature increased by 0.4-0.6 °C
at the end of the 20th century. The United Nations Committee of Experts on Climate Change proposes
that the threshold for global climate change is 2 °C. If climate warming is not controlled, the global
average temperature will rise by 4-6 °C in the 21st century, which is 6-10 times that of the 20th
century [1]. Global warming will bring a series of hazards, such as rising sea levels, melting glaciers,
extreme weather, and so on, thus leading to a series of economic and political conflicts. By the summer
of 2017, the area of Arctic sea ice had shrunk significantly [2], leaving only 4.1 million km?, which is
40% less than the average level in September 2000 (about 6.7 million km?) [3]. The rate of sea level rise
in the recent 50 years is about 1.0-2.5 mm/year. With global warming, the sea level will continue to
rise in the next ~50-100 years, and it will increase by about 12-50 cm by 2050 [4]. Climate warming
has become the focus problem of the world’s attention, and it is also a major challenge for humanity.
Countries around the world have basically reached an agreement on climate change. On 4 November
2016, the Paris Agreement for global warming came into force. The goal is to control the global
average temperature rise to within 2 °C by 2100, compared with the pre-industrial period, and strive
to control the temperature rise within 1.5 °C [5]. Greenhouse gas emissions are an important cause of
global warming. The greenhouse gases produced by humans are mainly carbon dioxide and other
gases produced by the burning of fossil fuels. China is the world’s largest carbon emitter. In 2015,
China’s carbon emissions reached 10.4 billion tons, accounting for 29% of global carbon emissions and
exceeding the values of the United States and the 28 countries of the European Union [6]. As proposed
in the “Global Carbon Budget 2016” [7] report, in 2016, China’s carbon emissions reached 10.136 billion
tons, accounting for 28% of the global total. According to the report, global carbon emissions were
expected to increase by 2% in 2017 mainly because China’s carbon emissions were expected to increase
by 3.5% [7]. As the world’s largest carbon emitter, China is actively shouldering its responsibility to
reduce its emissions and has set a series of emission reduction targets. According to the “The Twelfth
Five-Year Plan” period, China planned to pursue energy development efforts that involve accelerating
the transformation of modes of energy development and controlling total energy consumption levels.
“The Thirteenth Five-Year Plan” proposes a decline of energy intensity levels of 15% [8]. In addition,
the Chinese government has also proposed to substantially reduce its use of fossil fuels and to increase
its clean energy consumption levels by 2030. The country’s total energy consumption amounts to less
than 6 billion tons of standard coal, and its unit gross domestic product (GDP) energy consumption
level is in line with the global average. Carbon emissions generated per unit of GDP have been
reduced by 60-65% from 2005, and the country’s carbon emissions are set to peak by 2030. By 2050,
the proportion of fossil fuel used will drop to below 50% and ideal energy-consumption levels will be
achieved [9].

The production of electricity mainly relies on the use of thermal power, while the production of
thermal power is mainly reliant on the use of coal. Nearly half of the coal that China develops each
year is used to generate electricity, meaning that half of the carbon dioxide emitted by burning coal
comes from the power industry. Furthermore, 70% of China’s energy comes from coal. According
to the proportion of existing thermal power, at least one-quarter of the country’s carbon emissions
comes from the power industry [10]. As the basis of China’s economic development, the power
industry also directly relies on the sector that uses the most fossil fuels, and the proportion of its energy
consumption in China’s energy consumption has been rising. In 2015, the carbon emissions by the
power industry accounted for about 32% of the total carbon emissions in the country, making it the
largest source of greenhouse gas emissions in China. In 2015, fossil energy accounted for 74.2% of the
energy consumption structure in the power industry, and low-carbon energy accounted for less than
30%. Therefore, the adjustment of energy structure of the power industry has great carbon emission
reduction potential. In 2015, the government proposed an ultra-low emissions action plan for coal-fired
power plants: by 2020, coal-fired power generation will reduce carbon emissions by 180 million
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tons, and the total emissions of major pollutants in the power industry will be reduced by about
60% [11]. In December 2017, China started to operate a nationwide carbon market explicitly targeting
the power industry while taking the lead in launching a nationwide carbon emissions trading system
and then gradually expanded its industrial scope, denoting the importance of energy conservation
and emissions reduction in the power industry. Therefore, effective control of the carbon emissions by
the power industry is central to achieving low-carbon development in China. In addition, the carbon
emissions reduction targets proposed by the Chinese government will greatly accelerate the pace of
energy structure optimization in China’s power industry. Developing low-carbon power generation
will become an important way to achieve carbon emissions reduction targets.

As an important carrier of a low-carbon economy, the development and use of low-carbon energy
will fundamentally reduce human consumption of fossil energy and reduce greenhouse gas emissions.
At present, low-carbon energy in the world mainly includes solar energy, wind energy, biomass energy,
geothermal energy, nuclear energy, water energy, ocean energy, etc. With the progress of science
and technology, the application of low-carbon energy gradually became widespread, and low-carbon
energy generation technology has become a necessary choice to deal with the current energy crisis and
environmental problems. China’s current low-carbon energy generation technologies include wind
power generation, solar photovoltaics power generation, biomass power generation, hydropower
generation, and nuclear power generation. Among them, hydropower generation is the most widely
used. China is rich in small hydropower resources, with an exploitable capacity of 87 million kW [12],
ranking first in the world. Hydropower generation has a great development space. Nuclear power
and wind power generation are also the main low-carbon energy technologies in China. For nuclear
power, China has been actively developing nuclear power technology, and the advantages of nuclear
power development in the third generation have been basically formed. For wind power generation,
there are abundant wind resources in north China, northeast grassland, the northwest Gobi region,
and southeast coastal areas. Wind power is stable in shallow coastal areas of eastern China, with the
potential to build land and offshore wind farms. Solar photovoltaics is the fourth largest low carbon
energy generation technology in China. China has a vast territory, and 70% of the land’s annual average
solar radiation accounts for more than 20% of the total time [13]. In addition, the western region is
sparsely populated, which provides a very convenient condition for the collection and utilization
of solar energy. A summary of China’s major low carbon energy generation technologies is shown
in Table 1.

According to Table 1, the proportion of China’s low carbon energy generation is still lower
than that of fossil energy, and in low-carbon energy, compared with traditional fossil energy power
generation, the carbon emissions of solar photovoltaic power generation with the largest carbon
emissions per unit of power generation is only 25.64% of coal power generation (975.3 g-CO, /kWh).
Thus, low-carbon energy has great potential for reducing carbon emissions.
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To control the carbon emissions of the power industry more effectively, this paper decomposes
the carbon emissions in the power industry, identifies the influencing factors of the carbon emissions
in the power industry, and makes scenario analyses based on the future development trend of each
influencing factor. At the same time, this paper fully considers the possibility of future technology
development, and sets up the current scenario, low-carbon scenario, and technical breakthrough
scenario, aiming to select the appropriate path of carbon emissions reduction for the power industry.
Based on the existing research, this paper makes the following innovations in the decomposition of
carbon emissions and scenario prediction in the power industry:

1. Inapplying the factor decomposition method, this study is the first to apply the Generalized
Divisia Index Model (GDIM) to factor decomposition of carbon emissions by the power industry.
The GDIM model can not only make up the factor dependence of the existing exponential
decomposition model, but also considers the potential factors in the decomposition process
and investigates the effect of multiple absolute factors and relative indices on carbon emissions.
This paper uses the GDIM model to decompose the change of carbon emissions in China’s power
industry into absolute and relative value indices, which are not realized by other exponential
decomposition methods. As the decomposition results reveal correlations among factors,
no double-counting applies, which can make up for shortcomings of existing research methods
while allowing a more complete and accurate analysis of the actual impacts of various factors on
carbon emissions by the power industry.

2. In the selection of factor decomposition variables, this paper gives full consideration to the
influence of the economy, population, energy consumption factors, and relative factors produced
by absolute factors on the change of carbon emissions in the power industry. The paper examines
the three absolute factors of the economy, population size, and energy consumption in measuring
carbon emissions by the power industry and identifies relevant relative factors derived from
three absolute factors, which make up the insufficiency of the analysis of carbon emissions from
the electric power production and industrial angle. In addition, absolute factors and relative
factors are taken into consideration, rendering our analysis of carbon emissions by the power
industry more complete.

3. Inthe prediction of carbon emissions in the power industry, the first use of Monte Carlo simulation
technology, and the uncertainty is considered in the scenario analysis. The Monte Carlo method
is a dynamic simulation method that randomly applies and combines model variables on a
probabilistic basis. The advantage of this method is that it can estimate the future change trend
according to the assumption value of each use factor based on the relevant research. Because the
uncertainty is considered, the pre-judgment results that are generated are more scientific and
reasonable than those of other simulation methods. This paper combines China’s development
planning with a Monte Carlo simulation to forecast the situation of China’s power industry,
which can not only embody the inertial logic in a static scenario analysis, but also considers the
uncertainty of the related influencing factors in the future evolution, such that the basic logic and
scientific methods can be combined organically.

2. Literature Review

At present, academia has conducted extensive and in-depth research on carbon emissions.
Quesada and Molina et al. [17] studied fifteen kinds of industrial carbon emissions in Spain and
analyzed the gap between industrial carbon emissions and carbon emissions allocation rights.
Quesada et al. [18] analyzed emissions and subsidies of the industries in different regions for the
period between 2005 and 2009. Statistical analysis shows that there are significant differences between
emissions and distribution in several regions. Mikayilov [19] investigated the relationship between
the economic growth and CO, emissions in Azerbaijan. Bollen [20] used the IMAGE 2 model to
calculate regional carbon emissions and costs, and examined the emission reductions needed to allocate
industrialized areas in a cost-effective manner. Carbon emission factors research is an important
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component of carbon emissions research. Remuzgo [21] analyzed the determinants of the global
inequality distribution of carbon dioxide emissions across the regions considered by the International
Energy Agency during the period 1990-2010. Zhu et al. [22] analyzed factor decomposition of carbon
emissions generated in China from 1980 to 2007 and concluded that the output effect makes the
greatest positive contribution to carbon emissions, and that the energy intensity effect makes the
strongest negative contribution to carbon emissions. Xia et al. [23] considered the energy-related
carbon emissions in Zhejiang Province from 2000 to 2014, and used Logarithmic Mean Divisia Index
(LMDI) to factorize energy carbon emissions of Zhejiang Province. Kopidou [24] divided the study
period into two sub-periods, 2000-2008 and 2008-2011, and decomposition of the carbon emissions of
the industrial sectors of Greece, Italy, Spain, and Portugal to investigate how changes in the production
and consumption of industrial products during the period 2000-2011 affected the industrial carbon
emissions of the four southern European countries. Mahony [25] used the LMDI method to decompose
the factors of Ireland’s carbon emissions changes from 1990 to 2010 and studied the driving forces of
carbon emissions. Wang et al. [26] employed the LMDI model to divide China’s carbon emissions for
1995-2007 into 11 drivers and to study them. Wang and He [27] conducted a factor decomposition of
China’s carbon emissions for 1990 to 2007 using the LMDI factorization method and concluded that
the economic growth and energy intensity effects, respectively, were the main factors that contributed
to an increase and decrease in carbon emissions. Population and structural effects are not significantly
affected. Du et al. [28], based on provincial panel data, studied the influence factors and potential
emission reductions of China’s carbon emissions from 1995 to 2009. Dong [29] used the LMDI model
to categorize changes in China’s carbon emissions increment and used the co-integration method to
establish a co-integration relationship between each variable and carbon emissions. Based on the
equation developed, carbon emissions were estimated via a Monte Carlo simulation.

Research on the carbon emissions by the power industry represents another important area of
research. H. Ali et al. [30] used an Energy PLAN optimization model to assess the impact of Singapore’s
various strategies in the electricity generation sector on CO, emissions from Singapore’s electricity
generation sector through to 2020. A comparison of a business-as-usual (BAU) scenario in 2020
(BAU 2020), 2020 target emissions reduction trajectory, and three emissions reduction alternative policy
scenarios (denoted APS-I, APS-II, and APS-III) was carried out. Sun et al. [31] applied the Stochastic
Impacts by Regression on Population, Affluence and Technology (STIRPAT) model to analyze the
influencing factors of carbon emissions in the power industry. Wu and Peng [32] constructed the
Long-Range Energy Alternatives Planning (LEAP) model to simulate China’s national power needs
in six scenarios and estimated carbon emissions and carbon intensity by 2030. Cai et al. [33] used a
long-term alternative energy planning system to identify three scenarios for the future development of
carbon emissions generated by China’s power industry. The potential for carbon emissions reduction
in the power industry was analyzed through a comparison of different scenarios, and the costs of
key measures were quantified. Ari and Koksal [34] studied the carbon emissions from Turkey’s
electricity production and developed four scenarios based on different fuel mixtures. The results from
these scenarios show that if the proportion of fossil energy inputs is reduced, carbon emissions from
electricity production will be significantly reduced. Hou and Tan [35] used a logarithmic average
weight method to divide the carbon emissions by the power industry into income, power production
intensity, electricity production structure, population, and power generation coal consumption effects.
For a typical period, carbon emissions factors were individually analyzed. Steenhof and Weber [36]
developed a decomposition model for the Canadian electricity industry to assess the effects of various
factors, particularly climate and energy policies, on emissions from 1990-2008, which affect greenhouse
gas emissions in the sector. Based on the mechanism of carbon emissions in the power system,
Chen et al. [37] analyzed carbon emissions results and the influencing factors of carbon emissions.
The authors also established means of carbon emission structure identification and evaluation, and a
way to estimate contributions of low levels of carbonization based on carbon emission structures was
proposed and verified. Huo et al. [38] used LMDI decomposition methods to determine the carbon
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emissions by the power industry from 1991 to 2010 and analyzed the impacts of changes in plant
electricity consumption, power generation structures, power generation coal consumption, and line
loss on changes in carbon emissions generated by the power industry. A decrease in coal consumption
levels is the main positive effect of carbon emission reduction. A short-term change in carbon emission
intensity levels is mainly affected by the power generation structure used. A summary of research
methods on carbon emissions generated by the power sector is given in Table 2.

While prior studies have made substantial contributions to the understanding of carbon emissions
by the power industry in China, there are still some deficiencies:

1.  Regarding research methods, at present, the exponential decomposition method used in power
industry factor decomposition is based on a Kaya identity. Kaya identity is determined
by multiplying factors such that they are interdependent in form, and thus, decomposition
results are affected by the factors selected. When the same target variable is decomposed,
the selection of different factors will lead to contradictory conclusions. In addition, the exponential
decomposition method used in the prior studies can only be used to analyze the impacts of a
change in the absolute number of factors, and it cannot take other related absolute and implicit
factors into account, rendering the analysis unilateral.

2. On the selection of research factors, the factor selected for the factor decomposition of the power
industry presents a certain degree of one-sidedness. In the literature, two forms of factor selection
are mainly used when factoring the power industry: (1) The first approach involves considering
the impact of a single factor or policy on carbon emissions by the power industry, such that
while research elements or policies can be studied through an accurate and in-depth analysis,
the potential of carbon emissions by the power industry cannot be explored. (2) From an industrial
point of view, they only consider the impact of production-side factors on carbon emissions by the
power industry while neglecting the impact of output scales and population sizes, thus producing
incomplete research results.

3. Regarding carbon emissions projections, most scenario analyses of various factors apply a fixed
rate of change. In fact, the future development of various factors is largely uncertain and the
potential rate of change should fall within a range of values. Using a fixed rate of change for
forecasting can generate large deviations in forecasted results from future developments.

In this paper, the factor decomposition and scenario analysis are fully combined to avoid the
singleness of only the factor decomposition or the integrated scenario analysis. By setting the changing
range of the main influencing factors in different situations in the future, a Monte Carlo simulation is
used to obtain the average annual conversion rate of carbon emissions from 2017 to 2030 in China’s
power industry in different scenarios. The shortcomings of the existing research are alleviated.

The article’s structure is as follows: The third part constructs a model for the decomposition
of carbon emissions in the power industry and its future scenario prediction. The fourth section
decomposes factors that influence carbon emissions by the power industry and predicts changes in
carbon emissions that will occur in the power industry from 2017-2030 via the Monte Carlo method.
The fifth section contrasts the research results of this article with those of existing research, expounds
on the significance of this article, and puts forward shortcomings of this article and avenues for
improvement. The sixth section presents conclusions and policy recommendations.
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3. Methods

3.1. Electricity Industry Carbon Emissions Calculations

This paper refers to the “Intergovernmental Panel on Climate Change (IPCC) 2006” [45] published
carbon emissions calculation method to estimate carbon emissions generated by China’s power
industry from the perspective of fossil fuel consumption. The following formula is used (1):

8
C =Y E; x CV; x CCF; x COF; x (44/12) (1)
i=1

In Equation (1), C represents carbon emissions by the power industry in 10* tons; i denotes the
type of energy use. According to energy distinctions outlined by the IPCC, this paper examines eight
energy sources (raw coal, coke, crude oil, gasoline, kerosene, diesel oil, fuel oil, and natural gas). E; is
consumption of the ith energy source, and the unit is 10* tons of Standard Coal Equivalent (SCE).
CV; is the low calorific value of the ith energy source in k] /kg or kJ/ m?, CCF; is the carbon content of
the ith energy source in units of kg/10° kJ, COF; is the carbon oxidation rate of the ith energy source,
and 44/12 is the molecular weight ratio of carbon dioxide to carbon.

In calculating carbon emissions generated by China’s power industry, the energy consumption
data used were drawn from the “China Energy Statistical Yearbook”(2001-2016) [46]; lower heating
value, carbon content levels, and carbon oxidation rates for various energy sources were sourced from
the “IPCC Guidelines for National Greenhouse Gas Inventories” [45].

3.2. Model Construction for the Decomposition of Carbon Emission Factors by the Power Industry

In this paper, GDIM is used to decompose carbon emissions by the power industry. The model
establishes a multi-dimensional factorization model by transforming a Kaya identity that can reveal
causes of carbon emission changes. We create Equations (2)-(4) based on the GDIM model

C=Gx(C/G)=Ex(C/E)=Px(C/P) @A)
E/G=(C/G)/(C/E) ®)
(G/P) = (C/P)/(C/G) 4

In Equations (2)-(4), C denotes carbon emissions, G denotes added value, E denotes total energy
consumption, P denotes total population, G/ P denotes GDP per capita, C/P denotes per capita carbon
emissions, C/G denotes output carbon intensity, C/E denotes energy consumption carbon intensity,
and E/G denotes energy intensity.

Equations (2)—(4) are transformed to obtain Equations (5)-(9):

C=Gx(C/G) )
Gx(C/G)—Ex(C/E)=0 (6)
Gx(C/G)—Px(C/P)=0 7)

G—-Px(G/P)=0 ®)
E-Gx(E/G)=0 ©)

Function C(X) denotes the contribution of factor X to changes in carbon emissions. According to
Equations (5)-(9), we establish a Jacobian matrix ®x composed of various factors, as given in
Equation (10):
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c/G G -C/E —-E 0 o 0 o0 \'
| cv6 6 0 0 —c/p P 0 0
Ox = 1 0 0 0 -G/P 0 -P 0 (19)
“E/G O 1 0 0 0 0 -G

According to the basic principle of the GDIM model, the variation in carbon emissions AC can be
expressed as the sum of the contribution of each factor according to Equation (11):

AC(X|®) = / VCT (1- dxd})dX (11)
L

In Equation (11), L is the time span, VC=( C/G G 0 0 0 0 0 0 )T, [ is its unit matrix,
and “+” is the generalized matrix. When the columns of the matrix ®x are linearly independent,
o) = (Pkox) "o

This paper divides the influencing factors of carbon emissions into three absolute amount factors
and into five relative amount factors. The absolute factors include factors that reflect effects of changes
in output scale on carbon emissions AG, factors that reflect effects of changes in energy consumption
scales on carbon emissions AE, and factors that reflect effects of changes in population size on carbon
emissions AP. The relative quantity factor includes factor AC/G, which reflects the low-carbon degree
of the power industry, and namely a change in the carbon productivity of carbon emissions to reflect
the energy use and substitution degree of the power industry. The influence of the energy structure
changes on carbon emissions AC/E reflects the effect of changes in carbon emissions per capita on
carbon emissions AC/P. The effect of changes in per capita GDP on carbon emissions is denoted as
AG/P, and the extent to which energy production is dependent on energy use in the power sector and
the impacts of its use efficiency on carbon emissions are denoted as AE/G.

This paper presents a factor analysis of carbon emissions by the power industry for 2000-2015 as a
sample interval. The added value of the power industry and the total population were derived from the
“China Statistical Yearbook” (2001-2016) [47], and the total energy consumption levels for the power
industry were derived from the “China Energy Statistical Yearbook” (2001-2016) [46]. To eliminate
effects of price factors on the variables and to ensure the comparability of data, the paper deducts the
added value of the power industry for 2000 to a constant price.

3.3. Scenario Forecast Model Construction and Scenario Setting for Carbon Emissions by the Power Industry

The following factor analysis shows that in the evolution of carbon emissions by the power
industry, the most important growth-inducing factor is the output scale. Carbon intensity of energy
consumption and energy intensity can effectively reduce carbon emissions by the power industry and
in the future, the power industry should focus on these two aspects when formulating carbon emission
reduction policies. To further our scenario analysis, we construct Equation (12):

E C
C=G+x c'E (12)
Suppose that the rate of the change in carbon emissions (C), output scale (G), energy intensity
level (E/G), and energy consumption carbon intensity level (C/E) are, respectively, written as ¢, a, d,
and e in Equation (13):

%)Hl (13)
(£), <0

Therefore, the rate of change in carbon emissions (C) is given by Equation (14):

Ciy1 = Gpy1 X <%)t+1 X
=G x(1+a)x (g)t % (1+d)
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c=(14a)x(1+d)x(14+e)—1 (14)

The evolution of carbon emissions in the power industry is closely related to the evolution
trend of the output scale, energy intensity, and energy consumption carbon intensity. To predict
future carbon emissions by the power industry, this paper sets the three following future scenarios
according to the changing trends and development potentials of various factors for before 2015 and
of various emission-reduction policies: The baseline scenario, low-carbon scenario, and technical
breakthrough scenario.

(1) Baseline scenario: In this scenario, the power industry develops from the inertia of past
development trends. Current economic development, policies, and measures related to carbon emission
reduction and technological levels will not change. Economic changes are generally more dependent
on inertia. The farther along the cycle is, the lesser its impact on the future will be. The closer a
cycle is, the stronger its influence on the future will be [48]. Therefore, taking the annual average
rate of the change in potential factors for the recent time frame as a reference, we took the annual
average rate of change for each potential factor for 2010-2015 as the intermediate value of the factor
for the baseline scenario (i.e., the most likely value). According to Lin and Liu [49], set the changes of
various factors, the change range of the potential change rate of the energy intensity index is 0.3-0.5%,
and 0.3% was used in this article. From the potential rate of change in the energy consumption carbon
intensity change rate of 0.2%, combined with actual trends for the power industry, we applied a unified
0.15%. The rate of change in the output scale refers to the rate of change in economic growth by 1%.
The average annual rate of change in each factor for the baseline scenario is shown in Table 3.

Table 3. Annual average rate of change in each factor for the baseline scenario. Unit: %.

2017-2030
Factor
Min Med Max
G 7.69 8.69 9.69
E/G —4.62 —4.32 —4.02
C/E —2.02 —1.87 —-1.72

(2) Low carbon scenario: Under this scenario, the government intensifies its efforts to optimize
the energy consumption structure, to improve energy efficiency levels, and begin to enter the green
development road. The World Bank expects the average GDP growth rate of 20172020 to be 6.27% [50],
which was used as the median of the average annual variability of the output scale in this period
under low carbon scenarios. A new economic report on China forecasts that China’s GDP will grow
at an average yearly rate of 3.28% from 2020 to 2030 [51]. Morgan Stanley predicts that China’s real
GDP will grow by 4.6% each year from 2021 to 2025 [52]. Mr. Teng notes that low carbon targets will
have a negative impact on GDP of 1% [53]. Therefore, average annual change rates for the output
scales of 20212025 and 2026-2030 were set at 3.6% and 2.95%, respectively. The “Strategy for Energy
Production and Consumption Revolution” [9] (hereinafter referred to as the “Strategy”) proposes that
by 2020, energy consumption levels per unit of GDP will drop by 15% from 2015, and thus calculate
the potential annual average change rate of energy intensity for 2017-2020 as —3.2%. According
to the “China and New Economic Report,” the annual average rate of change in energy intensity
levels for 2020 to 2030 under an accelerated emission-reduction scenario is expected to be 2.69% [51].
With China’s increasing levels of investment in renewable energy development under a low-carbon
scenario, the potential annual average change rates in energy intensity for 2021-2025 and 2026-2030
were estimated at —2.51% and —2.69%, respectively. Reference the “Strategic Plan of Action for Energy
Development” [54], assuming that the proportions of coal, oil, and natural gas consumption in 2020
will, respectively, reach 62%, 13%, and 10%, the potential annual average rate of change in energy
consumption carbon intensity for 2015-2020 is expected to be —2.6%. For the calculation method used,
refer to Lin and Liu [49]. The “Strategy” proposes that by 20202030, the share of fossil fuels of total

166



Energies 2018, 11, 2398

energy consumption be reduced to 80%, while that for natural gas will decline to 15% [9]. If uniform
changes will occur in proportions of fossil energy and natural gas, coal and oil levels will remain the
same with proportions of coal, oil, natural gas consumption in 2025 and 2030 estimated at 58%, 12%,
and 12%; and 54%, 11%, and 15%, respectively. Potential annual rates of change of —2.72% and —2.89%
were, respectively, anticipated for 2021-2025 and 2026-2030. The method of selecting the maximum
and minimum values of each factor was in reference to the baseline scenario. The result is shown in
Table 4.

Table 4. Annual rate of change in each factor for the low-carbon scenario. Unit: %.

2017-2020 2021-2025 2026-2030
Factor
Min Med Max Min Med Max Min Med Max
G 5.27 6.27 727 2.6 3.6 4.6 1.95 2.95 3.95
E/G —-35 -3.2 -29 —-2.8 —-25 —-22 —299 -289 -239
C/E —2.75 —-2.6 —245 -287 272 257 —-3.04 289 274

(8) Technical breakthrough scenario: Under this scenario, assuming that the average annual
growth rate of output for all stages is in line with the low-carbon scenario, the power sector has
intensified its research and development and investments in energy-saving and emission-reduction
technologies to further promote carbon emissions reduction in the power industry. With the
development of technologies, energy consumption carbon intensity levels will decline. In considering
the time lag of technological breakthroughs, we set an annual average rate of change in energy
consumption for 2017-2020 that is in line with the low-carbon scenario. From 2021, the optimization
effect of technological breakthroughs will gradually emerge. Therefore, for energy consumption carbon
intensity in 2021-2025 and 2026-2030, the average annual change rate of relatively low carbon scenario
was decreased by 0.2%. In 2017, the goal set out in the government’s “Strategy” is to reduce energy
intensity by 15% in 2020, compared with 2015 [9], assuming that energy intensity can continue to fall by
as much as 15 percent in the event of a breakthrough in energy efficiency technologies. The potential
annual change rate in energy intensity for 2017-2020, 2021-2025, and 2026-2030 was calculated to be
—3.2%. The method of selecting the maximum and minimum values of each factor was in reference to
the baseline scenario. Results are shown in Table 5.

Table 5. Average annual rate of change in each factor under the technological breakthrough scenario.

Unit: %.
2017-2020 2021-2025 2026-2030
Factor
Min Med Max Min Med Max Min Med Max
G 5.27 6.27 727 2.6 3.6 4.6 1.95 2.95 3.95
E/G -35 -3.2 -29 -3.5 —-3.2 -29 -35 -3.2 -29
C/E —-2.75 —-2.6 —245 —-3.07 —-292 277 324 -3.09 -—-294

3.4. Summary of the Research Methods

A summary of the research methods used for the decomposition and scenario prediction of carbon
emissions for China’s power industry is summarized in Figure 1.
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The factor decomposition method of carbon emission in the power industry from 2000 1o 2015
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Scenario prediction method of carbon emissions in the power industry
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factors in the power industry is established.
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factors.
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Qll Crystal Ball to predict changes in the electricity industry's carbon emissions in 2017-2030

Figure 1. The summary of research methods and models.
4. Result Analysis

4.1. Result Analysis of the Factor Decomposition of Carbon Emissions by the Power Industry

In this paper, the period of 2000-2015 was divided into three stages: 2000-2005, 2005-2010,
and 2010-2015. According to Equations (7) and (11), using R software (Version 3.4.1, MathSoft),
the GDIM decomposition of the drivers of carbon emissions from the power sector for each
time segment is shown in Figure 2. Figure 2 shows that from 2000 to 2015, the output scale,
energy consumption scale, population size, and per capita carbon emissions are major growth
factors of carbon emissions in the power industry, while per capita GDP and energy intensity have a
restraining effect on the growth of carbon emissions by the power industry. Output carbon intensity
and energy consumption carbon intensity have a two-way change in the role of carbon emissions in
the power industry.

(1) From 2000 to 2015, output scale, energy consumption scale, population size, and per capita
carbon emissions always increased the carbon emissions in the power industry. Of factors that
contribute to this increase, the growth effects of the output scale first weakened and then enhanced in
three time periods, and was the most significant contributor to increases in carbon emissions observed
in 2000-2005 and 20102015, causing carbon emissions to reach 360 million tons and 483 million tons,
respectively. The growth effect of the output scale for 2005-2010 declined relative to those of the other
two time periods, but the contribution of the output scale to the increase in carbon emissions was still
significant relative to the other factors. Enhancing effects of the energy consumption scale contrasted
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with those of the output scale, showing slight fluctuations that first increased and then decreased
the scale of energy consumption. This generates a maximum volume of 251 million tons of carbon
emissions for 2005-2010. Levels were then reduced to 197 million tons in 2010-2015 because for its
“The Twelfth Five-Year Plan” period, the Chinese government proposed a national energy development
approach to accelerating energy development and to rationally controlling energy consumption. At the
same time, the Electricity Industry Federation proposed its “The Twelfth Five-Year Plan” for power
generation, which led to a decrease in the scale of energy consumption and of corresponding carbon
emissions by the power industry. The growth effect of population size on carbon emissions by the
power industry was minor compared to those of the above two factors, but it has been on the rise.
Effects of population size on carbon emissions gradually grew more pronounced, rising from 14 million
tons for 2000-2005 to 23 million tons for 2010-2015, and was mainly due to changes in the size of
Chinese households and due to urbanization. According to census results for 2000 and 2010, family
size decreased from 3.44 persons/household to 3.1 persons/household [55], which has led to an
increase in the use of household appliances and thus in carbon emissions use in the electricity sector.
In the meantime, rates of urbanization in China have increased at an average annual rate of 1.35%
from 36.22% in 2000 to 56.1% in 2015 [47]. Compared with rural areas, the perfect level of urban
power facilities makes urban residents’ electricity consumption more convenient. The increasing
effect of carbon emissions per capita on carbon emissions showed a continuing downward trend,
from 352 million tons in 2000-2005 to 89 million tons in 2010-2015; this was because the Chinese
government set low-carbon targets in its “The Twelfth Five-Year Plan” for 2011. The low-carbon
concept was deeply rooted in people’s minds, leading to a significant decline in the contribution of per
capita carbon emissions to the carbon emissions from the power industry.

120000
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80000
60000
40000 -
- I - J J
, i L =
- i
-20000
-40000
2000-2005 2005-2010 2010-2015
- G 36025.25 18955.5 48338.65
== C/G 9726772 B8616.858 -27798.9
= E 19851.92 25119.57 19654.49
CIE 11404.79 2698.82 -9878.204
- P 1391.785 1981.017 2311.95
= C/P 35211.64 26653.95 8941.309
- G/P -8734.24 -1970.535 -9152.203
== EIG -142.48 -386.0805 -974.8945
-_C 94981.34 81669.1 31442.29

Figure 2. Stages of the decomposition of carbon emissions in the electricity industry. Unit: 10* tons.

(2) From 2000 to 2015, energy intensity and per capita GDP have always played a catalytic role
in reducing carbon emissions by the power industry. Among them, the declining effect of energy
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intensity on carbon emissions, although relatively weak, showed a trend of continuous increase
from 1.4 million tons for 2000-2005 to 10 million tons for 2010-2015. This phenomenon could be
attributed to the fact that for the first time, in China’s “The Eleventh Five-Year Plan,” the energy
intensity constraint indicator had been clearly set forth, and targets of a 20% and 16% reduction in
energy intensity were proposed in the “The Eleventh Five-Year Plan” and “The Twelfth Five-Year Plan”
periods, respectively [56]. In addition, “The Thirteenth Five-Year Plan for Energy Development” [8]
proposed that energy intensity levels in “The Thirteenth Five-Year Plan” period should drop by more
than 15%. Therefore, it is expected that a reduction in energy intensity will continue to promote
carbon emissions reduction in the power sector in the coming period. Per capita GDP has always
had a catalytic effect on carbon emissions. This appears to be an unreasonable phenomenon that
must be clarified. Relative indicators of GDP per capita explicitly include two quantitative indicators
(GDP and population), which have a significant impact on carbon dioxide emissions. Changes in
these indicators affect their carbonization and are also energy related. As per capita GDP correlates
with several indicators, changes in these indicators are affected by calculations of the GDIM model
such that changes in per capita GDP are assigned to all these indicators. Only part of the change in
these indicators is attributable to per capita GDP, and it is calculated as the effect of changes in carbon
dioxide emissions while others are included in the impacts of additional indicators. The results show
that the nature of this interconnection had a negative impact on carbon dioxide emissions even when
GDP per capita was increasing. In addition, from an environmental point of view, the negative impact
of per capita GDP on carbon emissions is also desirable, indicating that the dynamic of population
welfare lags behind the gross domestic product [57].

(8) From 2000 to 2015 the carbon intensity of output and the carbon intensity of energy
consumption had a two-way effect on carbon emissions by the power industry. Output carbon intensity
in 2000-2005 and 2005-2010 contributed to increased carbon emissions in the power industry, and the
resulting carbon emissions were 10 million tons and 80 million tons, respectively. The carbon intensity
of output had an inhibiting effect on carbon emissions by the power industry for 2010 to 2015, reaching
278 million tons, thus rendering it the most significant contributor to curbing carbon emissions in
2010-2015. This is attributable to new progress made in the reform and development of the power sector
from 20102015, to structural readjustments, and to remarkable improvements made in technological
innovation [58]. As a result, carbon productivity was effectively enhanced (i.e., output carbon intensity
was significantly reduced) and carbon emissions dropped significantly. The carbon-strengthening
effect of energy consumption carbon intensity continued to decline in 2000-2010. From 2010 to 2015,
energy consumption carbon intensity played a catalytic role in reducing carbon emissions by the
power industry and reached 100 million tons. This shows that in the “The Twelfth Five-Year Plan”
period, energy consumption structures underwent limited carbon transformation. By the end of 2015,
non-fossil energy power generation installed capacities accounted for 35%, representing an increase
of 8.1% from 2010 levels, and thermal power installed capacity levels decreased by roughly 9% from
2010 levels [59]. This shows that the declining carbon intensity of energy consumption will make an
important contribution to carbon emission reduction in the power industry.

To more clearly reflect the dynamic impacts of various factors on carbon emissions for 2000 to
2015, this article took 2000 years as the base period, and obtaining accumulate the contribution value
of each factor in the power industry each year, as shown in Figure 3. Figure 3 shows that carbon
emissions by the power industry from 2000 to 2013 continuously increased, reaching a maximum level
of 2.533 billion tons in 20132015, with a downward trend in 2013-2015, and showing a cumulative
increase in carbon emissions of 2.081 billion tons in 2015. After 2013, the power industry’s decline
in carbon emissions has a realistic background. In 2013, the Shenzhen carbon emission trading
market, a national carbon trading pilot project, was launched. Subsequently, carbon emissions
exchanges, such as those in Beijing, Shanghai, and Tianjin, were successively established, playing
an important role in promoting a reduction in carbon emissions. Since the establishment of the four
pilot exchanges, enterprises involved in the transactions have mainly focused on the electric power,
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steel, and chemical industries, and more enterprises have started to participate [60]. In December 2017,
the government led the power industry through a breakthrough in carbon market construction and
launched a nationwide carbon trading system for the power industry, highlighting the importance of
reducing carbon emissions by the power industry.
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Figure 3. Cumulative contributions of various facets of the power industry to changes in carbon
emissions. Unit: 10* tons.

As can be observed from Figure 3, carbon emissions generated by the output scale in the power
industry increased from 57 million tons in 2001 to 997 million tons in 2015, representing an average
annual growth rate of 22.7%. The cumulative increase in carbon emissions generated by per capita
carbon emissions in 2001-2013 continued to increase from 2013 to 2015 and gradually decreased from
2000 to 2015 to a cumulative increase of 650 million tons of carbon emissions, representing an average
annual growth rate of 28.8%. The cumulative increase in carbon emissions resulting from the scale of
energy consumption continued to grow, and relatively was stable in 2013-2015. From 2000 to 2015,
the average annual growth rate reached 26.9% with a cumulative increase of 664 million tons of carbon
emissions. The cumulative increase in population size and energy consumption carbon intensity from
2000 to 2015 (with less carbon emissions) reached 65 and 31 million tons, respectively. Emissions
resulting from energy intensity and GDP per capita were reduced. Among them, the cumulative
increase in carbon emissions resulting from energy intensity decreased rapidly at an annual average
rate of 31.4% from 2000 to 2015, representing a cumulative reduction of carbon emissions of 29 million
tons. Carbon emissions generated by per capita GDP in aggregate declined by 92 million tons from
2000 to 2015. The cumulative increase in carbon emissions resulting from the output intensity of
carbon continued to increase from 2001 to 2009, reaching a maximum value of 182 million tons in 2009,
and the cumulative increase in 2012 turned negative while a cumulative reduction of 209 million tons
of carbon emissions occurred in 2000-2015.

The above results show that China has put forward relevant proposals for energy development
and that a series of policies and measures aimed at achieving carbon emissions reduction has achieved
some success. However, relative to projections, there is still much room for improvement in the realm
of power industry carbon reduction. At this stage, China is still a developing country. The overall
goal of the development plans is thus to form a developed society. China plans to eliminate absolute
poverty through its “The Thirteenth Five-Year Plan” and to achieve economic growth necessary to
support a developed society. Thus, the strategy developed to reduce carbon emissions by slowing the
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rate of economic growth is not suited to China’s current development plans. In the future, China’s
power industry should reduce carbon emissions by optimizing energy consumption structures, by
increasing levels of clean energy use, by enhancing technologies to improve energy efficiency levels,
by increasing investment in energy-saving emissions reduction equipment, and by investing other
areas that support the realization of future goals.

In summary, the output scale was the most important factor to promote the carbon emissions in
China’s power industry, followed by population size and energy consumption scale; energy intensity
had a positive effect on carbon emissions reduction in the power industry; and output carbon intensity
and energy consumption carbon intensity had a two-way effect on carbon emissions reduction in the
power industry.

4.2. Dynamic Predictions of the Evolution of Future Carbon Emissions by the Power Industry

Because of the uncertainty of the future development trend and the average annual change
rate of the factors affecting the carbon emissions, it can be regarded as the risk variable at the same
time, and the carbon emissions are forecasted using a Monte Carlo simulation [29,61,62]. At present,
academia has done a lot of meaningful and referential work on the Monte Carlo method [63-66].
The advantage of this method in predicting carbon emissions lies in the assumption of possible values,
rather than fixed amplitude changes, based on the relevant literature and research on the future trend
of influencing factors, and the probability distributions of different evolution paths of carbon emission
are given to identify the most probable evolution paths [49,67].

Based on the above listed annual average rates of change for each factor under different scenarios,
we used Monte Carlo simulations to obtain the potential annual average rate of change in carbon
emissions in combination with Equation (14) to predict carbon emissions by the power industry for
2017-2030. Given the need to assign a value range to model variables in Monte Carlo simulations,
the annual average rate of change for each factor was taken as a variable. The median values of each
variable in different time periods under the baseline scenario, low carbon scenario, and technology
breakthrough scenario were taken as the minimum, median, and maximal values of the variable in the
corresponding scenario in 2017-2030. Corresponding results are shown in Figure 4.
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Figure 4. Average annual rate of change in carbon emissions by the power industry for different
scenarios of 2017 to 2030.
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The distribution of triangles is most suited for the random selection of variables when the most
probable result of known variables and the interval of values are known but when the shape of the
probability distribution is unknown [68]. The most likely result of each variable in this article is
the middle value. We use the triangle distribution as minimum, median, and maximum values to
establish the relationship between the probability distribution, and then the simulation variable value
is arbitrarily selected from a random range, which is more realistic. We used the Crystal Ball tool
to simulate the average annual rate of change in carbon emissions by the power industry for three
scenarios through 1 million simulations, the results of which are shown in Figure 4.

Figure 4 shows all the scenarios based on the assumption that the potential average annual growth
rate in carbon emissions generated by the power sector from 2017 to 2030 is likely to be high. The figure
shows the following;:

1.  Under the baseline scenario, the average yearly growth rate of the maximum probability of
carbon emissions in China’s power industry for 2017 to 2030 is expected to range between 1.9%
and 2.2%. The forecasted growth rate of carbon emissions under the baseline scenario shows that
in the current development of economic and carbon emissions, the power industry is expected to
have a rebound in carbon emissions, with an annual growth probability of 1.9-2.2% in 2017-2030.
When calculated according to the minimum rate of increase, carbon emissions generated by the
power sector in 2030 are expected to reach 4079.14 million tons under the baseline scenario.

2. Under the low carbon scenario, the average annual growth rate of carbon emissions in China’s
power industry for 2017 to 2030 is likely to range between —2.1% and —1.6%. Compared to the
baseline scenario, carbon emissions will continue to decline in the low-carbon scenario. As the
low-carbon scenario was based on a series of related goals set forth by the country’s current
carbon emissions, this shows that the government’s green development plan for the future of
the country is expected to have a catalytic effect in reducing carbon emissions generated by the
power sector.

3. With regard to technological breakthroughs, the average annual growth rate of the maximum
probability in carbon emissions in China’s power industry for 2017 to 2030 is expected to range
between —2.4% and —1.9%. Compared to those of the baseline and low-carbon scenarios,
reductions in carbon emissions achieved under the technology breakthrough scenario are
expected to be the greatest. At this time, carbon emissions reduction achieved in the power sector
under this scenario are expected to be the best among the three scenarios.

In addition, emissions levels can decline faster or slower under each scenario, though with a low
probability. However, low probability events can still occur. From the changes in carbon emissions by
the power industry found under the three scenarios, future declines in carbon emissions are predicted
to be ordered as follows: baseline scenario < low-carbon scenario < technological breakthrough
scenario. If in the low-carbon scenario, the power industry was to actively implement the concept of
low-carbon development and adhere to the green development path, carbon emissions are predicted
to continue to decline. However, over the long term there may not be a significant breakthrough
in carbon emissions reduction relative to China’s proposed carbon reduction targets. With regard
to technological breakthroughs, we predict a breakthrough in technologies of low-carbon energy
and energy conversion efficiency, in power generation equipment, and in other realms, and we
anticipate significant reductions of carbon emissions accordingly. In summary, according to these
predictions, the long-term development of carbon emissions by the power industry should adhere to
low-carbon green development while at the same time focusing on low-carbon technological research
and development and equipment upgrading, which are expected to make a big contribution to the
future development of carbon emissions reduction.

Summarize: Under the baseline scenario, low-carbon scenario, and technological breakthrough
scenario, the average annual growth rate of the maximum probability of carbon emissions in China’s
power industry from 2017 to 2030 are expected to be: [1.9%, 2.2%], [-2.1%, —1.6%], and [—2.4%, —1.9%].
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5. Discussion and Analysis

5.1. The Results of This Paper Are Compared to Those of Previous Studies

Wang et al. [69] and Hou et al. [55] studied the carbon emissions of the power industry in the
same way, but the method used was different from this article. Therefore, this article selects the two
studies and compares these results with the results of this study. The common factors that Wang and
this paper chose are economic scale, population size, and energy structures; the common factors that
Hou and this paper chose are population size and energy structures. From the common factors shaping
carbon emissions by the power industry, the results are shown in Table 6.

Table 6. Contributions of each common factor shaping carbon emissions by the power industry. Unit: %.

Common Factor Wang et al. Hou et al. This Paper
Contribution of economic scale 109.51 102.7
Contribution of population size 7.92 8.1 3.03

Contribution of energy structures 0.51 3.9 7.8

As is shown in Table 6, although the influence factors selected by the representative literature
overlap with this article, the contributions of the measured variables to carbon emissions by the
power industry vary. At an economic scale, contribution shown in the compared literature are
slightly greater than those shown in this paper and mainly because the LMDI model used in the
representative literature for factorization can present slightly higher economic impacts on carbon
emissions. For population size, contributions presented in the compared literature are greater than
those shown in this article. At present, China’s population growth rate is declining, and awareness
of issues of energy conservation and environmental protection among residents is on the rise.
Contributions of population size to carbon emissions by the power industry should thus be relatively
low. For energy structures, the results of the contribution is 7.8% in this paper while the compared
studies present values of 0.51% and 3.9%. Although the optimization of energy structures will
significantly decrease carbon emissions by the power industry, several technical problems related to
the development and application of clean energy must still be resolved, and while energy structure
optimization has achieved success in recent years, challenges remain. Therefore, the past optimization
of energy structures has made strong contributions to the reduction of carbon emissions by the
power industry.

5.2. The Significance of Research Results Presented in This Paper

This paper presents main factors that shape carbon emissions generated by the power industry.
Future changes in carbon emissions generated from this industry are predicted to help governments
and related enterprises take measures to reduce carbon emissions while seizing opportunities and
fully tapping into potential for carbon emissions reduction based on the influencing factors identified.
At the same time, future plans can be made based on the predicted changes in future carbon emissions,
thus contributing to the overall energy conservation and emissions reduction efforts. In this paper,
the research ideas and methods of carbon emissions in the power industry have some reference value
to the research of carbon emissions in other industries.

5.3. Study Limitations and Avenues for Future Research

This paper does not consider impacts of electricity consumption in the study of carbon emissions
by the power industry. The research content related to the power industry is very extensive.
For example, J.H. Huh et al. discussed the hybrid advanced metering infrastructure design for a
micro grid based on the game theory model [70], which is a low-reliability problem of the power
line communication (PLC) caused by the signal interference and attenuation, and the solution to
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the method was described in the results of the test bench experiment [71] and smart grid test bed
that used OPNET software (14.5, OPNET Technologies, Inc., Washington, DC, USA) and power line
communication [72]. The study of carbon emissions in the power industry is also very extensive.
This paper involves the factor decomposition of carbon emissions in the power industry and sets
relevant scenarios for prediction. There are other aspects of carbon emissions in the power industry
that can be further studied. Future research can be carried out in the following aspects:

1.  Future research can estimate the responsibility for carbon emissions in the provincial power
industry, and synthetically consider the responsibilities of producers and consumers. It is
beneficial for all regions to undertake the responsibility of carbon emissions reduction fairly and
achieve coordinated emissions reduction in all regions.

2. Track and analyze the carbon intensity of demand-side power such that users can understand their
carbon emissions responsibility and increase the enthusiasm of users for clean energy consumption.

3. For the generator sets with different carbon emission factors, study the unit’s power generation,
market electricity price, and carbon emissions, and establishing a carbon emission right allocation
mechanism with strong emissions reduction incentives.

4. Compare the international carbon emissions trading system with China’s carbon emissions
trading system, and analyze the shortcomings and advantages of China’s carbon emissions
trading system compared with other countries. Furthermore, draw lessons from countries and
improving China’s carbon emissions trading system combined with China’s reality.

5. Analyze the impact of the implementation of carbon tax policy on carbon emissions reduction in
the power industry, demonstrate the feasibility of incorporating the carbon tax into the future
carbon emissions reduction policy, and provide reference for the government to introduce a
carbon tax policy.

6. Main Conclusions and Recommendations

6.1. Main Conclusions

As a major carbon emissions-generating industry in China, the electric power industry is a major
target of China’s energy conservation and emissions reduction plan. Therefore, it is important to find
a suitable path toward carbon emissions reduction in the power industry. First, this paper applies
the GDIM model to the electric power industry from 2000-2015 to examine the factors that shape
carbon emissions levels. To set the future annual average rate of change of major influencing factors
according to government policy objectives, we used the Monte Carlo method to simulate the potential
average annual change rate in carbon emissions from 2017 to 2030 for the power industry. The main
conclusions of this study are as follows.

1. Under the reality of China’s rapid economic development and thermal power generation
as the main force, the output scale was the most important factor leading to the increase of carbon
emissions in the power industry, and the cumulative increase of carbon emissions in 2000-2015 reached
996.89 million tons. Energy consumption scales and population size were also important factors
for the increase of carbon emissions in the power industry, and the cumulative increase of carbon
emissions reached 664.340 million tons and 65.204 million tons, respectively. Because fossil energy
consumption still accounts for a large proportion in the energy structure of China’s power industry,
energy intensity and carbon intensity effects of energy consumption have great carbon emission
reduction potential. The energy intensity had reduced the carbon emissions by 29.4241 million tons in
2000-2015, and carbon intensity of energy consumption achieved a breakthrough in carbon emissions
from positive to negative effects. In the future, the two are expected to become the main factors to
promote carbon emission reduction in the power sector. At present, the power industry in China should
focus on the optimization of energy structure to further reduce carbon emissions in the power industry.

2. In different scenarios, changes in carbon emissions of the power industry are different from
2017 to 2030. In the baseline scenario, the maximum probability of a potential annual growth rate
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of carbon emissions is expected to be between 1.9% and 2.2%. Under the low-carbon scenario and
technological breakthrough scenario, the maximum probability of the potential annual drop rate of
carbon emissions are expected to be between 1.6-2.1% and 1.9-2.4%, respectively. Thus, in the current
state of development, China’s power industry carbon emissions will likely continue to increase. If there
is a breakthrough in the low carbon policy and energy-saving and emission-reduction technologies,
the carbon emissions of the power industry are expected to reduce. Under the technological
breakthrough scenario, the power industry is predicted to experience the strongest reduction in
carbon emissions and thus, technological breakthroughs are considered to be the main path for future
carbon emission reduction development in the power industry.
The summary of the main conclusions in this paper can be seen in Table 7.

6.2. Recommendations

1.  Promote green economics and reduce total energy consumption. Accelerate the transformation
of economic development modes; focus on the quality of economic growth; and gradually
adopt new economic models that limit energy consumption, pollution and emissions generation
while upgrading industrial structures to change the structure of electricity consumption.
In addition, change the traditional method of coal combustion, realize secondary processing of
coal, and reduce end-use energy consumption, especially in energy intensive sectors, such as
steel manufacturing.

2. Improve public awareness of energy conservation issues and optimize energy consumption
structures. Encourage energy conservation policies, formulate relevant energy efficiency
standards and norms, enhance public awareness of energy saving and emissions reduction,
and reduce electricity consumption. At the same time, limit thermal power production using coal
and improve the ratio of natural gas to fossil energy use. To protect the environment, develop solar
energy, hydropower, wind energy, and low-carbon energy generation options by encouraging
low-carbon energy power generation and reduce carbon emissions by the power industry.

3. Encourage the use of low-carbon equipment and boost technological innovation research
and development. At present, the international investment in innovation and research and
development continues to increase. In 2017, the European Union issued the third phase of
“Horizon 2020 [73], which comprehensively proposed the goals of climate action and sustainable
development, and invested 2.205 billion euros to support the research and innovation of energy
technology. As the world’s largest carbon emitter, China should upgrade energy-saving and
emissions-reduction equipment in the power industry, strengthen international exchanges and
cooperation in environmental technologies, and increase investment in innovative technologies
for emissions reduction on the basis of adhering to a series of low-carbon development measures.
At the same time, the government must encourage enterprises to adopt incentives and invest
more in continuous research and development in new energy savings and emissions-reducing
technologies as well as production equipment. Low-carbon technologies must be developed to
realize further reductions in electric carbon emissions by the power industry.

4. Explore the market potential of biomass power generation. Based on Molina’s research [74-76],
and combined with the current situation of China’s agriculture, biomass power generation
should be vigorously developed. The utilization of agricultural and forestry wastes by biomass
power generation not only eliminates methane emissions from biomass stacking or landfill
fermentation, but also promotes the development of carbon emissions reduction in the power
industry, which fully embodies the concept of a circular economy. The government should adopt
an active incentive mechanism to enhance the enthusiasm and market activity of biomass power
generation industry to a greater extent.
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Abstract: To mitigate global warming, the Chinese government has successively set carbon intensity
targets for 2020 and 2030. Energy restructuring is critical for achieving these targets. In this
paper, a combined forecasting model is utilized to predict primary energy consumption in China.
Subsequently, the Markov model and non-linear programming model are used to forecast China’s
energy structure in 2020 and 2030 in three scenarios. Carbon intensities were forecasted by combining
primary energy consumption, energy structure and economic forecasting. Finally, this paper analyzes
the contribution potential of energy structure optimization in each scenario. Our main research
conclusions are that in 2020, the optimal energy structure will enable China to achieve its carbon
intensity target under the conditions of the unconstrained scenario, policy-constrained scenario and
minimum external costs of carbon emissions scenario. Under the three scenarios, the carbon intensity
will decrease by 42.39%, 43.74%, and 42.67%, respectively, relative to 2005 levels. However, in 2030,
energy structure optimization cannot fully achieve China’s carbon intensity target under any of
the three scenarios. It is necessary to undertake other types of energy-saving emission reduction
measures. Thus, our paper concludes with some policy suggestions to further mitigate China’s
carbon intensities.

Keywords: carbon intensity target; energy structure; gray model (GM (1, 1)); generalized regression
neural network (GRNN); Markov forecasting model; non-linear programming

1. Introduction

As the greenhouse effect continues to increase on a global scale, the warming climate has become
a universal challenge facing modern human society [1]. In recent years, as China’s economy has
continued to develop, its energy consumption and carbon emissions have also risen. In 2007, China’s
total carbon emissions surpassed those of the United States, making China the world’s largest carbon
emitter [2]. At present, China’s carbon emissions account for approximately one-quarter of the total
global carbon emissions, and the country’s participation in climate change mitigation actions is
essential [3]. In 2009, the Chinese government made a commitment at the Copenhagen Global Climate
Conference: by 2020, carbon dioxide emissions per unit of gross domestic product (GDP) in China will
decrease by 40-45% compared to 2005 levels [4]. In 2015, China submitted a UN self-determination
document on climate change. By 2030, the country intends to reduce carbon dioxide emissions per unit
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of GDP by 60-65% compared to 2005 [5]. These carbon intensity targets are not only voluntary actions
for China to combat climate change but also a commitment to the international community. China’s
energy structure is lagging behind that of developed countries, and coal consumption has continued
at a high level for many years. The slow development of renewable energy sources has led to high
total carbon emissions, high carbon intensity and low energy efficiency in China. Simultaneously,
the unreasonable structure of energy consumption has also put considerable pressure on China’s
ecological environment. As the largest developing country in the world, China remains in a stage
of industrialization and rising urbanization with immense energy consumption. One of the great
challenges China faces is how to coordinate economic growth with energy conservation and emission
reduction. Optimization of the energy structure not only aids in reducing carbon emissions and carbon
intensity, but it also addresses the current situation of China’s energy demand. During the process
of economic growth, the global community should prevent further deterioration of the ecological
environment and promote sustainable economic development.

Forecasting energy consumption and carbon emissions will aid in setting reasonable energy saving
and emission reduction policies. Recently, many experts have conducted research on China’s carbon
emissions. These studies can be classified into two main categories. The first is to factorize carbon
emissions and to search for carbon emission factors to predict carbon emissions. The widely used
methods include the logarithmic mean divisia index (LMDI) decomposition model [6,7], the divisia
index decomposition model [8,9], the input-output analysis model [10], the Kaya model [11,12],
stochastic impacts by regression on population, the affluence and technology (STIRPAT) model [13],
and so on [14,15]. However, the prediction models do not usually have high accuracy due to the
complexity of the selected factors and difficulty in predicting the influencing factors. The second
category is based on timing trends, directly establishing mathematical models to predict carbon
emissions. The most frequently used methods are the auto-regressive integrated moving average
(ARIMA) model [16], gray prediction model [17], and the artificial neural network model [18].
Such models often have high requirements for data quality. In addition, some researchers have used
other models to study carbon emissions. Gambhir et al. [19] used a combined model to forecast China’s
carbon emissions from 2005 to 2050. Choi et al. [20] used a data envelopment analysis (DEA) model to
predict the carbon emission reduction potential and energy efficiency in China. When Du et al. [21]
evaluated potential carbon emission reductions in China using a non-parametric metafrontier model,
the results showed that China’s annual carbon emission reduction potential during the 11th five-Year
period reached up to 168.7 million tons of carbon dioxide.

Based on the forecasted carbon emissions, several researchers have conducted studies on whether
the carbon intensity targets for China in 2020 and 2030 can be achieved [22-26]. Stern et al. [27]
evaluated the difficulty of achieving the carbon intensity targets in China and India by decomposing
the factors that influence carbon intensity, but the authors did not consider the economic factors in
their model. Yi et al. [28] and Xiao et al. [29] used scenario analysis to conclude that the target for
carbon intensity in China in 2020 will most likely be realized, while Yuan et al. [30] determined that if
China’s clean energy accounted for 17% of the total energy in 2020, the carbon intensity target could be
achieved by 2020. Starting with a low-carbon policy, Wang et al. [31] conducted an inter-provincial
emission reduction path analysis of China’s carbon intensity in 2020. According to the principle of
fairness and common but differentiated responsibility, Yi et al. [32] selected three indicators—per capita
GDP, accumulated carbon emissions from fossil fuel and energy consumption per unit of industrial
added value—to establish a provincial carbon intensity distribution model to achieve the 2020 carbon
intensity target. Research by Xu et al. [33] showed that under China’s existing policies, the carbon
intensity targets for both 2020 and 2030 can be achieved, but the overall goals of 840 million tons
of carbon dioxide emissions by 2020 and 710 million tons by 2030 cannot be met. Through Monte
Carlo simulation and scenario analysis, Zhang et al. [34] observed that China can achieve the carbon
intensity targets for 2020 and 2030 on the basis of the existing policies. However, it is not clear whether
China can achieve its peak carbon emission goal by 2030. Most of the above studies focus mainly
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on the relationship between economic development and carbon emissions, and the generation of
regional allocations of the carbon intensity targets. There are few studies on the energy consumption
structure. In addition, existing research lacks a forecast for China’s carbon emissions by 2030, and omits
whether the carbon intensity targets can be achieved by 2030. The abovementioned papers are listed in
Appendix A; Table Al. This paper also summarizes the above research methods and their advantages
and disadvantages in Table 1. Based on these studies, we present research topics and methods.

According to our discussion, there are many ways to predict energy consumption and carbon
emissions, but each method has some shortcomings. To overcome these shortcomings, this paper first
uses the combined forecasting model to forecast the total primary energy consumption. Then, scenario
analysis is utilized to predict the energy consumption structure. Finally, based on the predictions for
energy consumption and energy structure, combined with the carbon emission factors, the total carbon
emissions and carbon intensities under different scenarios are obtained, and the potential contribution
of energy structure optimization to achieve the carbon emission intensity target is calculated.

Compared with the existing research, the innovations in this paper are reflected in the following
three main aspects:

(1)  First, this paper predicts the primary energy consumption based on a combined forecast model.
A primary energy consumption forecast is the basis for a prediction of the energy structure. In this
paper, to determine the characteristics of a time series of primary energy consumption that are
affected by numerous factors, the gray prediction model and the generalized regression neural
network (GRNN) model are combined to predict energy consumption. The gray prediction model
predicts future energy consumption based on historical changes, and the exogenous variables
considered by this model have less impact. To compensate for defects in the gray prediction
model, the GRNN model is introduced. The influencing factors of primary energy consumption
are selected as the input layer variables for the GRNN model, and the prediction results are
achieved by predicting the input variables. Then, gray relational analysis is used to empower the
gray prediction model and GRNN model, and finally, the combined forecasting result is obtained.
Compared to the distinct forecasting model, the combined model synthesizes more factors that
affect the dependent variable, the forecasting accuracy is higher, and the forecasting result is
more closely aligned with reality.

(2)  Second, this paper considers energy structure optimization in three scenarios: a natural evolution
scenario, a policy planning scenario, and a cost perspective scenario. Firstly, according to
the characteristics of China’s energy consumption structure, the Markov model is used to
predict the natural evolution of the energy consumption structure, and the forecast result is
set as an unconstrained scenario. In addition, combined with the energy development plan
formulated by the state, the energy structure should be adjusted accordingly to set the situation
as a policy-constrained scenario. Finally, from the cost perspective, the minimum external cost of
carbon emissions is used as the decision-making target, non-linear programming is performed,
and the forecast result for the energy structure is obtained as the minimum cost scenario. Applying
different scenarios is conducive to a more comprehensive understanding of future changes in
China’s energy structure.

(3) Third, this paper combines China’s carbon intensity targets for 2020 and 2030 for analysis.
The existing research focuses mainly on the target of a 40-45% reduction of carbon intensity by
2020 and less on the goal of a 60-65% reduction by 2030. This paper combines the carbon intensity
targets for 2020 and 2030, and then analyzes the potential for optimizing the energy structure to
contribute to achieving the carbon intensity targets in order to explore the possibility of reaching
the targets in 2020 and 2030; finally, the paper presents several reference suggestions.
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Based on the above discussions, this paper first uses the GM (1, 1) model and GRNN model
to predict China’s primary energy consumption separately, and then a gray relational analysis is
used to empower the GM (1, 1) model and GRNN model to obtain the forecasting results of the
combined model. Secondly, the evolution of energy structure is divided into “Unconstrained scenario”,
“Policy-constrained scenario”, and “Minimum external costs of carbon emissions scenario” to study
the future changes in China’s energy structure. Finally, according to the predicted results of energy
consumption and structure, China’s carbon emissions, and carbon intensity results for 2020 and 2030
are calculated for further analysis. The research process of this paper is shown in Figure 1.

The remainder of this paper is organized as follows. Section 2 discusses the model theory. Section 3
analyzes the forecast results for primary energy consumption. Section 4 analyzes the optimization
results of the energy structure in different situations. Section 5 explores the potential contribution of
optimizing the energy structure to achieving the carbon intensity targets under different scenarios.
Section 6 presents the main conclusions and policy suggestions.

GM(1,1) model GRNN model

Allocate the weight l

Unconstrained scenario

Policy-consirained scenario
Crray relational degree

Mininmm external costs of
carbon emissions scenario

‘I'he combined forecasting
model

| l

Energy consumption structure m Primary energy consumption in
different scenarios 2020 and 2030

l |

Equation (33)

GDP forecast results CO:2 emissions m 2020 and 2030

l

Carbon intensity results and related
contribution analysis

Figure 1. The general flowchart conducted in this paper.
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2. Materials and Methods
2.1. Forecast Models for Energy Consumption in China

2.1.1. Model I: Gray Prediction Model

Since the advent of gray system theory, remarkable achievements have been accomplished in
predictions regarding military systems, social systems, ecosystems, and commercial systems [35,36].
According to the gray system theory, useful information is extracted from the gray comprehensive
sequence in the annual energy consumption time series to predict the future demand for energy
consumption. Based on data availability, this paper selects primary energy consumption data [37]
from 1953 to 2016 to predict the primary energy consumption in China for 2017 to 2030.

Step 1: Pre-process the primary energy consumption data. We assume that the sequence of
primary energy consumption Y(©) from 1953 to 2016 is as follows, Equation (1):

YO = [y© (1), y©(2),... Y0 (64)] 1)

To weaken the randomness in the original sequence, prior to the establishment of the gray
prediction model, the data for primary energy consumption sequences from 1953 to 2016 is processed,
and the cumulative generation, Equation (2), is used to generate a cumulative generated column Y(1):

YW (k) = i YO i) =YDk —1) + YO (k) )

YD = [y® (1), YD (2),... v (64)] ©)
Step 2: Establish the gray differential, Equation (4):

A
YO (k1) = [0 (1) - Dot 4+ 2 @

Step 3: Determine the values of parameters a and b, according to Equation (5):

{ Z } = [BTB] "B Xy

) 1
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=

~

Juy
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After obtaining the cumulative generated column Y), according to the available matrices B and
Xy knowing that B TBisa symmetric matrix, the original time series Y(© and cumulatively generated
column Y are entered into Equation (5) using the least squares method to obtain the values of
parameter a and parameter b.

According to the above method, the primary energy consumption data from 1953 to 2016 are
entered to obtain the gray differential Equation (6):

A
YD (k4 1) = 161324.24¢°%01%F — 15591324 6)

Step 4: Predict the primary energy consumption for 2017-2030 according to Equation (7):
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A A A
YO +1) =YD (k+1) - yD(k) @)

Step 5: Test the residuals of the forecast data and examine the accuracy of the forecast data.
The model fitting value Y(%) for primary energy consumption in China from 1953 to 2016 is obtained
based on the predictive value reduction formula. From the original sequence Y (0) and predicted
sequence Y(©), the prediction data are tested for residuals and accuracy. The absolute error (AE),
mean absolute error (MAE) and mean absolute percentage error (MAPE) of the prediction result are
obtained from Equations (8), (9) and (10), respectively:

a(t) = YO (1) = YOt ®)
1 n
MAE = Z,.; 5i(t) )
1 n
NMPE:;;;MOVﬁU) (10)

The standard deviation of the predicted value S; and standard deviation of sample S, are
calculated in Equations (11) and (12), respectively. The posterior difference ratio C can be calculated
as stated in Equation (13). According to the principle of the posterior difference test, as the posterior
difference ratio decreases, the predicting effect improves:

1n

(12)

C=51/5 13)

The correctness of using this model can be judged by observing the average relative error and
posterior difference ratio.

2.1.2. Model II: Generalized Regression Neural Network

It is well-known that primary energy consumption is affected by many factors and that the system
is complicated. A study of historical data shows that the sample is relatively small and presents a
non-linear trend of development. GRNN is a general nonparametric regression model, which is a
branch of the Radial Basis Function (RBF) neural network [38], and has a strong nonlinear mapping
ability and flexible network structure, as well as a high degree of fault tolerance and robustness [39,40].
Therefore, in order to obtain a higher prediction accuracy, we apply GRNN to conduct the primary
energy consumption forecasting.

Supposing the joint probability density functions of random variables x and y is f(x,y), and the
observed value of variable x is X, then the regression of y to x, that is, the conditional mean, is shown
in Equation (14):

o uf(X,y)dy
J23 F(X )y

The unknown probability density function f(x,y) can be estimated from the sample observations
x and y, and the non-parametric estimation Equation (15) is as follows:

Y= E[y|X] = (14)
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1 u (X = X)"(X = X)) (Y - Yi)zl

@2m) "D 2gmi1y, x Z_:Zlexp[* 202 Jexp[—"—

fXY) = (15)
where X; and Y; are the sample observations of variables x; and y;, ¢ is the kernel width,  is the
number of samples, and m is the dimension of variable x.

Substituting f(X, Y) with f(x, y), exchange integrals and summation order, the estimated value
is obtained from Equation (16):

n —X: T —X; 00 — 2
L expl LR 1T yexpl 3y
n

(X=X)T(X=X;)q p+oo (y-Y)? (16)
L expl =g [ expl =T ldy
where the estimated value Y(X) is the weighted average of all sample observations Y;, and the
weighting factor for each observation Y; is the index of the Euclidean distance squared between the
corresponding samples X; and X.
The GRNN network structure consists of four layers: the input layer, pattern layer, summation
layer, and output layer. The corresponding network input is X = [x1,%2, ..., Xm] T, and the output is
T
Y=yl
(1) Input layer

The number of neurons in the input layer is equivalent to the dimensions of the input vector in
the learning sample. Each neuron is a simple distribution unit that directly passes input variables to
the pattern layer. For the analysis of the influencing factors of primary energy consumption, the energy
price, population, GDP, household consumption level, industrial energy consumption, and industrial
added value are selected as the input variables of the network; that is, the number of neurons in the
input layer is six. Table 2 provides the detailed economic implications of these variables.

Table 2. The variables of the input layer.

Input Economic Implications

This variable is the most crucial factor for determining energy demand. Due to the lack
of an energy price index, this paper uses the coal price to represent this index because

E i . 27 R
nergy price coal is China’s foremost consumer energy source, accounting for 60-70% of energy
consumption, and the price of coal is more market-oriented.
Energy is the fundamental material on which human beings depend for survival. Both
. ener: roduction activities and energy consumption activities are intended to meet
Population &Y P 8y P

human needs. Studies such as those of Liu et al. [41] and Guo et al. [42] showed that
population is a significant factor affecting energy demand.

This variable reflects a country’s income level, which is a fundamental factor in
GDP determining energy demand. Lin et al. [43] and He et al. [44] showed that there is a
significant positive correlation between energy demand and GDP.

Household energy consumption includes two categories: direct and indirect
consumption; that is, energy will be directly consumed during residential life and
indirectly consumed by producing various goods and services. Residents’ rising
consumption level will increase not only the direct energy consumption but also the
indirect energy consumption.

Household
consumption level

China’s industrialization is in the mid-to-late stage. Studies have demonstrated that
primary energy consumption in the industrial sector accounts for more than 70% of the
total primary energy consumption in China [45].

Energy consumption in
the industrial sector

In the process of industrialization, the output values of the manufacturing industry
and secondary industry have been continuously increasing, and the changes reflect the
adjustment of the industrial structure, which is a basic factor affecting the

energy demand.

Industrial added value
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The data for all the input layer variables proposed above come from the China Statistical
Yearbook [46] and the China Economic Net Statistics Database [37]. Since the energy consumption
data from the industrial sector date back to 1980 at the earliest, the historical data for the previous
period is missing; thus, the above six variables range from 1980 to 2016.

(2) Pattern layer

The number of neurons in the pattern layer is equal to the number of learning samples. Here,
the number of neurons in the pattern layer is six, and each neuron in the input layer corresponds to a
different sample. The transfer function of the neurons x; (i = 1,...,6) is show in Equation (17):

pi :exp[—T] (i=1,...,6) (17)
where the output of a neuron x; is an exponential form of the square of the Euclidean distance between
the input variable X and its corresponding sample X;.

(3) Summation layer
The summation layer is divided into two types of neuron summing: one is
ié exp[— %] ; this expression is arithmetic summation of the output of all the pattern layer

neurons, which has a connection weight of 1 with each pattern layer neuron, and the transfer function

n
is Sp = Z pi-
i=1
oy (X=X)T (X=X 1. is e ;
Another type is Y Y;exp[—-=—"1;="]; this weighted expression sums the output of all the
i=1

pattern layer neurons and the connection weight between the i-th neuron in the pattern layer. The
n
j-th molecule summation neuron in the sum layer is y;;, and the transfer function is sy; = 'Zl viiPi,
i-
ji=12,...,k
(4) Output layer

The number of neurons in the output layer is equal to the number of dimensions of the output
vector k in the learning sample; each neuron divides the output of the summation layer to obtain the
output of the j-th neuron y; through Equation (18):

= j=1,2,...,k (18)

2.1.3. Combined Forecasting Model of China’s Energy Consumption Based on the Gray
Relation Degree

Since the introduction of the combined forecasting model in 1969, it has been a popular topic in the
field of forecasting both domestically and internationally [47]. The traditional single model prediction
process has many shortcomings, such as the single structure of the forecast, limited information sources,
incomplete factors, and the sensitive model setting. However, the combined forecasting model can
comprehensively utilize the information provided by each individual model, collect the advantages of
the individual models, enrich the model structure, and ultimately use the weighted average method to
obtain the result of the combined forecasting model to improve the fitting accuracy and forecasting
ability; therefore, the forecasting method is more effective.

Based on the predictions of primary energy consumption in China for 2017 to 2030 through the
gray prediction model and the GRNN model, respectively, this paper uses the gray relational method
to allocate the weights of the two models to construct the combined forecasting model.

Step 1: Preprocess the data. To eliminate the order of the magnitude difference between each
set of dimension data and avoid the error of the order of magnitude being too large, according to
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Equation (19), the real value sequence, the gray forecast value sequence and GRNN predictive value
sequence are processed and converted into values between [0, 1]:

X,‘(t) - minXi(t)

maxX;(t) — minX;(t) (19)

X{(1) =

Step 2: Calculate the gray relational degree between the reference sequence and the real
value sequence.

Setting the actual value of primary energy consumption as {x;,t = 1,2,..., N}, there is the gray
prediction model and GRNN forecasting, which are two single forecasting models for predicting
primary energy consumption, where xy; is the forecast value corresponding to the gray prediction
model at time ¢ and x; is the forecast value corresponding to the GRNN forecast model at time .

min mln e max max (e
1Y i< | ”|+p1<1<21<t<N‘ i
bor = NZ |ezt| +P min min |ej| 0
=1 1<i<21<t<N
et = Xt — Xit (1)

In Equation (20), §p; represents the gray correlation degree between the predicted value
sequence {xj,t = 1,2,..., N} of the i-th single-item prediction method and the real value sequence
{xt,t =1,2,...,N}, as the gray correlation degree of the i-th single forecasting method. Here, ¢;
represents the prediction error of the i-th prediction model at time t. p € (0,1) is the resolution
coefficient, which usually takes the value p = 0.5. According to Equation (20), the gray relational
degree between the gray prediction sequence and real value sequence {; and the gray relational degree
between the GRNN prediction sequence and real value sequence G, can be calculated separately.

2
li=Coi /Y Goi (22)
i=1

Therefore, we can calculate the weight of the gray prediction model, and the weight of the GRNN
prediction model according to Equation (22).

According to the definition of gray relational degree, {; € [0,1]. The accuracy of the prediction is
accurate only when there is a gray correlation degree of 1 between them.

Step 3: Generate a combined forecast of primary energy consumption in China. The combined
predicted value of primary energy consumption at time # is given by Equation (23):

¢t = lixyp +hxy t=1,2,...,N (23)

In Equation (23), /1 is the weighted coefficient corresponding to the predicted value of the gray
prediction model, [, is the weighting coefficient corresponding to the prediction value of the GRNN
prediction model, which satisfies /; + I = 1; Equation (23) shows that inequality (24) holds:

min x;; < &% < maxx; t=1,2,...,N (24)
1<i<2 1<i<2

Let ¢; be the prediction error of the primary energy consumption at time t from the combined
forecasting method, and according to /1 + I, = 1, Equation (25) is as follows:

er =Xxp— X=X — Z Lixit
2 25
E Li(xy — xit) = 21 Liet (5)
iz
t= 1 2,...N
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Letting ¢ be the gray relational degree of the combined forecasting method, then the gray relational
degree of the combined forecasting is given by Equation (26):

min min |é + max max (e
% 1<1<21<r<N‘ i p1<1<21<t<N| i

(26)
= El ieit| +p min min |e;|

In Equation (26), the gray relational degree ¢ of the combined forecasting method is a function of
the weighting coefficient L = (I, 1) of each single forecasting model, so that ¢ can be denoted as &(L).

According to the gray relational theory, as the gray relational degree of the combined forecasting
method increases, the combined forecasting model is more effective. If { < Cpmin, the combined
forecasting model is considered inferior forecasting; if {min < & < Gmax, the combined forecasting
model is referred to as non-inferior combination forecasting; and if ¢ > {max, the combined forecasting
model is the optimal combined forecasting model.

2.2. Construction of the Forecast Model for Energy Consumption Structure in China

2.2.1. Energy Structure Prediction Based on the Markov Model

The evolution of primary energy consumption structure has its own changes and development
laws. This evolutionary law provides the basis for our study of the future energy consumption structure.
The main methods for predicting the energy consumption structure in existing research include the
Markov forecasting model, and the energy and environment comprehensive policy evaluation model
(Integrated Assessment Model, IAM model) [48]. Taking into account that the JAM model involves
many factors, the data are not easy to obtain, the model is not generally suitable for cooperative
research and development groups, and an individual research model is very difficult to establish.
This paper uses the Markov forecasting model to predict the future energy consumption structure
in China.

Step 1: Build a Markov model that predicts the primary energy consumption structure.

A represents the total primary energy consumption; for simplicity, it can be divided into four types
of energy sources: coal, oil, natural gas and clean energy (water, nuclear and wind electricity, etc.).
At time 1, the vector of the primary energy consumption structure is S(n) = {sc ,So(n), Sg ), e(n) }
where S¢(1), Sp(n), Sg(n), and S.(n) represent the shares of coal, 011, natural gas and clean energy,
respectively, in the total primary energy consumption; the sum of their proportions is 1. We assume
that the one-step transition probability matrix of the energy consumption structure from time # to time
n+1is:

Pc_m(n) Pc—m(n) Pc—»g(”) Pc—>e(7’l)
_ | Posc(n)  Posso(n) Paag(n) Pose(n)
PO= | Becln) Pooln) Poosgln) Poseln) @7

peﬁc(n) Peﬁa(”) Peag (n) peﬁe(”)

In the probability matrix, every element is a positive number less than 1, and the sum of the
probabilities in each row is always equal to 1. Here, the elements are classified according to the
characteristics of the elements in the probability matrix.

First, the main diagonal elements of the matrix P (n) are classified as the first category, referred to
as the “retention probability elements.” These elements represent the probability that various types
of energy consumption continue to maintain the original ratio (for example:P._; (1) represents the
probability that coal consumption will continue to maintain the original ratio from time 7 to time
n + 1). Second, the main diagonal line elements are classified as the second category, referred to
as the “transition probability elements.” These elements represent the proportion of such energy
consumption to other types of energy consumption in terms of the transfer probability (for example:
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Pe_so(n) represents the probability that the ratio of coal consumption to oil consumption transfers
from time # to time n + 1). Third, the column elements outside the main diagonal are classified as
the third category, referred to as the “absorption probability elements.” These elements represent the
probable proportion of such energy consumption absorption of other types of energy consumption
(for example, Py, (1) represents the probability that the percentage of coal consumption absorbs the
oil consumption ratio from time # to time n + 1).

Step 2: Determine the average transition probability matrix P.

To predict the future energy consumption structure, we must find the average transfer probability
matrix based on the existing energy consumption structure. The specific procedure is as follows: first,
calculate the primary transition probability matrix of the energy consumption structure in each year,
and then average the transition matrix to obtain the average transition probability matrix.

Supposing that from the initial moment to moment 1, the transition probability matrix for each
step of the energy consumption structure is P(1), P(2),- - -, P(m), then the average transfer probability
matrix is P = [P(1)-P(2)--- P(m)]*™. According to the average transfer probability matrix P,
the structure of primary energy consumption at the time #n + m can be predicted by Equation (28):

S(n+m) = S(n)-P" (28)

Step 3: Determine the transition probability matrix for each step P(1). To determine the average
transition probability matrix P, the key lies in how to determine a transition probability matrix of the
energy consumption structure P(). This paper uses the following four steps to calculate the value for
each element in the matrix P(n):

(I) Calculate the retention probability elements. If from time # to n + 1, the proportion of energy
consumption increases, the retention probability of this energy in the transition probability matrix
is 1; if the proportion decreases, the retention probability is equal to the ratio of time n + 1 to
time 7.

(I) Calculate the transition probability in the rows in which the element with a retention probability
of 1islocated. If the retention probability of a row is 1, there is no possibility of transferring energy
to other types of energy, and the sum of the elements in each row of the transition probability
matrix has been set equal to 1; therefore, the probability of a row transition probability element
is zero.

(IlT) Calculate the probability of absorption in the columns where the element with a retention
probability of less than 1 is located. If the retention probability of a column is less than 1,
the percentage of energy consumption represented by the column is reduced. There is no
possibility for such energy consumption to absorb other types of energy. Therefore, the probability
of absorption for this column is zero.

(IV) Calculate the nonzero transition probability in the rows in which the element with a retention
probability of less than 1 is located. The retention probability of energy corresponding to a row of
elements is less than 1, indicating the transfer of such energy consumption to other types of energy
consumption from # to n + 1. Using coal as an example, if P,_,c(n) is less than 1, the proportion
of coal consumption decreases from 7 to n + 1, and the transfer of coal consumption to the
other three types of energy consumption occurs. The probability of coal consumption shifting
to oil consumption, natural gas consumption, and clean energy consumption can be calculated
according to Equations (29)—(31), respectively:

[1—Peye(n)] X [so(n+1) —s0(n)]
[so(n+1) —so(n)] + [sg(n + 1) — s¢(1)] + [se(n1 + 1) —s(n)]

Peso(n) = (29)

[1— Peye(n)] x [sg(n +1) — sg(n)]
[so(n+1) —so(n)] + [sg(n +1) —sg(m)] + [se(n + 1) —s¢(n)]

Pcﬁg(n) = (30)
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[1— Pese(n)] X [se(n+1) — se(n)]
[so(n+1) —so(n)] + [Sg(” +1) - Sg(”)} + [se(n+1) —se(n)]

Pese(n) = (31)

For other types of energy retention probabilities less than 1, based on the same principle, we can
calculate the non-zero transition probabilities of such energy sources.

Based on the above steps, the transition probability matrix of the energy consumption structure
from the initial moment to the moment m is obtained as P(1), P(2), - - - , P(m), the average transfer
probability matrix P can be obtained, and then Equation (28) can be used to predict the future energy
consumption structure.

2.2.2. Energy Structure Prediction Model Based on the External Cost Minimization of
Carbon Emissions

In this section, we optimize the structure of energy consumption with the goal of minimizing
the external costs of carbon emissions. Research has established that the factors of various types of
energy carbon emissions are different, and the amount of carbon dioxide released by different types of
energy combustion per unit mass is discrete, so that the external costs of carbon emissions consumed
are not equal. Studies [49] have shown that external emissions of carbon dioxide cost approximately
20 dollars/ton, which, according to the current exchange rate, converts into 129.21 RMB/ton. Carbon
emission factors of coal, oil and natural gas are 0.7476, 0.5825, and 0.4435, respectively. Burning a ton
of carbon in oxygen releases five tons of carbon dioxide. Thus, the external CO, emission costs for
various energy sources are shown in Table 3:

Table 3. CO, emission factors for various energy sources and external emission costs.

Specie Coal Oil Natural Gas
CO, emission factor 2.744 2.138 1.628
External cost (RMB/tce) 354.81 276.46 210.49

We set the coal consumption x; at ten thousand tons, oil consumption x; at ten thousand tons,
natural gas consumption x3 at ten thousand tons, and the renewable energy consumption x4 at ten
thousand tons. According to the above analysis, the objective function f(x) is set as follows:

f(x) = 354.81x1 + 276.46x7 + 210.49x3 (32)

o 44

Total CO, emission = Y Energy consumption x Carbon emission factor x ) (33)

Total CO, emission
GDP

According to China’s energy long-term development strategy research and the 13th Five-Year Plan,

the following constraints are set:

Carbon Intensity = (34)

(1) Pr