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Abstract

A cyber-physical system (CPS) is a tight coupling of computational resources,
network communication, and physical processes. They are composed of a set of
networked components, including sensors, actuators, control processing units, and
communication agents that instrument the physical world to make “smarter.”
However, cyber components are also the source of new, unprecedented vulnerabil-
ities to malicious attacks. In order to protect a CPS from attacks, three security
levels of protection, detection, and identification are considered. In this chapter, we
will discuss the identification level, i.e., secure state estimation and attack recon-
struction of CPS with corrupted states and measurements. Considering different
attack plans that may assault the states, sensors, or both of them, different online
attack reconstruction approaches are discussed. Fixed-gain and adaptive-gain
finite-time convergent observation algorithms, specifically sliding mode observers,
are applied to online reconstruction of sensor and state attacks. Next, the corrupted
measurements and states are to be cleaned up online in order to stop the attack
propagation to the CPS via the control signal. The proposed methodologies are
applied to an electric power network, whose states and sensors are under attack.
Simulation results illustrate the efficacy of the proposed observers.

Keywords: cyber-physical systems, sensor attack, state attack,
sliding mode observers

1. Introduction

Cyber-physical systems (CPS) are the integration of the cyber-world of com-
puting and communications with the physical world. In many systems, control of a
physical plant is integrated with a wireless communication network, for example,
transportation networks, electric power networks, integrated biological systems,
industrial automation systems, and economic systems [1, 2]. Since CPSs use open
computation and communication platform architectures, they are vulnerable to
suffering adversarial physical faults or cyber-attacks. Faults and cyber-attacks are
referred to as attacks throughout this chapter.
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Recent real-world cyber-attacks, including multiple power blackouts in Brazil
[3], and the Stuxnet attack [4] in 2010, showed the importance of providing secu-
rity to CPSs. Identification and modeling process as [5, 6] which are based on data
can be seriously affected by corrupted data. As a result, information security tech-
niques [7] may be not sufficient for protecting systems from sophisticated cyber-
attacks. It is suggested in [8] that information security mechanisms have to be
complemented by specially designed resilient control systems. Controlling CPS with
sensors and actuators, who are hijacked/corrupted remotely or physically by the
attackers, is a challenge. The use of novel control/observation algorithms is pro-
posed in this chapter for recovering CPS performance online if an attacker pene-
trates the information security mechanisms.

Cyber security of CPS must provide three main security goals: availability,
confidentiality, and integrity [7]. This means that the CPS is to be accessible and
usable upon demand, the information has to be kept secret from unauthorized
users, and the trustworthiness of data has to be guaranteed. Lack of availability,
confidentiality, and integrity yields denial of service, disclosure, and deception,
respectively. A specific kind of deception attack called a replay attack has been
investigated when the system model is unknown to the attackers but they have
access to the all sensors [9, 10]. Replay attacks are carried out by “hijacking” the
sensors, recording the readings for a certain time, and repeating such readings while
injecting them together with an exogenous signal into the system’s sensors. It is
shown that these attacks can be detected by injecting a random signal, unknown to
the attacker, into the system. In the case when the system’s dynamic model is
known to the attacker, another kind of deception attack, called a cover attack, has
been studied in [11], and the proposed algorithm allows cancelling out the effect of
this attack on the system dynamics. In systems with unstable modes, false data
injection attacks are applied to make some unstable modes unobservable [12].
Denial of service attacks assaults data availability through blocking information
flows between different components of the CPS. The attacker can jam the commu-
nication channels, modify devices, and prevent them from sending data, violate the
routing protocols, etc. [13]. In a stealth attack, the attacker modifies some sensor
readings by physically tampering with the individual meters or by getting access to
some communication channels [14, 15]. As a result, detecting and isolating of cyber-
attacks in CPSs has received immense attention [16]. However, how to ensure the
CPS can continue functioning properly if a cyber-attack has happened is another
serious problem that should be investigated; therefore, the focus of this chapter is
on resilient control of CPS.

In [17], new adaptive control architectures that can foil malicious sensor and
actuator attacks are developed without reconstructing the attacks, by means of
feedback control only. A sparse recovery algorithm is applied to reconstruct online
the cyber-attacks in [18]. Sliding mode control with advantages of quick response
and strong robustness is one of the best approaches to control CPS [19–22]. In [23],
a finite-time convergent higher-order sliding mode (HOSM) observer, based on a
HOSM differentiator and a sparse recovery algorithm, are used to reconstruct
online the cyber-attack in a nonlinear system. Detection and observation of a scalar
attack by a sliding mode observer (SMO) has been accomplished for a linearized
differential-algebraic model of an electric power network when plant and sensor
attacks do not occur simultaneously [24]. Cyber-attacks against phasor measure-
ment unit (PMU) networks are considered in [25], where a risk mitigation tech-
nique determines whether a certain PMU should be kept connected to network
or removed. In [26] a sliding mode-based observation algorithm is used to
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reconstruct the attacks asymptotically. This reconstruction is approximate only,
since pseudo-inverse techniques are used.

In this chapter, CPSs controlled by a control input subject to sensor attacks and
state/plant attacks are considered. The corrupted measurements propagate the
attack signals to the CPS through the control signals causing CPS performance
degradation. The main challenge that is addressed in the chapter is online exact
reconstruction of the sensor and state attacks with an application to an electric
power network. The contribution of this chapter is:

• Novel fixed and adaptive-gain SMO for the linearized/linear CPS under attack
are proposed for the online reconstruction of sensor attacks. The time-varying
attacks are reconstructed via the proposed SMO that includes a newly designed
dynamic filter. Note that the well-known SMO proposed in [27] reconstructs
the slow-varying perturbations only.

• A super twisting SMO is applied to reconstruct the state/plant time-varying
attacks of the linearized/linear CPS under attack.

• For online state/plant attack reconstruction in nonlinear CPS under attack, a
higher-order sliding mode disturbance observer [28] is used.

• An algorithm that use sliding mode differentiation techniques [29] in concert
with the finite-time convergent observer for the sparse signal recovery is
applied to online reconstruction of time-varying attack in nonlinear CPS under
attack when we have limited measurements and more possible sources of
attack [30].

2. Motivation example: electric power network under attack

In a real-world power network, only a small group of generator rotor angles and
rates is directly measured, and typical attacks aim at injecting disturbance signals
that mainly affect the sensorless generators [24].

The small-signal version of the classic structure-preserving power network
model is adopted to describe the dynamics of a power network. Consider a

connected power network consisting of n1 generators g1;…; gn1

n o

and n2 load buses

bn1þ1;…; bn1þn2f g. The interconnection structure of the power network is encoded
by a connected susceptance-weighted graph G. The vertices of G are the generators
gi and the buses bi. The edges of G are the transmission lines bi; bj

� �
and the

connections gi; bi
� �

weighted by their susceptance values. The Laplacian associated
with the susceptance-weighted graph is the symmetric susceptance matrix

L∈R n1þn2ð Þ� n1þn2ð Þ defined by Lθ ¼
Lθ
g, g Lθ

g, l

Lθ
l, g Lθ

l, l

" #

[8].

The CPS that motivates the results presented in this work is the US Western
Electricity Coordinating Council (WECC) power system [8] under attack with
three generators and six buses, whose electrical schematic is presented in Figure 1.
The mathematical model of the power network in Figure 1 under sensor stealth
attack and deception attack can be represented as the following descriptor equa-
tions that consist of differential and algebraic equations [8]:

3

Secure State Estimation and Attack Reconstruction in Cyber-Physical Systems: Sliding Mode…
DOI: http://dx.doi.org/10.5772/intechopen.88669



I 0 0

0 Mg 0

0 0 0

2

6
4

3

7
5

_δ

_ω

_θ

2

6
4

3

7
5 ¼ �

0 �I 0

Lθ
g, g Eg Lθ

g, l

Lθ
l, g 0 Lθ

l, l

2

6
4

3

7
5

δ

ω

θ

2

6
4

3

7
5

|fflffl{zfflffl}

x

þ

0

Bω

Bθ

2

6
4

3

7
5

|fflfflffl{zfflfflffl}

B

dx þ

0

Pω

Pθ

2

6
4

3

7
5, y ¼ CxþDdy (1)

where the state vector x ¼ δT ωT θT
� �T

includes the vector of rotor angles

δ∈R3, the vector of generator speed deviations from synchronicity ω∈R3, as well

as the vector of voltage angles at the buses θ∈R6. The y∈Rp is the measurement
vector, dx ∈Rm1 is the Deception attack corrupting the states, and dy ∈Rm�m1 is the
stealth attack vector spoofing the measurements. Note that the states of the plant are
under attack even if they are not attacked directly but via propagation.

The measurement corruption attacks through an output control feedback. The

matrices Eg,Mg ∈R3�3 are diagonal whose nonzero entries consist of the damping
coefficients and the normalized inertias of the generators, respectively:

Mg ¼

0:125 0 0

0 0:034 0

0 0 0:016
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4
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7
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0 0 0:048
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7
5 (2)

The inputs Pω and Pθ are due to known changes in the mechanical input power to

the generators and real power demands at the loads. The matrices B∈R12�m1 and

D∈Rp� m�m1ð Þ are the attack distribution matrices, and C∈Rp�12 is the output gain

matrix. The Lθ ∈R9�9 withLθ
g, g ∈R

3�3, Lθ
g, l ∈R

3�6, Lθ
l, g ∈R

6�3, Lθ
l, l ∈R

6�6 is giving by

Lθ ¼

0:058 0 0 �0:058 0 0 0 0 0
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0 0 0:059 0 0 �0:059 0 0 0
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(3)

Figure 1.
The WECC power system [8].
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Note that ωi ! 0 ∀ i ¼ 1, 2, 3 in a case of the nominal performance of the studied
network. Consider the case when the outputs of system, which are the measure-
ment sensors ω1,ω2,ω3, are corrupted by the following stealth attacks.

d1 ¼ �ω1 þ 2 sin πtð Þ, d2 ¼ �ω2 þ cos 0:5πtð Þ, d3 ¼ �ω3 þ sin πtð Þ (4)

The system (1) was simulated with and without above attacks. Based on
the simulation results shown in Figures 2 and 3, the stealth attack in (4) yields
inappropriate degradation of the power network performance.

This motivates why online reconstruction of the attacks followed by cleanup
of the measurements prior to using them in control signal is of prime importance for
retaining the performance of the power network (as it will be shown in Section VI
where the proposed SMO is applied to achieve this goal). The case study of the
power network (1) will be further discussed in details in Section 6.

3. Cyber-physical system dynamics

Consider the following completely observable and asymptotically stable system

_x ¼ f xð Þ þ B xð Þd tð Þ

y ¼ C xð Þ þDd tð Þ
(5)

where x∈Rn is the state vector, f xð Þ∈Rn is a smooth vector field, d tð Þ∈Rm

denotes the attack/fault vector which is additive and matched to the control signal,
y∈Rp is the measurement vector, p≥m, C xð Þ∈Rp is the output smooth vector

Figure 2.
Comparing corrupted sensor measurements (ω1,ω2,ω3 under attack) and sensor measurements when there is
no attack.

Figure 3.
Comparing corrupted states (δ1, δ2, δ3 under attack) and stats when there is no attack.

5

Secure State Estimation and Attack Reconstruction in Cyber-Physical Systems: Sliding Mode…
DOI: http://dx.doi.org/10.5772/intechopen.88669



field, B xð Þ∈Rn�m and D∈Rp�m denote the attack/fault distribution matrices. For
notational convenience, and without affecting generality, the input distribution
matrices can be partitioned as

B xð Þ ¼ B1 xð Þ 01½ �, D ¼ 02 D1½ � (6)

where B1 xð Þ∈Rn�m1 , D1 ∈Rp� m�m1ð Þ, 01 ∈Rn� m�m1ð Þ, 02 ∈Rp�m1 where
m1 ≤m.

Assumption (A1): B1 xð Þ, D1 are of full rank.
The attack/fault vector is partitioned accordingly as

d ¼
dx

dy

� �

where dx ∈Rm1 and dy ∈Rm�m1 (7)

Therefore, Eq. (5) can be rewritten as

_x ¼ f xð Þ þ B1 xð Þdx tð Þ

y ¼ C xð Þ þD1dy tð Þ
(8)

where dx tð Þ, dy tð Þ represent the state and the sensor attack vectors, respectively.
Different attack strategies are shown in Table 1 and discussed in Section 1.

Since p≥m�m1, the system (8) can be partitioned using a nonsingular trans-
formation M∈Rp�p

y ¼ My (9)

selected so that

M�1D1 ¼
0 p� m�m1ð Þð Þ� m�m1ð Þ

D1 m�m1ð Þ� m�m1ð Þ

" #

(10)

Taking into account (10), system (8) is reduced to

_x ¼ f xð Þ þ B1 xð Þdx tð Þ

y1 ¼ C1 xð Þ, y2 ¼ C2 xð Þ þD1dy tð Þ
(11)

where y1 ∈R
p1 with p1 ¼ p� m�m1ð Þ and y2 ∈R

p2 where p2 ¼ m�m1. Note
that the state attack vector dx tð Þ is additive and matched to the control input that is
embedded in system Eq. (11) already.

Attack plan dx tð Þ 6¼ 0 dy tð Þ 6¼ 0 Access to all

sensors

Need to know the

system model

Stealth attack √

Deception attack √

Reply attack √ √ √

Covert attack √ √ √

False data injection attack √ √

Table 1.
Cyber-attack strategies.
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4. Problem formulation

Assumption (A2): Attacks are detectable, i.e., the invariant zeros of Eq. (11) are
stable.

The problem is to protect the closed loop system (11) from the sensor attack
dy ∈Rm�m1 and state/plant attack dx tð Þ∈Rm1 by means of designing fixed-gain and
adaptive-gain SMOs that allow: (a) reconstructing online the sensor attack dy, the
state/plant attack dx tð Þ, and the plant states x so that

d̂x tð Þ ! dx tð Þ, d̂y tð Þ ! dy tð Þ, x̂ ! x (12)

as time increases and.
(b) “cleanup” of the plant and sensors so that the dynamics of the CPS under

attack (11) approaches,

_xclean ¼ f x̂ð Þ þ B1 x̂ð Þ dx tð Þ � d̂x tð Þ
	 


, yclean ¼ y�D1d̂y ¼ C x̂ð Þ þD1 dy tð Þ � d̂y tð Þ
	 


: (13)

as time increases, to.
Note that Eq. (13) represents the compensated CPS that converges to CPS

without attack as time increases.

5. Results: secure state estimation

In this chapter, for the linearized case of the system in Eq. (5), two SMOs for
state estimation and attack reconstruction are discussed. Two other SMO strategies
for nonlinear system (5) are also proposed and investigated.

5.1 Attack reconstruction in linear system via filtering by adaptive sliding mode
observer

Consider the linearized system in Eq. (5) with C xð Þ ¼ Cx and B xð Þ ¼ B

_x ¼ Axþ Bd tð Þ, y ¼ CxþDd tð Þ (14)

5.1.1 System’s transformation

Considering system Eq. (14) and assuming assumption (A1) holds, then as

show in [29] there exists a matrix N ∈R n�pð Þ�n such that the square matrix

Tc ¼
N

C

� �

(15)

is nonsingular and the change of coordinates x↦Tcx creates, without loss of
generality, a new state-space representation A0;B0;C0;Dð Þ where

A0 ¼ TcATc
�1, B0 ¼ TcB, C0 ¼ CTc

�1 ¼ 0p� n�pð Þ Ip�p

� �
(16)

After the linear changing of coordinate, the CPS Eq. (14) is rewritten as
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_x1 ¼ A11x1 þ A12x2 þ B1d

_x2 ¼ A21x1 þ A22x2 þ B2d

y ¼ x2 þDd

where A0 ¼
A11 A12

A21 A22

" #

, B0 ¼
B1

B2

" #

(17)

with x1 ∈Rn�p, x2 ∈Rp , B1 ∈R n�pð Þ�m, B2 ∈Rp�m, A11 ∈R n�pð Þ� n�pð Þ,

A12 ∈R n�pð Þ�p, A21 ∈Rp� n�pð Þ, A22 ∈Rp�p. It is well known that A;Cð Þ is observable if
and only if A11;A21ð Þ is observable [31].

Defining a further change of coordinates x1 ¼ x1 þ Lx2 where L∈R n�pð Þ�p is the
design matrix, then the system Eq. (17) can be rewritten as

_x1 ¼ ~A11x1 þ ~A12x2 þ ~B1d

_x2 ¼ ~A21x1 þ ~A22x2 þ ~B2d
,  y ¼ x2 þDd (18)

where ~A11 ¼ A11 þ LA21, ~A12 ¼ �A11Lþ A12 � LA21Lþ LA22 , ~B1 ¼ B1 þ LB2,
~A21 ¼ A21, ~A22 ¼ A22 � A21L, ~B2 ¼ B2. Since A11;A21ð Þ is observable, there exist

choices of the matrix L so that the matrix ~A11 ¼ A11 þ LA21 is Hurwitz.
Assumption (A3): The attack d tð Þ and its derivative are norm bounded, i.e.,

dk k, kd and _d
�
�
�

�
�
�, ld where kd, ld .0 and are known.

Since p.m, there exists a nonsingular scaling matrix Q ∈Rp�p such that

QD ¼
0 p�mð Þ�m

D2

� �

(19)

where D2 ∈Rm�m is nonsingular. Define y as the scaling of the measured outputs
y according to y ¼ Q y. Partition the output of the CPS into unpolluted measure-
ments y1 ∈R

p�m and polluted measurements y2 ∈R
m as

y ¼
y1
y2

� �

¼
Q1x2

Q2x2 þD2d

� �

¼ Qx2 þ
0 p�mð Þ�m

D2

� �

d (20)

Scale state component x2 and define x2 ¼ Qx2. Then Eq. (18) can be rewritten as

_x1 ¼ A11x1 þ A12x2 þ B1d

_x2 ¼ A21x1 þ A22x2 þ B2d
,  y ¼ x2 þ

0

D2

" #

d (21)

where A11 ¼ ~A11, A12 ¼ ~A12Q
�1, B1 ¼ ~B1, A21 ¼ Q ~A21, A22 ¼ Q ~A22Q

�1, and

B2 ¼ Q~B2. Define x2 ¼ col x21; x22ð Þ, where x21 ∈Rp�m and x22 ∈Rm. Consequently
the system in Eq. (21) can be written in partitioned form as

_x ¼ Axþ Bd

y1 ¼ C1x,  y2 ¼ C2xþD2d
, x ¼

x1

x21

x22

2

6
6
6
4

3

7
7
7
5
, A ¼

A11 A12a A12b

A21a A22a A22b

A21b A22c A22d

2

6
6
6
4

3

7
7
7
5
, B ¼

B1

B21

B22

2

6
6
6
4

3

7
7
7
5

C1 ¼ 0 p�mð Þ� n�pð Þ I p�mð Þ� p�mð Þ 0 p�mð Þ�m

� �
,  C2 ¼ 0m� n�mð Þ Im�m

� �

(22)

where A11 is Hurwitz and the virtual measurement y1 presents the protected
measurements and y2 shows the attacked/corrupted measurements.
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5.1.2 Attack observation

A SMO is proposed to reconstruct the attack in order to clean up the measure-
ments and states and to allow the use of clean measurement in the control signal.

Define a (sliding mode) observer for the system Eq. (22) as

_z ¼ AzþG1 y1 � z21
� 


þ G2 y2 � z22
� 


� Gnυ (23)

where z ¼ col z1; z21; z22ð Þ is conformal with the partition of x in Eq. (22). In

Eq. (23), υ is a nonlinear injection signal that depends on y2 � z22
� 


and is used to
induce a sliding motion in the estimation error space, and

G1 ¼

A12a

A22a � As
22

0m� p�mð Þ

2

6
4

3

7
5, G2 ¼

A12b

A22b

A22d � As
33

2

6
4

3

7
5, Gn ¼

0 n�pð Þ�m

0 p�mð Þ�m

Im�m

2

6
4

3

7
5 (24)

are the gain matrices where A12a ∈R n�pð Þ� p�mð Þ, A22a ∈R p�mð Þ� p�mð Þ,

A12b ∈R n�pð Þ�m, A22b ∈R p�mð Þ�m, A22d ∈Rm�m, and the matrices As
22 ∈R

p�mð Þ� p�mð Þ

and As
33 ∈R

m�m are user-selected Hurwitz matrices, while As
33 is symmetric nega-

tive definite. The injection signal υ∈Rm is defined as

υ ¼ � ρþ ηð Þ
y2 � z22

y2 � z22
�
�

�
�
, ρ, η.0 (25)

where scalar gain ρ will be defined in the sequel, and η is a positive design scalar.

Assumption (A4): Matrix sI � A ∗ð Þ is invertible, where A ∗ ¼ A� BD�1
2

C2 �G1C1.
Defining e ¼ x� z, then it follows e ¼ col e1; e21; e22ð Þ where e1 ¼ x1 � z1,

e21 ¼ x21 � z21, e22 ¼ x22 � z22. It follows

ey2 ¼ y2 � z22 ¼ e22 þD2d (26)

and by direct substitution from Eqs. (22) and (23) that

_e ¼

A11 0 0

A21a As
22 0

A21b A22c As
33

2

6
4

3

7
5e�

A12b

A22b

A22d � As
33

2

6
4

3

7
5D2dþ

B1

B21

B22

2

6
4

3

7
5dþ

0

0

Im

2

6
4

3

7
5υ (27)

The idea is to force a sliding motion on

ey2 ¼ y2 � z22 ¼ 0 (28)

The first main results, based on the SMO with the fixed-gain injection term, is
formulated in the following theorem.

Theorem 1: Assuming (A3)–(A4) hold and m0 .0 satisfies the condition

ϕ tð Þk k≤m0kd, ϕ ¼ A21b A22c

� �
e11 � A22d � B22D

�1
2

� 

D2d, e11 ¼ col e1; e21ð Þ (29)

Then, as soon as the sliding mode is established in finite time in Eq. (27) on the
sliding surface Eq. (28) by means of the injection term Eq. (25) with
ρ ¼ m0kd þ D2k k∞ld, the attack d is asymptotically estimated as
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d̂ ¼ G ∗ sð Þυeq where G ∗ sð Þ ¼ C ∗ sI � A ∗ð Þ�1B ∗ , B ∗ ¼

0 n�pð Þ�m

0 p�mð Þ�m

Im�m

2

6
6
4

3

7
7
5
, C ∗ ¼ 0m� n�mð Þ �D�1

2

� �

(30)

where υeq is the equivalent injection term [31] and a close approximation and υeq

can be obtained in real time by low-pass filtering of the switching signal Eq. (25)
[29]. Replacing υeq by υeq in Eq. (30) gives

d̂ ¼ G ∗ sð Þυeq (31)

Proof of the Theorem 1 is omitted for brevity.
Remark 1: The SMO (31) is a dynamic filter that allows reconstructing

the time-varying attack d tð Þ. This filter is the main novel feature of the proposed
observer.

5.1.3 Adaptive-gain attack observer design

In Eq. (29), it was assumed that the perturbation term φ is locally norm-
bounded and ρ.0 in Eq. (25) is known. In many practical cases, the boundary of
attacks is unknown, and the gain of the sliding mode injection term Eq. (25) in the
fixed-gain observer in Eq. (23) can be overestimated. The gain overestimation could
increase chattering that is difficult to attenuate.

The constant gain ρ.0 can be replaced by an adaptive-gain ρ tð Þ by applying the
dual layer nested adaptive sliding mode observation algorithm [32], i.e.,

υ ¼ � ρ tð Þ þ ηð Þ
y2 � z22

y2 � z22
�
�

�
�

(32)

A sufficient condition to ensure sliding on ey2 ¼ 0 in finite time is

ρ tð Þ. As
33ey2 þ ϕþD2

_d
�
�
�

�
�
� (33)

An error signal is defined as

σ tð Þ ¼ ρ tð Þ �
1

α
υeq tð Þ

�
�

�
�� ε (34)

where the scalars 0, α, 1, ε.0. The adaptation dynamics of ρ tð Þ in Eq. (32) is
defined as [32].

_ρ tð Þ ¼ �r tð Þsign σ tð Þð Þ (35)

where the time-varying scalar r tð Þ.0 satisfies an adaptive scheme. It is assumed
that r tð Þ has the structure

r tð Þ ¼ ℓ0 þ ℓ tð Þ (36)

where ℓ0 is a fixed positive scalar. The evolution of ℓ tð Þ is chosen to satisfy an
adaptive law [32]:
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_ℓ tð Þ ¼
γ σ tð Þj j if σ tð Þj j. σ0

0 otherwise

�

(37)

where γ.0, σ0 .0 are design scalars. The second main results are summarized
in Theorem 2 as:

Theorem 2: Consider the system in Eq. (27) and

a tð Þ ¼ As
33ey2 þ ϕþD2

_d (38)

and assume that a tð Þj j, a0, _a tð Þj j, a1, where a0 and a1 are finite but unknown.
A SMO is designed as in Eq. (23) with the adaptive injection term in Eqs. (32)–(37).
If ε.0 in (34) is chosen to satisfy

1

4
ε2 . σ20 þ

1

γ

qa1
α

	 
2
(39)

for any given σ0, q. 1, and, 0, α, 1, then the injection term (32) exploiting
the dual layer adaptive scheme given by Eqs. (35)–(37) drives σ tð Þ to a domain
σ tð Þj j, ε=2 in finite time and consequently ensures a sliding motion ey ¼ 0 can be
reached in finite time and sustained thereafter. The gains r tð Þ and ρ tð Þ remain
bounded. The sensor attack signal d tð Þ is reconstructed as in Eq. (30) with the
equivalent adaptive injection term υeq or υeq.

Proof of Theorem 2 is based on the results in [32] and is omitted for brevity.
Remark 2: The proposed unit vector injection gain-adaptation algorithm in

Eqs. (32)–(37) does not require the knowledge of the boundaries kd, ld .0 in

dk k, kd and _d
�
�
�

�
�
�, ld.

5.2 State estimation and attack reconstruction in linear systems by using super
twisting SMO

Consider the completely observable linearized system Eq. (11) with
C1 xð Þ ¼ C1x, C2 xð Þ ¼ C2x, B1 xð Þ ¼ B, that is,

_x ¼ Axþ B1dx tð Þ, y1 ¼ C1x , y2 ¼ C2xþD1dy tð Þ (40)

where B1 ∈Rn�m1 , C1 ∈R p� m�m1ð Þð Þ�n, C2 ∈R m�m1ð Þ�n.
Assumption (A5): The number of uncorrupted/protected measurements is

equal or larger than the number of state/plant attack, i.e., p1 ¼ p� m�m1ð Þ≥m1.
The system Eq. (40) is assumed to have an input-output vector relative degree

r ¼ r1; r2;…; rp1
� �

, where relative degree ri for i ¼ 1, 2,…, p1 is defined as follows:

C1iA
jB1 ¼ 0 for all j, ri � 1

C1iA
ri�1B1 6¼ 0

(41)

Without loss of generality, it is assumed that r1 ≤…≤ rp1 .

5.2.1 Attack observation

Assumption (A6): there exists a full rank matrix.
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Ca ¼

C1

⋮

C1A
rα1�1

⋮
Cp1

⋮
Cp1

Arαp1 �1

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

(42)

where integers 1≤ rαi ≤ ri are such that rank CaBð Þ ¼ rank Bð Þ and rαi are chosen

such that
Pp1

i¼1 rαi is minimal.
The following SMO [33] is used to estimate the states of system Eq. (40):

_̂x ¼ Ax̂ þGl ya � Cax̂
� 


þ Gnυc ya � Cax̂
� 


(43)

where the matrices of appropriate dimensions Gl and Gn are to be designed, and
υc :ð Þ is an injection vector

υc ya � Cax̂
� 


¼
�ρ

P ya � Cax̂
� 


P ya � Cax̂
� 
�

�
�
�

if ya � Cax̂
� 


6¼ 0

0 otherwise

8

><

>:

(44)

where ρ.0 is larger than the upper bound of unknown input d tð Þ.
The definition of the symmetric positive definite matrix P can be found in [33].

The auxiliary output ya is defined by

ya ¼

y1

ν y1 � y11
� 


⋮

ν ~yr1�1
1 � ~yr1�1

1

� 


⋮
yp1
⋮

ν ~y
rp1�1
p1 � y

rp1�1
p1

	 


2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(45)

where the constituent signals in Eq. (45) are given from the continuous second-
order sliding mode observer as

_y1i ¼ ν yi � y1i
� 


_y2i ¼ E1ν ~y2i � y2i
� 


⋮
_yrαi�1
i ¼ Erαi�2ν ~yrαi�1

i � yrαi�1
i

� 


(46)

for 1≤ i≤ p1, with

~y 1
i ¼ yi, ~y

j
i ¼ ν ~y

j�1
i � y

j�1
i

	 


, 2≤ j≤ rαi � 1 (47)
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The scalar function Ei is defined as

Ei ¼ 1 if ~yiþ1
j � yiþ1

j

�
�
�

�
�
�≤ ε for all j≤ i, else Ei ¼ 0 (48)

and the continuous injection term ν :ð Þ is given by the super twisting algorithm [34]:

ν sð Þ ¼ ξ sð Þ þ λs sj j
1=2 sign sð Þ

_ξ sð Þ ¼ βssign sð Þ , λs, βs .0
(49)

Theorem 3: Assuming the assumptions (A5) and (A6) hold for system Eq. (40),
then state/plant attacks are reconstructed as follows:

d̂x ¼ CaBð ÞTCaB
	 
�1

CaBð ÞTCaGn υcð Þeq (50)

Proof: Defining the state estimation error as e ¼ x� x̂ and the augmented output
estimation error ey ¼ Cax� y with

ey ¼ e11;…; erαi�1
1 ;…; e1p1 ;…; erαi�1

p1

h iT
, y ¼ y11;…; yrαi�1

1 ;…; y1p1
;…; yrαi�1

p1

h iT
(51)

then it follows that

_e ¼ x� _̂x ¼ Aeþ B1dx tð Þ �Gl ya � Cax̂
� 


� Gnυc ya � Cax̂
� 


(52)

By choosing suitable gains λs and βs in the output injections Eq. (49), then.

ya ¼ Cax (53)

for all t.T [33]. Then, the error dynamics Eq. (52) is rewritten as

_e ¼ A�GlCa

� 

eþ B1dx tð Þ �Gnυc Caeð Þ (54)

Since rank CaB1

� 

¼ rank B1

� 

and by assumption the invariant zeros of the triple

A;B;Cað Þ lie in the left half plane, based on the design methodologies in [35], It
follows that e ¼ 0 is an asymptotically stable equilibrium point of Eq. (52) and
dynamics are independent of dx tð Þ once a sliding motion on the sliding manifold
s ¼ Cae ¼ 0 has been attained. During the sliding mode _s ¼ s ¼ 0, it is

_s ¼ Ca _e ¼ Ca A� GlCa

� 

eþ CaB1dx tð Þ � CaGnυc Caeð Þ ¼ 0 (55)

as e ! 0; then

CaGn υcð Þeq ! CaB1dx tð Þ (56)

where υcð Þeq is the equivalent output error injection required to maintain the

system on the sliding manifold. Since CaB1 is full rank, the attack reconstruction is
obtained as (50).

According to (A1), D1 is full rank; then sensor attacks in Eq. (40) are
reconstructed
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d̂y tð Þ ¼ D1
�1

y2 � C2x̂
� 


(57)

5.3 The state and disturbance observer for nonlinear systems using higher-
order sliding mode differentiator

Consider the locally stable system Eq. (11) where y1 and B1 xð Þ are

y1 ¼ y1 y2 ,…, yp1

h iT
, B ¼ b1; b2;…; bm1½ �∈Rn�m1 , bi ∈Rn, ∀i ¼ 1,…, m1 are

smooth vector fields defined on an open Ω⊂Rn. According to (A5), we consider
p1 ¼ m1 here. The following properties introduced by Isidori [36] are assumed for
x∈Ω.

Assumption (A7): The system in Eq. (11) is assumed to have vector relative

degree r ¼ r1; r2;…; rm1f g and total relative degree rt ¼
Pm1

i¼1
ri, rt ≤ n, i.e.,

LbjL
k
f yi xð Þ ¼ 0 ∀j ¼ 1,…, m1, ∀k, ri � 1, ∀i ¼ 1,…, m1

LbjL
ri�1
f yi xð Þ 6¼ 0 for at least one 1≤ j≤m1

(58)

Assumption (A8): The following Lie derivative matrix is of full rank.

L xð Þ ¼

Lb1L
r1�1
f y1 Lb2L

r1�1
f y1 ⋯ Lbm1

Lr1�1
f y1

Lb1L
r2�1
f y2 Lb2L

r2�1
f y2 ⋯ Lbm1

Lr2�1
f y2

⋮ ⋮ ⋮ ⋮
Lb1L

rm1
�1

f ym1
Lb2L

rm�1
f ym1

⋯ Lbm1
L
rm1

�1

f ym1

2

6
6
6
6
4

3

7
7
7
7
5

(59)

Assumption (A9): The distribution Γ ¼ span b1; b2;…; bm1f g is involutive [36].
The system given by Eq. (11) with the involutive distribution Γ and total relative

degree rt can be rewritten as

_δi ¼

0 1 0 ⋯ 0

0 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋯ ⋮

0 0 0 0 0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ri�ri

δi þ

0

0

⋮

Lf
riyi xð Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

þ

0

0

⋮
Pm1

j¼1 LbjLf
ri�1yi xð Þd tð Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

, ∀i ¼ 1,…, m1

_γ ¼ g δ; γð Þ

(60)

where δ ¼ δ1 δ2 ⋯ δm1½ �T and

δi ¼

δi1

δi2

⋮
δir1

2

6
6
6
4

3

7
7
7
5
¼

ηi1 xð Þ

ηi2 xð Þ

⋮
ηir1 xð Þ

2

6
6
6
4

3

7
7
7
5
¼

yi xð Þ

Lf yi xð Þ

⋮
Lf

r1�1yi xð Þ

2

6
6
6
4

3

7
7
7
5
∈Rri ∀i ¼ 1,…, m1, γ ¼

γ1

γ2

⋮

γn�r

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼

ηrþ1 xð Þ

ηrþ2 xð Þ

⋮

ηn xð Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

(61)

With an involutive distribution Γ as defined in (A9), it is always possible to
identify the variables ηrþ1 xð Þ,…, ηn xð Þ which satisfy

Lbjηi xð Þ ¼ 0 ∀i ¼ rþ 1,…, n, ∀j ¼ 1,…, m1 (62)
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Assumption (A10): The norm-bounded solution of the internal dynamics
_γ ¼ g δ; γð Þ is assumed to be locally asymptotically stable [29].

If assumption (A9) is satisfied, then it is always possible to find n� r functions
ηrþ1 xð Þ,…, ηn xð Þ such that

Ψ xð Þ ¼ col η11 xð Þ;…; η1r1 xð Þ;…; ηm11 xð Þ;…; ηm1rm1
xð Þ; ηrþ1 xð Þ;…; ηn xð Þ

�
∈Rn

n

(63)

is a local diffeomorphism in a neighborhood of any point x∈Ω⊂Ω⊂Rn, i.e.,

x ¼ Ψ
�1 δ; γð Þ (64)

In order to estimate the derivatives δij tð Þ ∀i ¼ 1,…, m1, ∀j ¼ 1,…, ri of the output.
yi in finite time, higher-order sliding mode differentiators [28] are used here

_zi0 ¼ vi0, v
i
0 ¼ �λi0 zi0 � yi tð Þ

�
�

�
�
ri= riþ1ð Þð Þ

sign zi0 � yi tð Þ
� 


þ zi1, _z
i
1 ¼ vi1

⋮

_ziri�1 ¼ viri�1, v
i
ri�1 ¼ �λiri�1 z

i
ri�1 � viri�2

�
�

�
�
1=2ð Þ

sign ziri�1 � viri�2

	 


þ ziri , _z
i
ri
¼ �λiri sign ziri � viri�1

	 


(65)

for i ¼ 1,…, m1. By construction,

δ̂11 ¼ η̂11 xð Þ ¼ z10,…, δ̂11 ¼ η̂1r1 xð Þ ¼ z1r1�1,
_̂
δ 1r1 ¼

_̂η 1r1 xð Þ ¼ z1r1
⋮

δ̂
m1
1 ¼ η̂

m1

1 xð Þ ¼ zm1
0 ,…, δ̂m1

rm1
¼ η̂

m1

rm1

xð Þ ¼ zm1
rm1

�1,
_̂
δ
m1

r1
¼ _̂η

m1

rm1
xð Þ ¼ z1rm1

(66)

Therefore, the following exact estimates are available in finite time:

δ̂i ¼ δ̂i1; δ̂i2;…; δ̂ir1
� 
T

¼ η̂i1 x̂ð Þ; η̂i2 x̂ð Þ;…; η̂ir1 x̂ð Þ
� 
T ∈Rri

∀i ¼ 1,…, m1, δ̂ ¼ δ̂
1
; δ̂

2
;…; δ̂

m1
	 
T

∈Rrt
(67)

Next, integrate Eq. (60) with δ replaced by δ̂; estimate of internal dynamics is

_̂γ ¼ g δ̂; γ̂
� 


(68)

and with some initial condition from the stability domain of the internal
dynamics, a asymptotic estimate γ̂ can be obtained locally

γ̂ ¼

γ̂1

γ̂2

⋮
γ̂n�r

0

B
B
B
@

1

C
C
C
A

¼

η̂rþ1 x̂ð Þ

η̂rþ2 x̂ð Þ

⋮
η̂n x̂ð Þ

0

B
B
B
@

1

C
C
C
A

(69)

Therefore, the asymptotic estimate for the mapping (63) is identified as

Ψ x̂ð Þ ¼ col η̂11 x̂ð Þ;…; η̂1r1 x̂ð Þ;…; η̂m11 x̂ð Þ;…; η̂m1rm1
x̂ð Þ; η̂rþ1 x̂ð Þ;…; η̂n x̂ð Þ

on

(70)
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asymptotic estimate x̂ of the state vector x can be identified via Eqs. (67)
and (69)

x̂ ¼ Ψ
�1 δ̂; γ̂
� 


(71)

Since the finite-time exact estimates _̂δiri of _δiri , ∀i ¼ 1,…, m1 are available via the

higher-order sliding mode differentiator, and using the estimates δ̂, γ̂ for δ, γ, an

asymptotic estimate d̂ tð Þ of disturbance d tð Þ in Eq. (11) is identified as [28].

d̂ tð Þ ¼ L�1
Ψ

�1 δ̂; γ̂
� 
� 


_̂δ1r1

_̂δ2r2

⋮

_̂δm1rm1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

�

Lr1
f y11 Ψ

�1 δ̂; γ̂
� 
� 


Lr2
f y12 Ψ

�1 δ̂; γ̂
� 
� 


⋮
L
rm1

f y1m1
Ψ

�1 δ̂; γ̂
� 
� 


0

B
B
B
B
@

1

C
C
C
C
A

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

(72)

where L Ψ
�1 δ̂; γ̂
� 
� 


¼
Pm1

j¼1 LbjLf
ri�1y1i xð Þ. Finally, x̂ tð Þ and d̂ tð Þ are obtained.

from Eqs. (71) and (72).

Remark 3: The convergence d̂ ! d can be achieved only locally and as time
increases due to the local asymptotic stability of the norm-bounded solution of the
internal dynamics _γ ¼ g δ; γð Þ. However convergence will be achieved in finite time if
the total relative degree r ¼ n and no internal dynamics exist.

Considering Eq. (11) and D1 is full rank, sensor attack can be reconstructed as

d̂y tð Þ ¼ D1
�1

y2 � C2 x̂ð Þ
� 


(73)

5.4 Attack reconstruction in nonlinear system by sparse recovery algorithm

In some applications, there are a limited number of measurements, p, and more
sources of attack, m. Previously, we investigated the cases where p.m. Now,
consider system (5) with more attacks than measurements, m. p.

Notice that a more general format of (5) is considered here where matrix D is a
function of x as well.

Assumption (A11): Assume that the attack vector d tð Þ is sparse, meaning that
numerous attacks are possible, but the attacks are not coordinated, and only few
nonzero attacks happen at the same time.

5.4.1 Sparse recovering algorithm

The problem of recovering an unknown input signal from measurements is well
known, as a left invertibility problem, as seen in several works [30, 37], but this
problem was only treated in the case where the number of measurements is equal or
greater than the number of unknown inputs. The left invertibility problem in the
case of fewer measurements than unknown inputs has no solution or more exactly
has an infinity of solutions.

In particular, the objective of exact recovery under sparse assumptions denoted
for the sake of simplicity as “sparse recovery” (SR) is to find a concise representa-
tion of a signal using a few atoms from some specified (over-complete) dictionary,

ξ ¼ Φsþ ε0 (74)
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where s∈RN are the unknown inputs with no more than j nonzero entries,

ξ∈RM are the measurements, ε0 is a measurement noise, and Φ∈RM�N is the
dictionary where M≪N.

Definition 1: The Restricted Isometry Property (RIP) condition of j-order with
constant ςj ∈ 0; 1ð Þ (ςj is as small as possible for computational reasons) of the

matrix Φ yields

1� ςsð Þ sk k22 ≤ Φsk k22 ≤ 1þ ςsð Þ sk k22 (75)

for any j sparse of signal s. Considering ΦΓ as the index set of nonzero elements
of s, then Eq. (75) is equivalent to [23]:

1� ςs ≤ eig Φ
T
Γ
ΦΓ

� 

≤ 1þ ςs (76)

where ΦΓ is the sub-matrix of Φ with active nodes.
The problem of SR is often cast as an optimization problem that minimizes a cost

function constructed by leveraging the observation error term and the sparsity
inducing term [37], i.e.,

s ∗ ¼ arg min
s∈RN

1

2
ξ�Φsk k22 þ λΘ sð Þ (77)

In Eq. (77) the original sparsity term is the quasi norm sj j0; but as long as the RIP

conditions hold, it can be replaced by Θ sð Þ ¼ sk k1≜
P

i sij j. Note that λ.0 in Eq. (77)
is the balancing parameter and s ∗ is the critical point, i.e., the solution of Eq. (74).
Typically, for sparse vectors s with j-sparsity, where j must be equal or smaller than
M�1
2 [37], the solution to the SR problem is unique and coincides with the critical

point of Eq. (74) providing that RIP condition for Φ with order 2j is verified. In
other words, in order to guarantee the existence of a unique solution to the optimi-
zation problem Eq. (74), Φ should satisfy restricted isometry property [37].

Under the sparse assumption of s and the fulfillment of the j-RIP condition of the
matrix Φ, the estimation algorithm proposed in [37] is

μ _v tð Þ ¼ � v tð Þ þ Φ
T
Φ� IN�N

� 

a tð Þ �Φ

Tξ
� �β

 , and ̂s tð Þ ¼ a tð Þ (78)

where v∈RN is the state vector, ŝ tð Þ represents the estimate of the sparse signal s
of (74), and μ.0 is a time-constant determined by the physical properties of the

implementing system. :d cβ ¼ :j jβsign :ð Þ and a tð Þ ¼ Hλ vð Þ where Hλ :ð Þ is a continuous
soft thresholding function:

Hλ vð Þ ¼ max vj j � λ;0ð Þ sgn vð Þ (79)

where λ.0 is chosen with respect to the noise and the minimum absolute value
of the nonzero terms.

Under Definition 1, the state v of Eq. (78) converges in finite time to its equilib-

rium point v ∗ , and ŝ tð Þ in Eq.(78) converges in finite time to ŝ ∗ of Eq. (77).

5.4.2 Attack reconstruction

The measured output under attack y of the system Eq. (5) is fed to the input of
the low-pass filter that facilitates filtering out the possible measurement noise
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_z ¼
1

τ
�zþ C xð Þ þD xð Þd tð Þð Þ (80)

The filter output z∈Rp is available. Then, system Eq. (5) with filter Eq. (80) is
rewritten as

_ξ ¼ η ξð Þ þΩd tð Þ

ψ ¼ Cξ

(

(81)

where ψ ∈Rp, and

ξ ¼
z

x

" #

pþnð Þ�1

, η ξð Þ ¼
�
1

τ
Ip�p 0

0 0

2

4

3

5
z

x

" #

þ

1

τ
C xð Þ

f xð Þ

2

4

3

5,

C ¼ C1 C2 … Cpþn

� �
¼ Ip�p 0

p�n

h i

(82)

Ω ¼

1

τ
D xð Þ

B xð Þ

2

4

3

5 ¼ Ω1 Ω2 … Ωm½ � ,Ωi ∈Rpþn ∀i ¼ 1,…, m

If assumption (A2), (A7), and (A9) hold for system Eq. (81), i.e., the relative
degree vector of Eq. (81) is r ¼ r1; r2;…; rp

� �
, the distribution

Γ ¼ span Ω1;Ω2;…;Ωmf g is involutive, and if zero dynamics exist, they are assumed
asymptotically stable and may be left alone. Here it is assumed that there are no zero
dynamics in system Eq. (81) and it is presented as

_ϒi ¼

0 1 0 ⋯ 0

0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 0 0

2

6
6
6
4

3

7
7
7
5
ϒi þ

0

0

⋮
Lri
f ψ i ξð Þ

2

6
6
6
6
4

3

7
7
7
7
5

þ

0

0

⋮
Xm

j¼1

LΩjL
ri�1
f ψ i ξð Þdj

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

, ϒi ¼

ϒ
i
1 ξð Þ

ϒ
i
2 ξð Þ

⋮

ϒ
i
ri
ξð Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼

ψ i ξð Þ

Lfψ i ξð Þ

Lri�1
f ψ i ξð Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

(83)

for i ¼ 1,…, p, where ψ i ξð Þ is the ith entry of vector ψ ξð Þ and satisfies

_ϒ
i
ri
ξð Þ ¼ Lri

f ψ i ξð Þ þ
Xm

j¼1

LΩj
Lri�1
f ψ idj, i ¼ 1,…, p (84)

Then, the following algebraic equation is found from Eq. (84):

Zp ¼ F ξð Þd tð Þ (85)

where Zp ∈Rp, F ξð Þ∈Rp�m, and

Zp ¼

_ϒ
1
r1

⋮

_ϒ
p
rp

2

6
6
4

3

7
7
5
�

Lr1
f ψ1 ξð Þ

⋮

L
rp
f ψp ξð Þ

2

6
6
4

3

7
7
5
, F ξð Þ ¼

LΩ1L
r1�1
f ψ1 LΩ2L

r1�1
f ψ1 ⋯ LΩα

Lr1�1
f ψ1

LΩ1L
r2�1
f ψ2 LΩ2L

r2�1
f ψ2 LΩα

Lr2�1
f ψ2

⋮ ⋮

LΩ1L
rp�1

f ψp LΩ2L
rm�1
f ψp ⋯ LΩα

L
rp�1

f ψp

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

(86)

Finally, filtered system Eq. (5), as it is rewritten in Eq. (85), is in the same form
of Eq. (74). Then, sparse recovery algorithm discussed in Section 5.4.1 is applied to
Eq. (85) to reconstruct d tð Þ.
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Remark 4: The derivatives _ϒ
1
r1
,…, _ϒ

p
rp
are computed exactly in finite time using

higher-order sliding mode differentiators [28] discussed in Eqs. (65) and (66).

6. Case study

Consider the mathematical models (1)–(4) of the US Western Electricity Coor-
dinating Council (WECC) power system [8] with three generators and six buses
(Figure 1) when the sensors of the generator speed deviations from synchronicity
are under stealth attack and plant is under deception attack.

Assumption (A12): The matrix Lθ
l, l in (3) is nonsingular.

If (A12) holds, then the variable θ can be rewritten as

θ ¼ Lθ
l, l

� 
�1
�Rθ

l, gδþ Pθ þ Bθd
	 


(87)

Substituting (87) into (1), then it follows that

_δ

_ω

" #

¼

0 Ip�p

M�1
g �Lθ

g,g þ Lθ
g, l L

θ
l, l

� 
�1
Lθ
l,g

	 


�M�1
g Eg

2

4

3

5
δ

ω

" #

þ
0

Pθω

" #

þ
Bδ

Bθω

" #

d tð Þ , y ¼ C
δ

ω

" #

þ
Dδ

Dω

" #

d tð Þ

Pθω ¼ M�1
g Pω � Lθ

g, l L
θ
l, l

� 
�1
Pθ

	 


, Bθω ¼ M�1
g Bω � Lθ

g, l L
θ
l, l

� 
�1
Bθ

	 


(88)

6.1 Simulation setup

a. The three sensors of rotor angles, δ∈R3, are assumed protected from attack,
but the three sensors of the generator speed deviations from synchronicity,

ω∈R3, are assumed to be attacked.

b. The B1ω ¼ I3, B1θ ¼ 06�3, Dδ ¼ 03�6 are given, and then Eq. (88) is reduced to

_υ ¼ φδ δ;ωð Þ,

_ω ¼ φω δ;ωð Þ þ Pθω þM�1
g dx tð Þ

y1 ¼ C1υ, y2 ¼ C2ωþD1ωdy tð Þ

8

><

>:

, where C1 ¼ C2 ¼ I3�3, Dω ¼

0 1 2 0 1 1

1 0 0 2 1 0

0 0 1 0 1 0

2

6
4

3

7
5

(89)

Remark 5: D1ω satisfies RIP condition defined in Eq. (75).
In the first step of attack reconstruction, dx tð Þ is estimated by using protected

measurements y1 and the SMO described in Section 5.2. It is easy to verify that

Cδ1B ¼ 0 , Cδ1AB 6¼ 0

Cδ2B ¼ 0 , Cδ2AB 6¼ 0

Cδ3B ¼ 0 , Cδ3AB 6¼ 0

Ca ¼

C1

C1A

C2

C2A

C3

C3A

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

¼

1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

, ya ¼

y1

μ y1 � ŷ1
� 


y2

μ y2 � ŷ2
� 


y3

μ y3 � ŷ3
� 


2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

(90)

19

Secure State Estimation and Attack Reconstruction in Cyber-Physical Systems: Sliding Mode…
DOI: http://dx.doi.org/10.5772/intechopen.88669



where Cδi is the ith row of Cδ. The states of the system, δ̂, ω̂, and plant attacks

d̂x tð Þ are reconstructed using Eqs. (43) and (50). Then, ω̂ is used in Eq. (89) to find

Dωdy tð Þ ¼ y2 � ω̂ (91)

There are six sources dy1,…, dy6 attacking three measurements ω1,ω2,ω3, and at
any time, just one out of six attack signals is nonzero. The SR algorithm in Section 5.2

is applied to find d̂y tð Þ. The following attacks are considered for simulation.

dx1

dx2

dx3

2

6
6
4

3

7
7
5
¼ 1 t� 10ð Þ:

sin 0:5tð Þ

1 tð Þ � 1 t� 4ð Þ þ 1 t� 8:5ð Þ � 1 t� 13ð Þ þ 1 t� 17:5ð Þ

cos tð Þ þ 0:5 sin 3tð Þ

2

6
6
4

3

7
7
5
,

dy tð Þ ¼ 1 t� 10ð Þ: 0 0 0 0 sin tð Þ 0½ �T

: (92)

Figure 4.

Plant attack dx1 compared to estimated d̂x1 .

Figure 5.

Plant attack dx2 compared to estimated d̂x2 .
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Figure 6.

Plant attack dx3 compared to estimated d̂x3 .

Figure 7.
Sensor attack dy reconstruction.

Figure 8.
(a) Corrupted output y1, y2, y3 compared with compensated and without any attack output and (b) corrupted
output y4, y5, y6 compared with compensated and without any attack output.
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Deception attacks dx1, dx2, and dx3 are reconstructed very accurately as shown in
Figures 4–6. The only nonzero sensor attack is detected and accurately estimated
by using the SR algorithm as shown in Figure 7. In Figure 8a and 8b, the corrupted
system outputs (which are system states in our case) are compared to the “cleaned”
outputs that are computed by subtracting the estimated attacks from the corrupted
sensors and actuators and to the system outputs when the system is not under
attack.

7. Conclusion

The critical infrastructures like power grid, water resources, etc. are large
interconnected cyber-physical systems whose reliable operation depends critically
on their cyber substructure. In this chapter, cyber-physical systems when their
sensors and/or states are under attack or experiencing faults are investigated. The
sensor and states/plant attacks are reconstructed online by using a fixed-gain and
adaptive-gain sliding mode observers. As soon as the attacks are reconstructed,
corrupted measurements and states are cleaned from attacks, and the control signal
that uses cleaned measurements provides cyber-physical system performance close
to the one without attack. The effectiveness of the proposed approach is shown by
simulation results of a real electrical power network with sensors under stealth
attack and states under deception attacks.
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