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Abstract

Many power electronic applications demand generation of voltage of a rather good
sinusoidal waveform. In particular, dc-to-ac voltage conversion could be done by
multilevel inverters (MLI). A number of various inverter topologies have been
suggested so far: diode-clamped (DC) MLI, capacitor-clamped (CC) MLI, cascaded
H-bridge (CHB) MLI, and others. Fourier series expansions have been used to investi-
gate and to form a basis of different topologies comparison, to discover their advantages
and disadvantages, and to determine their control. In this chapter, we discuss modula-
tion strategies of DCMLI and CHBMLI, solve their harmonics spectra analytically, and
compare them using harmonic distortion indices.

Keywords: Fourier series, multilevel inverters, pulse width modulation, harmonics,
THD

1. Introduction

The term “power electronics” is used for a family of electrical circuits which convert electrical

energy from one level of voltage/current/frequency to other using semiconductor-based

switches. The switching process in power electronic converters is called modulation, and devel-

opment of optimum modulation strategies has been the subject of research in power engineer-

ing during several past decades. Electrical power conversion has evolved as new topologies,

switching devices, control, and modulation strategies have been proposed. Each group of

power electronic converters has its own preferable modulation approach optimizing the circuit

performance, addressing such issues as switching frequency, distortion, losses, and harmonics

generation. Only voltage source inverters modulation will be discussed below.

Before turning to specific issues of modulation, one needs to establish a common basis to

compare the modulation schemes. Different merits are used to evaluate a particular pulse
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width modulation (PWM) implementation: diminished harmonics [1], filtered distortion per-

formance factors [2], and the root-mean-square (RMS) harmonic ripple current [3]. In this text,

analytical solutions to PWM strategies are used to compare magnitude of various harmonic

components. This approach has a number of advantages [4].

Firstly, the conventional method of determining harmonic components of a switched wave-

form using fast Fourier transform (FFT) of the waveform is sensitive to the time resolution of

the simulation and periodicity of the overall waveform. Moreover, it ensures that intrinsic

harmonic components of PWMs are not affected by such factors as simulation round off errors,

dead time, switch ON-state voltages, DC bus ripple voltages, etc.

Secondly, PWM strategies can be compared at exactly the same phase leg switching frequency.

And thirdly, the first-order weighted total harmonic distortion (WTHD) is used for a quick

comparison of PWMs since it has a physical meaning (the normalized current ripple expected

into an inductive load when fed from the switched waveform) and often used performance

indicator.

The rest of the paper is organized as follows. In Section 2, information on the double Fourier

series expansions and necessary relations is given. Essentials on PWM are provided in Section

3. Different voltage inverter topologies and their analytical PWM solutions are presented in

Section 4. Harmonic distortion factors of the introduced inverter topologies, different modula-

tion schemes are compared in Section 5, and a summary on the chapter is given in Section 6.

2. Double Fourier series expansion

2.1. Double Fourier series decomposition for a double variable function

It is well known that a periodic two variable waveform f ðx, yÞ can be expressed in the form

f ðx, yÞ ¼
A00

2
þ ∑

∞

n¼1
½A0n cos nyþ B0n sin ny� þ ∑

∞

m¼1
½Am0 cosmxþ Bm0 sinmx�

þ ∑
∞

m¼1
∑
∞

n¼−∞
n≠0

½Amn cos ðmxþ nyÞ þ Bmn sin ðmxþ nyÞ�
(1)

where the double Fourier series components can be found in a complex form:

Cmn ¼ Amn þ jBmn ¼
1

2π2

ðπ

−π

ðπ

−π

f ðx, yÞ ejðmxþnyÞ dx dy: (2)

The first term in Eq. (1) is the DC offset that should be zero or negligibly small. The second

summation term represents the baseband harmonics. The first baseband harmonic, n ¼ 1, is the

fundamental harmonic whose magnitude defines the magnitude of the output waveform.

Other baseband harmonics, n > 1, represent low-frequency undesired fluctuations about
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the fundamental output and should preferably be eliminated with the modulation process.

The third summation term in Eq. (1) corresponds to the carrier harmonics which are relatively

high-frequency components. Finally, the last double summation term in Eq. (1) corresponds

to groups of the sideband harmonics of order n located around the mth carrier harmonic

component.

2.2. Jacobi-Anger expansion and Bessel functions relations

The magnitudes of harmonic components in Eq. (1) are to be determined for each PWM

scheme for each particular combination of indexes m and n. The evaluations are based on

Jacobi-Anger expansions

e�jξ cosθ ¼ J0ðξÞ þ 2 ∑
∞

k¼1
j�kJkðξÞ cos kθ ¼ ∑

∞

k¼−∞

jkJkðξÞ e
jkθ (3)

and a number of Bessel function properties: J−nðξÞ ¼ ð−1ÞnJnðξÞ and Jnð−ξÞ ¼ ð−1ÞnJnðξÞ, that

particularly implies J0ð−ξÞ ¼ J0ðξÞ [5].

2.3. Parseval’s theorem

Givenf ðxÞ is a periodic function with the period T, it can be represented by its Fourier series

f ðxÞ ¼ a0=2þ ∑∞n¼1an cos nωtþ bn sin nωt where ω ¼ 2π=T is the fundamental angular fre-

quency. Then, on ½−T=2, T=2�, the Parseval’s theorem assumes the form

1

T

ðT=2

−T=2

f 2ðxÞ dx ¼
a20
4
þ ∑

∞

n¼1

a2n þ b2n
2

: (4)

3. Pulse width modulation

To introduce the concept of PWM, let us consider a basic configuration of one-phase two-level

inverter leg shown in Figure 1. It consists of two switches, S1 and S2, and two diodes, D1 and

D2. Switches S1 and S2 are operating alternately at high frequency to generate a quasiperiodic

output voltage vaðtÞ, whose low-frequency components are intended to deliver a prescribed

AC supply. When the switch S1 (S2) is ON, a positive voltage, þVdc, (respectively, negative

voltage, −Vdc) is supplied to a load at the connection point a.

The essential concept of a two-level pulse-width-modulated converter system is that a low-

frequency target waveform is compared against a high-frequency carrier waveform, and the

comparison result is used to control the state of a switched phase leg. In case of the inverter in

Figure 1, the phase leg is switched to the upper DC rail when the target waveform is greater

than the carrier waveform, otherwise to the lower DC rail. As a result, a sequence of pulses

switching between the upper and the lower DC rails is generated, which contains the target

waveform as the fundamental component but also a series of unwanted harmonics arising due

to the switching process.
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The most well-known analytical method of determining the harmonic components of a PWM

switched phase leg was first developed by Bowes and Bullough [1], who adopted an analysis

approach originally developed for communication systems by Bennet [6] and Black [7] to

modulated converter systems.

The analysis is based on the existence of two time variables xðtÞ ¼ ωct and yðtÞ ¼ ω0t, where ω0

and ω
c
are the angular frequencies of the fundamental (target, sinusoid) low-frequency mod-

ulated waveform and the carrier high-frequency modulating waveform, ω0 ≪ ωc.Variables

xðtÞ and yðtÞ are considered to be independently periodic. If the ratio ωc=ω0 is integer, the

generated pulse width trail will be periodic [4].

The problem of finding a PWM for the modulated periodic waveform f ðtÞ can be solved by

exploring a unit cell which identifies contours within which f ðtÞ remains constant for cyclic

variations of xðtÞ and yðtÞ and is equal to the phase leg output voltage. Thus, a three-dimen-

sional (3D) unit cell is a plot of two time variables function with z assuming values of f ðx, yÞ

where x and y vary from −π to π. Contours of f ðx, yÞwithin the unit cell depend on a particular

PWM strategy which will be discussed below.

3.1. Carrier-based PWM schemes

3.1.1. Carrier waveforms and unit cells

Since the target waveform is usually a sinusoid, PWM schemes can be categorized based on

the carrier waveform: saw-tooth leading edge (Figure 2a), saw-tooth trailing edge (Figure 2b),

and double edge (Figure 2c).

Let the modulated waveform of a phase be given vida ¼ M cos y, where M is the modulation

index, 0 < M < 1. For the one-phase two-level inverter leg shown in Figure 1, unit cells with

contour plots for each carrier waveform modulation are presented in Figure 3. The output of

the modulated waveform assumes either þVdc or −Vdc, and the regions of the constant output

are bounded by reference waveforms ΩðyÞ ¼ �πM cos y. For saw-tooth modulations, one of

Figure 1. Half-bridge one phase two-level inverter leg.
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switching time instances (within a period of the carrier waveform) is independent of the

reference waveform resulting in only one side of the contour plot to be sinusoid. The double-

edge PWM both sides of the switched output are modulated providing better harmonic

performance unlike saw-tooth modulations [4]. Hereinafter, only double-edge modulation is

considered.

To determine the harmonics content and the output waveform of a particular PWM, the

double Fourier series coefficients Cmn (or, equivalently, Amn and Bmn) are to be found using

Eq. (2). To solve the problem, the periodic function f ðx, yÞ is to be integrated over the unit cell

of the PWM scheme.

3.1.2. PWM sampling schemes

Based on the choice of switching time instances, PWM schemes can be divided into: naturally

sampled (NS), symmetrically regularly sampled (SR), and asymmetrically regularly sampled

(AR) PWMs.

3.1.2.1. Naturally sampled PWM

For NS PWM scheme, switching occurs at time instances corresponding to intersection of the

carrier and target waveforms. Switching time instances can also be determined as the intersec-

tion between the reference waveform and the solution trajectory y ¼ ðω0=ωcÞx. For example,

switching time instances for the NS double-edge modulation of the one-phase two-level

inverter leg in Figure 1 are defined from its unit cell in Figure 3c such that f ðx, yÞ changes

Figure 2. Carrier waveform: (a) saw-tooth leading edge; (b) saw-tooth trailing edge; (c) double edge.

Figure 3. Contour plots for a sine modulated reference waveform and different carrier modulating waveform: (a) saw-

tooth leading edge; (b) saw-tooth trailing edge; (c) double edge.
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from −Vdc to Vdc when x ¼ −πM cos y,

from Vdc to −Vdc when x ¼ πM cos y.

3.1.2.2. Symmetrically regularly sampled PWM

Switching instances for SR PWM can be determined by the intersection between the sampled

sinusoid waveform and the solution trajectory line y ¼ y′ þ ðω0=ωcÞx. The same switching

instances can be determined as the intersection between the continuous sinusoid waveform

and a staircase variable y′ which has a constant value within each carrier interval [4]. In

general, the value of y′ within each carrier interval can be expressed as

y′ ¼
ω0

ωc
2pπ, p ¼ 0, 1, 2, … (5)

where p represents the pth carrier interval within a fundamental cycle. The staircase variable y′

in terms of continuous variables x and y is given by

y′ ¼ y−
ω0

ωc
ðx−2pπÞ, p ¼ 0, 1, 2, …: (6)

The double Fourier series coefficients for the case of SR PWM with a triangle carrier can be

found analogously to NS PWM with variable y substituted by variable y′ found from Eq. (6).

Considering the previous example with the one-phase two-level inverter leg shown in Figure 1,

switching time instances for the SR double-edge modulation are defined such that f ðx, yÞ

changes

from −Vdc to Vdc when x ¼ −πM cos y′,

from Vdc to −Vdc when x ¼ πM cos y′.

3.1.2.3. Asymmetrically regularly sampled PWM

Switching time instances for AR PWM are determined similarly to SR PWM. Unlike SR PWM,

switching occurs twice within each carrier interval for AR PWM. The switching time instances

can be determined as the intersection between the continuous sinusoid waveform and two

staircase variables

yi
′ ¼

ω0

ωc
2pπþ ð−1Þi

π

2

� �

, i ¼ 1, 2, (7)

which can be expressed in terms of continuous variables x and y as

yi
′ ¼ y−

ω0

ωc
x−2pπ−ð−1Þi

π

2

� �

, i ¼ 1, 2: (8)

To write the double Fourier series integral for AR PWM, the switched waveform in each carrier

interval must be split into two sections for analysis, and with the results added by
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superposition, the first section (i ¼ 1) has modulated “rising” edge in the first half carrier

interval and a “falling” edge in the center of the carrier interval. The second section (i ¼ 2) has

a modulated “rising” edge in the center of the carrier interval and “falling” edge in the second

half carrier interval. Mathematically, this behavior can be expressed as a sum of two functions,

f 1ðx, yÞ and f 2ðx, yÞ, representing “rising” and “falling” edges of the double-edge carrier wave-

form f ðx, yÞ ¼ f 1ðx, yÞ þ f 2ðx, yÞ.

In the previous example with the one-phase two-level inverter leg (Figure 1), functions f 1ðx, yÞ

and f 2ðx, yÞ are defined as follows:

f 1ðx, yÞ steps from Vdc to −Vdc at x ¼ xðy1
′Þ þ 2pπ and from −Vdc to Vdc at x ¼ 2pπ;

f 2ðx, yÞ steps from Vdc to −Vdc at x ¼ 2pπ and from −Vdc to Vdc at x ¼ xðy2
′Þ þ 2pπ.

4. PWM for multilevel inverters

In this section, the following MLI topologies are presented: diode-clamped (DC) MLI, cascade

H-bridge (CHB) MLI, and capacitor-clamped (CC) MLI. The three-level diode-clamped

inverter, which is also called the neutral-point-clamped inverter, was initially introduced by

Nabae et al. [8] in 1981. Thereafter, diode-clamped, cascade H-bridge, and flying capacitor

MLIs with higher number of DC voltage levels have been developed [9–11].

4.1. Diode-clamped MLI

4.1.1. DCMLI circuit topology

A three-level diode-clamped inverter is shown in Figure 4a. In this circuit, the DC bus

voltage is split into three levels by two series-connected bulk capacitors, C1 and C2. The

middle point of the two capacitors n can be defined as a neutral point. The inverter has two

complementary switch pairs: ðS1,S3Þ and ðS2, S4Þ; the complementary switches cannot be

turned on simultaneously. The output voltage va has three states: −Vdc=2, 0, and Vdc=2. For

voltage level Vdc=2, switches S1 and S2 should be turned on; for −Vdc=2, switches S3 and S4
should be turned on; and for the 0 level, switches S2 and S3 should be turned on.

Figure 4b shows a five-level diode-clamped converter whose DC bus consists of four capac-

itors: C1, C2, C3, and C4. Here, the output voltage va has five levels: −Vdc=2, −Vdc=4, 0, Vdc=4,
and Vdc=2. In this example, four complementary switches are ðS1, S5Þ, ðS2, S6Þ, ðS3, S7Þ, and

ðS4, S8Þ. For voltage level Vdc=2, all upper switches S1 and S4 should be turned on; for voltage

level Vdc=4, three upper switches S2 and S4 and one lower switch should be turned on; for

voltage level 0, two upper switches S3 and S4 and two lower switches S5 and S6 should be

turned on; for voltage level −Vdc=4, one upper switch S4 and three lower switches S5 and

S7 should be turned on; and for voltage level −Vdc=2, all lower switches S5 and S8 should

be turned on.
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Development of DCMLI of a higher level is constrained by diodes rating for reverse voltage

blocking. The number of diodes increases quadratic in the level of inverter; therefore, construc-

tion of DCMLI beyond certain level will be impractical. Moreover, the diode recovery time is

the major challenge in high-voltage high-power applications [12].

4.1.2. Carrier-based PWM schemes for DCMLIs

For DCMLIs, two or more carrier waveforms are used to modulate the target waveform. The

number of waveforms depends on the level of the converter. Usually, the level of an inverter is

an odd number, and if L is the level of the converter, then the number of carrier waveforms is

L−1.

Carrier waveforms can be shifted with respect to each other. Based on the shift between the

carrier waveforms, following modulation schemes are identified:

• phase opposition disposition (POD): all carrier waveforms above zero are in phase and

180° out of phase with those below zero;

• alternative phase opposition disposition (APOD): every carrier waveform is 180° out of

phase with its neighbors;

• phase disposition (PD): all carrier waveforms are in phase.

Figure 4. DCMLI circuit topologies: (a) three-level; (b) five-level.
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An example of each PWM scheme for a five-level inverter is shown in Figures 5–7. Apparently,

there is no difference between POD and APOD for three-level inverters.

4.1.3. Contour plots for DCMLIs

If L is the level of the inverter, it denotes N ¼ ðL−1Þ=2. Then, function f ðx, yÞ of voltage level

assumes one of the values: −NVdc=ðL−1Þ, −ðN−1ÞVdc=ðL−1Þ,…, 0,…,NVdc=ðL−1Þ. Let us denote

carrier waveforms as xc1ðtÞ, x
c
2ðtÞ, …, xcL−1ðtÞ beginning from the lowest one. If the reference

waveform is less than xc1ðtÞ, then f ðx, yÞ ¼ −NVdc=ðL−1Þ; if the reference waveform is greater

than xci−1ðtÞ and less than xci ðtÞ, i ¼ 2, …, L−1, then f ðx, yÞ ¼ −ðN−iþ 1ÞVdc=ðL−1Þ; and, finally,

f ðx, yÞ ¼ NVdc=ðL−1Þ if the reference waveform is greater than xcL−1ðtÞ.

Figure 5. POD PWM scheme for a five-level inverter with the sinusoid reference waveform.

Figure 7. PD PWM scheme for a five-level inverter with the sinusoid reference waveform.

Figure 6. APOD PWM scheme for a five-level inverter with the sinusoid reference waveform.
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To determine the corresponding contour plot, interval ½−π; π� of the y-axis should be divided

in 2N−1 intervals with limits defined by M cos y ¼ m=N, m ¼ −N, −ðN−1Þ, …, N. One also

needs to consider separately “rising” and “falling” edges of each carrier waveform

corresponding to two intervals of variable x: −π ≤ x ≤ 0 and 0 ≤ x ≤ π. Then, the condition that

the reference waveform is greater than the carrier waveform xci ðtÞ for “rising” and “falling”

edges becomes, respectively:

NM cos y >
xci
π

if 0 ≤ x ≤ π, (9)

NM cos y > −
xci
π

if −π ≤ x ≤ 0: (10)

Similarly, the opposite conditions can be defined. Solving in Eqs. (9) and (10) for all values of

f ðx, yÞ, one can find the contour plot of a particular PWM scheme, accounting for the voltage

level in each domain. Examples of different PWM schemes for three- and five-level diode-

clamped inverter are given in Figures 8–12.

Figure 9. POD PWM scheme for a three-level diode-clamped inverter.

Figure 8. PD PWM scheme for a three-level diode-clamped inverter.
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Figure 11. POD PWM scheme for a five-level diode-clamped inverter (here φ2 ¼ π−φ1 and φ1 ¼ cos −1ð1=2MÞ).

Figure 10. PD PWM scheme for a five-level diode-clamped inverter (here φ2 ¼ π−φ1 and φ1 ¼ cos −1ð1=2MÞ).

Figure 12. APOD PWM scheme for a five-level diode-clamped inverter (here φ2 ¼ π−φ1 and φ1 ¼ cos −1ð1=2MÞ).
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4.1.4. Harmonic spectra of DCMLIs

Once the unit cell with contour plots of voltage level domains for a particular PWM is

obtained, harmonic components of the PWM can be found using Eq. (2) with the help of

equations given in Section 2.2. Output voltage waveforms and their Fourier transforms are

given below for three- and five-level diode-clamped inverters using different modulation

strategies. Harmonic components magnitudes are plotted for first harmonic numbers assum-

ing M ¼ 0:8 and ωc=ω0 ¼ 40.

The output voltage of a three-level diode-clamped inverter modulated by NS POD/APOD

PWM is given by

vaðtÞ ¼ VdcM cos ðω0tÞ þ
2Vdc

π

∑
∞

m¼1

1

m
∑
∞

p¼−∞

ð−1ÞpJ2pþ1ðmπMÞ cos ðmωctþ ð2pþ 1Þω0tÞ (11)

and its harmonic components are plotted in Figure 13.

The output voltage of a three-level diode-clamped inverter modulated using NS PD PWM can

be calculated as

vðtÞa ¼ VdcM cos ðω0tÞ þ
2Vdc

π

∑
∞

q¼1

1

2q
∑
∞

p¼−∞

J2pþ1ð2qπMÞð−1Þp

2sþ 1
cos ð2qωctþ ð2pþ 1Þω0tÞþ

þ
4Vdc

π
2

∑
∞

q¼1

1

2q−1
∑
∞

p¼−∞

∑
∞

s¼−∞

J2sþ1ðð2q−1ÞπMÞð−1Þp

2pþ 2sþ 1
cos ðð2q−1Þωctþ 2pω0tÞ

(12)

and its theoretical harmonic spectrum is shown in Figure 14.

The output voltage of a five-level diode-clamped inverter obtained by NS POD PWM can be

found as follows:

Figure 13. Theoretical harmonic spectrum of a three-level diode-clamped inverter modulated using NS POD/APOD

PWM.
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vaðtÞ ¼ 2VdcM cos ðω0tÞ þ
2Vdc

π
∑
∞

q¼1

1

2q
∑
∞

p¼−∞

ð−1ÞpJ2pþ1ð4qπMÞ cos ð2qωctþ ð2pþ 1Þω0tÞþ

þ
4Vdc

π2
∑
∞

q¼1

1

2q−1
∑
∞

p¼−∞

ð−1ÞpJ2pþ1ð2ð2q−1ÞπMÞ
π

2
−2φ

� �

þ ∑
s¼−∞

sþpþ1≠0

∞

ð−1Þsþ1J2sþ1ð2ð2q−1ÞπMÞ
sin ð2ðpþ sþ 1ÞφÞ

pþ sþ 1

2

6

6

6

4

3

7

7

7

5

,

(13)

where φ ¼ cos −1ð1=2MÞ and its harmonic spectrum is plotted in Figure 15.

The output voltage of a five-level diode-clamped inverter modulated by NS APOD PWM is

given by

vaðtÞ ¼ 2VdcM cos ðω0tÞ þ
2Vdc

π
∑
∞

m¼1

1

m
∑
∞

p¼−∞

ð−1ÞmþpJ2pþ1ð2mπMÞ cos ðmωctþ ð2pþ 1Þω0tÞ (14)

and its harmonics are plotted in Figure 16.

Figure 15. Theoretical harmonics spectrum of a five-level diode-clamped inverter modulated using NS POD PWM.

Figure 14. Theoretical harmonic spectrum of a three-level diode-clamped inverter modulated using NS PD PWM.
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The output voltage of a five-level diode-clamped inverter modulated using NS PD PWM is

given by

vaðtÞ ¼ 2VdcM cos ðω0tÞ þ
2Vdc

π
∑
∞

q¼1

1

2q
∑
∞

p¼−∞

ð−1ÞpJ2pþ1ð4qπMÞ cos ð2qωctþ ð2pþ 1Þω0tÞþ

þ
4Vdc

π2
∑
∞

q¼1

1

2q−1
∑
∞

p¼−∞

∑
∞

s ¼ −∞
2pþ2s≠−1

ð−1ÞsJ2sþ1ð2ð2q−1ÞπMÞ
cos

�

πðpþ sÞ
�

−2 sin ðφð2pþ 2sþ 1ÞÞ

2pþ 2sþ 1

· cos ðð2q−1Þωctþ 2pω0tÞ (15)

where φ ¼ cos −1ð1=2MÞ and the theoretical harmonics spectrum is shown in Figure 17.

Below theoretical harmonic contents for SR and AR PWM are presented for a three-level

diode-clamped inverter. The output voltage of a three-level diode-clamped inverter modulated

with SR POD PWM can be found using

Figure 16. Theoretical harmonic spectrum of a five-level diode-clamped inverter modulated using NS APOD PWM.

Figure 17. Theoretical harmonic spectrum of a five-level diode-clamped inverter modulated using NS PD PWM.
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Cm,2nþ1 ¼
2Vdc

qπ
ð−1ÞnJ2nþ1ðqπMÞ (16)

where q ¼ mþ nω0=ωc. Its harmonics content is shown in Figure 18.

The harmonic spectrum of a three-level diode-clamped inverter modulated with SR PD PWM

can be determined by equations

Cm,2p ¼
2Vdc

π
2

1−ejqπ

q
∑
∞

k¼−∞

ð−1Þp
J2kþ1ðqπMÞ

2pþ 2kþ 1
(17)

Cm,2pþ1 ¼
Vdc

π

1þ ejqπ

q
ð−1ÞpJ2pþ1ðqπMÞ (18)

where q ¼ mþ nω0=ωc. First harmonics are plotted in Figure 19.

Figure 18. Theoretical harmonic spectrum of a three-level diode-clamped inverter modulated using SR POD PWM.

Figure 19. Theoretical harmonic spectrum of a three-level diode-clamped inverter modulated using SR PD PWM.
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The harmonic spectrum of a three-level diode-clamped inverter modulated with AR POD

PWM can be determined by equations

Cmn ¼
2Vdcð1−e

jnπÞ

π
2q

1

n
sin n

πω0

2ωc

� �

sin n
π

2

� �

þ
π

2
JnðqπMÞ sin n

π

2
1−

ω0
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� �� �

þ

þ ∑
∞

k¼−∞
nþk≠0

1
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JkðqπMÞ sin
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2
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� �� �

sin ðnþ kÞ
π

2

� �

2

6

6

6

4

3

7

7

7

5

(19)

where q ¼ mþ nω0=ωc and n is odd. A series of lower order harmonics are shown in Figure 20.

The harmonic spectrum of a three-level diode-clamped inverter modulated with AR PD PWM

can be found using equations

Cm0 ¼
2Vdc

π
2q

∑
∞

s¼−∞

J2sþ1ðqπMÞ

2sþ 1

�

1−ejðqþ2sÞπ
�

(20)

Cmn ¼
2Vdcð1þ ejqπÞ
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where q ¼ mþ nω0=ωc and n is odd in Eq. (21). A series of lower order harmonics are shown in

Figure 21.

4.2. Cascaded H-Bridge MLI

4.2.1. CHBMLI circuit topology

A single-phaseH-bridge inverter is shown in Figure 22. It ismade up of two single-phase inverter

legs (Figure 1) connected to a common DC bus. Each phase is modulated in complementary

Figure 20. Theoretical harmonic spectrum of a three-level diode-clamped inverter modulated using AR POD PWM.
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pattern by a carrier/reference waveform comparison when the switching occurs as it is described

above. A single-phase full-bridge inverter generates voltage of three levels: −Vdc, 0, andVdc:

A cascaded H-bridge multilevel inverter, also called cascaded multicell inverters [12], consists

of a number of series-connected single-phase H-bridge inverters connected to separate dc

voltage sources. The resulting phase voltage is synthesized by addition of the voltages gener-

ated by different cells and is nearly sinusoidal even without filtering. An example of a five-

level cascaded H-bridge inverter is shown in Figure 23.

Cascaded MLI topology has several advantages: each cell can be controlled independently

from the others. Although communication between cells is required to achieve synchronized

reference and carrier waveforms, controllers can be distributed. The control scheme is signifi-

cantly easier than the ones for other topologies. However, it has not been used in practice in

low power applications because a separate isolated dc voltage supply is needed for each full

H-bridge [4].

Figure 21. Theoretical harmonic spectrum of a three-level diode-clamped inverter modulated using AR PD PWM.

Figure 22. A single-phase H-bridge (full-bridge) inverter.
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4.2.2. Carrier-based PWM schemes for CBHMLIs

Three-level modulation of a single-phase full-bridge inverter can be obtained via combination

of voltage modulations of two phase legs a and b. The phase legs are modulated with 180

opposed reference waveforms given by

vida ðtÞ ¼
Vdc

2
M cos y, (22)

vidb ðtÞ ¼
Vdc

2
M cos ðy−πÞ: (23)

The fundamental line-to-line (l-l) output reference voltage for the inverter is the difference

between two phase reference voltages and is equal to

vidabðtÞ ¼ vida ðtÞ−v
id
b ðtÞ ¼ VdcM cos y: (24)

Then, the l-l output voltage harmonic components for the inverter are given by

Figure 23. A five-level cascaded H-bridge inverter topology.
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vabðtÞ ¼ vaðtÞ−vbðtÞ: (25)

Applying different PWM schemes to a single-phase half-bridge inverter, one can obtain vari-

ous modulations for the full-bridge inverter: NS, SR, and AR.

4.2.3. Harmonic spectra of CHBMLIs

The harmonic solution for NS PWM of a phase leg is given by

vaðtÞ ¼
Vdc

2
þ
Vdc

2
M cos ðω0tÞ þ

2Vdc

π

∑
∞

m¼1

1

m
∑
∞
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Jn m
π

2
M

� �

sin ½mþ n�
π

2

� �

cos ðmωctþ nω0tÞ:

(26)

Eq. (26) can be applied for each phase leg accounting for 180° phase shift of the reference

waveforms resulting in the following harmonic spectrum for NS PWM of a full-bridge inverter:

vNS
ab ðtÞ ¼ VdcM cos ðω0tÞ þ

4Vdc

π

∑
∞

m¼1

1

2m
∑
∞

n¼−∞

J2nþ1ð2mπMÞ cos ð½mþ n�πÞ cos ð2mωctþ ½2nþ1�ω0tÞ:

(27)

The harmonic spectrum of the output voltage of a full-bridge inverter modulated using SR

PWM is equal to

vSRab ðtÞ ¼
4Vdc
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(28)

and using AR PWM it is given by

vARab ðtÞ ¼
4Vdc

π

∑
∞

n¼1

Jn n ω0
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#

: (29)

It can be seen that all odd carrier and associated sideband harmonics as well as even

sideband harmonics are cancelled out from the l-l output voltage. A further cancellation

can be obtained by appropriately phase shifting the remaining harmonics of several series-

connected single-phase H-bridges. This process is called phase-shifted cascaded (PSC)

PWM. The major principle is that the phase shift between two phases of each H-bridge
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cell is kept 180°, and then, carriers of each H-bridge are shifted with respect to each other.

Optimum harmonic cancellation is achieved via phase shifting each carrier by ði−1Þπ=N,

where i is the ith converter, N is the number of series-connected single-phase inverter legs,

and N ¼ ðL−1Þ=2 and L is the number of voltage levels that can be achieved. This modu-

lation is also called phase shift (PS) PWM. The overall cascaded inverter phase leg to dc

link midpoint voltage can be obtained by adding up the l-l output reference voltages of

each cell:

vðtÞ ¼ ∑
N

i¼1
v
i

ab
ðtÞ: (30)

One can see in Figures 24–32 that carrier harmonics of odd order and even order sideband

harmonics are cancelled out in the three-level CHB inverter for all presented topologies, and

increasing the level of the inverter is leading to cancelling out other carrier harmonics of order

m≠kN, k ¼ 1, 2, 3, :::

Figure 24. Theoretical harmonic spectrum of a single-phase half-bridge inverter modulated using NS PS PWM.

Figure 25. Theoretical harmonic spectrum of a single-phase full-bridge inverter modulated using NS PS PWM.
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Figure 26. Theoretical harmonic spectrum of a single-phase cascaded H-bridge inverter modulated using NS PS PWM.

Figure 27. Theoretical harmonic spectrum of a single-phase half-bridge inverter modulated using SR PS PWM.

Figure 28. Theoretical harmonic spectrum of a single-phase full-bridge inverter modulated using SR PS PWM.
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Figure 29. Theoretical harmonic spectrum of a single-phase cascaded H-bridge inverter modulated using SR PS PWM.

Figure 30. Theoretical harmonic spectrum of a single-phase half-bridge inverter modulated using AR PS PWM.

Figure 31. Theoretical harmonic spectrum of a single-phase full-bridge inverter modulated using AR PS PWM.
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5. Harmonic distortion

Modern power electronic equipment operates in different discrete modes which causes a

deviation of the output waveform from the desirable sine waveform due to insertion of

undesirable harmonics. The rate of the deviation is presented by a number of basic indices

characterizing the harmonic distortion. In particular, these indices enable us to compare the

effectiveness of various inverter modulation algorithms. The indices are introduced in this

section, and different inverter topologies are compared in their terms.

5.1. Harmonic distortion indices

Given that the output voltage vðtÞ of a power converter is a periodic function with period T,

the root-mean-square (RMS) value of the function is defined by

Vrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T

ð

T

0

vðtÞ2 dt

v

u

u

u

t
: (31)

Since vðtÞ is periodic with the Fourier series vðtÞ ¼ V0 þ ∑∞n¼1Vn cos ðnωtþ ϕnÞ, the Parseval’s

theorem can be used to find the RMS voltage of vðtÞ:

Vrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
0 þ ∑

∞

n¼1

V2
n

2

s

: (32)

In most of the practical cases, the fundamental harmonic V1 can be considered as the desired

output voltage. The reminder of this expression is then considered as a “distortion” to the

output. Factoring out V1 gives us

Figure 32. Theoretical harmonic spectrum of a single-phase half-bridge inverter modulated using AR PS PWM.
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Vrms ¼ V1, rms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
2V2

0

V2
1

þ ∑
∞

n¼2

Vn

V1

� �2
s

, (33)

where V1, rms ¼ V1=
ffiffiffi

2
p

. The total harmonic distortion (THD) of the voltage is defined as

THD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2V2
0

V2
1

þ ∑
∞

n¼2

Vn

V1

� �2
s

(34)

and the RMS voltage becomes

Vrms ¼ V1, rms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ THD2
p

: (35)

For the purpose of comparing various switching strategies, the weighted total harmonic distortion

(WTHD) is used:

WTHD ¼
1

V1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
∞

n¼2

Vn

n

� �2
s

(36)

In the case of pulse-width-modulated inverters, the DC voltage remains constant, while the

fundamental component varies. On the other hand, for the same ratio of switching to output

frequency, the harmonic components vary relatively little, resulting in a large variation of

THD and WTHD. Therefore, a normalized WTHD can be used. For the case of half-bridge

inverter, the normalization factor is chosen to be the value of the fundamental ac voltage

when the modulation index M equals 1, that is, Vdc. Thus, the normalized WTHD, WTHD0,

becomes

WTHD0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
∞

n¼2

1

n2
Vn

Vdc

� �2
s

¼ WTHD
V1

Vdc
¼ WTHD �M: (37)

5.2. Harmonic distortion indices for a DCMLI

Harmonic distortion indices for all presented inverter topologies and PWMs are provided in

Table 1. Spectra are evaluated for M ¼ 0:8 and ωc=ω0 ¼ 40. It can be noted that a half-bridge

inverters and full-bridge inverters demonstrate similar waveform quality regardless the PWM

strategy applied. Cascaded H-bridge inverters show improvement in performance with

increase in number of levels, which appears due to extensive harmonics cancelations up to

harmonics of a high order. Performance of diode-clamped inverters also improves with

increasing number of levels; however, the improvement is significantly lower than for the

cascaded H-bridge inverters.

There is a substantial difference between different modulations used for the same converter.

For example, AR PD is showing the worst performance among all other carrier-based
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modulations of a three-level DC inverter which can be explained by the fact that very few

harmonics are cancelled unlike the other modulations.

6. Conclusion

In this chapter, an application of double Fourier series to analytical analysis of power width

modulation of power electronic converters was presented. The pulse width modulation con-

cept was given, and different pulse width modulation schemes were described. Harmonic

spectra and various distortion factors were calculated for various inverter topologies, namely

three- and five-level diode-clamped inverters, three- and five-level cascaded H-bridge

inverters, and modulated using different PWM schemes. PWM schemes performance varied

for different converter topologies; therefore, the preferable PWM strategy is usually deter-

mined by a specific converter topology.

Vrms (p.u.) THD (%) WTHD (%) WTHD0 (%)

Three-level diode-clamped inverter phase leg

NS POD/APOD PWM 0.6959 71.66 1.58 1.27

NS PD PWM 0.6959 71.65 1.58 1.27

SR POD/APOD PWM 0.6959 71.76 1.59 1.27

SR PD PWM 0.7003 73.23 3.70 2.96

AR POD/APOD PWM 0.6956 71.61 1.58 1.26

AR PD PWM 0.6131 42.37 1.82 1.46

Five-level diode-clamped inverter phase leg

NS POD PWM 0.6790 65.91 1.57 1.26

NS PD PWM 0.6457 55.02 1.30 1.04

NS APOD PWM 0.6007 35.71 0.81 0.65

Five-level cascaded H-bridge inverter phase leg

AR PS PWM 0.5929 31.44 0.20 0.16

SR PS PWM 0.6638 61.60 0.67 0.53

NS PS PWM 0.5930 31.43 0.20 0.16

Three-level cascaded H-bridge inverter phase leg

AR PS PWM 0.6856 68.50 0.79 0.63

SR PS PWM 0.6856 68.67 0.79 0.64

NS PS PWM 0.6856 68.47 0.79 0.63

Single phase half-bridge inverter

AR PWM 0.4796 136.98 2.87 2.30

SR PWM 0.4797 137.15 2.87 2.30

NS PWM 0.4796 136.93 2.87 2.30

Table 1. Harmonic distortion factors for MLI.
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Comparing different topologies, the cascaded H-bridge topology contains the least number of

sideband harmonics, and they can be further eliminated by increasing the number of levels of

the inverter. DCMLIs and CCMLIs are constrained in the number of levels due to diodes

physical properties.
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