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1. Introduction 

The fluid-structure interaction (FSI) phenomenon is the result of the interactions of multiple 
continuum fields. The fluid (gas or/and liquid) forces act on a neighboring elastic solid, 
which is deformed and thus influences the flow of the adhering fluid. Due to the 
deformation of the solid, both the fluid velocity and the fluid domain change. Usually, this 
interaction takes place in the presence of other mechanical fields and as important examples 
we mention here the external body forces and acoustic fields. The mathematical modeling of 
the FSI phenomenon requires mathematical models for each field implied in and also the 
coupling mechanisms between the fields. For instance, one can imagine a mathematical 
model of a FSI phenomenon where the fluid flow field is modeled with the unsteady 
Navier-Stokes equations, the solid elastic field with the Navier equations while for the 
acoustic field the inhomogeneous wave equation based on Lighthill’s analogy can be used 
and the external body forces are due to gravity. The boundary conditions for the fluid, solid 
and acoustic models represent here the coupling mechanism between the fields. However, 
even everything looks simple and clear the accurate and efficient solution of FSI problems is 
still a highly complicated task and an open area of research. Furthermore, using complicated 
models as those enumerated above the only way to obtain a solution to a specific FSI 
problem is the numerical one. The Computational Fluid Dynamics (CFD), Computational 
Structural Dynamics (CSD), Finite Element Method (FEM) provide us with specific 
mathematical models and numerical techniques that can be coupled to build a numerical 
solver for a FSI problem. However, even for simple and without engineering relevance 
problems the computational effort required to solve a specific problem becomes huge if the 
mathematical modeling of the physical phenomenon is not carefully done. As in many 
other multiple field interaction problems the level of accuracy of the mathematical model is 
crucial for both the efficiency and quality of the results. Further, we notice also that the 
development of in-house codes for such purposes is a difficult task. 
Today we know from the experience earned from a century of practice that different levels 
of approximation can be used successfully to build up a simplified mathematical model for 
a FSI problem. This can be done by simplifying the flow equations and by choosing 
engineering models for the elastic structure. With appropriate coupling mechanisms one can 
thus obtain mathematical models which are well-matched for practical purposes, starting 
from the design and up to advanced (flow and/or structural dynamics) control purposes. 
The use of different simplifying hypothesis (about the dimensionality of the flow and 
structural models, for instance) requires from the engineer a deep understanding of the 
multifield interaction phenomenon so that by neglecting different components of the 

www.intechopen.com



 
Fluid Dynamics, Computational Modeling and Applications 

 

196 

governing equations the simplified mathematical model still captures the essential of the 
physical phenomenon under concern. Based on this approach the engineers have now at 
disposal simple mathematical models and even formulae,  which offer an insight into a FSI 
phenomenon or another and also a useful tool to solve a specific FSI problem. This is 
evident if one takes a look in the field of aeroelasticity, see (Bishplinghoff et all, 1955; 
Bishplinhoff &Ashley, 1956; Dowell & Ilgamov, 1988). 
Historically, the aeroelasticity was the first branch of the FSI which occurred, (Fung, 1956; 
Dowell, 1975). Aeroelastic and/or hydroelastic vibrations are sustained by air/water forces 
induced by the moving structure itself. Due to this interaction the elastic structure may 
suffer large elastic deformations or even divergent oscillations causing failure. This evidence 
and the concern for very light-weight and thus flexible aircraft and propulsion systems 
structures have led to the occurrence of the aeroelasticity branch of science from the time 
when the aeronautical industry was at the beginning. The focus in aeroelasticity was and 
remains on the safety of the aircraft or civil structures only. However, in the last decades 
and in parallel with the progress in the computational fluid and structural dynamics and in 
the computer technology the aeroelasticity shifted forward in the direction of FSI. Currently 
we are interested in the behavior of both fluid and structural systems and perhaps the best 
examples come from the field of hydroelasticity and bioengineering applications. 
Nowadays, the FSI phenomenon covers a large area of engineering applications and the 
dedicated literature means thousands of papers. In what follows we present a rather coarse 
than comprehensive survey of the research work done in different engineering domains to 
investigate experimentally and numerically different FSI type phenomena of actual interest. 
The reader is encouraged to search forward in the list of publications for a deeper 
investigation of the newest results in its domain of work. 
A recent application of fluid structure interaction is the energy harvested by converting the 
mechanical strain of an elastic material, under the pressure of a fluid, into electric potential 
using piezoelectric materials, (Doaré, 2011). For example, a flexible plate fully coupled to a 
simple dissipative electrical circuit through piezoelectric layers could be an attractive 
candidate for flow energy harvesting if an axial flow through the plate will produce self-
sustained periodic oscillations of the solid body. A global analysis of fluttering modes of a 
finite- length plate confirmed that waves or modes destabilized by piezoelectric coupling 
maximize the energy conversion efficiency. Another application is the hydroelastic analysis of 
very large floating structures used in ocean space (as hydromechanical equipment in the 
wave’s energy conversion process), (Karmakar, 2009). These structures consist of many 
articulated elastic plates, called modules. The articulation of the elastic plates is done by the 
connectors which depend on the stiffness constants known as the vertical linear spring 
stiffness and flexural rotational spring stiffness. It is very important to have a stable behaviour 
of the entire floating structure in any case of water depth (finite depth, infinite depth or 
shallow water). Assuming that the fluid is inviscid and incompressible, and the motion is non-
rotational and simple harmonic in time with angular frequency ω, the fluid structure 
interaction analysis showed that the number of zeros in the reflection coefficient is maximum 
in the case of infinite water depth and minimum in case of the shallow water approximation. It 
was observed that the multiple articulated plates were behaved like a single continuous plate 
if the vertical linear springs and the flexural rotation springs are operating simultaneously. 
Furthermore, in (Ohkusu, 2004), the fluid structure interaction of a large and thin floating 
structure exposed to the sea wave action is analyzed. An analytical approach to predict 
vibration of this class of structures was developed. The plate vibration is obtained in an 
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explicit analytical form and is useful in preparing the computational approach for the real 
structure of a floating airport. 
Flow induced vibrations in heat exchanger tubes is another example of FSI, (Mitra, 2009). 
The induced vibration in these structures is caused by vortex shedding behind the bluff 
body of the heat exchanger tubes, the fluid-elastic instability and turbulent buffeting. The 
experiments shows that fully flexible arrays become unstable at a lower flow velocity and 
those tubes are more stable in steam-water flow as compared to air-water flow. It was found 
that the boiling water could have a stabilizing effect on fluid-structure instability. Fluttering 
and galloping of lightweight structures are typical results of the fluid structure interaction. 
The flow regime is important in the analysis of these phenomena, (Barrero-Gil, 2009). 
Numerical simulations of a transverse galloping phenomenon of a square cylinder at low 
Reynolds numbers confirm the possibility of galloping with no hysteresis for Re 159 . 

Large domains of technical problems are dominated by vortex-induced vibrations (VIV) as an 

effect of fluid-structure interaction phenomenon, (Galvao, 2008). The controlling of the wake 

behind a bluff body means to eliminate unsteady transverse loads while reducing drag. 

Experimental procedure and numerical simulation demonstrated that it could be obtained a 

potential flow in the wake behind the bluff body if combinations of flow directing hydrofoils 

are attached behind a circular cylinder. Two and four symmetric hydrofoils, and a triangular 

fairing attachment configuration are studied as a passive control method with the 

consequences of no VIV and small drag forces on the cylinder. The stability behaviour of a 

wake flow pattern is influenced by Reynolds number, turbulence intensity, aspect ratio, end 

effect, wall proximity, (Kuo, 2009). Active and passive control methods could be used to 

control the flow in the wake behind a bluff body so that could be reduced the form drag, could 

be suppress vortex shedding or could be changed the heat transfer characteristics. For 

example, two small control cylinders, with diameter ratio d/D = 0.25 are placed symmetrically 

along the separating shear layers at various stream locations to control the wake behind a 

circular cylinder in uniform flow at DRe 80 . Further, in (Pereira Gomes, 2011) the flow–

structure interaction a reference test case involving the coupling of unsteady fluid flow and 

structure motion is studied. It was considered the structure of an aluminium front cylindrical 

body with an attached elastic thin metal plate including a rear mass at the trailing edge. The 

structure is fixed with one rotational degree of freedom located in the centre of the model front 

cylinder. The structure is such designed as to attain a self- exciting periodical swivelling 

movement when exposed to a uniform laminar flow with a Reynolds number up to 270. Good 

results in the time-phase space were obtained regarding the reproducibility of the coupled 

fluid–structure motion. An experimental approach of a structure array of cantilever beams is 

demonstrated that neighbouring beams interact through the fluid and their dynamic 

behaviour is modified, (Kimber, 2009). Aerodynamic interaction between neighbouring 

cantilever beams operating near their first resonance mode and vibrating at amplitudes was 

found to be comparable to their widths. Experimental correlations were found to be used to 

predict the aerodynamic damping in arrays of vibrating cantilevers. In (Facchinetti, 2004) the 

model of a VIV is described as a one degree of freedom system, elastically supporting a rigid 

circular cylinder constrained to oscillate transversally to a stationary and uniform flow of free 

stream velocity. The fluctuating behaviour of vortex street is modelled by a nonlinear oscillator 

satisfying the van der Pol equation. The wake oscillator was coupled with the structure 

oscillator and generic forms of coupling have been qualitatively and quantitatively analyzed. 

The van der Pol wake oscillator model may be extended to 3-D vortex induced vibrations. 
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Applications in medicine regarding the interaction between of a rigid, spherical cancer cell 
with a deformable white blood cell were simulated by developing a quasi-steady technique, 
(Hoskins, 2009). The six-degree- of-freedom motion, adhesion kinetics, structural mechanics, 
and fluid dynamics governing equations were all solved, in the context of an octree-based 
adaptive mesh. The Lagrangian approach was used in grid generation to simulate a cellular 
system. Weakly coupled fluid-structure interaction models were used for the analysis of the 
periodic unsteady incompressible flow inside compliant vessels and to simulate the blood 

flow in arteries, (Beulen, 2009). Here it was successfully applied a time- periodic method 
which proved to have a far better computational stability than the weakly coupled methods 
based on time step-wise coupling. The method was applied to straight, curved and 
bifurcating vessels geometries. 
Commonly, the coupled fluid–structure dynamic analysis problem in turbomachinery could 
be performed by considering the two indirect coupling methods: a) one based on the cyclic 
symmetry properties of both structure and fluid, or b) the uncoupled approach which assumes 
that there is no aerodynamic coupling between the modes and aerodynamic forces, (Tran, 
2009). A multi-parameter minimum state modelling method was developed using the spline 
approximation and the minimum state modelling applied to a numerical model of an aircraft 
engine compressor disk. In this manner, the number and the cost of the aerodynamic 
computations in the solutions of the aeroelastic systems were reduced. Further, in (Gnesin, 
2004), a fluid structure interaction problem is analyzed as the interaction of aerodynamic, 
inertial and elastic forces acting on the blades of the rotor of a turbine stage. Mathematical 
model and numerical results for aeroelastic behaviour of a steam turbine last stage with rotor 
blades of 760 mm are presented. The algorithm proposed involves the coupled solution of 3D 
unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by 
the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The 
unsteady Euler equations described the 3-D transonic gas flow through the stator and rotor 
blades in relative motion. An explicit monotonous finite volume difference scheme Godunov-
Kolgan scheme was used. Modal approach and a 3-D finite element model of a blade are used 
in the structural analysis. It was obtained the high-frequency harmonics which are 
corresponding to the rotor moving past one stator blade pitch. Low-frequency harmonics are 
caused by blade oscillations and flow non-uniformity downstream from the blade row. Based 
on experimental flutter stability data acquired and using a new model of actuator disk 
approach, a reduced-order model of a compressor was analyzed in (Copeland, 2004). Here it 
was considered the actuator disk model for the blade rows. The control volume approach was 
used to determine the aerodynamic force on the flexible blades. Numerical simulations were 
used to analyze the dynamic behaviour of the compressor and the predicted flutter and stall 
stability boundaries were proposed.  
A numerical method and a procedure to calculate the flow-induced noise in a centrifugal 

pump is presented in (Langthjem, 2004a). First a hydrodynamic incompressible analysis is 
done to obtain the ”background-flow” and noise generating fluid forces. The flow-induced 
noise in a centrifugal pump was calculated using a computationally method to estimate the 
noise generating ”background-flow”. The analysis is restricted to a two-dimension 
formulation. The fluid structure interaction between the fluid, the rotating blades and the 
volute tongue, and the interaction between the fluid and the rotor alone are the causes of 
pressure fluctuations and correspond to dipole sources. Using an acoustic analogy the 
geometry of the pump was assimilated with a point source for the pump’s inlet, the blades 
of the impeller are covered with vortex elements with discrete, bound vortices and the 
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casing is covered with source panels. A discrete vortex method was used to simulate the 
flow within a centrifugal pump. The unsteady impeller blade surface forces are estimated. 
The velocity and pressure fluctuations on the impeller blades are dominated by rotational 
frequency and its higher harmonics. Further, (Langthjem, 2004b), a hydroacoustic 
compressible analysis was considered to find estimate the noise in a centrifugal pump. A 
two-dimensional numerical method to estimate the acoustic pressure fluctuations in a 
centrifugal pump has been described. The unsteady surface forces which act on the rotor 
blade are considered to be acoustic dipoles. The discrete vortex method was used to 
estimate the strengths of the dipoles and to obtain the pressure distribution, and then to 
obtain the velocity field by applying the unsteady Bernoulli equation. A boundary element 
method was used to obtain the strengths of the dipoles. The frequency-domain solution is 
useful in design optimization so that the flow-noise is minimized. 
In (Howell, 2009) it was developed a new computational model of the linear fluid–structure 
interaction of a cantilevered-free flexible plate with an ideal flow in a channel. The 
transient behaviour of the system is analysed by numerical simulations and a global linear-
stability map of the system for the infinite-time limit is obtained. The effects of shed 
vorticity, channel walls, a rigid-inlet surface, temporally varying inlet flow-velocity, and 
variable plate stiffness were investigated and the flutter instability dependence upon system 
configuration was found. For example, a short flexible plate (in standard configuration) is 
destabilised by single-mode flutter caused by an irreversible energy transfer from fluid to 
structure that principally occurs over the middle part of the flexible plate. A long flexible 
plate is destabilised by a modal-coalescence flutter and the region of the plate where most 
destabilising energy transfer occurs mainly downstream half. 
Aeroelastic design considerations related to long-span bridges and VIV are also described in 
(Frandsen, 2004). Governing design criteria for long-span bridges involve the aeroelastic 
phenomena of vortex-induced oscillations, flutter and buffeting. So, an acceptable flutter limit 
is one of the principal design criteria for long-span bridges. Scanlan’s linearized theory 
assumes the prescribed motions and is used to estimate the flutter derivatives. Theodorsen’s 
inviscid flat-plate theory is used to estimate the flutter derivatives, too. This study attempts to 
investigate the use of a coupled fluid-structure interaction finite element solver applied to a 
long-span bridge. Aerodynamics effects of bridge flutter are investigated using fluid and 
structural two-dimension finite elements on moving non adaptive grids. The moving interface 
between fluid and structure is modelled through the arbitrary Lagrangian-Eulerian 
formulation. It is verified that the flat-plat theory of Theodorsen gives comparatively accurate 
solutions despite of inviscid flow hypothesis. Also, the prediction of flutter instability for sharp 
edge bridge deck does not appear sensitive to turbulence and three-dimensional modelling. 
In the field of aeronautical applications, the fundamental research in the field of FSI 
continues to go forward. For instance, in (Dessi, 2004) a three-degree-of-freedom of an airfoil 
with a control surface is the physical model which includes different. A 2-D incompressible 
potential flow has been considered in the model. A standard Runge–Kutta algorithm in 
conjunction with a ‘shooting method’ was used to numerically integrate the governing 
equation and a stable and unstable limit cycle oscillation was obtained. The amplitudes 
and frequencies of limit cycles dependences on the flow speed V∞ are obtained. The terms, 
from the normal-form equations, which are essentially responsible for the nonlinear system 
behaviour are identified. Using a discrete gust model, Dessi identified and analyzed the 
damped or undamped wing oscillations for different gust’s parameters, i.e., intensity and 
gradient, (Dessi, 2008). Stability analysis has been carried out on a simplified aeroelastic 
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model in two cases, without and with gust excitation. In the first case, an approximation of 
the basin of attraction of stable limit cycles in the space of initial conditions was discussed. 
In the second case, was identified a critical gust intensity for a given gust gradient.  

Flow control techniques are currently investigated as a primary tool for the control of 

aeroelastic vibrations. Active control of flow separation over an air foil using synthetic jets 
is an already operational technique, see (You, 2008). An unstructured-grid finite-volume 
large-eddy solver was used to simulate the behaviour of flow inside the synthetic-jet 
actuator and the synthetic-jet/cross-flow interaction. Numerical simulations confirm 70% 
increase in lift coefficient if the flow separation is delayed with a synthetic-jet actuation. In 
(Levasseur, 2008) it was proposed the control of cavity flows with two passive acoustic 
oscillation suppression devices: the rod-in-cross flow and the flat-top spoiler located in the 
upstream boundary layer. The average reduction of the total pressure level was similar for 
both devices and was obtained 3–4 dB reduction. The selected test-case is a cavity of 
length/depth ratio equal to 5, at Mach M 0.85   and Reynolds number of L

6Re 7 10  . 
Finally, a comprehensive and utilitarian review of experimental and numerical modelling 

on vortex-induced vibrations in the last twenty years, (Sarpkaya, 2004) and on open FSI 

problems (Païdoussis, 2005), are useful references to understand the consequences of the 

fluid structures interaction in technical applications. 
One of the conclusions coming off from the examples above is that the numerical solution of 
the FSI problems plays an essential role in any kind of work in this field: research, design, 
decision make. 

2. Numerical solution of FSI problems  

In the classical linear approach the behavior of a fluid-structure system is investigated in the 
frequency domain, (Bishplinghoff et all, 1955; Fung, 1956). In this case, the calculation of either 
stability boundaries (flutter problem) or dynamic response of the linear system is separated 
from the computation of linearized unsteady aerodynamic forces. However, in order to 
investigate nonlinear fluid-structure interactions the governing equations of structural and 
fluid motion have to be solved in the time domain, (Alonso &Jameson, 1994; Carstens et al., 
2003; Liu et al., 2001). This can be done either with time-staggered algorithms (Piperno et al., 
1995; Lesoinne & Farhat, 1996) or with coupled algorithms, (Alonso & Jameson, 1994). In the 
first case optimized numerical integration methods for each of the structural and fluid 
dynamics models can be used and thus the two sets of equations are treated separately and 
integrated in a leap-frog fashion. The drawback of this approach is that one can never have a 
fully converged fluid-structure system at any one time step. This may cause significant energy 
errors for large times and thus the prediction of the dynamic response and mainly of dynamic 
instabilities is uncertain. The full coupling of the flow equations with the structural model can 
be achieved efficiently using an implicit time advancement scheme based on the dual-time 
approach. The aeroelastic system is thus fully coupled and at each time step a fully converged 
solution is obtained. In order to avoid the grid generation at each time step the transpiration 
type boundary conditions are used for the flow equations. 

2.1 The mathematical model and numerical solution of the fluid-structure Interaction 
problem 
The numerical simulation of Fluid-Structure Interaction (FSI) phenomena is based on a 
mathematical model that describes the structural and fluid dynamics and their coupling 
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through the boundary conditions. There are different levels of accuracy in the modeling of 
both the structure behavior and the fluid flow. 

2.1.1 The computational structural dynamics problem and its use in aeroelasticity 
Usually the equations of structural dynamics are obtained using the Finite Element Method 
and represented by a system of second order differential equations, (Przeminiecki, 1968; 
Zienkiewiecs, 1971). The linear behaviour of a structure under the action of time dependent 
external loads is thus described using a finite element model which, for small deformations 
has the well-known linear form: 

 Mq Cq Kq Q     (1) 

If natural coordinates are used, then the left-hand side of eq. (1) has a decoupled form. 
Starting from Eq. (1) and using appropriate initial conditions, the dynamic response of the 
structure can be calculated using dedicated numerical algorithms like those known as 
Newmark or Hughes-Hilbert-Taylor. However, for aeroelastic calculations the right-hand 
side of Eq. (1) represents the generalized aerodynamic forces that depend on the generalized 
coordinates and can be calculated only by solving the flow problem. The structural problem 
can be rewritten in the phase-state space as: 

   f

dx
Ax F U x x

dt
,    (2) 

where the state variable vector is: 

  T
x q q,   (3) 

and with the matrix 

 
I

A
M K M C1 1

0

 

 
 
   

 (4) 

and the force term: 

 
   f

F
M Q p U x x1

0

,

    
  


 (5) 

Finally, the Eq. (2) is accompanied by the initial condition: 

  x t x00   (6) 

In classical aeroelastic investigation the force term given by Eq. (5) is linearised and, in some 
simple but useful cases it can be expressed analytically, (Bishplinghoff et all, 1955; Bishplinhoff 
& Ashley, 1956; Fung, 1956). Under additional assumptions like harmonic time dependence of 
the displacements and forces the solution of the classical aeroelastic problem of flutter 
boundaries calculation is simplified from Eq. (2) to an eigenvalue problem. This is the so-called 
flutter analysis in the frequency domain, which is a usual practice in aeroelasticity. 
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If the linearization is not possible, than Eq. (5) shows that the structural problem cannot be 
separated from the flow problem and the FSI has to be investigated in the time-domain. This 
means that the solution of Eq. (2) is obtained numerically, using an explicit or implicit solver 

that advances in time the structure state. 
However, in the phase-space the numerical solution of Eq. (2) with (6) can be done using the 

so-called time staggered algorithms, (Piperno et al., 1995; Lesoinne & Farhat, 1996). These 

allow a formal decoupling of the structural and flow problems through a time step. The 

main advantage of the time staggered algorithms is that there are now available optimised 

numerical solvers for each of the two problems, taken individually. Their drawback is that 

the structure and fluid states are not determined exactly at the same time and thus the 

energy transfer from fluid to structure and reverse cannot be accurately predicted (Alonso 

&Jameson, 1994; Carstens et al., 2003). This has a negative impact on the accurate time-

domain calculation of flutter like instabilities of the aeroelastic systems. 

2.1.2 The computational fluid dynamics problem 
In the last decades, unsteady Computational Fluid Dynamics (CFD) has emerged as the 
basic approach available for predicting the flow behaviour the case of FSI problems, 

(Anderson et al., 1984; Ferziger & Peric, 1999; Löhner, 2008). 
In the present work the fluid is considered inviscid, in order to simplify the mathematical 
formulations. For compressible flows with shocks, the Euler equations of gas dynamics 

written in conservative form and with standard notations are: 

 
     f U g U h UU

t x y z
0

  
   

   
 (7) 

where the unknowns and fluxes are given by: 

 

 T

T

T

T

U u v w E

p
f u u p uv uw u E

p
g v uv v p wv v E

p
h w uw vw w p w E

2

2

2

,

,

,

    

    


    


    




       
   

       
   

       
   

 (8) 

The pressure is determined through the state equation for a thermodynamic perfect gas: 

        u v w
p E

2 2 2

1
2

  
 



  
   
  

 (9) 

The initial condition necessary for the solution of Eqs. (7, 8) states that in the entire 
computational domain the fluid state is known at the beginning of the simulations, i.e.: 

  U t U00   (10) 
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It is known that for flows at low Mach numbers the Eqs. (7, 8) become difficult to be solved 

numerically, because of the ill-conditioning that imposes very small time steps to be used. 

For practical purposes it is therefore preferable to replace the inviscid compressible 

equations with the inviscid incompressible flow model in the Chorin’s formulation: 

 
     i i if V g V h VV

t x y y
0

         
     

 (11) 

where the unknowns and the flux terms are: 

 

 
 

 
 
 

T

Ti

Ti

Ti

V P u v w

diag diag

f u u P uv uw

g v uv v P vw

h w uw vw w P

2

2

2

2

,

0, 1, 1, 1 , , 1, 1, 1 ,

,

,

.





      

 

 

 

 (12) 

In Eqs. (11, 12) the pressure is defined by P p   and the compressibility factor   has to 

be provided. This conservative formulation of the incompressible flow equations allows a 

numerical treatment similar to that used for the compressible equations. The initial 

condition for the Eqs. (11, 12) is similar to Eq. (10). 

For both inviscid flow models used in this work, the coupling of the structural and fluid 

fields is assured by the statement that the fluid normal velocity on the moving contact 

surface S  equals the wall normal velocity     nw z t z S x t, ,  , i.e.: 

  x y z nu n v n w n w z t,       (13) 

This physical boundary condition at the moving solid wall is used for all the inviscid flow 

equations, accompanied by other appropriate boundary conditions imposed on all the 

boundaries of the computational domain. The pressure field on the solid boundary is 

obtained from the solution of the flow equations and is used in Eq. (2) through the force 

term given by Eq. (5). 

There are a lot of numerical methods that can be used to solve the flow equations. Starting 

from the conservative of the unsteady flow equations, the most common way is to use the 

finite volume method, (Batina, 1991; Ferziger & Peric, 1999; Frink, 1992; Nkonga & Guillard, 

1994). The spatial discretization of the flow equations using a cell-centred Godunov type finite 

volume method leads to a system of differential equations written in semidiscrete form: 

   f
f

dU
R U x x

dt
,   (14) 

where the right hand side is the residual vector that contains the discretised fluxes and 
includes implicitly the boundary conditions given by Eq. (13). The left hand side contains 
the cell-averaged values of the fluid states on a current cell: 
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    
   

e

T

f e

e
e

U t U t e M with

U t U t d

1, ,

1



 

  
 

 (15) 

CFD now makes available a variety of explicit and/or implicit algorithms dedicated to the 
solution of the unsteady flow problems modelled by Eqs. (14, 15) and with appropriate 
boundary and initial conditions, (Aftosmis et al., 1995; Alonso & Jameson, 1994; Ferziger & 
Peric, 1999; Frink, 1992; Singh et al., 1995; Trepanier et al., 1993). 

2.1.3 The fluid-structure interaction model 
From Eqs. (2) and (14) the coupled system of FSI equations in semidiscrete form is obtained as: 

 
  

  
f

f
f

Ax F U x xxd

Udt R U x x

,
0

,

         
      




 (16) 

The coupling in Eq. (16) is generally nonlinear. This equation clearly shows that the fluid 
and structure states should be evaluated exactly at the same time. However, there are 
classical decoupled solvers using time-staggered algorithms. The most known example is 
due to (Piperno et al., 1995), who introduced a difference of t / 2  between the structure 

and fluid state calculations. 

2.1.4 A fully-implicit numerical scheme 
The direct solution of Eq. (16) by an explicit or implicit time advancement algorithm 
eliminates the already mentioned drawbacks of the time staggered algorithms.  
The coupled FSI equations have at least two important features. The first is the huge number 
of unknowns to be solved simultaneously. It is therefore a necessity the development and 
implementation of efficient and less time consuming algorithms for the solution of the coupled 
equations. The second aspect to be taken into account is that the typical time integration steps 
imposed by accuracy and/or stability reasons usually differ by order of magnitude between 
the CSD and CFD problem. For instance, in aeroelastic problems the number of unknowns of 
the CFD problem considerably overrides the number of unknowns of the CSD problem. 
Further, the temporal resolution of the CSD problem, where usually only the low frequency 
vibration modes of the structure are investigated, is much greater than that required by the 
accurate solution of the CFD problem with a numerically stable method. Therefore, the best 
choice for the solution of Eqs. (16) seem to be the fully implicit time advancement, coupled 
with an efficient dual-time stepping for the solution of the nonlinear discrete equations, 
(Alonso &Jameson, 1994). One can rewrite the coupled fluid-structure system given by Eq. (16) 
in a more convenient form of a system of ordinary differential equations: 

  w

dw
R w w

dt
, 0   (17) 

where the unknowns and residuals are: 

 
  

  
f

w
f

f

Ax F U x xx
w R

U R U x x

,
,

,

          
      




 (18) 
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A second order accurate fully implicit time discretization of Eq. (17) is given by: 

  
n n n

n
w

w w w
R w

t

1 1
13 4

0
2

 
 

 


 (19) 

For typical FSI problems Eq. (19) is a huge nonlinear algebraic system that must be solved at 

each time step. A better way to obtain the new values nw 1  is to build up and solve a 

system of ordinary differential equations in the dual time t* : 

 

 
 


 


 

n

not not n n
n

w

dw
R w t

dt

w t w where

w w
w w R w w R w

t

*
* * *

*

* *

1
1 * * * * *

0,

0 ,

3 4
,

2 2




  

 


   



 (20) 

The residuals contain the boundary conditions and the force acting on the structure that 
effectively couple the two problems. The boundary conditions and the force are actualized 
at every internal step. Thus, the solution represents the fluid and structure states at the new 
physical time. 

A four time steps Runge-Kutta scheme in the dual time provides the solution of Eq. (20) 
very efficiently for t*   for each physical time step. The dual time step t*  depends on 
physical time step t  used in Eq. (19) and from numerical stability reasons should obey a 
condition like: 

 t t* 2

3
    (21) 

Due to the fully implicit character of Eq. (19), which is also A-stable, the physical time step is 
determined from accuracy considerations only. The main advantage of this approach is the 
explicit advancement in the dual time space, which eliminates the solution of huge algebraic 
systems. 

2.1.5 Problems related to moving grids and the geometric conservation law 
This work deals with the computation of unsteady flows in moving geometries. Because the 
position of the solid boundaries, i.e. of the structure determines at least partially the fluid 
domain boundaries, it becomes necessary to perform the numerical calculation of the fluid 
flow on a moving mesh. The flow equations must therefore be re-written in an Arbitrary 
Lagrangian-Eulerian (ALE) formulation and the solution procedure of the FSI problem is 
coupled to the grid dynamics, (Batina, 1991; Ferziger & Peric, 1999; Lesoinne & Farhat, 1996; 
Trepanier et al., 1993). 
It is generally recognized that it is difficult to generate a structured grid about complex 
configurations. Furthermore, this difficulty is magnified when the aeroelastic deformation of 
the aircraft or other displacements of the solid boundaries are considered, since the grid must 
move to conform to the instantaneous shape of the computational domain. As an alternative, 
algorithms have been developed that make use of unstructured grids. The unstructured grid 
methods, therefore, have the advantage (over structured grid methods in) that they can easily 
treat complex geometric configurations as well as complicated flow physics. 
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The grid management discussed here follows the work pioneered by (Batina, 1991), which 
has proposed a dynamic grid algorithm employable for problems where the solid body 
deforms or performs small displacements. The original unstructured grid is generated 
corresponding to the initial (undeformed) position of the boundaries. The edges of the grid 
are considered as a system of interconnected springs. In two dimensions, the  unstructured 
grids typically are made up of triangles. Each edge of each triangle is modeled by a tension 
spring. The spring stiffness for a given edge i-j is taken to be inversely proportional to the 
length of the edge raised to a power, which is written as 

 

   
ij

ij p

i j i j

K

x x y y
22 2

1

     

 (22) 

where pij is a parameter used to control the stiffness depending on its position relative to the 

moving solid wall. Usually, ijp 1 , but we mention here the fact that we are interested to be 

able to maintain the grid quality my controlling the nodes displacements via this parameter. 

Then, by assembling the contributions of all edges, the unknown displacements x 
 of the 

free internal nodes and the known displacements mbx 
of the border corresponding to the 

moving body or other fixed boundaries are coupled by the finite-element type matrix 

homogeneous equation: 

 
coup

T
mbcoup mb

K K x

xK K
0




   
    
    



  (23) 

The rigidity matrix in (23) is singular and the indices coup indicate coupling terms due to the 

springs connecting internal nodes with border nodes. The solution x 
 of the non-singular 

algebraic system obtained from (23) can be obtained iteratively, by using several Jacobi 

iterations. The initial guesses of the displacements are the displacements at the previous 

time level. An example of deforming grids is given in Figure 1.  
 

 

Fig. 1. The undeformed (a) and deformed (b) grid around a NACA 0012 airfoil. 
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The integral conservative form of the flow equations can be written in ALE formulation for a 

time-dependent bounded domain  t  with a boundary  t  as 

  UdV F U ndS
t

0
 


  

  
 

 (24) 

where the normal inviscid flux looks like: 

      T

n n x y zF U n V U p n n n V0, , , ,    
 

 (25) 

Here  x y yn n n n, ,


 is the exterior unit normal on the boundary  t , the fluid velocity is 
V


 and   is the velocity of the volume boundary. The projections of these velocities on the 
boundary normal are denoted with nV  and n , respectively. 
The time-dependent domain  t  in (24) can be the entire computational domain as well as 

an arbitrarily specified control cell. When applied to a moving cell, the condition that (24) 

preserves the trivial solution of a uniform flow field leads to the integral condition called the 

Geometric Conservation Law: 

 dV ndS
t


 


 

  
   (26) 

The equation (26) describes a relationship where the time rate of change of the volume of 
any cell must be exactly balanced by the volumes swept by its boundaries. In order to avoid 
errors induced by the moving mesh, the condition (26) needs to be satisfied numerically, in 
addition to the flow equations. Furthermore, this condition must be solved numerically 
using the same scheme that is used to advance the conservation laws of the fluid to provide 
self-consistent solution for the local cell volumes. Thus, once the new positions of the 
moving nodes of the mesh have been calculated, the geometric conservation law is 
discretized and used to correlate the local cell volumes at the current time level and the 
normal velocity of the faces which is used in the normal numerical flux calculation. The GCL 
and the appropriate calculation of the normal velocities of the faces completely define the 
numerical problems related to the moving mesh. 

2.1.6 Numerical implementation of the physical boundary condition for ALE 
formulations 
On the solid moving walls, the boundary conditions like Eq. (13) are enforced by using the 
classical idea of image cells, (Frink, 1992). In these imaginary cells, a fictitious fluid state is 
defined by setting the flow variables according to the type of the reflective boundary. Then, 
the Riemann problem so created is solved with the approximate Riemann solver to compute 
the normal flux across these boundaries. For a moving solid wall, the relative normal 
velocity is reflected to ensure the impermeability condition. This gives for the normal 
velocity component in the imaginary cell: 

 imag
n n wallV V u2     (27) 

The numerical boundary conditions for the pressure, density and tangent velocity fields are 

taken as those of the adjacent boundary cell. For a static solid wall, the normal velocity is 

simply negated. 
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The ALE formulations studied up to now has two practical drawbacks. First, at each time step 
anew grid must be built - in some way – on the fluid domain, and the associated grid velocity 
must be computed. Both grid deformations and velocities fields must follow the structure 
deformation and be smooth in time and space. Second, the flux vectors are modified by the 
ALE formulation and thus the corresponding solvers must be changed in depth. 
The transpiration method is, quite simply, a means by which to trick the flow solver into 
seeing some sort of deflection in the mesh that is not actually there. If a change in surface 
normal is known, from structural dynamics solver for example, then this change in normal 

could be applied directly to the existing fixed grid through a slight modification of the existing 
surface normal. With transpiration, the nodes and faces affected by a surface deflection simply 
require a modification of its existing normal. Even though the surface is not actually deflected, 
all the flow sees is the normal at that particular nodal location, it does not matter what that 

normal is. Let’s consider the case of a moving boundary represented in Figure 2. 

 

Fig. 2. The displacement of a surface point from the initial position (1) to the final position 
(2) during a time step 

From the first order approximation of the normal velocity on the solid surface in the point 
(2) one obtains: 

 
   d V n

V n V n d X d X
d X

21 1

2 2 1 1


     

 
     

  (28) 

Then, since n2


 and thus the normal velocity V n2 2

 
 are known from the structural problem, 

one can derive directly the transpiration velocity that modifies the normal velocity at the 
fixed point (1): 

 
 

T

d V n
V n V V n d X

d X

1 1

1 1 2 2


    

 
    

  (29) 

Usually, the right hand side term in Eq. (21) is approximated by: 

 TV V n2 2 
 

 (30) 
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In order to overcome the difficulties due to the use of moving grids and to be able to solve at 
low costs fluid-structure interaction problems at moderate deformations, the transpiration 
method represents a useful engineering approach. Its most important advantage is that it 
does not require to update the computational grid or the flux solvers routines. It only 
involves modifications of the interface boundary conditions. However,  this works well only 
for small deformations of the structure. 

2.2 The sensitivity analysis for fluid-structure Interaction problems 
The modeling procedure of a given fluid-structure system is required to analyze its dynamic 
behavior under different functional conditions. Furthermore, the mathematical modeling is 
a necessary step in the designing a control system with a given purpose. Usually, the FSI 

mathematical model is nonlinear and comprises independent and dependent variables, the 
dependent being related to the independent ones through a system of equations and 
relationships. By linearizing this system around an operating point a linear model can be 

obtained. This linear model describes the behavior of the FSI system around the equilibrium 
and thus can be used for stability as well as for dynamic response analysis. 
Mathematical models include uncertainties, because of the parameters whose actual values 
are known only approximately or could vary around some reference values, (Cacuci et al., 
1980; Cacuci, 1981, 1981). As an example taken from aeroelasticity, we enumerate here the 
flow speed, the air density, the elastic and inertial characteristics of the elasto-dynamic 
system and last but not least the aerodynamic derivatives. 
The purpose of the local sensitivity analysis is to determine quantitatively the behavior of 
the system responses locally around a chosen point of the trajectory in the phase-space of 

parameters and dependent variables. The sensitivities are the derivatives of functional type 
responses with respect to the parameters. These sensitivities are useful for a better 
understanding of the behavior of the aeroelastic system. There are three methods that can be 

used to determine the sensitivities. 
The first method is the most common. Running the code that calculates the system response 
a second time with an increment of a single parameter provides the sensitivity to that 
parameter. This method consumes large CPU times because for each sensitivity, one 

complete new run of the code is required. The second method that is available is called the 
forward sensitivity analysis method. It requires the construction of the linear forward 
sensitivity equations that may be derived directly from the original system in a consistent 

manner. Obviously, the sensitivity of the numerical solution to a parameter variable 
requires a complete solution of the linear forward sensitivity problem (FSP). The advantage 
is that this calculation is cheaper than the previous one, because of the linearity of the FSP. 
The disadvantage is that the conclusions are limited to small variations in parameters, 

(Appel & Gunzburger, 1997; Cacuci et al., 1980). The third method is called the adjoint 
sensitivity analysis method (ASAM). It requires the construction of the adjoint sensitivity 
equations, which may be obtained from the forward sensitivity equations and are also 

linear. Thus, it provides only linear answers. The advantage is that the adjoint function 
method is largely cheaper, because it provides the sensitivities to all parameters by solving 
only one time the adjoint equations. The adjoint method has been originally developed in 
(Cacuci, 1981), who introduced the basic concepts of a comprehensive sensitivity theory. 

This theory gives precise mathematical and physical meaning to the concept of the 
sensitivity of a response to parameters that are functions. The adjoint method has been 
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extensively used mainly in the field of internal flows simulations, (Cacuci, 1981, 1981; Ounsy 
et al., 1994; Toomarian et al., 1988). 

Remark. In parallel with the sensitivity analysis of a response, for stability analysis 
purposes it is also useful to derive a computational frame for the calculation of the 
sensitivities of the eigenvalues resulting from eigenvalue problems. 
In this paragraph we present the theoretical developments necessary for the application of 
both the forward and the adjoint sensitivity analysis methods for a typical FSI mathematical 
model. Starting from the state-space formulation we present the formalism that uses adjoint 
functions associated to state variables to determine sensitivities of the response to all the 
parameters. The response considered here is of functional-type and the parameters are 
represented by the initial conditions of the base-case problem and by the inertial, elastic and 
aerodynamic coefficients of the model. The adjoint system satisfied by the adjoint functions 
is determined and shown to be a well-posed linear system of ordinary differential equations 
subjected to specific initial. 

2.2.1 The basics of the adjoint sensitivity analysis method 
For the purposes of sensitivity analysis, let the spatial-discretized FSI mathematical model 
be represented in operator form as a system of nonlinear time-dependent differential 
equations: 

 
 
 

fX G t t

X X0

, 0, 0,

0

     


 (31) 

where the state variables are  X t  and  MG G G1 ,..,  is the vector containing all the 

problem parameters. We assume that the well-posed initial value problem (IVP) represented 

by Eqs. (31) is solved for a set of nominal (or base-case) parameter values G  and has a 

unique solution, denoted here by X. The response considered in this analysis is a nonlinear 

functional depending simultaneously on X and G  and generally defined as: 

    
ft

R X G E X t G dt
0

, ,     (32) 

where tf is some final time value and E is a nonlinear function depending on time and the 
system solution and parameters. The response of the aeroelastic system is the total mechanical 
energy at the final time, for instance. It is worthwhile to notice here that the integrals 

appearing in Eq. (32) may be considered as an inner product in the Hilbert spaces of all square 
integrable vector functions to whom the solution of Eq. (31) belongs, for instance: 

    
ft

t t dt
0

,      (33) 

It is obvious that small variations  Mg g g1 ,..,  in the system parameters induce variations in 

the solution, x , so that the perturbed solution X x  is satisfying a system similar to Eq. (31). 

The objective of local sensitivity analysis is to analyze the behavior of the system responses 

locally around a chosen point  X G,  of trajectory in the combined phase-space of state 

variables Q and parameters G . The most general and fundamental concept for the 
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definition of the sensitivity of a response to variations in the system parameters is the 

Gateaux (G) differential. The G-differential  DP S s,  of an operator  P S  at S  with an 

increment s is defined as 

    d
DP S s P S s

d 0

,



 

     
 (34) 

Applying Eq. (34) to Eq. (32) yields the sensitivity  DR X G x g, ; ,  of the response as: 

  
   f ft t X GX G

E E
DR X G x g xdt g dt

X G

,,

0 0

, ; ,
            

   (35) 

The first and the second terms of the Eq. (35) are customarily called the indirect effect term 
and the direct effect term, respectively. The exact value of the perturbed response is 
predicted by the sensitivity to first-order accuracy in parameters and solution variations, i.e.: 

      R X x G g R X G DR X G x g x g
22

, , , ; ,         
 

 (36) 

the indirect effect term and thus the desired sensitivity of the response functional can be 

evaluated only after determining the solution perturbations x. Up to first order, the 

relationship between x and g  is obtained by taking G-differentials of Eqs. (1). This leads to 

the FSP given by: 

 
 
  f

o x g X G

x x t t0

, ; , 0,

0 , 0,



    

 (37) 

Once the solution of the base-case problem represented by Eq. (31) has been determined, 

then for a given vector of parameter changes the FSP could be solved to determine the 

variations in the flow problem solution, x . The solution of the FSP is advantageous to 

employ only if the number of different responses exceeds the number of system parameters. 
The alternative way, however, is to eliminate the explicit appearance of x  in Eq. (35). This 

elimination process relies on the possibility to construct an adjoint operator corresponding 
to Eq. (37). Using the inner product given by Eq. (33) and integration by parts, one obtains 
from Eqs. (7) for the adjoint vector   of x : 

      o x g X G x o X G B x*, , ; , , ; , ,      (38) 

where  o X G* ; ,  is the adjoint operator to  o x g X G, ; ,  and  B x,  is the associated 

bilinear form. Eqs. (37) and (38) yield: 

    x o X G B x*, ; , ,     (39) 

Further, the explicit appearance of the unknown x  in Eq. (35) is eliminated if the adjoint 

vector function  is determined so that it satisfies the linear equation: 
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  
 X G

E
o X G

X

,
* ; ,

     
 (40) 

The solution of the Eq. (40) can be done successfully only if one imposes appropriate initial 
conditions. These must be set so that all the terms involving unknown values of x  

disappear from Eq. (39). If this is done, then the sensitivity of the response is determined 
directly using the relationship: 

    
 ft X G

E
DR X G x g B x g dt

G

,

0

, ; , ,
 

     
  (41) 

In Eq.(41)  B x,  is the remaining part of the bilinear form  B x,  after the elimination of 

the unknown terms  fx t  through the use of the final time conditions for , i.e.  ft 0  . 

This condition is transformed into an initial condition using the time variable 

change ft t   . This leads to a new IVP for the adjoint  function : 

  
 

 
X G

E
o X G

X

,
* ; , , 0      

 (42) 

Thus, the adjoint functions are independent of parameter variations. The source term in Eq. 
(42) depends on the choice of the response. Finally, we notice that the IVP for the adjoint 
functions is linear and depends on the base-case solution X. 
The local sensitivity analysis method offers therefore the possibility to quantify the 

influence of all the parameters on the response of an aeroelastic system. Compared with 

the direct and forward methods, the adjoint sensitivity analysis method is numerically 

efficient but requires important theoretical developments and these are summarized in 

this work. We notice that beyond the general form of the equations, the use of the adjoint 

sensitivity analysis method needs also a completely different and new computer code to 

be developed and tested. 

2.2.2 The sensitivity of the eigenvalues in local stability analysis 
For local stability analysis in the state-space form the forward linear system (37) or any other 
linear system has a homogeneous part written like: 

 
 

 
x A X G x

x x0

, 0,

0

  





 (43) 

where A is the state matrix. This depends on the base case solution and also on the 

problem’s parameters, which are supposed to have small variations around the base-case 

values. Using the right eigenvectors problems for both the forward and adjoint 

homogeneous systems, one can proof that the sensitivity of the rth eigenvalue r  with 

respect the pth parameter gp can be determined using the following formula: 

 
Tr
r r

p pg g

A 
  

 
 (44) 
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The reader is encouraged to obtain this formula as an exercise. The calculation of the 

derivative of the state matrix with respect to the parameters is not a simple task and for 

many situations it must be done numerically. However, the last equation is useful for 

understanding, analysis and design of the aeroelastic system.  

3. Conclusion 

In this chapter we first outline the general principles of FSI followed by some examples 

taken from aeronautical, civil and biomedical engineering. One of the conclusions coming 

off from these examples is that the numerical solution of the FSI problems plays an essential 

role in any kind of work in this field.  

Then, we focused on the numerical simulation of the FSI problems using intensive 

computational techniques. These are based on a mathematical model that describes the 

coupling of structural and fluid dynamics models through the boundary conditions. There 

are different levels of accuracy in the modeling of both the structure behavior and the fluid 

flow. For simplicity reasons only we have chosen the case of inviscid flows interacting with 

linear structures. In the phase-space the numerical solution can be done using the so-called 

time staggered algorithms. These allow a formal decoupling of the structural and flow 

problems through a time step. The main advantage of the time staggered algorithms is that 

there are now available optimised numerical solvers for each of the two problems, taken 

individually. Their major drawback is that the structure and fluid states are not determined 

exactly at the same time and thus the energy transfer from fluid to structure and reverse 

cannot be accurately predicted. This is why a better way for the solution of the FSI equations 

is the fully implicit time advancement, coupled with an efficient dual-time stepping for the 

solution of the nonlinear discrete equations. The main advantage of this approach is the 

explicit advancement in the dual time space, which eliminates the solution of huge algebraic 

systems. Aspects related to the treatment of moving grids and the related Geometric 

Conservation Law and to the imposition of the physical boundary condition on the moving 

wall are also mentioned. 

The last part of the chapter presents in some details the adjoint sensitivity analysis method, 

which is useful for a better understanding of FSI problems. The purpose of the local 

sensitivity analysis is to determine quantitatively the behavior of the system responses 

locally around a chosen point of the trajectory in the phase-space of parameters and 

dependent variables. The sensitivities are the derivatives of functional type responses with 

respect to the parameters. The local sensitivity analysis offers the possibility to quantify the 

role of the parameters on the response of an aeroelastic system. The adjoint sensitivity 

analysis method is numerically efficient but requires important theoretical developments 

and these are summarized in this work. We notice that beyond the general form of the 

equations, the use of the adjoint sensitivity analysis method needs also a completely 

different and new computer code to be developed and tested. 

For stability analysis purposes the sensitivities of the eigenvalues of a state matrix to the 

problem’s parameters are useful and we presented the way to follow to calculate them. The 

derivatives of an eigenvalue with respect to the problem’s parameters show the importance 

of those parameters on the stability of the FSI system. The last equation is useful for 

understanding, analysis and design of the aeroelastic system. 
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