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Abstract

Interactions between lipoproteins and infectious microorganisms are diverse and 
often multifaceted. There is a growing body of evidence which suggests that circu-
lating plasma lipoproteins play an important role in warding off various infections. 
They are increasingly recognized as vital components of the host immune system. 
The purpose of this chapter is to provide the reader with an overview of this emerging 
domain. We review the anti-infective role of different lipoprotein particles and their 
components and further highlight the known molecular mechanisms involved therein. 
Instances where lipoproteins facilitate infections instead of protecting against them 
are also summarized. Finally, broad implications for the future in this active line of 
research are discussed.
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1. Introduction

Circulating lipoproteins are macromolecular complexes of lipids and specific proteins (known 
as apolipoproteins). They facilitate the transport and distribution of various lipids (such as 
cholesterol, cholesteryl esters, triglycerides, and phospholipids) via blood throughout the 

body. Owing to their hydrophobicity, they are otherwise sparingly soluble in the predomi-

nantly aqueous plasma [1]. Scientific work on plasma lipoproteins has historically focused 
on their role in atherosclerotic changes and cardiovascular health. Much of the impetus in 

this line of enquiry was provided by the Framingham Heart Study (FHS) that was started in 
1948 by the National Heart Institute (NHI). The FHS and a number of large clinico-epidemio-

logical studies thereafter have been instrumental in advancing our knowledge about the link 

between circulating lipoproteins and cardiovascular health [1–5]. There is a growing body 
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of evidence suggesting that plasma lipoproteins are crucial players in a host of other condi-

tions as well, viz. neurodegeneration [6], psychiatric ailments [7], and various cancers [8, 9], 

to name a few.

Although the earliest reports about the relationship of lipids and lipoproteins with various 

infections date back to 1940s and 1950s [10–12], yet the interest on lipoproteins for a long 

time was mostly revolved around noncommunicable disorders. However, in a marked depar-

ture from this conventional outlook, the importance of circulating lipoproteins in relation 

to infectious diseases is now widely recognized. Perhaps the best example in this regard is 

the study of the role of high-density lipoproteins (HDL) particles in conferring immunity 
against Trypanosoma brucei brucei in humans [13]. This change in the outlook is probably due 

to the fact that derangements (quantitative as well as qualitative) in plasma lipoproteins that 
were earlier documented in a variety of infections, viz. bacterial, viral, and parasitic [14–16] 

have now been corroborated by experimental evidence as well [17–19], such that there is an 

improved understanding of the underlying mechanisms at a molecular level.

Lipoproteins represent structurally and functionally a very diverse species of complex particles 
with dynamic interactions that travel throughout the body through circulation. Thus, they are 

increasingly appreciated as components of the innate immune system [15, 17, 20]. Recent evi-

dence suggests that lipoproteins are also involved in adaptive immune responses [21]. On the 

basis of difference in hydrated densities (as determined by their rate in sedimentation on 
ultracentrifugation in salt solutions), human plasma proteins have been traditionally divided 

into four major groups—chylomicrons, very low-density lipoproteins (VLDL), low-density 
lipoproteins (LDL), and high-density lipoproteins (HDL) [1, 4, 5]. Apart from these four major 

groups, sometimes, other lipoprotein classes are also described, such as intermediate-density 

lipoproteins (IDL)—produced by catabolism of VLDL, and lipoprotein(a) [Lp(a)]—which is 
structurally similar to LDL and has a density range that overlaps that of HDL [1, 4, 5]. Many 

of these lipoprotein particles or their components (e.g., lipids or apolipoproteins) have been 
found to exert anti-infective role.

This chapter aims to review this emerging domain where plasma lipoproteins are now widely 

recognized as important players of the host immune system. We have summarized the dif-

ferent types of lipoprotein derangements during various infections, the anti-infective role of 

lipoproteins in conferring protection against pathogens, and the known molecular mecha-

nisms involved therein.

2. Lipoproteins in relation to various infections

Lipoprotein derangements and infections appear to have a bidirectional relationship. This 
means that alterations in circulatory lipoproteins can modulate or predispose to infections, 

and conversely, alterations in circulating lipoproteins can be an outcome of the infections 

themselves. In other words, lipoprotein derangements can both be a contributory cause and 

a resultant effect of infections. The focus of this chapter is predominantly on the former rela-

tionship which underscores the role of lipoproteins in modulating susceptibility to infections. 

Advances in Lipoprotein Research74



The latter relationship is linked to the active phase of the infection and has been recorded 
in relation to several kinds of infectious agents [10–12, 22–24]. Such lipoprotein derange-

ments are a part of the acute-phase responses (APR) mounted by the body and are beyond 
the scope of this chapter. Similarly, lipoprotein derangements can occur as a result of drug 

therapy against infections (e.g., dyslipidemia in HIV-AIDS patients due to anti-retroviral 
therapy) [25–28] and are outside the purview of this chapter too.

Generally speaking, most of the experimental and clinical evidences suggest that high lev-

els of lipoproteins and lipids are protective against respiratory and gastrointestinal infec-

tions [29–31]. Case studies in homogenous populations residing in high-infection environments 

affirm this view. For instance, the Tsimane people of Bolivian Amazon have very high bur-

den of infection, and this is often attributed to the low levels of lipids and  lipoproteins [32]. 

Likewise, in the Shipibo people, another indigenous group in the Amazon, the density of 
parasitic infection correlates inversely to the HDL levels [33]. Further, reduced levels of apoli-

poproteins in hospital-based studies have been reported to be associated with increased sus-

ceptibility to nosocomial infections following severe trauma [34]. However, generalizations 

are difficult and exceptions to these trends have also been reported [28], and the mechanism 

involved is not clear.

In the account that follows, we give an overview of different infections where lipoproteins 
provide protection.

2.1. Viral infections

Lipoproteins, particularly HDL particles, have been found to account for part of the broad 
nonspecific antiviral activity of human serum [35, 36]. Such antiviral activity of lipoproteins 

has been detected across a wide spectrum of enveloped as well as nonenveloped DNA and 
RNA viruses. Examples include Rabies virus, Rubella virus, Japanese encephalitis virus (JEV), 
Poliovirus, Epstein-Barr virus (EBV), Herpes simplex virus (HSV), Vaccinia virus, New Castle 
disease virus, and Vesicular stomatitis virus (VSV), to name a few [35, 37–41]. This is in tune 

with the protection conferred by other components of the innate immune system, which are 

often nonspecific and broad-based. However, some lipoproteins (e.g., LDL and VLDL) have 
been found to be particularly active against certain viruses (e.g., JEV, Rubella, Rabies, and 
VSV) [35, 38, 40].

2.2. Bacterial infections

Lipoproteins are protective against several toxins produced by pathogenic bacteria. Lipoproteins 
can neutralize lipopolysaccharides (LPS) from Gram-negative bacteria [30, 36, 42]. LPS are impli-
cated in complications of Gram-negative bacteraemia such as endotoxic shock and disseminated 

intravascular coagulation. Several classes of lipoproteins, such as LDL, VLDL, HDL, Lp(a), and 
chylomicrons, can potentially help in neutralizing LPS [30, 36, 43–45]. In fact, infusion of recon-

stituted HDL particles (rHDL) has been shown to protect against Gram-negative bacteraemia 
and endotoxic shock and to further blunt the LPS-induced unregulated activation of the coagula-

tion cascade [46–48].
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Lipoproteins are protective against Gram-positive organisms too. Lipoproteins have been 
shown to inactivate lipotechoic acid (LTA) and alpha-toxin from Gram-positive bacteria such 
as Staphylococcus aureus [30, 36, 49].

In addition to these toxin-neutralizing effects, lipoproteins can directly interact with cell sur-

face virulence factors in bacteria and help in limiting their pathogenicity. Such interactions 

have been noted in infections by Yersinia pestis [50] and many Group A Streptococcus (GAS) 
strains [30, 51]. Besides, experiments in knockout animals have revealed that apoE-/- mice are 
susceptible to infection by Listeria monocytogenes and Mycobacterium tuberculosis [52, 53].

2.3. Parasitic infections

Humans are immune to infection by the parasite Trypanosoma brucei brucei. This protection 

is attributed to a subset of HDL particles called trypanosome lytic factors (TLFs), present in 
human serum [13]. TLFs have also been shown to ameliorate infection by Leishmania sp. [15]. 

However, this protection does not extend against other trypanosomes such as Trypanosoma 

cruzi, Trypanosoma brucei rhodesiense, and Trypanosoma brucei gambiense [13]. Lipoproteins are 
suggested to modulate the infectivity of malaria parasite and Schistosoma as well [36, 54–56].

3. Anti-infective mechanisms of lipoproteins

The biological mechanisms for the anti-infective role of lipoproteins are diverse. While, in some 

instances, the complete ensemble of a lipoprotein particle has been found to contribute to the 

immunological defenses, in some other occasions the individual constituents (such as apopro-

teins or lipid moieties such as phospholipids and cholesterol) are credited to be involved [36, 

41, 57]. A broad scheme of the anti-infective mechanisms with respect to circulating lipopro-

teins is provided below. Experimental evidences from in vivo and in vitro studies suggest that 

these schemes are actually recurring themes. These strategies are common to a variety of anti-

microbial defenses mobilized by circulating lipoproteins against a plethora of infectious agents.

3.1. Inhibiting the entry of intracellular pathogens into host cells

Lipoproteins can inhibit the attachment and subsequent entry of pathogens into their tar-

get cells. This defensive mechanism of lipoproteins has been particularly well described in 

relation to viruses. The presence of HDL is capable of retaining viruses on the cell surface, 
lending credibility to this idea. Apoproteins (such as apoA-I) in host circulatory lipoproteins 
contain stretches of amphipathic residues that have been proposed to interact with amphipa-

thic counterparts in alpha-helices of viral envelope glycoproteins. These interactions interfere 

with membrane fusion and entry of viruses into host cells. Synthetic amphipathic peptide 

analogues of apoA-I can also exert similar effects [36, 58, 59]. In fact, such analogues have been 

found to inhibit HIV-induced syncytium formation [60]. Inhibition of viral penetration inside 

host cells is also supported by VLDL. Recent in vivo studies have revealed that VLDL in serum 
effectively blocks hepatitis C virus (HCV) cell attachment, thereby acting as a restriction factor 
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against HCV infection [18]. Clinical studies have earlier revealed that serum level of apoC-III 

(an integral apolipoprotein in VLDL) was a significant predictor of chronic hepatitis C infec-

tion and associated hepatic fibrosis [16].

Alternatively, viral infection stimulates production of interferons, which in turn induce secre-

tion of some soluble forms of lipoprotein receptors. These soluble receptors can modulate 

viral pathogenesis. For instance, a soluble LDL receptor shed during hepatitis and rhinovirus 
infections is used by the viruses for gaining entry into their respective host target cells [36]. 

However, endogenous LDL competes with these viruses or such similar viruses for cellu-

lar uptake, protecting the host against infection. Such receptors are also implicated in virus 

assembly and budding [61, 62]. Likewise, a VLDL receptor fragment that binds rhinoviruses 
has also been described in cell culture studies [63].

In addition to viruses, circulating lipoproteins have been found to prevent the entry of non-

viral intracellular pathogens. For example, lipoproteins can interfere with the adhesion of 

Salmonella typhimurium to host cells and subsequent organ invasion [64].

3.2. Inactivating the effect of microbial toxins

Lipoproteins effectively neutralize bacterial toxins such as LPS (from Gram-negative  bacteria) 
and LTA (from Gram-positive bacteria) and enhance their clearance. The mechanisms 
involved in inactivating LPS are particularly well established [30, 36, 42–45, 65, 66]. The lipid 

components of lipoproteins are vital in this regard. Ultrastructural studies have shown that 

LPS binding with LDL causes fatty acyl chain of crucial lipid moieties in LPS to be incorpo-

rated into the phospholipid surface of lipoproteins. This masks the active sites of LPS and 
attenuates their toxic action [36, 67].

Binding with lipoproteins also enhances the clearance of LPS. During Gram-negative bacte-

remia, LPS released in the circulation is primarily taken up by macrophages in liver (Kupffer 
cells). The macrophages thus activated cause a splurge of pro-inflammatory cytokines, which 
are responsible for the LPS-induced septic shock. However, binding of LPS with lipopro-

teins prevents this and causes two-pronged benefits. Firstly, on binding with lipoproteins, the 
uptake of LPS by hepatic macrophages decreases, which prevents their activation and cyto-

kine release [36, 68–70]. Lipoproteins can prevent the LPS-mediated activation and release of 
cytokines from peripheral monocytes/macrophages too. Lipoproteins have been found to pro-

mote the release of LPS from the cell surface of monocytes to which they were bound, further 
dampening the cellular response [36, 71]. Secondly, the lipoprotein bound LPS are instead 
taken up by hepatocytes that lead to their rapid secretion into bile [36, 68–70]. Triglyceride-

rich lipoproteins such as chylomicrons and VLDL are especially active in accelerating the 
clearance of LPS in this fashion [36, 68].

In a somewhat analogous manner, lipoproteins are believed to neutralize the toxic effects of 
LTA [72]. Further, potent peptide toxins such as phenol-soluble modulins (PSM) secreted by 
bacteria such as Staphylococcus aureus can also be inactivated by lipoproteins such as HDL, 
LDL, and VLDL. Highest binding and neutralizing potentials of Staphylococcal PSMs are dis-

played by HDL [17].
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3.3. Lysis of pathogens

Certain pathogens are directly lysed by plasma lipoproteins or their components. A good 

example of this is the lysis of the parasite Trypanosoma brucei brucei [13, 36]. This lipoprotein-

mediated lysis is attributed to two distinct trypanosome lytic factors (TLFs), namely TLF1 and 
TLF2. TLF1 is actually a lipid-rich subset of HDL that contains mostly apoA-I and haptoglob-

ulin-related protein (HRP) with some amount of other proteins such as apoA-II, apoL-I, and 
paraoxonase. On the other hand, TLF2 is lipid-poor lipoprotein complex that contains apoA-I, 
HRP, and immunoglobulin M [73–75]. It is believed that apoL-I and HRP in TLFs target the par-

asites within the acidic parasitophorous vacuoles of macrophages and damage them directly 

without taking recourse to macrophage activation [15]. It is noteworthy that Trypanosoma cruzi, 

a trypanosome to which humans are susceptible, cleaves apoA-I, the chief protein constituent 

of HDL using cruzipain, a cysteine protease present in the cell membrane as well as internal 
lysosomal structure of the parasite [76]. Such targeted breakdown of vital lipoprotein constitu-

ents may aid the Trypanosoma cruzi parasite in evading the anti-parasitic action of TLFs.

3.4. Promoting opsonization

Experiments involving in vitro and ex vivo systems have suggested that some lipoproteins 

such as LDL may act as opsonins and enhance phagocytosis of several types of Group A 
Streptococcus (GAS) bacteria by monocytes. Interaction of LDL with CD36 scavenger receptor 
expressed in monocytes and streptococcal collagen such as protein 1 (Scl1) present on the cell 
surface of GAS is believed to underlie this phagocytosis promoting activity [19].

3.5. Activation of complement system

Lipid-free and HDL-associated apoA-I can activate the host complement pathways which is 
effective in killing the gastrointestinal pathogen, Yersinia enterocolitica. The C-terminal domain 

of apoA-I is the primary effector site responsible for this bactericidal property [77].

3.6. Inhibition of plasminogen recruitment

Many pathogens recruit human plasminogen (which is an integral part of the fibrinolytic 
system) in the course of their pathogenesis. This helps them in penetrating tissue barriers 

and facilitate invasion. Some pathogens even secrete plasminogen activators to amplify the 

effect. For example, streptokinase produced by GAS is a highly specific activator for plas-

minogen. Thus, it is believed that many infections can be inhibited and prevented consider-

ably if recruitment and activation of host plasminogen by pathogens can be blocked. Lp(a) is 
believed to be a vital component of the host defense system in this context. Apo(a) present in 
Lp(a) shares a high degree of homology with plasminogen. Thus, it competes for the bind-

ing of plasminogen to pathogens. It reduces the amount of plasminogen immobilized on the 

pathogen surface and further inhibits the activation of plasminogen by activators such as 

streptokinase. In vitro studies have demonstrated the inhibition of streptokinase to catalyze 

the activation of plasminogen. Thus Lp(a) can help in preventing infections and promoting 
wound healing and repair of tissue injuries [29, 51, 78–81].
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3.7. Chemical modification of lipoproteins

Infections and the associated inflammatory responses lead to oxidative stress and generation 
of reaction oxygen species (ROS). ROS induces chemical modifications in several lipoprotein 
species, most notable of which is oxidative changes in LDL [82]. Oxidized LDL (oxLDL) con-

tributes to immune responses against invading pathogens in several ways. OxLDL upreg-

ulates scavenger receptor expression in macrophages, which facilitates their ingestion of 

Gram-positive and Gram-negative bacteria by phagocytosis. One of the oxidized compo-

nents in oxLDL, namely oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcho-

line (oxPAPC), modulates LPS-mediated signaling pathways in favor of the host. It inhibits 
LPS-induced adhesion of neutrophils to endothelial cells (thereby limiting LPS-induced 
tissue damage) and checks unregulated pro-inflammatory pathways [30, 82–86]. Besides, 
oxLDL has been shown to block cellular entry by several HCV strains [87] and malarial 

sporozoites [88].

Further, oxLDL elicits the production of natural antibodies against the membrane phospho-

lipid, phosphorylcholine (PC). These anti-PC antibodies may target PC epitopes present in 
a broad spectrum of pathogens and provide protection against them. These include Gram-

positive bacteria, Gram-negative bacteria, trematodes, nematodes, and even fungi [30, 89–93].

3.8. Acting in concert with acute-phase responses

The acute-phase response (APR), characterized by acute specific changes in concentration of 
plasma proteins, in response to noxious stimuli (such as infection) serves to protect the host 
from further injury. It helps in neutralizing the invading microbes, limits the extent of tis-

sue damage, and promotes tissue repair and regeneration. In many instances, lipoproteins 

work with players of the APR in tandem and help in projecting antimicrobial defenses of 

the body.

For example, lipoprotein-binding protein (LBP) is an acute-phase protein carried on lipo-

proteins [36, 94]. It is associated with HDL, LDL, VLDL, and chylomicrons. LBP catalyzes 
the detoxification of bacterial toxins such as LPS and LTA by lipoproteins. LBP can modu-

late the effects of LPS by binding to the lipid A moiety of the latter. During infections, very 
high concentrations of LBP are attained, which helps in transferring LPS (and LTA) to lipo-

proteins for inactivation. LBP is also produced in the intestine and in the lungs where it is 
believed to play important roles in mobilizing local immune responses against bacterial LPS 
[36, 72, 94–96].

C-reactive protein (CRP) is another acute-phase protein that is associated with LDL and 
VLDL. Infection by the parasite Schistosoma leads to increase in serum CRP. CRP can acti-

vate platelets, which have cytotoxic effects against schistosomes. Such cytotoxic effects are 
exerted by activated monocytes as well. However, LDL binds to the surface of schistosomes, 
which masks them from activated monocytes. This is circumvented by oxidative changes 

in the parasite-bound LDL brought about by ROS from activated monocytes. OxLDL is 
 endocytosed by the monocytes through scavenger receptors, which exposes the parasite to 

attack by monocytes and other immune cells [54, 55].
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3.9. Redistribution of lipids to immune cells

During infection, there are quantitative and qualitative changes in plasma lipoproteins due 
to redistribution of lipids to the immune cells and areas of cellular injury. These changes 

are believed to potentiate the immune system and enhance healing in the host that helps to 

tide over the infective crisis [36]. For instance, there is an increase in triglyceride-rich VLDL 
particles, which provide lipid substrates to macrophages of the activated immune system. 

Similarly, there is a decrease in HDL levels. Since HDL is the central component of reverse 
cholesterol transport (RCT) pathway, such decrements in its level help in conserving choles-

terol in peripheral sites. It has been found that during the acute phase of infection, there is an 

increase in apolipoprotein serum amyloid A (apoSAA) and concurrent decrease in apoA-I. 
ApoSAA redirects cholesterol away from catabolism in hepatocytes and delivers cholesterol 

to other cells. Cholesterol is required for new membrane synthesis in areas of cellular injury 

that accompany infections. Cholesterol may also be used for activation and proliferation of 

lymphocytes [97–101].

4. Lipoproteins as double-edged sword of the immune system

The immune system is a double-edged sword. Autoimmune diseases and hypersensitivity 

reactions are classic examples in this regard. The lipoproteins (as components of the immune 
system) have no exception. Lipoproteins may facilitate invasion and spread of infection by 
certain pathogens to the detriment of the host. Besides, lipoproteins are important risk factors 
for some other disorders. The following are certain examples:

• The obligate intracellular parasite, Toxoplasma gondii, is dependent on host cholesterol from 

extracellular LDL for growth and replication. The parasite resides in a special parasitopho-

rous vacuole to which cholesterol is delivered by uptake of LDL through receptor-mediated 
endocytosis [102].

• There are tremendous requirements of various lipids for successful replication of the ma-

laria parasite in the host. These requirements are met by the parasite by scavenging and 

modifying lipids from the host itself. Lipids such as phospholipids and free fatty acids 
(FFA) can be obtained from circulating lipoproteins or directly from the serum and used 
without further modification. Or else, the scavenged lipids are modified by elongation and 
desaturation reactions and subsequently incorporated as diacylglycerols and triacylglycer-

ols [103–108].

• Similarly, a large number of viruses can hijack the host lipid and lipoprotein machinery to 

their benefit [109, 110]. It is increasingly appreciated that viruses can modulate lipid me-

tabolism, composition, and signaling in the host to facilitate their entry [111–113], replica-

tion [109, 114, 115], and assembly [116–119].

• Fungal pathogens require ergosterol to grow and thrive in the host tissues. The supply of 

ergosterol is maintained by the endogenous sterol synthesis pathway present in the fun-

gus. The azole group of antifungal drugs inhibits this fungal sterol synthesizing pathway. 
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However, the opportunistic fungal pathogen Candida glabrata can circumvent such ergos-

terol-deprived killing by utilizing host sterols instead. It can take up cholesterol from host 

circulating lipoproteins and use it for its survival in the presence of azole antifungals [120].

• Infusion of lipoproteins in volunteers has been documented to enhance growth of Candida 

albicans as well [14].

• Lipoproteins can undergo changes in their structure and composition during infections, 
which may be harmful to the host. As described earlier, oxLDL can help in protecting the 
host from the adverse effects of bacteria, viruses, and parasites. Though initially these ef-
fects are beneficial and hence desirable, yet prolonged presence of oxLDL may contribute 
to atherosclerosis. OxLDL plays a pivotal role in formation of lipid laden foam cells that 
trigger atherogenic changes [36, 82, 121, 122].

• Besides, PC, which is expressed in a number of pathogens and is targeted by natural an-

tibodies elicited by oxLDL (described earlier), can paradoxically contribute to persistence 
and invasiveness of certain pathogens, such as Haemophilus influenzae [123, 124].

• The cholesterol-rich Lp(a) is notorious for its atherogenic and thrombotic effects. Although 
recent studies have described anti-infective processes in relation to Lp(a), it is nonetheless 
an established risk factor for cardiovascular disorders [1, 4, 5].

5. Conclusion and future directions

As our knowledge about the role of lipoproteins as crucial components of the immune system 

continues to advance, two types of implications for the future have emerged. First, there is the 

possibility of characterizing the lipoprotein-pathogen interactions in greater detail. This will 

lead to an improved understanding of the pathophysiological significance of these interac-

tions and may help in elucidating novel anti-infective mechanisms. For instance, a very recent 

study has described serum lipoproteins as critical components for pulmonary innate defense 

against quorum-sensing-based pathogenesis by Staphylococcus aureus [125]. Second is the 

potential use of drug therapies to modulate lipoprotein-pathogen interactions with the aim of 

controlling infections. As discussed earlier, reconstituted HDL and apoA-I mimetic peptides 
have shown promise in this regard [46–48, 60]. Further, drugs targeting lipid metabolism 

have also been suggested. For example, plant extracts modulating lipoprotein metabolism 

have shown promising antimalarial properties [126]. Similarly, there is potential for develop-

ing therapeutics targeting fatty acid synthesis (which is required by many viruses) as broad-
spectrum antiviral agents [110, 118].

To conclude, lipoproteins are increasingly recognized as important players of the host 

immune system. They offer a multitude of strategies to ward off infections and limit their 
detrimental effects in the body of the host. At times, many of these strategies act together 
in a complementary manner, rather than being mutually exclusive. On the other hand, an 

anti-infective mechanism resulting from a particular lipoprotein-pathogen interaction that 

may be  beneficial for one specific infection may not be applicable sometimes in another 
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 infection [127]. Instead, such an interaction may promote infection and lead to untoward 

effects (as the previous examples show). As seen from the examples in the text, the interac-

tions between host lipoproteins and invading pathogens are complex and multifaceted. This 

warrants further studies and very detailed knowledge of the different lipoprotein-pathogen 
interactions to design effective therapeutic options.
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