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Abstract

Worldwide, antibiotic resistance is a major contemporary public health threat due to 
rapid emergence of resistant bacteria and endangering the efficacy of antibiotics. There 
are significant number of reports on clinical failure of β-lactam and β-lactamase inhibitor 
combination and even carbapenems due to various carbapenem resistance mechanisms. 
The increasing rate of the antibiotic resistance and its impact on treatment failure encour-
aged us to study newly reported concept of antibiotic adjuvant entities (AAEs) by which 
the increasing failure rate of antibiotics can be controlled. These AAEs have been devel-
oped for both Gram-positive and Gram-negative multidrug-resistant (MDR) infections. 
Elores (ceftriaxone + sulbactam with adjuvant ethylenediaminetetraacetic acid (EDTA)) 
and Potentox (cefepime + amikacin with adjuvant potassium chloride) are the AAEs 
for Gram-negative MDR pathogens each catering to a different type of resistance and 
Vancoplus (ceftriaxone + vancomycin with adjuvant L-arginine), another AAE, can help 
us to last longer in the war against antibiotic-resistant Gram-positive bugs particularly 
which cause complicated lower respiratory tract infection (LRTI) leading to pneumonia. 
These new antibiotic additions (Elores, Potentox, and Vancoplus) to the current arma-
mentarium to treat MDR infections, including pneumonia, can help us combat against 
antimicrobial resistance more efficiently.
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1. Introduction

Pneumonia commonly described as infection of lungs is classified according to where or how 
it is acquired: community-acquired, healthcare-associated, hospital-acquired, or ventilator-
associated pneumonia [1, 2]. According to the area of lung affected, pneumonia can be lobar 
pneumonia, bronchial pneumonia, and acute interstitial pneumonia [2]. Pneumonia can be 
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bacterial, viral, and less commonly fungal [3]. In the pediatric age group, pneumonia may 
additionally be classified as non-severe, severe, or very severe depending on the signs and 
symptoms [4].

2. Definitions

Hospital-acquired pneumonia (HAP) or nosocomial pneumonia refers to any pneumonia con-
tracted by a patient in a hospital at least 48–72 h after being admitted. Community-acquired 
pneumonia (CAP) is defined as pneumonia acquired outside a hospital or a long-term care 
facility. It occurs within 48 h of hospital admission or in a patient presenting with pneumonia 
who does not have any of the characteristics of healthcare-associated pneumonia. The nosoco-
mial pneumonia, which is associated with mechanical ventilation for a duration of more than 

48 h, is termed as ventilator-associated pneumonia (VAP), whereas the healthcare-associated 
pneumonia is defined as the pneumonia occurring in non-hospitalized patients having con-
tact with the healthcare system.

3. Epidemiology

From 1930s, prior to the discovery of antibiotic, till date pneumonia remains the major cause 

of death among all age groups accounting for four million deaths annually. The rate of death 
is highest among children aged less than 5 years worldwide [5]. According to a study con-
ducted by Farooqui et al. [6], 3.6 million (3.3–3.9 million) episodes of severe pneumonia and 
0.35 million (0.31–0.40 million) all-cause pneumonia deaths occurred in children younger than 
5 years in India. Furthermore, 0.56 million (0.49–0.64 million) severe episodes of pneumococcal 
pneumonia and 105,000 (92,000–119,000) pneumococcal deaths occurred in India. According 
to American Thoracic Society/Infectious Diseases Society of America (ATS/IDSA), 2005, HAP 
had a crude mortality rate of 30–70% with an estimated attributable mortality rate to pneu-
monia between 27 and 50%. According to some estimates, VAP contributes up to 50–85% of 
all cases of nosocomial pneumonia [7, 8]. Furthermore, it mainly occurs in intensive care unit 
(ICU) patients where they most often require ventilator support, amounting to 9–27% of all 
mechanically ventilated patients [8]. It is estimated that four million cases of CAP occur annu-
ally in the United States, of which 20–25% are severe enough to warrant hospitalization [9]. 
Pneumonia is responsible for about 1.6 million deaths among children aged <5 years in Africa 
and South-East Asia regions [10, 11]. HAP and VAP are important causes of mortality and 
morbidity, which continue to baffle the treating physicians in today’s era of MDR.

4. Economic burden

Pneumonia is one of the most common causes of economic burden across the globe involv-
ing great exploitation of health resources. World Health Organization (WHO) has indicated 
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that more death of children occurs due to pneumonia than any other diseases. According to a 
study conducted in India [11], the average cost per patient not put on ventilator is INR 27,123, 
whereas the cost associated with ventilated patient is almost twice INR 44,812. Ventilator sup-
port is the most expensive intervention adding to the cost of care followed by the cost of anti-
biotics and investigations and still making the patient more prone to complicated infections 

like biofilm. Thus, the disease adds significantly to the cost of hospital care and to the length 
of hospital stay. The situation does not seem to improve as antibiotic pipeline is virtually dry 
and the resistance appears to be further mounting in most parts of the world as per the latest 

Center for Disease Dynamics, Economics and Policy (CDDEP) reports.

5. Etiology

The etiology of pneumonia in high-income countries is different than in low-income countries 
[12, 13]. It has been reported that viruses contribute to 30–67% cases of CAP in developed 
countries and are more frequently identified in children aged less than 1 year than in those 
aged above 2 years [12]. Bacteria are more frequently identified with increasing age, resulting 
in mixed infections being less common with age [12].

Respiratory syncytial virus (RSV) is the prime cause of viral pneumonia in children admit-
ted to hospital in developing countries, followed by influenza A and B, parainfluenza, 
human metapneumovirus, and adenovirus [13]. The bacterial pathogens causing pneumo-
nia include Pseudomonas aeruginosa, Haemophilus influenza type b, Acinetobacter baumannii, 

Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, methicillin-resistant S. aureus 

(MRSA), and Streptococcus pneumoniae [8, 14, 15].

6. Diagnosis

The outline for the diagnosis of pneumonia is highlighted in WHO/UNICEF Integrated 
Management of Childhood Illness (IMCI) guidelines. Fever and cough are the most common 
ones. Fever is present in 65–90% and cough in 75–96% of patients with pneumonia. Other 
typical respiratory complaints include sputum production, dyspnea, and chest pain [16]. In 
a hospital, there are numerous investigations available including radiography and microbio-
logical methods to investigate pneumonia.

7. Treatments

The treatment of pneumonia depends on the age, the severity of illness, the likely causative 
agents, and their resistance patterns. Guidelines recommended the use of third- and fourth-
generation cephalosporins, BL + BLI (β-lactam + β-lactamase inhibitor) combinations, and 
even carbapenems for the management of Gram-negative infections and vancomycin/line-
zolid for the management of Gram-positive infections.
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8. Antibiotic resistance

Worldwide, antibiotic resistance is a major contemporary public health threat due to rapid 

emergence of resistant bacteria and endangering the efficacy of antibiotics [17]. In 2014, the 
WHO warned that the antibiotic resistance crisis is becoming extremely serious [18] and is 

attributed to the overuse and misuse of these medications, as well as a lack of new drug 
development by the pharmaceutical industry [19]. Different molecular mechanisms are 
responsible for the development of antimicrobial resistance such as alteration of bacterial cell 

permeability, acquisition of extended spectrum β-lactamase production (ESBLs), and metallo-
β-lactamases (MBLs), bacterial biofilm formation, activation of efflux pump, bacterial conju-
gation, and curli fiber formation [17, 20–25].

In India, the prevalence of ESBL producing organisms among Gram-negative pathogens was up 
to 73.5% [26]. Similarly, the prevalence of MBLs is also increasing at an immense rate [27, 28]. 
Scores of reports highlighting antibiotic resistance because of efflux pump in bacteria is increas-
ing significantly [29]. Outer membrane permeability and β-lactamase are key factor for the resis-
tance of bacteria to antibiotics [30]. The increasing rate of the biofilm problem and its impact on 
antibiotic resistance triggered us to think new means which could disrupt the biofilm formation 
by inhibiting bacterial adhesion and curli formation.

There are significant number of reports on the clinical failure of β-lactam and β-lactamase 
inhibitor combination and even carbapenems due to various carbapenem resistance 

mechanisms. A number of studies have demonstrated the decreased susceptibility of 
Enterobacteriaceae to cephalosporins and other drugs [31, 32]. The ESBLs enzyme confers 
resistance not only to broad-spectrum cephalosporins, including oxymino-β-lactam antibi-
otics, but also to other commonly used antibiotics, including aminoglycosides and quino-
lone [33, 34]. Overexpression of efflux pump is often associated with extrusion of most of the 
β-lactam antibiotics, leading to decreased susceptibility of antibiotics [35].

A decreased susceptibility rates of P. aeruginosa and A. baumannii to β-lactams including car-
bapenems has been reported in various countries [36–38]. Failure of vancomycin and linezolid 
could be attributed to the emergence of VRSA (vancomycin-resistant S. aureus), hGISA (het-
rogeneous glycopeptide intermediate S. aureus) [39, 40]. This has raised a huge unmet need 
in the search for novel resistance-breaking therapies. Besides the above factors, inappropriate 
selection of empiric broad-spectrum antibiotics stretches the length of treatment and causes 
emergence of antibiotic resistance.

In view of the above background, the increasing rate of the antibiotic resistance and its impact 
on treatment failure encouraged us to study newly reported concept of antibiotic adjuvant 

entity by which the increasing failure rate of antibiotics can be controlled. Adjuvants are com-
monly used chemical entities which do not possess antibacterial activity of their own but 

help antibiotic in breaking one or more mechanisms of resistance and accelerate antibiotic 

effectiveness making AAEs as empiric choice [41]. Information regarding the prevalence of 
antimicrobial resistance in pathogens can be used for selecting an optional treatment. Earlier 
studies have supported the combination therapy of two or more drugs in combination with 

adjuvant (which are usually non-antibiotic in nature) as a suitable approach to reduce the 
frequency of antibiotic resistance [24].
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A few of such synergistic novel antimicrobial adjuvant entities, their mechanisms, and clinical 

outcomes, which can revolutionize the future, will be discussed in this book chapter. These 
AAEs have been developed for both Gram-positive and Gram-negative multidrug-resistant 
infections. Elores (ceftriaxone + sulbactam with adjuvant EDTA) and Potentox (cefepime + 
amikacin with adjuvant potassium chloride (KCl)) are the AAEs for Gram-negative MDR 
pathogens each catering to a different type of resistance, and Vancoplus (ceftriaxone + vanco-
mycin with adjuvant L-arginine), another AAE, can help us to last longer in the war against 
antibiotic-resistant Gram-positive bugs particularly which cause complicated LRTI leading to 
pneumonia (HAP/CAP/VAP/HCAP).

8.1. CSE1034 (Elores)

CSE1034 is a novel combination of third-generation cephalosporin “ceftriaxone,” an irrevers-
ible β-lactamase inhibitor “sulbactam,” and non-antibiotic adjuvant Antibiotic Resistance 
Breaker (ARB) “disodium edetate.” Due to synergistic action of the inhibition of cell wall 
by ceftriaxone accompanied by the specific inhibition of β-lactamases by β-lactam compo-
nent produced by common Gram-negative and Gram-positive pathogens, this drug has been 
reported to be affective against multiple types of MDR organisms. CSE1034 has proven activ-
ity against a wide range of ESBL and MBL producing Gram-negative pathogens and is used 
as a treatment option for a multitude of bacterial infections.

8.1.1. Mechanism of action

Ceftriaxone acts by binding to penicillin-binding proteins (PBPs) which are transpeptidases 
that catalyze the cross-linking of the peptidoglycan polymers synthesizing cell wall and sub-
sequently inhibiting bacterial cell wall synthesis. The cell wall of bacteria consists of pentapep-
tide units attached to a polysaccharide backbone with alternating units of N-acetylglucosamine 
(NAG) and N-acetylmuramic acid (NAM). PBPs act on a terminal d-alanyl-d-alanine moiety 
on a pentapeptide unit and catalyze the formation of a peptide bond between the penultimate 
D-alanine and a glycine unit on an adjacent peptidoglycan strand. The ceftriaxone structure 
is the mimic of D-alanyl-D-alanine moiety and the PBPs wrongly attack the β-lactam ring in 
ceftriaxone, which leads to the inactivation of PBPs. As the peptidoglycan synthesis is essen-
tial to maintain bacterial cell wall integrity, so the inhibition of PBPs leads to damage and 
destruction of the cell wall and ultimately in cell lysis.

Sulbactam is a potent, highly specific inhibitor of a wide variety of β-lactamases including 
penicillinases and cephalosporinases produced commonly by different strains of bacteria and 
chromosomally mediated enzymes induced in some strains of Klebsiella, Enterobacter, and 

Serratia species to degrade antibiotics. By forming a protein complex with β-lactamases pro-
duced by bacterial strains resistant to ceftriaxone, the full potential of ceftriaxone is restored 

by the addition of sulbactam. Sulbactam not only potentiates the antibacterial activity of ceftri-
axone against ESBL-producing pathogens but also exhibits a moderate antibacterial activity.

Disodium edetate is a non-antibiotic adjuvant acts as ARB which chelates the divalent metal 

ions particularly zinc that functions as a cofactor for carbapenemases. As zinc is necessary for 
the MBL activity, thus EDTA activity makes MBL-producing organisms susceptible toward 
Elores [24, 25, 42, 43]. Disodium edetate also chelates divalent metal ions located in the outer 
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membrane causing destabilization of outer membrane and thus resulting in enhanced pen-
etration of drugs inside the bacterial cells. Moreover, CSE1034 downregulates acrA, acrB, 
tolC, mexA, and mexB genes in MexA-MexB-OprM efflux pump, which in turn enhances 
the susceptibility of Gram-negative bacteria (GNB) toward CSE1034 which overexpress this 
efflux transporter.

8.1.2. Activity spectrum

Elores has a broad spectrum of activity against both Gram-positive and Gram-negative bac-
teria pathogens. It is reported to be active against both ESBL and MBL producing organisms, 

including E. coli, K. pneumoniae, Acinetobacter spp., and Pseudomonas spp. Susceptibility data 
from various parts of India were collected from various clinical samples (including urine, 
pus, sputum, bronchoalveolar lavage, and endotracheal fluid); this AAE is very promising. 
The prevalence of resistance to Elores in ESBL and MBL organisms is reported to be less in 
various parts of India. The drug has been approved by the Drug Controller General of India 
(DCGI) for the treatment of various bacterial infections caused by the susceptible isolates 
of K. pneumoniae, K. oxytoca, E. coli, P. aeruginosa, Acinetobacter spp., S. pneumoniae, and S. 

aureus. A number of randomized phase 3 comparative trials, prospective, retrospective, 
and case studies have demonstrated the efficacy of Elores in the treatment of infections per-
taining to respiratory tract, skin and skin structure, genitourinary tract, musculoskeletal, 

and gastrointestinal tract when compared with carbapenems and BL-BLIs showed very 

promising results [24, 25, 42]. These various published susceptibility reports suggest the 
use of Elores empirically in HAP and VAP caused due to MDR ESBL and MBL-producing 
Gram-negative pathogens [44]. A number of studies including randomized phase 3 trials, 
prospective, retrospective, and case studies validate the safety and efficacy of CSE1034. 
A phase 3 trial reports published in 2013 showed significantly high improved efficacy of 
CSE1034 compared to ceftriaxone in LRTI patients [45, 46]. Based on the safety and efficacy 
data, Elores is recommended as a carbapenem-sparer antibiotic. CSE1034 has shown to 
be effective and safe in moderate to severe HAP and VAP patients. CSE1034 has shown 
promising results in sepsis as monotherapy as well as along with colistin [47, 48]. CSE1034 
was found to be safe with no serious adverse event was reported in phase 3 trial and post-
marketing surveillance studies. Overall, CSE1034 is found to be well tolerated in adult 
population.

8.2. Potentox

With regard to Potentox for pneumonia, first of all, let’s see what this unique AAE offers. 
Potentox is a synergistic antibiotic combination of cefepime and amikacin and potassium chlo-
ride. Cefepime is the fourth-generation broad-spectrum cephalosporin. It is frequently used 
as first-line empirical therapy for healthcare-associated infections, including those caused by 
suspected Gram-negative bacteria. Cefepime has relatively low propensity for degradation 
by ESBLs compared to other cephalosporins. Cefepime also remains active against infections 
due to AmpC-producing organisms. Amikacin is one of the most commonly used amino-
glycosides and it has the highest recommendation from IDSA 2016 for usage in nosocomial 
pneumonia cases as an empirical antibiotic in the combination protocol against nosocomial 

pneumonia. Potentox (cefepime + amikacin) is not just the most active combination in vitro 
[23, 49] but also has demonstrated efficacy in vivo as the most active combination [50, 51].
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8.2.1. Mechanism of action

Amikacin, which belongs to aminoglycoside antibiotic group, blocks the production of pro-
tein by binding irreversibly to the four nucleotides of 16S rRNA of 30S ribosomal subunit of 
the pathogenic organism. This region where amikacin binds is known to interact with the 
wobble base in the anti-codon of tRNA. Thus, amikacin interferes with the tRNA acceptor site 
and prevents the formation of initiation complex with messenger RNA. This leads to misread-
ing of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunc-
tional or toxic peptides and the breakup of polysomes into nonfunctional monosomes.

Cefepime, a fourth-generation cephalosporin, is bactericidal and has the same mode of action 
as other β-lactam antibiotics. It disrupts the synthesis of the peptidoglycan layer of bacterial 
cell wall which is important for cell wall structural integrity.

Potassium chloride is a metal halide salt composed of potassium and chloride that is used as 

an adjuvant in Potentox. Interestingly, Potentox due to adjuvant potassium chloride exhibits 
activity against Quinolone-resistant Gram-negative pathogens, the prevalence of which is ris-
ing alarmingly in developing countries.

8.2.2. Activity spectrum

Both cefepime and amikacin individually have become a victim of high level of resistance 
[52]. This is where precisely, Potentox is used in combating these multidrug-resistant patho-
gens as Potentox has demonstrated in vitro and in vivo activity against these resistant isolates 

to which cefepime and amikacin are resistant individually. Global surveillance studies dem-
onstrate that the actual acquired fluoroquinolone resistance rates are highly variable and are 
as high as almost 100%, particularly in Asia, whereas resistance rates in Europe and North 
America range from <10% in rural areas to >30% which is still pretty high. This highlights the 
importance of Potentox use to target multiple drug resistance effectively which developed 
both in community and in hospital settings.

Multi-centric randomized comparative open-labeled phase 3 trial of synergistic antibiotic 
combination of cefepime and amikacin versus cefepime alone was conducted in nosocomial 

pneumonia and showed superiority of Potentox in efficacy over cefepime alone.

Potentox and Elores can serve as a true carbapenem sparer as medically important Gram-
negative bacteria are developing resistance very fast against this valuable class of antibiotic. 
In the era of antimicrobial resistance, the judicious use of different antimicrobials in a bal-
anced fashion can help us in preserving these antibiotics for longer duration.

8.3. Vancoplus

While we look for HAP/VAP due to Gram-positive bacteria, methicillin-resistant S. aureus is a 

big concern and empirical antibiotic therapy should cover MRSA whenever factors increase the 
likelihood of MRSA. Now, MRSA is not confined to western countries only. A network of micro-
biology laboratories (Indian Network for Surveillance of Antimicrobial Resistance—INSAR) 
at premier medical colleges and hospitals in India was formed with support from the World 
Health Organization. In an article published in 2013, INSAR reported that MRSA prevalence in 
India is to the tune of 40% which shows that MRSA is a significant problem for India too.
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Vancoplus is a novel AAE of ceftriaxone and vancomycin along with l-arginine as adjuvant 
caters to all types of mixed infection especially MRSA, VRSA, VISA, and hGISA [43].

8.3.1. Mechanism of action

The vancomycin plays its bactericidal role primarily through inhibiting cell wall biosynthe-
sis. Specifically, vancomycin forms hydrogen bond interactions with the terminal D-alanyl-
D-alanine moieties of the N-acetylmuramic acid- and N-acetylglucosamine-peptide subunits 
and thus prevents their incorporation into the peptidoglycan matrix, a major component of 

Gram-positive cell walls. Additionally, vancomycin is known to alter bacterial-cell-membrane 
permeability and RNA synthesis. No cross-resistance is known to occur between vancomycin 
and other antibiotics. The mechanism of action of ceftriaxone is already discussed in Elores 
drug section.

8.3.2. Activity spectrum

Earlier, the natural glycopeptide vancomycin was considered the drug of choice to treat 

MRSA infections. However, the concerns regarding the efficacy of vancomycin against MRSA 
including poor bactericidal activity and high recurrence rates are increasing [53]. Stevens and 
Moise Broder have reported in two studies, published in CID 2004 and 2006, respectively, 
that MRSA treatment failure rate is associated with higher vancomycin minimum inhibitory 
concentration (MIC). Higher vancomycin MIC is associated with higher mortality in HAP/
VAP due to MRSA. We have started witnessing vancomycin resistance, either in the interme-
diate range or in the full-resistance range, even in India. Among high-risk MRSA bacteremia 
patients, Sakoulas et al. [54] documented treatment failure rates of 44% when vancomycin 

MICs were <0.5 μg/ml and of 90% when vancomycin MICs were 1–2 μg/ml (p = 0.01) [54]. 
Although many other drugs including tigecycline, linezolid, and daptomycin have also been 
approved and represent alternate antibiotic therapy to vancomycin, no study has reported the 

superiority in terms of efficacy and safety of these drugs over vancomycin [55]. These clinical 
challenges necessitate finding alternative effective empirical solutions for the management of 
MRSA infections and/or mixed infections. It will be prudent to start empirically with an anti-
biotic which shows MIC in the susceptibility range and works effectively at lower MIC also 
and that is what Vancoplus offers due to double insult caused by both ceftriaxone and vanco-
mycin. Besides this, Vancoplus effectively helps in preventing and breaking biofilm which is 
a very frequent problem in intubated nosocomial pneumonia patients [23].

European Antimicrobial Resistance Surveillance Network (EARS-Net) data show that the 
occurrence of methicillin-resistant S. aureus was stabilizing in several European countries; 
still the percentage of MRSA among all S. aureus isolates remained above 25% in seven of the 

29 EU/EEA reporting countries. The risk factor in ICU patients increases with an increased 
length of stay and patients with catheter or other devices. In such cases, Vancoplus is a highly 
reliable product because it takes care of mixed Gram-negative and Gram-positive infections 
effectively. Although both these drugs have known incompatibility when given individu-
ally and needs infusion line flushing or advised to be given contralaterally, the presence of 
adjuvant not only potentiates the activity of duo but also makes them compatible [56]. It has 
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been observed that when two non-compatible drugs are administered due to medical urgency 
with due precautions, still there exists certain degree of degradation of one of the drug mol-
ecules in vivo resulting in lesser efficacy than expected. Vancoplus overcomes this challenge 
effectively.

Additionally, one of the biggest challenges in the management of S. aureus infection including 

all resistant versions is the management of virulence factors. Panton Valentine Leukocidin 
(PVL) and δ-toxin, alpha toxins are responsible for cell lysis including human erythrocytes, 
neutrophils, as well as various mammalian cells. β-Lactams may even induce the production 
of cytolysins and other virulence-related exoproteins when inadequately used for treating 
MRSA, which potentially worsens clinical outcomes. In the treatment of meningitis partic-
ularly it becomes added taxing issue to prevent neuronal cell damage which is caused by 

virulence factors generated by pathogens even if treated. Here, Vancoplus offers additional 
protection by neutralizing toxins secreted by pathogen and reducing sequelae drastically and 
makes the product highly beneficial for immune-compromised patients [23].

In a nut shell, a number of agencies (Infectious Diseases Society of America/American Thoracic 
Society, US FDA and SWAB, Asia Pacific Society for Critical Care Medicines, European Society 
of Intensive Care Medicines, Indian Society of Critical Care Medicines, etc.) have issued guide-
lines for the treatment of CAP/HAP/HCAP, CUTI/sepsis and the management of other criti-
cal ICU infections. The concept of antibiotic adjuvant entity is new and will take time to be a 
part of these guidelines. The author has tried to share the latest and emerging trends in MDR 
infection management with proven efficacy and safety in millions of patients across various 
developing economies. The world has now started talking about adjuvant therapy and soon 
these therapies will be part of standard critical infection management program. These new 
antibiotic additions (Elores, Potentox, and Vancoplus) to the current armamentarium to treat 

MDR infections including pneumonia can help us combat against antimicrobial resistance 
more efficiently due to presence of ARB as adjuvant.

8.4. Adjuvant therapy to treat secondary bacterial superinfections caused by influenza  
and other respiratory viruses

Viral influenza is very common in community and is often mistreated with antibiotics. 
Antibacterial drugs are not meant for viral infections and misuse leads to creation of resis-
tant bacterial species. Viral-bacterial co-infections in humans are well documented. Viral 
infections often lead to bacterial superinfections. Bacterial superinfections accompanied by 
influenza and other respiratory virus infections contribute to the significant morbidity and 
mortality particularly among elderly and young children.

Bacterial infection could be concomitant with influenza viral infection as a result of an enhanced 
pneumonic illness or may happen soon following influenza virus has been widely cleared 
from the lungs, when the host seems to be more susceptible to bacterial infection [57, 58].

Morbidity and mortality have been recognized to be greater in cases of influenza-associated 
bacterial infection in all age groups [59]. The increase in influenza infection during winter is 
often associated with a rise in cases of community-acquired pneumonia. The most common 
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causes of CAP are S. pneumoniae, S. aureus, and H. influenzae. S. pneumoniae is the most fre-
quently isolated pathogen associated with influenza [60], although deaths, especially in chil-
dren, are also associated with S. aureus infection, as highlighted by the recent emergence of 

community-acquired methicillin-resistant S. aureus [61]. Besides influenza, other respiratory 
viruses, such as coronavirus, adenovirus, and respiratory syncytial virus, are also associated 

with pneumonia [62].

The mechanisms of superinfection are very complex process. Several reports indicate that 
changes due to virus in the respiratory tract prime the upper airway and lung make way for 

subsequent bacterial infection. Super bacterial infections are accompanied by virus-induced 
cytopathology, leading to immunological impairment, which could be caused in part by the 

overproduction of inflammatory cytokines [63]. Transformation of the immune response by 
curtailing the capacity of the host to clear bacteria may contribute to the severity of the result-
ing infection [64]. Earlier studies on animal model have demonstrated that influenza predis-
poses to bacterial pneumonia [63, 65, 66]. It has been reported with 7–21 days of lag time for 
the onset of bacterial infection following seasonal influenza. However, shorter times from 
onset to death have been noticed in pandemic periods [67–69].

8.5. Antibiotic adjuvants potentiate anti-inflammatory properties of antibiotics

There is limited information on the effectiveness of adjuvant therapy for the treatment of bac-
terial complications of influenza. In a very recent study [70], explored the adjuvant effect of 
polyactin (PA), an inactivated trivalent influenza virus (ITIV) with or without PA or MF59 was 
instilled intranasally once a week in BALB/c mice. Results showed that PA is a novel mucosal 
adjuvant for intranasal vaccination with the inactivated trivalent influenza vaccine that has 
safe and effective mucosal adjuvanticity in mice and successfully induces both serum and 
mucosal antibody responses and a cell-mediated response.

The inflammatory response of viral infections results in the excessive production of reactive 
oxygen species (ROS) in the cells and tissues, and antioxidant system cannot neutralize them. 
Imbalance in this protective mechanism can lead to the damage of cellular molecules such as 
DNA, proteins, and lipids [71]. Moreover, the role of ROS in inflammation has been investi-
gated vigorously by earlier authors [72, 73]. ROS are thought to be key signaling molecules 
in the progression of inflammatory disorders. It induces inflammation by the induction of 
COX-2, inflammatory cytokines (TNFα, interleukin 1 (IL-1), and IL-6), chemokines (IL-8 and 
CXCR4), and pro-inflammatory transcription factors (NF-κB) [74]. Inflammatory cytokines 
trigger inflammation, causing the immune response to weaken which may help to increase 
the risk of bacterial infection. This rise in inflammatory markers with infection is a cascade 
reaction and is not easily broken only by antibiotics. Adjuvants have a major role to play 
here. Buret [75] reported that some antibiotics, such as the 16-membered macrolide tilmico-
sin, may generate anti-inflammatory benefits by modulating the production of pro-inflamma-
tory mediators, and by inducing neutrophil apoptosis. Many studies have highlighted that 
adjuvants co-administered with antibiotics reduce the oxidative stress, which in turn reduce 
inflammation [76, 77]. Dwivedi et al. [78] reported that AAE used for 21 days, the levels of 

antioxidant enzymes (superoxidase dismutase, catalase, glutathione reductase, glutathione 
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peroxidase), along with xanthine oxidase, lipid peroxidation, myeloperoxidase (MPO) levels, 
hepatic, and renal parameters were significantly improved in plasma and tissues of the AAE-
treated group indicating antioxidant or free radical scavenging properties [50].

Osteomyelitis is an infection and inflammation in bone which is primarily caused by S. aureus 

and S. epidermidis and the levels of cytokines (TNFα and IL-6) is increased in osteomyelitis 
[79]. Dwivedi et al. [80] demonstrated that the combination of antibiotic along with adju-
vant significantly improved the inflammatory cytokines (TNFα and IL-6), malondialdehyde 
(MDA), and myeloperoxidase in animal osteomyelitis infection model. From the earlier expla-
nation, it may be concluded that compounds or drugs along with adjuvant generating both 

antibacterial and anti-inflammatory effects are likely to be most effective at treating bacteria-
induced inflammatory syndromes.
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