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Abstract

Amyotrophic lateral sclerosis (ALS) is one of the most common adult-onset debilitat‐
ing neurodegenerative diseases (NDs) which is characterized by a chronic progres‐
sive degeneration of upper and lower motor neurons, resulting in muscular atrophy,
paralysis and ultimately death. It has been established that in ALS, the canonical Wnt/
beta-catenin  pathway  is  upregulated.  Peroxisome  proliferator-activated  receptor
gamma (PPAR gamma) generally varies in opposite way compared with the Wnt/beta-
catenin signaling. Several studies carried out on ALS transgenic mice have shown the
beneficial  effects  induced  after  treatment  by  PPAR  agonists  partly  due  to  anti-
inflammatory effects induced by PPAR gamma. The coupling between the Wnt/beta-
catenin signaling and PPAR gamma has led to divide NDs into two classes: NDs in
which  the  Wnt/beta-catenin  pathway  is  upregulated  whereas  PPAR  gamma  is
downregulated  (ALS,  Parkinson’s  disease,  Huntington’s  disease  and  Friedreich’s
ataxia); and NDs in which the Wnt-beta-catenin pathway is downregulated while PPAR
gamma is upregulated (Alzheimer’s disease, bipolar disorder and schizophrenia).
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1. Introduction

Neurodegenerative diseases (NDs) are frequent and often present a pejorative prognosis. Two
major systems play a key role in the pathophysiology of NDs, i.e., the canonical Wnt/beta-
catenin pathway and PPAR gamma. Several studies have demonstrated the opposite interac‐
tion between the canonical Wnt/beta-catenin pathway and the PPAR gamma [1–7]. It has
recently been shown that certain NDs can be divided into two classes [8]: on one hand, NDs
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in which the Wnt/beta-catenin pathway is upregulated whereas PPAR gamma is downregu‐
lated. Among these NDs, we find amyotrophic lateral sclerosis (ALS), Parkinson’s disease,
Huntington’s disease and Friedreich’s ataxia. PPAR agonists exert protective effects in ALS
neurons of transgenic mice and may represent therapeutic targets in human ALS. On the other
hand, NDs in which the Wnt-beta-catenin pathway is downregulated while PPAR gamma is
upregulated. Among these NDs, we find Alzheimer’s disease, bipolar disorder and schizo‐
phrenia. This list is not exhaustive.

2. Amyotrophic lateral sclerosis (ALS)

ALS is one of the most common adult-onset debilitating NDs with the prevalence of about 5
per 100,000 individuals. The pathophysiology of ALS in humans is particularly complex, due
to the numerous interconnected pathological processes and, today, has not been fully eluci‐
dated. However, it remains to determine those really responsible for the disease from those
simply involved in its development. ALS has been first described by J.M. Charcot in 1869. ALS
is a fatal neurodegenerative disorder and is characterized by chronic progressive degeneration
of upper and lower motor neurons, resulting in muscular atrophy, paralysis and ultimately
death. And, 82% of ALS are sporadic. The most frequent mutations in inherited or familial ALS
(FALS) are found in the gene for Cu, Zn superoxide dismutase (SOD1). Among numerous
abnormalities, this FALS presents glutamate toxicity, axonal transport defects, aberrant
neurotrophic factors, mitochondrial dysfunction [9]. Numerous in vivo studies have used
transgenic mice expressing FALS mutants of human SOD1 [10]. This transgenic model
develops a progressive motor neuron pathology which is reminiscent of the human ALS
phenotype [11]. The human sporadic ALS differs little clinically from SOD1-related FALS. Both
forms of ALS induce degeneration of motor neurons which leads to paralysis and death within
3–5 years from the appearance of the first symptoms. Today, no pharmacological therapeutic
can really stop the progression of the disease. Although riluzole is approved for ALS patients,
the benefits of this drug are marginal [12–15].

3. Canonical Wnt/beta-catenin pathway

Wnt signaling plays a key role in carcinogenesis, embryonic development, cell fate, cell
migration and NDs [16, 17]. A hallmark of the canonical Wnt pathway activation by Wnt
ligands is the increase in the cytoplasmic beta-catenin protein level, the subsequent nuclear
translocation and further activation of beta-catenin specific gene transcription [4, 18–20]. In
the absence of Wnt ligands, beta-catenin is recruited into a destruction complex that contains
adenomatous polyposis coli (APC) and Axin, which facilitate the phosphorylation of beta-
catenin by glycogen synthase kinase-3beta (GSK-3beta). GSK-3beta phosphorylates the N-
terminal domain of beta-catenin, thereby targeting it for ubiquitination and proteasomal
degradation. In the presence of a Wnt ligand, the binding of Wnt to Frizzled (Fzd) leads to
activation of the phosphoprotein Dishevelled (Dsh). Dsh recruits Axin and the destruction
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complex to the plasma membrane, where Axin directly binds to the cytoplasmic tail of the low-
density lipoprotein-receptor-related proteins (LRP5-6). The activation of Dsh also leads to the
inhibition of GSK-3beta by phosphorylation, which further reduces the phosphorylation and
degradation of beta-catenin. The beta-catenin degradation complex is inactivated with
recruitment of Axin to the plasma membrane, thus stabilizing the non-phosphorylated beta-
catenin which translocates to the nucleus. Beta-catenin binds to T cell/lymphoid-enhancing
binding (Tcf/Lef) transcription factors. The resulting complex becomes active by displacing
Grouchos, leading to activation of numerous target genes including c-myc, cyclin D1, TIFF-1,
Axin-2, CD44, Cox2, MMP-7, PPAR beta/delta, [21–23]. Upregulation of the canonical Wnt/
beta-catenin pathway is observed in metabolic diseases such as type 2 diabetes, hypertension,
in cancers (colon, lung, breast, leukemias) and certain NDs. Downregulation is observed in
osteoporosis, cardiac hypoxia, cardiac hypertrophy, arrhythmogenic right ventricular dyspla‐
sia/cardiomyopathy (ARVC) and certain NDs [8].

4. PPAR gamma

Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a ligand-activated
transcriptional factor that belongs to the nuclear hormone receptor superfamily. PPAR gamma
regulates the expression or activity of a large number of genes in a variety of signaling
pathways, including regulation of insulin sensitivity, glucose homeostasis, lipid metabolism,
immune responses, inflammation, redox balance, cardiovascular integrity and cell fate [24,
25]. PPAR gamma is expressed in various cell types, such as adipose tissues, immune cells and
brain cells including microglia and astrocytes which contribute to anti-inflammatory response
in the central nervous system. During the past decade, the role of PPAR gamma in neurode‐
generation has been established. The administration of PPAR gamma ligands has been shown
to be beneficial in many NDs such as ALS, Alzheimer's disease, Parkinson's disease, multiple
sclerosis, Huntington's disease and stroke [26]. PPAR gamma has been shown to have anti-
inflammatory and neuroprotective effects [27, 28]. Astrocytic GLT1/EAAT2 gene is a target of
PPAR gamma, leading to neuroprotection by increasing the glutamate uptake [29]. PPAR
gamma is a direct transcriptional modulator of the pyruvate carboxylase gene [30]. Given the
fact that ALS patients suffer from massive weight loss, this provides a possible explanation for
the potential protective effects of pioglitazone through increased lipogenesis.

5. PPAR gamma activation induces repression of the beta-catenin pathway

The thiazolidinedione PPAR gamma agonists (TZDs), troglitazone, rosiglitazone and piogli‐
tazone, and a non-thiazolidinedione PPAR gamma activator, GW1929, inhibit the beta-catenin-
induced transcription in a PPAR gamma-dependent fashion [1–3, 5]. Troglitazone-mediated
activation of PPAR gamma is associated with an inhibition of beta-catenin at a post-transcrip‐
tional level. The functional interaction between beta-catenin and PPAR gamma involves the
Tcf/Lef factor-binding domain of beta-catenin and a catenin-binding domain within PPAR
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gamma [5]. Treatment with PPAR gamma agonists decreases mRNA and protein levels of beta-
catenin in 3T3L1 adipocytes [1]. TZDs induce a reduction in the levels of cytoplasmic beta-
catenin in hepatocytes [3]. PPAR gamma suppresses Wnt/beta-catenin pathway during
adipogenesis [2].

6. Deactivation of the Wnt/beta-catenin pathway induces activation of
PPAR gamma

Inhibition of Wnt/beta-catenin pathway leads to an increase in transcription of PPAR gamma.
Activation of the Wnt/beta-catenin signaling leads to osteogenesis, but not to adipogenesis.
The canonical Wnt/beta-catenin-PPAR gamma system regulates the molecular switching of
osteablastogenesis versus adipogenesis [6]. Wnt signaling maintains preadipocytes in an
undifferentiated state through inhibition of both adipogenic transcription factors C/EBP alpha
and PPAR gamma. Deactivation of Wnt/beta catenin pathway and activation of PPAR gamma
are observed in ARVD [4, 31]. Taken together, these studies suggest that the canonical Wnt/
beta-catenin signaling downregulates PPAR gamma expression, inhibition of Wnt/beta-
catenin signaling upregulates PPAR gamma expression and PPAR gamma agonists inhibit the
canonical Wnt/beta-catenin pathway.

7. ALS and Wnt/beta-catenin pathway

The canonical Wnt/beta-catenin signaling is involved in numerous NDs, particularly in ALS.
Several studies have shown that this pathway is upregulated in motor neurons of ASL model
mice [32–35]. In the spinal cord of SOD1(G93A) ALS transgenic mice, expression of Wnt2,
Wnt7a and GSK-3beta has been determined [32]. Both Wnt2, Wnt7a mRNA and protein in the
spinal cord of ALS mice have been found to be upregulated when compared with wild type.
The immune-reactivity of Wnt2 and Wnt7a is strong in ALS adult transgenic mice, whereas it
is weak in wild-type mice. Neurodegeneration upregulates the expression of Wnt2 and Wnt7a
in the spinal cord of ALS mice, which in turn activates Wnt signaling and inhibits GSK-3beta
activity in ALS adult transgenic mice. Expression of Wnt3a, beta-catenin and Cyclin D1, three
key molecules of the Wnt/beta-catenin signaling, have been determined in the adult spinal
cord of SOD1(G93A) ALS transgenic mice at different stages [33]. It has been found that mRNA
and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice are upregulated
compared with wild-type mice. Moreover, beta-catenin translocates from the cell membrane
to the nucleus and subsequently activated transcription of the target gene Cyclin D1. Wnt3a,
beta-catenin and Cyclin D1 are also expressed in both neurons and astrocytes. For the authors,
these findings suggest that neurodegeneration activates the Wnt/beta-catenin pathway, in the
spinal cord of adult ALS transgenic mice. Changes in Wnt5a and Fzd2 expression in the spinal
cord of SOD1(G93A) transgenic mice (ALS), SOD1(G93A) transfected NSC-34 cells and
primary cultures of astrocytes from SOD1(G93A) transgenic mice have been observed [35].
Expression of Wnt1 and Fzd1 has been found to be increased in the spinal cords of SOD1G93A

Update on Amyotrophic Lateral Sclerosis260



ALS transgenic mice [34]. In the in vitro model of ALS (G93A mutated forms of human Cu/Zn
superoxide dismutase-1; SOD1), a cytosolic aggregation of beta-catenin has been observed.
This suggests that Wnt/beta-catenin pathway could play critical role in the neurodegeneration
of motor neurons in ALS [36]. Beta-catenin is activated in a subset of myofibers in extraocular
muscles and limb muscles in ALS subjects [37].

8. ALS and riluzole

Today, no really efficient treatment exists for ALS [38, 39]. However, riluzole has been
approved for the treatment of ALS in most countries and is tested in people based on results
supporting a role of glutamate toxicity in ALS. Riluzole has numerous pharmacodynamics
properties, i.e., presynaptic inhibition of the glutamate release, inhibition of G-protein-
dependent processes, modulation of N-methyl-D-aspartate ionotropic receptor and blockade
of the voltage-gated sodium channel, etc. [39]. Two trials [12, 13] have demonstrated the weak
efficacy of riluzole in ALS with prolongation of median survival by 2 to 3 months and safety
of riluzole. Thus, riluzole appears to slow the progression of ALS, and may improve survival
in patients with disease of bulbar onset [12]. Riluzole is well tolerated and lengthens survival
of patients with ALS [13]. Two other studies have led to almost the same conclusions [14, 15].
The FDA-approved drug, riluzole, 100 mg daily is reasonably safe and probably prolongs
median survival by about 2 to 3 months in patients with ALS.

Importantly, riluzole has been found to be an enhancer of the Wnt/beta-catenin signaling in
melanoma [40]. For the authors, treating melanoma cells with riluzole in vitro enhances the
ability of WNT3A to regulate gene expression, promote pigmentation and decrease cell
proliferation. Like WNT3A, riluzole decreases metastases in a mouse melanoma model.
Moreover, riluzole enhances Wnt/beta-catenin signaling in the primary screen both in HT22
neuronal cells and in adult hippocampal progenitor cells [40]. As the Wnt/beta-catenin
pathway is upregulated, at least in genetic ALS mice [32–35], this can partly explain poor
results in trials testing riluzole in ALS as shown previously [12–15]. Lithium, an activator of
the Wnt/beta catenin signaling, has also been evaluated as a treatment for ALS [41]. Surpris‐
ingly, in ALS patients treated with lithium, the disease progression has been shown to be
markedly attenuated. In the genetic ALS G93A mouse model, there is a marked neuroprotec‐
tion induced by lithium, which delayed disease onset and duration and augmented the life
span. The use of the enhancer Wnt/beta-catenin lithium can be discussed in ALS in which the
Wnt/beta-catenin pathway has been shown to be upregulated in several animal studies [32–
35]. GSK-3beta-inhibitor lithium chloride enhances activation of the canonical Wnt signaling
[42–44]. Lithium activates downstream components of the Wnt signaling pathway in vivo,
leading to an increase of the beta-catenin protein. This pathway is implicated in the patho‐
physiology and treatment of bipolar disorder [45, 46]. Riluzole reduces symptoms of obsessive-
compulsive disorder, unipolar and bipolar depression and generalized anxiety disorder [47].
This is not surprising due to the fact that the Wnt/beta-catenin pathway is downregulated in
bipolar syndrome [8] and that like lithium, riluzole is an enhancer of Wnt/beta-catenin
signaling.
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9. ALS and PPAR gamma

In ALS, expression of PPAR gamma (mARN and protein) has not been precisely investigated
in neurons. However, the upregulation of Wnt/beta-catenin signaling observed in ALS
suggests that PPAR gamma might be downregulated due to the fact that these two systems
generally operate in the opposite way [1–3, 5]. Neuroinflammation is a common pathological
feature in NDs, particularly in ALS. PPAR gamma may be a key regulator of neuroinflamma‐
tion. PPAR gamma inhibits NF-kappaB-mediated inflammatory signaling at multiple sites
[48]. PPAR gamma might be a relevant regulator of neuroinflammation and possibly a new
target for the development of therapeutic strategies for ALS. A potentially therapeutic pathway
in ALS may be the activation by PPAR gamma agonists due to their ability to block neuropa‐
thological damages caused by inflammation [49]. The neuroprotective effect of pioglitazone
has been demonstrated in G93A SOD1 transgenic mouse model of ALS and shows a significant
increase in their survival. Pioglitazone protects motor neurons against p38-mediated neuronal
death and NF-kappaB-mediated glial inflammation via a PPAR gamma-independent mecha‐
nism [50]. In ALS, PPAR gamma controls natural protective mechanisms against lipid
peroxidation [51]. PPAR gamma-driven transcription selectively increases in the spinal cord
of hSOD1G93A mice. This is correlated with the upregulation of lipid detoxification enzymes
such as the lipoprotein lipase and glutathione S-transferase alpha-2, implied in scavenging
lipid peroxidation by-products. Anticipation of protective reactions by pharmacological PPAR
gamma modulation of the transcriptional activity attenuates neurodegeneration induced by
lipid peroxidation. PPAR gamma activation is neuroprotective in a Drosophila model of ALS
[52]. This Drosophila model of ALS based on TDP-43 recapitulates several aspects of ALS
pathophysiology. Pioglitazone rescues TDP-43-dependent locomotor dysfunction in motor
neurons and glia. PPAR gamma activation in neurons and glia is partially neuroprotective and
restores metabolic alterations in ALS. Superoxide dismutase (SOD1)-G93A transgenic mice
benefit from oral treatment with the PPAR gamma agonist pioglitazone [53]. Pioglitazone-
treated transgenic mice reveal improved muscle strength and body weight, exhibit a delayed
disease onset and survive significantly longer than non-treated SOD1-G93A mice. Pioglita‐
zone-induced neuroprotection of motor neurons of the spinal cord is complete at day 90. There
is also preservation of the median fiber diameter of the quadriceps muscle, indicating a
morphological and functional protection of motor neurons induced by pioglitazone. However,
in a phase II double-blind controlled clinical trial, the PPAR gamma agonist pioglitazone in
combination with riluzole does not increase survival in ALS patients [54].

PPAR gamma coactivator-1alpha (PGC-1alpha) is a transcriptional coactivator that works
together with the transcription factor PPAR gamma in the regulation of mitochondrial
biogenesis. PGC-1alpha plays a role in several neurodegenerative pathologies [26]. PGC-1al‐
pha protects neurons and alters disease progression in a PGC-1alpha transgenic mice crossed
with SOD1 mutant G93A DL mice [55]. In these mice, the progression of the disease has been
shown to be significantly slower. There is also a markedly improved performance on the
rotarod test associated with an improved motor activity with a decreased loss of motor neurons
and less degeneration of neuromuscular junctions. By using a double transgenic mouse model
where PGC-1alpha is over-expressed in a SOD1 transgenic mouse (TgSOD1-G93A/
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PGC-1alpha), it has been found that motor function and survival are improved [56]. This is
accompanied by a reduction of motor neuron loss, a restoration of mitochondrial electron
transport chain activities and an inhibition of stress signaling in the spinal cord. Thus, in the
double-transgenic mice, there are improved motor performance, slowed ALS progression,
decreased weight loss, and reduced motor neuronal death. Survival and disease improvement
are greater in higher-expressing PGC-1alpha mice. Therefore, PPAR gamma is a possible target
for ALS as it functions as a transcription factor that interacts with PGC-1alpha. Elevated
PGC-1alpha activity sustains mitochondrial biogenesis and muscle function without extend‐
ing survival in a mouse model of inherited ALS [57]. Increasing PGC-1alpha activity in muscles
represents an attractive therapy for maintaining muscle function during the progression of
ALS.

10. Conclusions

PPAR agonists represent promising therapeutics for NDs such as multiple sclerosis, ALS and
Alzheimer’s disease (AD). Their activation affects many pathological mechanisms. PPAR
activation can weaken or reprogram the immune response, stimulate metabolism, improve
mitochondrial function, promote axon growth and induce progenitor cells to differentiate into
myelinating oligodendrocytes [58]. The mechanisms of action of PPAR agonists are various
and may be useful at many stages of diseases. Type, timing and dose of PPAR agonists may
vary depending on injury severity, progression of disease or cellular targets such as neurons,
microglia, oligodendrocytes, and may explain a number of conflicting results in several
studies. PPAR gamma may be useful due to its anti-inflammatory properties. Moreover, PPAR
gamma agonists induce beta-catenin inhibition [3, 5], which represents a rationale to use it
when the Wnt/beta-catenin pathway is upregulated such as in Parkinson’s disease, multiple
sclerosis, ALS, Huntington's disease and Friedreich's ataxia [8]. However, in AD, PPAR gamma
levels (mRNA and protein) have been found to be elevated in brain tissues [59, 60]. Although
PPAR gamma expression is high in AD, PPAR gamma agonists have been used in AD humans
and various AD animal models and have been shown to induce beneficial effects, partly due
to their anti-inflammatory effects [61–67]. Even if the PPAR gamma agonist pioglitazone, in
combination with riluzole, does not increase survival in ALS patients [54], PPAR gamma
represents a useful therapeutic target in several animal models. Inhibition of the Wnt/beta-
catenin pathway might also represent a therapeutic approach in ALS animal model.
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