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Abstract

The chapter presents innovative planar antennas for beam steering and radio frequency 
identification (RFID) applications. Beam steering has become vital in commercial wire-
less communications, including mobile satellite communications where high data rate 
communication is required. The chapter describes a low-cost beam-steering antenna 
based on a leaky-wave antenna structure that is capable of steering the main radiation 
beam of the antenna over a large range from −30° to +15°. Interest in RFID systems operat-
ing in the ultrahigh frequency (UHF) is rapidly growing as it offers benefits of long read 
range and low cost, which make it an excellent system for use in distribution and logistics 
systems. This chapter presents a technique of overcoming the limitations of conventional 
HF coils in RFID tags where the total length of the spiral antenna is restricted inside the 
available area of the tag.

Keywords: leaky-wave antenna (LWA), broadside radiation, beam steering, RFID tag, 
Hilbert curve, HF/UHF dual-band antenna

1. Introduction

Sophisticated modern wireless systems have begun employing beam-scanning antennas 
to improve their coverage and hence increase system capacity. Antennas whose radia-

tion beam can be steered by electronic means are therefore becoming highly desirable. 
Beam steering can be realized in antenna arrays by modifying the phase of the trans-

mitted  signal. The phase of the signal can be altered electronically with phase shifters. 
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Alternatively, this can be achieved using a leaky-wave antenna (LWA) in which the direc-

tion of the radiation beam is a function of the operating frequency [1–3]. In part 2, the 
design and experimental results are presented of a printed LWA. Features of the LWA 
include a simple structure, small size, low profile, large bandwidth (BW), high gain, and 
large beam steering from -30° to +15°. In part 3, an innovative dual-band card-type tag is 
presented that is based on a single-loop radiator. The card-tag design is implemented 
using Hilbert-curve for radio frequency identification (RFID)-positioning applications. 
The RFID tag radiator design is realized by combining the Hilbert curve and the square-
loop radiator, where the Hilbert curve is designed to operate at HF band, and the square 
loop at ultrahigh-frequency (UHF) band.

2. Printed leaky-wave antenna design

The LWA, shown in Figure 1, can be considered a rectangular patch antenna with a rectangu-

lar dielectric slot. The bottom side of the antenna substrate is a ground plane. Within the slot 
are six radiating arms comprising E-shaped structures which are organized in three columns 
and two rows. The structure is excited through a subminiature version A (SMA) connector 
on one side, and the structure is terminated with a 50-Ω load on the opposite side. The band-

width and radiation characteristics of the antenna can be controlled by simply modifying 
the number of E-shaped arms, their dimensions, and also the separation between them. The 
LWA antenna was analyzed by three full-wave EM simulators, that is, Agilent ADS, HFSSTM, 

and CST-MWS. LWA prototype design presented was constructed on Rogers RT/Duroid5880 
substrate with a thickness of 1.6 mm, a dielectric constant of 2.2, and tan δ of 9 × 10−4. The 
optimized antenna design was fabricated and tested to validate its performance. The length, 
width, and height of the antenna are 19.2 (59 × 10−3λ

o
), 15.2 (47 × 10−3λ

o
), and 1.6 mm (4 × 

10−3λ
o
), respectively, where λ

o
 is free-space wavelengths at 930 MHz.

Figure 2 shows that the proposed LWA covers an impedance bandwidth (for S
11

 < -10 dB) 
of 2.81 GHz (0.90–3.71 GHz) with ADS; 2.95 GHz (0.93–3.88 GHz) with CST MWS; and 3.2 
GHz (0.77–3.97 GHz) with HFSSTM, which correspond to fractional bandwidth of 121.9, 122.6, 
and 135.0%, respectively. The measured impedance bandwidth is 2.72 GHz (0.93–3.65 GHz), 
which correspond to fractional bandwidth of 118.7%. There is generally good agreement 
between the simulated and measured results.

Besides the broadband bandwidth property of the antenna, another feature of this antenna 
is its ability to provide continuous scanning of its main beam over a large range from -30° to 

+15° with high gain across its entire operating range as shown in Figure 3 and Figure 4. These 
results show that the antenna radiates at different angles at 1.2 and 1.88 GHz, and 2.65, and 
3.4 GHz. As the frequency is increased, the scanned angle changes almost in a linear fashion, 
as shown in Figure 5. The measured antenna gain and radiation efficiency at various frequen-

cies are given in Table 1. The gain and efficiency are larger than 6 dBi and 62% across the 
antenna’s operating band.
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The maximum gain occurs at 2.65 GHz, that is, broadside radiation (Figure 5), and it remains 
between 8 and 6 dBi across the band, as shown in Figure 6. In addition to the scanning angle 
and gain curves versus frequency, the antenna gain curve as a function of scanning angle is 

given in Figure 7.

To summarize, the novel printed leaky-wave antenna structure presented above is capable 
of steering the main beam from -30° to +15°. The design of the antenna is based on several 
E-shaped-radiating arms implementing within the slot. The LWA is highly compact with 
dimensions of 19.2 × 15.2 × 1.6 mm3, and has a large fractional bandwidth of 118.7% (0.93–3.65 
GHz) with peak radiation gain and efficiency of 8 dBi and 90%, respectively, at 2.65 GHz. 
The proposed LWA can be flush-mounted on vehicles, laptops, cellular base-stations, and 
mobile phones. In addition, it can be easily integrated on different substrates for use in other 
circuits and devices. The broadside-radiating antenna is suitable for wireless communications 
systems.

Figure 1. Fabricated prototype of the leaky-wave antenna (units in millimeters).
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Figure 2. Simulated and measured reflection coefficients of the proposed LWA.

Figure 3. 2-D radiation patterns in dB scale at spot frequencies. Solid lines: measured results and dashed lines: simulated 
results.
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Figure 4. 3-D radiation patterns (decibel scale) at (a) 1.2 GHz, (b) 1.88 GHz, (c) 2.65, and (d) 3.40 GHz.

Figure 5. Scanning angle versus frequency. Broadside direction is 0°.

Figure 6. Gain as a function of frequency.

Frequency (GHz) 0.93 1.20 1.88 2.65 3.40 3.65

Gain (dBi) 6 7 7.7 8 7.8 7.2

Efficiency (%) 62 74 81 90 85 79

Table 1. Measured antenna radiation characteristics.
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3. Dual-band RFID tag antenna

Based on the card-type dual-band tags [4–27], and the series Hilbert-curve tag, an alternative 
card-type dual-band RFID tag is proposed in this chapter. The proposed tag merges with the 
series Hilbert curve for HF coil antenna and square-loop patch for UHF antenna to form a 
single radiator that is compact and exhibits dual-band performance. The antenna’s axial-ratio 
(AR) spectrum is shown to confirm its circular polarization characteristics.

The loop-tag antenna structure is based on the third-order Hilbert-fractal curve, and the 
antenna is impedance matched with a stub network, as shown in Figure 8. Table 2 lists the 

parameters describing the antenna structure shown in Figure 9. The antenna was fabricated 

Figure 7. Gain curves versus scanning angle.

Figure 8. Fabricated Hilbert-curve loop RFID tag.
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on Rogers/RT Duroid5880 dielectric substrate with a thickness (h) of 0.8 mm and a dielectric 
constant (ε

r
) of 2.2.

The RFID tag, which is shown in Figure 8, operates over dual-band, in particular, the HF 
and UHF bands. Conventional RFID tags essentially comprise two distinct antennas [4–27], 

whereas the proposed dual-band structure employs one radiator that functions in the high 
frequency and ultrahigh-frequency bands.

3.1. High-frequency antenna

The series Hilbert-curve structure is used here as a HF coil antenna to implement the 25-MHz 
band RFID tag. When the plane of the coil is oriented perpendicular to the received magnetic 
field, it induces a voltage in the winding of the Hilbert-fractal curve. By increasing the area 
of the Hilbert curve, it will capture greater magnetic flux from the received signal; as a conse-

quence greater voltage is induced in the coil. Hence, the space-filling fractal curve is recom-

mended to occupy the RFID tag area as much as possible.

The total inductance and the resistive loss in the HF coil antenna determine its quality factor 
(QHF), which indicates energy loss relative to the amount of energy stored in the coil. The mag-

nitude of QHF increases with a decrease in loss. The quality factor of the antenna can be easily 
measured as it is related to the antenna’s center frequency (f0) and 3-dB bandwidth (BW) by 
the relationship QHF = f0/BW. Also, the resonant frequency of the HF coil is a function of the 
coil’s inductance and the capacitance, and is represented by the relationship 0 1 / 2 LCf = .

L
1

L2 L3 L4 L
5

L6 W
1

W2 W3 W4 W
5

W6 W7 W8 W9 W10

8 27.4 4 1.8 4.2 1.2 2.5 0.9 18.6 0.65 16.5 0.65 56 18 24 24.1

Table 2. Dimensions of Hilbert-curve loop RFID tag (units in millimeters).

Figure 9. Parameters defining the RFID tag.
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3.2. Ultra high-frequency antenna

The length of the loop resonator is the fundamental design parameter of the proposed 

Hilbert-curve UHF antenna as it determines the self-resonant frequency of the antenna. In 
the design, the length of the loop resonator is folded within a defined area. By stimulating the 
loop with an electric field, a standing wave is excited in the loop. The resulting electric cur-

rent flowing through the conductive loop causes the tag to radiate. The current distributions 
over the tag reveal the characteristics of the HF/UHF dual-band antenna. To optimize power 
transfer to or from the tag, it is necessary to properly match it to the microchip. This can be 
accomplished by using a microstrip network instead of using discrete lumped inductances 
and capacitances because at UHF the lumped components perform poorly due to generation 
of parasitic reactance.

3.3. Simulation and measured results

The simulated and measured return-loss responses of the proposed RFID tag are shown in 
Figure 10. Commercial software (HFSS) by Ansys was used to simulate the return loss of the 
antenna [28]. It is evident that there is excellent agreement between the simulation and mea-

surement results. Measurements confirm that the RFID tag can operate over the frequency 
ranges of 12.5–37.5 MHz and 0.4–1.4 GHz for return-loss performance better than -10 dB. The 
four resonant modes have a center frequency of f

c
 = 25 MHz, f

c
= 785 MHz (760–815 MHz), 835 

GHz (822–905 MHz), and 925 MHz (918–1000 MHz). These results show that the proposed 
RFID tag is suitable for dual-band applications in the HF and UHF bands. In addition, the band 
centered at 25 MHz shown in Figure 10 is applicable for near-field communication (NFC).

The results of the impedance analysis, shown in Figure 11, reveal that the real-part of the 

impedance has a maximum magnitude of 49, 50, and 48Ω at 785, 835,and 925 MHz, respec-

tively. The imaginary part of the impedance presents an inductive of magnitude 9, 8, and 11Ω 

Figure 10. Simulated (solid-line) and measured (dashed-line) reflection-coefficient response.
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at 785, 835, and 925 MHz, respectively. Inductive impedance was used to impedance match 
the capacitive RFID microchip. At 25 MHz, the real part of the impedance is 2Ω, and the 
imaginary part is 40Ω, as shown in Figure 11. For the tag antenna impedance  ZA( HF ) = RA + 
jXA, the qualityfactor (QA) is expressed by

 
 /  

A A A
Q X R=  (1)

The quality factor (QA) indicates that when the antenna is close to its resonance frequency, its 
impedance is almost real.

The antenna is matched to the RFID microchip with an LC circuit to achieve a QA of 25.1 at 
25 MHz. The quality factors (QA) from Figure 11 are as follows: 0.15, 0.17, and 0.165 at 785, 
835, and 925 MHz, respectively. Distribution of the current density over the  planar antenna, 
shown in Figure 12, gives insight of how the proposed dual-band antenna affects the cur-

rent at the various frequencies. In Figure 12, the total length of the series  Hilbert-curve loop 

Figure 11. Measured results of impedance spectrum at (a) 25, (b) 785, (c) 835, and (d) 925 MHz.
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is 1/20 λ
g
, and the mean circumstance of the loop in Figure 12 is λ

g
. The antenna belongs 

to the small antenna category as the total length of series Hilbert curve is less than 1/10 λ
g
.

When the antenna was tested, it was aligned in the zx-plane as defined in Figure 9 with the 
feed-line along the x-axis. Automatic measurement system in an anechoic chamber was used 
to measure the radiation pattern of the antenna. Radiation patterns of the RFID tag antenna 
were measured in the xz- and yz-planes. The radiation patterns at 25, 785, 835, and 925 MHz 
in the HF/UHF bands are depicted in Figure 13.

Simulated and measured radiation patterns of the RFID tag antenna in the xz- and yz-planes 

at 25, 785, 835, and 925 MHz over the HF/UHF bands are shown in Figure 13. Good agreement 
is obtained between the simulation and measured results. Measurements show that the radia-

tion in the xz-plane is quasi omnidirectional at 25, 785, and 835 MHz; however, the radiation 
is bidirectional at 925 GHz. In the yz-plane, the radiation is omnidirectional at 25, 785, and 925 
MHz, and is clearly bidirectional at 835 MHz. Figure 14 shows that the directivity of the RFID 
tag antenna is 1.75 dBi at 25 MHz in the HF band, and 2.65, 2.82, and 2.75 dBi at 785, 835, and 
925 MHz, respectively, in the UHF band.

Figure 12. Current distributions at (a) 25, (b) 785, (c) 835, and (d) 925 MHz.
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Circular polarization wave is generated by exciting two orthogonal modes in the RFID tag. This 
is achieved with the orthogonal arrangement of the Hilbert-curve tag. The axial-ratio spectrum 
of the polarization related to various angles (φ and θ) is presented in Figure 15. The minimum 
axial ratio is observed at 785, 835, and 925 MHz at φ = 0°, θ = 95° with corresponding -3-dB AR 

Figure 13. Radiation patterns of the RFID tag at: (a) 25, (b) 785, (c) 835, and (d) 925 MHz.
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bandwidth of 480 (560–1040 MHz), 605 (515–1120 MHz), and 455 MHz (620–1075 MHz). The 
minimum AR is observed at 25 MHz at φ = 0°, θ = 92° with corresponding -3-dB AR bandwidth 
of 14 MHz (18–32 MHz). Thus, the proposed antenna can be applied to diversity operation.

3.4. UHF-matching circuit

The maximum activation distance of the tag for the given frequency is given by [29, 30]

 max
chip

EIRP
4

rc
d G

f P
τ

π
=  (2)

where EIRP
r
 is the effective transmitted power of the reader, P

chip
 is the sensitivity of the 

tag microchip, Gis the maximum tag antenna gain, and the power transmission factor τ is 

given by

 

tag

2

chip

4
1

A

A

R R

X X
τ = ≤

+  (3)

where the tag antenna impedance is ZA(UHF) = RA + j XA and microchip impedance 

 Z
chip

 = R
chip

 + j X
chip

.

The microchip NSC MM9647 can be applied to the tag in UHF band. Its impedance is Z
chip

 

= 80 – j 120 Ω [31]. The effective isotropic radiated power (EIRP
r
) of the reader is 1.2 W, the 

sensitivity P
chip

 of tag microchip is -10 dBm, the maximum tag antenna gain G = 3.35 dBi, 
and the activation distance dwith is dmax = 5 m. Therefore, from Eq. (2), the power transmis-

sion factor τ is 0.95. The tag antenna impedance from Figure 11 is Z
A(UHF) = 49 + j9 Ω at 785 

MHz, ZA(UHF) = 50+ j 8Ω at 835 MHz, and ZA(UHF) = 48+ j 11Ω at 925 MHz; hence from Eq. 
(3), the RFID’s microchip impedance of Z

chip
 = 80 – jΩ enables conjugate matching to be 

obtained.

Figure 14. Directivity at (a) 25 MHz in the HF band, and (b) 785, 835, and 925 MHz in the UHF bands.
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3.5. HF-matching circuit

Another example of designing a matching network is presented using Tag-itTM HF-I stan-

dard transponder microchip which has capacitance C
chip

 = 2.85 pF at 25 MHz [32]. The tag 
antenna’s impedance from Figure 11 (a) isZA(HF) = 2 + j 40Ω, where LA = 0.45 µH and RA = 2 Ω. 
The impedance-matching LC circuit is shown in Figure 16. The desired shunt capacitor C

shunt
 

= 0.42 nF is obtained from Eq. (4) and Eq. (5). From Eq. (6), the total circuit factor Q
T
 is 25.1

 

A
A

jX
L

jω
=

 (4)

 2

1
shunt

A

C
L ω

=
 (5)

 
1

 
A

T

A shunt chip

L
Q

R C C
=

+  (6)

Figure 15. Axial-ratio spectrum centered at: (a) 25, (b) 785, (c) 835, and (d) 925 MHz.
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The response of impedance-matching LC circuit, shown in Figure 17, is designed at 25 MHz 
with 3-dB bandwidth of 35 MHz. This impedance-matching LC circuit can be used with the 
RFID tag.

To summarize in Section 3, the design of a novel single-radiator card-type tag antenna was 
presented. The tag antenna was implemented using series Hilbert-curve loop and matched 
stub. The design merges together the series Hilbert-curve HF coil with a square-loop UHF 
antenna to realize a singular radiator for an RFID tag that satisfies the commercial require-

ments of compact design and dual-band functionality. The tag exhibits good broadband 
and circular polarization response, and has a small physical footprint which can be easily 
manufactured. The antenna operates over the UHF band (400 MHz to 1 GHz) with a return 
loss better than -10 dB. The matching network was designed and integrated with the RFID 
chip with knowledge of the inductive impedance of the tag at various frequencies. The 
RFID tag predominately radiates quasi omnidirectionally in both the orthogonal xy- and 

yz-planes. The properties of the antenna make it suitable for various applications at HF and 
UHF bands.

Figure 17. Impedance-matching LC circuit response.

Figure 16. HF impedance-matching LC circuit.
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