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Abstract

In this chapter, we focus on the recent process on memcomputing (memristor + computing) 
in intrinsic SiO

x
-based resistive switching memory (ReRAM or called memristor). In the first 

section of the chapter, we investigate neuromorphic computing by mimicking the synaptic 
behaviors in integrating one-diode and one-resistive switching element (1D-1R) architecture. 
The power consumption can be minimized further in synaptic functions because sneak-path 
current has been suppressed and the capability for spike-induced synaptic behaviors has 
been demonstrated, representing critical milestones and achievements for the application 
of conventional SiO

x
-based materials in future advanced neuromorphic computing. In the 

next section of chapter, we will discuss an implementation technique of implication opera-
tions for logic-in-memory computation by using a SiO

x
-based memristor. The implication 

function and its truth table have been implemented with the unipolar or nonpolar operation 
scheme. Furthermore, a circuit with 1D-1R architecture with a 4 × 4 crossbar array has been 
demonstrated, which realizes the functionality of a one-bit full adder as same as CMOS logic 
circuits with lower design area requirement. This chapter suggests that a simple, robust 
approach to realize memcomputing chips is quite compatible with large-scale CMOS manu-
facturing technology by using an intrinsic SiO

x
-based memristor.
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1. Background

In recent 20 years, emerging memory has drawn a lot of interest and attention as a promising 
candidate for next generation nonvolatile memory (NVM) [1–3]. Traditional “charge”-based 

NVM (Flash) will face the potential scaling challenge below the 10 nm node with reliability 

and power consumption issues [4, 5]. Resistive switching (RS) memory, or we call resistive 

random access memory (ReRAM), operates by controlling device “resistance” with an exter-

nal electrical bias [6–9], leading to better electrical performance, smaller design area (4F2), 

and excellent cycling endurance [10] based on the 2015 International Technology Roadmap 

for Semiconductors (ITRS) (ReRAM is one of two recommended candidate technologies (the 

other one is the STT-MRAM) for emerging memory devices) [11]. Moreover, RS-based memo-

ries represent a new class of devices compatible with applications that go beyond traditional 

electronics configurations, for example, three-dimensional (3D) stacking, nanobatteries, neu-

roelectronics, and Boolean logic operations [12–17].

In 1971, Chua presented the theoretical basis for a passive two-terminal circuit device called 

a “memristor” (a contraction of memory and resistor) [18]. If realized, the memristor would 

then join the resistor, inductor, and capacitor to provide four basic circuit elements. In 2010, 

researchers in HP lab realized the memristor in nanoscale titanium dioxide (TiO
2
) cross-point 

structure [17], and the field has advanced quickly growth over the past decade as a result. 
Having demonstrated the existence of memristors in the lab, additional research efforts 
focused on the potential applications that this emerging new circuit element enables [19]. 

In recent years, memristors have been extensively studied as a nonvolatile memory called 

resistive random-access-memory (named ReRAM or RRAM) to potentially replace dynamic 

random-access-memory (DRAM) and flash memory [20]. Memristors have also gained tre-

mendous interest in the field of neuroelectronics and synaptic electronics, which aims to build 
artificial synaptic devices that emulate the computations performed by biological synapses 
[21–25]. Jo et al. described possible applications in artificial intelligence using memristors as 
synapses in neuromorphic circuits [15]. Another interesting application is to use memristors 

for arithmetic/logic operations, such as an adder circuit or a multiplier circuit.

In the literature, arithmetic operations are proposed using the memristor as a: (1) switch, (2) 

programmable interconnect, and (3) computational element. In the first approach, crossbar 
arrays of memristor switches are connected to a row of weighting resistors and sensing logic 

to build an analog arithmetic processor [26]. The switches control the current flow (ON/OFF) 
through the weighting resistor, which then controls the analog voltage at the sensing ampli-

fier end. The resistance of the weighting resistor assigns the appropriate bit significance to 
the each row’s current contribution. The memristor-CMOS technology may be used to realize 

the same types of arithmetic circuits that are developed in CMOS/FPGA (field  programmable 
gate array) technology [27, 28]. Last but not the least, a more universal approach for con-

structing the logic operations from memristors is via “material implication” (or an “IMP” 

operation). In 2010, researchers showed that all fundamental Boolean logic functions can be 

realized by using memristors with the IMP operation [17]. Later work built on these findings 
to construct larger logic blocks such as adders and multipliers [29–31], linear feedback shift 
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registers [32], and counters [32]. The advantages of memcomputing (memristor + computing) 

are not only to store and process information on the same physical platform, but also to allow 

massively parallel computations in a simple crossbar array architecture.

Otherwise, neuroelectronics and synaptic electronics are interesting applications for ReRAM 

that aim to build artificial synaptic devices that emulate the computations performed by bio-

logical synapses [15, 33]. These emerging fields of research potentially have better efficiency 
in solving complex problems and outperform real-time processing of unstructured data 

than conventional von Neumann computational systems [34]. There have been many studies 

of binary metal oxide-based and perovskite oxide-based resistance switching characteristics 

for synapse-like electronic device development [35, 36], which can have operating instabil-

ity issues due to difficulty in controlling stoichiometric compositions [37, 38]. Therefore, 

a simple process that is compatible with conventional complementary metal-oxide semi-

conductor (CMOS) fabrication allows multilayer compositional engineering and provides 

good electrical stability and high yield, which are critical requirements for neuroelectronics 

realization [39]. Silicon oxide (SiO
x
) has long been used as gate dielectrics for metal-oxide-

semiconductor field-effect transistors. In addition to excellent insulating properties, resistive 
switching properties have been observed in SiO

x
 materials as early as 1962 by Hickmott and 

1967 by Simmons and Verderber [40–42]. Yao et al. also have reported SiO
x
-based RS behav-

iors in vacuum, indicating that this traditional material can be converted to an active com-

ponent by controlling the external electrical manipulation [43–45]. Several recent reports 

describe using SiO
2
 as the active switching medium in resistive switching memory devices 

[46–49]. We have further  demonstrated a Si diode (1D) with low reverse-bias current inte-

grated with a SiO
x
-based memory element (1R) using nanosphere lithography and deep Si 

etching to pattern a P++/N+/N++ epitaxial Si wafer [50].

2. Introduction

In this chapter, first SiO
x
-based resistive switching memory elements (1R) are integrated with 

Si diodes (1D) using conventional CMOS processing to demonstrate a 1D-1R device with syn-

aptic behaviors. Compared with our previous work (in most cases investigating only the 1R 

device system), the Si diode provides low reverse-bias current and high power efficiency for 
future neuromorphic computing array architectures. Unlike other binary or complex metal 

oxide materials [51], SiO
x
 has been used in CMOS manufacturing for over 50 years due to 

its excellent electrical isolation properties, low-cost, high chemical stability, compatibility 

with mainstream integrated circuit materials, high-throughput processing, and large-area 

production using chemical vapor deposition (CVD). A 1D-1R architecture fabricated at the 

wafer-scale using conventional CMOS processing can, therefore, be well controlled in thick-

ness, size, and electrical characteristics by precisely controlling the doping levels of the diode 

layers and the temperature and flow-rate of the oxide CVD process [52]. Synaptic device 

performance is characterized in a prototype 1D-1R array configuration. Robust biological 
synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD), and 

 spike- timing-dependent plasticity (STDP) are demonstrated with excellent uniformity, low 
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 operational variability, and good suppression of static power consumption [51]. A bio-

inspired proton exchange resistive switching model is used to help characterize this novel 

application for SiO
x
 materials. The SET transition in the resistive switching memory is mod-

eled as hydrogen (proton) release from the (Si-H)
2
 defect to generate a conductive hydrogen 

bridge, and the RESET transition is modeled as an electrochemical reaction (proton capture) 

that reforms nonconductive (SiH)
2
. The synaptic behaviors exhibited by the 1D-1R device 

demonstrates good potential for using a simple and robust approach for large-scale integra-

tion of programmable neuromorphic chips using CMOS technology.

Second, the application of SiO
x
-based memristors for material implication operations is exam-

ined. A bidirectional implication scheme is demonstrated and tested in an actual circuit using 

SiO
x
-based memristors. The symmetric unipolar memristive behavior of the SiO

x
-based mem-

ristor enables the use of two sets of implication voltage setups, one positive and the other 

negative, hence the name “bidirectional”. Progressing one step further from the initial con-

cept demonstrated by Borghetti et al. and our previous work, a one-bit full adder is realized 
by using the material implication technique on a crossbar structure with a one-diode one-

memristor (1D-1R) array. Several potential application problems such as sneak current paths 

within an array and using a select transistor as the load resistor are discussed in detail. The 

results suggest that a memristor-enabled logic circuit is most suitable for applications requir-

ing low-speed, low-power, and high-density.

3. Method and experiment

Secondary electron microscopy (SEM) images show a top-down view of a 1D-1R test structure 

(Figure 1a), a tilted (45°) view of the 1R device (Figure 1b) and a cross-section image of the 1R 

device showing layer information (Figure 1c). The devices were fabricated at XFAB in Lubbock 

TX using the XC06 CMOS process technology. The 1R device was fabricated by first implant-
ing the Si substrate to form an n-type lower electrode. The active SiO

x
 memory layer was then 

deposited to a thickness of 40 nm using plasma-enhanced chemical vapor deposition (PECVD). 

This thickness is known to provide high electroforming yield and good memory endurance 

[53]. An n-type polysilicon layer was deposited onto the SiO
x
 layer to form the top electrode. 

An opening in the polysilicon layer was made after all thermal oxidation and implant anneal 

steps are complete (Figure 1b). A first dielectric layer was then deposited over the polysilicon 
top electrode. Tungsten plugs were used to make electrical contact to the n-type Si lower elec-

trode and the polysilicon top electrode. After all the back-end dielectrics and a passivation 

layer were deposited, the back-end dielectric layers were removed using reactive ion etch (RIE) 

to the Si substrate. This RIE step cleared-out the SiO
x
 layer inside the hole, and created a SiO

x
 

sidewall where the memory device is formed (Figure 1c). Polymer residue that remained after 

the post-RIE cleaning steps was removed by a 30-s buffered oxide etch (BOE). The pn diode 
used in the 1D-1R test structures was formed by an implanted p-well inside a deep n-well with 

40 V reverse-bias breakdown voltage, 1 nA reverse-bias leakage current and 0.5 V forward volt-

age. The active memory area of the 1R device is 2 × 2 μm2 and the overall size including metal 

interconnects is 21.9 × 21.9 μm2. The overall size of the 1D device is 41 × 19 μm2. A lake shore 

cryotronics vacuum probe chamber (<1 mTorr) and Agilent B1500A device analyzer were used 
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to electroform devices and measure the DC/AC I-V response. The SET process programs the 

device to a conductive, low-resistance state (LRS). The RESET process programs each device to 

a low-conductance, high-resistance state (HRS). A Kratos Axis Ultra HSA X-ray photoelectron 

spectrometer (XPS) equipped with a monochromatized aluminum X-ray source was used to 

analyze several SiO
x
 materials deposited in our laboratory using different methods. Calibration 

of the binding energy scale was set by fixing the C-(C,H) peak at 284.4 eV. Figure 1d shows 

XPS analysis results for the O-1s and Si-2p binding energies in thermal oxide grown by low-

pressure chemical vapor deposition (LPCVD) and PECVD oxide. The existence of stoichio-

metric SiO
2
 can be observed in thermal oxide (binding energy Si: 103.2 eV; O: 532.5 eV) with 

essentially no suboxide bonding being detected. In contrast, the PECVD oxide has nonstoichio-

metric SiO
x
 (x is about 1.6 based on the peak position and orbital valence) composition in the 

switching layer, as indicated by the peak-binding energies in the XPS spectra (O: 530.5 eV; Si: 

101.9 eV, and 100.9 eV) [54, 55], which may promote low-energy defect generation during the 

electroforming process.

4. Results and discussions

Figure 2a–d show I-V characteristics for DC voltage sweeps applied to the SiO
x
-based 1D-1R 

devices fabricated by the conventional CMOS process. Voltage was applied to the 1D top 

electrode (p-type Si) with bottom 1R electrode (n-type Si) at ground. All testing was done in 

Figure 1. (a) Top-down SEM image of 1D-1R architecture. The 1R is adjacent to the 1D structure. The ground pad (0) 

is used to bias the substrate, the positive (+) and negative (−) terminals are for applying voltage to the 1D-1R device. 
(b) Tilted top-down SEM image of resistive memory device. (c) SEM cross-section image showing metal contact to 

polysilicon top electrode, metal 1 (M1) and metal 2 (M2) layers, and polysilicon/SiO
2
/Si 1R device. (d) Si-2p

2/3
 and O-1s 

XPS spectra for PECVD oxide and thermal oxide. Figure reprinted by [19].
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vacuum. To establish reversible resistive switching in each SiO
x
-based 1R ReRAM device, a 

forward/backward voltage sweep (Figure 2a) was used to electroform each device, where 

current is observed to increase dramatically at 22.5 ± 2.9 V during the forward voltage sweep. 

Electroforming is completed during the backward voltage sweep from the maximum sweep-

ing voltage to 0 V, resulting in the formation of a conductive filament (CF) and setting the 
device to a LRS. After electroformation, RS performance of 1D-1R can be stabilized by 10 

times cycles (Figure 2b). For SET process, a 10 V forward/backward sweep is applied with-

out any compliance current limitation (CCL) to change the device from HRS to LRS; for 

RESET process, a 17 V, single sweep is done to change the device from LRS to HRS. The HRS/

LRS resistance ratio can be read out at 1 V bias with satisfying sensing requirements (~103) [3, 

26]. For diode characteristics, the forward current can reach 100 mA at 2 V (current density 

1.15 × 10−5 A/μm2 at 1 V), which indicates a forward current level high enough to support the 

RESET process. The reverse current is below 1 × 10−12 A at −5 V. Compared with Schottky 
diodes (potentially useful for 3D arrays), the advantages of Si-based PN diodes include low 

reverse current, high reverse-bias breakdown voltage, and fewer stability issues [45]. The 

quality of the Si-based PN diode can dramatically affect diode reverse or forward current 
characteristics, as well as power consumption (describe below). Also, the chosen Si-based PN 

diode configuration has high reverse breakdown  voltage (>40 V), which is important for 
SiO

x
-based ReRAM operating in an array. Figure 2c demonstrates the gradual change of 

Figure 2. DC sweep resistive switching behaviors of 1D-1R architecture: (a) Forward/backward voltage sweeps during 

electroforming process averaged for 256 devices in a 16 × 16 array (gray curves). The electroforming voltage (V
Delta Current

) 

is defined as the voltage where maximum current change occurs during the forward sweep. (b) 10 I-V resistive switching 
SET/RESET cycles. The inset shows the average of 100 measurement cycles of diode I-V behavior. (c) Effects of voltage 
modulation on I-V curves in SET process plotted on linear-scale, where the applied SET voltage sweep increases from 3.5 
to 9.5 V in 0.5 V steps. The inset shows effects of voltage modulation on I-V curves in RESET process plotted on log-scale, 
where the applied RESET voltage sweep increases from 11.0 to 18.0 V in 0.5 V steps. (d) The resistance states of initial 

fresh device, SET DC voltage modulation, and RESET DC voltage modulation. For SET voltage sweep, increases from 

3.5 to 10 V in 0.5 V steps; for RESET voltage sweep, increases from 11 to 20 V in 0.5 V steps. The resistance reads at 1V for 

each state. (e) Retention measurement results of multi-state programming obtained by controlling the SET voltage. (f) 

Proton exchange induced resistive switching model and defect transitions. Figure reprinted by [19].
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resistive states by modulating the voltage sweep range continuously during the SET and 

RESET (inset) process, respectively. Specifically, SET and RESET voltages were changed 
from 3.5 to 9.5 V in 0.5 V increments and from 11 to 18 V in 0.5 V decrements, respectively, 

thus potentially enabling multilevel programming in a single memory cell and demonstrate 

the status stability before/after sweeps. It may be noted that the electroforming voltages 

measured here (~ 28 V) are somewhat higher than those measured in previous work on 

metal-oxide-semiconductor device architectures or nanopillar type 1D-1R architectures [50, 

56, 57], which may be due to fewer electrically active defects being near the SiO
x
 sidewall as 

a result of the fabrication process. For example, several high temperature steps (>650°C) 
were done after PECVD SiO

2
 deposition, namely: polysilicon deposition, thermal oxidation, 

and implant anneals, which might densify the SiO
2
 layer, reduce the as-deposited defect 

levels, increase the soft breakdown threshold, and thus increase the filament formation 
energy during the subsequent electroforming  process (resulting in forming voltage increase). 

Interestingly, the RESET voltage (the voltage at which LRS current begins to decrease) has 

been found to be greater than or equal to the SET voltage (where HRS current increases 

sharply), which is a unique characteristic of the SiO
x
-based ReRAM as compared to other 

materials systems [36, 58]. The difference between RESET and SET voltages can potentially 
be controlled by optimizing the series resistance in the circuit, choice of electrode materials, 

and by doping effects that modulate the interfacial contact resistance [59]. The switching 

voltage is largely independent of device size and SiO
x
 thickness. Figure 2e shows multilevel 

retention performance of SiO
x
-based 1D-1R devices obtained by controlling the maximum 

SET voltage from 3 to 9 V. The readout current of LRS and HRS is measured at 1 V every 60 

s after each programming operation. Although the state’s stability still needs to be improved 

(no equal split of resistance states), the retention reliability test demonstrates ` operation by 

using different SET voltages, and no degradation is observed for more than 103 s, thus con-

firming the stable, nonvolatile nature of the SiO
x
-based 1D-1R devices. In recent studies, a 

possible proton exchange model consistent with the observed resistive switching I-V 

response has been proposed, as shown in Figure 2f [59, 60]. Several studies have used trans-

mission electron microscopy (TEM) to document the presence of Si nanocrystals within the 

CF [43, 61, 62], but it is not yet clear whether resistive switching (RS) is the result of an overall 

increase in nanocrystal size or whether switching occurs in “GAP” regions in between nano-

crystals. Most models of ReRAM switching involve the drift or diffusion of O2− ions (or oxy-

gen vacancy defects) [39], but these models cannot explain the unconventional I-V response. 

For example, the backward scan effect (see Figure 2a, backward scan) is very difficult to 
explain using a simple oxygen vacancy-switching model. The backward scan effect is a phe-

nomenon where the duration of the reverse sweep during electroforming or RESET deter-

mines whether a state change occurs, and has been characterized using DC and AC pulse 

response in a previous study investigating our resistive switching model [57]. In addition, 

ambient effects on resistive switching suggest that the defects responsible for switching are 
hydrogen-passivated or are in some way protected from direct reaction with ambient oxygen 

and water until a switching events occurs [56, 63]. The detailed interactions between ambient 

gases and proton (or cation) mobility is an important topic that may provide a deeper under-

standing of resistive switching  mechanisms [64–68], specifically those in  oxide-based valence 
change memory (VCM)-type ReRAMs [69–71]. The models used here to describe the possible 
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 SiO
x
-based RS mechanisms differ from most conventional models by considering that the 

defects responsible for RS may remain localized within the switching region so that resistive 

switching occurs when a collection of defects are driven between conductive and 

 nonconductive forms [56]. A thorough review of the reported electrical and structural prop-

erties of known SiO
x
 defects has identified a plausible model for the  conductive filament that 

is similar to models used to describe stress-induced leakage current and breakdown in SiO
x
 

materials, where defect concentration increases as a result of electrical stress to the point 

where percolation pathways capable of conducting appreciable current (>1 uA) are formed 
[59]. Incorporating known proton exchange reactions that can dramatically alter the conduc-

tivity of specific defects further leads to a model where the LRS has a large  concentration of 
conductive defects within the switching region, and, conversely, when the device is pro-

grammed to the HRS, most of the defects are converted to their nonconductive form. The 

electrically conductive hydrogen bridge (Si-H-Si) is viewed as the most likely defect respon-

sible for the LRS due to the location of its energy levels relative to the oxide conduction band 

and its small effective bandgap energy [59, 60]. Adding a proton to Si-H-Si forms the noncon-

ductive (SiH)
2
 defect and proton desorption from (SiH)

2
 reforms Si-H-Si, which are well-

understood electrochemical reactions that could enable localized switching  without 

incorporating ion diffusion or drift mechanisms into the model. The SET transition voltage 
from HRS to LRS occurs at ~2.5 V in the I-V response, and is very near the activation energy 

for proton desorption from SiH (~2.5 eV), thus making the defect  transformation from (SiH)
2
 

to Si-H-Si a logical assignment for the SET transition [59, 60]. In this model, the proton that 

is lost from (SiH)
2
 reacts electrochemically with (SiOH)

2
, which is simply chemisorbed H

2
O, 

to form the fixed positive charged H
3
O+ defect. The transition from LRS to HRS is modeled 

as being initiated by electron injection into H
3
O+ that induces proton release and electro-

chemical reaction with Si-H-Si to reform (SiH)
2 

[59, 60]. The  localized proton exchange 

switching model can thus be written as (SiH)
2
 + (SiOH)

2
 ↔ Si-H-Si + Si

2
=O-H

3
O+, where a 

voltage drop of ~2.5 V across the switching is required to drive the reversible reaction. The 

RS model not only provides insights into multilevel operational characteristics but also 

implies a possible biomimetic chemical reaction similar to reactive oxygen species (ROS-like) 

production for future device characterizations [72].

Figure 3a–h show contour plots of the current-change ratio achieved by modulating the AC 

pulse height and pulse width applied to 1D-1R devices for both SET and RESET switch-

ing events, leading to optimized waveform designs for a biological synaptic device. The 

current-change ratio is defined as log
10

 (I
FINAL

/I
INITIAL

), where I
INITIAL

 and I
FINAL

 are the cur-

rents measured at 1 V before and after applying the programing waveform, respectively. 

The SET/RESET sweeps from same initial resistance state (precondition programming) 

is to eliminate the accumulating SET/RESET effect after each cycle. One can observe by 
inspecting the contour lines in Figure 3 that when larger pulse heights (higher voltages) are 

applied to the device, shorter pulse widths are needed to achieve a similar current-change 

ratio. In general, we find that a single 1R device operates at higher speed and requires 
lower programming voltages as compared to a 1D-1R device. The higher operating voltages 

and lower operating speed of the integrated 1D-1R device may result from higher para-

sitic resistance in the Si electrodes, their contacts and the diode, as well as higher parasitic 
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capacitance in the diode, all of which can act to degrade the pulse mapping results shown 

in Figure 3a and b. It should be noted that current sneak-path issues in arrays and writ-

ing disturbance of 1R devices would cause misread problems and state disturbance, and 

substantially increase standby power consumption and information instability. The 1D-1R 

devices are used to suppress sneak-path currents, and perform much better than 1R devices 
in an array architecture (potential 1 Gbit array support in 10% readout-margin at 1V read). 

From Figure 3a and b, it can be calculated that the switching energies to achieve at least a 

one-order-of-magnitude change in resistance in the 1D-1R architecture are about 0.01 pJ for 

SET and 1.54 nJ for RESET operations. However, due to the suppression of sneak-path cur-

rent, the standby power during a 1 V read operation can be dramatically reduced in 1D-1R 

devices (1 pW) as compared to 1R devices (1 μW, due to 1R nonpolar switching behaviors) 

[73]. Minimizing the total power consumption due to sneak-path current is as crucial as 

reducing the synaptic dissipation.

Most importantly, the pulse mapping results not only demonstrate the potential for multilevel 

programming by properly designing the pulse waveforms for SET and RESET operations, but 

also demonstrate the potential to realize biological synaptic behaviors. Figure 3c–h  demonstrate 

Figure 3. AC pulse mapping contour plots of current-change ratio by modulating pulse height and pulse width to 

demonstrate synaptic behaviors in 1D-1R architectures: (a) SET (S) and (b) RESET (R) mapping results of 1D-1R device. 

(c) and (e) Long-term potentiation (LTP) and (d) and (f) long-term depression (LTD) using the identical pulse method 

as a function of pulse width. For the identical pulse method, pulse height and pulse width are fixed. For LTP, the pulse 
height modulation changes from 11 to 17 V in 0.3 V increments for each loop, and pulse widths are fixed at 10 μs. The 
mapping results of using the identical pulse method for LTP are show in (e). By selection of final states (after 20 pulses), 
the conductance change is highly dependent on the pulse height. For LTD, the pulse height modulation changes from 4 

to 10 V in 0.3 V increments for each loop, and pulse widths are fixed at 10 μs. The mapping results (f) are similar and the 
conductance change for LTD is also highly dependent on the pulse height rather than pulse width. (g) and (h) show the 

LTP and LTD using the non-identical pulse method as a function of pulse width, respectively. For the non-identical pulse 

method, pulse height modulation changes continuously from 4 to 10 V in 0.3 V increments (for a total of 21 steps) for LTP, 

and changes continuously from 11 to 17 V in 0.3 V increments (for a total of 21 steps) for LTD. The initial states for LTP 

and LTD mapping are determined by fixed DC conditions: a 17 V single sweep for HRS and a 10V double-sweep for LRS, 
respectively. “S” and “R” denote the increment/decrement of current state changes after applying the AC pulse (defined 
as Log

10
 (I

n
/I

nitial
), where I

n
/I

Initial
 is current ratio measured at 1 V after/before the pulse is applied). Figure reprinted by [19].
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the optimization waveform design for biological synaptic behaviors in 1D-1R SiO
x
-based resis-

tive switching memories. The long-term potentiation (LTP) and long-term depression (LTD) 

are a long-lasting enhancement/reduction in signal transmission between two neurons (simi-

lar with long-lasting conductance increase/decrease between HRS and LRS for resistive-type 

memory devices), which can be realized by designing the SET and RESET pulse waveform to 

use either identical (fixed pulse width and pulse height, as shown in Figure 3c–f) or nonidenti-

cal (variable pulse width or pulse height, as shown in Figure 3g and h) pulsing techniques. The 

trade-offs between high dynamic range and gradual multilevel programming performance 
(Figure 3e–h) needed to be considered, and it was found that the nonidentical pulse waveform 

method may have the advantages (larger than identical pulse waveform method). Although 

nonidentical pulsing might require a more complex neuromorphic circuit, our results show 

that this approach enables more efficient programming to target states while maintaining a 
larger dynamic range (Figure 3g–h). The use of nonidentical pulse heights ranging from 4 to 

10 V in 0.3 V increments (for LTP) and ranging from 11 to 17 V in 0.3 V decrements (for LTD) 

allow the dynamic range to be mapped for pulse widths ranging from 100 ns to 1 ms, thereby 

realizing biological synapse behaviors in the SiO
x
-based 1D-1R architecture (Figure 3g–h). The 

switching energy is defined as I × V × δt, where δt is the pulse width. For δt = 100 ns, the small-

est switching energies are ~6 and ~130 pJ for LTP and LTD, respectively. The larger energy for 

LTD is mainly due to the lower resistance of the LRS (~93 kΩ) compared to the HRS (~260 MΩ), 
which results in higher switching current (118.28 μA) for the RESET process than for the SET 

process (15.38 nA). In order to minimize synaptic energy consumption all three components—

programming current (~nA level switching), pulse amplitude (<1 V) and programming time 

(<10 ns)—need to be minimized. In SiO
x
-based ReRAM and in other material systems, an expo-

nential voltage–time relationship is commonly observed. A small increase in programming 

voltage will decrease programming time exponentially, as shown in Figure 3a. For RESET 

process (both 1R and 1D-1R structures, Figure 3b), the process integration may result in cer-

tain level of distortion (parasitic resistance/capacitance and possible parasitic depletion region 

capacitance from 1D) to affect the pulse mapping results. Hence, low programming energy is 
obtained by minimizing the programming time (traded off by increasing the pulse amplitude 
slightly) for ReRAM. Further decreases in synaptic energy consumption during the switching 

process to fJ levels will be challenging but important to build very large-scale systems (the 

designed pulse waveform optimization and generation is in process).

Such flexible artificial control built with synaptic devices could provide a suitable platform 
for a broad range of computing applications, as shown Figure 4. Some of the advantages 

that SiO
x
-based synaptic devices provide over other resistive switching materials include a 

higher dynamic range (~104) [57] and the potential to achieve as many as 10–60 multilevel 

states (depend on the stability) in both LTP and LTD by changing the increment/decrement 

of the voltage step, as shown in Figure 4a. These advantages may arise as the result of there 

being a large number of defects within the switching region of the memory device. Switching 

is modeled as a change in conductivity of a group of defects within the switching region. In 

this framework, defects are not created or destroyed, but are simply driven between conduc-

tive and nonconductive forms by proton exchange reactions that are known to occur in SiO
x
 

materials (Figure 2f) [60]. The SET and RESET switching transitions can be described in more 
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detail with the aid of the electron energy band diagrams shown in Figure 4b, which were 

constructed using the thermodynamic and switching charge-state energy levels reported by 

Blochl in 2000 [74]. The ideal energy band diagrams in Figure 4b represent only a single 

electron pathway through the memory device, whereas in reality there are likely many such 

percolation pathways in parallel. The SET transition is modeled as being the result of trap-

assisted electron tunneling through (SiH)
2
 defects (a voltage-triggered mechanism, due to 

less current flow in the initial stage of SET process) that stimulates H+ desorption and reaction 

of H+ with absorbed water (SiOH)
2
 to form conductive Si-H-Si and H

3
O+ (Figure 2f). Trap-

assisted tunneling can only occur when the bias across the switching region is ≥2.6 V, which is 
the effective bandgap of the (SiH)

2
 defect and compares well with the observed minimum SET 

voltage of ~2.5 V in the I-V response [59, 60]. The RESET transition is modeled as being the 

result of Fowler-Nordheim electron tunneling into the H
3
O+ defect (possibly current-induced 

Joule heating due to large current flow through the filament) that stimulates proton release 
and electrochemical reactions to reform (SiH)

2
 and (SiOH)

2
 (Figure 2f) [60]. The band dia-

grams shown in Figure 4b are found to be consistent with measured electron energy barriers 

[60] and electroluminescence results reported for similar devices [62].

Figure 4. Demonstration of a SiO
x
-based synaptic device. (a) Sequential LTP/LTD behaviors as a function of increment/

decrement voltage steps (0.1, 0.2, and 0.3 V) by non-identical pulse form. For the non-identical pulse method, pulse 

height modulation changes continuously from 4 V to 10 V for LTP, and changes continuously from 11 to 17 V for LTD. 

Pulse width is fixed at 10 μs in both cases. (b) Energy band diagrams: For HRS and SET process, showing theoretical 
bandgap of (SiH)

2
 defect within gap region of length l

GAP
, theoretical bandgap of Si-H-Si defects outside the gap region, 

and trap-assisted-tunneling SET transition (green arrow). Barrier height to electron transport is φ ~ 0.8 eV. For the LRS 

and RESET process, showing theoretical bandgap of Si-H-Si, H
3
O+ energy level, switching region of length l

SW
, and 

Fowler-Nordheim tunneling RESET transition (red arrow). (c–d) A pulse waveform design using the non-identical pulse 

method for demonstration of spike-timing-dependent plasticity (STDP) as a function of spike pulse width intervals. For 

the potentiation of conductance strength change, the overall pulse waveform (pulse width fixed at 10 μs in this case) 
based on the delay of spike timing between neurons is shown in (c). Similarly, for the depression of conductance strength 

change, the overall pulse waveform (pulse width fixed at 10 μs in this case) based on the delay of spike timing between 
neurons is shown in (d). (e–f) A demonstration of spike-timing-dependent plasticity (STDP) using the non-identical 

pulse method with different spike widths. Each colored bar shows the average of 3~5 measurements. (e) Emphasizes 
potentiation direction of STDP with positive delta time (45° tilted). (f) Emphasizes depression direction of STDP with 

negative delta time (225° tilted). The definition of conductance change is as Log
10

 (I
n
/I

nitial
), where I

n
/I

Initial
 is current ratio 

measured at 1 V after/before the pulse is applied. Figure reprinted by [19].
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Figure 4c–f demonstrate that the SiO
x
-based 1D-1R architecture can mimic spike-timing-

dependent plasticity (STDP), a biological process that adjusts the strength of connections 

between two neurons in a synapse gap junction region that is an electrically conductive link 

between the pre- and postsynaptic neurons. Two pulse generator sources are used to simulate 

the pre- and postsynaptic neurons. This provides the pulse waveforms using the nonidentical 

pulse method (also used in various types of emerging memory devices or materials systems) 

for demonstration of STDP. By design of pre-neuron and postneuron spikes in neuromorphic 

circuits, the strength of the conductance change can be modulated based on the spike-timing 

delta (∆t) between the two neurons (Figure 4c–d). Figure 4e–f demonstrates a total of 10 dif-

ferent states of STDP biological behavior for depression and potentiation with n = 2, 4, 6, 8, 10 

and as a function of spike width modulation, ranging from 100 ns to 1 ms. For example, the 

depression of conductance change strength can be achieved by using multistep spike heights 

from −4 to 0 V in the preneuron state and a single spike height fixed at 13 V in the postneuron 
state, with both neurons having a fixed pulse width of 10 μs and a firing period of 20 μs, as 
shown in Figure 4e–f. When the time delay difference is −10 × (n−1) μs, where n is an even 
number, the total spike waveform (postneuron spike minus preneuron spike) applied to the 

synapse gap junction region can adjust the conductance ratio between two neurons over the 

range from 10−3 to 0.1 in the depression direction (RESET process) as compared with the initial 

LRS conductance (Figure 4f). Similarly, the potentiation of conductance change strength can 

be achieved by using multistep spike heights from 4 to 8 V in the preneuron state and a single 

spike height also fixed at 13 V in the postneuron state, with both neurons having a fixed pulse 
width of 10 μs and a firing period of 20 μs. When the time delay difference is 10 × (n−1) μs, 
where n is an even number, the total spike waveform (postneuron spike minus preneuron 

spike) applied to the synapse gap junction region can in this case adjust the conductance ratio 

between neurons over the range from 103 to 0.01 in the potentiation direction (SET process) 

as compared with the initial HRS conductance (Figure 4e). It may be noted that the 1D-1R 

architecture not only avoids sneak-path issues and lowers standby power consumption, but 

also helps to realize STDP behaviors. Without the 1D rectification characteristics in reverse-
bias polarity, the above spiking forms cannot be implemented due to the unipolar nature of 

the 1R device, specifically in the potentiation behaviors under negative bias. In the 1R case, an 
applied voltage above the RESET threshold voltage (for example, −9 V) can trigger the RESET 
process and induce depression behaviors instead of potentiation behaviors. Also, for depres-

sion behaviors, when the time delay difference is smaller than the spiking width, the remain-

ing 4 V spike height in this case would not fire the synapse toward a LRS in the depression 
direction (see Figure 3h). Therefore, by carefully designing the firing pulses between neurons 
in the neuromorphic circuit, a biological synapse behavior can be demonstrated with 1D-1R 

SiO
x
-based resistive switching memories.

The 1D-1R architecture with SiO
x
-based resistance switching devices and the structure of arti-

ficial neural networks map naturally onto hybrid CMOS/synapse circuits that can be designed 
on a single chip (Figure 5) to provide predictable results with an ultimate scaling potential of 

CMOS technology to the sub-10-nm level, which could possibly challenge the complexity and 

connectivity of the human brain.

The other topic is material implication operations by using the same device architecture in 

SiO
x
-based memristor (Figures 1 and 5). Based on our recent reports, implication operation 

Memristor and Memristive Neural Networks238



(IMP) has been performed by two SiO
x
 memristors and a 5.7 kΩ standalone resistor are config-

ured as shown in Figure 6a. Furthermore, three memristors connected in the circuit shown in 

Figure 6b and two steps of IMP are required to perform a NAND operation. It may be noted 

Figure 5. (a) Bio-inspired and mixed-signal information processing: hybrid CMOS/ReRAM circuits may also enable 

efficient analog dot-product computation, which is a key operation in artificial neural networks and many other 
information processing tasks. (b) A fabricated 8 × 8 artificial neural network array combined with CMOS transistors and 
logic control.

Figure 6. (a) Circuit for the implication scheme including two SiO
x
 memristor and one load resistor, with bias voltages 

and conducting currents marked out, and truth table for material implication [75]. (b) Circuit to perform NAND 

operation, and Truth table for NAND operation. Two steps performing NAND operation via implication with final 
results shown in red square. Figure reprinted by [75].

Review of Recently Progress on Neural Electronics and Memcomputing Applications in Intrinsic...
http://dx.doi.org/10.5772/intechopen.68530

239



that the final logic value pNANDq is stored as the last value of memristor s, or s″ in Figure 6b. 

This row of three memristors, namely P, Q, S, can be expanded to a row consisting of more 

memristors all sharing the same load resistor. Implication operations can be performed on any 

two memristors in the row, as long as the rest of the memristors are kept unbiased. Since we 

are able to perform implication on one row, similarly, implication can be done on one column.

However, when we put multiple rows and columns together to form a crossbar array, several 

problems arise. The first issue is providing multiple voltage signals as well as a common load 
resistor to an arbitrary pair of memristor on the same row or column. Based on the crossbar 

RRAM structure, the bit-line/word-line selection transistor can serve as the common resistor. 

By varying the gate voltage bias of the select transistor, it can serve as an ON state switch, OFF 

state switch or a resistor with channel resistance of R
Load

. From Figure 6, it is noted that four 

voltage signals (V
P
, V

Q
, V

S
, and V

Load
) are required during an implication operation, two dif-

ferent voltages along the same bit-line/word-line. Therefore, a total of four voltage lines, each 

connected to all NMOS select transistor, will provide voltage signals for implication operation.

The concepts are demonstrated by a 4 × 4 memristor crossbar array (Figure 7a and b) and a 

circuit with an 8 × 8 memristor crossbar array. In addition to 1D-1R device arrays (Figure 5a), 

the hybrid CMOS/1D-1R device architecture shown in Figure 5e has been successfully dem-

onstrated as shown in Figure 5f by the I-V resistive switching plots. Using the NMOS/PMOS 

transistor also fabricated on the same chip (Figure 5e), an implication circuit is realized using 

two 1D1R memory elements and a transistor. In Figure 7a and b, the design is quite different 
from the RRAM crossbar array architecture, the circuit consists of two rows of bit select tran-

sistors for the same column of memristors, one on the top, and one on the bottom. Similarly, 
there are two column word select transistors for the same row of memristors, one on the left 

and one on the right. This redundancy ensures two distinctive voltage signals can be applied 

on any pair of memristors on the same bit line/word line. The implication voltages (V
P
, V

Q
, V

R
) 

Figure 7. (a) and (b) demonstrate 4 × 4 crossbar structure memristor arrays with select transistors to achieve a one-bit 

full adder function. The implication circuit performs (a) M
13

 IMP M
33

 and (b) M
11

 IMP M
12

 on a 4 × 4 crossbar structure 

memristor array. Blue arrows show the current flow directions, and red solid squares cover all OFF-state transistors. 
Voltage signals and memristor numbers are labeled.
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are biased on three of the four lines depending on the configuration, and the voltage applied 
to each line is labeled as follows, V

bit_up
, V

bit_down
, V

word_left
, and V

word_right
. The gate of each select 

transistor is also independently biased, to either isolate the bit lines/word lines from the impli-

cation voltages or provide that implication voltage to one particular bit line/word line.

To perform M
13

 IMP M
33

 (negative voltage implication operation performed along bit line 3): 

Assuming all memristors are initialized to HRS, bias V
bit_up

 = 2 V, V
word_left

 = − 1.5 V, V
word_right

 = 0 V, 

V
word_1r

, and V
word_3l

 = V
full_on

, V
bit_3u

 = V
IMP

, with all other transistor gate voltages at Vfull_off. The equiva-

lent circuit is shown in Figure 5a with the path of conduction current flow marked. In Figure 5a–e, 

P is M
13

, Q is M
33

, and the transistor bit_3u is used as the load resistor. The implication is a negative 

voltage scheme. All transistors that are biased at fully OFF states are covered by red squares, effec-

tively keeping the voltages of irrelevant columns/rows floating; to perform M
11

 IMP M
12

 (positive 

voltage implication operation performed along word line 1): Assuming all memristors are initial-

ized to HRS, Bias V
bit_up

 = 0 V, V
bit_down

 = 1.5 V, V
word_left

 = − 2 V, V
bit_1u

, and V
bit_2d

 = V
full_on

, V
word_1l

 = V
IMP

, 

with all other transistor gate voltages at Vfull_off. This equivalent circuit is shown in Figure 5b with 

the current flow path marked. In Figure 5b, P is M
11

, Q is M
12

, and the transistor word_1l is used as 

the load resistor. In this case, the implication uses a positive voltage scheme. As before, all transis-

tors biased to fully OFF states (covered by red squares) effectively keep the voltages of irrelevant 
columns/rows floating.

In Figures 1a and 5a, each memristor is placed in series with a pn diode in order to avoid 

current sneak-path problems. Originating from the crossbar device structure itself, the sneak-

path problem has been identified and analyzed by many previous researchers [20, 76–122]. 

Because the bit line or word line select transistor raises the voltage across the whole bit or 

word, a group of memristors in the LRS may form a highly conductive path and cause mis-

reading of certain memristors. The solution to the sneak-path problem is using a selection 

element together with a memory element, as shown in Figure 5f. Such a selection element is 

used to allow current conduction in one direction while suppressing current flow in the other 
direction. The most common selection element is a low-leakage pn diode, limiting the current 

flowing through the sneak paths down to reverse the bias leakage current level and reducing 
the power consumption during implication operations.

5. Summary

In summary, we have demonstrated potentiation, depression and spike-timing-dependent 

plasticity in a synaptic device built using a SiO
x
-based 1D-1R architecture. Proton-induced 

resistive switching behaviors in the SiO
x
 memory element were discussed, where the SET 

threshold is modeled as proton desorption from the (SiH)
2
 defect to generate the conductive 

hydrogen bridge, Si-H-Si, and the RESET transition is modeled as proton release and capture 

to reform nonconductive (SiH)
2
 [82–89]. The electrical results demonstrate that the technol-

ogy has good potential for providing a simple and robust approach for large-scale integra-

tion of programmable neuromorphic chips using CMOS technology, and represent a critical 

milestone regarding the potential use of SiO
2
-based resistive memory as a synaptic device in 

future synthetic biological computing applications. Moreover, a logic circuit consisting of a 
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4 × 4 array of crossbar structure memristor 1D1R memory elements and select transistors are 

proposed together with bidirectional implication schemes. Then a one-bit full adder is theo-

retically realized with a total of 48 operation steps performed on the circuit. A comparison 

between CMOS-enabled logic circuits and memristor-enabled circuits shows advantages in 

real estate and power consumption, as well as disadvantages in speed. This result suggests 

the memristor-enabled logic circuit is most suitable for high-speed, low-power, high-den-

sity applications. Further study is still required to make a few steps in various implication 

schemes as well as lower power consumption in synaptic computations.
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