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1. Introduction 

Several processes encountered in various fields of engineering exhibit an inherently 
unstable behaviour coupled with time delays. To approximate the open loop dynamics of 
such systems for the purpose of designing controllers, many of these processes can be 
satisfactorily described by unstable transfer function models. The most widely used 
models of this type is the unstable first order plus dead-time (UFOPDT) and the unstable 
second order plus dead-time (USOPDT) transfer function models, which take into account 
dead times that might appear in the model, due to measurement delay or due to the 
approximation of higher order dynamics of the process, by a simple transfer function 
model.  
Research on tuning methods of two or three-term controllers for unstable dead-time 
processes has been very active in the last 20 years. The most widely used feedback schemes 
for the control of such processes are the Proportional-Integral-Differential (PID) controller 
with set-point filter (Jung et al, 1999; Lee et al, 2000), the Pseudo-Derivative Feedback (PDF) 
or I-PD controller (Paraskevopoulos et al, 2004), and the Proportional plus Proportional–
Integral–Derivative (P-PID) controller (Jacob & Chidambaram, 1996; Park et al, 1998). These 
control schemes are identical in practice, provided that the parameters of the controllers and 
of the pre-filters needed in some cases are selected appropriately. Controller tuning for 
unstable dead-time processes has been performed according to several methods, the most 
popular of them being various modifications of the Ziegler-Nichols method (De Paor & O’ 
Malley, 1989; Venkatashankar & Chidambaram, 1994; Ho & Xu, 1998), several variations of 
the direct synthesis tuning method (Jung et al, 1999; Prashanti & Chidambaram, 2000; 
Paraskevopoulos et al, 2004; Padma Sree & Chidambaram, 2004), the ultimate cycle method 
(Poulin & Pomerleau, 1997), the pole placement method (Clement & Chidambaram, 1997), 
the method based on the minimization of various integral criteria, the Internal Model 
Control (IMC) tuning method (Rotstein & Lewin, 1991; Lee et al, 2000; Yang et al, 2002; Tan 
et al, 2003), the optimization method (Jhunjhunwala & Chidambaram, 2001; Visioli, 2001), 
the two degrees of freedom method (Huang & Chen, 1997; Liu et al, 2005; Shamsuzzoha et 
al, 2007), etc. (see the work (O’Dwyer, 2009), and the references cited therein). Moreover, 
due to the wide practical acceptance of the gain and phase margins (GPM) in characterizing 
system robustness, some tuning methods for unstable dead-time models, based on the 
satisfaction of GPM specifications, have also been reported (Ho & Xu, 1998; Fung et al, 1998; 
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Wang & Cai, 2002; Lee & Teng, 2002; Paraskevopoulos et al, 2006). The vast majority of the 
tuning methods mentioned above refer to the design of controllers for UFOPDT models and 
less attention has been devoted to USOPDT models (Lee et al, 2000; Rao & Chidambaram, 
2006). Usually these models are further simplified to second order ones without delay, or to 
UFOPDT models, in order to design controllers for this type of processes. However, this 
simplification is not possible when the time delay of the system and/or the stable dynamics 
(stable time constant) are significant.  
The aim of this work is to present a variety of innovative tuning rules for designing PID-

like controllers for USOPDT processes. These tuning rules are obtained by imposing 

various specifications on the closed-loop system, such as the appropriate assignment of its 

dominant poles, the satisfaction of several time response criteria (like the fastest settling 

time and the minimization of the integral of squared error), as well as the simultaneous 

satisfaction of stability margins specifications. In particular, the development of the 

proposed tuning methods relying on the assignment of dominant poles as well as on time 

response criteria is performed on the basis of the fact that (under appropriate selection of 

the derivative term), the delayed open loop response of a 3rd order system, with poles 

equal to the three dominant poles of the closed loop system, is identical to the closed loop 

step response of an USOPDT system. Simple numerical algorithms are, then, used to 

obtain the solution of the tuning problem. To reduce the computational effort and to 

obtain the controller settings in terms of the process parameters (a fact that permits on-

line tuning), the obtained solution is further approximated by analytical functions of these 

parameters. Moreover, in the case of the method that relies on the satisfaction of stability 

margin specifications, the controller parameters are obtained using iterative algorithms, 

whose solutions, in a particular case, are further approximated quite accurately by 

analytic functions of the process parameters. The obtained approximate solutions have 

been obtained using appropriate curve-fitting optimization techniques. Furthermore, the 

admissible values of the stability robustness specifications for a particular process are also 

given in analytic forms. Finally, the tuning rules proposed in this work, are applied to the 

control of an experimental magnetic levitation system that exhibits highly nonlinear 

unstable behaviour. The experimental results obtained clearly illustrate the practical 

efficiency of the proposed tuning methods. 

2. PID-like controller structures for USOPDT processes 

The three main feedback configurations applied in the extant literature in order to control 
unstable processes with time delay are depicted in Fig. 1 (see Jacob & Chidambaram, 1996; 
Park et al, 1998, Paraskevopoulos et al, 2004). As it can easily verified, the loop transfer 
functions obtained by these control schemes are identical, provided that the following 
relations hold 

,( ) / (1 )C C I D I c c i PK K k k K         

 (1 ) / /I I D i c c P Ik k K K          (1) 

/( ) /(1 ) /D D I I D d c c D Pk k K K            
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where CK , I   and D   are the three controller parameters of the conventional PID 

controller in its parallel form. In the case of the series PID controller, the pre-filter GF,PID is 

used in order to cancel out all or some of the zeros introduced by the controller and to 

smoothen the set-point step response of the closed loop system. The pre-filters GF,P-PID and 

GF,PDF are the equivalent pre-filters of the corresponding control schemes. Note that, the 

pre-filter GF,PDF can be used only when the reference input is a known and differentiable 

signal. Therefore, is seldom used in real practice. From Fig. 1, one can easily recognize 

that in the case of regulatory control the three control schemes are identical when the 

controller parameters are chosen as suggested by (1), even if there are no pre-filters used. 

Moreover, one can also see that the stability properties of the closed loop system are not 

affected, in any case, by the respective pre-filter used, which is applied here, only to filter 

the set point and to prevent excessive overshoot in closed-loop responses to set-point 

changes, which are common in the case of unstable time-delay systems (Jacob & 

Chidambaram, 1996). Thus, the loop transfer functions obtained for the above three 

alternative control schemes are identical.  

 

 

Fig. 1. Equivalent three-term controller schemes with appropriate pre-filters: (a) The series 
PID controller, (b) The PDF (or I-PD) controller, and (c) The P-PID controller. 
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Original 
Parameters 

Normalized 
Parameters 

Original 
Parameters 

Normalized 
Parameters 

U  τU=1 ω Uw   

S  /S S U    s ˆ
Us s  

d  / Ud d   K  Ƭ=1 

  /I U    
CK  C CK KK  

D  /D D U    

Table 1. Normalized vs. original system parameters. 

In the sequel, our focus of interest is the design of PID-like controllers when applied to 
control USOPDT process, with the following transfer function model 

 
 

  
exp

( )
1 1

P
S U

K ds
G s

s s 




 
 (3) 

where K , d , S  and U  are the process gain, the time delay and the stable and unstable 

time constants, respectively. In order to simplify the analysis and in order to facilitate 

comparisons, all system and controller parameters are normalized with respect to U  and 

K . Thus, the original process and controller parameters are replaced with the dimensionless 

parameters shown in Table 1.  

Observe now that, the loop transfer function of an USOPDT system in connection with a 

PID-like controller, is given by 

 
    
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 (4) 

while, using the pre-filter GF, PID(ŝ)=(τƫŝ+1)-1, the closed-loop transfer function becomes  

 
ˆ ˆ( 1)exp( )
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     
S

 (5) 

Relations (2) and (5) are next elaborated for the derivation of the tuning methods proposed 
in this work. 

3. Frequency domain analysis of closed-loop USOPDT processes 

The argument and the magnitude of the loop transfer function (4) are given by 

 φL(w)= -3π/2 – dw - atan(w) - atan(τSw) + atan(τIw) + atan(τDw) (6) 
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 (7) 
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It is not difficult to recognize that the Nyquist plot of the GL(ŝ) has tow crossover points with 
the real axis, which determine the critical (or crossover) frequencies wmin and wmax, and the 
critical gains KC,min=1/AL(wmin) and KC,max=1/AL(wmax). These crossover frequencies are 
obtained as the solutions of the equation φL(wC)=-π, or equivalently, of the equation  

 -π/2-dwC+atan(wC)+atan(τƫwC)+atan(τDwC)-atan(τSwC)=0 (8) 

when the values of the atan function are assigned in the range (-π/2, π/2). Having computed 
wmin and wmax, one can determine the acceptable values for the controller gain KC, for which 
the closed-loop system is stable. In particular KC,min<KC<KC,max, where, with subscript “M” 
used for either “min” or “max” 

 
 

   

22

,
2 2

1 1
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I M M S M
C M

I M D M

w w w
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w w

 

 

 


 
 (9) 

We next define the increasing gain margin GMinc, the decreasing gain margin GMdec and the 
gain margin product of the closed-loop system as follows 

 GMinc=KC,max/KC  ,  GMdec=KC/KC,min (10) 

 GMprod= GMincGMdec=KC,max/KC,min (11) 

Obviously for the closed loop system to be stable GMinc and GMdec should be grater than one. 
Note that, the largest the values of GMprod, the more robust the system becomes with respect 
to the gain uncertainty, if the controller gain KC is appropriately selected. Furthermore, the 
phase margin of the closed loop system is defined by PM=φL(wG)+π, where wG is the 
frequency at which AL(wG)=1. From (7), one can easily conclude that wG is given by the 
maximum real root of the equation 

    2 2 6 2 2 2 2 2 2 4 2 2 2 2 2 2 0S G S C D G C D G CK K K                            (12) 

In order to obtain the maximum phase margin for given d, τS, τI and τD, the controller gain 
KC should be selected as 
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where wp is the frequency at which the argument of the loop transfer function is maximized. 
From (6), one can easily conclude that wp is given by the solution of dφL/dωw=wp =0, or 
equivalently of the equation 
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 (14) 

that results in a fourth order linear equation with respect to wp2, with only one acceptable 
positive real root. Substituting wp in (6), the respective maximum argument φL(wp) is 
calculated. 
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When the maximum phase margin is zero, then the closed-loop system (with the 
appropriate selection of KC) is marginally stable. The solution of max(PM(d,τI,τD,τS))=0, yields 
the acceptable values of the controller parameters τI and τD, which render the close-loop 
system stable. Obviously these values depend on the rest of the system parameters. From (8) 
and for τI→∞, one can easily verify that wmin=0 and φL(0)=-π. If, at wmin=0, the derivative of 
φL is positive, then, it is obvious that the system has a maximum phase margin grater than 
zero and can be stabilized with the appropriate KC. With this observation, using (14), one 
can easily verify that, for τD>τD,min≡1-d-τS, the closed-loop system can be stabilized. Note 
here that, when τS≤1, τD,min is also the smallest τD that renders the closed-loop system stable, 
while when τS>1, the system can be stabilized with smaller values of τD. Moreover, although 
the function φL(τD) is strictly increasing, the function GMprod(τD) is not strictly monotonous. 
In fact, there exists a very large value of τD for which GMprod(τD)=1 and the system is no 
longer stabilizable. In the case where τI→∞, then KC,min=1. Solving the equation KC,min(τD)=1, 
one can determine the maximum value of τD, say τD,max, for which the system can be 
stabilized. Unfortunately, the solution of KC,min(τD)=1 involves nonlinear equations that can 
only be solved using iterative algorithms. A simple and quite accurate approximate solution 
for τD,max has been obtained through fitting, using the optimization toolbox of MATLAB® 
and is given by 

  ,maxˆ 0.85 0.46 1.5 /D S d      (15) 

The maximum normalized error of this approximation is 6%, when 0.1<τD<10 and 

0.01<d<0.9. In general, it is plausible to obtain a stable closed-loop system by selecting 

τD,min<τD<τD,max. In real practice, when τD is close to τD,min or τD,max, the stability region of the 

closed-loop system is very small. After extensive search, it has been found that a more 

suitable range for the selection of τD is the following 

 τSτDτS+d/2 (16) 

When τD is selected in the range defined by (16), very large PMmax and GMprod can be 
obtained. Moreover, with this selection the functions max(PM(τƫ)) and GMprod(τƫ) are strictly 
increasing with respect to τƫ. This is a very useful property for the design of PID-like 
controllers for USOPDT processes. It is worth noticing, at this point, that in order to tune 
PID-like controllers for USOPDT processes one can distinguish three cases depending on the 
values of d and τS. In the case where τS<0.1 the PID-type controllers can be tuned using 
tuning rules for UFOPDT systems, assuming that the new normalized dead time is equal to 
d+τS. On the other hand, if τS>10, then it is possible to tune the PID-type controller assuming 
that the system is a second order one with no time delay. In this particular case, the inverse 
of the eigen-frequency of the closed loop system (without delay) must be at least five times 
larger than the time delay of the USOPDT system. Finally, in the case where 0.1<τS<10, the 
above approximate solutions do not provide accurate results, and it is recommended to use 
the more accurate tuning rules presented in the following Sections.  

4. Controller tuning by assigning the closed-loop system dominant poles 

A first method of tuning PID-like controllers for USOPDT processes is based on the appro-
priate placement of the dominants poles of the closed-loop system. This method is designa-
ted here as the DPC method, since it relies on the satisfaction of dominant poles criteria. In 
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order to systematically present the DPC method, we start by selecting the derivative time 
constant τD equal to the lowest value in the range defined by (16). That is, τD= τS. With this 
selection, relations (4) and (5) take the forms 

 
   
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ˆ ˆ1 exp
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ˆ ˆ 1

C I
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K s ds
G s

s s
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
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K ds
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s s K s ds  



   

 (18) 

Clearly, in this case, the closed-loop transfer function has no zeroes. Note also that, if 
initially τS>>1, then, the controller parameter τD takes very large values, a fact that is not 
desirable, for reasons of noise amplification. Unfortunately, as suggested by (16), in this 
case, large values of τD are inevitable and an appropriate filtered derivative should be 
considered.  
Let us now select the controller gain KC as the geometric middle point of the two ultimate 
gains, KC,min and KC,max, of the closed loop system, that is 

 ,min ,maxC C CK K K  (19) 

Note that this selection of KC provides the same robustness against both increasing and 

decreasing parametric uncertainty of the system gain. This is particularly useful for systems 

with large values of d (i.e. d>0.3) where the region of stability is reduced significantly 

(Paraskevopoulos et al, 2006).  

On the basis of (17), the two ultimate gains are, in this case, given by 
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In (20), wmin and wmax are the two critical frequencies given by the two solutions of the 

equation (8), when τD=τS and when the values of the atan function are assigned in the range 

(-π/2,π/2). For given d, the solution of (8), for τD=τS, exists only if τI is larger than a critical 

value τI,min(d) (Paraskevopoulos et al, 2006). Since there are no analytical solutions for (8), 

two very accurate approximations for wmin and wmax that are obtained by using optimization 

techniques are proposed here. These approximations are 
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     
max

24
,minˆ( , ) 1 0.22 1 0.1 0.3 /wf d d d          

 (22) 

where ,minˆI is an approximation of τI,min, given by 

   2
,minˆ ( ) 0.0029-0.0682 d 1.4941d /(1.003-d)d    (23) 

The normalized errors of the ultimate gains, defined by ,min ,min ,min ,min
ˆ( ) /C C C CK K K K   

and ,max ,max ,max ,max
ˆ( ) /C C C CK K K K  , where ,max

ˆ
CK  and ,min

ˆ
CK  are the approximations 

of KC,max and KC,min, respectively, obtained using (21), never exceed 2.2% for d≤0.9 and τI> 

1.2 ,minˆI . Moreover the normalized error relative to ,minˆI  never exceeds 1.4% for d≤0.9. 

Since, here τD=τS, and KC is obtained according to relations (19)-(23) as a function of τƫ, in 
order to tune a PID-like controller it only remains to specify τƫ. In the present Section, we 
propose to select the controller parameter τI, in order to maximize the real part of the 
slowest dominant pole (i.e. the pole with the smallest real part). This way the resulting 
closed loop system will have a very fast settling time and, at the same time, a very smooth 
(non-oscillatory) response.  
In order to obtain a pole-zero description of (18), the exponential term in (18) is 
approximated by the relation 

  ˆ ˆexp( ) lim ( / ) 1
n

n
ds d n s




    (24) 

From (24), it can be easily recognized that the exponential term exp(-dŝ) is equivalent to an 
infinite number of poles at ŝ=–n/d+j0. A typical example of the root locus of (18) is shown in 
Fig. 2 (for d=0.5, n=25, KC given by (19) and 1.1τI,min<τI<10τI,min). From this figure, it becomes 
clear that, there exist three dominant poles that are responsible for the shape of the closed-
loop system response. The rest of the poles contribute only to the delay of the response. 
Extensive simulation analysis (for 0<d<0.9, τI>τI,min and KC,min<KC<KC,max) shows that the step 
response of an USOPDT system controlled by a PID-like controller (when τD= τS) cannot be 
easily distinguished from that of a 3rd order system with the same dominant poles and the 
same initial delay, when n>20 in (24). This fact is illustrated in Fig. 3. 
 

Range of d Estimated τΙ(d) M.N.E. 

0<d<0.17 23.06 4.19 12.66d d d   1.5% 

0.17<d<0.9    12 53.47 -2.9 8.37 18.28 0.95
  d d d d d  2% 

Table 2. Approximate expressions of τƫ(d) for the DPC method.  

In order to solve the tuning problem presented above, MATLAB® control toolbox was used 
to estimate the poles of a 27th order closed loop system (n=25 in (24)). Moreover, a simple 
algorithm based on the dissection method was used to find the value of τI that maximizes 
the real part of the slowest dominant pole. Since this procedure cannot be applied on-line 
due to its computational burden, the function τI(d) obtained by the DPC method has been 

approximated by analytical functions ˆ ( )d . The parameters involved in these functions 

have been estimated using the optimization toolbox of MATLAB®, in order to minimize the 
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maximum normalized error (M.N.E.), defined by ˆ( ) /        . These approximate 

expressions are given in Table 2, together with their maximum normalized error. The 
response obtained by the DPC method can be distinguished as follows: For d<0.157 the 
method gives three real dominant poles (the two slowest are identical) and the response 
approximates that of a critical second-order system response. For d>0.157 the method gives 
two complex and one real poles all with the same real part (see also Fig. 4). 
 

  

Fig. 2. A typical root locus of (18) for d=0.5, n=25, 1.1τI,min<τI<10τI,min and KC given by (19). 

 

 

Fig. 3. A typical closed loop set-point step response of the USOPDT process and the 
response of the 3rd order system. 
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5. Controller tuning based on closed-loop time-response criteria 

In this Section, we consider again that τD=τS as well as that KC is obtained through (19)-(23), 
and we present three alternative methods for the selection of the parameter τI. These 
methods are based on some very useful closed-loop set-point step response criteria. 
A first, widely used, criterion for tuning PID-like controllers is the fastest settling time (FST) 
method. In the case of an oscillatory response, the settling time is usually estimated from the 
envelope of the response. Since for systems with time delay the closed-loop response is not 
known in analytical form, to estimate here the envelope of the response, we use the response 
of a third-order system having the dominant poles of the closed-loop USOPDT system. In 
particular, the response of a third order system, with two complex poles (pI,1=a+jb and pI,2=a-
jb) and one real pole (pR), is given by 

  0( ) 1 cos( ) sin( ) Rp tw t
n ny t e A w t B w t Ce        (25) 

where 2 2
0w a b  , ζ=a/w0, 

2
0 1nw w   , A=pR(-pR+2ζw0)/D, B=pRw0(-ζpR+2ζ2w0-

w0)/(Dwn), 2
0w /DC    and 2 2

R R 0 0-p +2p ζw -wD  . The two envelopes (top and bottom) of 

(25) are given by 

  0 2 2
1,2( ) 1 Rp tw t

gy t e A B Ce       
 (26) 

Therefore, for the application of the FST method, a simple algorithm based on the dissection 
method, is used to estimate the value of parameter τI that minimizes the time tstl required for 

obtaining 11 ( ) 0.01g stly t  . 

A second criterion, on the basis of which the tuning of the PID-like controller is performed, 
stems from the need to provide the fastest possible set-point step response of the closed loop 
system with a maximum overshoot of 1% (OPOS method). Also in this case a search 
algorithm is used to estimate the smallest value of the parameter τI (and hence the fastest 
response) for which the maximum of y(t), given by (25), is smaller than 1.01 for all t>0. 
Finally, the third method is based on the minimization of the integral of squared errors due 

to a unit step change in the set point (ISE-Sp method). The first part of the response, for t<d, 

can not be affected by the controller. Hence, for the optimization problem of minimizing the 

integral of squared errors, one can use the response obtained by (25). The integral of (1-y(t))2 

can then be calculated analytically, and it is given by 
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
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 

        


 (27) 

Then, using (27) in combination with a simple search algorithm, the parameter τI that 
minimizes the value of ISESp can be estimated. 
All three methods presented above cannot be applied on-line because of the excessive 
computational burden required to calculate the values of the three dominant poles. For this 
reason, the parameter τI obtained by the application of these methods, is next calculated for 
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all values of d<0.9 and the function τI(d) is approximated using the optimization toolbox of 

MATLAB®. The resulting approximations ˆ ( )d are given in Table 3. The M.N.E. in the 

estimation of the function τI(d) is less than 2.8%, for all these approximations. This error in τI 
does not produce a significant change in the response of the closed loop system.  
 

Method Range of d Estimated τΙ(d) M.N.E. 

FST 

0<d<0.17 0.017 0.42 8.08d d   1.5% 

0.17<d<0.9 
2 53.26 -1.96 5.55 15.47

0.96

 


d d d d

d
 2% 

OPOS 0<d<0.9 
2 52.29 +0.69 2.29 15.07

0.96

 


d d d d

d
 2.8% 

ISE-Sp 0<d<0.9 
2 50.1 +2.47 2.78 5.59

0.95

 


d d d d

d
 2.7% 

Table 3. Estimates of τƫ(d) for the tuning methods based on closed-loop time-domain criteria. 

 

Method d=0.1 d=0.5 d=0.9 

DPC -12.61, -2.502±j0.175 -0.425, -0.412±j1.312 -0.0377, -0.0377±j0.412 

FST -12.949, -2.326±j1.641 -0.516, -0.368±j1.302 -0.0550, -0.0291±j0.411 

OPOS -12.964, -2.318±j1.675 -0.556, -0.349±j1.299 -0.0609, -0.0262±j0.410 

ISE-Sp -14.765, -1.378±j4.231 -0.785, -0.237±j1.298 -0.0883, -0.0129±j0.409 

Table 4. Locations of dominant poles for some typical examples. 

 

 

Fig. 4. Characteristic set-point step responses obtained by the proposed tuning methods. 

For example, when ˆ ( )d  is used instead of τI, to apply the FST method, the maximum 
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In Table 4, the locations of the three dominant poles of the closed loop system are given in 
the case where the normalized dead time takes the values 0.1, 0.5 and 0.9, for all methods 
presented above. The corresponding closed loop responses obtained from a unit change in 
the set-point are illustrated in Fig. 4. From these responses and the locations of the dominant 
poles reported in Table 4, one can easily recognize that the FST and the OPOS methods 
provide us controllers with similar performance. Moreover, the response obtained when the 
ISE_Sp method is used is the fastest, although very oscillatory. Finally, in the case where the 
DPC method is used, the response obtained is sluggish and smooth. Moreover, since this 
method yields a large value of τI, it provides a very robust controller. 
Table 5 presents a stability robustness comparison with other existing PID tuning methods. 
In particular, the tuning methods presented in Sections 4 and 5 are compared with the R&L 
method with λ=2.2 (Rotstein & Lewin, 1991), the P&M method (De Paor and O’Malley, 
1989), the H&X method with specifications Am=1.3 and φm=10o (Ho & Xu, 1998), the P&P 
method based on the ITAE criterion (Poulin & Pomerleau, 1997) and the J&C method based 
on the IMC tuning rule with λ=2.5 (Jacob & Chidambaram, 1996), in the special case where 
d=0.5 and τS=1. Table 5 presents the increasing and decreasing gain margins GMinc and 
GMdec as well as the phase margin PM. Moreover, it presents the maximum simultaneous 
multiplicative uncertainty Aa of all system parameters (i.e. when the system parameters d, τS, 
K are increased by Aa and τU is decreased by Aa) and the maximum multiplicative 
uncertainty Ad of the time delay (i.e. when only d is increased by Ad), for which the closed 
loop system remains stable. The results presented in Table 5 show that the DPC method 
provides more robust controllers than most other methods (except the J&C method with 
λ=2.5, that gives a significantly slower response in both set point tracking and regulatory 
control). The aim of the other three methods, presented in this Section, is to provide faster 
responses and hence they provide lesser robustness. Finally, it is worth noticing that all the 
other methods used in robustness comparison are not applicable in cases where d>0.7. 
 

Method KC τI τD PM(rad) GMinc GMdec aa ad 

DPC 1.618 8.150 1 0.172 1.469 1.462 1.101 1.268 

FST 1.622 6.948 1 0.155 1.446 1.436 1.091 1.240 

OPOS 1.623 6.539 1 0.148 1.436 1.425 1.088 1.225 

ISE-SP 1.632 4.834 1 0.107 1.372 1.353 1.064 1.163 

R&L (λ=2.2) 2.116 10.24 0.902 0.087 1.173 1.860 1.043 1.103 

P&M 1.357 6.960 1 0.133 1.729 1.202 1.103 1.288 

H&X 1.518 6.543 1 0.148 1.536 1.332 1.095 1.255 

P&P 1.798 8.431 1 0.154 1.325 1.631 1.082 1.204 

J&C (λ=2.5) 1.573 9.495 1 0.188 1.528 1.443 1.113 1.307 

Table 5. Robustness performance comparison with other existing tuning methods.  

6. Controller tuning based on closed-loop stability margins specifications 

When a PID-like controller is used to control an USOPDT process, it is possible, in some 
cases, to simultaneously satisfy the design specifications GMdec, GMinc, and PM exactly. The 
PID-like controller sought can be found from the solution of the system of equations (8)-(14). 
Unfortunately, this system of equations is too complicated to be solved on-line and it is not 
always solvable. Furthermore, the solution might not be appropriate or useful, especially if 
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the derivative term is too large. For this reason, we propose here, to select a priori the 
derivative term τD of the controller, on the basis of the designer’s knowledge relative to the 
process. If there are no restrictions imposed by the process, then it is recommended to select 
τD as large as possible in the range proposed by (16). This way, the resulting closed-loop 
system has the fastest possible response, for both, the set-point tracking and the load 
attenuation case, a well as the smallest possible maximum error in the case of regulatory 
control. Having selected τD, as previously mentioned, three methods are then proposed, in 
order to tune the rest of the controller parameters. 

6.1 The Phase Margin (PM) tuning method 

In the case where, the only specification for the closed loop system is the desired phase 

margin PMdes, then it is recommended to tune the PID-like controller in such a way that this 

single specification is achieved at the maximum phase margin corresponding to the 

frequency wp, namely, when wG=wp. This way, the integral reset time τI is the smallest 

possible that satisfies the specification and, hence, the obtained controller provides the 

fastest possible response, for both set-point tracking and regulatory control. The main steps 

of this tuning method are the following: 

6.1.1 The PM algorithm 

Step 1. Given the system parameters d, τS, the controller derivative term τD and the phase 
margin specification PMdes, set initially τƫ=0. 
Step 2. With this value of τƫ, calculate wp as the maximum real root of (14). 
Step 3. Select the new value of τI from the solution of PMdes=φL(wp)+π, with respect to τI, 
which is given by 

 1 tan an( ) an( ) an( )
2

des
I p p S p p D pw PM dw at w at w at w

          
 (28) 

Step 4. Repeat Steps 2 and 3 until convergence. 
Step 5. With known τI, calculate the corresponding frequency wp from (14) and the controller  
gain KC from (13). This completes the method. 
The above algorithm converges to the correct solution, if such a solution exists, i.e. if for 
given d, τS, τD there exists a value of τI for which PM(d,τS,τD,τI)=PMdes. 

6.2 The Gain Margin (GM) tuning method 

This method is applicable in the case where the specifications of the closed loop system are 

described in the form of increasing and decreasing gain margins (GMinc,des and GMdec,des). To 

present the method, two iterative algorithms for the calculation of the crossover frequencies 

wmin and wmax are first presented. 

6.2.1 The wmin algorithm 

Step 1. Start with an initial estimate for wmin. An appropriate value for fast convergence is 

  
min

1
(1 )init

I Iw d      (29) 

Step 2. Calculate the error of this approximation using the relation 
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 min min min min min/ 2 an( ) an( ) an( ) an( )init init init init init
r I D Se dw at w at w at w at w           (30) 

Step 3. Take the new value of wmin as  
min min

1new old
rw w e  . 

Step 4. Repeat Steps 2 and 3 until a convergence. 

6.2.2 The wmax algorithm 

Step 1. Start with a very large initial estimate of wmax, say 
max

initw =104. 

Step 2. Using (8), calculate the new value of wmax as 

 1
max max max max maxan( ) an( ) an( ) an( )

2
new old old old old

I D Sw d at w at w at w at w
           

 (30) 

Step 3. Repeat Steps 2 and 3 until convergence. 
These two algorithms always converge to the correct values of wmin and wmax, if for given d, 
τS, τD and τI there exists a solution of (8), with respect to wC, when the atan function takes 
values in the range (-π/2,π/2). We are now able to present the main steps of proposed GM 
tuning method. 

6.2.3 The GM algorithm 

Step 1. Given the system parameters d, τS, the controller derivative term τD and the desired 
gain matrix product GMprod,des, solve max(PM(d,τI,τD,τS))=0 to obtain τI,min. 
Step 2. Set τI,1= τI,min and τI,2= 103τI,min. 
Step 3. Take the new value of τƫ as the average of τI,1 and τI,2, i.e. τƫ=( τI,1+ τI,2)/2. 
Step 4. Calculate the values of wmin and wmax using the wmin Algorithm and the wmax 
Algorithm, respectively, for the obtained τI, and obtain KC,min and KC,max from (9). 
Step 5. Calculate the value of GMprod from (11). 

Step 6. If GMprod<GMprod,des or wmin0 or wmax0, then τI,1=τI or else τI,2=τI. 
Step 7. Repeat Steps 3 to 6 until convergence. 
Step 8. The controller gain is evaluated from either KC=KC,max/Ginc,des or KC=KC,minGdec,des. This 
completes the algorithm.  
The above algorithm converges to the correct solution, if such a solution exists, i.e. if for 
given d, τS, τD there exists a value of τI for which GMprod(d,τS,τD,τI)=GMprod,des. 

6.3 The Phase and Gain Margin (PGM) tuning method 
If the derivative term is a priori selected, then it is not possible, in general, to simultaneously 
satisfy the specifications on GMdec, GMinc, and PM exactly, with the remaining two free 
controller parameters. This is due to the fact that, it is not possible to assign three 
independent specifications with only two independent controller parameters, namely KC 
and τI. Indeed, with the controller parameters KC and τI obtained from the GM Algorithm, in 
order to satisfy GMdec and GMinc, then a specific value of the phase margin PM(d,KC,τI,τD) is 
obtained, and, hence, in this case the phase margin cannot be selected independently. 
Keeping these in mind, we propose here a tuning method, in order to achieve simultaneous, 
although not exact, satisfaction of all three specifications PM, GMdec and GMinc. This method 
is based on the tuning methods presented in the previous two subsections. The basic steps, 
for the selection of the parameters of a PID-like controller that satisfy all three specifications, 
are the following: 

www.intechopen.com



 
PID-Like Controller Tuning for Second-Order Unstable Dead-Time Processes 

 

65 

6.3.1 The PGM algorithm 

Step 1. For the selected value of τD, check if there exists a value of KC that is able satisfy all 
three specifications, when τI→ ∞. 
Step 2. Calculate the two controllers obtained by the PM and the GM methods. If the 
controller with the largest value of τI satisfies all three specifications, then this is the 
controller sought. In the opposite case continue with Step 3. 
Step 3. Assume that KC,PM and τI,PM are the controller parameters obtained form the 
application of the PM tuning method and KC,GM and τI,GM are the controller parameters 
obtained from the GM tuning method. Then, if none of these two controllers satisfy all 
specifications, check which controller gives the largest gain KC, and distinguish the 
following two cases: 
1. If KC,PM>KC,GM, then in order to satisfy all specifications with the smallest value of τI, 

gradually increase τI (starting from the max(τI,GM,τI,PM)), while maintaining the same 
increasing gain margin GMinc (by selecting KC=KC,max(d,τS,τI,τD)/GMinc,des), until the phase 
margin specification is also satisfied. 

2. If KC,PM<KC,GM, then gradually increase τI (starting from the max(τI,GM,τI,PM)), while 
maintaining the same decreasing gain margin GMdec (by selecting KC= 
KC,min(d,τS,τI,τD)GMdec,des), until the phase margin specification is also satisfied. 

This completes the algorithm.  
Although there are several ways to select the controller parameters in order to satisfy all 

three specifications (although not exactly), the method presented here is preferred, because 

it requires the smallest computational effort, since for a given τI, the phase margin can be 

calculated exactly without the use of iterative algorithms (using (12) and PM=φL(wG)+π). It is 

noted here that, in all PID tuning methods presented above, if the response obtained is too 

oscillatory (due to the small value of τI), then, by increasing the value of τI, the damping of 

the closed-loop system increases. From the analysis presented in Section 3, it becomes clear 

that, when τI is increased, the resulting closed-loop system is more robust, and hence all the 

stability robustness specifications are still satisfied (although not exactly). 

6.4 Simplification of the tuning rules for on-line tuning 

The tuning rules presented in the previous sections can significantly be simplified, in the 
case where τD=τS. In this case, the loop transfer function is given by (17), and the solutions of 
the algorithms presented in Subsections 6.1.1 and 6.2.1-6.2.3, can easily be approximated 
with satisfactory accuracy for all systems with 0<d<0.9. In particular, the solutions for wmin 

and wmax, can be approximated by relations (21)-(23). Note that, here, ,minˆ ( )I d  is an accurate 

approximation of the smallest value of the integral term τI, for which (8) has a solution, 
when τD=τS, and when the atan function takes values in the range (-π/2, π/2). Table 6 
summarizes useful approximations of some other parameters involved in the aforementio-
ned algorithms. Note that the maximum normalized errors for the parameters KC,min and 

KC,max, when their estimates are obtained by (20), using minŵ  and maxŵ  as given by (21), 

never exceed 2.2%  for d≤0.9 and τI>1.2 ,minˆI . 

In Table 7, numerical applications of the PM, GM and PGM tuning methods are presented 
for three processes with normalized dead time 0.1, 0.5 and 0.9. The controller parameters 
obtained from the application of these tuning methods are presented in the left section of 

Table 7 for both the exact (KC, τI) and the approximated controller parameters ( ˆ
CK , ˆI ). In 
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the right section of Table 7, the polar plots of the resulting closed-loop systems are 
presented. Solid and dashed lines are used for the exact and the approximate controller, 
respectively. The gain margin specifications are indicated by the symbol ‘o’ and the point on 
the unit circle which determines the phase margin specification is indicated by the symbol 

‘’. From all these polar plots, it becomes obvious that the approximate solution is very 
accurate and in most cases cannot be distinguished from the exact solution. Note that, since 
the proposed tuning methods provide a controller that satisfies the required stability 
robustness specifications with significant accuracy, it is possible to design a closed loop 
system with any desired design specifications. The most robust (but slow) closed loop 
system possible (when τD=τS) can be obtained when PMdes→PMmax or when GMprod,des→ 
GMpred,max (i.e. τI→∞), while it is possible to design a faster but less robust system with less 
conservative stability margins specifications. 
 

 

Function Approximation MNE
Valid Range 

d<0.9 and 

,max( )prodGM d  
 2 1 0.4085 /(1 0.2864 )d d d


 

 3%  

( , )des
I d PM  max

,min

max

/ ( )
ˆ ( ) 1 ( )

1 / ( )

des

I PM des

PM PM d
d f d

PM PM d


 
 
     

 5% PMdes>0.2PMmax 

,( , )I prod desd GM
1

,minˆ ( ) 1 0.65 ( )
1

d

I

A
d g d

A


 
    

 3% 
,prod desGM >1+0.2× 

(GMprod,max-1) 

fPM(d)=(-0.0153+0.436 d +0.632d)/d  ,  
,

,max

1

( ) 1

prod des

prod

GM
A

GM d





 

g(d)=10-2[-0.18+5 d -32d+75d2-51d3+(-2.3d2+3d4)/(1-d)3] 

Table 6. Approximations of parameters involved in the PM, GM and PGM algorithms, when 
τD=τS. 
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Table 7. Some characteristic numerical examples of the proposed tuning methods reported 
in Section 6.  

7. Application to an experimental magnetic levitation system 

In this section the tuning methods presented above will be applied to the experimental 

magnetic levitation system shown in Figure 5. This experimental system is a popular 

gravity-biased one degree of freedom magnetic levitation system in which an 

electromagnet exerts attractive force to levitate a steel ball. The dynamics of the MagLev 

system can be described by the following simplified state space model (Yang & Tateishi, 

2001) 

 /dx dt v  ,    2 2/ / /( )dv dt g c M i x x      (31) 

where x, v and M are the air gap (vertical position), the velocity and the mass of the steel ball 

respectively, g is the gravity acceleration, i is the coil current, c and x∞ are constants that are 

determined by the magnetic properties of the electromagnet and the steel ball. Moreover the 

coil of the electromagnet has an inductance L and a total resistance R.  
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Fig. 5. MagLev system diagrams: (a) Schematic diagram, (b) Control diagram and (c) Block 
diagram. 

Linearizing (31) about an operating point x0, the following second order transfer function for 

the MagLev system is obtained 

 1 ( )
( 1)( 1)

M m

Um Sm

K
H s

s s 


 
 (32) 

where, Km, τUm, and τSm are the gain, the unstable and the stable time constants of the system 

given by 

 /( )mK c Mg   ,   00.5 /Um Sm x x g      (33) 

For the MagLev system used in the following experiments the current i is controlled by a PI 

controller (see Figure 5c). Moreover, to reduce measurement noise additional first order 

filters with time constants τF are used for the measurement of x and i (Figure 5c). The 

unmodelled dynamics of the current control loop, the measurement filters and the dynamics 

of the electrical circuitry (amplifiers, drivers etc.) is modelled here as a time delay dm. 

Therefore, the complete transfer function of the linearized MagLev system is given by 
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 1

exp( )
( )

( 1)( 1)
M m m

Um Sm

K d s
H s

s s 



 

 (34) 

The model parameters c and x∞ are obtained from measurements of the steady state value of 

the coil current (which is given by 2
0 0( / )( )i g M c x x  ), for several values of x0 

(3mm<x0<11mm), using a stabilizing PID controller. Since the model parameters Km, τUm and 
τSm can be obtained from (33), to identify the time delay dm of the system, a single closed 
loop relay-feedback experiment can be used. The control diagram for this experiment is 
shown in Figure 5b. Using a PD stabilizing controller with derivative time τDs=τUm, one can 
easily verify that dm is given by 

  1 2 2in /( 1)m C Um C m Cs Um Cd as K K          (35) 

where ωC is the ultimate frequency of the closed loop system, which is measured by the 

relay experiment. The values of the model parameters for the linearized system given by 

(33), about the operating point x0=7mm, are listed in Table 8 together with the parameters of 

the PI-current controller and the time constant of the two measurement filters used. It is 

noted here that the selection of the filter time constant τF and the gains of the PI current 

controller are performed intentionally in order to produce a significant time delay to the 

MagLev system. Finally, it is mentioned that the sampling intervals for all experiments is 

chosen as τst=0.5ms, which is fast enough to assume a continuous-time system. 

 
Physical parameters 

M=0.068 Kg , g=9.81 m/sec2 , c=8.068·10-5Hm, x∞=0.00215m , L=0.4125 , R=11Ω 

Linearized Model parameters (around x0=0.007m) 

Km=0.008474 m/A , τUm= τSm =0.0216 sec, dm=0.01037 sec , i0=1.08 A 

Current controller and measurement filter parameters

KCi=200 , τIi=1 , τF=0.005 

Parameters of the designed PID controller 

OPOS KCm=196.7  ,  τIm =0.1273  ,  τDm =0.0216 

ISE-Sp KCm=197.9  ,  τIm=0.0936  ,  τDm =0.0216 

DPC KCm=196.1  ,  τIm=0.1565  ,  τDm=0.0216 

FST KCm=196.5  ,  τIm=0.1346  ,  τDm=0.0216 

GM KCm=118.5  ,  τIm= 0.428  ,  τDm =0.0216 

PM KCm= 147.5  ,  τIm=0.1162  ,  τDm=0.0216 

Table 8. System and controller parameters for the experiments in the MagLev system.  

A series of experiments have been performed by applying all four methods reported in 
Sections 4 and 5 to the MagLev system. In Fig. 6, the set-point and load step responses 

around the operating point x0=7mm are presented. In particular, in Figs 6a and 6b, the 
response of the MagLev to a pulse waveform with amplitude 1 mm and period 5 sec is 
shown in the case where the PID controller is tuned using the OPOS and ISE-Sp methods, 

respectively. Fig. 6c shows the tracking response in the case where the DPC method is used. 
In this case the amplitude of the pulse waveform used as reference input is 7mm (from 
3.5mm to 10.5mm). Finally, Fig. 6d shows the regulatory control response, in the case where 
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the FST method is used with a change in the system input (current set-point) produced by a 
pulse waveform with amplitude 0.2A (i.e. 20% change in the steady state value of the coil 
current). Fig. 6 verifies the efficiency and good performance of the proposed methods. As 

expected, the ISE-Sp method provides the fastest response, but with an overshoot of about 
20%. The FST and OPOS methods produce very smooth and fast regulatory and set-point 
tracking responses. Finally, the DPC method provides a very robust controller that can 
control the MagLev system in a large operating region. However, this controller provides a 

rather sluggish response. 
As a second application of the proposed tuning methods, a robust PID controller is designed 
in order to guarantee a stable closed loop system in a wide operating region (3.5mm< 
x<10.5mm) and in the case of ±20% uncertainty in the parameters c, x∞ and 10% uncertainty 
in the time delay dm. The problem of converting the parametric uncertainties into gain and 
phase margin specifications is a very complicated problem that remains unsolved, in the 
general case. Here, in order to select appropriate specifications for the design of the 
controller, the following observations are made: (a) From (8), it is clear that the uncertainty 
in the model parameters τUm and τSm (which depend on x∞ and x0) does not affect the 
argument of the loop transfer function. The only term which influences the phase 
uncertainty is the uncertainty in the identification of the time delay. (b) Assuming that 
τƫ>5τƫ,min, (this assumption is in accordance with our desire to design a very robust controller 

as suggested in the work (Paraskevopoulos et al, 2006)) one can easily verify from ,minˆ ( )I d  

(given in Table 6), that a ±10% change in dm produces a change in ωmin and ωmax smaller than  
 

 

Fig. 6. Experimental MagLev position responses. Set-point tracking response: (a) using 
OPOS method, (b) using ISE-Sp method, (c) using DPC method. (d) Regulatory control step 
response using FST method (current load disturbance amplitude 20% or 0.2 A). 
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5% and 15%, respectively. (c) The magnitude of the loop transfer function is affected by all 
parameters, as well as the operating point. The two extreme worst cases are obtained when 
d and c are maximized and x0, x∞ are minimized (scenario A) and when d, x0, x∞ are 
maximized and c is minimized (scenario B). From scenario A, we obtain the smallest 
maximum ultimate gain min(KC,max), while from scenario B, we obtain the largest minimum 
ultimate gain max(KC,min). Obviously, for the closed loop system to be stable under the 
assumed uncertainty and for the whole desired operating region, there must be min(KC,max)> 
max(KC,min). Based on the above observation one can easily verify that for τƫ>5τƫ,min, the 
inequalities min(KC,max)>0.53KC,max,0 and max(KC,min)<1.2KC,min,0, must hold, where KC,max,0 and 
KC,min,0 are the nominal values of KC,max and KC,min at the operating point x0=0.007m, i.e. the 
case where there is no uncertainty. To guarantee stability, the increasing and decreasing 
gain margins must be selected grater than 1/0.53 and 1.2, respectively.  
Based on the above results and observations, in order to tune the PID controller, the GM 

tuning method is next applied with specifications GMinc=2 and GMdec=1.25. The obtained 

controller gains are listed in Table 8. The Nyquist plots for the two extreme scenarios A and 

B and for the nominal system, using the obtained robust controller, are shown in Fig. 7, 

which verifies that the closed loop system is always stable.  

 

 

Fig. 7. Nyquist plots of the MagLev system using the robust controller designed with the 
GM method. 

For the experimental application, a pre-filter with transfer function GF,PID(s)=1/(sτI+1) is used 

in order to cancel the zero introduced by the PID controller. With this filter excessive 

overshoots in the set-point step response of the system are avoided. The experimental 

results obtained are presented in Figure 8. The set-point step response from 3.5mm to 

10.5mm is shown in Figure 8a. This response is rather slow due to the small value of KCm 

and the very large value of τIm (τIm/τUm=19.81=9.728τI,min). This is more evident in the 

regulatory control case, around the operating point x0=7mm, shown in Figure 8b. This 

response is obtained from a change in the system input (current set-point) produced by a 

pulse waveform with amplitude 0.2A (or 20% change in i). 

A faster controller can be designed if the desired operating region is smaller under the 
assumption of the same parameter uncertainties as in the previous application. In this 
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case, the PM tuning method is used with a specification PMdes=0.15 rad. The obtained 
controller is presented in Table 6. Figures 9a and 9b, show the set-point step response 
from 6.5mm to 7.5mm and the regulatory control around the operating point x0=7mm 
using the new controller. Clearly, the obtained responses are significantly faster, as it was 
expected from the design of the PID controller (smaller τIm, larger KCm). Moreover, in the 
case of regulatory control the maximum error produced in the present case is significantly 
smaller (at least three times smaller) than the maximum error produced when the robust 
controller is used. 
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Fig. 8. Position response of MagLev system using the robust controller designed with the 
GM-method: (a) Set-point response and (b) Load step response (current load disturbance 
amplitude 20% or 0.2 A). 
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Fig. 9. Position response of MagLev system using a fast controller designed with the PM-
method. Other legend as in Fig. 8. 
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8. Conclusions 

New methods for tuning PID-like controllers for USOPDT systems have been developed in 

this work. These methods are based on various criteria, such as the appropriate assignment 

of the dominant poles of the closed-loop system, the attainment of various time-domain 

closed-loop characteristics, as well as the satisfaction of gain and phase margins 

specifications of the closed-loop system. In the general case, where the derivative action of 

the controller is selected arbitrarily, the tuning methods require the use of iterative 

algorithms for the solution of nonlinear systems of equations. In the special case where the 

controller derivative time constant is selected equal to the stable time constant of the system, 

the solutions of the nonlinear system of equations involved in the tuning methods are given 

in the form of quite accurate analytic approximations and, thus, the iterative algorithms can 

be avoided. In this case the tuning methods can readily be used for on-line applications. The 

proposed tuning methods have successfully been applied to the control of an experimental 

magnetic levitation system that is modelled as an USOPDT process. The obtained 

experimental results verify the efficiency of the proposed tuning methods that provide a 

very satisfactory performance of the closed-loop system. 
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