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1. Introduction

The huge amount of data that can be transported by fiber lines when compared to former
existing networks of telephone lines introduced many new challenges when it comes to the
design of network topologies. Given the important costs incurred when deploying and then
operating such lines and their unprecedented bandwith capacities, “tree-like” topologies are
usually sufficient to provide the required information flow while having minimal costs. But
such topologies are extremely vulnerable; the loss of one single fiber link (or even worst,
the failure of a switching site) might split the entire network into two or more disconnected
components. Therefore the problem of designing or expanding an existing fiber Wide Area
Network (WAN) involves two antagonistic objectives. A certain level of redundancy is to
be achieved to keep certain sites connected in case of eventual failures in components; while
at the same time, it is desirable to lower as much as possible the costs associated with fiber
deployment and operation, thus leading to the problem of choosing which of subset of the
feasible links to deploy. Depending on the particular application, redundancy requirements
can consider that switch sites could fail, or assume that these are fault-tolerant and that only
the failure of fiber lines is possible. Graph Theory is a field of mathematics useful for designing
networks and analyzing their properties. In particular, the problem known as “Generalized
Steiner Problem” (GSP) is very suitable for modelling the mentioned antagonistic objectives.
It has been shown to be a quite complex NP combinatorial complexity class problem, for
which the use of heuristic algorithms is mandatory to solve real general cases with reasonable
usage of computer resources. In this chapter it is shown how the GSP can be solved by
applying combinatorial optimization metaheuristics both for the node-connected and the
edge-connected versions. The underlying context is that a number of existing sites that
we will call “fixed sites” are to be connected among themselves (making optional use of
existing intermediate switch entities if convenient) through fiber lines whose deployment
and operation involve specific costs that are to be minimized; while at the same time the
amount of component failures to tolerate is a specific requirement for every pair of fixed
sites. Suitable algorithms are proposed for generating low cost designs with reasonable use
of computer resources and some of their properties are analyzed. Results of test involving
real network topologies are presented showing that this approach generates optimal or
near-optimal topologies. Finally limitations, conclusions and current research lines on these
topics are presented.
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2. Context and problem definition

In general, a typical WAN backbone network has a meshed topology, and its purpose is to
allow efficient and reliable communication between the switch sites of the network that act as
connection points for the local access networks (eventually incorporating other switch sites
for efficiency purposes). The topological design of a WAN basically consists of finding a
minimum cost topology which satisfies some additional requirements, generally chosen to
improve the survivability of the network (that is, its capacity to resist the failures of some
of its components). One way to do this is to specify a connectivity level, and to search for
topologies which have at least this number of disjoint paths (either edge disjoint or node
disjoint) between pairs of switch sites. In the most general case, the connectivity level can be
fixed independently for each pair of switch sites (heterogeneous connectivity requirements).
This problem can be modelled as a Generalized Steiner Problem (denoted by GSP) and it is
an NP-Complete problem (Steiglitz et al., 1969; Winter, 1986; 1987). We present the formal
definition of this problem later in this section. Some references in this area are (Agrawal
et al., 1995; Baïou, 1996; Balakrishnan et al., 2004; Chopra, 1992; Goemans & Bertsimas,
1993; Grötschel et al., 1995; Ko & Monma, 1989; Robledo & Canale, 2009). Most of these
works are either focused on the edge-disjoint flavor of the problem, or on the exploration
of particular cases, for example, when it is required to have two disjoint paths between
all pairs of distinguished switch sites, which is called the 2-survivability problem (Baïou,
1996). In (Kerivin & Mahjoub, 2005; Stoer, 1992), extensive surveys over high survivability
models are introduced. We will denote by GSP-NC and GSP-EC the GSP versions with
node-connectivity constraints and edge-connectivity constraints respectively. Topologies
verifying edge-disjoint path connectivity constraints assure that the network can survive to
failures in the connection lines; whereas node-disjoint path constraints assure that the network
can survive to failures both in switch sites as well as in the connection lines.

Winter (Winter, 1985; 1986; 1987) demonstrated that the GSP can be solved in linear time if
the network is series-parallel, outerplanar or a Halin graph. Here follows a summary of the
survivability problems related to the GSP. Gröstchel, Monma and Stoer (Grötschel & Monma,
1990) consider a particular case of the GSP working on a slightly different context where
different types of node exist, representing a hierarchy of fault-tolerance requirements; they
called it the NCON problem. In (Stoer, 1992), Stoer gives an extensive survey for the NCON
and the ECON (the version with edge-connectivity constraints), and some particular cases. In
the NCON (resp. ECON) each node i has an associated nonnegative integer ri, the type of i
(the survivability requirement or “importance” of a node is modeled by node types). The GSP
model generalizes the NCON(ECON) model since in the GSP there exist general survivability
requirements rij that are specified for each pair i, j of fixed nodes independently. Nevertheless,
Grötschel, Monma and Stoer (Grötschel et al., 1991; Grötschel et al., 1992a;b; 1995) introduce
the use of node types to define survivability requirements based on the premise that these
adequately express the relative importance placed on maintaining connectivity between
offices and they classify the different problem types according to the largest occurring
node type and according to whether the node types represent node or edge connectivity
requirements. Let us note that there exist many specializations of the survivability problems
which can be formulated by varying its parameters (the required amount of disjoint paths
to connect pairs of sites, general, euclidean, uniform or other hipothesis about costs, etc).
There exist polynomially solvable cases of the NCON and ECON problems. They result from
relaxing the original problem with restrictions like uniform costs, 0/1 costs, restricted node
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types, and special underlying graphs such as outerplanar, series-parallel, and Halin graphs.
All these particular cases are referenced and briefly exposed in (Stoer, 1992). On the other
hand, lower bounds and heuristics with worst-case guarantees for kECON1 problems were
found for restricted costs, e.g., uniform costs or costs satisfying the triangle inequality, as
well as very important results on the structure of optimal survivable networks for this cost
structure. Details of these works can be seen in (Bienstock et al., 1990; Cheriyan et al., 2001;
Chou & Frank, 1970; Frank & Chou, 1970; Frederickson & Jàjà, 1982; Goemans & Bertsimas,
1993; Goemans & Williamson, 1992; Monma et al., 1990) and in a summarized form in (Stoer,
1992). Unfortunately, there exist few exact algorithms for the NCON and ECON for general
costs. Christofides and Whitlock (Christofides & Whitlock, 1981) introduce a cutting plane
algorithm together with branch-and-bound for ECON problems where the connection levels
are specified for each pair of nodes. Chopra and Gorres (Chopra, 1992) give a cutting plane
algorithm mixed with branch-and-bound for solving 2ECON problems.

In the literature there are several works related to approximation algorithms for the GSP
and different particular cases. Next, we will introduce a survey of the main existing
algorithms based on this approach. In (Ravi & Klein, 1993) the authors show how to obtain
approximately optimal solutions to 2-edge-connected versions of the problems addressed
in (Goemans & Williamson, 1992). Subsequent papers (Gabow et al., 1993; Goemans et al.,
1994; Williamson et al., 1995) extended these methods to give approximation algorithms
for the GSP-EC without link duplication. Agrawal, Klein and Ravi (Agrawal et al., 1995)
developed an algorithm for the GSP-EC with performance guarantee of 2⌈log2(rmax + 1)⌉,
where rmax is the highest requirement value. More recently Jain (Jain, 2001) presented a
factor 2 approximation algorithm for the GSP-EC. Kortsarz, Krauthgamer and Lee (Kortsarz
et al., 2004) introduced the first strong lower bound on the approximability of the GSP when
there are no Steiner nodes (i.e. all sites are fixed). An important special case of the GSP
occurs when we are searching the minimum-cost k-node-connected subgraph spanning all
the nodes. In first place, let us see the general case. In (Cheriyan et al., 2001; 2002; Czumaj &
Lingas, 1999; Kortsarz et al., 2004; Kortsarz & Nutov, 2003; Ravi & Williamson, 1997; 2002) the
authors propose several approximation algorithms for the problem of finding a minimum-cost
k-node-connected spanning subgraph, besides they give their respective approximation ratios.
For k ≤ 7 an approximation ratio of ⌈(k + 1)/2⌉ is known; see (Khuller & Raghavachari, 1996)
for k = 2, (Auletta et al., 1999) for k = 2, 3, (Jain, 1999) for k = 4, 5, and (Kortsarz & Nutov,
2003) for k = 6, 7. Other approximations for k = 2 can be seen in (Böckenhauser et al., 2002;
Csaba et al., 2002). Furthermore, in (Czumaj & Lingas, 1999), (Cheriyan & Thurimella, 2000)
and (Kortsarz & Nutov, 2003) the authors respectively supply approximation algorithms for
the following special cases: the graph has complete Euclidean topology, uniform costs, and
metric costs (i.e. when the costs satisfy the triangle inequality).

Finally, let us see works related to the particular case named “Steiner two-node-survivable
network problem", (denoted by STNSNP). In (Baïou, 1996) the author mentions different
problems related directly to the STNSNP. In particular, the problems known as the Steiner
2-edge-connected subgraph problem (STECSP), the Steiner 2-node-connected subgraph
problem (STNCSP) and the Steiner 2-edge-survivable network problem (STESNP). The
STNSNP (resp. STESNP) also corresponds to the problem kNCON (resp. kECON) in the
case where all nodes have a connectivity level requirement belonging to {0, 2}. Given a
graph N = (X, U), a subset T ⊆ X and a matrix C of connection costs associated to U;

1 ECON problems where there are at least two nodes with connectivity requirement k.
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Fig. 1. Example instance for the GSP

the objective in the STNCSP (resp. STECSP) is to find a minimum-cost 2-node-connected
(resp. 2-edge-connected) subgraph spanning the set of nodes T. If the matrix C is positive, the
sets of optimal solutions associated to the STNSNP and STNCSP are equal. Idem the sets of
optimal solutions associated to the STESNP and STECSP. If all the nodes are fixed (there are
no Steiner nodes) the problems STESNP and STECSP coincide, and also the STNSNP with the
STNCSP. Moreover, it is easy to see that all feasible solution of the STNCSP (resp. STECSP) is
also feasible for the STNSNP (resp. STESNP). In (Coullard et al., 1991) the authors developed
a linear algorithm to solve the STNCSP in the case of graphs without W4 (a wheel graph
with four nodes) and Halin graphs. The authors of this chapter have previously developed
a parallel method (of worst case exponential complexity) for the general case (Cancela et al.,
2005). Other works related to particular cases of the STNCSP, e.g. when T = X or uniform
costs, already have been mentioned above.

2.1 Problem formalization and definitions

We will formalize our optimal network design problem by using the following notation:

• G = (V, E, C) : Simple undirected graph with weighted edges, modelling feasible links;

• V : Nodes of G, representing fixed sites and intermediate optional sites to connect;

• E : Edges of G, representing feasible links between nodes;

• C : E → R
+ : Edge weights, representing the cost of deploying and operating each link;

• T ⊆ V : Terminal nodes (representing the set of fixed sites, i.e. the ones that have non-zero
connectivity requirements with at least one other node);

• R : R ∈ Z
|T|×|T| : Symmetrical integer matrix of connectivity requirements; rij = rji ≥

0, ∀i, j ∈ T; rii = 0, ∀i ∈ T.

We will model our design problem as a Generalized Steiner Problem (GSP) whose definition
is as follows.

Definition 2.1. GSP. Given the graph G with edge weights C, the teminals set T and the connectivity
requirements matrix R, the objective is to find a minimum cost subgraph GT = (VT , ET , CT) of G
where CT is the restriction of C to the subset T and every pair of terminals i, j is connected by rij

disjoint paths.
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Fig. 2. Solution for the GSP instance

Two different versions of the problem arise depending on the way “disjoint” is interpreted
above. If it refers to node-disjoint paths we will denote it as GSP-NC (node-connected);
if it refers strictly to edge-disjoint paths (allowing to share nodes) then we will denote the
problem as GSP-EC (edge-connected). This versions will allow us to model situations in which
only link-failure tolerance is required (GSP-EC) or situations in which site-failure tolerance
is required (GSP-NC). An example instance of the GSP is shown in Figure 1. There are six
fixed switch sites, colored black and labeled S1, S2, S3, S4, S5 and S6, and four non-fixed
switch sites, colored white. The connections that can be potentially deployed are shown in
the figure, annotated with their costs. The matrix R shows the connectivity requirements
among the fixed sites, ranging in this case from 2 to 3. Figure 2 shows a solution of this
instance having cost 29; note that only three of the four non-fixed sites were used. Due to
the enormous intrinsic complexity of the GSP, exact algorithms to solve it (i.e. that guarantee
that optimal solutions are built) can only be applied under specific circumstances and/or on
small instances (a few sites); it is known to be an NP complexity class combinatory problem.
Therefore, to deal with real general problems, the use of heuristic algorithms conceived to
generate good quality solutions within reasonable time and use of computing power resources
turns to be mandatory.

2.2 The GRASP metaheuristic

GRASP (Greedy Randomized Adaptive Search Procedure) is a metaheuristic which proved to
perform very well for a variety of combinatorial optimization problems; we will make use of
it to solve the GSP. A GRASP is a “multistart local optimization” procedure which performs
two consecutive phases in each iteration:

• Construction Phase: it builds a feasible solution that chooses (following some randomized
criterion) which elements to add from a list of candidates defined with some greedy
approach;
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Procedure GRASP(MetaParams, MaxIter, RndSeed)

1: bestSol ← NIL
2: for k = 1 to MaxIter do
3: greedySol ← ConstPhase(MetaParams, RndSeed)
4: localSearchSol ← LocalSearchPhase(greedySol)
5: if cost(localSearchSol) < cost(bestSol) then
6: bestSol ← localSearchSol
7: end if
8: end for
9: return bestSol

Fig. 3. GRASP pseudo-code

• Local Search Phase: it explores the neigborhood2 of the feasible solution delivered by the
Construction Phase to reach a local optimum.

Figure 3 presents a generic GRASP pseudo-code. The procedure inputs include
metaparameters MetaParams which set the size of the list of candidates and other behaviour
of the ConstPhase procedure; the amount of iterations to run MaxIter; and a seed for random
number generation. After having run MaxIter iterations the procedure returns the best
solution found. Details of this metaheuristic can be found in (Resende & Ribeiro, 2003). In the
next sections we introduce algorithms for implementing the Construction and Local Search
Phases suitable to solve the GSP-EC (edge-connected version) as well as comment any changes
necessary for adapting them also to the GSP-NC problem.

2.3 Construction phase algorithm

Our construction phase algorithm proceeds by building a graph which satisfies the
requirements of the matrix R; it starts with an edgeless graph and in each iteration one new
path is added to the solution under construction. The algorithm is shown in Figure 4. It takes
as inputs the graph G of feasible edges, the edge costs C, the set of terminal nodes T and the
matrix of requeriments R. In line 1 we initialize the solution graph under construction Gsol

with the nodes of T and no edges; the matrix M = (mij)i,j∈T which records the amount of
connection requirements not yet satisfied in Gsol between the terminal nodes i and j; the sets
Pij that will be used to record the rij disjoint paths found for connecting the nodes i, j; and
an auxiliary matrix A = {Aij} used to record how many times it was impossible to find one
more path between two terminal nodes i, j whose requirements rij were not yet covered. In
line 2 we alter the costs of the matrix C in order to make the algorithm satisfy a property that
we describe below (together with the altering function used) and introduce random.

Loop 3-15 is repeated until all terminal nodes have their connectivity requirements satisfied,
or until for a certain pair of terminals i, j, the algorithm fails to find a path a certain number of
times MAX_ATTEMPT. Each iteration works the following way. Line 4 selects two terminal
nodes i, j at random for which there are pending connectivity requirements. Line 5 computes
the graph obtained by removing from G the edges of all paths already computed to connect
i and j; thus, any path computed in G′ will be edge-disjoint from the former (i...j) paths
in Pij. In the case of the GSP-NC, not only the edges should be supressed but also the

2 Set of solutions that can be obtained by well-defined replacement of parts of the current solution
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Procedure ConstPhase(G, C, T, R)

1: Gsol ← (T, ∅); mij ← rij∀i, j ∈ T; Pij ← ∅∀i, j ∈ T; Aij ← 0∀i, j ∈ T
2: C ←alter-costs(C)
3: while ∃mij > 0 : Aij <MAX_ATTEMPT do
4: let i, j be any two terminals with mij > 0

5: G′ ← G \ Pij

6: let C′ = (c′uv) : c′uv ← [0 if (u, v) ∈ Gsol ; cuv otherwise ]
7: p ← shortest-path(G′, C′, i, j)
8: if 
 ∃p then
9: Aij ← Aij + 1; Pij ← ∅; mij ← rij

10: else
11: Gsol ← Gsol ∪ {p}
12: Pij ← Pij ∪ {p}; mij ← mij − 1
13: [P, M] ← general-update-matrix(Gsol , P, M, p, i, j)
14: end if
15: end while
16: return Gsol , P

Fig. 4. ConstPhase pseudo-code

nodes of the former (i...j) paths in order to generate node-disjoint paths. In line 6, the edges
already present in the solution under construction are given cost 0; by doing this, they will be
taken as costless when considering the cost of any new path, enabling edge-reusing among
different pairs of terminals. Line 7 computes the shortest path (regarding costs) connecting
i and j, considering as feasible the edges from G′ and with costs given by C′. In case this
turns to be impossible, this is acknowledged in line 9 by incrementing the counter Aij and
resetting the path set Pij, hoping that computing a different sucession of paths for i, j allow
to satisfy the rij requirements. In case a path p was found, it becomes part of the solution
under construction (lines 11-12), and the general-update-matrix procedure on line 13 updates
the pending connection requirements of the matrix M, by applying the Ford-Fulkerson’s
algorithm with all capacities equal to 1, to detect if the adoption of the new path turned to
satisfy other requirements besides the one for the pair i, j. Finally, the algorithm ends by
returning the feasible solution Gsol together with the path set P which “certifies” that all
requirements R were satisfied.

2.3.1 Altering costs

The algorithm here proposed satisfies the property given below, provided an appropriate
function alter-costs is used in line 2 (unlike similar construction phases previously proposed
for the GSP-NC in (Robledo & Canale, 2009) as certain trivial instances can attest):

lim
iterations→∞

probability(get an optimal solution) = 1

In other words, we can guarantee that any desired level of certainty of getting an optimal
solution can be reached provided as many iterations as needed are run.

We proved that this property is verified if the alter-costs function is such that all edges have
their costs altered independtly from the others and the altered costs take values in (0,+∞)
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with any probability distribution that assigns non-zero probabilities to any open subinterval
of (0,+∞). In our tests we used an exponential distribution with parameter 1/real_cost.

Moreover, by altering costs the proposed algorithm proceeds by just computing the shortest
path in its main loop, instead of computing a set of “simultaneous disjoint shortest paths” and
then randomly choosing one (as in previous algorithms), thus involving less computing.

2.4 Local search phase algorithms

The local search phase starts with a feasible solution obtained from the construction phase
and proceeds by consecutively moving to neighbour solutions which reduce the cost of the
solution graph until it reaches a local optimum. Any local search algorithm needs a precise
definition of the neighbourhood concept; we propose two different ones, which we chain
inside our suggested LocalSearchPhase algorithm. They are defined in terms of a certain
structural decomposition of graphs that we define below together with some other auxiliary
definitions.

Definition 2.2. key-node: Given a GSP-EC instance and a feasible solution Gsol , we define a
key-node as a non-terminal node with degree at least three in Gsol .

Definition 2.3. key-path: Given a GSP-EC instance and a feasible solution Gsol , we define a
key-path as a path in Gsol such that all intermediate nodes are non-terminal with degree two in Gsol

and whose endpoints are either terminal nodes or key-nodes.

Definition 2.4. key-tree: Given a GSP-NC instance, a feasible solution Gsol and a key-node v of
Gsol , we define as the key-tree associated to v the subgraph of Gsol obtained through the union of all
key-paths with v as an endpoint.

Definition 2.5. key-star: Given a GSP-EC instance, a feasible solution Gsol and any node v of
Gsol , we define as the key-star associated to v the subgraph of Gsol obtained through the union of
all key-paths with v as an endpoint.

2.4.1 Path-based local search neighbourhood

Our first neighbourhood is based on the replacement of any key-path k by another key-path
with the same endpoints, built with any edge from the feasible connections graph G (even
some of Gsol), provided no connectivity levels are lost when reusing edges. Let k be a key-path
of a certain solution Gsol and P a set of paths which “certificates” its feasibility (as the one
returned by ConstPhase). We will denote by Jk(Gsol) the set of paths {p ∈ Gsol : k ⊆ p}.
These are the paths which contain the key-path k. We will also denote by χk(Gsol) the edge set

χk(Gsol) =
⋃

q=i...j∈Jk(Gsol)

E(Pij \ q)

These are the edges that, if used to replace the key-path k in P (obtaining a path set P′), would
turn to be shared by some paths from Gsol with the same endpoints, thus invalidating the
resulting set P′ as a feasibility certificate. We can now define our first neighbourhood.

Definition 2.6. Neighbourhood1: Given a GSP-EC instance and a feasible solution Gsol , it is the set
of all graphs obtained by replacing any key-path k of Gsol by another path p such that cost(p) < cost(k)
and the edges of p are chosen from the set E \ χk(Gsol) and/or k. (Recall that E represents the feasible
edges between nodes).
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Procedure LocalSearchPhase1(G, C, T, S)

1: improve ← TRUE
2: κ ← k-decompose(S)
3: while improve do
4: improve ← FALSE
5: for all kpath k ∈ κ with endpoints u, v do
6: G′ ← the subgraph induced from G by E(k) ∪ (E \ χk(S))
7: C′ ← (c′ij)/c′ij = 0 if (i, j) ∈ S \ k; c′ij = cij otherwise

8: k′ ← shortest-path(G′, C′, u, v)
9: if cost(k′, C′) < cost(k, C′) then

10: improve ← TRUE
11: update S : ∀p ∈ Jk(S)(p ← (p \ k) ∪ k′)
12: if ∃z ∈ V(k′), z /∈ {u, v}, degree(z) ≥ 3 in S then
13: remove-cycles(Jk(S))
14: κ ← k-decompose(S)
15: else
16: κ ← κ \ {k} ∪ {k′}
17: end if
18: end if
19: end for
20: end while
21: return S

Fig. 5. LocalSearchPhase1 pseudo-code

Based on these definitions we built the path-based local search algorithm LocalSearchPhase1
shown in Figure 5. The algorithm receives as inputs the graph G of feasible connections, the
edge cost matrix C, the terminals set T and a path set S which build up a feasible solution. Line
1 initializes the flag improve which indicates wheter an improved solution has been found or
not. Line 2 computes the decomposition in key-nodes and key-paths of the set S. Loop 3-20
looks for succesive cost improvements until no more can be done. Each iteration proceeds as
follows. The loop 5-19 analyzes each key-path k trying to find a suitable replacement with
lower cost. Line 6 computes the edge set E(k) ∪ (E \ χk(S)), where edges are to be chosen
from to build the replacing key-path. This set is such that, as seen above, ensures no loss of
connectivity levels in the new solution obtained, while allowing the reuse of edges already
present in the current solution S. Line 7 computes a new cost matrix C′, zeroing the cost
of all edges of S that are not included in the key-path k, to reflect the fact that using any of
those edges to build the replacing key-path adds no extra cost to the modified solution. Line
8 computes the path with lower cost according to the matrix C′ over the subgraph computed
in line 6. Line 9 verifies if the adoption of the new key-path implies a cost reduction. If so,
it is acknowledged by the flag improve and k is replaced in all paths of S which included k.
Care is taken to remove cycles and recompute the k-decomposition if a certain node happens
to have a degree greater than two after the replacement (lines 12-14); if the latter does not
happen, line 16 simply updates the k-decomposition by replacing the key-path (thus avoiding
computing a new k-decomposition from scratch). After exiting the main loop, line 21 returns
a feasible solution whose cost can no more be reduced by moving to neighbour solutions.
As we commented in the Construction Phase, for the GSP-NC problem a small change in the
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Procedure LocalSearchPhase2(G, C, T, S)

1: improve ← TRUE
2: κ ← k-decompose(S)
3: while improve do
4: improve ← FALSE
5: for all kstar k ∈ κ do
6: [k′, newCost] ← BestKeyStar(G, C, T, S, k)
7: if newCost < cost(k, C) then
8: improve ← TRUE
9: replace k by k′ in all paths from S

10: κ ← k-decompose(S)
11: abort for all
12: end if
13: end for
14: end while
15: return S

Fig. 6. LocalSearchPhase2 pseudo-code

definition of Jk and χk must be made, supressing also the nodes involved rather than only the
edges.

2.4.2 Key-star-based local search neighbourhood

Our second neighbourhood is based on the replacement of key-stars, which frequently allow
to improve feasible solutions that are locally optimal when only considering Neighbourhood1.
In the case of the GSP-NC, as no node sharing is allowed among disjoint paths, all key-stars are
trees (named key-trees); a key-tree replacement neighbourhood for the GSP-NC can be found in
(Robledo & Canale, 2009). Due to the possibilty of sharing nodes among edge-disjoint paths,
when working with GSP-EC problems, we have to work with key-stars, and unlike (Robledo
& Canale, 2009) we will allow the root node to be a terminal node in order to get a broader
neighbourhood. In the GSP-NC any key-tree can be replaced by any tree with the same leaves
with no loss of connectivity levels. In the GSP-EC, if the replacing structure is also a key-star
the same holds true; but it does not for other general structures (non-star trees included).
We propose an algorithm that given a key-star k, deterministically seeks for the lowest cost
replacing key-star k′ able to “repair” the paths from P broken when removing the edges of k.

Let k be a key-star in a certain feasible solution Gsol and P a set of paths which “certificates”
its feasibility (as the one returned by ConstPhase). For allowing as much reusing of edges as
possible, we can extend our previous definition of Jk(Gsol) and χk(Gsol) to consider key-stars
k instead of key-paths; and thus we can define the key-star based neighbourhood as follows.

Definition 2.7. Neighbourhood2: Given a GSP-EC instance and a feasible solution Gsol , it is the
set of all graphs obtained by replacing any key-star k of Gsol by the lowest possible cost key-star k′ such
that k′ preserves the same connectivity among the leaves of k and its terminal nodes, and the edges of k′

are chosen from the set E \ χk(Gsol) and/or k.

We present the star-based local search algorithm LocalSearchPhase2 in Figure 6. The
algorithm receives as inputs the graph G of feasible connections, the edge cost matrix C, the
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Procedure BestKeyStar(G, C, T, S, k)

1: G′ ← the subgraph induced from G by E(k) ∪ (E \ χk(S))
2: C′ ← (c′ij)/c′ij = 0 if (i, j) ∈ S \ k; c′ij = cij otherwise

3: add a “virtual node” w to G′

4: Ω ← ψk

5: if θk ∈ T then
6: Ω ← Ω ∪ {θk}
7: end if
8: for all m ∈ Ω do
9: add δ̂k,m parallel edges (w, m) to G′ with cost 0

10: end for
11: cmin ← 0; kmin ← k
12: for all z ∈ V(G) do
13: k′ ← simult-shortest-paths(G′, δG,w, z, w)
14: if k′ has δG,w paths ∧ cost(k′, C′) < cmin then
15: cmin ← cost(k′, C′); kmin ← k′

16: end if
17: end for
18: return [kmin, cmin]

Fig. 7. BestKeyStar pseudo-code

terminals set T and a path set S which build up a feasible solution. Line 1 initializes the flag
improve which indicates wheter an improved solution has been found or not. Line 2 computes
the decomposition in key-nodes and key-paths of the set S. Loop 3-14 looks for succesive
cost improvements until no more can be done. Each iteration proceeds as follows. The loop
5-13 analyzes each key-star k trying to find a suitable replacement with lower cost. Line 6
determines the lowest cost key-star k′ that could replace k and its cost (computed assuming
that edges from the current solution not in k have no cost to promote edge reusing). To do so
it uses the procedure BestKeyStar described later. Line 7 verifies if the replacing key-star has
lower cost than k; if it does, lines 8-11 acknowledge the fact, the replacement is done over the
set S, the k-decomposition is recomputed and the “for all” loop is aborted to restart looking
for improvements. After exiting the main loop, line 15 returns a feasible solution whose cost
can no more be reduced by moving to neighbour solutions.

Figure 7 presents the algorithm BestKeyStar. Given a key-star k we denote by θk its root node;
by ψk the set of its leaf nodes; and by δ̂k,m (being m the root node of k or one of its leaves) the
highest amount of key-paths that join m in k with any other node that is root or leaf in k. The
algorithm is based on the idea of building key-stars by employing the simult-shortest-paths
algorithm (that can be found in (Bhandari, 1997) as k-shortest-path). Lines 1-2 compute the
subgraph of G obtained by removing the edges that could cause loss of connectivity level if
reused; the altered cost matrix C′ with cost zero for reused edges; and adds a virtual node w
whose purpose is explained below. Lines 4-7 determine the set of leaf nodes that the key-star
to build must have. Lines 8-10 connect each of the latter to w with an appropriate number of
parallel zero-cost edges totalling δG,w (degree of w in G) edges. The loop 12-17 considers nodes
of G that could be potencial roots z of the key-star to be found, and then builds the lowest-cost
one with root node z through the application of the simult-shortest-path algorithm in line 13;
δG,w edge-disjoint paths connecting z and w are requested. If found (lines 14-16) and with
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Fig. 8. Computing the best key-star

lower cost than k then the new key-star and its associated cost are recorded as the best ones
so far found. After having considered all possible root nodes, line 18 returns both the best
key-star and its cost according to C′.

Figure 8 depicts the process of determining which the best key-star to replace a given one is.
It illustrates (a) the feasible graph G with a key-star that keeps connected the leaf nodes t, u, v;
(b) the graph G′ obtained after adding the virtual nodes w linked with no cost to t, u, v by the
appropriate amount of edges and choosing a “candidate” root node z; (c) the shortest paths
found to connect z and w; and (d) the new key-star obtained after removing the virtual node
w.

2.5 GRASP algorithm description

Now we are able to put the pieces together and build a GRASP algorithm for solving the
GSP-EC. Figure 9 shows the resulting pseudo-code. Basically the local search phase of this
algorithm applies key-path replacement based movements until no further improvements are
possible; then it tries to apply the best key-star replacement movement (once); if the latter is
done with a cost reduction, then key-path replacements are tried again, and so on, until no
further improvements are possible for both kinds of movements.

The algorithm receives as inputs the graph G of feasible connections, the cost matrix C, the
terminals T, the redundancy requirements matrix R and a the number of iterations iters to
perform. In line 1 the minimum cost found cmin is initialized to ∞ and an empty path set Sopt

is initialized. The main loop (2-18) is executed iters times and then the best solution found
is returned. Line 3 builds a feasible solution employing our ConstPhase greedy randomized
adaptive algorithm; being S the path set that certifies feasibility. If the set S has less paths
than the so far found best solution Sopt (line 4) this iteration is discarded. This could happen
if the last call to ConstPhase was not able to satisfy all requirements of R and a previous call
was able to do it (or at least to satisfy a greater number); our first objective is to satisfy as
many requirements of R as possible. Line 6 applies the key-path based movements by calling
LocalSearchPhase1. If this was the first local search or if a cost reduction was achieved then
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Procedure GRASP_GSP(G, C, T, R, iters)

1: cmin ← ∞; Sopt ← ∅

2: for i = 1 to iters do
3: [Gsol , S] ←ConstPhase(G, C, T, R)
4: if |S| ≥ |Sopt| then
5: f lag ←TRUE
6: OptLoop: [Gsol , S′] ←LocalSearchPhase1(G, C, S)
7: if f lag ∨ cost(S′) <cost(S) then
8: f lag ←FALSE
9: [Gsol , S′′] ←LocalSearchPhase2(G, C, S′)

10: if cost(S′′, C) <cost(S′, C) then
11: S ← S′′; go to OptLoop
12: end if
13: end if
14: if cost(S′, C′) < cmin then
15: cmin ←cost(S′′, C); Sopt ← S
16: end if
17: end if
18: end for
19: return Sopt

Fig. 9. GRASP_GSP pseudo-code

a best key-star movement is tried in line 9. In case the latter succeeds in reducing the cost
(verified in line 10), the execution flow resumes at line 6, for trying a new cycle of chained
improvements. When no further local improvements are possible, lines 14-16 update the best
known solution in case an improvement was achieved.

3. Performance tests

This section presents the results obtained after testing our algorithms with twenty-one test
cases. The algorithms were implemented in C/C++ and tested on a 2 GB RAM, Intel Core
2 Duo, 2.0 GHz machine running Microsoft Windows Vista. All instances were run with the
parameter iters set to 100.

3.1 Test set description

To our best knowledge, no library containing benchmark instances related to the GSP-NC nor
GSP-EC exists; we have built a set of twenty-one test cases that are based in cases found in the
following public libraries:

• steinlib (Koch et al., 2000): instances of the Steiner problem; in many cases the optimal
solution is known, in others the best solution known is available;

• tsplib (Reinelt, 2004): instances of diverse graph theory related problems, including a
“Traveling Salesman Problem” section.

The main characteristics of the twenty-one test cases are shown in Table 1.. For each case
we show the amount of nodes (V), feasible edges (E), terminal nodes (T) and Steiner (non
terminal) nodes (St). We also show the level of edge-connectivity requirements (one, two,
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Case V E T St Redund. Opt

b01-r1 50 63 9 41 1-EC 82
b01-r2 50 63 9 41 2-EC NA
b03-r1 50 63 25 25 1-EC 138
b03-r2 50 63 25 25 2-EC NA
b05-r1 50 100 13 37 1-EC 61
b05-r2 50 100 13 37 2-EC NA
b11-r1 75 150 19 56 1-EC 88
b11-r2 75 150 19 56 2-EC NA
b17-r1 100 200 25 75 1-EC 131
b17-r2 100 200 25 75 2-EC NA

cc3-4p-r1 64 288 8 56 1-EC 2338
cc3-4p-r3 64 288 8 56 3-EC NA
cc6-2p-r1 64 192 12 52 1-EC 3271
cc6-2p-r2 64 192 12 52 2-EC NA

cc6-2p-r123 64 192 12 52 1,2,3-EC NA
hc-6p-r1 64 192 32 32 1-EC 4003
hc-6p-r2 64 192 32 32 2-EC NA

hc-6p-r123 64 192 32 32 1,2,3-EC NA
bayg29-r2 29 406 11 18 2-EC NA
bayg29-r3 29 406 11 18 3-EC NA

att48-r2 48 300 10 38 2-EC NA

Table 1. Characteristics of the Test Cases

three or mixed) and the optimal costs when available. GSP poblems solved with connectivity
level one are Steiner problems and in those cases we got the optimal solution cost from steinlib.
Problems b01, b03, b05, b11 and b17 were taken from steinlib’s problem instances set “B”
and are cases randomically generated with integer uniform costs ranging from 1 to 10. The
case cc3-4p belongs to steinlib’s instance set “PUC”; eigth terminal nodes are terminal and
we solved two instances with uniform connectivity requirements one and three. The cases
cc6-2p and hc-6p belong also to steinlib’s instance set “PUC”; twelve and thirty-two nodes
are terminal and we solved three instances for each one with connectivity requirements one,
two, and a mix of one to three. Finally the cases bayg29 and att48 were taken from the library
tsplib; both correspond to real cases (twenty-nine cities from Bavaria, Germany; and 48 cities
from USA).

3.2 Numerical results

Computational results of the tests can be found in Table 2. Here follows the meaning of each
column:

• Reqs.: total amount of requirements satisfied by the best solution found

• t(ms): the average running time (in ms) per iteration

• Cost: the cost of the best solution found
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Case Reqs. t(ms) Cost %LSI

b01-r1 36 77 82 3.0
b01-r2 42 80 98 3.4
b03-r1 300 2611 138 10.6
b03-r2 378 3108 188 4.1
b05-r1 78 298 61 9.2
b05-r2 144 1389 120 5.2
b11-r1 171 1477 88 13.8
b11-r2 324 4901 180 3.4
b17-r1 300 6214 131 10.2
b17-r2 531 15143 244 3.0

cc3-4p-r1 28 388 2338 10.0
cc3-4p-r3 84 2221 5991 4.6
cc6-2p-r1 66 2971 3271 2.4
cc6-2p-r2 132 4801 5962 10.2

cc6-2p-r123 140 6317 8422 9.8
hc-6p-r1 496 25314 4033 6.8
hc-6p-r2 992 28442 6652 3.5

hc-6p-r123 957 26551 7930 5.2
bayg29-r2 110 975 6856.88 4.6
bayg29-r3 165 2413 11722 4.2

att48-r2 90 1313 23214 13.0

Averages 265 6524 - 6.7

Table 2. Numerical Test Results

• LSI: “local search improvement” - the percentage of cost improvement achieved by the
local search phase when compared to the cost of the solution delivered by the construction
phase, for the best solution found

In all cases with connectivity requirements equal to one (1-EC) for all pairs of terminals (for
which the optimal costs are known) every best solution found is optimal, with the exception
of the case hc-6p-r1 (found cost 4033 being the optimal cost 4003). Note also that the average
cost improvement over the solution delivered by ConstPhase (LSI) amounts to 6.7% (when
computed only for the best solutions found). All solutions found are edge-minimal regarding
feasibility (no edge can be supressed without losing required connectivity levels); and in all
cases the maximum possible number of requirements are satisfied (i.e. for all pairs of terminals
i, j, whether their requirement rij was satisfied or fij disjoint paths were found being fij the
maximum achievable amount of disjoint paths joining i and j given by the topology of the
feasible connections graph G). Figure 10 show the best 3-connected network found to connect
the sites of bayg29, as well as the best 2-connected network found to connect the sites of att48.

4. Current research

4.1 Relationship among the GSP-NC and GSP-EC problems

There is a strong relationship among the GSP-NC and the GSP-EC problems. We have
demonstrated that any GSP-EC instance can be transformed in polinomial time into a GSP-NC
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Fig. 10. Best Solutions for cases bayg29 and att48

Fig. 11. Transforming GSP-EC into GSP-NC instances

instance, whose optimal solutions can in turn be transformed back (in polinomial time) into
optimal solutions of the original GSP-EC instance. To do so a well-known node-splitting
technique is applied as shown in Figure 11.. There, a GSP-EC instance involving four terminal
nodes and three Steiner nodes is transformed (through T1) into a GSP-NC instance with six
terminal nodes and six Steiner nodes. Every node with degree d > 2 is transformed into
a d-clique with all edge costs equal to zero. The transformations T2 and T3 show how to
translate a path from the GSP-EC instance to its corresponding path in the GSP-NC and
vice-versa. After solving the GSP-NC instance, finding a solution S with cost c and a set
P of certificate paths, these can be translated through T3 into a set of paths that happens
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to be a valid solution of the GSP-EC instance and with the same cost c. We proved also
that if S is optimal for the GSP-NC instance, then T3(S) will be an optimal solution of the
GSP-EC instance. This opened the question of wether it is best to focus on solving efficiently
GSP-NC instances and using these transformations to solve GSP-EC instances, or focus also
on developing GSP-EC specific algorithms which make use of the particulars introduced by
the chance of node reusing among paths.

4.2 Altering costs

As we have seen above, altering the costs under certains hipothesis guarantees that the
construction phase algorithm can have as high a chance of building an optimal solution as
wanted provided the needed amount of iterations are run. In our tests we have used the
exponencial distribution to alter the costs; it satisfies those hipothesis. Nonetheless it is
pending to investigate which other distributions can be applied, eventually with better results.
The exponential distribution just takes into account the expected value of the edge cost as
parameter, not considering other factors that characterize the problem like costs dispersion.
During testing we found that for those cases with little cost differences among edges the
exponential distribution tends to generate too randomized values (i.e. with high dispersion);
for many of those cases better results were attained using alternative ways of randomization
that took under consideration also the standard deviation of the edge costs.

4.3 A recursive neigbourhood approach

The neigbourhoods that we used to define local search movements are based on the k-decom-
position of graphs into key-paths, key-trees and key-stars. When studying the performance
of the algorithms we have found several other types of structures that could be optimized
yet using more complex movements i.e. not decomposable into sequences of key-paths,
key-trees or key-stars replacements. We have also seen that the deterministic computation
of the optimal replacing structure rapidly gains complexity when considering more complex
structures; in the case of key-stars we have presented an algorithm for computing the best
replacing key-star that made processing time soar because of the need of computing k-shortest
disjoint paths. Therefore we consider relevant the creation of neighbourhood mechanisms
that encompass heuristic criteria with complex structures replacement. We are working on an
extension of the GSP that we named EGSP and can be solved by recursively invoking smaller
instances of itself, determined by the supression of any desired edge set; this should allow to
choose at will the structures to replace no matter their size or complexity. Current questions
regarding this topic include: which kind of structures to replace given a certain (sub)instance
of the problem for the next recursive calls; and at which point the use of more direct algorithms
like the ones in this chapter turns to be more convenient.

5. Conclusion

In this chapter we introduced a framework and algorithms suitable to address the design
of minimal cost networks under connectivity constraints, modelled as Generalized Steiner
Problems both node-connected (GSP-NC) and edge-connected (GSP-EC). Our algorithm
GRASP_GSP was shown to find good quality solutions to the GSP-EC when applied to a
series of heterogeneous test cases with up to 100 nodes and up to 406 edges. For all cases
with known optimal cost the algorithm was able to find solutions with costs no more than
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0,74% higher than the optimal cost. Significant cost reductions were achieved after applying
the local search phase over the greedy solutions built by the construction phase. Execution
times of the tests run for the GSP-EC were comparable to the ones of previous similar works
(Robledo & Canale, 2009) for the node-connected version of the GSP-NC and similar sizes. We
also mentioned current research lines and extensions on the ideas treated within this chapter.
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