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Abstract

Hepatitis C virus (HCV) is a blood-transmitted disease that spreads among 3% of the 
world’s population causing seriously increasing mortality rates. The HCV prevalence 
in Egypt in October 2008 was 14.7% and declined to 6.3% in the survey carried out in 
October 2015. Nowadays, the new direct-acting antivirals (DAAs) show amazing results 
especially with regard to HCV genotype 1, but there is still a great necessity to produce 
a vaccine to avoid this viral infection. Additionally, neutralizing anti-HCV antibodies 
could be utilized in combination with DAAs empowering their effect. A powerful candi-
date HCV vaccine should create comprehensively cross-receptive T cells CD4 and CD8 
and effectively neutralizing antibodies to successfully clear the virus. The current clinical 
trials for HCV vaccines comprise synthetic peptides, DNA-based vaccines, or recombi-
nant protein vaccines. Several preclinical vaccine studies are under research including 
cell culture-derived HCV (HCVcc), HCV-like particles, and recombinant adenoviral vac-
cines. This mini-review will discuss the prevalence of HCV worldwide and in Egypt. We 
will present the recent progress in basic research and preclinical and clinical studies for 
HCV vaccine. Finally, it will present the phenomena of spontaneous clearance of HCV 
without treatment as a model for study of HCV vaccine development.
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1. Introduction

Hepatitis C virus (HCV) infection is the main health problem worldwide and in Egypt. Until 
now there is no prophylactic or therapeutic vaccine for HCV. The development of a protec-

tive vaccine is essential in combating the global HCV epidemic. Understanding the immune 
response in those who spontaneously resolve HCV infections versus those who develop chronic 
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 infection is the key to the development of prophylactic or therapeutic vaccine. In this mini review, 
we will discuss the recent and more promising progress in the HCV vaccine development.

2. Prevalence of HCV in the world

HCV is a worldwide predominant pathogen with very high mortality rates [1]. Sub-Saharan 
Africa accounts for almost one-fifth of worldwide infections; in Southeast Asia, approximately 
32.2 million people have chronic HCV infection, and over 6 million infected people are in Latin 
America [2]. In [3], it is reported that 2.8% people equating more than 185 million are infected by 
HCV worldwide. Egypt was from the countries with the high prevalence rates (14.7%), followed 
by Pakistan (4.8%) and China (3.2%). Constant HCV disease is connected with the advancement 
of liver fibrosis, liver cirrhosis, hepatocellular malignancy, and death [3]. Although the HCV 
occurrence rate is clearly diminishing in the developing countries, Razavi et al. [4] reported that 
over the next 20 years the mortality from liver diseases secondary to HCV will keep on rising.

3. Prevalence of HCV in Egypt

The 2015 Egypt Health Issues Survey conducted on behalf of the Ministry of Health and 
Population by El-Zanaty and Associates (http://www.dhsprogram.com) showed that the 
prevalence of HCV antibodies was 6.3% of the tested individuals (n = 26,027) in cases with 
ages 1–59 years, while prevalence of HCV RNA was 4.4%. In 2008, according to the health 
survey carried out, the prevalence of HCV antibodies was 14.7% (number of examined indi-
viduals was 11,126) and that of HCV RNA was 9.8% (as shown in Figure 1). Interestingly, a 

Figure 1. Prevalence of HCV in Egypt according to health survey carried out at 2008 and 2015 in cases aged from 1 to 
59 years (male and females).
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promising finding of the 2015 survey is that the prevalence of HCV antibodies was 0.7 and 
HCV RNA was 0.3 among cases with age 10–14, while the percentage of HCV antibodies in 
cases with ages 50–59 years (n = 627) was 30.5–41.9%, and that of HCV RNA was 23.7–27.8%. 
This means that low prevalence of HCV infection is expected among the future generation. 
The decline of prevalence of HCV antibodies and HCV RNA is due to single usage of syringes 
and needles, sterilization of medical, dental and dialysis instruments, regular check-up, test-
ing of blood donors, and also activity of Egyptian National Control Strategy for viral hepatitis.

4. Barriers that limit HCV vaccine development

HCV is the world’s most common blood-borne viral infection for which there is no vaccine [5, 6]. 
Most acute HCV infections are asymptomatic, and viral persistence is established in the majority 
of infected subjects. Vaccine development is fundamental to globally eliminate HCV infection 
through prevention, representing a public health priority. Generally, a good vaccine must induce 
cellular and humoral immunity, during early phase of viral infection, before the virus gets the 
opportunity to trigger its numerous immune escape mechanisms [7]. Also a new vaccine should 
be affordable, safe, not inducing autoimmunity or hypersensitivity, and finally providing long-
lasting immunity. Progress in HCV vaccine development is hampered due to the high level of 
genetic diversity among different HCV strains resulting from the absence of proofreading activ-

ity for the NS5B RNA-dependent polymerase [8], which led to the production of genetically 
distinct but closely related variants within the same genotype designated quasi species [9]. Also, 
the high viral mutation rate enabled the viral persistence by evading the cellular and humoral 
immune control [10], either by binding low-density lipoproteins or infecting surrounding cells 
through cell-to-cell contact mediated by CD81 and Claudin-1 and inducing interfering antibod-

ies by continuous mutation [11]. Also the barriers that challenges vaccine research against HCV 

is the lack of small and suitable animal models for studying HCV pathogenesis and protective 
specific immunity. Nowadays, the chimpanzee is the only suitable infectious animal model 
with lots of ethical and financial obstacles to acquire [12]. Progression to chronic liver disease 
results from the ineffective weak immune response against the virus. In summary, many barriers 
occur for HCV vaccine development such as the presence of several HCV genotypes, restricted 
accessibility of animal models, and the complicated nature of the immunological response to 
HCV. Neutralizing antibody (Nab) and cellular immune responses to CD4+ and CD8+ T cells are 
essential for HCV clearance [13]. Some reports suggest that the highly changeable, quasi-species’ 
nature of HCV and the continuous emergence of resistant strains are reasons for the HCV resis-

tance attitude. However, the HCV resistance in the presence of circulating antibodies cannot be 
completely explained by the continuous and rapid acquired viral genetic variability alone.

5. HCV vaccine strategies

The target of all strategies is to activate a long-lasting T-cell response involving both helper CD4+ 

and CD8+ rather than only adaptive immune response. HCV is vastly mutable, thus developing 
an effective vaccine is very challenging. In 2013 [14], scientists from Scripps Research Institute 
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reported that the virus uses HCV E2 envelope glycoprotein as the key protein to invade liver 
cells. Discovering that E2 binds to the CD81 receptor on the liver cells through a relatively con-
served binding region will empower designing of a vaccine which triggers effective antibody 
responses to various HCV genotypes. Previous studies focused on certain peptide sequences 
from envelope regions 1 and 2 of HCV as a candidate vaccine. They found that peptide region E1 
(aa 315–323) and peptide regions from HCV E2 (aa 412–219) and HCV E2 (aa 517–531) had capa-
bility to introduce neutralizing antibodies in mice, rabbits, and goats, while peptide sequence 
from HCV E2 (aa 430–447) produced nonneutralizing antibodies, which are known interference 
antibodies [15–22]. Another strategy is to use viral vectors inducing T-cell responses against 
HCV-infected cells, e.g., adenoviral vectors that have big areas of the HCV genome itself. Early 
vaccines targeted only genotypes 1a and 1b, accounting for more than 60% of chronic HCV infec-
tions worldwide, while subsequent vaccines might target other genotypes by prevalence [23].

Various HCV candidate vaccines were described, comprising synthetic peptides [24], recom-

binant E1 and E2 proteins [25, 26], recombinant adenoviral and prime-boost strategies with 
modified vaccinia Ankara (MVA) vaccines or recombinant E1 and E2 glycoproteins [27–30]. 
However, only few proceeded to phases I and II using recombinant poxvirus [31], DNA vac-
cines [29, 32], synthetic peptide-based vaccines [33], and MVA vaccines and adenoviral [34, 
35]. Recently, Teimourpour et al. [36] successfully cloned structural viral genes in pCDNA3.1 
(+) vector and expressed them in eukaryotic expression system facilitating the development 
of new DNA vaccines against HCV. These candidate vaccines produced robust cross-reactive 
HCV-specific cellular responses, and HCV viral load was reduced.

On the other hand, plant-based vaccine is a new approach for making an inexpensive and 
easily producible HCV vaccine. Infecting plants with a genetically engineered tobacco mosaic 
virus (TMV) produced the hyper variable region 1 (HVR1) peptide fused to the B subunit of 
cholera toxin CTB. The plant-derived HVR1/CTB reacted with specific antibodies acquired 
from HCV-infected individuals [37].

6. HCV-like particles and cell culture-derived HCV (HCVcc)

Special focus will be drawn on candidate vaccine HCV-like particles and HCVcc, which is 
expected to boom in the next years. Virus-like particle consists of some of the structural viral 
proteins. These proteins self-assemble into particles which resemble the virus but lack viral 
nucleic acid; thus, they are not infectious. Viral-like particles (VLP) are typically more immu-
nogenic because of their highly repetitive and multivalent structure.

6.1. HCV-viral like particles (VLP)

HCV VLP vaccine is very promising for the development of a prophylactic vaccine. VLP are 
vectors for gene delivery that closely resemble the mature HCV. Hence, using a single VLP-
based vaccine, neutralizing antibodies and T-cell responses against many epitopes can be 
induced. Hepatitis B virus (HBV) and human papillomavirus (HPV) have licensed VLP vac-
cines [38]. Baumert et al. [39] generated HCV-LPs using a recombinant baculovirus containing 
the complementary DNA for HCV structural proteins in insect cells.
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Recently, results of Kumar et al. [40] suggested that the combined regimen of HCV viral-like 
particles followed by recombinant adenovirus could more effectively inhibit HCV infection, 
endorsing the novel vaccine strategy.

HCV-LPs were used to immunize four chimpanzees, and all developed HCV-specific T-cell 
and proliferative lymphocyte responses against core, E1, and E2 proteins. Challenging with 
infectious HCV, one chimpanzee developed transitory viremia, and the other three dis-
played higher levels of viremia, but after 10 weeks, their viral levels became immeasurable 
as reported by Elmowalid et al. [41]. Technique for high-capacity purification of HCV VLPs 
was defined by Earnest-Silveira et al. [42]. The structural HCV protein coding sequences of 
genotypes 1a, 1b, 2a, or 3a were coexpressed using a recombinant adenoviral expression 
system in Huh7 cell line. Using iodixanol ultracentrifugation and Stirred cell ultrafiltration, 
the structural proteins self-assembled into VLPs which were purified from Huh7 cell lysates. 
VLPs of the different genotypes are morphologically similar as revealed by electron micros-
copy. Results showed that it is feasible to produce big quantities of individual HCV genotype 
VLPs, making this approach an alternative for the manufacture of a quadrivalent mamma-
lian cell-derived HCV VLP vaccine. HCV-specific neutralizing antibodies (Nabs) recognize 
quaternary structures [43, 44]. The particulate structure of HCV VLPs makes them an attrac-
tive vaccine candidate [45–47].

6.2. Cell culture-derived HCV (HCVcc)

Kato and Wakita [48] introduced the HCV infection system in cell culture using clone JFH-1, 
taken from a fulminant HCV-infected Japanese patient. JFH-1 replicates well in hepatic cancer 
cells and releases infectious virion in the cells’ media. Understanding how hosts react to HCV 
infection and how the viruses escape from host immune reactions was studied using HCVcc 
systems. Although it is difficult to understand the mechanisms underlying the HCV infection 
outcomes, innate immune responses seem to have a crucial effect on HCV infection outcomes. 
Later, robust production of HCVcc particles was obtained by introducing a few specific muta-
tions in JFH-1 structural proteins [49].

Also, Akazawa et al. [50] showed that a protective vaccine can be developed from inactivated 
HCV particles derived from cultured cells that protected chimeric liver uPA(+/+)-SCID mice 
against HCV infection. Also, Gottwein and Bukh [51] cultured virus particles constituting the 
antigen in most antiviral vaccines.

Recently, Yokokawa evaluated neutralizing antibody induction and cellular immune res-
ponses following the immunization of a nonhuman primate model with (HCVcc) in [52]. This 
preclinical study demonstrated that the vaccine included both HCVcc and K3-SPG-induced 
humoral and cellular immunity in marmosets. Vaccination with this combination resulted 
in the production of antibodies exhibiting cross-neutralizing activity against multiple HCV 
genotypes. Based on these findings, the vaccine created in this study represents a promising, 
potent, and safe prophylactic option against HCV.

Generally, we can conclude the comparison between the two strategies of candidate vaccines 
of HCVcc and HCV VLP in Table 1.
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7. Clinical trails

Fifty-five studies were conducted on HCV vaccine and were registered for the clinical trial 
webs, most of them in United States and in Europe (https://clinicaltrials.gov). Yet, one study 
only (ClinicalTrials.gov NCT01436357) revealed encouraging results for population at risk. 
The study used a replicative defective simian adenoviral vector (ChAd3) and a modified 
vaccinia Ankara (MVA) vector that encodes HCV genotype 1b proteins, the NS3, NS4, 
NS5A, and NS5B. It was a placebo-controlled double-blind study with HCV-uninfected 
male and females aged 18–45 years. In phase I, 68 subjects were enrolled and then an interim 
analysis of safety data was carried out. Additional 382 volunteers were enrolled in phase 
II. Very high levels of HCV-specific T cells targeting various HCV antigens were produced 
giving a persistent memory and effector T cell. Kelly et al. [53] studied the specific HCV 
immune responses and T-cell cross-reactivity to endogenous virus in chronically HCV-
infected genotype 1 patients who were vaccinated using heterologous adenoviral vectors 
(ChAd3-NSmut and Ad6-NSmut) encoding nonstructural HCV proteins in escalating dose, 

ClinicalTrials.gov Identifier NCT00500747 NCT01436357

Antigen Envelop (E1 and E2) Nonstructure 
(NS3-NS4a-NS4b-NS5a-NS5b)

Composition Subunit glycoproteins (oil:water 
adjuvant)

Recombinant virus vectors (Ad and 
MVA)

Immunity Neutralizing antibodies and CD4+ T 
cells

CD4+ and CD8 T cells

Objective Neutralize infectivity and prevent 
persistence

Prevent persistence

Name of company Chiron (Novartis) Okairos (GlaxoSmithKline)

Table 2. Comparing two candidate HCV vaccines in clinical trial stages.

Subject HCV VLP HCVcc

Component Structural core + E1 + E2 Structural and nonstructural

Induction Induced humoral and cellular immunity Induced humoral and cellular immunity

Large production Large production Not yet

RNA Lack RNA (noninfectious) With RNA (infectious particles)

Clinical trail Not yet Not yet

Table 1. Comparison between candidate vaccines derived from cell culture-derived HCV (HCVcc) and HCV viral-like 
particles (VLP).
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prime-boost regimen, with and without concomitant pegylated interferon-a/ribavirin ther-
apy. This study concluded that there is a major challenge of overcoming T-cell exhaustion in 
the context of persistent antigen exposure as the vaccination with potent adenoviral HCV-
vectored vaccine was only effective when there is genetic mismatch between immunogen 
vaccine and endogenous virus.

All trials in Table 2 are obtained from www.clinicaltrials.gov and Ogholikhan and Schwarz [54].

8. Studying spontaneous clearance of HCV as a model for developing 

HCV vaccine

Studying the immune response in subjects who spontaneously resolve HCV infections is the 
key to the development of a prophylactic vaccine. Recently, we studied the role of circulating 
neutralizing antibodies in the spontaneous clearance of HCV in infected blood donors and 
answered the question of why some anti-HCV-positive donors clear viremia while others do 
not [19]. Human plasma immunoglobulins targeting HCV E1 region (aa 315–323) and HCV 
E2 (aa 412–419) and HCV E2, (aa 517–531) in blood donors positive for HCV antibodies were 
studied. Antibodies targeting HCV E1 region (aa 315–-323) and HCV E2 (aa 412–419) and 
HCV E2 (aa 517–531) possessed cross-neutralizing activity [16, 19].

Spontaneous clearance of HCV is only achieved with early and effective T-cell responses that 
are entirely efficient with respect to cytolytic capacity, reflected by granzyme and cytokine 
production [55]. To elaborate the role of cell-mediated immune response in achieving spon-
taneous clearance, it was documented that patients with hypogammaglobulinemia had the 
ability to spontaneously clear HCV infection; thus, T-cell responses might be responsible for 
the protection against HCV [56].

9. General conclusion

HCV is still health problem worldwide and in Egypt, although the prevalence started 
to decline. HCV vaccine development is urgent as prophylactic and therapeutic agents 
against new HCV infection. HCV-like particles and cell culture-derived HCV (HCVcc) 
are the promising candidates for HCV vaccine development. Finally, studying spon-
taneous clearance of HCV without treatment can be used as a model for HCV vaccine 
development.
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