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Abstract

For humans to understand the world around them, learning and memory are two
cognitive processes of the human brain that are deeply connected. Memory allows
information to retain and forms an experiences reservoir. Computational models
replicating those memory attributes can lead to the practical use of robots in
everyday human living environments. However, constantly acquiring
environmental information in real-world, dynamic environments has remained a
challenge for many years. This article proposes an episodic-procedure semantic mem-
ory model to continuously generate topological sensorimotor maps for robot naviga-
tion. The proposed model consists of two memory networks: i) episodic-procedural
memory network (EPMN) and ii) semantic memory network (SMN). The EPMN
comprises an Incremental Recurrent Kernel Machines (I-RKM) that clusters incoming
input vectors as nodes and learns the activation patterns of the nodes for spatiotem-
poral encoding. The SMN then takes neuronal activity trajectories from the EPMN
and task-relevant signals to update the SMN and produce more compact representa-
tions of episodic experience. Thus, both memory networks prevent catastrophic
forgetting by constantly generating nodes when the network meets new inputs or
updating node weights when the incoming input is similar to previously
learned knowledge. In addition, idle or outlier nodes will be removed to preserve
memory space.

Keywords: episodic memory, semantic memory, sensorimotor map, topological map,
robot navigation

1. Introduction

One of the essential features of common living locomotive organisms is
their capability to traverse their daily environment with life-critical tasks. For
example, rats can learn to visit or avoid places of food that they have visited, and
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squirrels are excellent at rediscovering places of food that they have previously
hidden. Many animals escape to a previously visited shelter if they are undergoing
an urgent threat, such as a bear that escapes to a cave for hibernation to
preserve energy during the winter season. A specious hypothesis is that living
organisms should have a cognitive mechanism to represent their environment as a
collection of important regions, such as nest locations and food places. When
necessary, they can recall these regions and utilize their relations to perform
navigation tasks [1].

The capability of an autonomous mobile robot to represent its environment as a
spatial map and to determine its position concurrently has been widely analyzed in the
robotics society. The process is termed SLAM (Simultaneous Location and Mapping),
and several state-of-the-art have been introduced that works remarkably well [2, 3].
Another research area is to generate a topological map that maps the environment’s
structure. Robots can plan trajectories and navigate to target locations using topolog-
ical graphs. However, the sophistication of maps increases exponentially with the
length of the robot’s journey in most current graph-based approaches [4]. If new
nodes and edges are added to the map continuously, the requirement for processing
time and memory storage increases over time, stopping applications from long-term
mapping. As a result, methods for controlling the scale of the topological map are
critical in functional robotic applications that require continuous exploration in envi-
ronments [5–7].

Biological methods do not appear to experience enormously from the deficiencies
mentioned above in artificial navigation [1]. For example, rats can explore, search,
and travel in large and dynamic environments for a long time. They can adapt to the
environment changes quickly, for instance, searching new ways if a previously
visited route is unavailable or choosing potential shortcuts when new access spots are
available. Therefore, several computer goal-oriented navigation systems were intro-
duced to partially emulate how the brain could represent space and apply these
representations for navigation tasks. Memory is a fundamental perspective for the
acquisition of experience. Memory is essential for the understanding, learning, and
cognition of the interactions of robots in complex environments [8]. Episodic mem-
ory is a kind of memory that retains human experiences in a particular and
conscious way.

This article proposes an episodic-procedural semantic memory model for topolog-
ical sensorimotor map construction. The robot can use the generated topological
sensorimotor map to perform indoor navigation. The following are our contributions
to this study: i) The proposed model can learn multiple sensory information to gener-
ate the topological sensorimotor map incrementally; ii) Because of the nature of
episodic memory attributes, the robot can perform goal navigation with path-
planning algorithms; iii) The semantic memory layer can serve as a medium for
humans to interact with a robot to perform navigation tasks, and iv) The proposed
method continuously updates the generated topological map (can expand or shrink)
to maintain the size of the map based on the environment without the need for human
interference.

2. Related works

Many practical approaches to solving the SLAM problem have been introduced in
robot mapping. Lu and Milios [9] were the first to use a pose graph to implement
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global map optimization. The robot’s poses are represented as vertices in a graph, and
the spatial boundaries between poses are represented as edges in a graph. The map’s
scale proliferates in this traditional graph-based approach as the robot discovers new
regions. Consequently, there is a rapid rise in the need for storage and computing
resources. When direct linear solvers are applied, the traditional graph-based solution
has quadratic memory consumption growth with the number of variables in the worst
case. Efforts to increase the performance of graph-based mapping algorithms are
underway. In standard equations, the sparsity structure of the matrix is used to allow
quick linear online solvers. Many SLAM libraries are available to deal with this
dilemma with tens of thousands of variables in just a few seconds, such as g2o [10],
and RTAB-Map [11]. Memory usage increases linearly with the number of variables,
even using iterative linear solvers. Returning to the exact location many times com-
plicates the case. This strategy becomes less effective as more vertices and edges are
applied to the same spatial area. For the time being, there are only a few works that
attempt to answer how to store a map for long-term exploration. Consequently,
achieving a long-term mapping solution [5] that can control, or at the very least
restrict, the size of the map is essential.

Vertex and edge sparsification, which trades map precision for memory and com-
putational power, is one of the most effective techniques to reduce the map’s com-
plexity. To avoid redundant vertices and insert informative measurements to the map,
an information-based compact pose SLAM algorithm was proposed in an information-
theoretic fashion [12]. In pose global optimization, an information-based criterion was
adopted to determine the laser scans should be marginalized, maintaining the sparsity
of laser-based 2D pose maps. To obtain a light blanket based on the Markov blanket of
a boundary vertex, the generic linear constraint criteria [13] and nonlinear graph
sparsification were proposed [14].

Another approach was introduced that focused on solving the traditional pose
graph’s temporal scalability [15]. This approach eliminates the addition of redundant
vertices and edges before the graph’s global optimization. This approach has been
demonstrated in indoor areas using a binocular visual SLAM framework, and it is an
effective solution for medium-scale environments such as houses and factories. The
idea of neighborhood area and scene integration is introduced [7] to achieve
sparsification of the cognitive map without adding unnecessary vertices and edges to
the cognitive map.

One of the biologically-inspired proposed methods is RatSLAM [16, 17]. The
approach represents the environment as a set of pose cells, and each pose cell is linked
to a view cell. RatSLAM was successfully implemented in small and large environ-
ments for spatial mapping, but the framework does not handle target-oriented navi-
gation. Erdem and Hasselmo [18] proposed a biologically inspired computational
model for goal-oriented navigation. In this model, the environment is represented as
several grid cells with different scales and spacing and gradually converge into one
place cell. The model gradually recruits new place cells to encode the autonomous
agent’s current location when the agent meets a notable location during exploration.
Each place cell has a reward cell, and the lateral weight of the connection between two
reward cells is equivalent to the time between the autonomous agent’s successive visits
to the reward cells. With the lateral connections, autonomous agents can navigate to
the goal location from its starting location. However, the methods mentioned above
focus on emulating place cells and grid cells for spatial map building.

Humans seem to accommodate themselves better in complex environments and
recall past experiences to perform tasks simultaneously generate new experiences and
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skills. These significant behaviors usually develop from experiences that rely on
learning. Likewise, the assumption is that experience also implies for robots [19].
Thus, the learned experiences can be integrated into a spatial map so that robots can
freely observe and navigate in any environment. Current methods rely on the
RatSLAM concept, such as BatSLAM [20] using sonar sensing, which has been devel-
oped. Tang et al. [21] included an episodic memory module in navigational tasks to
process contextual information. The approach is designed for maze-controlled situa-
tions, but its effectiveness in open spaces such as corridors, offices, and homes is still
unknown.

3. Proposed method

The proposed model consists of two hierarchical memory networks: i) episodic-
procedural memory and ii) semantic memory. New nodes (experiences) are generated
in each memory network as new sensory information is obtained. Topology links are
generated to connect nodes and store robot behaviors. These connections provide the
robot with procedural knowledge so that an action can be taken to proceed from one
circumstance to another. The episodic-procedural network is an Incremental Recur-
rent Kernel Machines (I-RKM) which incrementally cluster incoming input data as
nodes in an unsupervised fashion. The I-RKM is the Infinite Echo State Network
extension [22, 23]. Each node in the network further encodes an activation value used
for spatiotemporal learning. The semantic memory network is hierarchically
connected to the episodic memory network. It is also another I-RKM that receives
bottom-up inputs from the episodic memory network and top-down signals such as
labels or signs for generating representations that contain semantic knowledge on a
larger timescale. The mechanism of neural operation in the semantic memory network
is similar to the episodic procedural memory network with an additional requirement
to create a new node. In this network, node learning happens as the network correctly
predicts the class label of the classified input sequence from the episodic memory
network through the learning process. A new node will only be created if the incorrect
network class label. This criterion is also the additional element that modulates nodes
update. In particular, each semantic node preserves information over time sequences
higher than episodic nodes due to the hierarchical learning of input data.

The episodic network serves as a novelty detector in the robot navigation mission.
Each node in the network represents a group of related input features and creates new
nodes if the incoming input features do not fit into any network nodes. Nodes in the
episodic network also encode the robot’s location for localization purposes. In addi-
tion, each link encodes a robot’s action, such as turning angle and moving speed, to
serve as procedural information that allows the robot to perform a sequence of actions
and travel from one place to another. Each node encodes the semantic meaning of
human operator cues in the semantic network. Semantic definition marks the
explored space with various names, such as a hallway, room, or kitchen, to provide a
medium for human-robot interaction. If no external sensory information is available,
the episodic procedural memory network performs an action-oriented internal simu-
lation through the playback of node sequences and actions encoded in their links to
consolidate knowledge (memory) and mitigate catastrophic forgetting. Each node in
the SMN represents a region of the environment. The robot utilizes this information to
change its moving behaviors, such as wall following, obstacle avoidance, or fast travel.
Figure 1 shows the overview of the proposed method.
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3.1 Echo state network

Echo State Networks [24] can be considered large, randomly recurring neural
networks with a single sequential, trained readout layer. The network computes a
wide range of non-linear, spatial–temporal mappings of input data. The reservoir can
be seen as a spatial–temporal kernel in which the mapping of a high-dimensional space
is explicitly computed. Hermans et al. [22] proposed a Recurrent Kernel Machines
(RKM) that extends Echo State Networks’ idea to infinite-sized recurrent neural
networks (RNNs). The proposed method is regarded as recursive kernels. When a
RNN with internal weights W, input weights V, and an internal state s receives an
input xt at time t, it produces the following output:

yt ¼ h Vxt þWstð Þ (1)

where h is the product of the activation function (for example, the hyperbolic
tangent) and the projection function. A recursive method’s core idea is that Eq. (1) can
be represented as follows:

h Wst þ Vxtð Þ ¼ h WjV½ �
st

xt

� �� �

(2)

It’s a function of the input’s concatenation with the prior internal state. The same
reasoning can be applied to kernel functions, with the base function inputs consisting
of a concatenation of the current input and the prior recursive mapping:

ϕ xt,ϕ xt�1,ϕ …ð Þð Þð Þ ¼ ϕ xtjϕ xt�1jϕ …ð Þð Þ½ �ð Þ (3)

Figure 1.
The overview of the proposed method which consists of two memory networks: The episodic procedural memory
network and semantic memory network. The episodic procedural memory network clusters incoming sensory input
as nodes progressively and learns fine-grained spatiotemporal correlations between them. The semantic memory
network adjusts the amount of architectural flexibility based on task-relevant inputs to build a topological
semantic map with more compact episodic representations.
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Hermans et al. [22] has shown that recursive variations of kernels with k x, x0ð Þ ¼

f ∥x� x0∥2
� �

and k x, x0ð Þ ¼ f x � x0ð Þ form can be derived using this structure as a
reference. For example, the recursive-SE kernel has the form:

κSEt x, x0ð Þ ¼ exp �
∥xt � x0t∥

2

2l2

� �

exp
κSEt x, x0ð Þ � 1

σ2p

 !

(4)

We propose a computational model called Incremental Recurrent Kernel Machines
(I-RKM) for continuously creating topological maps based on characteristics of RKM.
The EPMN and the SMN are two hierarchical memory levels in the proposed method.
The I-RKM is described in-depth in the following sections.

3.2 Episodic procedural memory network (EPMN)

An I-RKM constitutes the EPMN. In reaction to input vectors, the network
dynamically grows or contracts by adding or removing nodes. To encode node rela-
tionships, edges will be created to connect nodes. The I-RKM notations are tabulated
in Table 1.

Based on the sensory input, the network first generates two recurrent nodes. Each
node in the network is comprised a weight vector w j. For further learning, the
network uses the Eqs. (5) and (6) to identify the node that best fits the current sensory
input x tð Þ. Eq. (6) creates the Infinite Echo State which is identical to Eq. (4).

b ¼ argmin T j tð Þ
� �

(5)

T j tð Þ ¼ exp �
∥xc tð Þ �wc

j∥
2

2σ2i

" #

exp
T j t� 1ð Þ � 1

σ2

� �

(6)

Notation Definition

T j tð Þ Activation value of node j at t

κ tð Þ Recursive kernel at t

wb t � 1ð Þ Best matching node weights at t � 1

r j Regularity counter of node j

γ j Contributing factor of node j

τ j, λ Decay factors for regularity counter

σ2i , σ
2 Kernel width

ρ Learning threshold

P m,nð Þ Temporal connection between node m and n

V Associative matrix for labeling

b Index of best matching node

Table 1.
The notations of I-RKM.
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Following that, the activation value of the best matching node (BMN) J is
determined as follows:

ab tð Þ ¼ exp �Tbð Þ (7)

If the activation value ab tð Þ is smaller than a predefined threshold aT, the condition
is fulfilled. A new node N is added to the network with the following weights:

wN ¼ 0:5 � x tð Þ þwbð Þ (8)

To connect the winning node b and the second BMN, a new link is established. If
ab tð Þ is greater than aT, the winning node b can represent the input x tð Þ. As a result,
the winning node b and its neighbor nodes n are updated as follows in response to
input x tð Þ:

w j newð Þ ¼ γ j � r j � x tð Þ �w j oldð Þ

� �

(9)

If no connection exists between the BMN ab tð Þ and the second-best matching node,
a new connection will be made to connect them. Each edge has an age counter that
grows by one with each iteration. The age of the link between the best and second-best
matching nodes is reset to zero. Nodes with no connections and a habituation
counter larger than the preset value will be removed from the network, as will
connections with an age greater than the preset threshold. In addition, each episodic
node has a regularity counter r j ∈ 0, 1½ � that indicates the strength of its firing over
time. The value of the newly formed episodic node is r j ¼ 1. Using the following
equation, the regularity value of the BMN and its adjacent nodes decreases with
each iteration:

Δr j ¼ τ j � λ � 1� r j
� �

� τ j (10)

As a result, the significance of the node’s regularity can be associated with the
relevance or importance of the information stored in the node. Regularity values for
nodes that have been often activated in response to learning inputs are presented in
the regularity Eq. (10). If the link exceeds the threshold, isolated nodes will be
removed from its network. Due to the nature of the network, the topological network
expands during the robot’s journey in the robot navigation mission. However, nodes
generated at the start of the journey are eliminated from its network. Thus, we have
introduced a new criterion of node removal [25] with the following equation:

v ¼ μ Hð Þ þ σ Hð Þ (11)

where H is a vector representation of the network’s regularity, μ is the mean
function, and σ is the standard deviation. Nodes with regularity values more than the
threshold will be removed.

Only if bJ tð Þ< ρb and rJ < ρr can a new episodic node be added to the network. If the
activation and regularity thresholds are met, the episodic nodes will be updated via
Eq. (9). In the EPMN, a set of events constitutes an episode, which retains distinct
historical occurrences and episodes that are linked to one another. To learn recurrent
node activation patterns in the network, we incorporate temporal connections. Tempo-
ral connections represent the sequence of activated nodes throughout the learning stage.
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A temporal connection between the two consecutively activated nodes will be enhanced
by 1 for each learning iteration. When the BMN b is activated at time t and then again at
time t� 1, the temporal relationship between them is reinforced as follows:

Pnew
b tð Þ,b t�1ð Þð Þ ¼ Pold

b tð Þ,b t�1ð Þð Þ þ 1 (12)

For each recurrent node m, the next node g from the encoded time series can be
obtained by selecting the largest value of P as shown below:

g ¼ argmaxP m,nð Þ (13)

where n are the neighbors of m. As a result, the recurrent node activation sequence
can be reestablished without the need for any further input data.

3.3 Semantic memory network (SMN)

The semantic memory layer is linked to the episodic memory layer hierarchically.
It is made up of an I-RKM that obtains bottom-up inputs from the episodic memory
layer and top-down inputs such as labels or tags to develop representations that
incorporate semantic information over a more extended period. By delivering signals
from the top-down signals, semantic information could be retrieved.

The mechanism of neural activity in the SMN is similar to that of the EPMN, with
the requirement for the creation of new nodes. Node learning happens in this layer
when the network accurately predicts the class label of the labeled input sequence
from the EPMN during the learning process. If the class label is incorrect, a new node
will be added. This additional criterion influences the rate at which the nodes update.
Furthermore, due to the hierarchical learning of incoming data, each semantic node
maintains knowledge through periods higher than episodic nodes. As a result, the
SMN selects the winning node based on the BMN of the EPMN in the following
manner:

bs ¼ argmin TSMN
j tð Þ

� 	

(14)

TSMN
j tð Þ ¼ exp �

∥x tð Þ �w j∥
2

2σ2i

" #

exp
TSMN

j t� 1ð Þ � 1

σ2

" #

(15)

The selected node is either assumed to be the correct semantic node for the given
sequence of episodic inputs, or it is more dominant than other semantic nodes, or
both. The SMN receives input data from the EPMN, i.e., the EPMN’s BMNs with
regard to x tð Þ. The BMNs in the network are calculated with the Eqs. (14) and (15).
Because the input is derived from bottom-up neural episodic weights, x tð Þ is
substituted by wem

b for node learning.
Thus, a new semantic node is created only if the BMN b fails to satisfy three

criteria: 1) asmb tð Þ< ρa; 2) r
sm
b < ρr; and 3) BMN’s label ζsmb is not the same as the data

input’s label ζ (Eq. (21)). It should be noted that if the data input is not labeled, this
label matching requirement in the semantic memory layer is ignored. If the winner of
the semantic node b predicts the label ζb that is the same as the class label ζ of the
input x tð Þ, the node learning process is started by the extra learning factor ψ ¼ 0:001.
As a result, Eq. (9) will become:
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wSMN
j newð Þ ¼ ψ � γ j � r j � wEPMN

b �wSMN
j oldð Þ

� 	

(16)

The SMN learns to create more compact representations of the input labels.
Data labels govern the network’s stability and plasticity, with new semantic nodes
addition only when the network is unable to estimate the correct data input class
label.

3.4 Episodic procedural memory self-replay

To generate meaningful sequential data for memory playback, we exploit the
spatiotemporal connections of nodes in the EPMN. When there is no input feed into
the network, the EPMN uses its nodes as input for learning (self-replay). For example,
if the winning episodic node b is activated by input data, the next temporal node
can be selected by choosing the node with the largest activation value of P. For each

node j, a set of nodes playback with length KEPMN þ 1 is calculated as follows:

U j ¼ wEPMN
u 0ð Þ ,wEPMN

u 1ð Þ ,⋯,wEPMN
u KEPMNð Þ,


 �

(17)

u ið Þ ¼ argmaxP j,u i�1ð Þð Þ (18)

where KEPMN is the number of temporal nodes, P i, jð Þ is the episodic temporal
connection matrix, and u 0ð Þ ¼ j. The temporal connection of episodic nodes stored
in the network is capable of autonomously generating a series of events and
replaying to the network without retaining the relations of previously received
training data.

3.5 Data associative system

During the training phase, each node can be assigned a class label of l based on the
input data. The L class label yields the l label. The frequency of each individual label in
the network is stored in the V j, lð Þ associative matrix for this labeling approach. This
implies that each node j has a distribution counter that holds the frequency of a
certain sample label. When a new node N is created and the label ζ associated with the
input data x tð Þ is specified, the matrix V is enlarged by one row and initialized with
V N, ζð Þ ¼ 1 and V N, lð Þ ¼ 0. When an existing BMN b is chosen for updating, the V
matrix is updated in the following manner:

V b, ζð Þ newð Þ ¼ V b, ζð Þ oldð Þ þ φþ (19)

V b, lð Þ newð Þ ¼ V b, lð Þ oldð Þ þ φ� (20)

Notice that φþ must always less than φ� and the label ζ is within the L class label.
If the data label ζ does not exist in L, a new column in V is added and set to
V b, ζð Þ ¼ 1 and V b, lð Þ ¼ 0. The matrix V will not be updated if there is no label
associated with the given input gesture. The winning label ζ j for a node j is calculated

as follows:

ζ j ¼ label jð Þ � argmaxV j, lð Þ, (21)
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where l is label in class label L. The advantage of this labeling approach [26] is that
no number of class labels must be specified in advance. Because the number of class
label is uncertain, this is crucial when dealing with continuous learning in real world
application.

4. Experimental setup and results

We first validate the proposed method using the COLD benchmark dataset [27,
28]. The COLD dataset is a large-scale, customizable testing environment for generally
validating vision-based localization algorithms intended to perform on mobile plat-
forms in realistic environments. A mobile robot gathers the dataset in three separate
locations with different environmental conditions such as weather conditions, day or
night time. It contains various formats, including RGB images, videos, and laser scans.
RGB images and videos are gathered using a standard onboard camera and an omni-
directional camera. Instead of learning the image pixels, we use fixed random weights
of Convolutional Neural Network (CNN) [29] for extracting visual features that
sufficiently express the environment states. A simple CNN with fixed random
weights, for example, can extract visual information with high classification accuracy
in image classification tasks [30]. In this work, the extracted features from fixed
random weights CNN and the robot’s odometry data will be inputs to the EPMN, and
the output of the EPMN will be the input of the SMN. Each data is fed into the
memory networks sequentially without repetition for topological map building.
Unlike batch learning, feeding the data sequentially to the memory networks fulfill
the continuous learning criteria where data is only seen once. This criterion is crucial
for robot navigation as the robot often traverses the environment continuously from
one place to another. The hyperparameters for training the I-RKM in both memory
networks are tabulated in Table 2.

Several metrics have been developed to assess the quality of a topological memory
network. The total quantization error (TQE) is a popular metric, which quantifies the
average distance between each data vector and its BMN. The BMU is the winning
node in our case since it has the most significant match value and fulfills the vigilance
parameter. The TQE measures the fitness of the generated topological map to the

Hyperparameter Value

α1, α2 0:5

ρa 0:75

ρr 0:1

τ j 0:5

λ 1:05

σ2i , σ
2 1:1, 1:4

γb 0:2

γn 0:001

re 0:001

Table 2.
Training parameters for the I-RKM of the memory networks.
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robot’s actual navigation route. As a result, the ideal topological map is expected to
have the lowest TQE. The lower the TQE, the smaller the average distance between
the BMNs and the robot’s actual trajectory, indicating that the topological map is
closer to the original route.

Furthermore, we evaluate the feasibility of the generated topological map using
node localization accuracy. The pre-processed image dataset is transmitted to the I-
RKM of both memory networks for each iteration to determine the BMN. The Euclid-
ean distance between the BMN’s encoded position and the robot’s position from the
dataset is used to compute the localization accuracy. Localization is accomplished if
the Euclidean distance is smaller than a predefined value (0.1 m in these experi-
ments). Because the purpose of SMN is to encode location label information, the
localization accuracy is computed differently. Localization in SMN is fulfilled if the
BMN’s encoded location label is the same as the label from the dataset, similar to the
standard classification accuracy.

4.1 Benchmark dataset results

The odometry and pre-processed image datasets were utilized as input to the
I-RKM in the benchmark dataset experiment. To accomplish self-memory replay in
EPMN, we continually feed the data in a mini-batch fashion (10 data per mini-batch).

Figure 2.
Row (a) shows the robot’s real path for collecting the COLD dataset: Saarbruken, Freiburg and Ljubljana (from
left to right). Rows (b) and (c) illustrate the topological map of the episodic-procedural memory network and the
semantic memory network, respectively. (a) robot navigation path, (b) episodic procedural memory network, (c)
semantic memory network.
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Then, after each mini-batch, memory self-replay was triggered. The topological map
is made up of a series of nodes and edges. Different colored circles represent nodes,
and each one holds the robot’s coordinates (x, y), a place label, and a feature vector
representing the surroundings. Links are black lines that link all nodes in the map to
indicate node relationships. Figure 2 shows the exact path taken by the robot in three
different buildings with different environmental conditions and the topological maps
generated by the proposed method. Table 3 shows the TQE and localization accuracy
of the topological map for each dataset. TQE and localization accuracy was found to be
relatively constant across datasets. As a result, memory network learning is consistent
across buildings with varying environmental conditions.

4.2 Physical robot experiment results

We validated our suggested technique further utilizing a mobile robot attached to an
iPhone for image data acquisition and an Intel i5 CPU NUC PC for processing data and
controlling the robot as shown in Figure 3(a). The robot can traverse the surroundings
autonomously, avoid obstacles, and follow walls. The robot’s movement speed ranges
from 0.05 to 0.5 m/s. The EPMN receives data from the iPhone and odometry to
produce a topological map, whereas the SMN accepts EPMN output as input.

The experiments were carried out on the 7th floor of a university hallway, study
area, and rest space that connected with one other, as shown in Figure 3(b). The

Dataset TQE (EPMN) TQE (SMN) Accuracy (EPMN) (%) Accuracy (SMN) (%)

Freiburg cloudy 1 0.0283 0.2048 94.0 94.4

Freiburg cloudy 2 0.0322 0.2793 94.0 96.4

Freiburg cloudy 3 0.0204 0.2112 91.4 94.3

Freiburg sunny 1 0.0093 0.2122 94.0 95.0

Freiburg sunny 2 0.1179 0.2495 95.3 96.0

Freiburg sunny 3 0.0228 0.1466 91.5 92.0

Ljubljana cloudy 1 0.0143 0.2613 91.8 93.0

Ljubljana cloudy 2 0.0898 0.2743 84.9 85.0

Ljubljana cloudy 3 0.0047 0.3568 91.6 85.7

Ljubljana sunny 1 0.0118 0.2231 94.3 95.1

Ljubljana sunny 2 0.0480 0.2273 93.3 94.0

Ljubljana sunny 3 0.0798 0.3939 90.2 91.5

Saarbruken cloudy 1 0.0661 0.1544 91.5 92.0

Saarbruken cloudy 2 0.0020 0.1700 82.1 83.0

Saarbruken cloudy 3 0.0990 0.1410 91.7 93.1

Saarbruken night 1 0.0063 0.1292 92.1 93.6

Saarbruken night 2 0.0016 0.1678 89.5 90.2

Saarbruken night 3 0.1075 0.1899 85.0 86.9

Table 3.
The TQE and localization accuracy of the topological map that generated by the memory networks using COLD
datasets.
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purpose of experimenting with such environmental settings is to confirm that our
proposed technique can work in a natural environment with moderately varying
environmental factors. We instructed the robot to explore the experimental site,
beginning in the study area and traveling to the rest area through the hallway, then
returning to the start point. I-RKM continually learns from incoming sensory data in
both memory networks and builds the topological map. After the first traverse, self-
memory replay is triggered before the next traverse begins. The robot explored the
surroundings with various movement behaviors depending on the location. For
example, in the study area, the robot is set to obstacle avoidance mode since the
environment is crowded with moving people and objects. Because the hallway is a
straight path, the movement behavior is altered to the wall following and fast-speed
mode when the robot enters the hallway. We repeated the experiment ten times. The
metrics evaluation is identical to the benchmark dataset experiments (Figure 4).
Figure 5(a) and (b) show the TQE and localization accuracy of the memory networks
respectively.

Figure 3.
(a) Physical robot equipped with an iPhone. (b) The experimental environment.

Figure 4.
(a) Robot navigation path; (b) topological map generated by the EPMN; (c) topological map generated by the
SMN.
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5. Discussion

We have shown that the memory networks can generate topological maps with
benchmark datasets and physical robot experiments. Topological maps are built up
from nodes that encode specific sensory information, providing flexibility and main-
tainability for robot navigation. New nodes are constantly added to the memory
networks during environment learning, or existing nodes are updated. Edges link new
nodes to existing nodes and can be used to guide navigation activities. Each node
represents a region of the world, and it will be selected for learning if it corresponds to
the robot’s current sensory data. This property demonstrates that I-RKM retains
previously learned knowledge and creates a topological map based on the robot’s
traverse path. According to the experiment results, all of the topological maps gener-
ated by I-RKM are almost identical to the actual robot path.

Because of the nature of memory network learning, the EPMN generates more
nodes than the SMN. Because the SMN will use the EPMN output to generate the
topological map, the SMN will learn the more sparse category representation. EPMN’s
topological map can be utilized for robot localization and navigation. The topological
nodes connection allows the robot to navigate from one location to another. The topo-
logical map in SMN is sparser than in EPMN, and the TQE is higher than in the EPMN.
However, the topological map of the SMN can be utilized for place classification tasks.

The proposed memory network training takes odometry data into account and
visual measures. As a result, memory networks can distinguish areas with relatively
similar visual sensory input, overcoming the difficulties of online detection and rec-
ognition of topological nodes. According to the node matching and localization find-
ings, the robot failed to locate itself during navigation on several occasions because of
a sudden change in the environment, resulting in no topological nodes matching with
these sensor data. This issue can be solved by adjusting the vigilance parameter. The
higher the value of the vigilance parameter, the more sensitive the memory networks
are to changing environmental conditions and vice versa.

6. Conclusion

We presented Incremental-Recurrent Kernel Machines that mimic human
episodic-procedural semantic memory and can progressively learn the spatiotemporal

Figure 5.
(a) TQE of the topological map generated by the memory networks; (b) localization accuracy of the memory networks.
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connection of sensory input from camera and odometry to build a topological map.
I-RKM in both memory networks autonomously updates the topological map by
expanding or shrinking its episodic memory structure. Furthermore, I-RKM consoli-
dates the spatial map through self-episodic memory replay, eliminating the require-
ment for external sensory inputs. I-RKM has been validated through benchmark
datasets and physical robot implementation. In the future, we will combine I-RKM
with a path planning algorithm to use the topological map’s structure for goal-directed
navigation. In addition, we plan to leverage the edges connection between nodes by
encoding traverse information on the edges. The robot can navigate from one place to
another autonomously that solely depends on memory with little or no human inter-
vention. Finally, we will improve and test I-RKM’s performance in more challenging
and larger environments.
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