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Abstract

Elliptic curve cryptography (ECC) is one of the most famous asymmetric cryp-
tographic schemes which offers the same level of security with much shorter keys
than the other widely used asymmetric cryptographic algorithm, Rivest, Shamir,
and Adleman (RSA). In ECC, the main and most heavily used operation is the scalar
multiplication kP, where the scalar value k is a private integer and must be secured.
Various methods for fast scalar multiplication are based on the binary/ternary
representation of the scalar. In this chapter, we present various methods to make
fast scalar multiplication on ECC over prime field for lightweight embedded devices
like wireless sensor network (WSN) and Internet of Things (IoT).

Keywords: elliptic curve cryptography, fast scalar multiplication,
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1. Introduction

Nowadays WSNs become a part of the Internet; the integration of WSNs into
the Internet of Things (IoT) must involve new security issues. Symmetric cryptog-
raphy can be the best solution in a constrained platform and embedded devices such
as sensor. For a large number of nodes, the asymmetric key cryptography is the
widely used algorithm because of its scalability. Elliptic curve cryptography (ECC)
is one of the most famous asymmetric cryptographic schemes, which offers the
same level of security with much shorter keys than the other widely used asym-
metric cryptographic algorithm, Rivest, Shamir, and Adleman (RSA) [1]. Scalar
multiplication is denoted by kP (where P is a point on an elliptic curve and k
represents a scalar). The scalar multiplication is the recurrent and most heavily used
operation in ECC because it is used for key generation, encryption/decryption of
data, and signing/verification of digital signatures. The mathematics of an elliptic
curve implies three arithmetic levels: scalar arithmetic, point arithmetic, and field
arithmetic [2]. To make fast computation of scalar multiplication, which is the
major computation involved in ECC, many works are devoted to the point arith-
metic and scalar arithmetic. Point operations mean point addition and doubling,
tripling, or quadrupling (or similar operation). In the framework of this chapter, we
will concisely examine various researchers on the scalar arithmetic level.
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The discussion on this chapter proceeds as follows: In Section 2, we start with the
background on ECC over prime fields. Section 3 gives works on fast scalar multi-
plication on scalar arithmetic, followed by Section 4 which describes works on
parallelization of scalar multiplication on scalar arithmetic. The conclusion and
perspectives are given in the last section.

2. Overview on ECC over finite prime fields

2.1 Preliminaries

In this section, we give a brief overview on ECC over finite prime fields. By
definition, an elliptic curve E over finite field F (of order n) denoted by E(F) can be
described by the Weierstrass Eq. [3]:

E : y2 ¼ x3 þ axþ b (1)

where a and b ∈ Fp and Fp is a prime field. Most important finite fields used to
date to implement cryptosystem have been binary, prime, and extension fields. In
this chapter, we work in the context of prime field Fp, where p > 3 and p = qr, with
r = 1 and q a prime number called the characteristic of Fp.

Before it can be used for cryptography, the necessary condition is the discrimi-
nant of polynomial:

F xð Þ¼x3þaxþb,Δ ¼ 4a3 þ 27b2 6¼ 0 (2)

The set of pairs (x, y) solves (1), where x,y ∈ Fp and the point at infinity
(denoted ∞) forms an abelian group. The scalar multiplication directly depends on
two basic operations over points on an elliptic curve: point doubling (2P) and point
addition (P + Q) where P and Q are two different points on the elliptic curve. If
P = (xp,yp) and Q = (xq,yq), two points ( 6¼∞) on the elliptic curve over Fp denoted
by E(Fp), then point addition P + Q = (xpq,ypq) or point doubling 2P = P + Q =
(xpq,ypq) if P = Q can be calculated as

xpq ¼ λ
2 � xp � xq

ypq ¼ λ xp � xpþq
� �

� yp

(

(3)

λ ¼
yq � yp
xq � xp

if P 6¼ Q

λ ¼
3x2p þ a

2yp
if P ¼ Q

8

>>><

>>>:

(4)

The negative of point P = (xp,yp) is point -P (xp,-yp), where P and -P are two
points on the elliptic curve (Figure 1).

2.2 Encryption/decryption with ECC

The security of ECC relies on the difficulty of solving the elliptic curve discrete
log problem (ECDLP). Let E be an elliptic curve over finite field F and P ∈ E(F),
given a multiple Q of P, the elliptic curve discrete log problem is to find d ∈ F such
that dP = Q. For example, if P = (2, 2) and Q = (0, 6), then 3P = Q, so d=3 is a
solution to the discrete logarithm problem. Three operations are very much
required to formulate a valid cryptosystem in ECC: key generation, encryption, and
decryption.
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2.2.1 Key generation with ECC

Public and private keys are associated with public parameters (p, E, P, n)
where P is the generator point, with order n. n is always equal to the order of the
elliptic curve group E and nP=∞. The private key d is randomly selected in the
interval [1, n � 1], and the corresponding public key is Q=dP. The ECDLP consists
in determining d from public parameters (p, E, P, n).

2.2.2 Encryption with ECC

For encryption, the message m is mapped to a valid point M on the curve and is
encrypted by point addition with kQ where k is a random positive integer chosen by
the sender and Q = dP represents the public key of receiver. The random k makes
sure that even for a same message, the cipher text generated is different each time.
The sender then sends the pair of cipher point C2=M+kQ and C1=kP to the receiver.
The receiver, upon receiving the cipher point pair C1 and C2, computes dC1=d(k)
P=k(dP)= kQ by its own private key d and subtracts the result from the second
point: m=C2 -kQ.

Figure 1.
Point addition in ECC.

Algorithm 1. Keys generation

Input: p, E, P, n // public parameters generated

Output: Public key (Q) and private key d generated

begin

1. Select randomly d in interval [1, n-1]

2. Compute Q=dP

3. Return(Q , d)

end

Algorithm 2. Encryption.

Input: (p, E, P, n), Q and m //public parameters,public key and plaintext message m

Output: (C1,C2) // encrypted text

begin

1. Mapping message m to a point M ∈ E(Fp)

2. Select k ∈[1, n-1]
3. Compute C1=kP

4. Compute C2=M+kQ

5. Return(C1, C2)

end
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2.2.3 Decryption with ECC

The process of mapping a plaintext message m to point M on the curve is
important in ECC. There are several mapping schemes that are used to map a
plaintext message to a point on the elliptic curve [3–7]. A good mapping scheme
must follow several guidelines:

• Mapped points should be on the elliptic curve. If G is the mapping function, G
(m) �! (x,y) ∈ Ep(a,b).

• Mapping should always be invertible so that the receiver after decryption can
reverse map the points to original plain text: m = G�1(x,y).

• Message mapping in ECC also plays a significant role as it decides how
vulnerable the encrypted message is to attacks.

• A good message mapping scheme must reduce the use of unnecessary
bandwidth.

• A good mapping scheme should not take much time to map the message to
points on the map.

There are several mapping schemes using different approaches: maps each char-
acter in the plaintext to a point on the elliptic, maps each sequence of characters in
the plaintext to a point on the elliptic, maps the full plaintext to a point on the
elliptic, etc. For example, as in [8], if we use 192 bit key length, the National
Institute of Standards and Technology (NIST) recommended elliptic curve with the
following parameters:

a=�3.
b =245,515,554,600,894,381,774,029,391,519,745,178,476
9,108,058,161,191,238,065.

Prime p = 6,277,101,735,386,680,763,835,789,423,176,059,013,767,194,773,
182,842,284,081.

Point P ={60,204,628,237,568,865,675,821,348,058,752,611,191,669,876,636,
884,684,818,174,050,332,293,622,031,404,857,552,280,219,410,364,023,488,
927,386,650,641}.

d = 28,186,466,892,849,679,686,038,856,807,396,267,537,577,176,687,
436,853,369.

Q ={2,803,000,786,541,617,331,377,384,897,435,095,499,124,748,881,890,727,
495,642, 4,269,718,021,105,944,287,201,929,298,168,253,040,958,383,009,
157,463,900,739}.

A plaintext message “National Institute of Technology” is taken as input.

Algorithm 3. Decryption.

Input: (p, E, P, n), d, C1, C2 //public parameters, private key encrypted message

Output: m// plaintext message

Begin

1. Compute M =C2 - dC1,

2. Reverse mapping to retrieve m from M

3. Return (m)

end
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1. Encryption process

• Convert the text to ASCII values.

• Partition the ASCII value as group size of 11 ASCII values.

• Its equivalent ASCII values are {78,97,116, 105, 111, 110, 97, 108, 32, 73,
110},{115, 116, 105, 116, 117, 116, 101, 32, 111, 102, 32}, and{84, 101,
99,104,110, 111, 108, 111, 103,121, 44}.

• Each group is converted into big integers using FromDigits function (in
Mathematica) with base 65,536. The values for “National Institute”
corresponding to the two first groups are as follows: {113,999,290,923,
567,984,853,125,612,857,907,836,245,105,850,253,422} and {168,075,
275,215,227,115,988,112,137,860,778,550,742,826, 363,519,008}.

• A sends National Institute to B and computes scalar multiplication kP = C1

= {95,058,406,573,787,743,380,879,387,493 754,072,690,640,209,963,
862,157,133, 5,437,547,807,282,051,947,615, 392,556,992,837,333,921,930,
872,121,480,709,807}.

• A computes point addition M+kQ = C2 ={5,357,129,649,847,875,387,947,
498,550,298,509,562,929,834,704 857,479,081,282,775,001,499,802,
163,650,458,076,998,673,808,830,204,345,207,458,648,302,309},
{6,179,418,438,352,156,963, 426,038,838,668,574,778,107,168,582,
785,759,775,636,5,950,440,184,023,478,909,084,289,343,254,
612,149,604,486,787,772,222,099,923}.

2.Decryption process

• B receives C1 =kP and C2=M+kQ values.

• Using the private key d, B performs scalar multiplication dC1.

• Convert the subtraction operation to addition format: �dC1 = �kQ =
3,141,192 528,502,843,791,482,798,499,504,492,303,369,782,687,173,
663,895,377, � 2,544,834 938,121,667,890,493,126,265,872,103,594,
828,330,153,127,462,384,491}.

• B performs point addition operation with -kQ: M =
{113,999,290,923,567,984,853 125,612,857,907,836,245,105,850, 253,422,
16,807,527,521,522,711,598,811,213,786,077 8,550,742,826,363, 519,008},
{122,768,389,944,749,391,054,808,248,629,988,098,406, 227,392,397,356,
46,769,769,584,977,140,992,804,375,150,062, 379,259,053,557,678,135}.

• Convert each bloc into ASCII values using IntegerDigits function (in
Mathematica) with base 65,536, and retrieve ASCII values.

3. Fast scalar multiplication on scalar arithmetic

On a scalar arithmetic level, the double-and-add (DA) technique is the tradi-
tional binary algorithm, which is used and based on point operation, namely,
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doubling of a point and addition of points. Well-known algorithms, such as
nonadjacent form (NAF), window NAF, and sliding window [3, 9, 10], can reduce
effectively the number of point operations. Some other algorithms, such as double-
base chains, have been developed to compute faster scalar multiplication by using
binary and ternary representation [11–15]. Algorithms, based on the aforemen-
tioned algorithms, optimize faster scalar multiplication [16–18]. Optimization is
done by some approaches, which also use the binary representation of the scalar k
[19–21]. For other solutions, optimization is based on selecting a set of elliptic
curves for cryptography (Weierstrass curve, twisted Edwards curve) on which
scalar multiplication is faster than the recent implementation record on the
corresponding NIST curve.

3.1 Double-and-add algorithm

The double-and-add technique is the traditional binary algorithm, which is
based on point operations, namely, doubling of a point and addition of points. The
double-and-add algorithm is an additive representation of the algorithms used for
exponentiation. As shown on Algorithm 4, the scalar is represented in binary on

l bits: ∑l�1
i¼0ki2

i, where ki ∈ {0, 1}. The binary method i=0 scans the bits of scalar
k½ �P ¼ Pþ Pþ Pþ……þ Pð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k times

either from left to right or right to left. A doubling

operation is done for each scanned bit ki of k, followed by a point addition if the
scanned bit is non-zero (ki 6¼ 0).

For a given scalar k, the number of point doubling operation is (l-1), and those
of point addition operation is equal to the number of non-zero bits (denoted by
hamming weight h) -1. The cost of multiplication depends on the length of the
binary representation of k and the number of Harming weight (the number of 1’s)
of scalar in this representation. The average Harming weight on all scalar k of length
l bits is approximately l/2. Thus, in an average, binary Algorithm 4 requires (l-1)
doublings and (l-1)/2 additions.

For example, k = 379 = (101111011)2, l=9, and the number of non-zero bits h is
equal to 7. So computation 379P requires 8 doublings and 5 additions.

The double-and-add method can be generalized by using fixed or variable size
windows. The scalar k is divided into m blocks of w bit(s) (w an integer of variable
size), for each block corresponds to a number Vi.

As in DA where bits are scanned one by one, and if the scanned bit is equal to 0,
Q=21Q (point doubling) is performed; if not (scanned bit equal to 1 > 0), Q=21Q
(point doubling) and Q=Q + 1P (point addition) are performed. In window

Algorithm 4. Double-and-add LSB/MSB.

Input: k=(kl-1,……….., k1,k0)2, P ∈ E (Fp)

Output: Q=[k]P

Begin

Q  ∞

for i 0 to l� 1 do

if ki ¼ 1 then

Q  Q þ Pj

end

P 2P

�
�
�
�
�
�
�
�
�
�
�
�

end

return Qð Þ

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

// begin scanning bits from right-to-left.

// an addition operation is performed

// a doubling operation is performed
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algorithm where blocks are scanned one by one, and if the value of the block is
equal to 0, we perform Q=2wQ; if not (values of blocks w bits performed =Vi), we
performed Q=2wQ and Q=Q+ViP as shown in Algorithm 5.

For example, k = 379 = (101111011)2 partitioned into blocks1011
|ffl{zffl}

w¼4

110
|{z}

w¼3

11
|{z}

w¼2

, so,

Vi is, respectively, equal to 3, 6, and 11 corresponding, respectively, to precomputed
points 3P, 6P, and 11P. Thus, for this example, the scalar multiplication from
block (m-1) to block 0 can be done as follows: [11]P!23. [11]P(3 repeated
doublings) + [6]P(addition)! 22, and [94]P(2 repeated doublings) + [3]P
(addition)! [379]P. Thus, five point doubling operations and two point addition
operations are calculated.

However, this algorithm involves precomputed points whose number depends on
the size of the blocks. If the blocks have a fixed-size w bits, the number of
precomputed points is (2w �2) where �2 represents the blocks for Vi= 0 or 1. If the
blocks have variable size, as, for example, with three blocks of w1 bits, w2 bits, and
w3 bits, the number of precomputed points p is (2w�2). It should be noted that using
the windowmethod reduces the computation time and increases the memory storage
and calculation time of precomputed points. If the size of the blocks increases, the
number of precomputed points increases exponentially, and the number of
performed operations decreases. Thus, the selection of the window size implies the
computation time. A compromise is needed between the size of the blocks and the
computation time related to precomputed points. According to NIST recommenda-
tions, the best window length is w=4. To reduce the number of precomputed points,
the sliding window method of variable size with maximum digits equal to w can be
used. For this method, the values Vi of blocks are odd; consecutive zeroes are taken
into account. Therefore, a window starts and ends with a non-zero number.

For example, scalar k = 379 = (101111011)2 is partitioned into blocks
1

|{z}

w¼4

1111
|ffl{zffl}

w¼3

11
|{z}

w¼2

, so, Vi values are, respectively, 1, 15, and 3 corresponding, respec-

tively, to precomputed points 1P, 15P, and 3P. The scalar multiplication from block
(m-1) to block 0 can be performed as follows: P! [2]P(1 point doubling)! 24[62]
P(4 repeated point doublings) + [15]P(point additions)! 2.[47]P(1 point doubling)
! 22[94]P(2 repeated point doublings)+ [3]P(point addition)! [379]P. The result
is eight point doublings and two additions.

Optimization can be done by finding a representation with a minimum zero bits
in order to reduce the number of addition operations: this is the objective of the
solutions described in the next section.

Algorithm 5. Windows algorithm.

Input: k ¼ kl�1kl�2kl�3kl�4
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

block m�1ð Þ

; ::…; k5k4k3
|fflfflffl{zfflfflffl}

block 1

; k2k1k0
|fflfflffl{zfflfflffl}

block 0

0

B
@

1

C
A2, P ∈ E (Fp)

Output: Q=[k]P

Begin

Q  ∞

for i m� 1 to l� 1 do

Q ¼ 2wQ

if V i .0 then

Q  Q þ ViPj

end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

return Qð Þ

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

// begin scanning block by block.

// compute repeated point doublings w times

// compute addition with precomputed point ViP
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3.2 Nonadjacent form

Like addition, point subtraction on an elliptic curve is also effective especially
when it comes to computing easily the opposite of a point on which we only change
a coordinate: P (x, y) to -P(x,-y). We can use a signed representation of bits of the
integer k. One of the particularly interesting representations is the nonadjacent

form which uses {�1, 0, 1}: ∑l�1
i¼0ki2

i, where ki ∈ {�1, 0, 1}. To compute scalar
multiplication [k]P by NAF, digits on NAF representation of scalar k are scanned
from most significant digit to last significant digit. For each digit, a point doubling
operation is performed, and point addition is computed when the digit is equal to 1
or a point subtraction when the digit is equal to �1. The advantage of this repre-
sentation is that it possesses the following properties:

1. k has a unique NAF denoted NAF (k).

2.NAF(k) has the fewest non-zero digits of any signed digit representation of k.

3. The length of NAF(k) is at most one more than the length of binary k.

For example, for k = 2552 = (11111111)2 where the density of non-zero digits is
maximum, the computation of 255P implies seven point additions. But if we trans-
form it into 256P -P which is equal to (10000000–1)P, only one addition is needed.

Thus, the NAF kð Þ ¼ ð100000001Þ2where 1 representes �1. The NAF(k) can be
generated by dividing successively k by 2. If k is odd, the rest r ∈ {�1, 1} is chosen
so that the quotient (k-r)/2 is even. Thus, the next digit of NAF representation will
be equal to 0.

Based on DA algorithm from left to right, Algorithm 6 computes scalar multi-
plication by using NAF(k).

Thus, the average density of non-zero digits (�1 or 1) for all NAF (k) with
length (l-1) digits is approximately (l-1)/3. The average computation of Algorithm 7
is (l-1) point doublings and (l-1)/3 point additions. However, it requires a scalar
conversion time from k to NAF(k) (see Algorithm 6). The NAF method can be

generally used for a set of digits C2w ¼ �2w�1;…::2w�1
� �� �

to represent the scalar
k: That’s equivalent to split it into fixed� size windows w: For example,

Algorithm 6. Computing NAF for scalar k.

Input: k ¼ the scalar k integerð Þ

Output: NAF(k),

Begin

i 0

while k≥ 1ð Þdo

if ki oddð Þthen

ki  2� kmod4ð Þ;

k ¼ ki ;

�
�
�
�
�
�

end

else

ki  0j

end

ki¼
k

2
;

i iþ 1;

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

return ki�1 ; ki;…………:k1 ; k0ð Þ

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end
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C23 ¼ �4;�3;�2;�1;0; 1; 2; 3;4f g:We can define NAFw kð Þ as follows :ð

NAF kð Þw ¼ ∑l
i¼0ki2

iP,with kij j, 2w�1.
For example, if the scalar k = 379 = (101111011)2, so NAF2(k), NAF3(k), and

NAF4(k) can be computed (with �1= 1):

1.NAF2(k)=(1 0 1 0 0 0 01 0 1)

2.NAF3(k)=(3 0 0 0 01 0 0 3)

3.NAF4(k) =(3 0 0 0 0 0 05)

Algorithm 8 presents DA method using NAF of scalar k on fixed-size windows.

Algorithm 7. NAF method.

Input: NAF(k), P ∈ E (Fp)

Output: Q= [k]P

Begin

Q  ∞

for i l� 1 to 0ð Þdo

Q  2Q

if ki ¼ 1ð Þthen

Q  Q þ Pj

end

if ki ¼ �1ð Þ then

Q  Q � Pj

end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

return Qð Þ

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

//scan from most significant digit to less significant

// compute point doubling

// compute point addition

//compute point substraction

Algorithm 8. NAF method with fixed size windows.

Input: NAF(k), P ∈ E (Fp), precomputed points [j]P

Output: Q= [k]P

Begin

Q  ∞

for i l� 1 to 0ð Þdo

Q  2Q

if ki 6¼ 0ð Þ then

if ki .0ð Þ then

Q  Q þ ki½ �P;j

end

else

Q  Q � ki½ �Pj ;

end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

return Qð Þ

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

for j ={1, 3,..., (2w�1-1)}

//begin scanning from most significant digit to last

significant digit.

// compute point doubling

// compute point addition

//compute point substraction
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The average density of non-zero digits for all NAF (k) with length l digits is
approximately l/(w+1). Thus, Algorithm 8 performs on average (l-1) point dou-
blings and l/(1+w) point additions. However, this method generates precomputed

points [j]P for j=1, 3, . . ., 2w�1 � 1: Despite the cost of precomputed points

1 point doublingþ 2w�2
��

-1) point additions), the usage of NAFw(k) with win-
dows remains more interesting than the one without window.

A last generalization of this method is to useNAFw(k)with variable window size
(or sliding) lengths with a maximum number of digits. These windows begin and

end with a non-zero. If we take the example of NAF2(k) =(1 0 1 0 0 0 0 1 0 1) with
sliding windows having a maximum length of three digits, these windows begin and
end with non-zero digits. We thus obtain

NAF2 kð Þ ¼ 1 0 1 0 0 0 0 1 0 1

The precomputed points are [3]P and [5]P; the scalar multiplication is as follows:
[3]P! [6]P(point doublings)! [12]P(point doublings)! [24]P(point doublings)
! [48]P(point doublings)! [96]P(point doublings)! [192]P(point doublings)!
[384]P(point doublings)! [379]P(point subtraction of -[5]P). Thus, we perform 8
point operations, against 12 in the case where the windows are fixed.

3.3 Mutual opposite form (MOF) algorithm

More recent mechanisms like the mutual opposite form (MOF) [22] and
the complementary recoding algorithm [23] used signed representation digits
{�1, 0, 1}.

In MOF, the representation of the scalar k is obtained by subtracting each ki�1
bit from that of ki. The most significant bit is 1 and the least significant digit is �1.
Its output is comparable to that of NAF.

For example, if the scalar k = 379 = (101111011)2, then MOF (k) = 1 1 1 0 0 0 1 1

0 1 can be calculated. The conversion is simpler than that of NAF because it only
requires subtraction operations. In addition MOF can scan bits or digits from left to
right or vice versa, which is more flexible.

3.4 One’s complementary recoding algorithm (CR1)

In one’s complementary recoding method, the representation of the scalar k is

obtained through its complement k : ∑l�1
i¼0ki2

i ¼ 2l � k� 1: The k
complement is obtained by inverting each bit of the k scalar: For example,

if the scalar k ¼ 379 ¼ 101111011ð Þ2 , then it can be computed : k ¼ 29� k� 1 ¼

1000000000–010000100� 1ð Þ2 ¼ 10100001
�

00–1)2. Thus, we can see that the
density of the non-zero bits is reduced from 7 to 4. However, if the number of 1 in
the original k scalar is greater than l/2, the method is not more interesting because
the goal is to have the least 1 in the final representation.

3.5 Double-base number system

In the methods discussed above, the scalar is represented in a single base; the
double-base numbering system (DBNS) offers a representation in two bases [11].

The scalar k is represented as a sum of combined powers of 2 and 3: k=∑l
i¼1ki2

ai3bi ,
where ki ∈ {�1, 1} and ai, bi ≥ 0. The direct usage of this system can induce a high
computational cost: ∑bitriples,∑aidoublings. Significant improvement can reduce
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costs by reusing all intermediate calculations. We keep the initial representation of
k with the additional constraint that the exponents form two decreasing sequences:
amax ≥ a1 ≥ a2 ≥ ........ athe and bmax ≥ b1 ≥ b2 ≥ .....athe. This formulation makes it
possible to calculate only amax doublings, bmax triplements, and (lt - 1) additions.
For example, 752= 23�34 + 22�33–22.

The scalar multiplication is as follows: 22 (33 (2 � 3P + P) -P). Thus, the cost of
scalar multiplication is 4 triplements + 3 doublings + 2 additions. This approach has
been generalized using a slightly larger number space requiring pre-calculated
points [24]. In this case the values of ki are prime numbers other than 3: {�1, �5,
�7, �11}.

3.6 Comparison

If memory storage is available, the precomputed points can be used to decrease
the computation time. The window method or block can be used differently on
signed representations such as NAF, MOF, complement coding, or unsigned repre-
sentations such as double-and-add. If we are interested in sliding window repre-
sentation, the number of precomputed points varies according to the methods. Take
the example of variable windows size (sliding) having a maximum number of five
digits.

For the double-and-add method, we will have all the odd combinations of the
maximum of 5 bits, that is, which begin and end with a 1. We will thus have at most
15 precomputed points: [3]P, [5]P, [7]P, [9]P, [11]P, [13]P, [15]P, [17]P, [19]P, [21]
P, [23]P, [25]P, [27]P, [29]P, and [31]P.

For wNAF method, the blocks are processed through variable windows size (or
sliding) having a maximum number of five digits. These windows begin and end
with a non-zero digit. As a result, the value Vi of each block of the scalar k is odd
and is less than 2w. There are no two consecutive non-zero digits, so the number of
zeros is at least equal to the number of zero digits in the �1 block. The maximum
number of precomputed points required is (2w�2) - 1. If the maximum length of the
window is 5 bits, the largest corresponding precomputed point is 10101

|fflffl{zfflffl}

w¼5

= 21P, and

possible combinations for precomputed points are the following:

Note that the negative points are the symmetrical positive points, they are
neither stored nor computed, and they are obtained almost free. For windows with
a maximum size of 5 bits, the number of precomputed points is 10.

MOF uses a signed representation just like NAF, but there can be two
consecutive non-zero digits. For windows with a maximum of 5 bit length, the
derivation of the computed points is done by subtracting each bit ki�1 from the
block with that of ki.

w=3bits w=4bits w=5bits w=5bits

1 0 1=5P 1 0 0 1= 9P 1 0 1 0 1= 21P 1 0 1 0 1=-21P

1 0 1=3P 1 0 01 = 7P 1 0 1 0 1= 19P 1 0 1 0 1=-19P

1 0 1=-3P 1 0 0 1= -7P 1 0 0 0 1= 17P 1 0 0 0 1=-17P

1 0 1=-5P 1 0 0 1= -9P 1 0 0 01 = 15P 1 0 0 0 1=-16P

1 0 1 0 1= 13P 1 0 1 0 1=-13P

1 0 1 0 1= 11P 1 0 1 0 1=-13P
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For example, for some values (16–31) of 5-bit blocks, we have:

The remaining combinations give the same negative values. Thus, the number of
precomputed points is 7: [3]P, [5]P, [7]P, [9]P, [11]P, [13]P, and [15]P.

Complement recoding uses the same representation of MOF, but for the deriva-
tion of precomputed points, it takes all combinations of up to 5 bits, beginning and
ending with a non-zero number, i.e., (2w�1 - 1) = 15 precomputed points: [3]P, [5]P,
[7]P, [9]P, [11]P, [13]P, [15]P, [17]P, [19]P, [21]P, [23]P, [25]P, [27]P, [29]P, and
[31]P. Table 1 presents a comparison between different methods.

3.7 Scalar reduction method

We have developed a scalar reduction (SR) algorithm; its main advantage is that
it can be easily applied to almost all existing fast scalar multiplication methods
described in previous sections. This scalar reduction scheme is an improvement
based on the negative of a point. Through this, it makes a specific reduction of the
scalar in a selected interval. Using negation is a well-known trick in cryptanalysis as
well as in cryptography for computation of scalar multiplication with addition-
subtraction chains [25, 26]. This scheme replaces point kP by an equivalent repre-
sentation of another point tP in the scalar multiplication operation where k and t are
scalars and k > t. This technique is applied in the interval [⌊n/2⌋+1, n-1], where ⌊n/2⌋
is the integer part function of n/2. As the negative of a point is obtained almost free,
we have used it to make fast computation. Given point P=(xp, yp) in affine coordi-
nates, the negative of point kP=(xkp, ykp) can be computed as kP=(xkp, ykp), and
then change the sign on the y-coordinate (ykp). Thus, by kP the scalar reduction
technique gets equivalent point tP through Eq. (5).

10000:

:10000

11000! P

10001:

:10001

110011 ! 9P

10010:

:10010

110110! 9P

10011:

:10011

110101 ! 5P

10100:

:10100

111100! 5P

10101:

:10101

111111 ! 11P

10110:

:10110

111010! 11P

10111:

:10111

111001 ! 3P

11000:

:11000

101000! 3P

11001:

:11001

101110! 13P

11010:

:11010

101011 ! 13P

11011:

:11011

101101 ! 7P

11100:

:11100

100100! 7P

11101:

:11101

100111 ! 15P

11110:

:11110

100010! 15P

11111:

:11111

100001 ! P

Methods Cost Precomputed points W = 5 Directions

DA (l-1)D+ l�1ð Þ
2 A 0 …. ⇆

NAF (l-1)D+ l�1ð Þ
3 A 0 …. !

MOF (l-1)D+ l�1ð Þ
2 A 0 …. ⇆

RC1 <(l-1)D+ l�1ð Þ
3 A 0 …. ⇆

wNAF (l-1)D+ l
wþ1A < 2w�1-1 10 !

wMOF (l-1)D+ l
wþ1A <= 2w�1-1 7 ⇆

wRC1 <(l-1)D+ l
wþ1A 2w�1 -1 15 ⇆

Table 1.
Cost for computation and memory storage.
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1: If k∈ � nb c,n� 1½, kP ¼ tP where t ¼ k� nð Þ

2: If k∈ �0
n

2

j k

, , kP ¼ tP where t ¼ k½

8

><

>:

(5)

For example, p =23 is a prime number, just to better explain this technique, but
in reality p is much bigger than this. For an elliptic E over F23 defined by E(F23),
y2=x3+x+1, then # E(F23)=28, E(F23) is a cyclic group, and P(0, 1) is a generator
point. SR makes an equivalent representation on the set of points in [⌊n/2⌋+1, n-1],
so that computing points 16P, 22P, and 27P can be, respectively, replaced by -12P,
-7P, and -P. In this case, the computation of 27P is replaced by the calculation of
-P and is almost free. For WSN or IoT embedded devices, replacing the calculation
of kP by tP using Eq. (5.1) in [⌊n⌋+1, n-1] can significantly accelerate scalar multi-
plication. From Eq. (6), all scalars can be scanned: In the interval [⌊n⌋+1, n-1], for
this example we have the following equivalence representations.

• [15]P = [13]P + 2([1]P)

• [16]P = [12]P + 2([2]P)

• [17]P = [11]P + 2([3]P)

• .........= .........+……….

• .........= .........+……….

• [26]P = [2]P + 2([12]P)

• [27]P = [1]P + 2([13]P)

It can be inferred that ∑n�1
k¼ n=2b cþ1kP ¼ ∑ n=2b c�1

k¼1 kPþ 2∑ n=2b c�1
1 kP. Thus

∑
n�1

k¼1

kP ¼ 2 ∑
n=2b c�1

k¼1

kPþ
n

2

j k

Pþ ∑
n=2b c�1

1¼1
kP (6)

In SR technique, [15]P, [16]P, ........., [26]P, [27]P] can be replaced, respectively,
by [�13]P, [�12]P,........., [�2]P, [�1]P in interval [⌊n⌋+1, n-1]. The

expression ∑n�1
k¼ n=2b cþ1kP can be replaced by

∑
n�1

k¼1

kP ¼ 2 ∑
n=2b c�1

k¼1

kPþ ∑
n=2b c�1

k¼1

kj jPþ
n

2

j k

P (7)

The complexity of scalar multiplication can be determined by the bit length of k
which is equal to ⌊log2(k)⌋+1, or log2(k) if k=2

x, where x is an integer. In binary
representation, log2(k) can be replaced in scalar reduction technique by

log 2 k� 2 k�
n

2

� 	� 	

¼ log 2kþ log 2 1þ
n� 2k

k


 �

(8)

Thus, the gain α in bit length is α ¼ log 2 1þ
n� 2k

k


 ��
�
�
�

�
�
�
�
¼ log 2

tj j

k


 ��
�
�
�

�
�
�
�
: (9)
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SR technique is tested in affine coordinates. The scalars are in binary and NAF
form combined with the scalar reduction scheme. The gain rate depends on the
value of k. For comparison, if (αrs/da), (αrs/naf), and (αrs�naf/da) define, respectively,
the gain rate of the scalar reduction (SR) method compared to double-and-add
(DA), NAF and SR combined with NAF are compared to DA. The results are given
in Table 2.

4. Parallelization of scalar multiplication on scalar arithmetic

Parallel computing is another choice for accelerating computation and balancing
workload. For distributed system, a task can be divided into smaller ones which are
then carried out simultaneously by different processors. The parallel computing for
accelerating computation of scalar multiplication is a very hot research topic in
cryptography. It can be also achieved through one or more arithmetic levels: on the
formulas of operations such as addition and doubling, between the operations
themselves, or on the scalar by partitioning it. In most current works, various
solutions have been proposed in literature, but in this chapter we present works
based on scalar arithmetic.

4.1 Efficient elliptic curve exponentiation

The efficient elliptic curve exponentiation based on point precomputation is
proposed in [24]. To calculate Q = kP where Q and P are 2 points represented in
Jacobian coordinates and k is a positive integer of 160 bits, a precomputed table
which consists of 62 points is prepared.

A s½ � ¼ ∑4
j¼0as, j

232jG3 and B s½ � ¼ ∑4
j¼0as, j

216þ32jG3 where 1≤ s≤ 31 and

as,0…,as,0 is a binary representation of s ¼ ∑4
j¼0as, j2

j. Then calculation of kP is

done by Algorithm 9.
Since this method is based on precomputation, a precomputed table is prepared,

and the exponentiation loop can be performed separately by different processors.

4.2 Parallel scalar multiplication on two processors

In [27], two processors and a circular buffer are used to perform parallel scalar
multiplication. A buffer acts as a communication channel between the two

NAF SR DA Gain n
6

n
3

n
2

2n
3

5n
6

n-1

√ 6579 6572 7604 6555 6931 7471

√ 6282 6326 5317 6239 6698 5114

√ 6578 6573 7600 6416 6600 27

√ √ 6279 6325 5320 6100 6556 27

√ √ α (sr/da) 2.12% 4.77% 99.63%

√ √ α (sr/naf) 1.46% 99.47%

√ √ √ α (sr-naf/da) 6.94% 5.41% 99.63%

SR, scalar reduction.

Table 2.
Running times (ms) using affine coordinates.
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processors to reduce the average time of the scalar multiplication. As in the
producer-consumer problem, the first processor initially reads P and then keeps
scanning ki and computing point doubling. It writes 2iP into the buffer whenever a
non-zero ki is detected. The second processor reads 2iP from the buffer and per-
forms additions. The computation is terminated when there is no more 2iP in the
buffer.

4.3 Parallelization by partitioning the scalar

For other schemes, this technique of parallelization consists in partitioning the
scalar k (represented on l bits) into m fixed-size blocks on SIMD architectures [28].
This partitioning generates precomputed points that need to be calculated and
stored prior to starting parallel calculations.

Recent work [29], inspired by [30], uses this technique in m blocks of length v
bits in wireless sensor networks. The scalar is represented on l bits and is divided
into m blocks Bi of length vb =l/m according to m sensors chosen to participate in
the computation.

kP ¼ B02
0vPþ B12

1vPþ B22
2vPþ………:þ Bm�12

m�1ð ÞvP (10)

where Bi=∑
ivþv�1
iv li2

jP with lj the bit on position j on the binary sequence of
length l.

This partitioning generates precomputed points Pi = 2ibP. For example, consider
a scalar k of 160 bits and point P; we want to compute kP on four sensors. The scalar
k is broken down into four blocks of 40 bits:

kP ¼ B0:0B0:1……B0:39ð Þ2:2
0P

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

blockB0

þ B1:40B1:41……B1:79ð Þ2:2
40P

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

blockB1

þ

B2:80B2:81……B2:119ð Þ22
80P

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

blockB2

þ B3:120B3:121……B3:159ð Þ22
159P

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

blockB3

Precomputed points are 240P, 280P, and 2120P. Note that all parallelism tech-
niques based on scalar partitioning generate pre-calculated points, which must first

Algorithm 9. Elliptic curve exponentiation based on precomputation.

Input: Data k ¼ ∑l�1
i¼0ki2

iP

Output: kP,

Begin

for 0≤ j≤ 15 do

ui¼∑
4
i¼0k32iþjþ2

i

vi¼∑
4
i¼0k32iþ16þjþ2

i

A 0½ � ¼ ∞

B 0½ � ¼ ∞

T ¼ ∞

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

for i from 15 to 0 do
T 2T

T 2Tþ A ui½ � þ B vi½ �

�
�
�
�
�

end

Return T

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end
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be calculated and stored, thus leading to additional memory and energy
consumption.

In [31], a parallel computation of kP between N sensor nodes is presented by
partitioning the scalar k to m blocks of length v = k/N bits, and each block is
computed by one sensor node. A distributed algorithm (double-and-add, NAF, etc.)
composed of m blocks is also proposed, and each block mi of the distributed
algorithm operates on one block mi of the scalar. Algorithms 10 and 11 show,
respectively, block i for double-and-add and NAF algorithms.

So as not to compromise security when partitioning scalar, the reliability and
efficiency are taken into account. They demonstrate that after partitioning the
scalar k to m blocks of length v, the node which leads calculation keeps one of the m
blocks into its local memory and distributes (m-1)blocks to others nodes. In this
case, a possibility is to send the (m-1) blocks securely by symmetric encryption. If
blocks are sent randomly without encryption, the intruder, after gaining (m-1)
blocks of the m blocks, must perform (m!2v)P to find the private scalar k. More-
over, if the intruder gains the (m-1) results sent by other nodes, security is not
compromised; it has to deal against the ECDLP. So, it is as difficult to find k from kP

Algorithm 10. Double-And-Add for node i

Input: d=(dv-1,……….., d1,d0)2, P ∈ E (Fp)

Output: Q=[d]P

Begin

Q  ∞

forj 0 to v� 1 do

ifdj ¼ 1 then

Q  Q þ 2viP
�
�

end

P 2P

�
�
�
�
�
�
�
�
�
�
�
�

end

return Qð Þ

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

// begin scanning bits from right-to-left.

//2viP is the pre-computed point

Algorithm 11. NAF method for i.

Input: NAF(d)= (dv-1,……….., d1,d0), P ∈ E (Fp)

Output: Q= [d]P

Begin

Q  ∞

for j 0 to v� 1 do

P 2Q

if dj ¼ 1
� �

then

Q  Q þ 2viP
�
�

end

if dj ¼ �1
� �

then

Q  Q � 2viP
�
�

end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

return Qð Þ

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

// begin scan from right to left step by step

// compute point doubling

// 2viP is the pre-computed point
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as k from the (m-1) points derived from calculation of scalar multiplication on
(m-1) blocks. For each block diP, it needs to find di. And then after, it also needs to
perform (m!2v)P before getting scalar k.

4.4 Performance measurement

The predominance of scalar multiplication in all operations makes the perfor-
mance of the cryptosystem relatively based on this scalar operation. Theoretically,
the efficiency of the formula using Jacobian coordinates can be determined by the
number of multiplication (M) and of square (S) operations which compose it.
Operations like addition, subtraction denoted by A, and multiplication with a con-
stant are negligible when faced with square and multiplication of two variables. It is
widely accepted that the cost of square is equivalent to 0.6–1 of the cost of multi-
plication [32–34]. Hence, for a scalar multiplication with a scalar of length of n bits,
we can determine the ratio (r=S/M) from which each approach justifies better
performance.

5. Conclusion

To perform fast computation of scalar multiplication, which is the major com-
putation involved in ECC, much research has been devoted to the point arithmetic
level and the scalar arithmetic. In this chapter, we have presented only works on
scalar arithmetic level. All the methods studied are almost based on scanning bits or
digits of the scalar with a scan step. In the comparative studies, we found that
calculations can be faster if the number of bits scanned is higher. However, scan-
ning a number of bits greater than 1 results in precomputed points that need to be
computed or stored before. In future works, we can explore mechanisms for accel-
erating calculation of precomputed points in order to avoid storing them. Like
computing point doubling formula, we can consider effective point operation for-
mulas which should allow to increase the scan step.
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