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Abstract

Cavitation plays an important role in plants operating at high temperatures since the 
cavitation controls the creep failure of engineering alloys. In the past it has been difficult 
to predict the cavitation behaviour with the help of basic models, since critical models 
have been missing. Recently new models have been formulated for grain boundary slid-
ing, cavity nucleation and cavity growth to fill this gap. These models are reviewed in 
this chapter. It is shown that the new models can quantitatively predict cavitation for 
austenitic stainless steels, where detailed experimental information is available.
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1. Introduction

At temperatures above 0.4 of the absolute melting temperature T
m

, materials are exposed to 

a slow plastic deformation called creep. For steel 0.4 T
m

 is about 500°C. The slow deforma-

tion takes place also at constant stress. Many important technical units operate at such high 

temperatures. This applies, for example, to fossil fired power plants that produce most of 
the world’s electric power. Another example is gas turbines in aircrafts where the maximum 

metal temperature exceeds 900°C.

Due to creep the total strain in the material gradually increases. At the same time the micro-

structure can also change. For example the strength of many materials used at high tempera-

tures is based on the presence of fine particles that slow down the deformation. There is a 
thermodynamic driving force for coarsening of the particles, since this will reduce the total 

surface area of the particles and thereby the surface energy. The deformation of the mate-

rial and changes in the microstructure will decrease the strength of the material and this is 

referred to as the formation of creep damage. When the creep damage has reached a certain 

level, failure takes place.
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Polycrystalline materials consist of regions with a specific lattice orientation called grains and 
the boundaries between them grain boundaries. During the creep deformation, small voids 

called creep cavities are formed at the grain boundaries. The size for the cavities is of the 
order 1 μm. The creep cavities are continuously nucleated so their number increases with 
time. Each individual cavity also grows so their radii increase. The driving force is the same 
as for coarsening of particles, that is, a reduction of the surface energy. In this way, there is a 

gradually increasing fraction of the grain boundaries that is cavitated. When the area fraction 

of cavities has reached a critical value, the cavities join and eventually form cracks that make 

the material fail.

The fact that creep rupture is mainly controlled by the development of grain boundary cavi-
ties has created a large technical interest in cavitation. This interest increased even more in 
the 1980s, when it was recognised that the appearance of the cavitation could be used to 

estimate the residual life time of fossil fired power plants. The service time of many power 
plants were approaching the design life and operators were asking whether it would be safe 

to continue running the plants. Neubauer found that by observation of the cavitation with the 

help of the replica technique, the residual lifetime could be estimated [1, 2]. The cavitation 
was subdivided into four classes (and one for undamaged material): individual cavities to a 

small extent, individual cavities to a large extent, stringers of cavities and finally microcracks. 
Replicas were taken at welds, pipe bends and other critical positions. The basic idea was that 
if damage of one class was detected, the damage did at most correspond to the next class at 

the next inspection. The method was very successful when it was applied to low alloy steels 
such as 0.5Cr0.5Mo0.25V and 2.25Cr1Mo, which represented the body of materials of the 

plants at the time. Unfortunately the method is less applicable to today’s materials such as 9 

and 12Cr steels, because cavitation appears only at a late stage of life and does not provide 

the necessary early warning.

The successful technical use of observations of cavitation stimulated a lot of scientific work. 
This was dominated by empirical approaches to describe the development of the creep dam-

age. The first and perhaps most well-known approach was set up by Kachanow and Rabotnov 
[3–5]. They simply assumed that the cavities represented voids that reduced the loading 
capacity. The most interesting feature of the method is that it is consistent with behaviour of 
creep strain during the tertiary creep, that is, the final stage before rupture [6, 7]. This depen-

dence is nowadays referred to as the omega method [8].

We will now concentrate on basic models for cavitation. Traditionally cavity nucleation has 
been modelled either as a process of rupturing atomic bonds or of atomic vacancy condensa-

tion. For the former approach the estimated threshold stress is orders of magnitude higher than 

the applied stress, which makes it physically unrealistic because high stresses will be reduced 

quickly in a creeping material [9]. The condensation of vacancies can be treated with the help 
of the classical nucleation theory [10]. It is shown that cavity nucleation would be a very rare 

event at low stresses but becomes frequent above a certain threshold stress [11]. High stress 

concentration can be formed at grain boundary ledges, grain boundary triple points and par-

ticles. Cavity nucleation at particles can be a result of decohesion of particles from the matrix. 

In practically all models that have been presented, a high stress concentration is needed.  
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A threshold stress and an incubation time are essential to form a cavity [10, 12]. Contrary to 

these suggestions nucleation frequently takes place at low stresses and is controlled by strain 

rather than stress. In agreement with statements in the literature it can be concluded that theo-

ries of cavity nucleation have not been fully successful in earlier work [13, 14]. In both these 

papers excellent reviews are given.

For modelling cavity growth the situation was different but not entirely unproblematic. A 
diffusion controlled cavity growth was formulated by Hull and Rimmer [15]. The model 
was later improved in particular by Beere and Speight [16]. It was soon realised that the 

model gave much larger growth rates than observed experimentally in many cases. Dyson 

proposed that the cavities should not be able to grow faster than the creep deformation 

of the surrounding material [17]. This is referred to as constrained cavity growth. Rice 
developed an explicit model for constrained growth [18]. The idea of constrained growth 
is now fully accepted. However, the model still tends to overestimate the growth rates. It 

is now believed to be due to the assumptions in Rice’s derivation. This will be analysed in 
the present paper.

It is evident from the summary above that the modelling of formation and growth of cavities 

has met considerable difficulties in the past. In recent years important new developments 
have taken place. With the help of these developments fundamental quantitative modelling 

of both nucleation and growth of creep cavities has now been possible to set up. In addition 

some of the difficulties that have been encountered in the past can be understood. It is the 
purpose of this paper to review these new developments.

2. Grain boundary sliding

Grain boundary sliding (GBS) occurs when neighbouring grains move with respect to each 

other in shear. The mechanism is illustrated in Figure 1. During the creep deformation the 

two grains have moved 0.8 μm with respect to each other. To observe GBS, the specimen 
surface has to be scratched, for example, with a knife. When the scratches cross a sliding grain 

boundary, the two parts of the scratches on the different sides of the grain boundary are dis-

placed. This displacement is a direct measure of GBS.

It is generally accepted that a prerequisite for cavity nucleation is grain boundary sliding. 

Experiments on copper bicrystals have shown that artificially introduced GBS can dramati-
cally increase the amount of cavitation. Chen and Machlin [20] and Intrater and Machlin [21] 

exposed bicrystals of copper to either tensile loading or to a combination of tensile loading 

and shear. The latter alternative gave much larger number of cavities. It is natural that GBS 
gives rice to cavitation, since any obstacle at the grain boundary such as a particle will give 

rise to large stress concentrations. In low alloy steels cavities have frequently been observed 

around manganese sulphides [22]. Since the interface between the sulphides and the matrix is 

weak, voids are easily formed there. Some papers also suggest that cavities can be formed at 

carbides, see, for example, Ref. [23].
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The most convincing argument concerning the central role of GBS in cavity nucleation comes 
from the creep strain dependence of both GBS and cavity nucleation. It has been observed 

many times that the displacement u
GBS

 due to GBS is approximately proportional to the creep 

strain ε, see, for example, Ref. [24]. The first ones to observe this relation were McLean and 
Farmer [25].

   u  
GBS

   =  C  
s
   (ε) ε.  (1)

C
s
(ε) is a constant that is dependent on the creep strain ε. At the same time the nucleation rate 

of cavities    dn ___ 
dt

    is also proportional to the creep strain rate   ε   
.
   .

    dn ___ 
dt

   = B ε ˙  .  (2)

B is constant. This means that the number of cavities is proportional to the creep strain in 
the same way as the GBS displacement in Eq. (1). Eq. (2) was first observed by Needham and 

Figure 1. Illustration of grain boundary sliding (GBS) for a copper specimen that has been exposed to 3.3% creep strain 

during 307 h at 125°C [19]. The grain boundary lies in the southwest-northeast direction. It is crossed by a major scratch, 
which makes it possible to measure GBS. The grain to the left has moved downwards by 0.8 μm relative to the grain at 
the right and that is the amount of GBS.
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coworkers [26, 27]. For a review, see Ref. [28]. Eqs. (1) and (2) will be derived below. Eq. (2) 
would be very difficult to explain unless it assumed that the nucleation is controlled by GBS.

Experiments that give the strain dependence of u
GBS

 are illustrated in Figure 2.

The displacement u
GBS

 increases as of function of strain in agreement with Eq. (1). C
s
 is 

the slope of the curves. Three types of tests are represented in the figure: tests at con-

stant stress, at constant stress rate and at constant strain rate. In spite of the fact that a 

range of temperatures, strain rates and test methods is covered, the C
s
 values do not vary  

very much.

To investigate the influence of GBS on the total strain, Crossman and Ashby [31] developed 
a finite element model (FEM) for shear stresses. If a free grain boundary is considered, they 
found that the sliding rates are very high for typical creep stresses and that the grain boundar-

ies could be considered as flaws in the material with respect to GBS. Later Ghahremani [32] 
transferred the model to tensile stresses, which are typically used in creep testing. In both 

Refs. [31, 32] a Norton equation for the creep strain rate was considered

   ε   
 
.
  
   =   ε   

 
.
  
    
0
     (  σ __  σ  

0
    )    
n

  .  (3)

Figure 2. Observed displacements at grain boundaries in copper as a function of strain [19]. Data from Refs. [29, 30] are 

also shown.
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σ is the applied stress and n is the creep exponent.    ε   
 .  
    
0
    and σ

0
 are constants. The percentage 

creep rate due to grain boundary sliding φ was determined

  φ =   
  u   
 .  
    
GBS

  
 ____ 

  u   
 .  
    
all

  
   .  (4)

   u   
 .  
    
all

    is the total displacement rate. φ was found to take values from 0.15 (n = 1) to 0.33 (n = ∞) in 
Ref. [32].    u   

 .  
    
all

    can be expressed in terms of the creep rate   ε   
.
   

    u   
 .  
    
all

   =   
3  d  

lin
    ε   
 .  
  
 _____ 

2ξ   ,  (5)

where d
lin

 is the linear intercept grain size and ξ = 1.36 is a pure geometrical factor that explains 
how the hexagonal grains studied in Refs. [31, 32] should be related to the measured grain 

size. The factor 3/2 depends on the definition of    u   
 .  
    
all

   . By combining Eqs. (1), (4) and (5) we find 
the values of the GBS parameter C

s
 in Eq. (1)

    C  
s
   =   u   

 .  
    
GBS

   /    ε   
 .  
   =   

3φ
 _ 

2ξ    d  
lin

   .   (6)

Eq. (6) is referred to the shear sliding model. Eq. (6) is compared with experimental results for 
copper in Figure 3. The C

s
 values according to Eq. (6) for the individual tests in Figure 2 have 

Figure 3. Comparison of modelled Eq. (6) and observed displacements at grain boundaries in copper divided by the 

creep strain, cf. Eq. (1) [19]. Data from [29, 30] are also shown.
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been evaluated in [19]. The model values are about C
s
 ≈ 50 μm. These values are slightly 

high for the creep tests [30], but in range for slow strain tests [29] and constant stress rate 

tests [19].

For materials with particles in the grain boundaries Riedel has derived a model correspond-

ing to Eq. (1) [33]. The sliding boundary was represented by a shear crack surrounded by 
creep deforming grains. The model is referred to as the shear crack model. Although the author 

was not very happy with the model, it turns out that it does not give very different results for 
austenitic stainless steels in comparison with the shear sliding model.

The two models (shear sliding and shear crack models) are compared with the experimental 
GBS displacements for different austenitic stainless steels [34–38] in Figure 4. The shear crack 
model is compared with the average of all the experimental data, Ave. 1. The shear sliding 
model does not work very well for large grain sizes so data for such grain sizes [38] are not 
included in the comparison, Ave. 2. It can be seen from Figure 4 that C

s
 values of the correct 

order are predicted.

From Figures 3 and 4 it is evident that the shear sliding and shear crack models can describe 

the experimental data for fcc metals with reasonable precision.

Figure 4. Modelling and experimental GBS displacement as a function of creep strain for different types of austenitic 
stainless steels, from Ref. [24]. Experimental data Ref. [34–38].
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3. Cavity nucleation

3.1. Thermodynamic considerations

The mechanisms for cavitation nucleation have been a puzzle for a long time as explained in 
the introduction. However part of the explanation came from studies on copper. Pure copper 

can show extensive cavitation during creep [39], but the number of particles present is so low 

that they cannot explain the large number of cavities. Lim suggested that it was the substruc-

ture of the dislocations that could nucleate the cavities [40]. He also presented a model that 

can be used to demonstrate whether a nucleation mechanism is thermodynamically feasible 

or not. He assumed that pile ups of grain boundary dislocations generate the necessary high 

stresses for the nucleation. Since these high stresses are stationary as a result of the creep 

process, it avoids the problem of fast stress relaxation in many models. Lim’s model is fairly 
complex and details in the model will not be given here. When a cavity is formed the free 

energy ΔG is changed in a number of ways that are represented by the terms in the following 

equation [19]

  ΔG = −  r   3   F  
v
    σ  

appl
   +  r   2   F  

s
    γ  

s
   −  r   2   F  

GB
    γ  

GB
   −  (Δ  G  

1
   + Δ  G  

2
   + Δ  G  

3
  ) .  (7)

γ
s
 and γ

GB
 are the surface and grain boundary energies per unit area. F

v
 = 2π/3 (2–3cos α + 

cos3 α), F
s
 = 4π(1−cos α), F

b
 = πsin2 α and F

v
′ = 1.5 F

v
, where α is half the tip angle of the cavity. 

The first term in Eq. (7) is the work done by the applied stress. The second and third terms 
represent the modification in the surface and grain boundary energies. The fourth term is 
the decrease in the strain energy. ΔG

1
 is the change in the line energy of the grain boundary 

dislocations (GBD). ΔG
2
 is the interaction energy between the remaining and the consumed 

GBD. The strain energy ΔG
3
 is the reduction of the strain energy of GBDs outside the cavity. 

Full details can be found in [19, 40].

Lim’s model has been applied to copper and austenitic stainless. As long as energy is gained 
when a cavity is formed, that is, ΔG in Eq. (7) is negative, cavitation is possible. From Eq. (7) 
ΔG is reduced when the applied stress σ

appl
 is raised, that is, cavitation becomes more likely 

which is natural. On the other hand when σ
appl

 is reduced cavitation is more difficult. There 
is minimum stress where cavitation is no longer possible because ΔG becomes positive. This 
minimum stress is plotted as a function of temperature for copper in Figure 5.

These minimum stresses are compared with design stresses during creep in copper. It is 
clear that the stresses required for nucleation are well below the stresses that typically 

appear in the material. This demonstrates that nucleation based on the substructure is a 
viable process.

From a technical point of view it is well established that the creep ductility of oxygen free 

pure copper Cu-OF can be very much lower than for phosphorus alloyed copper Cu-OFP. As 

a consequence the latter material should be used in creep exposed components [28, 41]. It is 
evident from Figure 5 that much lower stresses are needed in Cu-OF than in Cu-OFP, which 

makes the cavitation in the former material much more abundant. This is believed to be the 
main reason for the low creep ductility of Cu-OF.
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It has also been verified that the minimum nucleation stresses are below typical design stresses 

for the common stainless steels 304H (18Cr10Ni), 316 (17Cr12Ni2Mo), 321 (18Cr12NiTi) and 
347 (18Cr12NiNb). For example this is illustrated for 347 (18Cr12NiNb) in Figure 6. The 
design stresses are 10,000 h rupture data. The minimum cavitation stress lies in the interval 
35–50 MPa in the interval from 500°C to 750°C. The minimum cavitation stresses are again 
below the design stresses. The temperature dependence of Lim’s model is probably not fully 
correct. In general it is thought that the amount of cavitation will increase with temperature. 

However the temperature dependence of the minimum cavitation stress is weaker than that 

of the design stress, which suggests the opposite behaviour.

3.2. Strain dependence

Experimentally it has been found many times that the number of cavities is proportional to 

the creep strain, cf. Eq. (2). To explain this strain dependence, Sandstrom and Wu introduced 
the double ledge model [43]. They considered a sliding grain boundary with dislocation sub-

structures on both sides of the boundary that moved along with the grains. The substructures 
consist of subgrains that contain fairly few dislocations in their interior but with well-devel-

oped subgrain walls. The positions where the subgrain walls meet at the grain boundary are 
referred to as subgrain corners. Nucleation was assumed to take place when a subboundary 

on one side of the boundary hits a subgrain corner on the other side. The nucleation rate can 
be expressed as

    dn ___ 
dt

   =   
  u   

 .  
    
GBS

  
 ____ 

 d  
sub

  
     1 ___ 

 d  
sub

  2  
   ,  (8)

Figure 5. Minimum stress to form cavities at cell boundaries versus temperature for oxygen free pure Cu-OF and 

phosphorus alloyed copper Cu-OFP. For comparison the stress that gives creep rupture after one year (10,000 h) is 

included. After Ref. [19].
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where d
sub

 is the subgrain diameter. The last factor takes into account that one nucleus can be 
formed in each subgrain on the boundary. The subgrain size is directly related to the applied 
stress [19]

   d  
sub

   =  K  
sub

   GB /  σ  
appl

  .  (9)

The constant K
sub

 is about 20 for austenitic stainless steels and about 11 for copper. The same 
model can be applied to particles in the grain boundary that are known to contribute to 

the nucleation. In the model the subgrain corners are replaced by the particles in the grain 

boundaries with an interparticle distance of λ. Taking both subgrain corners and particles into 
account, the resulting expression for the nucleation rate is [44]

    dn ___ 
dt

   =   
0.9  C  

s
  
 _____ 

 d  
sub

  
  (  1 ___ 

 d  
sub

  2  
   +   1 __ 

 λ   2 
   )  ε ˙   = B ε ˙  .  (10)

In Eq. (10), Eq. (1) has been used. The factor 0.9 in Eq. (10) takes into account the averaging of 
different orientations [44].

The model in Eq. (10) is compared with experimental data for austenitic stainless steels in 
Figure 7. For three of the experimental data sets TP347 at 550°C and 650°C and TP304 at 
727°C, the model gives quite an acceptable description. For TP304XX at 750°C the deviation 
between model and experiment is larger.

Figure 6. Minimum cavitation stress versus temperature for TP347H austenitic stainless steel. 10,000 h rupture data from 
ECCC [42] for TP347 are shown for comparison.
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3.3. Particle size

It has been proposed that a critical particle radius exists for nucleation [45, 46]. The radius 
must exceed a minimum value in order for nucleation to take place. Harris developed a 

model that related the critical particle size to the GBS velocity [47, 48]. His basic assump-

tion was that particles are not able to stop GBS if the diffusion is fast enough. According to 
Harris this critical particle radius also represented the minimum radius that could nucleate 

cavities. Harris gave the following relation between the GBS velocity    u   
 
.
  
    
GBS

    and the critical 

particle radius r
c

    u   
 
.
  
    
GBS

   =   
δ  D  

GB
  
 ______ 

  r  
c
     2  ln   λ ___ 

2  r  
c
  
  
   (exp   

2  γ  
s
   Ω
 _____ 

 k  
B
   T  r  

c
  
   − 1) ,  (11)

Figure 7. Modelling and experimental number of cavities per unit grain boundary area as a function of creep strain 

[44]. Experimental data from Hong and Nam [45] for TP304 steel, Laha et al. [46] for three different types of austenitic 
stainless steels and Needham and Gladman [27] for TP347 steel.
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where λ is the interpaticle spacing, γ
s
 the surface energy, δ the grain boundary width, D

GB
 the 

grain boundary self-diffusion coefficient, Ω the atomic volume, k
B
 Boltzmann’s constant and 

T the absolute temperature. The application of Eq. (11) is illustrated in Figure 8 for different 
types of austenitic stainless steels [24].

In Figure 8 the particle parameters are taken from the experimental references. The minimum 
particles that nucleated cavities in the experiments are chosen for the critical particle radius. 

The experimental data clearly support Harris’ model.

From the particle size distributions [24] the number of nucleated cavities can be estimated 
if the critical particle size is known. The computed number of nuclei is compared with the 
observed ones for austenitic stainless steels in Figure 9.

4. Cavity growth

4.1. Unconstrained cavity growth model

After the cavities have been nucleated, they start to grow if they exceed a critical size. The 
main mechanism for the growth is diffusion. Vacancies are transported away from the sur-

faces of the cavities. The grain boundaries are good sinks for the vacancies. The first model for 

Figure 8. Comparison of experimental and modelling GBS velocity as a function of particle radius [24]. Experimental 

data for 304, 321 and 347 austenitic stainless steels from Refs. [45, 46, 49, 50]. Modelling results from Eq. (11).
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diffusion controlled growth was presented by Hull and Rimmer [15]. A much more elegant 
formulation was later given by Beere and Speight [16] and this is the model that has been used 
since. Their growth equation can be expressed as

    dR ___ 
dt

   = 2  D  
0
    K  

f
   ( σ  

appl
   −  σ  

0
  )    

1 __ 
 R   2 

   ,  (12)

where R the cavity radius in the grain boundary plane, dR/dt its growth rate, σ
0
 the sintering 

stress 2γ
s
 sin(α)/R, where γ

s
 is the surface energy of the cavity per unit area and α the cavity 

tip angle. D
0
 is a grain boundary diffusion parameter, D

0
 = δD

GB
Ω/k

B
T, where δ is the grain 

boundary width, D
GB

 the grain boundary self-diffusion coefficient, Ω the atomic volume, k
B
 

Boltzmann’s constant and T the absolute temperature. The factor K
f
 was introduced in [16]. It 

is a function of the cavitated grain boundary area fraction f
a
 = (2R/L)2

    K  
f
   = − 1 /   [2 log  f  

a
   +  (1 −  f  

a
  )  (3 −  f  

a
  ) ] .   (13)

From the number of cavities per unit grain boundary area n
cav

, the cavity spacing L can be 

determined

Figure 9. Comparison of experimental number of cavities and modelling number of particles that initiate cavities [24]. 

Experimental data for austenitic stainless steels from Refs. [27, 45, 46, 49, 50].
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   L = 1 /    √ 
_

  n  
cav

     .   (14)

n
cav

 can be found from the nucleation model, Eq. (10). Plastic deformation can also contribute 

to the growth rate. Danavan and Solomon have given an expression for that [51]

    dR ___ 
dt

   =   
 sin   2  (α) 
 _____________  α − sin  (α)  cos  (α) 

     R __ 
3
    ε   

 .  
   .  (15)

4.2. Constrained cavity growth

When diffusion controlled growth models were compared with experimental data, it was 
evident that the models often strongly exaggerated the growth rate. Dyson found that the 

predicted growth rate of the cavities many times exceeded the deformation rate of the 

surrounding material which he considered as unphysical [17]. He suggested that the cav-

ity growth rate should not be larger than the creep rate of the material. This was referred  
to as constrained growth. Based on this assumption, Rice developed a quantitative model 

[18]. The result is that in the growth equation, the applied stress is replaced by a reduced 
stress

    dR ___ 
dt

   = 2  D  
0
    K  

f
   ( σ  

red
   −  σ  

0
  )    1 __ 

 R   2 
   .  (16)

The reduced stress is given by

   σ  
red

   =  σ  
0
   +   1 _____________  

  1 ____  σ  
appl

     +   
32  D  

0
    K  

f
  
 __________ 

 L   2  dβ  ε   
 .  
   ( σ  

appl
  ) 
  
   ,  (17)

where β is a material constant (β = 1.8 for homogeneous materials) and d the grain diameter. 

With this approach a growth model that fulfils Dyson’s criterion has been achieved.

Rice based his analysis on a linear viscoplastic model of an opening crack. He and Sandstrom 

reanalyzed the model and avoided the assumption of linearity [52]. A grain structure with 
a pillar of height h and width corresponding to the grain size d was set up. In this pillar the 

creep deformation in the axial (z) direction is given by

    dz ___ 
dt

   = 4π  D  
0
    K  

f
   ( σ  

red
   −  σ  

0
  )   n  

cav
   + h  ε   

 .  
   ( σ  

red
  )  = h  ε   

 .  
   ( σ  

appl
  ) .  (18)

  ε   
 .  
   ( σ  

red
  )   and   ε   

 .  
   ( σ  

appl
  )   are the creep rates at the reduced and applied stress, respectively. The first 

term in the middle part of Eq. (17) is the volume growth rate of a cavity multiplied by the 
number of cavities per unit grain boundary area. The creep displacement of the pillar at the 
reduced stress is the second term. The final term on the right hand is the displacement in 
the surrounding material. A finite element analysis was performed to determine the size of 
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the height h. It was found that h ≈ 2R in the investigated cases [52]. If this value for h is used 

and n
cav

 is replaced by 1/L2 according to Eq. (14), the following equation is obtained

Figure 10. Reduced stress according to Eq. (19) versus time [52]. The result is compared with the model of Rice in Eq. (17) 
[18]. Cavity growth for 18Cr10Ni at 727°C and 100 MPa [45].

Figure 11. Cavity radius as a function of creep time for 18Cr10Ni without or with Nb (347) or Ti (321) austenitic stainless 
steels. Model according to Eq. (19) and experimental data from Refs. [27, 46, 49]. The creep tests were performed at 
temperatures in the interval of 650–812°C.
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In general Eq. (19) has to be solved by iteration to find the new value of σ
red

. This new value 
for σ

red
 is lower than that given by Eq. (17). This is illustrated in Figure 10: Both the absolute 

and relative difference increase with time.

The new constrained growth model is compared to experimental data for austenitic stainless 
steels in [52]. Some examples are given here in Figure 11. Growth data for 18Cr10Ni steel with 

and without Nb or Ti are shown. It can be seen that the growth data can be described with fair 
accuracy. The lower growth rate according Eq. (19) is important in this respect.

5. Brittle creep rupture

Creep rupture is technically very important, because it determines the life of many plants 

operating at high temperatures. Two main mechanisms are distinguished: ductile rupture 
and brittle rupture. Ductile rupture is controlled by the exhaustion of the deformation capac-

ity of the material. In this case the usual rupture criterion is that the creep strain reaches a 

critical value. The deformation takes place by dislocation mechanisms. The faster the disloca-

tions move, the faster rupture occurs. Since ductile rupture does not involve cavitation, it is 

not reviewed here, but full details can be found elsewhere [53].

Rupture curves for dislocation creep are illustrated in Figure 12 for the austenitic stainless 

steel 18Cr12NiTi (321H) at temperatures between 600°C and 775°C. The experimental creep 
rupture data cover times up to 100,000 h (11 years). The general overall behaviour is well 
described by the model predictions.

The second process brittle rupture is due to grain boundary decohesion. By far the most 
important mechanism in this respect is the formation and growth of cavities. It is well estab-

lished that when the cavitated grain boundary area reaches a certain fraction of about 0.25, 

brittle rupture takes place [54]. The cavitated area fraction A
cav

 can be computed from Ref. [43]

   A  
cav

   =  ∫ 
 t  

i
  
  t      dn ___ 
dt'

   (t') π  R   2  (t, t') dt'.  (20)

A continuous nucleation of cavities takes place. The number of cavities is directly propor-

tional to the creep strain, Eq. (10). Once a cavity has nucleated it starts to grow after an incuba-

tion time t
i
 that is a small fraction of the rupture time [52]. The growth is described with Eq. 

(16) with the reduced stress given by Eq. (19). When A
cav

 has reached 0.25, rupture is assumed 

to take place.

The model predictions for brittle rupture for 18Cr12NiTi (321H) are shown in Figure 13. The 
predictions are compared to the same experimental data as in Figure 12. Again the overall 

Study of Grain Boundary Character34



time dependence of the rupture strength at different temperatures is well represented. In 
fact the differences between the model predictions for ductile rupture in Figure 12 and brittle 
rupture Figure 13 are not very large.

Ductile rupture is assumed to be controlling if the strain exhaustion occurs before A
cav

 = 0.25 

has been reached. On the other hand if the cavitation criterion is reached first, brittle rupture 
takes place. The results for ductile and brittle rupture are combined in Figure 14. For a given 

Figure 12. Comparison of dislocation creep model rupture curves (ductile rupture) Refs. [53, 54] with experiments [55] 

for 18Cr12NiTi (321H). Model prediction and experiments at temperatures between 600°C and 775°C with 25°C interval.

Figure 13. Comparison of model rupture curves based on cavitation (Eq. (20), brittle rupture) [54] with experiments [55] 
for 18Cr12NiTi (321H). Model prediction and experiments at temperatures between 600°C and 775°C with 25°C interval.
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temperature and stress the value from Figure 12 is chosen if the (ductile) rupture time is 

shorter than the (brittle) rupture time in Figure 13 and vice versa.

When brittle rupture is taken into account when modelling the creep rupture curves, there is 
an improvement in particular at high temperatures and low stresses.

6. Discussion

With the development of the shear sliding and shear crack models for grain boundary sliding 

(GBS), it is now possible to compute the displacements across grain boundaries in a quantita-

tive way and the results are in acceptable agreement with experiments. This has given a dra-

matic improvement in the understanding of GBS. The previous observations that the amount 
of grain boundary sliding is proportional to the creep strain are reproduced by the model. 

According to the shear sliding model the displacement is proportional to the grain size: This 
has been verified experimentally for small grain sizes, but the grain size dependence is prob-

ably exaggerated for larger grain sizes. A detailed comparison between the shear crack model 
and experiments is more difficult, since in none of the published results on GBS, full details of 
the particle structure are presented.

It is assumed in general that nucleation of creep cavities is based on GBS. The new models 
for GBS have made it possible to set up realistic models for nucleation. Many models for 

nucleation developed in the past are strongly stress dependent and suggest that the amount 

of cavitation would increase with stress, which is clearly at variance with most observations 

on creep. This applies for example to models based on classical nucleation theory. Using 
Lim’s model for substructure induced cavitation [40], it has now been  demonstrated both 

Figure 14. Comparison of model rupture curves based on both dislocation creep (ductile rupture) and cavitation (brittle 
rupture) with experiments [55] for 18Cr12NiTi (321H). Model predictions and experiments at temperatures between 
600°C and 775°C with 25°C interval.
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for commercial copper and austenitic stainless steel that the creep stresses in the substruc-

ture are sufficiently high to nucleate cavities. Since the stresses are stationary, the prob-

lem with rapid relaxation in particular at high stresses is avoided. If particles instead of 

subgrain corners constrain the grain boundary dislocations, the outcome of the model is 

essentially the same. The model is consequently applicable to cavity nucleation at particles 
as well.

With the help of the double ledge model it can be explained why the nucleation rate is propor-

tional to the creep strain rate. According to the model nucleation takes place when subgrain 

boundaries meet subgrain corners on the other side of a sliding grain boundary. The displace-

ment rate is proportional to creep strain rate according to the GBS models. As a consequence 

the suboundaries will meet the subgrain corners at the same rate and this explains why the 

nucleation rate is proportional to the strain rate.

Harris developed a model for nucleation around particles many years ago [47, 48]. He con-

sidered the relation between particle sizes and the GBS displacement. If the particles are 
sufficiently large it is assumed that they will prevent GBS. He formulated a criterion for the 
critical particle size. If GBS is prevented significant stresses are formed at the particles. If 
the critical particle size is exceeded, Harris proposed that cavity nucleation can take place. 
With the event of the new models for GBS it has now for the first been possible to test Harris’ 
ideas. It turns out that both the critical particle radius and the number of cavities that can be 

estimated from the particle distributions are in agreement with observations for austenitic 

stainless steels. In this way a method for estimating the critical particle size for nucleation 
has been established.

GBS does not occur on every grain boundary. In fact only on a limited number of GBS events 

is observed in a material that has been creep exposed [19]. As a consequence cavity nucleation 

only occurs on some grain boundaries. The presence of cavities show a large statistical varia-

tion, see for example [39]. The models in the present paper represent grain boundaries where 
cavities will be formed. These are also the grain boundaries that control the rupture of the 
material. The models predict a fairly high nucleation rate that represents the most active grain 
boundaries and not an average over all grain boundaries.

Models for cavity growth have been available for a long time. Unfortunately these models in 

general generate growth rates that are much higher than the observed ones. This might be the 
reason why very few quantitative comparisons have been made between experiments and 

models in the literature. A major step forward was the introduction of constrained growth 

[17]. Then the cavities were not allowed to grow faster than the surrounding creeping mate-

rial. A quantitative model for constrained growth was given by Rice [18]. Still the growth rates 

tended to be higher than the observed ones. Only recently it has been recognised that some 

minor approximations in the work of Rice were essential to correct [52]. With these new cor-

rections satisfactory predictions for cavity growths in austenitic stainless have been achieved.

The recent development has implied that quantitative models are now available for grain 
boundary sliding, for the thermodynamic feasibility of cavity nucleation controlled by sub-

boundaries, the nucleation rate and constrained cavity growth, that is, for all of the involved 
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main processes. Each model is of great significance in itself, but by using combinations of 
them, the development of cavities can be fully understood.

7. Conclusions

1. Recent development of processes concerning the development of creep cavities has been 

reviewed. Models have been covered for grain boundary sliding, cavity nucleation and 

cavity growth.

2. Based on analysis of previously presented FEM models, a model for the grain bound-

ary displacement during sliding called the shear sliding model has been presented. The 
model gives a displacement that is proportional to the creep strain. The model can quan-

titatively reproduce the observed displacements for fcc alloys.

3. Using Lim’s model for subboundary assisted cavity nucleation, it has been demonstrated 
that this process is thermodynamically feasible for copper and for austenitic stainless 

steels. It gives a minimum cavitation stress that is well below stresses in creep exposed 

components.

4. According to the double ledge model, nucleation is assumed to take place when sub-

boundaries on one side of a sliding grain boundary meet subgrain corners or particles 

on the other side. The model gives a nucleation rate that is proportional to the creep rate 
in good accordance with observations. The model can predict the measured nucleation 
rates in austenitic stainless steels.

5. Due to the development of the new models for GBS, it has for the first time been possible 
to test Harris’ model for cavity nucleation around particles. The model gives a relation 
between the critical particle radius and the GBS velocity. Data for austenitic stainless 

steels confirm the validity of the model.

6. A modified constrained growth model has been presented. It gives lower growth rates 
than previous models. These lower growth rates have implied that observed growth rates 
for austenitic stainless steels can now be reproduced.

7. Alloys can fail by ductile or brittle creep rupture. It is demonstrated that by considering 
both ductile and brittle rupture, the prediction of creep rupture curves can be improved 
in particular at high temperatures and low stresses.

Author details

Rolf Sandström* and Junjing He

*Address all correspondence to: rsand@kth.se

Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden

Study of Grain Boundary Character38



References

[1] B. Neubauer, Recent Advances in Creep and Fracture of Engineering Materials and 

Structures, B. Wilshire, D.R.J. Owen (eds.). Pineridge Press, Swansea, 1981, 617–619.

[2] B. Neubauer, F. Arens-Fischer, Determination of residual life of power station compo-

nents subject to creep stress, VGB Kraftwerkstechnik, 63 (1983) 637–645.

[3] L.M. Kachanow, Izvestiya Akademii Nauk SSSR, Otdelenie Tekhnicheskikh Nauk, 
Mekhanika i Mashinostroenie, 8 (1958), 26–31.

[4] Kachanow, L.M., Foundations of Fracture Mechanics. Moscow, 1974.

[5] Rabotnov, Y.N., Creep Problems in Structural Members. North Holland, Amsterdam, 

1969.

[6] R. Sandstrom, A. Kondyr, Model for Tertiary-Creep in Mo and CrMo-Steels, in: 
Proceedings—Computer Networking Symposium, 1980, 275–284.

[7] R. Sandstrom, A. Kondyr, Creep Deformation, Accumulation of Creep Rupture Damage 
and Forecasting of Residual Life for Three Mo- and CrMo-Steels, VGB Kraftwerkstechnik, 
62 (1982), 802–813.

[8] R. Sandstrom, Basic Model for Primary and Secondary Creep in Copper, Acta Materialia, 

60 (2012) 314–322.

[9] M.H. Yoo, H. Trinkaus, Crack and Cavity Nucleation at Interfaces During Creep, 
Metallurgical Transactions A, 14 (1983) 547–561, doi:10.1007/BF02643772

[10] R. Raj, M.F. Ashby, Intergranular Fracture at Elevated Temperature, Acta Metallurgica, 
23 (1975) 653–666.

[11] E. Smith, J.T. Barnby, Crack Nucleation in Crystalline Solids, Metal Science, 1 (1967) 
56–64.

[12] R. Raj, Nucleation of Cavities at Second Phase Particles in Grain Boundaries, Acta 

Metallurgica, 26 (1978) 995–1006.

[13] H. Riedel, Life Prediction Methods for Constrained Grain Boundary Cavitation, 
International Journal of Pressure Vessels and Piping, 39 (1989) 119–134.

[14] X.G. Jiang, J.C. Earthman, F.A. Mohamed, Cavitation and Cavity-Induced Fracture 
During Superplastic Deformation, Journal of Materials Science, 29 (1994) 5499–5514.

[15] D. Hull, D.E. Rimmer, The Growth of Grain Boundary Voids Under Stress, Philosophical 
Magazine, 4 (1959) 673–687.

[16] W. Beere, M.V. Speight, Creep Cavitation by Vacancy Diffusion in Plastically Deforming 
Solid, Metal Science, 21 (1978) 172–176.

[17] B.F. Dyson, Constraints on Diffusional Cavity Growth Rates, Metal Science, 17 (1976) 
349–353.

Survey of Creep Cavitation in fcc Metals
http://dx.doi.org/10.5772/66592

39



[18] J.R. Rice, Constraints on the Diffusive Cavitation of Isolated Grain Boundary Facets in 
Creeping Polycrystals, Acta Metallurgica, 29 (1981) 675–681.

[19] R. Sandström, R. Wu, J. Hagström, Grain Boundary Sliding in Copper and its Relation 

to Cavity Formation During Creep, Materials Science and Engineering A, 651 (2016) 
259–268.

[20] C.W. Chen, E.S. Machlin, Trans. AIME J. Metals, 209 (1957) 829–835.

[21] J. Intrater, E.S. Machlin, J. Inst. Metals, 88 (1959/60) 305–310.

[22] B.J. Cane, Mechanistic Control Regimes for Intergranular Cavity Growth in 2. 25Cr-1Mo 

Steel Under Various Stresses and Stress States, Metal Science, 15 (1981) 302–310.

[23] D.J. Gooch, Creep Fracture of 12Cr-Mo-V Steel, Metal Science, 16 (1982) 79–89.

[24] J. He, R. Sandström, Modelling Grain Boundary Sliding During Creep of Austenitic 

Stainless Steels, Journal of Materials Science, 51 (2016) 2926–2934.

[25] D. McLean, M.H. Farmer, The Relation During Creep Between Grain-Boundary Sliding, 
Sub-Crystal Size and Extension, Journal of the Institute of Metals, 85 (1957) 41–50.

[26] N.G. Needham, J.E. Wheatley, G.W. Greenwood, The Creep Fracture of Copper and 
Magnesium, Acta Metallurgica, 23 (1975) 23–27.

[27] N.G. Needham, T. Gladman, Nucleation and Growth of Creep Cavities in a Type 347 
Steel, Metal Science, 14 (1980) 64–72.

[28] R. Wu, R. Sandstrom, Strain Dependence of Creep Cavity Nucleation in Low Alloy and 
12%Cr Steels, Journal of Materials Science & Technology, 12 (1996) 405–415.

[29] K. Pettersson, A Study of Grain Boundary Sliding in Copper With and Without an 
Addition of Phosphorus, Journal of Nuclear Materials, 405 (2010) 131–137.

[30] A. Ayensu, T.G. Langdon, The Inter-Relationship Between Grain Boundary Sliding 
and Cavitation During Creep of Polycrystalline Copper, Metallurgical and Materials 

Transactions A: Physical Metallurgy and Materials Science, 27 (1996) 901–907.

[31] F.W. Crossman, M.F. Ashby, The Non-Uniform Flow of Polycrystals by Grain-Boundary 
Sliding Accommodated by Power-Law Creep, Acta Metallurgica, 23 (1975) 425–440.

[32] F. Ghahremani, Effect of Grain Boundary Sliding on Steady Creep of Polycrystals, 
International Journal of Solids and Structures, 16 (1980) 847–862.

[33] H. Riedel, Cavity Nucleation at Particles on Sliding Grain Boundaries. A Shear Crack 

Model for Grain Boundary Sliding in Creeping Polycrystals, Acta Metallurgica, 32 (1984) 

313–321.

[34] Laha K, Kyono J, Sasaki T, Kishimoto S, Shinya N Improved Creep Strength and Creep 
Ductility of Type 347 Austenitic Stainless Steel Through the Self-Healing Effect of Boron 
for Creep Cavitation, Metallurgical and Materials Transactions A, 36A (2005) 399–409.

Study of Grain Boundary Character40



[35] Kishimoto S, Shinya N, Tanaka H, Grain Boundary Sliding and Surface Cracking during 
Creep of 321 Stainless Steel, Materials, 37 (414) (1987) 289–294.

[36] Gates RS, Stevens RN, The Measurement of Grain Boundary Sliding in Polycrystals, 
Metallurgical Transactions, 5 (1974) 505–510.

[37] Gittins A, The Kinetics of Cavity Growth in 20 Cr25 Ni Stainless Steel, Journal of 
Materials Science, 5 (1970) 223–232.

[38] Morris DG, Harries DR, Wedge Crack Nucleation in Type 316 Stainless Steel, Journal of 
Materials Science, 12 (1977) 1587–1597.

[39] T.G. Langdon, The Role of Grain Boundaries in High Temperature Deformation, 
Materials Science and Engineering A, 166 (1993) 67–79.

[40] L.C. Lim, Cavity Nucleation at High Temperatures Involving Pile-ups of Grain Boundary 
Dislocations, Acta Metallurgica, 35 (1987) 1663–1673.

[41] P.J. Henderson, R. Sandstrom, Low Temperature Creep Ductility of OFHC Copper, 
Materials Science and Engineering A, 246 (1998) 143–150.

[42] ECCC European Creep Collaborative Committee Data Sheets 2005—HR3C.120, 2005.

[43] R. Sandström, R. Wu, Influence of Phosphorus on the Creep Ductility of Copper, Journal 
of Nuclear Materials, 441 (2013) 364–371.

[44] J. He, R. Sandström, Formation of Creep Cavities in Austenitic Stainless Steels, Journal of 

Materials Science, 51 (2016) 6674–6685.

[45] Hong JH, Nam SW, Choi SP, The Influences of Sulphur and Phosphorus Additions on 
the Creep Cavitation Characteristics in Type 304 Stainless Steels, Journal of Materials 
Science 21 (11) 3966–3976.

[46] Laha K, Kyono J, Shinya N, Suppression of Creep Cavitation in Precipitation-Hardened 
Austenitic Stainless Steel to Enhance Creep Rupture Strength. Transactions of the Indian 
Institute of Metals, 63 (2–3) (2010) 437–441.

[47] J.E. Harris, An Analysis of Creep Ductility of Magnox Al80 and its Implications, Journal 

of Nuclear Materials, 15 (1965) 201–207.

[48] J.E. Harris, Nucleation of Creep Cavities in Magnesium, Transactions of the Metallurgical 
Society of AIME, 233 (1965) 1509.

[49] O.R. Arzate, L. Martinez, Creep Cavitation in Type 321 Stainless Steel, Material Science 
and Engineering A, 101 (1988) 1–6.

[50] K. Laha, J. Kyono, T. Sasaki, S. Kishimoto, N. Shinya, Improved Creep Strength and 
Creep Ductility of Type 347 Austenitic Stainless Steel through the Self-Healing Effect 
of Boron for Creep Cavitation, Metallurgical and Materials Transactions A, 36A (2005) 

399-409.

Survey of Creep Cavitation in fcc Metals
http://dx.doi.org/10.5772/66592

41



[51] K. Davanas, A.A. Solomon, Theory of Intergranular Creep Cavity Nucleation, Growth 
and Interaction, Acta Metallurgica et Materialia, 38 (1990) 1905–1916.

[52] J. He, R. Sandström, Creep Cavity Growth Models for Austenitic Stainless Steels, 

Materials Science and Engineering A, 674 (2016) 328–334.

[53] S. Vujic, R. Sandstrom, C. Sommitsch, Precipitation Evolution and Creep Strength 

Modelling of 25Cr20NiNbN Austenitic Steel, Materials at High Temperatures, 32 (2015) 
607–618.

[54] J. He, R. Sandström, Basic Modelling of Creep Rupture in Austenitic Stainless Steels, to 

be publ. (2017).

[55] NRIM, National Research Institute for Metals, Tokyo, Japan, 1987.

Study of Grain Boundary Character42


	Chapter 2
Survey of Creep Cavitation in fcc Metals

