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1. Introduction  

High speed electronic devices generate more heat than other devices. This chapter is 
addressing the portable electronic device air cooling problem. The air cooling limitations is 
affecting the portable electronic devices. The Multi-Core CPUs will dominate the Mobile 
handsets Platforms in the coming few years. Advanced control techniques offer solutions for 
the central processing unit (CPU) dynamic thermal management (DTM). This chapter 
objective is to minimize air cooling limitation effect and ensure stable CPU utilization using 
fuzzy logic control. The proposed solution of the air cooling limitation focuses on the design 
of a DTM controller based on fuzzy logic control. This approach reduces the problem design 
time as it is independent of the CPU chip and its cooling system transfer functions. On-chip 
thermal analysis calculates and reports thermal gradients or variations in operating 
temperature across a design. This analysis is increasingly important for the advanced digital 
integrated circuits (ICs). At today’s 65nm and 45nm technologies, adding cores to CPU chip 
increases its power density and leads to thermal throttling. Advanced control techniques 
give a solution to the CPU thermal throttling problem. Towards this objective, a thermal 
model similar to a real IBM CPU chip containing 8 cores is built. This thermal model is 
integrated to a semiconductor thermal simulator. The open loop response of the CPU chip is 
extracted. This CPU chip thermal profile illustrates the CPU thermal throttling. The 
proposed DTM controller design is based on 3D fuzzy logic. There are many cores within 
CPU chip, each of them is a heat source. The correlation between these cores temperatures 
and their operating frequencies improves the DTM response and reduce the air cooling 
limitation effect. The 3D fuzzy controller takes into consideration these correlations. This 
chapter presents a new DTM technique called “Thermal Spare Core” algorithm (TSC). 
Thermal Spare Core (TSC) is a completely new DTM algorithm. The thermal spare cores 
(TSC) is based on the reservation of cores during low CPU utilization and activate them 
during thermal crises. The reservation of some cores as (TSC) doesn’t impact CPU over all 
utilization. These cores are not activated simultaneously due to the air cooling limitations. 
The semiconductor technology permits more cores to be added to CPU chip. That means 
there is no chip area wasting in case of TSC. The TSC is a solution of the Multi-Core CPU air 
cooling limitations.  

2. The CPU air cooling limitations 

We live in a computer controlled epoch. We do not even realize how often our lives depend 
on machines and their programming. For example, mobile handsets, portable electronic 
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devices, laptops, medical instruments, and many other devices all depend on digital 
processors in our everyday lives. There is no doubt that the size and the weight of these 
portable equipments is affecting their utilization. Unfortunately, there are many factors 
affecting the portability of electronic systems. The power consumption is affecting battery. 
Efficient cooling of portable electronic devices is becoming a problem due to air cooling 
limitations. 
On-chip temperature gradient is a design challenge. Many technology factors affect the chip 

temperature gradients. In terms of the technology factors, power density (power per unit 

area) is increasing with each new technology node (ITRS , 2006). After all, smaller 

geometries enable more functionality to be fit within the same area of a chip which can 

result in high thermal gradients (Huangy et al., 2006). As shown in Fig.1A, adding more 

cores to the CPU chip increase the total power consumption. Fig.1B illustrates the maximum 

number of cores per chip and their maximum operating frequencies (D.D.Kim et al., 2008). 
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Fig. 1. Multi-Core CPU evolutions 

The CPU cores run relatively hot while on-chip memory tends to run relatively cold. The 

result is an ever-varying mish-mash of “hot” and “cold” spots that depend on the mode of 

operation. A cell phone is a good example of this type of design. The act of creating a text 

message will exercise certain functionality, which creates a specific thermal profile. But the 

act of transmitting this message will exercise different functionality, which results in a 

different profile. The same can be said for using the cell phone to make a voice call, play an 
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mp3 file, take a picture, and so forth. The resulting temperature variation across a chip is 

typically around 10° to 15°C. If this temperature distribution is not managed; then 

temperature variation will be as high as 30° to 40°C (Mccrorie, 2008).  

The CPU power dissipation comes from a combination of dynamic power and leakage 

power (S.Kim et al., 2007). Dynamic power is a function of logic toggle rates, buffer 

strengths, and parasitic loading. The leakage power is function of the technology and device 

characteristics. Thermal-analysis solutions must account for both causes of power. In Fig.1C 

the thermal profile of a CPU chip is showing the temperature variation across the chip 

surface. This phenomenon is due to the variation of the power density according to each 

function block design. This power density distribution generates "hotspots" and “coldspots” 

areas across the CPU chip surface (Huangy et al., 2006). The high CPU operating 

temperature increases leakage current degrades transistor performance, decreases electro 

migration limits, and increases interconnect resistively (Mccrorie, 2008). In addition, leakage 

current increases the power consumption. 

3. The CPU thermal throttling problem 

The fabrication technology permits the addition of more cores to the CPU chip having 

higher speed and smaller size devices. But adding more cores to a CPU chip increases the 

power density and generates additional dynamic power management challenges. Since the 

invention of the integrated circuit (IC), the number of transistors that can be placed on an 

integrated circuit has increased exponentially, doubling approximately every two years 

(Moore, 1965). The trend was first observed by Intel co-founder Gordon E. Moore in a 1965 

paper. Moore’s law has continued for almost half a century! It is not a coincidence that 

Moore was discussing the heat problem in 1965: "will it be possible to remove the heat 

generated by tens of thousands of components in a single silicon chip?" (Moore, 1965). The 

static power consumption in the IC was neglected compared to the dynamic power for 

CMOS technology. The static power is now a design problem. The millions of transistors in 

the CPU chip exhaust more heat than before. The CPU cooling system capacity limits the 

number of cores within the CPU chip (ITRS , 2008). 

The International Technology Roadmap for Semiconductors (ITRS) is a set of documents 

produced by a group of semiconductor industry experts. ITRS specifies the high-

performance heat-sink air cooling maximum limits; which is 198 Watt (ITRS, 2006). The chip 

power consumption design is limited by cooling system level capacity. We already reached 

the air cooling limitation in 2008 as shown in Fig.1D. 

As shown in Fig.2A; the CPU reaches the maximum operational temperature after certain 

time due to maximum CPU utilization. Thus the CPU utilization is reduced to the safe 

utilization in order not to exceed. This phenomenon is called CPU thermal throttling. Fig.2B 

shows the comparison between the ideal case “no thermal constrains”, “low power 

consumption with thermal constraints” case and “high power consumption with thermal 

constraints” case. The addition of more cores to the CPU chip doesn’t increase the CPU 

utilization. The curve drifts to lower CPU utilization due to the CPU thermal limitation in 

case of low power consumption. In case of high power consumption; the CPU utilization 

decreases by adding more cores to the CPU chip. Thus the CPU utilization improvement is 

not proportional to its number of cores. 
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A - thermal throttling 

 
B- CPU Thermal throttling 

Fig. 2. CPU thermal throttling (Passino & Yurkovich, 1998) 

4. The advance DTM controller design 

The advanced dynamic thermal management techniques are mandatory to avoid the CPU 

thermal throttling. The fuzzy control provides a convenient method for constructing 

nonlinear controllers via the use of heuristic information. Such heuristic information may 

come from an operator who has acted as a “human-in-the-loop” controller for a process. The 

fuzzy control design methodology is to write down a set of rules on how to control the 

process. Then incorporate these rules into a fuzzy controller that emulates the decision-

making. Regardless of where the control knowledge comes from, the fuzzy control provides 

a user-friendly and high-performance control (Patyra et al., 1996). 

The DTM techniques are required in order to have maximum CPU resources utilization. 

Also for portable devices the DTM doesn’t only avoid thermal throttling but also preserves 

the battery consumption. The DTM controller measure the CPU cores temperatures and 

according selects the speed “operating frequency” of each core. The power consumed is a 

function of operating frequency and temperature. The change in temperature is a function of 

temperature and the dissipated power. 

The dynamic voltage and frequency scaling (DVFS) is a DTM technique that changes the 
operating frequency of a core at run time (Wu et al., 2004). Clock Gating (CG)or stop-go  
technique involves freezing all dynamic operations(Donald & Martonosi, 2006). CG turns 
off the clock signals to freeze progress until the thermal emergency is over. When 
dynamic operations are frozen, processor state including registers, branch predictor 
tables, and local caches are maintained (Chaparro et al., 2007). So less dynamic power 
consumed during the wait period. GC is more like suspend or sleep switch rather than an 
off-switch. Thread migration (TM) also known as core hopping is a real time OS based 
DTM technique. TM reduces the CPU temperature by migrating core tasks “threads” from 
an overheated core to another core with lower temperature. The current traditional DTM 
controller uses proportional (P controller) or proportional-integral (PI controller) or 
proportional-integral-derivative (PID controller) to perform DVFS (Donald & Martonosi, 
2006; Ogras et al., 2008). 
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The fuzzy logic is introduced by Lotfi A. Zadeh in 1965 (Trabelsi et al., 2004). The traditional 
fuzzy set is two-dimensional (2D) with one dimension for the universe of discourse of the 
variable and the other for its membership degree. This 2D fuzzy logic controller (FC) is able 
to handle a non linear system without identification of the system transfer function. But this 
2D fuzzy set is not able to handle a system with a spatially distributed parameter. While a 
three-dimensional (3D) fuzzy set consists of a traditional fuzzy set and an extra dimension 
for spatial information. Different to the traditional 2D FC, the 3D FC uses multiple sensors to 
provide 3D fuzzy inputs. The 3D FC possesses the 3D information and fuses these inputs 
into “spatial membership function”. The 3D rules are the same as 2D Fuzzy rules. The 
number of rules is independent on the number of spatial sensors. The computation of this 
3D FC is suitable for real world applications. 

5. DTM evaluation index 

An evaluation index for the DTM controller outputs is required. As per the thermal 
throttling definition, “the operating frequency is reduced in order not to exceed the 
maximum temperature”. Both frequency and temperature changes are monitored as there is 
a non linear relation between the CPU frequency and temperature. One of the DTM 
objectives is to minimize the frequency changes. The core theoretically should work at open 
loop frequency for higher utilization. But due to the CPU thermal constrains the core 
frequency is decreased depending on core hotspot temperature. 
The second DTM objective is to decrease the CPU temperature as much as possible without 

affecting the CPU utilization. A multi-parameters evaluation index t is proposed. It 

consists of the summation of each parameter evaluation during normalized time period. 
This index is based on the weighted sum method. The objective of multi-parameters 
evaluation index shows the different parameters effect on the CPU response. Thus the 
designer selects the suitable DTM controller that fulfils his requirements. The multi-
parameters evaluation index permits the selection of DTM design that provides the best 
frequency parameter value without leading to the worst temperature parameter value. 

The DTM evaluation index t calculation consists of 5 phases: 

1. Identify the required parameters 
2. Identify the design parameters ranges 

3. Identify the desired parameters values of each range Desired
ij  

4. Identify the actual parameters values of each range  Actual
ij  

5. Evaluate each parameter and the over all multi- parameter evaluation index  

 t =
1

l

i
i



  (1) 

The parameter i  value during the evaluation time period is the summation of the  

evaluation ranges divided by the number of ranges mi . 

 i = 
1

mi 1

im

ij
j



  (2) 
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Each evaluation range ij  is evaluated over a normalized time period  

 ij  = 

Actual
ij

Desired
ij




 (3) 

Actual
ij  is the actual percentage of time the CPU runs at that range 

Desired
ij is the desired percentage of time the CPU runs at that range 

The i  value should be 1 or near 1. If  1i   then the CPU runs less time than the desired 

within this range. If 1i   then the CPU runs more time than the desired within this 

range. Thus the multi-parameters evaluation index equation is: 

 

Actual
ij

Desired
1 1

1
( )

iml

t
i j ijmi




 
    (4) 

The DTM controller evaluation index desired value should be t l   or near l , where l  is 

the number of parameters. The Multi-parameters evaluation index permit the designer to 
evaluate each rang independent on the other ranges and also evaluate the over all DTM 
controller response.  
The multi-parameters evaluation index is flexible and accepts to add more evaluation 
parameters. This permits the DTM controller designer to add or remover any parameter 
without changing the evaluations algorithm. Fig.3 shows an example of the parameter 

i calculation. In this example the parameter i is the temperature. The temperature curve is 

divided into 3 ranges: High (H) – Medium (m) – Low (L), these ranges are selected as follow: 
High “greater than78 °C”, Medium “between 74 °C and 78 °C”, and Low “lower than 72 

°C”. The actual parameters values of each range Actual
ij is calculated as follow: Actual

i High  = 

20.5%, Actual
i Medium  = 76%, and Actual

i Low =3.5% 

6. Thermal spare core 

As a CPU is not 100% utilized all time, thus some of the CPU cores could be reserved for 
thermal crises. Consider Fig.4A, when a core reaches the steady state temperature 1T , the 

cooling system is able to dissipate the exhausted heat outside the chip. However, if this core 
is overheated, the cooling system is not able to exhaust the heat outside the chip. Thus the 
core temperature increases until it reaches the thermal throttling temperature 3T (Rao & 

Vrudhula, 2007).  
The same thermal phenomena, as shown in Fig.4A, occur due to faults in the cooling system 
(Ferreira et al., 2007). The semiconductor technology permits more cores to be added to CPU 
chip. While the total chip area overhead is up to 27.9 % as per ITRS (ITRS , 2009). That 
means there is no chip area wasting in case of TSC. So reserving cores as thermal spare core 
(TSC) doesn’t impact CPU over all utilization. These cores are not activated simultaneously 
due to thermal limitations. According to Amdahl’s law: “parallel speedups limited by serial 
portions” (Gustafson , 1988). So adding more cores to CPU chip doesn’t speedup due to the 
serial portion limits. Thus not all cores are fully loaded or even some of them are not even 
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Fig. 3. Example of actual parameter value calculation  

utilized if parallelism doesn't exist. The TSC concept uses the already existing chip space 

due to semiconductor technology. From the thermal point of view; the horizontal heat 

transfer path has for up to 30% of CPU chip heat transfer (Stan et al., 2006). The TSC is a big 

coldspot within the CPU area that handles the horizontal heat transfer path. The cold TSC 

reduces the static power as the TSC core is turned off. Also the TSC is used simultaneous 

with other DTM technique. The equation (5) calculates number of TSCs cores. The selection 

of TSC cores number is dependant on the number of cores per chip and maximum power 

consumed per core as follow:  

 | { ( 198 ) / 198 } |TSC mx CN P N   (5) 

where TSCN : minimum number of TSCs, mxP  :  maximum power consumed per core, CN  : 

total number of cores, 198 Watts is the thermal limitation of the air cooling system. Fig.4A 

shows core profile where lower curve is normal thermal behavior. The upper curve is the 

overheated core, 1T  is the steady state temperature, 1T  = 80 C corresponds to the 

temperature at 1t . 2t  is required time for a thermal spare core to takeover threads from the 

overheated core, 2T  = 100 C corresponds to the temperature at 2t . 3T  is the throttling 

temperature, and 3T  = 120 C corresponds to the temperature at 3t .  
TSC technique uses the already existing cores within CPU chip to avoid CPU thermal 
throttling as follow: Hot TSC: is a core within the CPU powered on but its clock is stopped. 
It only consumes static power. It is a fast replacement core. However, it is still a heat source. 
Cold TSC: is a core within the CPU chip powered off (no dynamic or static power 
consumed). It is not a heat source, but it is a slow replacement core. Its activation needs 
more time than hot TSC. But the cold TSC reduces the static power dissipation. Also cold 
TSC generates cold spot with relative big area that helps exhausting the horizontal heat 
transfer path out of the chip. 
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A- Core thermal throttling “upper” curve 

(Ferreira et al., 2007). 

 
B- The CPU congestion due to thermal 

limitations 

 
C- Activating TSC during the CPU thermal 

crises 

 
D- Activating many TSC during the CPU 

thermal crises 

Fig. 4. TSC Illustration  

Defining tscT  as the TSC activation temperature as follow: 

 ss tsc thT T T   (6) 

 min { ( ) , ( ) }tsc th CT th TMt t t t t    (7) 

Where: ssT : core steady state temperature. tscT : The temperature that triggers TSC process. 

thT : CPU throttling temperature. tsct : The time of activating TSC. tht   : The time required to 

reach thermal throttling. CTt : The estimated time required for completing the current tasks 

within the over heated core. This information is not always accurate at run time. TMt : Time 

required migrating threads from over heated core to TSC. If any core reaches tscT then the 

DTM controller will inform the OS to stop assigning new tasks to this overheated core. Thus 

the OS doesn’t assign any new task to the overheated core. Therefore, tscT  is not predefined 

constant temperature but variable temperature between ssT  and thT . The DTM selects tscT  

depending on the minimum time required to evacuate the over heated core.  

6.1 TSC illustration 

This section illustrates the thermal spare cores (TSC) technique 
As shown in Fig.4B, the CPU is 100% utilized for duration about 50 seconds. The OS realizes 
that the CPU congestion. The CPU executes its tasks slowly. In fact the CPU suffers from 
thermal throttling. This CPU utilization curve shows CPU congestion from OS point of view 
due to thermal limitations. 
As shown in Fig.4C, The DTM controller detected the CPU high temperature. Thus the DTM 
controller executes the TSC algorithm. At 40 seconds time line, a TSC core replaces a hot 
core. The handover between the hot core the TSC core lead to a CPU peak. But The CPU 
improves its speed after that peak; as the TSC is still cold relatively and operates at higher 
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frequency. At 86 seconds, the CPU reaches thermal throttling again. Thus the CPU reaches 
congestion again. So the activation of a TSC core during the CPU thermal crises decreases 
the duration of the CPU degradation from 50 seconds to 15 seconds duration.  
As shown in Fig.4D, the activation of 3 TSC cores during the thermal crises at 25 seconds, 45 
seconds and 85 seconds time lines respectively increases the CPU utilization. The CPU 
executes its tasks normally without congestion rather than some CPU peaks. AS this CPU 
chip has many spare cores; the DTM controller activates the required TSC during the CPU 
thermal crises. So the CPU avoids the thermal throttling theoretically. 

6.2 3D Fuzzy DTM controller 

The 3D fuzzy control is able to handle the correlation between the different variable 
parameters of a distributed parameter system (Li & Li, 2007). Thus the 3D fuzzy logic is able 
to process the Multi-Core CPU correlation information. The 3D fuzzy control demonstrates 
its potential to a wide range of engineering applications. The 3D fuzzy control is feasible for 
real-time world applications (Li & Li, 2007). The thermal management process is a 
distributed parameter systems. The thermal management process is represented by the 
nonlinear partial differential equations (Doumanidis & Fourligkas, 2001).  
 

 

Fig. 5. Actuator u and the measurement sensors at p point. 

Fig.5. presents a nonlinear distributed parameter system with one actuator ( 1  ). Where 

p point measurement sensors are located at 1 2, ,......, pz z z  in the one-dimensional space 

domain respectively and an actuator u  with some distribution acts on the distributed 

process. Inputs are measurement information from sensors at different spatial  

locations. i.e., deviations 1 2, ,......, pe e e  and deviations change 1 2, ,......, pe e e    where 

1 ( ) ( , )d i ie y z y z n  , ( ) ( 1)i i ie e n e n     ( )d iy z  denotes the measurement value 

from location iz , , 1n n  denote the n  and 1n   sample time input. The output relationship 

is described by fuzzy rules extracted from knowledge. Since p  sensors are used to provide 

2p inputs.  
 

 

Fig. 6. 3D fuzzy set (Li & Li, 2007) 
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The 3D fuzzy control system is able to capture and process the spatial domain information 
defined as the 3D FC. One of the essential elements of this type of fuzzy system is the 3D fuzzy 
set used for modeling the 3D uncertainty. A 3D fuzzy set is introduced in Fig.6 by developing 
a third dimension for spatial information from the traditional fuzzy set. The 3D fuzzy set 

defined on the universe of discourse X and on the one-dimensional space is given by: 

 {( , ), ( , ) , }
V

V x z x z x X z Z    and 0 {( , ), ( , ) 1
V

x z x z    (8) 

When X and Z are discrete, V is commonly written as  ( , ) /( , )
Vz Z x X

V x z x z
 

   

Where    denotes union over all admissible x  and z . Using this 3D fuzzy set, a 3D 

fuzzy membership function (3D MSF) is developed to describe a relationship between input 

x  and the spatial variable z with the fuzzy grade u  .  

 

 
A - 3D fuzzy system block diagram 

 
B- Spatial information fusion at each crisp input zx  

Fig. 7. 3D fuzzy system illustration (Li & Li, 2007) 

Theoretically, the 3D fuzzy set or 3D global fuzzy MSF is the assembly of 2D traditional 

fuzzy sets at every spatial location (Li & Li, 2007). However, the complexity of this global 3D 
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nature may cause difficulty in developing the FC. Practically, this 3D fuzzy MSF is 

approximately constructed by 2D fuzzy MSF at each sensing location. Thus, a centralized 

rule based is more appropriate, which avoid the exponential explosion of rules when 

sensors increase. The new FC has the same basic structure as the traditional one. The 3D FC 

is composed of fuzzification, rule inference and defuzzification as shown in Fig.7A. Due to 

its unique 3D nature, some detailed operations of this new FC are different from the 

traditional one. Crisp inputs from the space domain are first transformed into one 3D fuzzy 

input via the 3D global fuzzy MSF. This 3D fuzzy input goes through the spatial information 

fusion and dimension reduction to become a traditional 2D fuzzy input. After that, a 

traditional fuzzy inference is carried out with a crisp output produced from the traditional 

defuzzification operation. Similar to the traditional 2D FC, there are two different 

fuzzifications: singleton fuzzifier and non-singleton.  

A singleton fuzzifier is selected as follows: Let A be a 3D fuzzy set, x  is a crisp input, 

x X and z is a point z Z  in one-dimensional space Z . The singleton fuzzifier maps 

x into A in X at location z  then A s a fuzzy singleton with support 'x  if ( , ) 1
A

x z  for 

'x x , 'z z  and ( , ) 0
A

x z   for all other x X , z Z  with 'x x  , 'z z  if finite sensors 

are used. This 3D fuzzification is considered as the assembly of the traditional 2D 

fuzzification at each sensing location. Therefore, for p discrete measurement sensors located 

at 1 2, ,......, pz z z , 1 2[ ( ), ( ),..., ( )]z jx x z x z x z  is defined as J crisp spatial input variables in 

space domain 1 2{ , ,......, }pZ z z z  where ( ) ( 1,2,..., )j i jx z X IR j J   denotes the crisp input 

at the measurement location iz z  for the spatial input variable ( )jx z  , jX  denotes the 

domain of ( )j ix z . The variable ( )jx z is marked by “ z ” to distinguish from the ordinary 

input variable, indicating that it is a spatial input variable. The fuzzification for each crisp 

spatial input variable ( )jx z is uniformly expressed as one 3D fuzzy input xjA in the discrete 

form as follows: 

1 1
1 1 1 1( )

( ( ), ) /( ( ), )X Xz Z x z X
A x z z x z z

 
   

( )
( ( ), ) /( ( ), )

J J
XJ XJ J Jz Z x z X

A x z z x z z
 

   

Then, the fuzzification result of J crisp inputs zx  can be represented by: 

 XA  = 
1 1 2 2

1 1( ) ( ) ( )
..... { ( ( ), ) * .. * ( ( ), )} /

J J
X XJ Jz Z x z X x z X x z X

x z z x z z 
        

 1{( ( ), ) * .. * ( ( ), )}Jx z z x z z  (9) 

Where * denotes the triangular norm; t-norm (for short) is a binary operation. The t-norm 

operation is equivalent to logical AND. Also it has been assumed that the membership 

function 
XA

  is separable .  

Using the 3D fuzzy set, the th  rule in the rule based is expressed as follows:  
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  11: ( ) ....... ( )J JR if x z is C and and x z is C then u is G
  

 (10) 

Where R


denotes the th  rule (1, 2 , ...., )N   ( ),( 1,2,..., )jx z j J  denotes spatial input variable  

JC  denotes 3D fuzzy set, u denotes the control action u U IR  , G  denotes a 

traditional fuzzy set N is the number of fuzzy rules, the inference engine of the 3D FC is 

expected to transform a 3D fuzzy input into a traditional fuzzy output. Thus, the inference 
engine has the ability to cope with spatial information. The 3D fuzzy DTM controller is 
designed to have three operations: spatial information fusion, dimension reduction,  
and traditional inference operation. The inference process is about the operation of  
3D fuzzy set including union, intersection and complement operation. Considering the  
fuzzy rule expressed as (10), the rule presents a fuzzy relation 

1: ....... JR C C G
      (1, 2 , ...., )N  thus, a traditional fuzzy set is generated via 

combining the 3D fuzzy input and the fuzzy relation is represented by rules. 
The spatial information fusion is this first operation in the inference to transform the 3D 

fuzzy input XA  into a 3D set W  appearing as a 2D fuzzy spatial distribution at each 

input zx . W  is defined by an extended sup-star composition on the input set and 

antecedent set. Fig.7B. gives a demonstration of spatial information fusion in the case of two 

crisp inputs from the space domain Z , 1 2[ ( ), ( ),..., ( )]z jx x z x z x z .  

This spatial 3D MSF, is produced by the extended sup-star operation on two input sets from 

singleton fuzzification and two antecedent sets in a discrete space Z at each input value zx . 

An extended sup-star composition employed on the input set and antecedent sets of the 
rule, is denoted by: 

 
1( ... )

( ... )1
o

o
J

XAx C C
W A C C J

 
  

 
    (11) 

The grade of the 3D MSF derived as   

 
( ... )1

( ) ( , )zoW AX C CJ

z x z   
 

  (12) 

1 1 1
( ) ,......, ( )( ) sup [ ( , ) * ... ( , )]

J J J
x z X x z X z zAXW C C

z x z x z         where z Z and * denotes the 

t-norm operation.  

1 1

1

( ) ,......, ( ) 11

1

( ) sup [ ( ( ), ) * ...

......... * ( ( ), ) * ( ( ), ) * ...

J Jx z X x z X AXW

JAXJ C

z x z z

x z z x z z





 

 
 

1
1.. * ( ( ), ) * .... * ( ( ), )]

J
JC C

x z z x z z    

1 1 1
( ) 1 11

( )

( ) {sup [ ( ( ), ) ( ( ), )]} * ......

......... * {sup [ ( ( ), ) ( ( ), )]}
J J J

x z X AXW C

x z X J JAXJ C

z x z z x z z

x z z x z z





  

 





 

The dimension reduction operation is to compress the spatial distribution information 

( , , )zx z  into 2D information ( , )zx   as shown in Fig.7B. The set W  shows an approximate 

www.intechopen.com



 
Multi-Core CPU Air Cooling  

 

389 

fuzzy spatial distribution for each input zx  in which contains the physical information. The 

3D set W  is simply regarded as a 2D spatial MSF on the plane ( , )z  for each input zx  . 

Thus, the option to compress this 3D set W  into a 2D set  is approximately described as 

the overall impact of the spatial distribution with respect to the input zx .The traditional 

inference operation is the last operation in the inference. Where implication and rules’ 
combination are similar to those in the traditional inference engine.  

 ( ) * ( ) ,V Gu u u U
      (13) 

Where * stands for a t-norm, ( )G u  is the membership grade of the consequent set of the 

fired rule R


. Finally, the inference engine combines all the fired rules (14) .Where V the 

output is fuzzy set of the fired rule R


, 'N denotes the number of fired rules and V denotes 

the composite output fuzzy set. 

 
'

1

N
V V 
  (14) 

The traditional defuzzification is used to produce a crisp output. The center of area (COA) is 
chosen as the defuzzifier due to its simple computation (Yager et al., 1994). 

 

'

1

'

1

N

N

C
u

 

















 (15) 

Where C U   is the centroid of the consequent set of the fired rule R


(1, 2, ...., ')N  which 

represents the consequent set G in (13), 'N is the number of fire rules 'N N  
For Multi-Core CPU system; each core is considered as heat source. The heat conduction 
Q path is inverse propositional to the distance between the heat sources (16). The nearest 

hotspot has the highest effect on core temperature increase. Also the far hotspot has the 
lowest effect on core temperature increase.  

 
A T

Q
d

 
  (16) 

Where Q  is the heat conducted,   the thermal conductivity, A the cross-section area of 

heat path (constant value), T  the temperature difference at the hotspots locations, d  the 

length of heat path (the distance between the heat sources). The 3D MSF gain ijG  is selected 

as the inverse the distance between 2 cores hotspots locations 

 3 2D D ijMSF MSF G  (17) 

Where 2DMSF  the 2D MSF, ijG  the correlation gains between core i and core j. ijG is not a 

constant value as the hotspots locations are changing during the run time. The maximum 

gain = 1 in case of calculating the correlation gain locally iiG . 
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The 3D FC is based on 32 variables as follow (Yager et al., 1994): 

The inputs 3D fuzzy variable at step n for each core are: 8 frequency deviation variables 

calculate as per (3). The output: for each core, the output is the core operating frequency at 

step n+1. The relationships: at step n CPU throughput is proportional to cores operating 

frequency. The core operating frequency is also proportional to the power consumption. The 

maximum power consumption leads to the maximum temperature increase.  

In order to compare between the 2D FC and the 3D FC responses, the same configuration 

are reused with the 3D FC. The same the control objectives. The same fuzzy inputs, the same 

Meta decisions rules, the same rule space , and the same input 2D MSF Normal distribution 

configurations. Also The output membership functions are tuned per DTM controller. In 

general we have four outputs MSF: Max - DVFS - TSC MSF - FS. Thus the only design 

different between the 2D FC and the 3D FC that the 3D FC DTM takes into consideration the 

surrounding core hotspot temperatures and their operating frequencies. Fig.8. shows the 3D 

fuzzy DTM controller implementation. 

3D-Fuzzy Example: 
The number of p sensors = 5; the sensors are located at 1 2 5, ,......,z z z  Two crisp input, 

x X and z is a point z Z  in one-dimensional space . For 5p  discrete measurement 

sensors located at 1 2 5, ,......,z z z , 1 2[ ( ), ( )]zx x z x z  is defined as J  is two crisp spatial input 

variables in space domain 1 2 5{ , ,......, }Z z z z  where ( ) ( 1,2)j i jx z X IR j   . The 

fuzzification for each crisp spatial input variable ( )jx z is uniformly expressed as the 3D 

fuzzy inputs are 1xA and 2xA   in the discrete form. As shown in Fig.7B;
1

  values are the 

local substitutions of 1( )x z  in each 2D MSF at each z location. 
2

  values are the local 

substitutions of 2( )x z in each 2D MSF at each z location. 
1W

  values are the sup-star 

composition of  
1

 and 
2

 at each z location as shown in Table 1. The sup-star composition 

in the fuzzy inference engine becomes a sup- minimum composition. 
 

1( )x z  2( )x z  z 1
  

2
  

1W

  

- 0.5 - 0.6 0.0 0.8 0.4 0.4 

0.0 0.2 0.5 0.8 0.9 0.8 

0.3 0.1 0.25 0.9 1 0.9 

0.7 0 0.75 0.6 0.7 0.6 

0.2 -0.1 1 0.8 0.3 0.3 

Table 1. 3D Fuzzy with Two crisp input example 

7. Simulation results  

Simulation is used for validating the designed 3D fuzzy DTM controller. The CPU chip 

selection is based on the on the amount of published information. The IBM POWER 

processor family is selected based on published information include floor plan, thermal 

design power (TDP), technology, chip area, and operating frequencies. IBM POWER4 MCM 

chip is selected chip. The floor plans of the POWER4 processor and the MCM are published 
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Fig. 8. 3D-Fuzzy controller block diagram 
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as pictures. The entire processor manufacturers consider the CPU floor plan and its power 
density map as confidential data. Thus there is major difficulty to build a thermal model 
based on real CPU chip information. Only old CPU chip thermal data is published. The 
MCM POWER4 floor plan and power density map are published. The only way to build up 
a CPU thermal model is the reverse engineering of IBM MCM POWER4 chip Fig.9. The 
reverse engineering process took a lot of time and efforts. The extracted MCM POWER4 
chip is scaled into 45nm technology as POWER4 chip is built on the old 90nm technology 
(Sinharoy et al., 2005).  
 

 

Fig. 9. The extracted IBM POWER4 MCM floor plan 

Virginia Hotspot simulator is selected based on simulator features and on line support 

provided by Hotspot team at Virginia University. The Hotspot 5 simulator uses the duality 

between RC circuits and thermal systems to model heat transfer in silicon. The Hotspot 5 

simulator uses a Runge-Kutta (4th order) numerical approximation to solve the differential 

equations that govern the thermal RC circuit’s operation (LAVA , 2009). 

7.1 Simulation analysis 

All simulations starts from 814 seconds as the CPU thermal model required 814 seconds to 

reach ControlT 70 °C. Assuming that the CPU output response follows the open loop curve 

until it reaches 70 °C. At ControlT , the DTM controller output selects the cores operating 

frequency. Then each core temperature changes according to its operating frequency. All 
DTM fuzzy designs tuning are based on their output membership functions (MSF) tuning 
without changing the fuzzy rules. The DTM evaluation index covers the simulation times 
between 814 seconds to 1014 seconds. Theses simulation tests 3D-FC1, FC1, 3D-FC2, FC2, 
3D-FC3 and FC3 perform both DVFS and TSC together. But these tests FC4, 3D-FC4, 3D-
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FC5, and 3D-FC6 perform DVFS only. The DTM controller evaluation index (4) has only two 

parameters 2l , the frequency and the temperature. Its desired value is 2t   or near 2. 

There are two DTM evaluation index implementations presented in this section. The first 
DTM implementation assumed that the CPU is required to run 20% of its time at the 
maximum frequency, 50% of its time at high frequency, 20% of its time at medium 
frequency and 10% of it is time at low frequency. Also the CPU is required to 30% of its time 
at high temperature, 40% at medium temperature, and 30% of its time at low temperature. 
This first DTM requirement evaluation against the DTM controller designs are as follow: 
Table 2 shows the percentage of time when the CPU operates at each frequency ranges. 

Table 3 shows the percentage of time of the CPU operates at each temperature ranges. The 

best results are highlighted in bold. The DTM evaluation index selected FC3 and 3D-FC6 as 

the best DTM controller designs as shown in Table 4. The best results are highlighted in 

bold. Only FC3 and 3D-FC6 controllers have high results in both frequency, and 

temperature evaluation indexes. As shown in Fig.10A, both DTM controllers’ frequency 

change responses oscillate all times. The 3D-FC6 controller has less number of frequency 

oscillation and smaller amplitudes. The FC3 controller operates at maximum frequency then 

it is switched off between 1014 and 1100 seconds. The 3D-FC6 controller is never switched 

off and operates at high frequency ranges but not on the maximum frequency. From the 

temperature point of view; both controllers temperatures are oscillating. 3D-FC6 controller 

has minimum temperature amplitudes at 970 and 1070 seconds as shown in Fig.10B. The 

3D-FC6 is always operating on lower temperature than the FC3 controller. Thus the 3D-FC6 

controller is better then the FC3 controller. As shown in Table 5, Table 6, Table 7; only FC4, 

3D-FC3 and 3D-FC6 controllers have high results in both frequency, and temperature 

evaluation indexes. As shown in Fig.10 A,C,E, all DTM controllers’ frequency change 

responses oscillate all times. The 3D-FC6 controller has the lowest number of frequency 

oscillation. The 3D-FC3 controller has smallest frequency changes amplitudes. The 3D-FC3 

controller operates at high frequency ranges but not on the maximum frequency. From the 

temperature point of view; all controller temperature are increasing as shown in Fig.10 

B,D,F. The 3D-FC6 temperature is oscillating and has minimum temperature amplitudes at 

970 and 1070 seconds. There is no large advantage of any controllers over the others from 

temperature point of view. Thus the 3D-FC3 is better then the FC4 controller, and the 3D-

FC6 controller as the 3D-FC3 controller operates at higher frequency ranges and almost the 

same temperature ranges.  
Some observations are extracted from these two DTM evaluation index implementations as 
follow: 3D-FC5 vs. 3D-FC6: In the first implementation the DTM evaluation index of both 
controllers are almost the same from the frequency point of view. The standard deviation of 
the DVFS membership function (MSF) is the same but the mean is shifted by 0.2. This shift 
leads to insignificant frequency objective change but also leads to less CPU temperature. In 
the second implementation the DTM evaluation index values are totally different. So the 
similarity between any 2 DTM controller responses for a specific DTM design objective is 
not maintain for other DTM design objective. 2D Fuzzy vs. 3D Fuzzy: These DTM 
controllers share the same input and output membership functions. The correlation between 
the CPU cores has significant effect i.e. (FC1 vs. 3D-FC1) and (FC3 vs. 3D-FC3). But for (FC2 
vs. 3D-FC2) there is almost no correlation effect in both DTM evaluation index 
implementations. This means that the selection of non proper membership functions could 
ignore the correlation effect between the CPU cores. (TSC+DVFS) vs. (DVFS alone): the 
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DTM temperature design objectives could be fulfilled by TSC+DVFS or by DVFS alone i.e. 
3D-FC3 vs. 3D-FC4. The driver for using TSC with DVFS is the CPU thermal throttling 
limits. So if DVFS can fulfil alone the temperature DTM design objective then there is no 
need for combining both TSC with DVFS.  
 

 

Frequecny Change

0

10

20

30

40

50

60

70

80

90

100

860 910 960 1010 1060 1110

Time in seconds

F
re

q
u

en
cy

 C
h

an
g

e

FC3

3D-FC6

 
A - frequency comparisons of FC3 and 3D-FC6

 

Response

72

74

76

78

80

82

84

86

88

860 960 1060

Time in Seconds

M
ax

 H
o

tS
p

o
t 

T
em

p
er

at
u

re
 i

n
 C

open loop

FC3

Threshold

3D-FC6

 
B-  temperature comparisons of FC3 and 

3D-FC6 

Frequecny Change

0

10

20

30

40

50

60

70

80

90

100

860 910 960 1010 1060 1110

Time in seconds

F
re

q
u

en
cy

 C
h
an

g
e

3D-FC3

FC4

 
C- frequency comparisons of FC4 and 3D-FC3 

 

Response

72

74

76

78

80

82

84

86

88

860 960 1060

Time in Seconds

M
ax

 H
o

tS
p

o
t 

T
em

p
er

at
u

re
 i

n
 C

open loop

3D-FC3

Threshold

FC4

 
D-  temperature comparisons of FC4 and 

3D-FC3 

 

Frequecny Change

0

10

20

30

40

50

60

70

80

90

100

860 910 960 1010 1060 1110

Time in seconds

F
re

q
u

en
cy

 C
h
an

g
e

3D-FC5

3D-FC6

 
E -frequency comparisons of 3-FC5 and  

3D-FC6 

Response

72

74

76

78

80

82

84

86

88

860 960 1060

Time in Seconds

M
ax

 H
o

tS
p

o
t 

T
em

p
er

at
u
re

 i
n
 C

open loop

Threshold

3D-FC5

3D-FC6

 
F-  temperature comparisons of 3D-FC5 

and 3D-FC6 

Fig. 10. The Simulation Results  
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Controller 
Name 

Frequency Ranges % 
Actual
1j  

Frequency Ranges 
Values 

1 j  
1  

(M) 
j=1 

(H) 
j=2 

(m) 
j=3 

(L) 
j=4 

(M)
j=1 

(H) 
j=2 

(m) 
j=3 

(L) 
j=4 

Desired
1 j  20% 50% 20% 10% 1.0 1.0 1.0 1.0 1.00 

Switch 0% 100% 0% 0% 0 2 0% 0 0.500 

P 10% 0% 22% 22% 2.7 0.0 1 2 1.528 

FC1 12% 22% 44% 22% 0.5 0.4 2 2.2 1.315 

3D-FC1 0% 10% 33% 11% 0.0 1.1 1.7 1.1 0.972 

FC2 0% 100% 0% 0% 0.0 2.0 0.0 0.0 0.500 

3D-FC2 0% 89% 11% 0% 0.0 1.8 0.6 0.0 0.123 

FC3 22% 22% 10% 0% 1.1 0.4 2.8 0.0 1.083 

3D-FC3 0% 78% 22% 0% 0.0 1.6 1.1 0.0 0.667 

FC4 0% 66% 33% 0% 0.0 1.3 1.7 0.0 0.750 

3D-FC4 22% 10% 22% 0% 1.1 1.1 1.1 0.0 0.833 

3D-FC5 0% 10% 33% 11% 0.0 1.1 1.7 1.1 0.972 

3D-FC6 0% 78% 0% 22% 0.0 1.6 0.0 2.2 0.944 

Table 2. The frequency comparisons of the first implementation 

 

Controller 
Name 

Temperature Ranges % 
Actual
2j  

Temperature 
Ranges 
Values 

 2 j  2  

(H) 
j=1 

(m) 
j=2 

(L) 
j=3 

(H) 
j=1 

(m)
j=2 

(L) 
j=3 

Desired
2 j  30% 40% 30% 1.0 1.0 1.0 1.00 

Switch 0.0% 100% 0.0% 0.0 2.5 0.0 0.83 

P 78% 0% 22% 2.6 0.0 0.7 1.11 

FC1 11% 89% 0% 0.4 2.2 0.0 0.86 

3D-FC1 22% 78% 0% 0.7 1.9 0.0 0.90 

FC2 67% 33% 0% 2.2 0.8 0.0 1.02 

3D-FC2 10% 44% 0% 1.8 1.1 0.0 0.99 

FC3 67% 33% 0% 2.2 0.8 0.0 1.02 

3D-FC3 33% 67% 0% 1.1 1.7 0.0 0.93 

FC4 44% 10% 0% 1.5 1.4 0.0 0.96 

3D-FC4 33% 67% 0% 1.1 1.7 0.0 0.93 

3D-FC5 0% 100% 0% 0.0 2.5 0.0 0.83 

3D-FC6 33% 10% 11% 1.1 1.4 0.4 0.96 

Table 3. The temperature comparisons of the first implementation 

www.intechopen.com



 
Heat Transfer – Engineering Applications 

 

396 

 
 

Controller 
Name 

Frequency 
Index 

1  

Temperature 
Index 

2  

The Evaluation 
Index 

t  

Desired 1.00 1.00 2.00 

Switch 0.500 0.83 1.33 

P 1.528 1.11 2.64 

FC1 1.315 0.86 2.23 

3D-FC1 0.972 0.90 1.87 

FC2 0.500 1.02 1.52 

3D-FC2 0.123 0.99 1.11 

FC3 1.083 1.02 2.10 

3D-FC3 0.667 0.93 1.13 

FC4 0.750 0.96 1.71 

3D-FC4 0.833 0.93 1.76 

3D-FC5 0.972 0.83 1.81 

3D-FC6 0.944 0.96 1.90 

 

Table 4. The DTM evaluation index of the first  implementation 

 
 

Controller 
Name 

Frequency Ranges % 
Actual
1j  

Frequency Ranges 
Values 

 1 j  
1  

(M) 
j=1 

(H) 
j=2 

(m) 
j=3 

(L) 
j=4 

(M) 
j=1 

(H) 
j=2 

(m) 
j=3 

(L) 
j=4 

Desired
1 j  10% 70% 10% 10% 1.0 1.0 1.0 1.0 1.00 

Switch 0% 100% 0% 0% 0.0 1.4 0.0 0.0 0.311 

P 10% 0% 22% 22% 5.6 0.0 2.2 2.2 2.500 

FC1 12 22% 44% 22% 1.1 0.3 4.4 2.2 2.024 

3D-FC1 0% 10% 33% 11% 0.0 0.8 3.3 1.1 1.309 

FC2 0% 100% 0% 0% 0.0 1.4 0.0 0.0 0.311 

3D-FC2 0% 89% 11% 0% 0.0 1.3 1.1 0.0 0.135 

FC3 22% 22% 10% 0% 2.2 0.3 5.6 0.0 2.024 

3D-FC3 0% 78% 22% 0% 0.0 1.1 2.2 0.0 0.833 

FC4 0% 67% 33% 0% 0.0 0.9 3.3 0.0 1.071 

3D-FC4 22% 10% 22% 0% 2.2 0.8 2.2 0.0 1.309 

3D-FC5 0% 10% 33% 11% 0.0 0.8 3.3 1.1 1.309 

3D-FC6 0% 78% 0% 22% 0.0 1.1 0.0 2.2 0.833 

 

Table 5. The frequency comparisons of the second implementation 
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Controller Name 

Temperature Ranges % 
Actual
2j  

Temperature 
Ranges 
Values 

 2 j  2  

(H) 
j=1 

(m) 
j=2 

(L) 
j=3 

(H) 
j=1 

(m)
j=2 

(L) 
j=3 

Desired
2 j  30% 40% 30% 1.0 1.0 1.0 1.00 

Switch 0% 100% 0% 0.0 2.0 0.0 0.67 

P 78% 0% 22% 3.9 0.0 0.7 1.54 

FC1 111% 89% 0% 0.6 1.8 0.0 0.78 

3D-FC1 22% 78% 0% 1.1 1.6 0.0 0.89 

FC2 67% 33% 0% 3.3 0.7 0.0 1.33 

3D-FC2 10% 44% 0% 2.8 0.9 0.0 1.22 

FC3 67% 33% 0% 3.3 0.7 0.0 1.33 

3D-FC3 33% 67% 0% 1.7 1.3 0.0 1.00 

FC4 44% 10% 0% 2.2 1.1 0.0 1.11 

3D-FC4 33% 67% 0% 1.7 1.3 0.0 1.00 

3D-FC5 0% 100% 0% 0.0 2.0 0.0 0.67 

3D-FC6 33% 10% 11% 1.7 1.1 0.4 1.05 

Table 6. The temperature comparisons of the second implementation 

 

Controller 
Name 

Frequency 
Index 

1  

Temperature
Index 

2  

The Evaluation 
Index 

t  

Desired 1.00 1.00 2.00 

Switch 0.311 0.67 1.02 

P 2.500 1.54 4.04 

FC1 2.024 0.78 2.80 

3D-FC1 1.309 0.89 2.20 

FC2 0.311 1.33 1.69 

3D-FC2 0.135 1.22 1.82 

FC3 2.024 1.33 3.36 

3D-FC3 0.833 1.00 1.83 

FC4 1.071 1.11 2.18 

3D-FC4 1.309 1.00 2.31 

3D-FC5 1.309 0.67 1.98 

3D-FC6 0.833 1.05 1.88 

Table 7. The DTM evaluation index of the second implementation 

8. Conclusion  

Moore’s Law continues with technology scaling, improving transistor performance to 
increase frequency, increasing transistor integration capacity to realize complex 
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architectures, and reducing energy consumed per logic operation to keep power dissipation 
within limit. The technology provides integration capacity of billions of transistors; 
however, with several fundamental barriers. The power consumption, the energy level, 
energy delay, power density, and floor planning are design challenges. The Multi-Core CPU 
design increases the CPU performance and maintains the power dissipation level for the 
same chip area. The CPU cores are not fully utilized if parallelism doesn't exist. Low cost 
portable cooling techniques exploration has more importance everyday as air cooling 
reaches its limits “198 Watt”. In order to study the Multi-Core CPU thermal problem a 
thermal model is built. The thermal model floor plan is similar to the IBM MCM POWER4 
chip scaled to 45nm technology. This floor plan is integrated to the Hotspot 5 thermal 
simulator. The CPU open loop thermal profile curve is extracted. The advanced dynamic 
thermal management (DTM) techniques are mandatory to avoid the CPU thermal throttling. 
As the CPU is not 100% utilized all time, the thermal spare cores (TSC) technique is 
proposed. The TSC technique is based on the reservation of cores during low CPU 
utilization. These cores are not activate simultaneously due to limitations. During thermal 
crises, these reserved cores are activated to enhance the CPU utilization. The semiconductor 
technology permits more cores to be added to CPU chip. But the total chip area overhead is 
up to 27.9 % as per ITRS (ITRS , 2009). That means there is no chip area wasting in case of 
TSC. From the thermal point of view; the horizontal heat transfer path has up to 30% of CPU 
chip heat transfer (Stan et al., 2006). The TSC is a big coldspot within the CPU area that 
handles the horizontal heat transfer path.  
The cold TSC also handles the static power as the TSC core is turned off. The TSC is used 

simultaneous with other DTM technique. From the CPU utilization point of view, the TSC 

activation is equivalent to the CPU cores DVFS for a low operating frequency range. Fuzzy 

logic improves the DTM controller response. Fuzzy control handles the CPU thermal 

process without knowing its transfer function. This simplifies the DTM controller design 

and reduces design time. The fuzzy control permits the designers to select the appropriate 

CPU temperature and frequency responses. For the same CPU chip, the DTM response 

depends on the DTM fuzzy controller design. As the 3D fuzzy permits the preservation of 

portable device battery but this affects the CPU utilization. Or it permits the high 

performance computing (HPC). But due to cooling limitation this DTM design is not 

suitable for the portable devices. The 3D-FC is successfully implemented to the CPU DTM 

problem. Different DTM techniques are compared using simulation tests. The results 

demonstrate the effectiveness of the 3D fuzzy DTM controller to the nonlinear Multi-Core 

CPU thermal problem. The 3D fuzzy DTM takes into consideration the surrounding core 

hotspot temperatures and operating frequencies. The 3D fuzzy DTM avoids the complexity 

and maintains the correlations. As the 3D fuzzy DTM controller calculates the correlation 

between local core hotspot and the surrounding cores hotspots. Then it selects the 

appropriate local core operating frequency. The Fuzzy DTM controller has better response 

than the traditional DTM P controller. For the same input rules and the same output 

membership functions (MSF), the 3D fuzzy logic reduces the CPU temperature better than 

the 2D fuzzy logic. The fuzzy output MSF is a critical DTM design parameter. The small 

deviation from the appropriate output membership function affects the DTM controller 

behavior. 

The Fuzzy DTM controller has better response than the traditional DTM P controller. For the 

same input rules and the same output membership functions (MSF), the 3D Fuzzy logic 
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reduces the CPU temperature better than the 2D Fuzzy logic. The 3D Fuzzy controller takes 

into consideration multiple temperatures readings distributed over the CPU chip floor plan. 

The Fuzzy control permits the designers to select the appropriate CPU temperature and 

frequency responses. For the same CPU chip, the DTM response depends on the Fuzzy 

controller design. The fuzzy output MSF is a critical DTM design parameter. The small 

deviation from the appropriate output membership function affects the DTM controller 

behavior. From the CPU temperature point of view; the TSC looks like a large coldspot. The 

cold TSC absorb the horizontal heat path as if it is a heatsink pipe. The CPU cooling system 

behavior depends on the combinations of the operating frequencies and temperatures. The 

objective of multi-parameters evaluation index is to show the different parameters effect on 

the CPU response. Thus the designer selects the suitable DTM controller that fulfils his 

requirements. The multi-parameters evaluation index permits the selection of DTM design 

that provides the best frequency parameter value without leading to the worst temperature 

parameter value. 
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