
4 

Robust H∞ PID Controller Design Via  
LMI Solution of Dissipative Integral 

Backstepping with State Feedback Synthesis 

Endra Joelianto 
Bandung Institute of Technology 

Indonesia 

1. Introduction    

PID controller has been extensively used in industries since 1940s and still the most often 
implemented controller today. The PID controller can be found in many application areas: 
petroleum processing, steam generation, polymer processing, chemical industries, robotics, 
unmanned aerial vehicles (UAVs) and many more. The algorithm of PID controller is a 
simple, single equation relating proportional, integral and derivative parameters. 
Nonetheless, these provide good control performance for many different processes. This 
flexibility is achieved through three adjustable parameters of which values can be selected to 
modify the behaviour of the closed loop system. A convenient feature of the PID controller 
is its compatibility with enhancement that provides higher capabilities with the same basic 
algorithm. Therefore the performance of a basic PID controller can be improved through 
judicious selection of these three values.  
Many tuning methods are available in the literature, among with the most popular 
method the Ziegler-Nichols (Z-N) method proposed in 1942 (Ziegler & Nichols, 1942). A 
drawback of many of those tuning rules is that such rules do not consider load 
disturbance, model uncertainty, measurement noise, and set-point response 
simultaneously. In general, a tuning for high performance control is always accompanied 
by low robustness (Shinskey, 1996). Difficulties arise when the plant dynamics are 
complex and poorly modeled or, specifications are particularly stringent. Even if a 
solution is eventually found, the process is likely to be expensive in terms of design time. 
Varieties of new methods have been proposed to improve the PID controller design, such 
as analytical tuning (Boyd & Barrat, 1991; Hwang & Chang, 1987), optimization based 
(Wong & Seborg, 1988; Boyd & Barrat, 1991; Astrom & Hagglund, 1995), gain and phase 
margin (Astrom & Hagglund, 1995; Fung et al., 1998). Further improvement of the PID 
controller is sought by applying advanced control designs (Ge et al., 2002; Hara et al., 
2006; Wang et al., 2007; Goncalves et al., 2008).  
In order to design with robust control theory, the PID controller is expressed as a state 

feedback control law problem that can then be solved by using any full state feedback 

robust control synthesis, such as Guaranteed Cost Design using Quadratic Bound (Petersen 

et al., 2000), H∞ synthesis (Green & Limebeer, 1995; Zhou & Doyle, 1998), Quadratic 

Dissipative Linear Systems (Yuliar et al., 1997) and so forth. The PID parameters selection by 
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transforming into state feedback using linear quadratic method was first proposed by 

Williamson and Moore in (Williamson & Moore, 1971). Preliminary applications were 

investigated in (Joelianto & Tomy, 2003) followed the work in (Joelianto et al., 2008) by 

extending the method in (Williamson & Moore, 1971) to H∞ synthesis with dissipative 

integral backstepping. Results showed that the robust H∞ PID controllers produce good 

tracking responses without overshoot, good load disturbance responses, and minimize the 

effect of plant uncertainties caused by non-linearity of the controlled systems.  

Although any robust control designs can be implemented, in this paper, the investigation is 

focused on the theory of parameter selection of the PID controller based on the solution of 

robust H∞ which is extended with full state dissipative control synthesis and integral 

backstepping method using an algebraic Riccati inequality (ARI). This paper also provides 

detailed derivations and improved conditions stated in the previous paper (Joelianto & 

Tomy, 2003)  and (Joelianto et al., 2008). In this case, the selection is made via control system 

optimization in robust control design by using linear matrix inequality (LMI) (Boyd et al., 

1994; Gahinet & Apkarian, 1994). LMI is a convex optimization problem which offers a 

numerically tractable solution to deal with control problems that may have no analytical 

solution. Hence, reducing a control design problem to an LMI can be considered as a 

practical solution to this problem (Boyd et al., 1994). Solving robust control problems by 

reducing to LMI problems has become a widely accepted technique (Balakrishnan & Wang, 

2000). General multi objectives control problems, such as H2 and H∞ performance, peak to 

peak gain, passivity, regional pole placement and robust regulation are notoriously difficult, 

but these can be solved by formulating the problems into linear matrix inequalities (LMIs) 

(Boyd et al., 1994; Scherer et al., 1997)).  

The objective of this paper is to propose a parameter selection technique of PID controller 

within the framework of robust control theory with linear matrix inequalities. This is an 

alternative method to optimize the adjustment of a PID controller to achieve the 

performance limits and to determine the existence of satisfactory controllers by only using 

two design parameters instead of three well known parameters in the PID controller. By 

using optimization method, an absolute scale of merits subject to any designs can be 

measured.  The advantage of the proposed technique is implementing an output feedback 

control (PID controller) by taking the simplicity in the full state feedback design. The 

proposed technique can be applied either to a single-input-single-output (SISO) or to a 

multi-inputs-multi-outputs (MIMO) PID controller.  

The paper is organised as follows. Section 2 describes the formulation of the PID controller 

in the full state feedback representation. In section 3, the synthesis of H∞ dissipative integral 

backstepping is applied to the PID controller using two design parameters. This section also 

provides a derivation of the algebraic Riccati inequality (ARI) formulation for the robust 

control from the dissipative integral backstepping synthesis. Section 4 illustrates an 

application of the robust PID controller for time delay uncertainties compensation in a 

network control system problem.  Section 5 provides some conclusions. 

2. State feedback representation of PID controller 

In order to design with robust control theory, the PID controller is expressed as a full state 

feedback control law. Consider a single input single output linear time invariant plant 

described by the linear differential equation 
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( ) ( ) ( )

( ) ( )

x t Ax t B u t

y t C x t

= +
=

$
 (1) 

with some uncertainties in the plant which will be explained later. Here, the states nx R∈  

are the solution of (1), the control signal 1u R∈  is assumed to be the output of a PID 

controller with input 1y R∈ . The PID controller for regulator problem is of the form 

 1 2 3

0

( ) ( ) ( ) ( ) ( )
t

d
u t K y t d t K y t K y t

dt
= + +∫  (2) 

which is an output feedback control system and 1 /p iK K T= , 2 pK K= , 3 p dK K T=  of which 

pK , iT  and dT  denote proportional gain, time integral and time derivative of the well 

known PID controller respectively. The structure in equation (2) is known as the standard 

PID controller (Astrom & Hagglund, 1995).  
The control law (2) is expressed as a state feedback law using (1) by differentiating the plant 
output y as follows 

2

2 2 2

2
2 2 2 2 2

y C x

y C Ax C B u

y C A x C AB u C B u

=
= +

= + +

$

$$ $
 

This means that the derivative of the control signal (2) may be written as 

 3 2 2(1 )K C B u− −$ 2
3 2 2 2 1 2( )K C A K C A K C x+ + − 3 2 2 2 2 2( ) 0K C AB K C B u+ =  (3) 

Using the notation K̂  as a normalization of K , this can be written in more compact form 

 1 2 3
ˆ ˆ ˆ ˆ[ ]K K K K= 1

3 2 2 1 2 3(1 ) [ ]K C B K K K−= −  (4)                       

or K̂ cK=  where c  is a scalar. This control law is then given by 

 2
2 2 2

ˆ[ ( ) ]T T T T T Tu K C A C A C x= +$ 2 2 2 2
ˆ[0 ]T T T T T TK B C B A C u   (5) 

Denote 2
2 2 2

ˆ[ ( ) ]T T T T T T
xK K C A C A C=  and 2 2 2 2

ˆ[0 ]T T T T T T
uK K B C B A C= , the block diagram 

of the control law (5) is shown in Fig. 1. In the state feedback representation, it can be seen 
that the PID controller has interesting features. It has state feedback in the upper loop and 
pure integrator backstepping in the lower loop. By means of the internal model principle 
(IMP) (Francis & Wonham, 1976; Joelianto & Williamson, 2009), the integrator also 
guarantees that the PID controller will give zero tracking error for a step reference signal. 
Equation (5) represents an output feedback law with constrained state feedback. That is, the 
control signal (2) may be written as 

 a a au K x=  (6) 

where 

au u= $ , 
a

x
x

u

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
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2
2 2 2 2 2 2 2

ˆ [ ( ) ] [0 ]T T T T T T T T T T T T
aK K C A C A C B C B A C⎡ ⎤= ⎣ ⎦  

Arranging the equation and eliminating the transpose lead to  

 
2

2 2

2
2 2 2

0
ˆ

a

C

K K C A C B

C A C AB

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

K̂= Γ  (7) 

The augmented system equation is obtained from (1) and (7) as follows 

 a a a a ax A x B u= +$  (8) 

where 

2

0 0a

A B
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

; 
0

1aB
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 

uu$

∫
x

xK

uK

y
+

+

2
CuBAxx

2
+=$

 

Fig. 1. Block diagram of state space representation of PID controller 

Equation (6), (7) and (8) show that the PID controller can be viewed as a state variable 

feedback law for the original system augmented with an integrator at its input. The 

augmented formulation also shows the same structure known as the integral backstepping 

method (Krstic et al., 1995) with one pure integrator. Hence, the selection of the parameters 

of the PID controller (6) via full state feedback gain is inherently an integral backstepping 

control problems. The problem of the parameters selection of the PID controller becomes an 

optimal problem once a performance index of the augmented system (8) is defined. The 

parameters of the PID controller are then obtained by solving equation (7) that requires the 

inversion of the matrix Γ . Since Γ  is, in general, not a square matrix, a numerical method 

should be used to obtain the inverse. 
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For the sake of simplicity, the problem has been set-up in a single-input-single-output 

(SISO) case. The extension of the method to a multi-inputs-multi-outputs (MIMO) case is 

straighforward. In MIMO PID controller, the control signal has dimension m , mu R∈  is 

assumed to be the output of a PID controller with input has dimension p ,  py R∈ . The 

parameters of the PID controller 1K , 2K , and 3K will be square matrices with appropriate 

dimension. 

3. H∞ dissipative integral backstepping synthesis 

The backstepping method developed by (Krstic et al., 1995) has received considerable 
attention and has become a well known method for control system designs in the last 
decade. The backstepping design is a recursive algorithm that steps back toward the control 
input by means of integrations. In nonlinear control system designs, backstepping can be 
used to force a nonlinear system to behave like a linear system in a new set of coordinates 
with flexibility to avoid cancellation of useful nonlinearities and to focus on the objectives of 
stabilization and tracking. Here, the paper combines the advantage of the backstepping 
method, dissipative control and H∞ optimal control for the case of parameters selection of 
the PID controller to develop a new robust PID controller design.  
Consider the single input single output linear time invariant plant in standard form used in  
H∞ performance by the state space equation 

 
1 2 0

1 11 12

2 21 22

( ) ( ) ( ) ( ),   (0)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t Ax t B w t B u t x x

z t C x t D w t D u t

y t C x t D w t D u t

= + + =
= + +
= + +

$
 (9) 

where nx R∈  denotes the state vector, 1u R∈  is the control input, pw R∈  is an external 

input and represents driving signals that generate reference signals, disturbances, and 

measurement noise, 1y R∈  is the plant output, and mz R∈  is a vector of output signals 

related to the performance of the control system. 
Definition 1. 

A system is dissipative (Yuliar et al., 1998) with respect to supply rate ( ( ), ( ))r z t w t  for each 

initial condition 0x  if there exists a storage function V , : nV R R+→  satisfies the inequality 

 
1

0

0 1( ( )) ( ( ), ( )) ( ( ))

t

t

V x t r z t w t dt V x t+ ≥∫ , 1 0( , )t t R+∀ ∈ , 0
nx R∈  (10) 

and 0 1t t≤  and all trajectories ( , ,x y z ) which satisfies (9). 
The supply rate function ( ( ), ( ))r z t w t  should be interpreted as the supply delivered to the 

system. If in the interval 0 1[ , ]t t  the integral 
1

0

( ( ), ( ))

t

t

r z t w t dt∫  is positive then work has been 

done to the system. Otherwise work is done by the system. The supply rate determines not 
only the dissipativity of the system but also the required performance index of the control 

system. The storage function V generalizes the notion of an energy function for a dissipative 

system. The function characterizes the change of internal storage 1 0( ( )) ( ( ))V x t V x t−  in any 

interval 0 1[ , ]t t , and ensures that the change will never exceed the amount of the supply into 
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the system. The dissipative method provides a unifying tool as index performances of 
control systems can be expressed in a general supply rate by selecting values of the supply 
rate parameters. 
The general quadratic supply rate function (Hill & Moylan, 1977) is given by the following 
equation 

 
1

( , ) ( 2 )
2

T T Tr z w w Qw w Sz z Rz= + +  (11) 

where Q  and R are symmetric matrices and 

 11 11 11 11( ) ( ) ( ) ( ) ( )T T TQ x Q SD x D x S D x RD x= + + +   

such that ( ) 0Q x >  for nx R∈  and 0R ≤  and mininf { ( ( ))} 0nx R
Q x k

∈
σ = > . This general 

supply rate represents general problems in control system designs by proper selection of 

matrices Q , R  and S  (Hill & Moylan, 1977; Yuliar et al., 1997): finite gain (H∞) 

performance ( 2Q I= γ , 0S =  and R I= − ); passivity ( 0Q R= =  and S I= );  and mixed H∞-

positive real performance ( 2Q I= θγ , R I= −θ  and (1 )S I= − θ  for [0,1]θ∈ ). 
For the PID control problem in the robust control framework, the plant ( Σ ) is given by the 
state space equation 

 

1 2 0

1

12

( ) ( ) ( ) ( ), (0)

( )
( )

( )

x t Ax t B w t B u t x x

C x t
z t

D u t

= + + =⎧
⎪= ⎛ ⎞⎨ = ⎜ ⎟⎪

⎝ ⎠⎩

Σ

$
 (12) 

with 11 0D =  and 0γ >  with the quadratic supply rate function for H∞ performance  

 21
( , ) ( )

2
T Tr z w w w z z= γ −  (13) 

Next the plant ( Σ ) is added with integral backstepping on the control input as follows 

 
1 2

1

12

( ) ( ) ( ) ( )

( ) ( )

( )

( ) ( )

( )

a

a

x t Ax t B w t B u t

u t u t

C x t

z t D u t

u t

= + +
=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟ρ⎝ ⎠

$
$  (14) 

where ρ  is the parameter of the integral backstepping which act on the derivative of the 
control signal ( )u t$ . In equation (14), the parameter 0ρ >  is a tuning parameter of the PID 
controller in the state space representation to determine the rate of the control signal. Note 
that the standard PID controller in the state feedback representation in the equations (6), (7) 
and (8) corresponds to the integral backstepping parameter 1ρ = . Note that, in this design 
the gains of the PID controller are replaced by two new design parameters namely γ  and ρ  
which correspond to the robustness of the closed loop system and the control effort. 
The state space representation of the plant with an integrator backstepping in equation (14) 
can then be written in the augmented form as follows 
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2 1

1

12

( ) ( ) 0
( ) ( )

( ) 0 0 ( ) 0 1

0 0
( )

( ) 0 0 ( )
( )

0 0

a

a

x t A B x t B
w t u t

u t u t

C
x t

z t D u t
u t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

⎡ ⎤⎢ ⎥ ⎢ ⎥= +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ρ⎣ ⎦ ⎣ ⎦

$
$

 (15) 

The compact form of the augmented plant ( aΣ ) is given by 

 0

1 2

( ) ( ) ( ) ( ); (0)

( ) ( ) ( ) ( )
a a a w a a a a

a a a a a

x t A x t B w t B u t x x

z t C x t D w t D u t

= + + =
= + +

$
 (16) 

where 

a

x
x

u

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 2

0 0a

A B
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 1

0w

B
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 
0

1aB
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
1

12

0

0

0 0
a

C

C D

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 2

0

0aD

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥ρ⎣ ⎦

 

Now consider the full state gain feedback of the form 

 ( ) ( )a a au t K x t=  (17) 

The objective is then to find the gain feedback aK  which stabilizes the augmented plant 

( aΣ ) with respect to the dissipative function V  in (10) by a parameter selection of the 

quadratic supply rate (11) for a particular control performance. Fig. 2. shows the system 

description of the augmented system of the plant and the integral backstepping with the 

state feedback control law. 
 

aaa xKu =

aΣ
ax

y

z
w

au

 

Fig. 2. System description of the augmented system 
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The following theorem gives the existence condition and the formula of the stabilizing gain 

feedback aK . 
Theorem 2. 

Given 0γ >  and 0ρ > . If there exists 0TX X= >  of the following Algebraic Riccati 

Inequality 

 2 2 2 1 1

2

0 0 0 0

0 0 0 1 0 00

T T

T

A B A B B
X X X X

B

− −
⎡ ⎤ ⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤

+ − ρ − γ +⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦

1 1

12 12

0
0

0

T

T

C C

D D

⎡ ⎤
<⎢ ⎥

⎢ ⎥⎣ ⎦
 (18) 

Then the full state feedback gain 

 [ ]2 2 0 1T
a aK B X X− −= −ρ = −ρ  (19) 

leads to || ||∞< γΣ  

Proof. 

Consider the standard system (9) with the full state feedback gain  

( ) ( )u t Kx t=   

and the closed loop system 

1 0

11

( ) ( ) ( ),   (0)

( ) ( ) ( )

u

u

x t A x t B w t x x

z t C x t D w t

= + =

= +

$
 

where 11 0D = , 2
uA A B K= + , 1 12

uC C D K= +  is strictly dissipative with respect to the 

quadratic supply rate (11) such that the matrix uA  is asymptotically stable. This implies that 

the related system 

1 0

1

( ) ( ) ( ),   (0)

( ) ( )

x t Ax t B w t x x

z t C x t

= + =

=

# #$
#  

where 1
1

u uA A B Q SC−= −# , 1/2
1 1B B Q−=#  and 1 1/2

1 ( )T uC S Q S R C−= −#  has H∞ norm strictly 

less than 1, which implies there exits a matrix 0X >  solving the following Algebraic Riccati 

Inequality (ARI) (Petersen et al. 1991) 

 1 1 1 1 0T T TA X XA XB B X C C+ + + <# # # ## #  (20) 

In terms of the parameter of the original system, this can be written as 

 ( )u T uA X XA+ + 1
1 1[ ( ) ] [ ]u T T T uXB C S Q B X SC−− − − ( ) 0u T uC RC <  (21)   

Define the full state feedback gain  

 ( )1 1
2 1 12 12 1(

T
K E B B Q SD X D RC− −= − − +  (22) 

By inserting  
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2 1 12

11 11 11 11 11

1
12 12

1 1
2 1 12 12 12

,   

,   

,   

,   

u u

T T T T

T T

T

A A B K C C D K

S S D R Q Q SD D S D RD

R S Q S R E D RD

B B B Q SD D I D E D R

−

− −

= + = +

= + = + + +

= − =

= − = −

 

into (21) , completing the squares and removing the gain K give the following ARI  

 
1 1

12 1 1 1 12 1 1 1

1 1
1 1 1 1

( ) ( )

( ) 0

T T

T T T T

X A BE D RC B QSC A BE D RC B QSC X

X BE B B Q B X C D RDC

− −

− −

− − + − − −

− − + <
 (23) 

Using the results (Scherer, 1990), if there exists 0X >  satisfies (23) then K  given by (22) is 

stabilizing such that the closed loop system 2
uA A B K= +  is asymptotically stable. 

Now consider the augmented plant with integral backstepping in (16). In this case, 

[ ]1 0 0 0
T

aD = . Note that 2 0T
a aD C =  and 1 0aD = . The H∞ performance is satisfied by 

setting the quadratic supply rate (11) as follow:  

2 2 2 2

1
2 2 2 2

0,   ,   ,   ,

( )

T T
a a a a a

T T
a a a a

S R R I E D RD D D B B

D I D D D D−

= = − = = = =

= −
 

Inserting the setting to the ARI (23) yields  

1 1
2 2 2

1 1
2 2 2

1 1
2 2

1 1
2 2 2 2 2 2 2 2

( ( ) 0 )

( ( ) 0 )

( ( ) )

( ( ( ) )   ( ( ) ) ) 0

T T
a a a a a a w a

T T
a a a a a a w a

T T T
a a a a w w

T T T T T T
a a a a a a a a a a

X A B D D D IC B Q C

A B D D D IC B Q C X

X B D D B B Q B X

C I D D D D x I D D D D C

− −

− −

− −

− −

− − +

+ − − −

− − +

+ − − <

 

The equation can then be written in compact form  

 2 2( ) 0T T T T
a a a a w w a aXA A X X B B B B X C C− −+ − ρ − γ + <  (24) 

this gives (18). The full state feedback gain is then found by inserting the setting into (22)  

( )1 1
2 2( )T T

a a w a a aK E B B Q SD X D RC− −= − − −  

that gives || ||∞< γΣ  (Yuliar et al., 1998; Scherer & Weiland, 1999). This completes the 

proof. 
The relation of the ARI solution (8) to the ARE solution is shown in the following. Let the 
transfer function of the plant (9) is represented by 

11 12

21 22

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

z s P s P s w s

y s P s P s u s

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

and assume the following conditions hold: 

(A1). 2 2( , , )A B C  is stabilizable and detectable 

(A2). 22 0D =  
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(A3). 12D  has full column rank, 21D  has full row rank 

(A4). 12( )P s and 21( )P s  have no invariant zero on the imaginary axis 
From (Gahinet & Apkarian, 1994), equivalently the Algebraic Riccati Equation (ARE) given 
by the formula 

 
1 1

12 1 1 1 12 1 1 1

1 1
1 1 1 1

( ) ( )

( ) 0

T T

T T T T

X A BE D RC B QSC A BE D RC B QSC X

X BE B B Q B X C D RDC

− −

− −

− − + − − −

− + =
 (25) 

has a (unique) solution 0X∞ ≥ , such that  

1
2 1 1 1 12[ ( )]TA B K B Q B X S C D K−+ + − +   

is asymptotically stable. The characterization of feasible γ  using the Algebraic Riccati 
Inequality (ARI) in (24) and ARE in (25) is immediately where the solution of ARE ( X∞ ) and 
ARI ( 0X ) satisfy 00 X X∞≤ < , 0 0 0TX X= >  (Gahinet & Apkarian, 1994).  
The Algebraic Riccati Inequality (24) by Schur complement implies 

 2

2

0 0

0

T T
a a a a a w

T
a

T
w

A X XA C C XB XB

B X I

B X I

⎡ ⎤+ +
⎢ ⎥

ρ <⎢ ⎥
⎢ ⎥

−γ⎢ ⎥⎣ ⎦

 (26) 

Ther problem is then to find 0X > such that the LMI given in (26) holds. The LMI problem 
can be solved using the method (Gahinet & Apkarian, 1994) which implies the solution of 
the ARI (18) (Liu & He, 2006).  The parameters of the PID controller which are designed by 
using H∞  dissipative integral backstepping can then be found by using the following 
algorithm: 

1. Select 0ρ >   

2. Select 0γ >  

3. Find 0 0X >  by solving LMI in (26) 

4. Find aK  using (19) 

5. Find K̂  using (7) 

6. Compute 1K , 2K  and 3K  using (4) 

7. Apply in the PID controller (2) 

8. If it is needed to achieve γ  minimum, repeat step 2 and 3 until minγ = γ  then follows the 

next step  

4. Delay time uncertainties compensation 

Consider the plant given by a first order system with delay time which is common 
assumption in industrial process control and further assume that the delay time 
uncertainties belongs to an a priori known interval  

 1
( ) ( )

1
LsY s e U s

s
−=

τ +
, [ , ]L a b∈  (27) 

The example is taken from (Joelianto et al., 2008) which represents a problem in industrial 
process control due to the implementation of industrial digital data communication via 
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ethernet networks with fieldbus topology from the controller to the sensor and the actuator 
(Hops et al., 2004; Jones, 2006, Joelianto & Hosana, 2009). In order to write in the state space 
representation, the delay time is approximated by using the first order Pade approximation 

 
1 1

( ) ( )
1 1

ds
Y s U s

s ds

− +
=
τ + +

, / 2d L=  (28) 

In this case, the values of τ and d are assumed as follows: τ = 1 s and nomd  = 3 s. These pose 
a difficult problem as the ratio between the delay time and the time constant is greater than 
one ( ( / ) 1d τ > ). The delay time uncertainties are assumed in the interval [2,4]d∈ .  
The delay time uncertainty is separated from its nominal value by using linear fractional 
transformation (LFT) that shows a feedback connection between the nominal and the 
uncertainty block. 
 

θu θy

δ

u y
d

 

Fig. 3. Separation of nominal and uncertainty using LFT 

The delay time uncertainties can then be represented as 

nomd d= α + βδ , 1 1− < δ <  

0 1
,ud F

⎛ ⎞⎡ ⎤
= δ⎜ ⎟⎢ ⎥⎜ ⎟β α⎣ ⎦⎝ ⎠

 

After simplification, the delay time uncertainties of any known ranges have a linear 
fractional transformation (LFT) representation as shown in the following figure. 
 

θu θy

totG

δ

u y

 

Fig. 4. First order system with delay time uncertainty 
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The representation of the plant augmented with the uncertainty is 

 
1 2

1 11 12

2 21 22

( ) x x
tot

x x

A B B
A B

G s C D D
C D

C D D

⎡ ⎤
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 (29) 

The corresponding matrices in (29) are 

11 0

1 1
x

x

A
A

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, 11 2

0 1
x x

x

B B
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 11 0

0 1
x

x

C
C

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 11 12

0 0
x x

x

D D
D

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

In order to incorporate the integral backstepping design, the plant is then augmented with 
an integrator as follows 

11 11
2

0

1 1 0
0 0

0 0 0

x x

a

A B
A B

A

⎡ ⎤
⎡ ⎤ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

11
1 0

0
0

x

w

B
B

B

⎡ ⎤
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

, 

0
0

0

1
aB

I

⎡ ⎤
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

, 

11

12

0

0

0 0

x

a x

C

C D

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

2

0

0aD

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥ρ⎣ ⎦

 

The problem is then to find the solution 0X >  and 0γ >  of ARI (18) and to compute the full 
state feedback gain given by 

[ ]( )2 ( )
( ) ( ) 0 1

( )a a a

x t
u t K x t X

u t
− ⎡ ⎤

= = −ρ ⎢ ⎥
⎣ ⎦

 

which is stabilizing and leads to the infinity norm || ||∞< γΣ . 

The state space representation for the nominal system is given by 

1.6667 0.6667

1 0nomA
− −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
1

0nomB
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,  [ ]1 0.6667nomC = −  
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In this representation, the performance of the closed loop system will be guaranteed for the 
specified delay time range with fast transient response (z). The full state feedback gain of the 
PID controller is given by the following equation 

[ ]( )
11

2 3 2

3 3

ˆ
1 ˆ1 1 0.6667
0

ˆ

KK

K K K

K K

⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤⎢ ⎥ = − − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

For different γ , the PID parameters and transient performances, such as: settling time ( sT ) 

and rise time ( rT ) are calculated by using LMI (26) and presented in Table 1. For different ρ  

but fixed γ , the parameters are shown in Table 2. As comparison, the PID parameters are 

also computed by using the standard H∞ performance obtained by solving ARE in (25). The 

results are shown Table 3 and Table 4 for different γ  and different ρ  respectively. It can be 

seen from Table 1 and 2 that there is no clear pattern either in the settling time or the rise 

time. Only Table 1 shows that decreasing γ   decreases the value of the three parameters. On 

the other hand, the calculation using ARE shows that the settling time and the rise time are 

decreased by reducing γ  or ρ . Table 3 shows the same result with the Table 1 when the 

value of γ  is decreased. 

 

γ ρ Kp Ki Kd Tr (s) Ts 5% (s) 

0.1 1 0.2111 0.1768 0.0695 10.8 12.7 

0.248 1 0.3023 0.2226 0.1102 8.63  13.2 

0.997 1 0.7744 0.3136 0.2944 4.44 18.8 

1.27 1 10.471 0.5434 0.4090 2.59  9.27 

1.7 1 13.132 0.746 0.5191 1.93  13.1 

Table 1. Parameters and transient response of PID for different γ  with LMI 

 

γ ρ Kp Ki Kd Tr (s) Ts 5% (s) 

0.997 0.66 11.019 0.1064 0.3127 39.8 122 

0.997 0.77 0.9469 0.2407 0.3113 13.5 39.7 

0.997 1 0.7744 0.3136 0.2944 4.44 18.8 

0.997 1.24 0.4855 0.1369 0.1886 21.6 56.8 

0.997 1.5 0.2923 0.0350 0.1151 94.4 250 

Table 2. Parameters and transient response of PID for different ρ  with LMI 
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γ ρ Kp Ki Kd Tr (s) Ts 5% (s) 

0.1 1 0.2317 0.055 0.1228 55.1 143 

0.248 1 0.2319 0.0551 0.123 55.0 141 

0.997 1 0.2373 0.0566 0.126 53.8 138 

1.27 1 0.2411 0.0577 0.128 52.6 135 

1.7 1 0.2495 0.0601 0.1327 52.2 130 

Table 3. Parameters and transient response of PID for different γ  with ARE 

 

γ ρ Kp Ki Kd Tr (s) Ts 5% (s) 

0.997 0.66 0.5322 0.1396 0.2879 21.9 57.6 

0.997 0.77 0.4024 0.1023 0.2164 29.7 77.5 

0.997 1 0.2373 0.0566 0.126 39.1 138 

0.997 1.24 0.1480 0.0332 0.0777 91.0 234 

0.997 1.5 0.0959 0.0202 0.0498 150.0 383 

Table 4. Parameters and transient response of PID for different ρ  with ARE 

 

 

Fig. 5. Transient response for different γ  using LMI 
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Fig. 6.  Transient response for different ρ using LMI 

 

 
 

Fig. 7. Nyquist plot 0.248γ =  and 1ρ =  using LMI 
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Fig. 8. Nyquist plot 0.997γ =  and 0.66ρ =  using LMI  

 

 
 

Fig. 9. Transient response for different d using  LMI 
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Fig. 10. Transient response for different  bigger d  using LMI 

The simulation results are shown in Figure 5 and 6 for LMI, with γ  and ρ  are denoted by 
g  and r  respectively in the figure. The LMI method leads to faster transient response 

compared to the ARE method for all values of γ  and ρ .  Nyquist plots in Figure 7 and 8 
show that the LMI method has small gain margin. In general, it also holds for phase margin 
except at 0.997γ =  and 1.5ρ =  where LMI has bigger phase margin. 
In order to test the robustness to the specified delay time uncertainties, the obtained robust 
PID controller with parameter γ =0.1 and 1ρ =  is tested by perturbing the delay time in the 
range value of [1,4]d∈ . The results of using LMI are shown in Figure 9 and 10 respectively. 
The LMI method yields faster transient responses where it tends to oscillate at bigger time 
delay.  With the same parameters γ  and ρ , the PID controller is subjected to bigger delay 
time than the design specification. The LMI method can handle the ratio of delay time and 
time constant / 12L τ ≤  s while the ARE method has bigger ratio / 43L τ ≤  s. In summary, 
simulation results showed that LMI method produced fast transient response of the closed 
loop system with no overshoot and the capability in handling uncertainties. If the range of 
the uncertainties is known, the stability and the performance of the closed loop system will 
be guaranteed.  

5. Conclusion 

The paper has presented a model based method to select the optimum setting of the PID 
controller using robust H∞ dissipative integral backstepping method with state feedback 
synthesis. The state feedback gain is found by using LMI solution of Algebraic Riccati 
Inequality (ARI). The paper also derives the synthesis of the state feedback gain of robust H∞ 
dissipative integral backstepping method. The parameters of the PID controller are 
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calculated by using two new parameters which correspond to the infinity norm and the 
weighting of the control signal of the closed loop system.   
The LMI method will guarantee the stability and the performance of the closed loop system 

if the range of the uncertainties is included in the LFT representation of the model. The LFT 

representation in the design can also be extended to include plant uncertainties, 

multiplicative perturbation, pole clustering, etc. Hence, the problem will be considered as 

multi objectives LMI based robust H∞ PID controller problem. The proposed approach can 

be directly extended for MIMO control problem with MIMO PID controller. 
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