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Abstract

A sudden release of UF6 inside a building or to the atmosphere could conceivably cause
undesirable health effects to workers and the public in general, mainly associated with the
exposure to hydrolysis products HF and UO2F2. Although the hydrolysis reaction of UF6 is
fast, after escaping of UF6 into the atmosphere, besides HF and UO2F2, UF6 may also be
found in the atmosphere. This chapter proposes a real-time technique to provide informa-
tion to technical personnel and facility operators on the atmospheric release of UF6 to ensure
that the workers, the public, and the environment are adequately protected. The system
comprises a combined differential absorption lidar (DIAL) and Raman lidar to detect
gaseous UF6 and HF, simultaneously. The DIAL provides information on UF6 concentration
using a frequency-quadrupled Nd:YAG laser at 266 nm as the off-wavelength and a Nd:-
YAG-pumped Coumarin 450 dye laser using a Littrow grating mounting operating in the
frequency doubled at 245 nm as the on-wavelength. Recording Raman scattering of molec-
ular HF at wavelength of 297.3 nm (with Raman frequency shift of 3959 cm�1) is a versatile
technique to identify HF as a probe for real-time detection and localization of UF6 leaks.

Keywords: uranium hexafluoride, hydrogen fluoride, uranium-enrichment plants,
fuel cycle facilities, differential absorption lidar (DIAL), Raman lidar

1. Introduction

The raw material for today’s nuclear fuel is uranium which first discovered in eighteenth

century. Natural uranium consists primarily of two isotopes, 99.3% is U-238 and 0.7% is U-

235. The fission process, by which heat energy is released in a nuclear reactor, takes place
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mainly in U-235 which can sustain a chain reaction; a reaction in which each fission produces

enough neutrons to trigger another, so that the fission process can maintain without any

external source of neutrons. In contrast, uranium-238 cannot sustain a chain reaction, but it

can be converted to plutonium-239 by high-energy neutrons, which can sustain a chain reac-

tion and release large amounts of energy and is therefore often used to enhance the explosive

power of thermonuclear, or hydrogen, bombs [1]. Plutonium-239, virtually nonexistent in

nature, was used in the first atomic bomb tested July 16, 1945 and in the one that was dropped

on Nagasaki on August 9, 1945. U-234 is a highly radioactive, but it is not useful in any

applications.

In 1938, German physicists Otto Hahn and Fritz Strassmann showed that uranium could split

into parts to yield lighter elements, neutrons, and energy. For instance, U-238, with half-life of

about 4.5 billion years, decays by alpha emission into daughters like thorium-234, which itself

decays by beta emission to protactinium-234, which decays by beta emission to uranium-234,

and so on. After several more alpha and beta decays, the series ends with the stable isotope

lead-206 [1]. Alpha particles have less penetrating than other forms of radiations and weak

gamma rays. As long as uranium remains outside the body, it poses little health hazard

(mainly from the gamma-rays). If inhaled or ingested, however, its radioactivity poses

increased risks of lung cancer and bone cancer. Uranium is also chemically toxic at high

concentrations and can cause damage to internal organs, notably the kidneys.

Most nuclear power plants require fuel with U-235 enriched to a level of 3–5%. The

uranium fuel cycle begins with the mining and milling uranium ore to produce “yellow

cake,” a yellow powder of uranium oxide (U3O8), which is shipped to conversion facilities

for converting to UF6; the form in which uranium is accepted at current isotope enrich-

ment plants. UF6 gas is filled into large cylinders where it solidifies. The cylinders are

loaded into strong metal containers and shipped to the uranium-enrichment plant. After

enrichment, UF6 is chemically converted to uranium dioxide (UO2) or metal. Yellow cake

has a pungent odor, is insoluble in water, and contains about 80% UO2, which melts at

approximately 2880�C.

Amajor concern in nuclear fuel cycle facilities, therefore, is the potential of accidental release of

UF6 inside a building or to the atmosphere. UF6 is rapidly hydrolyzed by ambient moisture to

form HF and uranyl fluoride (UO2F2). HF is not in itself radioactive; however, it is an

extremely corrosive substance that causes severe skin burns, damage to the eyes, and lung

injury when inhaled. The effect from acute exposure to HF is a function of the HF concentra-

tion and the exposure time. The accumulation of HF in the atmosphere may attack carbon steel

and cause corrosion, rupture, or worker exposure via inhalation and skin problem. UO2F2 is a

water-soluble compound, which in addition to being radioactive can also have toxic chemical

effects. If ingested or inhaled, it will enter the bloodstream and will act primarily on the

kidneys.

Conversion and enrichment facilities have had a number of accidents involving uranium

hexafluoride. One such accident at the Sequoyah Fuels conversion plant in Gore, Okla-

homa, on January 4, 1986, killed one worker, hospitalized 37 of the 42 onsite workers, and

sent approximately 100 residents to the hospital as well [3]. The most important steps in
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the nuclear fuel cycle, namely, uranium refining, conversion, and enrichment, involve the

production, handling, transportation, and waste management of UF6 and related products.

Due to the hazardous properties (radioactive, corrosive, and toxic) of UF6, these opera-

tions must be carried out in a safe manner to protect plant workers, the public, and the

environment.

It should be pointed out that UF6 concentration in the environment should be restricted to

less than 0.2 mg/m3 or 13.8 ppb [2]. A common problem associated with the complex flow

systems is the detection of gas leaks that cannot be directly observed. At present, there is no

common and sensitive remote sensor for real-time monitoring the health and safeguarding

uranium enrichment plants. To the author’s knowledge, there are some passive and time-

consuming methods utilizing the nondestructive measurement of U-235 and U-238 concen-

trations (or evaluation U-235/U-238 isotope ratio) known as “enrichment meter” based on

detection main gamma radiation at 185.7 and 1001.0 keV, respectively [3, 4]. This method

can be used on UF6 released into the atmosphere with either germanium or NaI detector-

based systems [5] but is limited in accuracy and requires calibration for each type of sample

material and range. Although the 186- and 1001-keV peaks are easy to measure, it is

difficult to determine the relative detection efficiency of these two gamma rays because of

the large difference in their energies. On the other hand, laser-induced fluorescence can be

used for remotely measuring UO2F2 concentration. This technique can provide specific

chemical information like Raman scattering method; however, the fluorescence of solid-

phase uranyl appears to be strongly affected by crystal properties and the extent of hydra-

tion [6]. Another method is elastic Mie scattering combined with absorption spectroscopy.

The uranyl ion absorption near 10.5 μm overlaps a major lasing transition of the CO2 laser,

which can be used for detection of uranyl fluoride aerosol with minimal interference from

major atmospheric gases. However, this wavelength is large relative to the average sizes of

UO2F2 in the released Uf6 plume, and thus, the intensity of the scattered light is very weak

(Mie scattering).

In the previous works, we proposed an UV-DIAL for measuring UF6 concentration in the

atmosphere [7, 8]. In the UV region, signal to noise ratio (SNR) can be enhanced due to the

varying of the Rayleigh and Raman backscattered signal as λ�4, where λ is wavelength.

Also, available shot-noise limited photomultiplier tubes (PMTs) with a high sensitivity and

high-specific detectivity may increase the improvement of SNR in the UV region. UV-DIAL

and Raman lidars are the most promising remote sensing techniques with high sensitivity

and accuracy for remotely monitoring gaseous uranium hexafluoride [9]. In contrast, Raman

lidar has a unique capability to provide additional information on the structure of the

molecular species [10]. In Raman scattering, the frequency shifts are characteristic of the

molecule and can be used as a molecular fingerprint. It is a weak process, typically only 1 in

106–108 photons undergo the Raman inelastic scattering event. This drawback may compen-

sate by using a high power and high repetition rate UV laser (in the order of several tens of

Hz), telescope with large area, sensitive PMT detector, and decreasing background noise. It

should be emphasized that the elastic lidar near the surface detects combined signals of the

Rayleigh and the Mie scattering that may limit the quantitative measurement of properties of

molecules in the long-path remote sensing. However, in the DIAL technique, the systematic
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error due to the aerosol scattering is negligible, and errors may arise when the wavelengths

are significantly separated.

In this chapter, a system consists of UV-DIAL and Raman lidar for real-time actively remote

monitoring uranium-enrichment plants has been proposed [9]. Because of the fast reaction of

UF6 with water vapor in the atmosphere (see Figure 1), simultaneous measurement of UF6 and

HF may decrease the measurement’s uncertainty and improve the sensitivity. A green

targeting laser diode can be used to visualize and help the operator to determine where is

aiming with invisible UV laser beam during the screening. The system comprises a frequency-

quadrupled, compact, pulsed Nd:YAG laser at 10 Hz repetition rate for the off-wavelength at

266 nm and a frequency-doubled Nd:YAG-pumped Coumarin 450 using a Blazed grating

mounted in Littrow configuration operating in the frequency doubled for the on-wavelength

at 245 nm. The grating is invariably used to allow tuning of the laser across the wide gain

bandwidth of the laser. Raman scattering measurements of HF at 297.3 nm with Raman

frequency shift 3959 cm�1 are helpful to identify HF as a probe for real-time detection and

localization of toxic UF6 leaks.

It should be mentioned that the absorption spectroscopy is also utilized for remotely detection

of HF at 1.28 μm [12]. However, it has a drawback of inability to distinguish HF and also

limitation due to the strong absorption of water vapor in the region which hampers the

measurements, especially at relatively low HF concentrations. Hence, because of the very

weakness of Raman scattering of water [10], Raman lidar may be a versatile technique to study

HF in the wet environment. Moreover, Raman signal and thereby SNR can be significantly

enhanced using UV light especially in the solar blind ultraviolet (200 –310 nm). We believe

combined UV-DIAL and Raman lidars is a promising and reliable real-time tool for measuring

Figure 1. Varying UF6 and HF concentration in the moisture atmosphere versus time [11].

Uranium - Safety, Resources, Separation and Thermodynamic Calculation92



and tracing UF6 and HF components in the atmosphere to greatly decrease probable disaster

results by releasing gaseous UF6 in the atmosphere.

2. Physical and chemical properties of UF6

Uranium hexafluoride can be a solid, liquid, or gas, depending on its temperature and pres-

sure. The phase diagram of UF6 is schematically shown in Figure 2, which presents different

physical forms of UF6 as a function of temperature and pressure [13]. At atmospheric pressure

(14.7 psia), UF6 is a solid below a temperature of 134�F (56.6�C) and a gas at temperatures

above 134�F. Liquid UF6 is formed only at temperatures greater than 147.2�F (64.02�C) and at

pressures greater than 1.5 times atmospheric pressure (~22 psia). At atmospheric pressure,

solid UF6 will transform directly to UF6 gas (sublimation) when the temperature is raised to

134�F, without going through a liquid phase. Detail description on its physical properties can

be found in Ref. [14]. All three phases, solid, liquid, and gas, coexist at 64.02�C (147.2�F, the

triple point) and P = 1.497 atm. Only the gaseous phase exists above 446�F (230.2�C, the critical

temperature), at which critical pressure is 45.5 atm.

Uranium hexafluoride is the substance most suitable for use in the fuel cycle facilities processes

because of its exotic physical properties. Since fluorine exists naturally in only one isotopic

form (F-19), the physical processes widely used for enrichment of U-235, such as diffusion,

centrifugation, and molecular laser isotope separation (MLIS), increase only the concentrations

of uranium isotopes. The process of fluorination of uranium dioxide to produce UF6 can be

subdivided into the following chemical reactions:

Figure 2. UF6 phase diagram, showing relationship between pressure, temperature, and physical form [13].
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U3O8 þ 2H2 ! 3UO2 þ 2H2O (1)

UO2 þ 4HF ! UF4 þ 2H2O (2)

UF4 þ F2 ! UF6 (3)

The density of UF6 changes with temperature and for the solid phase can be described by the

following equation [15]:

ρs ¼ 5194� 5:168T kg=m3 (4)

for 0�C ≤ T ≤ 64�C. In the liquid state, its density varies in a nonlinear fashion and can be

summarized by the following equation [15]:

ρl ¼ 1670þ 152:03 Tc � Tð Þ0:5 kg=m3 (5)

where Tc = 230.2�C, which is accurate close to triple point (T = 64.02�C, p = 1.497 atm), and

ρl ¼ 2084:3� 3:1T þ 371 Tc � Tð Þ0:3045 kg=m3 (6)

which is more accurate close to the critical point (T = 230�C, p = 45.5 atm). Note that T in

Eqs. (4)–(6) is measured in �C.

In the vapor phase, the density of UF6 can be described according to an equation which is

similar in form to the ideal gas law [15]:

ρv ¼
4291p

T 1� 1:3769� 106p=T3
� � kg=m3 (7)

where p is in atm, and T is in K. In the range of 50–140�C, Eq. (8) gives density values [16],

which is similar to those obtained using Eq. (7), but it is applicable over a wider temperature

range and does not have a singularity limit, i.e.

ρv ¼
4291p

T
1þ 1:2328� 106p=T3
� �

kg=m3 (8)

Comparing Eqs. (4) and (5), we can see that during the change from solid to liquid at 64.02�C, a

volume expansion of 25.36% takes place (density changes from 4863.25 kg/m3 (solid) to

3629.95 kg/m3 (liquid)).

When gaseous UF6 escapes into the moist atmosphere, it rapidly reacts and hydrolyzes with

the ambient water vapor to form hydrogen fluoride (HF) gas and uranyl fluoride (UO2F2)

particles with diameters of a few microns, both of which are very toxic. This exothermic

reaction can be written in the following forms:

UF6 þ 2H2O ! UO2F2 þ 4HFþ heat (9)

or
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UF6 þH2O ! UOF4 þ 2HF (10.a)

UOF4 þH2O ! UO2F2 þ 2HFþ heat (10.b)

The UF6 hydrolysis reaction releases approximately 58 kJ/g mole of H2O, which heats the

plume and causes plume rise that afterward slowly sink to the ground. This hydrolysis

reaction plays an important role in determining the fate of UF6 that is released into the

atmosphere. If a release occurs inside a building, this fog may impair escape from the release

area or may difficult planned emergency actions. A dense fog was observed, for example, at

the Hanau conversion plant, in 1987, during a UF6 release from an autoclave [17]. It has been

reported that UO2F2 concentrations as low as 1 g/m3 are visible, and visibility is less than 90 cm

[18]. Fog can also occur in unconfined areas if the humidity is high.

The hydrolysis reaction is very fast and is limited by the availability of water. To hydrolyze

1000 kg of UF6, 100 kg of water is required; at 25�C and 70% relative humidity, this amount of

water is contained in 6000 m3 of air. Following a large-scale release of UF6 outside, the

dispersion is governed by meteorological conditions. The plume could still contain unhydro-

lyzed UF6 even after traveling a distance of several 100 meters. In other words, although the

hydrolysis reaction of UF6 is fast, after escaping of UF6 into the atmosphere, besides HF and

UO2F2, UF6 may also be found in the atmosphere. Only escaping a few 100 g of UF6 into the

atmosphere will raise the formation toxic and opaque cloud of uranyl fluoride [19]. UO2F2 is a

particulate that is very soluble in the lungs, and the uranium acts as a heavy metal poison that

can affect the kidneys. HF is an acid vapor that can cause acid burns on the skin or lungs. In the

event of an accidental release, its toxicity level can be reached in minutes.

It should be emphasized that enriched UF6 cannot be directly used in reactors, as it does not

withstand high temperatures or pressures. It is therefore converted into UO2. Fuel pellets are

formed by pressing UO2, which is sintered (baked) at temperatures of over 1400�C to achieve

high density and stability. The pellets are cylindrical and are typically 8–15 mm in diameter

and 10–15 mm long. They are packed in long metal tubes to form fuel rods, which are grouped

in “fuel assemblies” for introduction into a reactor. The spent fuel contains uranium (96%),

plutonium (1%), and high-level waste products (3%). The uranium with less than 1% fissile U-

235 and the plutonium can be reused. Some countries chemically reprocess usable uranium

and plutonium to separate them from unusable waste. Recovered uranium from reprocessing

can be returned to the conversion plant, converted to UF6, and subsequently re-enriched.

Recovered plutonium, mixed with uranium, can be used to fabricate mixed oxide fuel (MOX).

3. Materials and methods

A schematic diagram of the combination of DIAL and Raman lidar is shown in Figure 3. The

description of our DIAL system is provided in details in the earlier papers [8]. The Nd:YAG

laser is a Q-switched with pulse repetition rate of 10 Hz and pulsewidth of 10 ns with an

output power of several 100 mJ per pulse at the fundamental wavelength, 1064 nm. In the laser

unit, the 1064-nm laser beam is sent through the frequency doubling and quadrupling harmonic
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crystal modules to deliver a laser beam at 266 nm (4th harmonic) for the off-wavelength. A

practical reason for choosing fourth harmonic of Nd:YAG laser as off-wavelength is its reli-

ability, compactness, long lifetime, and low running costs. However, its main drawback is the

strong absorption by ozone at 266 nm [20].

A frequency-tripled Nd:YAG-pumped Coumarin 450 dye laser using a Littrow grating mount-

ing operates in the frequency doubled mode for the on-wavelength, 245 nm. The grating is

invariably used to allow tuning the laser across the wide gain bandwidth of the laser, the biggest

advantage of dye lasers. Use of a diffraction grating alone as a wavelength selector (with suitable

beam expanding optics allowing utilization of a large area of the grating surface) renders a

spectral width of 0.01 nm. To reduce linewidth, an intracavity etalon is often included in the

optical path. Use of an etalon along with a diffraction grating can render spectral widths as low

as 0.0005 nm [21]. Coumarin 450 dye lasers with the spectral emission 427–488 nm is considered

because of tunability, compactness, output stability, design simplicity, and good beam quality.

Coumarin 450 has an absorption peak at 366 nm and an emission peak at 440 nm.

The laser output radiations are expanded by a beam expander (BE). The expanded beams are

folded 90� by UV-enhanced aluminum-coated mirrors which have a good reflectivity in the

region of 250–300 nm (R > 86%) and subsequently steered them toward the UF6 and hydro-

lyzed products plume released into the atmosphere. After interaction with particles and

molecules of the atmosphere and plume, the elastic and inelastic backscattered radiations at

266, 245, and 297.3 nm are collected by a Newtonian-type telescope. It has an aspheric primary

mirror with the focal length F. A secondary flat mirror reflects the converging light through a

Figure 3. Schematic diagram of the combined differential absorption/Raman lidars for simultaneously remote detection

of UF6 and HF.
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diaphragm with a diameter D. An MgF2 plano-convex lens (L) after the diaphragm is used to

provide a collimated beam. The collimated beam after passing through a monochromator is

focused on the entrance pupil of the detector through a Lyot tunable birefringent or Fabry-

Pérot interference filters (IF). The diaphragm is in the focal plane of the telescope and sets the

field of view (FOV) of the receiver, FOV ≈ D/F. To obtain a required FOV, we select the

diameter of the diaphragm for a given focal length of the telescope. The FOV of the receiver is

usually set small (about 100 micro-radians full angle FOV) to reject the background noise and

achieve acceptable SNR.

As mentioned above, along with the power of the laser, the size of the primary optics is an

important factor in determining the effectiveness of the system. Since the returned signal from

the far distance is relatively weak, to improve the SNR and increase the detection range, a

reasonable FOV is essential to suppress the sky background light, especially during the day-

time measurements under sunlit conditions. The smaller aperture optics is used to work in

close ranges, for example, a few 100 m, where the returned signal is a larger fraction of the

transmitted power. To address the minimum distance at which returning signals are completely

in the instrument’s FOV, the FOV of the instruments needs to be wide enough. The wide field

angle of the receiver reduces the overlap range to several 100 meters. However, the increase in

FOV increases the collection of unwanted solar background, resulting in unacceptably poor

SNR during daytime measurements. One way to reduce the background solar radiation in the

wide FOV lidars is working in the solar blind region. Moreover, by adding an AR coating, the

overall transmission of the lenses can be increased. The UV folding mirrors also can reduce

the nonresonant background noise.

Monochromator is used to separate the signals, and narrowband filters (IF) are used to extract

the Raman and elastic signals at 266, 245, and 297.3 nm. Narrow bandpass filters designed for

these center wavelengths allow isolation of the Raman line and increase the SNR by rejec-

ting the out-of-band radiations. Some of the channels may use neutral density filters for

reducing the signal intensity to a level that does not saturate the PMT. The high-resolution

reflection grating of the monochromator diffracts the background noise as well and makes it

possible to separate and block the majority of background noises with combination of a small

diaphragm. Most detectors have a window or a lens between the active area of the detector

and the energy source. The solid angle cone from which energy can reach the detector is

determined by the distance of the detector surface from the front surface of the window or by

curvature of the lens. Antireflection coatings are applied to the detector materials or, where

applicable, windows and lenses to reduce the reflection losses. The acquisition system is based

on a three-channel transient digitizer working in the photon counting mode for increased

sensitivity at low signal levels.

4. Results and discussion

The total photon counts received by the elastic-DIAL at the distance R from both the aerosol

and molecular backscattering species, Nsig(R), is given by the general lidar equation:
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Nsig λL;Rð Þ ¼
EL λLð Þ

hν
η
tot
β λL;Rð ÞΔR

A

R2
exp -2τ λL;Rð Þ½ � (11)

where EL is the transmitting energy, h and ν are Planck’s constant and the laser frequency,

ηtot = ηtηrηFOVηIFηPMT is the total efficiency of the lidar, ηt is the transmitting efficiency owing

to the beam expander and mirrors, ηr is the receiving efficiency owing to the mirrors, lenses,

and telescope, ηFOV and ηIF are the efficiency of the FOV and interference filters, ηPMT is the

quantum efficiency of the PMT, ΔR is the range resolution of the photon counter, β(R) is the

total backscatter coefficient of molecules and aerosols, A is the area of the telescope, and

the optical depth or optical thickness τ λ;Rð Þ ¼
Ð R
0 α λ; rð Þdr is the integral of the extinction

coefficient α(λ, r) along the path which is a function of the laser wavelength and distance.

Usually backscatter coefficient β for elastically backscattered light consists of contribution of

both air molecules and aerosols, i.e., β Rð Þ ¼ βms Rð Þ þ βas Rð Þ. For molecular species, backscat-

ter and extinction coefficient differs by a constant factor βms = (3/8π)αms and can easily be

substituted. While for the aerosol species, this procedure is not possible and must define

“lidar-ratio” [22, 23]:

S Rð Þ ¼
αas

βas

(12)

The result of the inversion is the backscatter ratio which is defined as:

B Rð Þ ¼
βas þ βms

βms

¼
8παas

3αms

1

S
þ 1 (13)

For a lidar system with a narrow FOV and a separation between transmitter and receiver

optical axes, the incomplete overlap between the laser beam and the receiver FOV significantly

affects lidar observation in the short range. When separation of the laser and telescope axes is

negligible or small enough in which the area of the laser illumination lies totally within the

receiver-optical FOV or vice versa, the overlap distance and efficiency may be adjusted by

controlling the FOV of the telescope or the divergence of the laser beam (DIV). As the trans-

mitting laser has nearly a TEM00 mode Gaussian shape, for a given beam divergence, the FOV

receiving efficiency, ηFOV, increases with FOV and saturates for FOV ≥ 1.5DIV as described in

Eq. (14), which can be derived from the integral of the radial intensity distribution of TEM00

mode:

ηFOV ¼ 1� exp �2
FOV2

DIV2

� �

(14)

It indicates that the FOV of the telescope optics must be larger than the laser beam divergence

so that the lidar can see the entire illuminated volume.

The volume density Nspcies (in ppb) of the measurement target species in the range between R

and R + ∆R can be derived from Eq. (15), which is known as the DIAL equation:
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Nspecies ¼
109

2NatmΔσ

∂

∂R
ln

Nsig λoff;Rð Þ

Nsigs λon;Rð Þ

� �

�
109

2NatmΔσ

∂

∂R
ln

β λoff;Rð Þ

β λon;Rð Þ

� �

�
Δαatm

NatmΔσ
� 109 (15)

Here Δσ ¼ σabs λonð Þ � σabs λoffð Þ is the differential absorption cross-section of the species of

interest, and Natm = 2.55 � 1019 cm�3 is the total number density of molecules in the atmo-

sphere at sea level. At 266 nm, the absorption cross section of UF6 appears to be constant,

σ = (1.15 � 0.01) � 10�18 cm2 from 0 to 100�C. The absorption cross section at 245 nm over the

same temperature range may be represented with the empirical polynomial σ = [1.37 �

0.05 + (9.7 � 1.5) � 10�3.T - (4.2 � 1.1)10�5.T2] � 10�18 cm2, where T is in degrees Celsius [24].

One can obtain the differential absorption cross section of Δσ = 4.2 � 10�19 cm2 at room

temperature T = 23�C for λon = 245 nm and λoff = 266 nm. Since aerosol concentration is

typically high enough near the ground surface, it is reasonable to approximate β = βas. For the

horizontal homogenous atmospheric path, βas is a slowly decreasing function of wavelength;

therefore, the second term on the right hand side of the Eq. (15) can be negligible. However, for

wavelengths below 300 nm, the wavelength dependent aerosol backscatter coefficient, βas, can

significantly deviate from λ�1 law, depending on the aerosol type. Therefore, a long distance

between λon and λoff can introduce noticeable systematic error in regions of the atmosphere,

where the aerosol size gradient is large.

In Eq. (15), Δαatm ¼ αatm λoffð Þ � αatm λonð Þ is the differential extinction coefficient of the atmo-

sphere, described as:

Δαatm ¼ Δαma þ Δαms þ Δαas ¼ αma λoff;Rð Þ � αma λon;Rð Þ½ �

þ αms λoff;Rð Þ � αms λon;Rð Þ½ �

þ αas λoff;Rð Þ � αas λon;Rð Þ½ �

(16)

where Δαma, Δαms, and Δαas are the differential molecular absorption, molecular scattering,

and aerosol scattering coefficients, respectively. The measurement accuracy of DIAL depends

very strongly on accuracy of species absorption cross-section and evolution of atmospheric

extinction. The main errors of the measurement gas concentration lie with the high aerosol and

air molecule concentrations in the troposphere, and errors are caused by the large wavelength

separation between the “on” and “off” signals and different absorption by gases other than the

species of interest and scattering caused by aerosols and molecules. Simplifying conditions can

be hold when the “on” and “off” wavelengths are much more close together, and differential

extinction coefficient of the atmosphere is negligible. In addition, differential backscatter error

is negligible under the condition of spatially homogeneous backscatter. If the simplifications

cannot be made, each of the error terms must be considered [20]. The total error caused from

the atmosphere for detection UF6 can be obtained as:

Erroratm ppb
� �

¼ 1:3� 108 Δαms þ Δαma þ Δαasð Þ (17)

Among the expected noise from constituents in the atmosphere, O3 is considered as the domi-

nant constituent in the UV region. Figure 4 shows ozone absorption extinction as a function of

Remotely Monitoring Uranium-Enrichment Plants with Detection of Gaseous Uranium Hexafluoride and HF Using…
http://dx.doi.org/10.5772/intechopen.73356

99



wavelength in the UV region. The ozone concentration near the surface is considered to be

about 0.8 � 1012 cm�3, corresponding to 30 μg/cm�3 or 30 parts in 109 volumes (ppbv). From

~200 to ~310 nm, the ozone absorption coefficient is large with a maximum absorption extinc-

tion ~1 km�1 at 255 nm, and it reduces rapidly to ~10�6 km�1 by increasing wavelength near

360 nm [20, 25].

Before designing a DIAL system, the differential absorption of the target species must be

known to derive the necessary parameters such as laser energy, linewidth, and detector area.

Also, the sensitivity and lower detection limit of the DIAL measurement are directly depen-

dent on the accuracy of the differential absorption cross-section. From Eq. (15), it follows that if

differential extinction and backscatter coefficients of the atmosphere as a function of wave-

length are known, a measurement of backscatter power is adequate to precisely determine

concentration.

In photodetectors, such as PMT or APD, that have an internal gain, both signal and noise are

amplified. Usually, in photon counting regime, the random errors caused by shot noise is the

dominant factor to fluctuate the detected signal and background. The SNR at each wavelength

can be computed for each laser shot from:

SNRi ¼
Nsig

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nsig þNbg þNn

p (18)

Figure 4. The ozone absorption extinction as a function of wavelength [20].
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where Nbg, Nn, and Nsig are the detected background, dark counts accumulated over the laser

pulsewidth, and the detected signal photons, respectively. From Eq. (18), the SNR is maximum

when Nn = Nbg = 0; i.e., SNRmax ¼
ffiffiffiffiffiffiffiffiffi

Nsig

p

. The SNR decreases rapidly once the received light

intensity drops below the noise intensity.

The total detector noise counts within the laser pulsewidth, N, which is caused by the detected

sunlight and the detector dark noise, is given by:

N ¼ Nbg þNd

•

τPMT (19)

where dNd/dt is the detector dark noise count rate (Hz), τPMT is the PMT response time

constant or receiver pulse integration time, usually slightly larger than the laser pulsewidth,

and Nbg is the photon counts of the background light received by the lidar is expressed by:

Nbg ¼
1

hν
ηrηIFηPMTBbgΩAΔλBIFτPMT (20)

where Bbg is the sky background radiation that is negligible in the solar blind region, ΔλBIF is

the bandwidth of the narrow-band interference filter, and Ω = πFOV2/4 is the viewing solid

angle. For a low dark count detector in the solar blind region, total detector noise count can be

approximated as N ≈ 0. After accumulating photon counts for an integration time Tint, the

averaged SNR at each wavelength is given by:

SNR λið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f λið ÞlasTint

q

SNRi (21.a)

where f(λ)las is the laser repetition rate at wavelength λ, and f(λ)lasTint is the total number of

pulse measurements averaged. For a low dark count detector in the solar blind region, we can

simplify Eq. (21.a) as below:

SNR λið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f λið ÞlasTint

q
ffiffiffiffiffiffiffiffiffi

Nsig

q

(21.b)

The feasibility of the system is simulated by taking into account the contribution of molecules

and aerosols in the backscatter lidar photon rate. The aerosol backscatter has been included in

the simulation considering the lidar ratio of 50 Sr corresponding to extinction and back-

scattered coefficients of 5 � 10�4 m�1 and 1 � 10�5 m�1Sr�1, respectively. The simulation

results are organized using the parameter introduced in Table 1. In Figure 5, the minimum

detectable concentration of UF6 as a function of range for a typical detector having a low SNR

of 1.5 is depicted. It can be seen that the minimum detectable concentration of UF6 is limited to

1.21 ppm for range of 1000 m. Note that each system parameter should be carefully considered

in a trade-off analyses, including the distances (or ranges) from which the measurements are to

be taken, to determine the best overall solution for a given lidar application. In other words,

if the determined set of lidar parameters yields a SNR that is below specification, it may be

adjusted simply by reducing the DIV, and thus, the SNR will increase, or by increasing

the integration time (number of shots) as shown in Figure 6. It may also possibly increase the
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Transmitting subsystems

Energy per pulse 300 mJ

Repetition rate 10 Hz

Pulsewidth (FWHM) 10 ns

Pulse laser linewidth (FWHM) 0.1 nm

Optical transmission efficiency 0.7

Far-Field Full angle divergence (beam expanded) 100 μRad

Receiving subsystems

Telescope aperture (diameter) 35 cm

FOV 200 μRad

Interference filter bandwidth 0.1 nm

Receiving efficiency 0.5

PMT quantum efficiency 0.1

Range resolution of photon counter 30 m

Table 1. Major parameters of the lidar system considered in simulation.

Figure 5. The minimum detectable UF6 concentration by DIAL (λon = 245 nm and λoff = 266 nm) versus range for one

pulse for a very low dark count detector. The SNR is considered to be 1.5. Other parameters of the lidar system are shown

in Table 1.
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receiver diameter; however, it increases both the received signal and noise in the same propor-

tion. An increase in the laser beam diameter will increase the received signal, as well as SNR.

Despite the advantage of large Mie- and Rayleigh-scattering and therefore high SNR of the

conventional elastic lidar systems, they cannot provide species selectivity. In contrast, inelastic

Raman scattering where the frequency of the scattered radiation is shifted by an amount that is

a unique of the molecule can be used like fingerprint to distinguish molecular species. In other

words, the Raman spectrum contains characteristic signatures of each target molecules with

high spectral resolution which makes the Raman spectroscopy a very powerful technique for

characterization and identification of unknown species. The intensity of the Raman signal is

directly proportional to the density of the scattering molecules independent of other molecular

or particulate species:

Nsig λRa;Rð Þ ¼
EL λLð Þ

hν
ηtotβRa λL;Rð ÞΔR

A

R2
exp -τ λL;Rð Þ-τ λRa;Rð Þ½ � (22)

where

βRa λL;Rð Þ ¼ NRa Rð Þ
dσRa π;λLð Þ

dΩ
(23)

is the Raman backscatter coefficient, λL and λRa are the wavelength of laser and Raman,

respectively. The wavelength shift and also narrow spectral width of the Raman scattered

Figure 6. Calculated SNR as a function of FOV/DIV for a UF6 cloud with 1.1 ppm concentration at 1 km. The integration

time is 300 second (3000 shots). Other parameters of the lidar system are shown in Table 1.
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signal respectively at 266 and 297.3 nm allows distinguishing HF from the other species which

elastically scatter 266 nm radiation [10]. Simultaneous measurement of the elastic-backscatter

signals at 266 nm and 245 nm and the HF inelastic-backscatter signal at 297.3 nm permit the

determination of the concentration of UF6 and HF, independently, and therefore detection and

localization of UF6 leaks. Notice that both Rayleigh and Raman scattering are two-photon

processes involving scattered incident light from a virtual state. The main problem of the

Raman scattering is its weak interaction compared to Rayleigh scattering, with a cross-section

that is typically 3–4 orders of magnitude smaller. Therefore, the strong Rayleigh scattered

radiation must be eliminated when analyzing the weak Raman scattered radiation. The Raman

lidar typically consists of an untunable laser excitation source, collection optics like a telescope

to collect the rotational-vibrational backscattered radiation from the molecular HF, a spectral

analyzer such as monochromator, and a high-sensitive detector such as PMT. The collection

optics must be carefully designed to collect as much as the Raman scattered radiation from HF

and transfer it into the monochromator. Using a high-sensitive PMT and a high-throughput

monochromator with Rayleigh rejection filters may dramatically improve the performance of

the Raman lidar. The low intensity of the Raman backscattered signal can be improved by

using a high-power laser, high-efficient receiver, low-noise detector, and operation in the solar

blind region. It is well known that tropospheric and stratospheric ozone absorb practically all

of the incoming solar radiation in this region of the spectrum, providing a black background

for detection of the weak Raman signals in the region of 200–310 nm. Natural ozone mainly

occurs in the stratosphere between heights of 15 and 50 km. The solar blind region provides

conditions that make it possible to operate lidar with a wide FOV telescope and sensitive

quantum noise–limited photon counting detectors. The magnitude of the Raman shift is

specific of the excited molecule, and the detected light is proportional to the concentration of

molecule and Raman cross-section as well. At wavelengths greater than 310 nm, the back-

ground noise radiation is significant. Below 200 nm, absorption by oxygen is so strong that

propagation is severely limited, and it is not feasible to operate within the atmosphere.

So far, a single grating monochromator and a double grating monochromator in combination

with an interference filter have been employed to separate wavelengths effectively in practice

[26]. Moreover, for further suppressing the elastic Mie- and Rayleigh-scattering signals, two

sets of interference filters can be employed. To improve the optical efficiency of spectroscopic

filters, the filters are designed with a peak transmittance at non-normal incidence angle. The

function relationship between the central wavelength at normal incidence, λn, and wavelength

at non-normal incidence angle of θ is given by:

λ θð Þ ¼ λn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sinθ=nð Þ2
q

(24)

where n is the effective refractive index of the filter. λ/λn decreases slowly with angle from 1 to

0.75, as angle is increased from normal to 90� for the case of n = 1.5. In many applications, angle

shifts can be safely ignored. Using a high-index material such as zinc sulfide (n = 2.355 at

632.8 nm), the feature of the spectrum shift to the shorter wavelength versus angle decreases.

Sometime, two narrow-band interference filters combined with a high resolution grating are

Uranium - Safety, Resources, Separation and Thermodynamic Calculation104



used to construct a powerful spectroscopic system for achieving the required high rejection

rate of 107.

The grating diffracts the spectra of the backscattered signal spatially according to the Fraun-

hofer diffraction. If the incident light beam is not perpendicular to the grooves, the grating

equation is given by the modified equation as [27]:

Gmλ ¼ cosγ sinαþ sinβ
� �

(25)

Here, m is diffraction order, α is the angle of incidence, λ is the diffracted light at angle of β,

G = 1/d is the groove frequency or groove density, and γ is the angle between the incident light

path and the plane perpendicular to the grooves at the grating center. If the incident light lies

in this plane, γ = 0, and Eq. (25) reduces to the famous grating equation. In geometries for

which γ 6¼ 0, the diffracted spectra lie on a cone rather than in a plane, so such cases are termed

conical diffraction. In the most fundamental senses, both spectral bandpass and resolution are

used as a measure of an instrument’s ability to separate adjacent spectral lines called resolving

power. The spectral bandpass is the wavelength interval passed through the exit slit or falls

onto the detector. Resolution is related to the bandpass but determines whether the separation

of two adjacent peaks can be distinguished. The spectral resolution Δλ is measured by convo-

lution of the image of the entrance aperture with the exit aperture. It determines resolving

power RP = λ/Δλ. However, the practical resolving power is limited by the spectral width of

the spectral lines emitted by the source.

Spectral bandpass resolved by a monochromator is the difference in wavelength between the

points of the half-maximum intensity on either side of the intensity maximum. For an optical

system, bandpass is given by:

BP ¼ W:Rd (26)

where Rd is reciprocal of linear dispersion, andW is the width of the entrance or exit slit (larger

one). An instrument with smaller bandpass can resolve wavelengths that are closer together

than an instrument with a larger bandpass. Bandpass can be reduced by decreasing the width

of the exit slit but usually at the cost of decreasing light intensity. The reciprocal linear

dispersion represents the number of wavelength intervals (e.g., nm) contained in each interval

of distance (e.g., mm) along the focal plane:

Rd ¼
∂λ

∂x
¼

dcos β
� �

f :m
(27)

where d is the ruled width of grating and f is the focal length of the grating (in the case of

curved grating). At small angles of diffraction, Eq. (27) is simplified as:

Rd ¼
d

f :m
(28)
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By substituting Eq. (28) into Eq. (26), one can obtain:

BP ¼

W:d

f :m
(29)

For instance, considering G = 1200 gr/mm, W = 0.05 mm, f = 500 mm, and m = 1, the obtained

bandpass is 0.083 nm. For selecting grating, one should consider that the grating equation

reveals only the spectral orders for which |mλ/d| < 2 exist. This restriction prevents light of

wavelength λ from being diffracted in more than a finite number of order m. Once angle of

incidence has been determined, the choice must be made whether a small width grating

should be used in a low order, or a large width grating such as an echelle grating should be

used in a high order; though, the small width grating will provide a larger free spectral range,

ΔλFSR = λ/m.

The minimum attainable spectral resolution is given by:

Δλ ¼ λ
2=2D (30)

regardless of the order m or number of grooves N under illumination. Here D = Nd is the rules

width of the grating. This minimum condition corresponds to the grazing Littrow configura-

tion. Noticeably when the grating is incorporated in a spectrometer or monochromator, how-

ever, aberrations and imperfections in other elements (e.g., lenses and mirrors) rather than

grating and factors related to the size of the slits and detector elements may result in even

wider spectral resolution. This means that the minimum wavelength difference Δλ that can be

resolved will be larger that for the grating only defined by Eq. (30), and, in general, the

resolving power for the optical system degrades.

5. Conclusion

A sudden release of UF6 into the atmosphere can conceivably cause undesirable health

effects to the workers and the public in general associated with high level of toxicity of

the hydrolysis products HF and UO2F2. Although the hydrolyze reaction of UF6 is fast,

however, after escaping of UF6 into the atmosphere, besides HF and UO2F2, UF6 may also

be found in the atmosphere. Therefore, the combination of DIAL and Raman lidar for

simultaneously detection of UF6 and HF can be a reliable technique for remotely detection

and monitoring UF6 leaks and further improving the safety and economically operation of

a uranium-enrichment plant. The DIAL provides information on UF6 concentration using

the off- and on-wavelength at 266 and 245 nm, respectively, while Raman scattering of HF

at 297.3 nm can identify and quantify HF as a probe for real-time detection and localiza-

tion of toxic UF6 leaks. This system might be mounted on a helicopter for quickly and

remotely surveying the leaks from the large facilities. Since the system is working in the

solar blind ultraviolet (200–310 nm), the Raman signal may simply be enhanced by

increasing FOV or increasing the integration time (or number of shots).
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