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1. Introduction 

1.1 Dopaminergic neuronal loss in Parkinson’s disease 
Parkinson’s disease (PD) is a neurological disorder that affects approximately 2% of the 

elderly population, and as our population continues to age, the incidence will only increase 

(Singh et al., 2007).  PD is commonly characterized by various motor deficits including 

tremor, rigidity and bradykinesia (Singh et al., 2007).  The cause of these motor symptoms is 

the loss of dopaminergic neurons in the substantia nigra pars compacta (SN) and reduced 

dopamine (DA) levels in the striatum (Damier et al., 1999; Gibb, 1991; Gibb and Lee, 1991).  

However, the appearance of PD symptoms does not occur until 70-80% of the dopaminergic 

neurons are lost. In the progression of this disorder, the loss of dopaminergic neurons is not 

observed until Stage 3 (out of 6 Stages) of the disorder (Braak et al., 2003a, 2003b, 2006).   

1.2 Noradrenergic neuronal loss in Parkinson’s disease 
Of course a great deal of research has focused on the dopaminergic system in PD because 
loss of neurons in the SN is responsible for PD symptoms; however, PD is represented by 
multiple systems failing.  During the earlier stages of the disorder, non-motor preclinical 
symptoms are observed. These preclinical symptoms include hyposmia (Berendse et al., 
2001, Ponsen et al., 2004), REM-sleep disorder (Boeve et al., 2003, Scheneck et al., 2003), 
depression (Leentjens et al., 2003; Mayeux et al., 1992; Slaughter et al., 2001) and autonomic 
dysfunction such as orthostatic hypotension (Mathias, 1998; Ziemssen & Reichmann, 2007).  
These preclinical symptoms are attributed to neuropathological changes in neurotransmitter 
systems other than the SN dopaminergic nervous system.  One neurotransmitter system that 
may be responsible for these early non-motor symptoms is the noradrenergic nervous 
system (Goldstein et al., 2011; Itoi & Sugimoto, 2010; Lopez-Munoz & Alamo, 2009; Mathias, 
1998; Osaka & Matsumura, 1994; Ziegler et al., 1977). The presence of these symptoms 
would indicate an alteration in the noradrenergic nervous system is occurring early in the 
progression of PD.  Postmortem examination of PD tissue demonstrates a significant loss of 
noradrenergic neurons in the locus coeruleus (LC); this loss is equal to or greater than the 
neuronal loss observed in the SN (Bertrand et al., 1997; Cash et al., 1987; Chan-Palay & Asan, 
1989; Hornykiewicz & Kish, 1987; Marien et al., 2004; McMillan et al., 2011; Patt & Gerhard, 
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1993; Zarow et al., 2003).  The loss of LC noradrenergic neurons also precedes the loss of 
dopaminergic neurons in the progression of PD (Braak et al., 2003b, 2006), correlating to the 
time that preclinical noradrenergic non-motor symptoms appear. 

2. Noradrenergic cell bodies 

2.1 Anatomical 
There are two major clusters of noradrenergic neurons in the central nervous system (CNS): the 
LC and the lateral tegmental neurons. In contrast to the significant loss of LC noradrenergic 
neurons in PD as indicated above, the lateral tegmental group does not appear to demonstrate 
much of a loss in PD (Saper et al., 1991).  LC noradrenergic neurons send projections to 
forebrain regions via three different tracts: the central tegmental tract, the central gray dorsal 
longitudinal fasciculus tract, and the ventral tegmental-medial forebrain bundle.  A fourth tract 
innervates the cerebellum, and a fifth tract innervates the spinal cord.  The rostral portion of the 
LC innervates forebrain structures such as the hippocampus, whereas the caudal portion of the 
LC innervates hindbrain structures such as the cerebellum and spinal cord (Aston-Jones et al., 
1995; Fallon & Loughlin, 1982; Loughin et al., 1982, 1986b).  The degree of LC innervation to 
forebrain regions compared to the lateral tegmental neurons varies from region to region, but 
the hippocampus and cortex appear to receive sole innervation from the LC (Aston-Jones et al., 
1995; Jones & Moore, 1977; Loughlin et al., 1986a, b; Mason & Fibiger, 1970; Moore & Bloom, 
1979; Olsen & Fuxe, 1971; Ungerstedt, 1971; Waterhouse et al., 1983).  Innervation from the LC 
to forebrain regions also appears to be ipsilateral for the majority of regions (Ader et al., 1980; 
Room et al., 1981). Since the LC contains more than half of all noradrenergic neurons in the CNS 
(Aston-Jones et al., 2000), a reduction in the number of these neurons could have major 
consequences on the activity of many forebrain regions.   

2.2 Synthesis of norepinephrine 
The major neurotransmitter localized to noradrenergic neurons is norepinephrine (NE). 
However, NE is not the only transmitter released from noradrenergic terminals.  
Noradrenergic neurons also co-localize and release several other neuropeptides such as 
galanin, enkepalin and neuropeptide Y.  NE and DA share a common synthetic pathway.  NE 
is synthesized by several enzymatic steps (Figure 1): tyrosine is converted to L-3, 4-
dihydroxphenylalanine (L-DOPA) by tyrosine hydroxylase (TH); L-DOPA is converted to DA 
by aromatic amino acid decarboxylase (AADC), and then in noradrenergic neurons DA is 

converted to NE by dopamine β-hydroxylase (DBH).  In adrenergic neurons, NE is then 
converted to epinephrine by phenylthanolamine-N-methyltransferase (PMNT).  TH is 
considered the rate-limiting enzyme in the synthesis of NE and DA.  However, there is 
evidence to indicate that DBH activity can affect NE levels in the CNS when DBH levels are 
altered genetically (Thomas et al., 1995, 1998; Bourdelat-Parks et al., 2005), with excessive 
stimulation of noradrenergic neurons (Scatton et al., 1984) or when DBH inhibitors such as 
disulfiram or nepicastat are administered (Goldstein, 1966; Musacchio et al., 1966; Bourdelat-
Parks et al., 2005; Beliaev et al., 2006; Schroeder et al., 2010).  DBH knockout mice lack the 
ability to convert DA to NE so the CNS levels of DA are elevated as compared to wild-type 
mice (Thomas et al., 1995, 1998). NE levels in the periphery and CNS can be restored in DBH 
knockout mice with the peripheral administration of L-3,4-dihydoxyphenylserine (DOPS).  
DOPS is converted to NE through AADC, in noradrenergic and non-noradrenergic neurons.  
TH knockout mice lack the ability to synthesize both DA and NE (Zhou & Palmiter, 1995). 
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Fig. 1. Catecholamine biosynthesis and production of catecholamine knockout mice. 

3. Consequence of LC neuronal loss in PD 

3.1 Alterations in terminal noradrenergic markers 
The loss of LC noradrenergic neurons in PD subjects should result in changes in NE levels at 
the various forebrain regions it innervates and the degree of loss should depend on the 
amount of LC innervation the region receives as compared to lateral tegmental groups.  In 
PD subjects, there are reduced NE levels in the cortex, hypothalamus and cerebellum 
(Gasper et al., 1984, 1991; Kish et al., 1984; Shannak et al., 1994).  TH- and DBH-
immunoreactivity (IR) are also reduced in the cortex of PD subjects (Gasper et al., 1991).  The 
reduction in neurotransmitter content and synthesizing enzymes in PD subjects can be 
attributed to the loss of noradrenergic innervation to these areas associated with the loss of 
LC noradrenergic neurons. The cortex, as indicated above, receives sole innervation from 
the LC, so changes in LC neuronal number would have a major impact in this region (Aston-
Jones et al., 1995; Jones & Moore, 1977; Loughlin et al., 1986a, b; Mason & Fibiger, 1970; 
Moore & Bloom, 1979; Olsen & Fuxe, 1971; Ungerstedt, 1971; Waterhouse et al., 1983).  
Presently, the consequence of LC noradrenergic neuronal loss in PD on NE tissue content in 
the dopaminergic SN region is unknown.   

3.2 Alterations in noradrenergic markers in LC 
In contrast to terminal NE content in forebrain regions, NE levels in the LC of PD subjects 
does not appear to be different from controls (Cash et al., 1987).  Examining different 
noradrenergic markers in the surviving LC neurons in PD subjects indicates the 
noradrenergic neurons are not compensating for the loss of surrounding neurons or 
terminal NE.  The number of TH and DBH mRNA positively labeled neurons in the LC of 
PD subjects are significantly reduced as compared to age-matched control subjects (Szot, 
2000, 2006; McMillan et al., 2011) and corresponds to the documented loss of noradrenergic 
neurons by other laboratories (Bertrand et al., 1997; Cash et al., 1987; Chan-Palay & Asan, 
1989; Hornykiewicz & Kish, 1987; Marien et al., 2004; McMillan et al., 2011; Patt & Gerhard, 
1993; Zarow et al., 2003).  The degree of LC noradrenergic neuronal loss determined by TH 
and DBH mRNA expression in PD subjects is verified by counting the number of LC TH-IR 
positive labeled neurons (McMillan et al., 2011).  TH mRNA expression/neuron of the 
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surviving LC noradrenergic neurons in PD subjects did not differ from TH mRNA 
expression/neuron in age-matched control subjects, indicating a lack of compensation of the 
surviving LC neurons (McMillan et al., 2011).  Another marker of noradrenergic neurons, 
NE transporter (NET), was measured in the LC of age-matched and PD subjects.  NET’s 
function is to remove released NE from the synapse.  Therefore, NETs are localized only to 
noradrenergic cell bodies, dendrites (peri-LC dendritic zone), and axon terminals of 
noradrenergic neurons.  NET binding over cell body region and peri-LC dendritic zone in 
PD subjects is significantly reduced compared to age-matched control subjects and the loss 
of NET binding over the cell body region corresponds to the number of LC noradrenergic 
neurons in the LC (McMillan et al., 2011).  The loss of NET binding in the peri-LC dendritic 
zone in PD subjects indicates the surviving LC neurons are not compensating for neuronal 
loss by increasing dendritic innervation.  The loss of dendritic innervation in PD subjects, as 
determined by NET binding, is supported by reduced dendritic TH-IR labeling in the LC 
region of PD subjects as compared to age-matched controls (McMillan et al., 2011).  
However, the surviving LC neurons in PD subjects do demonstrate compensation in the 
expression of DBH mRNA (McMillan et al., 2011). The increased DBH mRNA 
expression/neuron in the surviving LC neurons of PD subjects may not be a response to 
neuronal loss because DBH mRNA expression/neuron is not altered in another 
neurodegenerative disorder with a significant loss of LC noradrenergic neurons (see below).  
Therefore, the increase in DBH mRNA expression/neuron observed in the surviving LC 
neurons in PD subjects may be a response to some other factor particular to PD, although it 
is unclear what that factor might be. The consequence of increased DBH mRNA expression 
of surviving LC neurons on NE levels in PD subjects is also unclear.  Studies measuring 
cerebral spinal fluid (CSF) NE levels in PD subjects are variable.  CSF NE levels and 
metabolites vary from reduced to no difference in postmortem and alive PD subjects 
(withdrawn from L-DOPA treatment) as compared to control subjects (Chia et al., 1993, 
1995; Mann et al., 1983; Scatton et al., 1986; Turkka et al., 1987).  As indicated above, NE 
tissue content is reduced, but LC concentration is similar to control subjects.  These data 
suggest that NE levels and function may be reduced in PD, similar to DA levels and 
function.  

3.3 Effect of L-DOPA treatment on noradrenergic system 
The “standard gold” treatment for PD is L-DOPA.  Administration of L-DOPA alleviates the 

symptoms associated with the loss of dopaminergic neurons (Cotzias et al., 1969); however, 

L-DOPA does not necessarily alleviate the non-motor symptoms associated with the loss of 

noradrenergic neurons (Sethi, 2008).  Chronic administration of L-DOPA to PD subjects 

significantly elevates CSF levels of L-DOPA, DA and the DA metabolite 

dihydroxyphenylacetic acid (DOPAC) from age-matched control subjects (Figure 2A, B and 

C). There is a positive correlation of CSF DA levels to CSF L-DOPA levels. CSF NE levels in 

PD subjects on chronic L- DOPA treatment are not statistically different from age-matched 

controls (Figure 2B), but the NE metabolite 3,4-dihydroxyphenylglycol (DHPG) is 

significantly elevated in PD patients on chronic L-DOPA (Figure 2C).  It is unclear why NE 

levels do not correlate to CSF L-DOPA levels in PD subjects like DA.  A possible reason for 

the discrepancy in NE and DA levels in PD subjects on chronic L-DOPA therapy may be 

because administered L-DOPA is decarboxylated to DA in striatal neurons (as compared to 

DA from SN terminals) and serotonergic neurons, not in the few remaining dopaminergic 
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neurons (Huot & Parent, 2007; Yamada et al., 2007).  Orthostatic hypotension, which is 

attributed to reduced CNS NE function, is relieved only with the administration of DOPS 

(Goldstein et al., 2011).  DOPS is also used to normalize CNS levels of NE in the DBH 

knockout mouse that lacks the synthetic enzyme DBH that converts DA to NE (Figure 1) 

(Thomas et al., 1998).  So these data would suggest that NE function in untreated PD and 

possibly treated subjects is reduced. 

 

 

Fig. 2. CSF catecholamine levels in PD subjects on chronic L-DOPA treatment and age-
matched control subjects.  CSF spinal fluid was taken at the same time of day, 
approximately 4 hours after administration of L-DOPA.  A) L-DOPA level, B) DA and NE 
levels and C) DOPAC and DHPG CSF levels in control and PD subjects on L-DOPA 
treatment.  Catecholamine levels were extracted by alumina extraction and analyzed by high 
performance liquid chromatography (HPLC) as previously described (Szot et al., 2010). Each 
point represents a single individual catecholamine value for control and PD subjects, with 
average and standard error means (SEM) illustrated in bars for each catecholamine 
analyzed.  * Indicates significant difference between control and PD subjects. 

4. Comparison of the consequence of LC neuronal loss between PD and 
Alzheimer’s disease (AD)  

4.1 Alterations in terminal noradrenergic markers 
Alzheimer’s disease (AD), another neurodegenerative disorder, also exhibits significant LC 
noradrenergic neuronal loss (Bondareff et al., 1982; Chan-Palay & Asan, 1989; German et al., 
1992; Mann et al., 1980; Marcyniuk et al., 1986; Szot et al., 2000, 2006; Tomlinson et al., 1981).  
However, unlike PD, in AD subjects the surviving LC noradrenergic neurons appear to be 
compensating for the loss.  The content of NE in terminal regions of postmortem AD 
subjects is reduced, but the reduction does not correspond to the degree of neuronal loss 
(Adolfsson et al., 1979; Hoogendijk et al., 1999; Mann et al., 1981; Palmer et al., 1987; 
Reinikainen et al., 1988; Toghi et al., 1992; Tomlinson et al., 1981).  Similar results were 
observed for IR of NE-synthesizing enzymes in the forebrain of postmortem AD subjects 
(Cross et al., 1981; Palmer et al., 1987; Perry et al., 1981; Russo-Neustadt et al., 1998).  These 
data indicate that there is a reduction in NE function in forebrain regions of AD subjects, but 
it doesn’t correlate to the degree of LC neuronal loss even in a region like the cortex which 
receives all of its innervation from the LC (Aston-Jones et al., 1995; Jones & Moore, 1977; 
Loughlin et al., 1986a, b; Mason & Fibiger, 1970; Moore & Bloom, 1979; Olsen & Fuxe, 1971; 
Ungerstedt, 1971; Waterhouse et al., 1983).  These data suggest the surviving LC 
noradrenergic neurons in AD may be compensating for the lost neurons. 
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4.2 Alterations in noradrenergic markers in LC 
To determine if the surviving LC noradrenergic neurons in AD subjects are demonstrating 
compensatory changes, several noradrenergic markers, similar to the markers used on the 
LC tissue of PD subjects, were assessed in the LC of subjects with AD.   Work from my 
laboratory showed that the surviving noradrenergic neurons in the LC of AD and a related 
dementing disorder, dementia with Lewy body (DLB), showed compensatory changes.  In 
subjects with dementia, the number of TH, DBH and NET mRNA positively labeled neurons 
in the LC are significantly reduced as compared to age-matched control subjects (Szot et al., 
2000, 2006) and the degree of this LC neuronal loss corresponds to documented loss of 
noradrenergic neurons in AD by other laboratories (Bondareff et al., 1982; Chan-Palay & 
Asan, 1989; German et al., 1992; Mann et al., 1980; Marcyniuk et al., 1986; Tomlinson et al., 
1981).  The degree of LC noradrenergic neuronal loss determined by TH mRNA expression 
in AD subjects is verified by counting the number of TH-IR positive labeled neurons 
(McMillan et al., 2011).  
 

 

Table 1. Changes in noradrenergic markers in the LC of PD subjects and subjects with 
dementia as compared to appropriate control groups. 

However, in AD, the surviving LC noradrenergic neurons exhibit increased TH mRNA 
expression/neuron as compared to age-matched control subjects (Szot et al., 2000, 2006), 
suggesting compensation. NET binding over cell body region in the LC of AD subjects is 
significantly reduced as compared to age-matched control subjects, and the loss of NET 
binding over the cell body region corresponds to the number of LC noradrenergic neurons 
in the LC (Szot et al., 2006).  However, NET binding sites over the peri-LC dendritic zone in 
AD subjects is not significantly different from age-matched control subjects, despite the 
reduction in LC noradrenergic neurons positively labeled for NET mRNA (Szot et al., 2000, 
2006).  The normal amount of NET binding in the peri-LC dendritic zone of AD subjects 
indicates dendritic sprouting of the surviving LC neurons.  TH-IR labeling in dendritic 
region of AD supports the notion of enhanced dendritic innervation around LC 
noradrenergic neurons in AD subjects observed with NET binding (McMillan et al., 2011), 
again indicating compensation of the surviving LC neurons in AD.  In addition to the 
sprouting in the LC, the surviving LC neurons in AD exhibit axonal sprouting into the 
hippocampus and prefrontal cortex (Szot et al., 2006, 2007). The difference in the response of 
the surviving LC noradrenergic neurons in PD and AD is observed even concerning DBH 
mRNA expression/neuron.  In PD, DBH mRNA expression/neuron is elevated (as 
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indicated above), but in subjects with dementia where TH mRNA expression/neuron is 
elevated, DBH mRNA expression/neuron is not different from controls (McMillan et al., 
2011).  This suggests that the loss of LC noradrenergic neurons does not necessarily result in 
increased DBH mRNA expression/neuron.  Compensation of the LC noradrenergic nervous 
system in AD subjects is also observed in CSF NE levels, where CSF NE levels are similar to 
or elevated to age-matched control subjects (Elrod et al., 1997; Gottfries et al., 1983; Mann et 
al., 1981; Raskind et al., 1984; Toghi et al., 1992).  

4.3 Summary 
It appears then the response of surviving LC noradrenergic neurons in AD, in regards to the 
noradrenergic markers measured, is completely different from the response of surviving LC 
noradrenergic neurons in PD (Table 1).  These noradrenergic markers in AD suggest that 
noradrenergic function in AD subjects may not be reduced and may even exceed function in 
normal subjects, while in PD subject’s noradrenergic function is reduced.  This hypothesis is 
supported clinically.  Orthostatic hypotension, a common non-motor symptom observed in 
PD due to reduced noradrenergic function, is not observed in AD subjects despite a similar 
degree of LC noradrenergic neuronal loss.  A progression of noradrenergic function can be 
drawn between these two neurodegenerative disorders; at one of the spectrum PD 
represents the loss of LC noradrenergic neurons with reduced noradrenergic function, while 
AD represents the other end of the spectrum with the loss of LC noradrenergic neurons but 
enhanced noradrenergic function.  

5. LC innervation of dopaminergic regions  

As indicated above, LC noradrenergic neurons are reduced early in the progression of PD 

(Braak et al., 2003b, 2006).  However, for the noradrenergic system to be involved in the 

progression of PD, LC noradrenergic neurons need to innervate the regions involved in the 

symptoms of PD (i.e., striatum and SN). There is evidence to indicate that the LC 

noradrenergic nervous system can modulate dopaminergic activity at the level of the 

striatum and the SN as well as the ventral tegmental area (VTA) at the anatomical, 

electrophysiological, neurochemical, and behavioral levels.  

5.1 LC innervation to striatum 
LC noradrenergic neurons have direct projections to the striatum, though evidence indicates 

this innervation may be sparse (Aston-Jones et al., 1995; Jones & Moore, 1977; Jones & Yang, 

1985; Mason & Fibiger, 1979; Swanson & Hartman, 1975).  When measured, NE 

concentration in the striatum is low (especially compared to DA), while NET binding (a 

marker of noradrenergic terminals) is not detectable (Szot, Personal communication; Koob et 

al., 1975; Nomura et al., 1976).  However, the striatum does contain a dense amount of beta-

adrenergic receptors (β-AR) (Byland & Snyder, 1976; Dolphin et al., 1979; Rainbow et al., 

1984; Strazielle et al., 1999), as well as alpha2-AR (α2-AR) (Szot, Personal communication; 

Boyajian et al., 1987; Hudson et al., 1992; Nicholas et al., 1992; Scheinin et al., 1994; Strazielle 

et al., 1999; Zeng and Lynch, 1991) and alpha1-AR (α1-AR) (Szot, Personal communication; 

Rommelfanger et al., 2009; Strazielle et al., 1999) binding sites.  Direct application of NE or 

administration of AR agents can affect the activity of striatal neurons and release of DA in 

the striatum (Bevam et al., 1975; Fujimoto et al., 1981; Lategan et al., 1990). 
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5.2 LC innervation to midbrain dopaminergic neurons 
The midbrain dopaminergic neurons in the SN and VTA also receive direct innervation 

from LC noradrenergic neurons (Fritschy & Grzanna, 1990; Jones & Moore, 1977; Jones & 

Yang, 1985; Phillipson, 1979; Simon et al., 1979; Swanson & Hartman, 1975).  The SN and 

VTA regions have detectable levels of NET binding, also indicating direct noradrenergic 

innervation and some of the innervation is from the LC (Szot, Personal communications).  

The SN and VTA also have β-, α1- and α2-AR binding sites (Szot, Personal communication; 

Boyajian et al., 1987; Hudson et al., 1992; Lee et al., 1998; Rainbow et al., 1984; Rosin et al., 

1996; Scheinin et al., 1994; Strazielle et al., 1999).  The LC directly innervates and modifies 

the activity of midbrain dopaminergic neurons; the loss of LC noradrenergic neurons results 

in altered activity of dopaminergic neurons (Collingridge et al., 1979; Grenhoff et al., 1993, 

1995; Grenhoff & Svensson, 1989, 1993; Guiard et al., 2008; Wang et al., 2010). 

5.3 LC altered dopaminergic behavior 
There have been several studies to indicate the ability of LC noradrenergic neurons to 

modulate dopamine-induced behavior, especially when LC noradrenergic neurons are 

reduced (Antelman & Caggiula, 1977; Archer & Fredriksson, 2006; Chopin et al., 1999; 

Grimbergen et al., 2009; Mavridis et al., 1991; Rommelfanger et al., 2007; Taylor et al., 2009; 

Villegier et al., 2003; Wang et al., 2010).  In addition, reducing LC function alone by lesioning 

LC neurons can produce motor symptoms that are observed in PD (Grimbergen et al., 2009; 

Wang et al., 2010).  In support of the LC lesion studies and the consequence of reduced NE 

content, DBH knockout mice, which do not synthesize NE, also exhibit PD motor symptoms 

with age (Rommelfanger et al., 2007).  These data suggest the loss of LC noradrenergic 

function observed in PD may contribute to the motor symptoms of PD. 

6. Neuroprotective effect of LC neurons on dopaminergic neurons 

Since the noradrenergic nervous system experiences a loss of function before the 

dopaminergic system in PD (Braak et al., 2003b, 2006) and the noradrenergic nervous system 

innervates dopaminergic neurons in the SN and VTA (shown above); the noradrenergic 

nervous system could then affect the stability of dopaminergic neurons. There is data to 

support the hypothesis of a neuroprotective effect of the noradrenergic system upon 

dopaminergic neurons in animal models.  To determine if the LC noradrenergic nervous 

system exerts a neuroprotective effect on dopaminergic neurons, a dopaminergic neurotoxin 

needs to be administered.   

6.1 Animal models of PD 
There are several different animal models of PD which have been described in detail 
elsewhere (Betarbet et al., 2002; Dauer & Przedborski, 2003; Jackson-Lewis & Przedborski, 
2007; Luchtman et al., 2009) and are not the focus of this chapter.  The classic PD symptoms 
induced by a variety of dopaminergic neurotoxins are reduced number of SN dopaminergic 
neurons and reduced amount of DA in the striatum.  The most routinely used dopaminergic 
neurotoxins are 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-
hydroxydopamine (6OHDA).  The choice of neurotoxin depends on the species of animal to 
be studied.  MPTP is typically the neurotoxin used to reduce the number of dopaminergic 
neurons in the SN (and to a lesser degree the VTA neurons) in mice and monkeys.  MPTP is 

www.intechopen.com



 
The Noradrenergic System is a Major Component in Parkinson’s Disease 

 

255 

administered peripherally and depending on the dose and the number of times it is 
administered, a mild to severe degree of dopaminergic neuronal loss can be observed 
(Betarbet et al., 2002; Dauer & Przedborski, 2003; Jackson-Lewis & Przedborski, 2007; 
Luchtman et al., 2009).  However, MPTP is not effective in rats (Jackson-Lewis & 
Przedborski, 2007). To reduce the number of SN dopaminergic neurons in rats, 6OHDA is 
administered directly into the medial forebrain bundle using stereotaxic surgery.  The effect 
of 6OHDA in the SN is rapid and appears permanent (Walsh et al., 2011). 

6.2 Enhanced LC function reduces dopaminergic neurotoxin-induced damage 
6.2.1 Neuroprotective effect of enhanced noradrenergic function in tottering and NET 
transgenic mice 
The tottering mouse has a mutation that results in hyperinnervation of noradrenergic 

terminals and increased concentration of NE throughout most regions of the forebrain.   

Administration of MPTP to these mutant mice has less of an effect on dopaminergic 

terminals in the striatum (i.e., loss of DA level) as compared to wild-type mice (Kilbourne et 

al., 1998).  Another transgenic mouse that has enhanced noradrenergic function is the NET 

knockout mouse.  NET knockout mice do not express the transporter protein for NE, which 

are localized specifically to noradrenergic neurons and responsible for removing NE from 

the synapse, resulting in enhanced NE in the synapse.  Administration of MPTP to NET 

knockout mice, again, results in reduced damage to dopaminergic terminals in the striatum 

and DA levels in the striatum as compared to wild-type mice (Rommelfanger et al., 2004).   

These studies indicate that an enhanced noradrenergic system can protect dopaminergic 

neurons in the SN from damage.   

6.2.2 Neuroprotective effect of AR agents 
Another means of increasing noradrenergic function is to administer noradrenergic 
agonists.  Administration of NET inhibitors to increase synaptic NE levels results in reduced 
dopaminergic damage on SN terminals in the striatum and DA levels, resembling the effect 
observed in the NET knockout mouse (Rommelfanger et al., 2004).  Peripheral 

administration of α2-AR agonists such as clonidine and detomidine also reduces MPTP-

induced reduction in striatal DA levels, while administration of α2-AR antagonists enhances 
MPTP-induced damage in mice (Fornai et al., 1995a).  However, when 6OHDA is used as 

the dopaminergic neurotoxin in rats, the peripheral administration of α2-AR antagonists 
reduces the loss of DA in the striatum (Srinivasan & Schmidt, 2004b, c), the opposite of what 

is observed in mice with MPTP.  The ability of α2-AR agents to either enhance or reduce 
damage on dopaminergic neurons could be attributed to the different species (rats versus 
mice) or the neurotoxin (MPTP versus 6OHDA) used.  Another possible reason for the 

conflicting data of α2-AR agents is the complexity of the α2-AR.  The α2-AR receptor is 

composed of three different subtypes: α2A-, α2B-, and α2C-AR.  α2A- and α2C-ARs are localized 
on dendrites and terminals of  noradrenergic neurons where they act as presynaptic 
autoreceptors to regulate the release of NE ( L’Heureux et al., 1986; Van Gaalen et al., 1997; 
Kawahara et al., 1999), as well as postsynaptic receptors on dendrites and terminals of NE 

target cell that regulate the release of other neurotransmitters (heteroreceptors).  α2A-ARs are 

the most abundant α2-AR subtype in the brain, comprising approximately 90% of all central 

α2-ARs (Bucheler et al., 2002).  The highest density of α2C-AR is in the striatum, while α2B-
ARs have a very limited expression in the brain (Nicholas et al., 1993; Zeng & Lynch, 1991).  
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Clonidine and detomidine do not discriminate between the different subtypes, so it is 
unclear how these agonists affect noradrenergic function: reduced NE release and function 
by acting on presynaptic autoreceptors or enhancing NEs action at postsynaptic receptors.  

The same complexity exists for the effects of α2-AR antagonists. 

6.2.3 Summary 
These studies indicate that increased noradrenergic function, either through genetic 
manipulation or pharmacologically, results in less damage to dopaminergic neurons by 
MPTP, indicating a neuroprotective effect of the noradrenergic nervous system on 
dopaminergic neurons.  The major concern with these studies is that the enhanced 
noradrenergic function is not limited exclusively to the LC noradrenergic system.  There is 
also the added complexity of the localization of the different noradrenergic receptors, pre- 
versus post-synaptically, and the differences in expression of AR between rats and mice 

(Szot, 2006) which may contribute to the conflicting results of α2-AR agonists.  Future 
studies could examine the ability of other AR agonists that act postsynaptically to modulate 
susceptibility of dopaminergic neurons to damage or determine if pharmacological agents 
produce a neuroprotective effect after direct administration into a specific brain region such 
as the striatum or SN.  

6.3 Reduced LC function enhances susceptibility of dopaminergic neurons to damage 
An easier approach in determining if the LC noradrenergic nervous system can affect the 
susceptibility of dopaminergic neurons to damage is to reduce the number of LC 
noradrenergic neurons and innervation to forebrain regions.  This approach specifically 
targets the LC noradrenergic neurons, mimicking what is observed in PD.  LC noradrenergic 
neuronal loss has been shown to occur with administration of 6OHDA directly into the LC 
and peripheral administration of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4). 

6.3.1 DSP4 enhances susceptibility of dopaminergic neurons to damage 
DSP4 has been considered a LC selective noradrenergic neurotoxin since 1980s.  The 
determination that DSP4 was a selective LC neurotoxin is based on documented changes in 
terminal noradrenergic fibers in regions innervated mainly by the LC.  The appeal of DSP4 
as a noradrenergic neurotoxin over other methods (like 6OHDA) is that DSP4 can produce 
this central affect by peripheral administration.  DSP4 produces a rapid, though transient, 
reduction in terminal NE concentrations in the frontal cortex, hippocampus and cerebellum 
(Grzanna et al., 1989; Harro et al., 1999a, b; Hughes & Stanford, 1996, 1998; Jonsson et al., 
1981; Kask et al., 1997; Ross, 1976; Szot et al., 2011; Theron et al., 1993; Wolfman et al., 1994).  
As indicated earlier, these regions receive sole innervation from the LC (Aston-Jones et al., 
1995; Jones & Moore, 1977; Loughlin et al., 1986a, b; Mason & Fibiger, 1970; Moore & Bloom, 
1979; Olsen & Fuxe, 1971; Ungerstedt, 1971; Waterhouse et al., 1983) so the original 
hypothesis was that DSP4 affected only LC neurons.  NET binding sites are also reduced in 
specific forebrain regions, indicating a loss of innervation from the LC (Cheetham et al., 
1996; Szot et al., 2010).  The hypothesis that DSP4 was a neurotoxin was supported by TH-IR 
which demonstrated a gradual loss of LC noradrenergic neurons after by DSP4 
administration (Grzanna et al., 1989).  Since these initial descriptions of DSP4 as a 
noradrenergic neurotoxin, there have been other publications suggesting that DSP4 does not 
result in a loss of LC noradrenergic neurons (Booze et al., 1988; Lyon et al., 1983; Matsukawa 
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et al., 2003; Robertson et al., 1993; Szot et al., 2010) and that DSP4 does not selectively affect 
LC noradrenergic terminals (Grzanna et al., 1989; Kask et al., 1997; Szot et al., 2010; Theron 
et al., 1993; Wolfman et al., 1994).  Work in our laboratory indicated that DSP4 may affect 
noradrenergic terminals and specific ARs in many forebrain regions (not just regions 
innervated by the LC), but it does so without a loss of LC noradrenergic neurons (Szot et al., 
2010).  Despite the data that suggests DSP4 may not result in a loss of LC noradrenergic 
neurons, DSP4 does result in a temporary reduction in terminal NE levels in many forebrain 
regions. 
Administration of DSP4 prior to methamphetamine, MPTP or 6OHDA into the medial 
forebrain bundle will increase the damage these dopaminergic neurotoxins exert on SN 
dopaminergic neurons and DA levels in the striatum (Fornai et al., 1995b, 1996, 1997; Marien 
et al., 1993; Srinivasan and Schmidt, 2003, 2004a). The enhanced susceptibility of 
dopaminergic neurons to damage from these dopaminergic neurotoxins is observed at a 
time when DSP4 results in a significant reduction in terminal NE levels.  Administration of 
DSP4 after the dopaminergic neurotoxin does not enhance the susceptibility of 
dopaminergic neurons to damage (Fornai et al., 1997).  These data indicate that a reduction 
in NE levels in forebrain regions will increase the susceptibility of dopaminergic neurons to 
damage.  However, administration of MPTP to DBH knockout mice does not result in 
enhanced loss of SN neurons or DA levels in the striatum as compared to wild-type mice 
(Rommelfanger and Weinshenker, 2007).  Administration of DSP4 prior to the 
administration of MPTP in the DBH knockout mouse does result in enhanced damage to 
dopaminergic neurons and terminals as compared to DBH knockout mice administered 
MPTP alone (Rommelfanger and Weinshenker, 2007).   

6.3.2 6OHDA enhances susceptibility of dopaminergic neurons to damage 
There are few studies examining the direct administration of the neurotoxin 6OHDA directly 

into those LC, though the few that do demonstrate a reduction in the number of LC 

noradrenergic neurons (Bing et al., 1991; Mavridis et al., 1991). Our laboratory has begun to 

examine the specificity of direct LC 6OHDA administration on LC neurons and lateral 

tegmental neurons as well as neurons in the SN and VTA.  We have observed that direct 

administration of 6OHDA into the LC specifically reduces LC noradrenergic neurons, while 

there is no effect on SN or VTA dopaminergic neurons or on lateral tegmental neurons (data 

not shown). 

There are two studies that have examined the ability of LC 6OHDA administration to 

increase MPTP-induced damage to dopaminergic neurons.  Bing et al., (1994) examined the 

ability of LC 6OHDA to enhance MPTP-induced damage in the mouse, while Mavridis et 

al., (1991) examined LC 6OHDA in monkeys.  Both of these studies demonstrated an 

enhanced susceptibility of dopaminergic neurons to damage following LC neuronal loss.  

Preliminary work in my laboratory has begun to examine the effects of 6OHDA 

administration into the LC of mice on the susceptibility of dopaminergic neurons to MPTP. 

We have examined the effect of MPTP (24 mg/kg, ip, twice, 2hrs apart) administered 3 days 

after bilateral administration of 6OHDA into the LC on LC, SN and VTA neurons.  MPTP 

alone did not affect LC noradrenergic neurons, but MPTP alone significantly reduced 

DAergic neurons in the SN (28% reduced) with no effect on VTA neurons (7% reduced).  

However, the combination of 6OHDA + MPTP resulted in a further reduction in SN neurons 

(71% reduced) and a significant reduction in VTA neurons (54% reduced) (data not shown).  
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These data indicate that administration of the noradrenergic neurotoxin 6OHDA can 

increase the susceptibility of dopaminergic neurons to damage. 

6.4 Summary 
These data suggest that enhanced noradrenergic function can protect dopaminergic neurons 

from damage, while reducing noradrenergic function enhances the susceptibility of 

dopaminergic neurons to damage. The number of studies examining this important 

question are few, but the data indicates the LC noradrenergic nervous system can modulate 

the viability of dopaminergic neurons to damage. It is unknown why dopaminergic neurons 

in PD are reduced. The loss of dopaminergic neurons and the appearance of PD symptoms 

occur midway in the progression of the disorder, after the loss of LC noradrenergic neurons. 

Therefore, determining factors that can maintain the stability of dopaminergic neurons in 

the early stages of the disorder is imperative in preventing the loss of dopaminergic neurons 

and the onset of PD symptoms.  Since LC neuronal loss occurs early in the progression of 

PD and is a prominent neuropathologic change in PD, an animal model examining the 

neuroprotective effect of the noradrenergic nervous system on dopaminergic neurons must 

exhibit reduced LC noradrenergic neuronal number, so DSP4 may not be the best animal 

model of LC neuronal loss.  Future work will determine if there is a particular time 

following the loss of LC noradrenergic neurons that renders the dopaminergic neurons 

more susceptible to damage, or it may be that following administration of MPTP, animals 

with reduced LC function do not recover from the damage induced by MPTP. 

7. Noradrenergic agents relieve L-DOPA-induced dyskinesia 

7.1 Chronic L-DOPA therapy induces dyskinesia 
In addition to the potential neuroprotective effect of the noradrenergic nervous system on 

dopaminergic neurons early in the progression of PD, the noradrenergic nervous system 

may also improve therapy of PD subjects. As indicated above, L-DOPA is the primary 

therapy in the treatment of PD motor symptoms.  However, chronic treatment of L-DOPA in 

PD subjects results in permanent severe side effect, dyskinesia (abnormal involuntary 

movements).  The incidence of dyskinesia in PD subjects increases with the length of time on 

L-DOPA therapy; 30% of patients experience dyskinesia after 4-6 years to 90% after 9 years 

(Rascol et al., 2000; Ahlskog & Muenter, 2001).  The underlying mechanism behind L-

DOPA-induced dyskinesia is thought to be extraphysiological DA release resulting in 

aberrant receptor signaling in the striatum; this enhanced dopaminergic signaling then 

dysregulates subsequent striatal output (Cenci, 2007, 2009; Winkler et al., 2002).  Until a 

means of preventing the onset of PD occurs or a new treatment for PD that does not result in 

dyskinesia is found, adjunct pharmacological therapy with L-DOPA that prevents or 

reduces dyskinesia is the focus of future work in PD therapy.   

7.2 AR antagonists reduce L-DOPA-induced dyskinesia 

As indicated earlier, the different types of ARs (β-, α1- and α2-ARs) are localized to the 
striatum and AR agents can alter the activity of striatal neurons (see above).  However, at 
the present time it is unclear if the loss of LC noradrenergic neurons early in the progression 
of PD contributes to the L-DOPA-induced overactivity of striatal neurons that ultimately 
results in dyskinesia (Marin et al., 2008) or how L-DOPA therapy affects noradrenergic 
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neurons (Figure 2).  What is known is that α2-AR agonists can facilitate movement by acting 

through the striatum (Hill and Brotchie, 1999).  Therefore, α2-AR antagonists have been 

studied as a potential adjunct therapy to reduce L-DOPA-induced dyskinesia.  α2-AR 
antagonists, yohimbine, idazoxan and fipamezole reduce L-DOPA dyskinesia in the MPTP 

and 6OHDA PD animal models and in Parkinsonian patients.  These α2-AR antagonists 
reduce L-DOPA-induced side effects without affecting the anti-parkinsonian effect of L-
DOPA (Brotchie, 2005; Buck et al., 2010; Colosimo and Craus, 2003; Chopin et al., 1986; 
Gomez-Mancilla and Bedard, 1993; Grondin et al., 2000; Henry et al., 1999; Lundblad et al., 

2002; Rascol et al., 2001; Savola et al., 2003).  However, the anti-dyskinetic effect of α2-AR 
antagonists may be limited to just L-DOPA; idazoxan did not reduce apomorphine-induced 

dyskinesia (Fox et al., 2001). The α2-ARs are not the only receptor capable of modulating L-

DOPA-induced dyskinesia.  Because β-ARs are found in large concentrations in the striatum 

(see above), studies are now beginning to determine if β-AR antagonists, such as 
propranolol, can reduce L-DOPA-induced dyskinesia.  These studies indicate that 
propranolol also reduces L-DOPA-induced dyskinesia (Goshima et al., 1991; Reisine et al., 

1982; Carpentier et al., 1996; Dekundy et al., 2007).  α1-AR antagonist also reduces L-DOPA-
induced dyskinesia; however, this receptor subtype has not been investigated to the same 

degree as α2- and β-AR antagonists (Buck and Ferbeger, 2010). 

8. Conclusion 

The dopaminergic nervous system has been the major focus of research in PD for many 
years, and rightly so because it is the loss of dopaminergic neurons and function that is 
responsible for the appearance of the motor symptoms that define PD.  However, the 
noradrenergic nervous system appears to play an important role in the progression of PD 
and in the therapy of PD.  LC noradrenergic neurons are reduced early in the progression of 
PD, even before dopaminergic neurons.  Animal models suggest that the loss of LC 
noradrenergic neurons will enhance the susceptibility of dopaminergic neurons to damage.  
Understanding the relationship of LC neuronal loss to enhanced dopaminergic 
susceptibility to damage introduces a time window in which pharmacological intervention 
could prevent the loss of dopaminergic neurons and the appearance of motor symptoms.  
But until this relationship is examined, the noradrenergic nervous system can be used to 
reduce Dyskinesia, the severe side effects of chronic L-DOPA therapy.  These data indicate 
the importance of examining neurotransmitter systems other than DA and determining the 
role of transmitters, such as NE, in affecting PD. 
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