
λογος

Human Data Understanding

Sensors, Models, Knowledge

Editors: Frank Deinzer & Marcin Grzegorzek

Frank Ebner

Smartphone-Based

3D Indoor Localization

and Navigation

Human Data Understanding

Sensors, Models, Knowledge

Vol. 1

Human Data Understanding

Sensors, Models, Knowledge

Volume 1

Herausgegeben von

Prof. Dr.-Ing. Frank Deinzer

Hochschule für angewandte Wissenschaften

Würzburg-Schweinfurt

Prof. Dr.-Ing. Marcin Grzegorzek

Universität zu Lübeck

Frank Ebner

Smartphone-Based 3D Indoor Localization

and Navigation

Logos Verlag Berlin

λογος

Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche National-
bibliografie; detailed bibliographic data is available in the Internet at
http://dnb.d-nb.de.

Logos Verlag Berlin GmbH 2021

ISBN 978-3-8325-5232-9
ISSN 2701-9446

Logos Verlag Berlin GmbH
Georg-Knorr-Str. 4, Gebäude 10
12681 Berlin

Tel.: +49 (0)30 / 42 85 10 90
Fax: +49 (0)30 / 42 85 10 92
http://www.logos-verlag.de

From the Institute of Medical Informatics

of the University of Lübeck

Director: Prof. Dr. rer. nat. habil. Heinz Handels

“Smartphone-Based 3D Indoor Localization and Navigation”

Dissertation

for Fulfillment of

Requirements

for the Doctoral Degree

of the University of Lübeck

from the Department of Computer Sciences and Technical Engineering

Submitted by

Frank Ebner

from Werneck

Lübeck 2020

First referee: Prof. Dr.-Ing. M. Grzegorzek

Second referee: Prof. Dr.-Ing. A. Schrader

Third referee: Prof. Dr.-Ing. F. Deinzer

Date of oral examination: 21.09.2020

Approved for printing: Lübeck, 30.09.2020

Acknowledgements

During my master’s thesis, which covered the essentials of Wi-Fi location estimation, I came in

contact with the concepts of indoor localization, and multi sensor fusion. Having attracted my

interest, I hereafter joined the Faculty of Computer Science and Business Information Systems

at the University of Applied Sciences Würzburg-Schweinfurt as a research assistant. During

that time I conducted the majority of my research on indoor localization and navigation, which

finally lead to writing this work.

I would like to thank my colleagues during that time, but especially my local doctoral adviser

Prof. Dr. Frank Deinzer. Not only did he guide me towards earning a doctors degree, he also

provided extensive feedback to all publications, always ensuring utmost scientific quality. I

would also like to thank my external doctoral adviser and first referee Prof. Dr. habil. Marcin

Grzegorzek for his trust, all provided feedback, and the warm welcome within his research

group. I also owe gratitude to my co-workers Lukas, Toni, and Markus. Without hours of

mutual feedback, technical input, paired programming, data acquisition, and networking, this

work would not have been possible. Likewise, I also wish to thank Prof. Dr. Karsten Huffstadt

and Prof. Dr. Arndt Balzer for helping with funding my initial employment.

In order to develop a generic indoor localization and navigation solution, the presented

system was deployed to and tested within several unique buildings. For this, special thanks

go to Dr. Hellmuth Möhring from the RothenburgMuseum in Rothenburg ob der Tauber, Prof.

Dr. Günther Moosbauer from the Gäubodenmuseum in Straubing, Angelika Schreiber from

the Hutmuseum in Lindenberg, the Landesstelle für die nichtstaatlichen Museen in Bayern, and

the Sparkassenstiftung. By providing access and enabling temporal hardware installations they

allowed gathering data within a range of unique and representative public buildings, enhancing

the quality of the developed system, and the experiments provided within this work.

Thanks also go to Markus, Christin, Alexander, and Maximilian, not only for spending

numerous hours of their spare time with proof reading and feedback, but also for all emotional

support while conducting my research and writing this work. The same goes to my parents, for

always supporting me, and my education.

To Katharina, who has been a true friend, and will never be forgotten.

Frank Ebner

Abstract

With the steadily increasing need and wish to travel, people often have to reach locations they

have never been to before. Modern means of transportation, like cars, ships and planes, thus

come equipped with onboard navigation systems, assisting with this task, based on the global

positioning system (GPS), or a derivative. However, the navigation task is not solely limited

to outdoor environments. Reaching the correct gate within an airport, finding a ward in an un-

known hospital, or the auditorium within a new university, represent navigation problems as

well. With the GPS requiring a direct line of sight towards the sky, it is unavailable for absolute

location estimation indoors. Therefore, the question for suitable indoor navigation techniques

arises. Besides localization accuracy, additional factors should be met for such a new system

to become a success. It should be easy to set up and maintain, limiting required working hours

and costs. Likewise, hardware for the users themselves should be cheap, and readily available.

Due to the ubiquity of smartphones, these devices represent a desirable platform for pedestrians,

backed by the variety of sensors installed in these devices. Within this work, smartphone-based

pedestrian indoor localization and navigation is discussed in detail. This covers examining the

suitability of several available sensors: step-detection using readings from the accelerometer,

relative turn-detection utilizing the turn rates of the gyroscope, absolute heading estimations

based on the magnetometer’s indications, and altitude evaluation from the barometer. While all

aforementioned sensors do not require any additional infrastructure, thus suitable for all sorts

of buildings, they only allow for relative location estimations. Absolute localization can utilize

Wi-Fi, as it is supported by all smartphones, and most public buildings already contain the re-

quired infrastructure. Due to the behavior of radio signals, the smartphone’s current location

can be approximated by examining signal strengths of nearby transmitters. This aspect is of-

ten utilized by Wi-Fi fingerprinting, which, however, requires a time consuming setup process.

Therefore, an alternative is developed that allows for significantly faster setup times. Addition-

ally, the building’s 3D floorplan is included, modeling potential pedestrian movements, limit-

ing impossible walks to improve estimation results, and to provide routing towards a desired

destination. For this, two spatial floorplan representations are derived and examined. All afore-

mentioned aspects are hereafter combined probabilistically, using recursive density estimation

based on the particle filter. This allows for fusioning all sensor observations while respecting

their individual uncertainties, and the building’s floorplan as additional constraints.

To summarize, the system described within this work covers probabilistic 3D pedestrian

indoor localization, using commodity smartphones, contained sensors, a building’s existing in-

frastructure and floorplan, all combined by the particle filter to derive an indoor localization and

navigation system that is easy to set up and maintain.

Zusammenfassung

Mit dem stetig zunehmenden Reisewunsch finden sich Menschen immer häufiger vor der Auf-

gabe, bislang unbekannte Orte zu erreichen. Moderne Transportmittel, wie Autos, Schiffe und

Flugzeuge sind deshalb mit GPS-basierten Navigationssystemen ausgestattet, die hierbei un-

terstützen. Allerdings ist der Navigationsaspekt selten nur auf den Außenbereich beschränkt.

Das richtige Gate im Flughafen zu finden, eine Station im Krankenhaus, oder den Hörsaal in der

neuen Universität, ist oft ähnlich anspruchsvoll. Da das GPS jedoch eine direkte Sichtverbin-

dung benötigt, steht dieses innerhalb von Gebäuden nicht zur Verfügung. Hier stellt sich deshalb

die Frage nach geeigneten Alternativen. Für Neuentwicklungen müssen neben der Positionsge-

nauigkeit auch andere Aspekte berücksichtigt werden. Das System sollte nicht nur wartbar, son-

dern auch kostengünstig ausrollbar sein. Auch für die Nutzer sollten die Anschaffungskosten

so gering wie möglich ausfallen. Smartphones stellen aufgrund ihrer Allgegenwärtigkeit und

Vielzahl von Sensoren deshalb eine ideale Zielplattform dar. In dieser Arbeit werden verfügbare

Sensoren auf ihre Tauglichkeit untersucht: Schritterkennung mittels Beschleunigungssensor,

Laufrichtungsschätzung via Magnetometer, Laufrichtungsänderungen gemessen durch das Gy-

roskop, und Höhenbestimmung per Barometer. Diese Sensoren stellen zwar keinerlei An-

forderungen an das Zielgebäude, liefern jedoch lediglich relative Informationen bzgl. möglicher

Aufenthaltsorte. Eine absolute Positionsbestimmung wird über Wi-Fi ermöglicht, welches von

allen Smartphones unterstützt wird und in den meisten öffentlichen Gebäuden verfügbar ist.

Basierend auf dem Verhalten von Funksignalen lässt sich der aktuelle Standort des Smartphones

aus den Signalstärken der nahegelegenen Access Points ableiten. In der Literatur wird hierfür

häufig auf Fingerprinting zurückgegriffen, welches zwar genau, aber aufwending in der Ein-

richtung ist. Deshalb wird eine Alternative erarbeitet, die die Einrichtungszeit und Kosten stark

reduziert. Zusätzlich wird ein 3D Gebäudeplan verwendet, der mögliche und unmögliche Be-

wegungen von Fußgängern bestimmen, und die kürzeste Route zu einem gewünschten Ziel

berechnen kann. Beides dient der Verbesserung der Vorhersagen des Gesamtsystems. Hierfür

werden zwei verschiedene Repräsentationen des Gebäudeplans erzeugt und untersucht. Alle

vorherigen Komponenten werden schließlich über rekursive Dichte-Schätzung mittels Partikel-

Filter zusammengeführt. Mit dieser lassen sich alle Sensor Messungen inklusive ihrer Un-

sicherheiten kombinieren, und auch der Gebäudeplan kann als zusätzliche Rahmenbedingung

integriert werden, um unmögliche Bewegungen auszufiltern.

Zusammenfassend beschreibt diese Arbeit ein auf Wahrscheinlichkeitsrechnung basierendes

3D Lokalisations- und Navigations-System für Fußgänger in Gebäuden, das alle Informationen

mittels Partikel Filter kombiniert, einfach einzurichten und zu warten ist. Vorausgesetzt werden

lediglich ein Smartphone, eine vorhandene WLAN-Infrastruktur und ein Gebäudeplan.

Contents

1 Introduction 1

1.1 Navigation within Buildings . 3

1.2 Research Objective . 7

1.3 State of the Art . 9

1.4 Scientific Contribution . 12

1.5 Structure . 13

2 Probabilistic Sensor Models 15

2.1 Sensor Errors . 16

2.2 Probabilistic Problem Formulation . 19

2.3 Global Positioning System . 21

2.4 Inertial Measurement Unit . 27

2.4.1 Step-Detection . 30

2.4.2 Turn-Detection . 37

2.4.3 eCompass . 47

2.5 Barometer . 53

2.6 Activity-Detection . 58

2.7 Wi-Fi and Bluetooth Beacons . 62

2.7.1 Signal-Strength and Propagation . 63

2.7.2 Signal-Strength Prediction Models . 67

2.7.3 Probabilistic Location Estimation . 73

2.7.4 Location Estimation Using Lateration 75

2.7.5 Location Estimation Using Fingerprints 78

2.7.6 Location Estimation Using Propagation Models 85

2.7.7 Error Compensation . 95

2.8 Summary . 99

i

3 Probabilistic Movement Models 101

3.1 Probabilistic Problem Formulation . 102

3.2 Simple Models without Floorplan Information 106

3.3 Simple Models with 2D Floorplan . 112

3.4 Overview on Spatial Models for Indoor Floorplans 118

3.5 Regular Spatial Models for 3D Movement Prediction 120

3.5.1 Generation Based on an Existing Floorplan 123

3.5.2 Random Walks on Graphs . 128

3.5.3 Navigation . 135

3.5.4 Continuous Results . 138

3.6 Irregular Spatial Models for 3D Movement Prediction 141

3.6.1 3D Navigation Meshes . 144

3.6.2 Movement Prediction . 145

3.6.3 Navigation . 150

3.7 Summary . 153

4 Recursive Density Estimation 155

4.1 Probabilistic Information Fusion . 159

4.2 Bayes Filter . 161

4.3 Kalman Filter . 166

4.4 Extended Kalman Filter . 172

4.5 Particle Filter . 175

4.5.1 Random Sampling . 181

4.5.2 Resampling . 185

4.5.3 Estimation . 187

4.6 Summary . 190

5 Indoor Navigation 191

5.1 Complex Indoor Maps . 192

5.2 Fusing All Components . 195

5.2.1 Update Frequency . 197

5.2.2 Including Observations . 199

5.2.3 Handling Impossible Movements . 202

5.2.4 Detecting and Handling Deadlocks 205

5.3 Real-World Considerations . 207

5.3.1 Sensitive Locations . 207

ii

5.3.2 Data Acquisition . 208

5.4 Performance Considerations . 210

5.4.1 Precomputed Model Predictions . 210

5.4.2 Code Optimization . 212

5.5 Summary . 213

6 Experiments 215

6.1 Testbeds and Data Acquisition . 216

6.2 Evaluation of Sensor Components . 221

6.2.1 Sensor Overview . 221

6.2.2 Step Detection . 222

6.2.3 Relative and Absolute Heading Estimation 226

6.2.4 Pedestrian Dead Reckoning . 234

6.2.5 Altitude Estimation . 238

6.2.6 Activity Detection . 241

6.2.7 Wi-Fi Location Estimation . 244

6.3 Evaluation of Movement Models . 256

6.3.1 Spatial Floorplan Representation . 256

6.3.2 Navigation . 259

6.3.3 Floorplan-Based Probabilistic Pedestrian Dead Reckoning 262

6.3.4 Limitations . 268

6.4 Evaluation of the Overall System . 273

6.5 Summary . 278

7 Summary 281

8 Future Work 285

List of Figures 289

List of Tables 295

List of Symbols 297

Bibliography 301

Appendix 329

A.1 Tilt Compensation Example . 329

iii

A.2 Step-Detection Filters . 331

A.3 Additionally Used Maps . 332

A.4 Final System Results . 334

iv

Chapter 1

Introduction

Finding a specific place or location one has never been to, or hasn’t been to for a long time,

is a common task that everybody encounters from time to time. Back in the days, almost

everyone had a road map stowed away within the car’s glovebox, ready to use, whenever needed.

However, without a co-driver, reading the map and providing instructions, this was a quite

cumbersome solution for getting from A to B. This situation changed in the year 2000, when

the former military-only global positioning system (GPS) became freely available for civilian

use. Now it was possible to locate objects anywhere on the earth, with an accuracy down to a

few meters, using just a single receiver. Combined with digitized maps, this allowed for both,

self-localization and navigation [DH10].

Starting from there, it only took several months for receivers to become both, significantly

cheaper and smaller, and companies like TomTom or Garmin started developing products for

motor vehicles, using digital maps from vendors such as Tele Atlas or Navtech. At first, naviga-

tion systems were either installed directly within a vehicle, or required fully featured hardware,

like portable computers equipped with an external receiver. Yet, with the advent of Personal

Digital Assistants (PDAs), containing even smaller GPS receivers and mass storage devices

based on flash memory, navigation systems became portable. Today, almost every new smart-

phone is suitable for GPS-based navigation, using its built-in sensors, as well as a piece of

software that includes the necessary maps and navigation algorithms.

Inexpensive receivers for GPS, new similar systems, like GLONASS, and (freely) available

maps for almost every place on earth, lead to the ubiquity of navigation systems. Thus, their

success was not only based on demand, but also on the availability of relatively affordable

components for hardware, software, and low running costs. At least for the customer: Consumer

hardware can be used for several years, and, depending on the vendor, map updates are either

free of charge, part of an annual subscription, or charged per update.

1

2 CHAPTER 1. INTRODUCTION

For providers, however, the situation is different. Additionally to several billion dollars for

the initial development and setup, the infrastructure behind GPS has to be kept up and running,

costing additional millions – per day. While licensing fees, e.g. for access to increased accuracy,

compensate for some of these costs, the remaining part is paid by the US government. Running

costs for the vendors of navigation appliances can be expected to be much cheaper. However,

due to rapid changes in infrastructure, they have to provide up-to-date mapping data, resulting

in many companies charging for updates [Pac+95; DH10]

Due to ever-increasing globalization and transnational business connections, the need and

wish to move or travel is constantly increasing. Besides getting to airports, train stations or

company compounds, the buildings themselves often represent a navigation problem as well:

Finding the correct terminal within an airport, the conference room in a large company, a room

within a townhall, or the correct ward within hospitals, isn’t always straightforward. With this

in mind, localization and navigation indoors becomes of increasing importance as well.

However, while working perfectly for most navigation purposes, e.g. for cars, pedestrians

and cyclists, currently available systems are unsuited, as both, the sensors and the typical map

formats, are intended for outdoor use. For good location estimations, GPS relies on a direct

line-of-sight between satellites and receiver, and older devices thus had to be installed on top of

the car, in order to function properly. Similarly, the format of most digitized maps is focused on

outdoor purposes, as the underlying data structures mainly use a two-dimensional representation

of roads, lanes, and intersections, unsuited for modeling a building’s interior.

Furthermore, when considering indoor environments, completely different use cases, be-

sides typical navigation from A to B, arise as well. Starting from finding a specific product

within a large supermarket, to the economy’s interest in location-based services, e.g. placing

ads for nearby products as well. Also covering cultural aspects, like guided tours through a

museum, presenting useful information on exhibits, based on the visitor’s current location and

viewing direction. Depending on the building and intended use case, requirements can be com-

pletely different. This especially concerns the aspect of localization accuracy. While a coarse

GPS location estimation is sufficient for a car driving along the motorway, it can be too er-

roneous for a slowly paced pedestrian, walking through an area with many small alleyways.

The same holds true for localization indoors, where estimating the current whereabouts on a

room-level scale might be sufficient for some intentions, like presenting information on nearby

exhibits. For others scenarios, such as navigation, however, estimations should be as accurate

as possible, for audible commands and visualizations given to the user, to be helpful instead of

misleading.

Therefore, the question arises, how such a multi-purpose indoor localization and navigation

system can be developed, and what criteria should be met for it to be valuable.

1.1. NAVIGATION WITHIN BUILDINGS 3

1.1 Navigation within Buildings

Based on the previous aspects, it becomes clear that the topic of localization indoors is not solely

related to sensors and achievable accuracy, but also to costs, for initial setup, maintenance over

time, software and hardware required by the consumer, and by the system’s operator. In case of

localization indoors, the latter is unlikely to be a government, like it is for the GPS, GLONASS

or Galileo, but more likely the owner of the building to deploy the system to, like an airport,

hospital, supermarket or museum. This gives even more importance to the aspect of costs,

as many public buildings that benefit from indoor localization, like townhalls or museums,

typically are on a tight budget. Closely coupled with costs is the time required for setup and

servicing, as they also arise per building, additionally dependent on its size. As known from

other projects, the solution is a tradeoff between quality (accuracy), time and costs.

Similar aspects apply to the required building maps. As it is unlikely for a global company

to create maps for every single building, where indoor localization could possibly be used, this

data has to be supplied by the operator or a public community, dedicated to this task [Ope].

Furthermore, in contrast to maps for navigation outdoors, indoor maps can be rather eclectic,

as they have to support buildings with multiple floors, elevators, escalators, and different types

of stairs [EBS16; Elh+14]. Depending on the intended use case, they should also support

adding semantic information, like room numbers, points of interest, and access restrictions or

limitations. The latter is especially relevant to the disabled, who are unable to take stairs, or

require additional audible information when visually impaired. These aspects can also affect

the topic of navigation, as the shortest path towards the destination might not be the best solution

for all pedestrians, especially not for those being handicapped or injured.

Based on the previously mentioned thoughts, a non-exhaustive list of requirements for in-

door localization and navigation thus contains the following aspects:

• Software and Hardware required by the consumer should be as cheap as possible, with

required components being small and always at hand, if possible.

• The system’s accuracy must be sufficient for a pedestrian to be localized within the build-

ing, and to provide navigation guidance. Hereby, sufficient is not quantifiable, strongly

depends on the intended use case, and the building’s architecture, as narrow corridors

with many adjacent rooms require a higher accuracy than e.g. large, open shopping malls.

• Time and costs for the initial system setup should be as low as possible. This includes

costs for all necessary hardware components, time for their setup, and effort needed to

provide a digital map of the building’s floorplan.

4 CHAPTER 1. INTRODUCTION

• Time and costs for maintenance after the initial setup should be as low as possible. Ideally,

the system is easily adaptable to architectural changes, like new/removed drywalls.

• Partial failures of the infrastructure should not completely disable the whole system, only

may affect the provided accuracy.

Besides use case-dependent details, the question of suitable hardware components is the

most critical. As existing positioning methods like GPS and GLONASS do rarely work indoors,

other sensors are required to infer an absolute location. As of today, there is no established

solution, and this matter is still open for new suggestions. However, to conform with previous

discussions, it should not only be accurate, but also cheap, and easily available. Therefore, most

ongoing research is targeted at smartphones, as they are ubiquitous, almost always at hand, and

contain an increasing number of sensors [Tia+15; Gui+16; Ndz+17; Ye+14; Mou+15; Kir+18].

That is in contrast to outdoor navigation, where new platforms started to develop around the

existence of a single sensor. For indoor localization and navigation, a desirable target platform is

already available, and the question arises, whether it is suitable for the intended task. This lead

to numerous new research topics, analyzing the suitability of certain sensors, that are installed

within commodity smartphones. Most of them are adapted from previous research in different

fields, where some sensor or component has already been proven helpful.

This e.g. covers velocity and heading, estimated from an accelerometer and a gyroscope,

together providing the base for dead reckoning [ND97], which allows relative (incremental)

location estimations, if initial whereabouts are known. This technique already underwent ex-

tensive research to adapt it from vehicles to pedestrians. Yet, the focus was mainly on multiple

sensors, attached to different parts of the body, picking up leg movement and turning behavior

of a pedestrian, well-suited for motion estimations [SD16; TS12; Goy+11]. With the rising

interest in indoor localization, it began to be adapted to smartphone-only setups, where the

orientation of the device has to be considered, when the pedestrian e.g. holds the smartphone

upfront, looking at its screen while navigating through a building [PHP17; Yu+19; Kus+15].

Yet, with dead reckoning providing information on relative movements, it is only suitable

when initial whereabouts are known, and it is likely to fail over time, due to increasing errors.

For actual indoor localization, hints on absolute whereabouts are mandatory. For this, former

research on Wi-Fi-based location estimation [BP00] became of interest again. By using signal

strength observations from nearby access points, it is possible to roughly estimate the distance

towards them, and thus a coarse, absolute location information. This strategy also conforms

with most aforementioned requirements: As of today, most public buildings are equipped with

Wi-Fi, already containing the required infrastructure, and Wi-Fi is supported by all modern

smartphones. However, besides these positive aspects, achievable accuracy is either too coarse,

1.1. NAVIGATION WITHIN BUILDINGS 5

50m

Figure 1.1: Example of a complex single-floor, with large open spaces and small adjacent rooms. First

floor of the UAH building of the University of Alcalá de Henares, Spain.

or a manual and time-consuming setup is required beforehand. During the latter, accuracy

is increased by actually measuring the behavior of the installed infrastructure’s radio signals,

throughout the whole architecture. Thus, this area is still undergoing extensive research.

In contrast to navigation outdoors, there is not yet a single sensor that solves the problem

formulation with sufficient accuracy. Instead, research tends towards employing combination

of multiple components, each of which providing a contribution to the overall result. Besides

the two mentioned examples for relative and absolute estimations, various other sensors, such

as the camera, magnetometer or barometer, which are also found within smartphones, can thus

be of interest as well [HB08; Shu+15; Mur+14].

Alongside sensors, where some components already seem established, mapping still re-

quires extensive research. In outdoor navigation, a graph data structure is ideal to model rivers,

roads and interconnections, for both, displaying and routing. Considering indoor use cases,

however, there is not yet a clear best-candidate among potential data structures [ARC12]. In-

door environments are less restrictive and often inhomogeneous, ranging from narrow hallways

with multiple adjacent rooms, to large open spaces, as can be seen in figure 1.1 and 1.2. This

scalability must be supported by the chosen model, including minor details where needed, yet

without requiring too much memory. Furthermore, the map has to provide all the semantic infor-

mation that might be required for some sort of sensor component. Additionally, multiple floors

and their interconnections, like stairs, escalators or elevators, are also a strong requirement. Not

to mention editability, as the map has to be generated for each and every building, with support

for including future architectural changes. The problem of creating a 3D representation of such

a multistory building has already been solved by computer graphics [KSS17]. Yet, determin-

ing whether a particular movement is possible, calculating the shortest path towards a room

or point of interest, correctly including stairs and elevators, all while being computationally

efficient, still is a topic of active research.

6 CHAPTER 1. INTRODUCTION

Deutsches Hutmuseum Lindenberg, Germany RothenburgMuseum, Germany

Figure 1.2: Two complex multi-floor buildings. While the left one is stacked almost evenly, the right one

is irregular in size, shape, and floor-level. The distance between floors was increased for visualization.

Mentioned earlier, the floorplan not only serves as a visualization to the user, it contributes

valuable information as well. The map within car navigation systems is also used to compensate

uncertainties of the GPS, e.g. by placing the virtual car onto the nearest road. Additionally, when

the car drives through a tunnel, and the GPS signal is lost, the last known velocity and heading

can be used to continue predicting the car’s whereabouts, based on the underlying mapping

information. Similar aspects apply to localization and navigation indoors, where the map is

used to denote possible movements, limit impossible movements, and to prevent the impact

of sensor uncertainties and errors. For example, assuming two subsequent absolute location

observations to be ten meter apart from each other. Such a change in location is likely, when

both locations refer to the same floor, and several seconds have passed between the two sensor

observations. Similarly, such a change is unlikely, when e.g. only one second has passed, or

both locations belong to two different floors, and neither stairs nor elevators nor escalators are

nearby. By combining assumptions on pedestrian walking behavior and information provided

by the floorplan, probabilities for potential location changes can be inferred.

Aforementioned aspects lead to the requirement for a technique, which fuses all available

information, to derive the overall result. As every sensor provides its own point of view, there

is no straight-forward solution of combining all observations. Especially in case of sensors

indicating relative location changes, restrictions of the floorplan should be included to rule out

physically impossible movements. Furthermore, every single component is subject to different

types of errors that must be considered as well. The overall task thus is to determine the most

likely whereabouts, based on all sensor observations, assumptions, and the building’s floorplan.

Depending on the complexity of the latter, and the number of sensors, this task can exceed the

capabilities of embedded devices, and represents an extensive research topic on its own [Gus10].

Based on all presented thoughts and requirements, the research objective of this work is

formulated within the following.

1.2. RESEARCH OBJECTIVE 7

1.2 Research Objective

In contrast to outdoor navigation, where most devices were developed around a single sensor,

with its accuracy sufficient for most use cases, as of today, pedestrian indoor localization relies

on multiple sensors, with the smartphone representing a desirable target platform. The goal

of this work is to derive a scalable system for pedestrian indoor localization and navigation,

targeting this platform. Thus, the focus is solely on smartphones, the sensors available within,

and to build a system that is suitable for most use cases, easy to set up and maintain. Neither

requiring large amounts of time, nor cost for setup and infrastructure. While considering solely

sensors and infrastructure available as of today, the discussed system is intended to be scalable,

allowing for easily including new sensors in the future. For the use case of localization and

navigation, the smartphone is expected to be held upfront by the pedestrian, e.g. looking at

navigational advice, presented on the device’s screen. This aspect is relevant to certain sensors

and corresponding coordinate systems, discussed throughout the course of this work.

With GPS being unavailable indoors, Wi-Fi is considered the main component for absolute

location information, as required infrastructure is available within most buildings where local-

ization or navigation are a benefit, and it is supported by most of today’s smartphones [BP00;

YA05; Roo+02; Liu+12]. Yet, with the expected accuracy being insufficient for navigation, ad-

ditional sensors are required. Here, the focus is on well-known dead reckoning techniques that

are adapted for use on smartphones. This e.g. covers the smartphone being held upfront by the

pedestrian, therefore applying required compensation techniques. Besides, additional sensors,

such as the barometer and magnetometer, will also be considered, providing further information

to increase the overall accuracy, without affecting setup, costs or maintenance. As discussed,

every sensor component is subject to different types of errors that have to be handled accord-

ingly. Therefore, the focus is on probabilistic approaches, including all sensor observations

based on their likelihood. That is, for every individual component, a probabilistic model will

be derived, describing the likelihood of some whereabouts or movements, from every sensor’s

point of view.

Not only relevant for visualization purposes, but also for limiting impossible movements or

for providing routing information to derive the best path towards some destination, the build-

ing’s floorplan represents the second major research objective. Conforming with sensors and

aforementioned aspects, probabilistic movement models will be derived, where the floorplan is

used to describe potential and unlikely pedestrian movements.

The information from individual smartphone sensors is combined by sensor fusion, based

on recursive density estimation [MU49; Mar51; Sär13]. This is used to determine the globally

most likely whereabouts, based on all sensors observations since starting the estimation process.

8 CHAPTER 1. INTRODUCTION

Acceleromter Gyroscope Magnetometer

IM
U

Wi-Fi GPS Barometer

S
en

so
rs

R
ec

u
rs

iv
e

D
en

si
ty

E
st

im
at

io
n

3D MapMovement Prediction

Evaluation

Location Estimation

Navigation Grid

Navigation Mesh

F
lo

o
rp

lan

Editor

R
ec

u
rs

io
n

Figure 1.3: Brief overview of the overall system. Floorplan and Sensors represent the main source of

information, combined via recursive density estimation, determining the most likely whereabouts.

By considering the history of all sensor observations, relative location information, like afore-

mentioned dead reckoning, are supported as well, and results are refined over time. Throughout

this process, the floorplan will be included, used to e.g. filter impossible movements that would

cross a wall or other obstacles. To include individual errors, chances and similar, all required

calculations are given on a probabilistic basis.

Figure 1.3 provides an overview of the overall system, its individual components, and the

way they interact with each other. This figure is intended to provide a brief impression on the

global research objective, without going into details of each and every component. As can be

seen, the sensors and the building’s floorplan represent the two main sources of information,

combined via recursive density estimation. Both, sensors and floorplan, are intended to be

interchangeable, with the ability to include new sensors and spatial models, scaling with new

future components. To get an impression on the impact of choosing some specific data structure,

two different spatial floorplan models, as well as their advantages and disadvantages, will be

discussed. This also addresses the topic of how to include semantic information, e.g. to label a

room, or to include additional information, useful for routing or people with special needs.

To summarize, the focus of this research is on deriving a smartphone-based pedestrian in-

door localization and navigation system, enabling to localize oneself within a building, e.g. for

navigating to a desired destination. This is achieved by adapting existing techniques to this use

case, combining the information form several smartphone sensors with movement prediction

based on the building’s floorplan, by using probabilistic sensor fusion. Other use cases, such as

localizing all pedestrians currently residing within a building [Xu+13], are not covered by this

work. Also excluded are topics that are related to indoor localization, but not to pedestrians,

like determining the current location of some equipment within a large industrial compound

[Nuc+04; Kar+17]. Furthermore, the focus is solely on ubiquitous components. Special hard-

ware for accurate localization indoors, such as ultra-wideband [FG02], is thus not considered.

1.3. STATE OF THE ART 9

1.3 State of the Art

This section provides a brief overview on the current state of the art, concerning the main

topics identified during previous remarks and the research objective. More detailed overviews,

and related work from other researchers, are given within each of the chapters, and individually

for every topic.

While indoor localization and navigation became of increasing interest to researchers during

the last decade, there is no standardized solution yet. Even when referring solely to smartphone-

based systems, the sensors used, the way they are integrated and combined, the required infras-

tructure, and the underlying spatial models for the floorplan, if used, are completely varying.

Most systems refer to some sort of probabilistic setup, combining individual components, based

on likelihoods. However, the scale of integration, that is, the number of sensors that are com-

bined, and the degree of additional information added, like the floorplan, is significantly vary-

ing. Often, limited fusion techniques are applied, being computationally efficient, but unable to

fully include all available information, such as obstacles, or the pedestrian’s desired destination

[Tia+15; Hel+13; Ndz+17; NRP16; EBS16; Zha+18b].

Probabilistic Sensor Models As mentioned, core components of the system are sensors, pro-

viding information on whereabouts or movements. While the latter can be performed using

solely dead reckoning, that is, starting from a known location with incremental updates based

on detected movements, this also leads to incremental errors [Ser28]. These errors eventually

were considered, estimating the likelihood for certain whereabouts, and their changes over time

[Goy+11; Li+12]. Yet, the degree of considered information varies significantly. While some

works consider only two sensors and their respective uncertainties, others include additional

observations from other components, and further assumptions, affecting the way the proba-

bilistic models are defined and handled [Hel+13; KGD14; Tia+15]. As shown by others, and

discussed in a later chapter, probabilistic sensor models that consider prior information, such as

the floorplan, can mitigate growing uncertainties, and increase the quality [NRP16; Kna17].

Probabilistic Wi-Fi Localization With Wi-Fi representing an infrastructure already available

within most public buildings, it is also part of many indoor localization and navigation systems.

Yet, implementations often rely on a complex and time-consuming setup procedure, conduct-

ing fine-grained measurements throughout the whole building, to estimate the behavior of radio

signal propagation, required for inferring potential whereabouts [Men+11; YWL12; Zha+18b].

These initial measurements can later be compared against readings from the pedestrian’s smart-

phones, to determine the best matching one, representing the current whereabouts. This variant

of localization is rather discrete, and based on the density of these initial measurements. While

10 CHAPTER 1. INTRODUCTION

interpolation techniques exist, they suffer from various drawbacks, and come with a computa-

tional overhead, often exceeding the capabilities of embedded devices [Par62]. Furthermore,

resulting accuracy comes at the cost of setup and maintenance times, whenever the architecture

or Wi-Fi infrastructure is modified. When on a tight budget, different approaches are required.

These are e.g. given by describing radio signal behavior, using some sort of model [SR92;

PC94; JLH11]. Similarly to the initial measurements approach described above, the model’s

predictions can then be compared against current readings from the smartphone. However, as

the model is typically able to perform this prediction for any location within the building, it is

continuous, and does not require for additional interpolation. Yet, for every prediction model

several parameters are required to describe the behavior of radio signals. The prediction quality

thus not only depends on the accuracy of the model itself, but also on the chosen parameters

[Sey05; Hee+11]. For use cases where a reduced accuracy is sufficient, empiric values can be

chosen, allowing for a fast deployment and adaption to infrastructural changes.

However, for most setups, a compromise between both techniques represents a viable trade-

off, with sufficient accuracy and fast setup times, thus being the focus within this work.

Building Floorplans and Probabilistic Movement Prediction With the floorplan represent-

ing an important component of every localization and navigation system, not only for visualiza-

tion but also for limiting impossible movements and routing, it is part of many state of the art

systems. Yet, as there is no standardized format for indoor floorplans, and many spatial repre-

sentations are suitable [Led06; Yan06; Wu10; ARC12], different approaches have established

over time, most of which limited to a specific use case.

Simple 2D setups e.g. describe each floor with lines that can be used for intersection tests, to

determine impossible walks [EBS16]. This, however, is not suitable for most buildings, as they

consist of multiple stories. Therefore, 2.5D setups were derived, created by stacking multiple

2D floors, with a discrete connection in between [GF06]. Yet, these setups suffer from various

drawbacks. On the one hand, intersection tests are costly, thus requiring some sort of pre-

calculated approximation for use on embedded devices [Köp+12; NRP16]. On the other hand,

due to the discrete interconnection, changing floors requires some sort of heuristic or additional

sensor information. Besides, this also yields a reduced user experience in visualization.

For both, visualization and prediction, actual 3D representations thus are preferred. To be

suited for use on smartphones, the spatial model should be conservative in use of memory.

Viable is e.g. a polygonal representation of the walkable surface [WH08], or some other type of

primitive [BJK05]. Referring to the aforementioned problem of costly intersection tests, the 3D

spatial model should also be able to quickly determine whether two whereabouts are connected

or separated by an obstacle, and, if navigation is desired, the shortest path in between.

1.3. STATE OF THE ART 11

Independent of the chosen inclusion and spatial representation, the floorplan must be defined

in some way or another. Besides manual creation, crowd-based approaches can be suitable, e.g.

determining the walkable area by recordings from hundreds of pedestrians, refined over time

[AY12]. Yet, this only allows for a coarse representation, not ideal for visualization purposes.

Alternatives are e.g. given by robots equipped with a laser-scanner, recording the building’s

interior to derive a 3D representation [SCI13; Hes+16], using several panoramic images to

estimate depth [CF14], or scanning the blueprint and using algorithms to derive walls, doors,

stairs and similar [Liu+17]. However, dependent on the chosen strategy, expensive hardware

might be required, stairs are not supported, or semantic information, like room numbers, still

has to be added manually.

The quality of the resulting floorplan strongly depends on the chosen technique and the

building’s architecture. The same holds true for the time needed to acquire all required infor-

mation. A manual setup, using some sort of editor, thus also is a viable choice.

Sensor and Information Fusion As identified earlier, individual sensors and information

should be fused together, including the history of all observations, to derive the globally best

solution, based on all previous inputs. Ideally, individual uncertainties are included as well,

to decide how trustworthy each information is. The domain of sensor/information fusion, also

referred to as recursive density estimation, is well-researched, both, analytically and experimen-

tally. Initial analytical approaches were limited to linear and Gaussian problems only [Kal60].

While this is sufficient for some setups, such as basic inertial predictions [Meh70], or general

tracking approaches [CHP79], for more complex problems, such as indoor localization and

navigation, including the building’s floorplan, it is not.

When relaxing some requirements, and slightly modifying the analytical process, nonlin-

ear problems are supported as well [SSM62]. Concerning indoor localization, these changes

add support for basic parts of the overall system, like step-detection and tracking [Goy+11;

Jim+12; Gar+16]. Yet, more complex information, such as a building’s floorplan, can still not

be included, as it is impossible to describe the impact of walls, stairs, and similar, on a purely

analytical basis.

For this, non-analytical variants were developed, approximating the recursive density esti-

mation problem via simulations [Del96; LC98; Del98; IB98]. In doing so, they also support

discrete and discontinuous problems, like a wall abruptly blocking all movements. However,

they either come at the cost of reduced accuracy, or require significantly more computations,

as the approximation’s quality depends on the number of simulations [CGM07]. Nevertheless,

with the steady increase in computational power, they became viable even for use on embedded

devices, such as smartphones.

12 CHAPTER 1. INTRODUCTION

1.4 Scientific Contribution

Throughout the course of this work, a smartphone-based indoor localization and navigation

system is derived. While many of the required topics, like pedestrian dead reckoning and prob-

abilistic sensor fusion, are already well researched, some transfer is required to make them

suitable for smartphone use, not requiring any additional sensors attached to the pedestrian’s

body. Similarly, the building’s floorplan is to be considered as well, not only for visual rep-

resentations, but also for determining valid movements, and for navigation indoors. Besides

discussing all required theoretical mathematical backgrounds to determine implications and po-

tential limitations of each individual component, the following scientific contributions will be

provided throughout the course of this work:

Probabilistic Sensor Models While dead reckoning [Ser28; ND97], pedestrian dead reck-

oning [Li+12; Cas+14], step-detection [Goy+11; TS12; SD16; PHP17; Kir+18], and activity-

detection [Elh+14; Zho+15; Zha+18a] all are well-established fields of research, only few works

focus on predictions that rely solely on a smartphone. Holding the device upfront, e.g. required

for navigating while looking at the device’s screen, represents a special case, as information on

leg movement or similar is unavailable, and the pedestrian’s step size can hardly be determined.

Furthermore, when using probabilistic relative movements, the building’s floorplan imposes

constraints that are to be considered.

Therefore, besides discussing required theory, all sensors installed within commodity smart-

phones are examined concerning their contribution towards smartphone-based indoor local-

ization and navigation, with holding the device upfront in mind. For each of the sensors, a

probabilistic model is derived, denoting the likelihood of potential pedestrian movements, with

respect to recently received sensor readings, and the building’s floorplan.

Probabilistic Wi-Fi Localization While some works focused on a probabilistic point of view,

they often imply either a tremendous setup time for conducting measurements throughout the

building, and/or are based on very simple signal strength prediction models, coarsely approxi-

mating real-world behavior. For most setups, a tradeoff between both is required, delivering an

accuracy sufficient for the intended use case, while minimizing setup and maintenance times.

Therefore, a fast setup strategy is presented, using a few reference measurements and nu-

merical optimization to train advanced signal strength prediction models. Each of which is

examined, regarding quality and suitability for probabilistic evaluations. Additionally, strate-

gies for enhancing the quality of predictions, suitable for most public buildings, are introduced.

Finally, probabilistic evaluations are presented, denoting the likelihood of certain whereabouts,

based on some arbitrary signal strength prediction model.

1.5. STRUCTURE 13

Building Floorplans and Probabilistic Movement Prediction For every localization and

navigation system, a corresponding map is required to perform calculations and for a visual rep-

resentation to the user. Recently, other systems started to integrate the building’s floorplan, not

only for visualization, but also for limiting impossible walks, similar to car navigation [WH08;

AY12; ARC12; Hil+14; NRP16]. However, this is often limited to 2D or 2.5D representations,

using discretely connected floors and relying on intersection tests to determine the validity of

some potential movement.

Therefore, two novel strategies are introduced, using a spatial representation of the building,

to predict potential pedestrian movements. The introduced approaches are computationally

efficient, well suited for smartphone use, and allow for true 3D estimations. In contrast to other

research, these models are combined with sensor observations and additional knowledge, to

estimate pedestrian movement predictions indoors. This also covers the use case of navigation,

deriving realistic routes for the pedestrian to reach a desired destination.

Sensor and Information Fusion All aforementioned aspects are combined using established

sensor fusion algorithms [GSS93; IB98]. After discussing the required theoretical background

to determine potential limitations, suitable approaches for fusing all components are presented.

These will be mainly based on aforementioned simulations, which can be briefly thought of:

Instead of describing the result analytically, try several potential movements, that conform with

recent sensor observations and uncertainties, removing physically impossible ones by consider-

ing the floorplan, with the remaining denoting potential new whereabouts.

As computational power on smartphones is limited, and calculations affect battery life,

strategies for an efficient fusion of sensor observations, floorplan-based movement prediction,

and additional knowledge are introduced. This also covers the topic of simulations, and how to

reduce their number required for a stable and computationally efficient approximation.

1.5 Structure

The structure of this work is divided into four main categories: First, the three initial chapters

provide a theoretical overview on smartphone sensors suitable for indoor localization, pedes-

trian movement prediction and the fusion of both. Second, the overall system is derived, and

several real-world aspects are discussed, concerning required indoor floorplans and considera-

tions for being used on smartphones. Third, all aforementioned aspects are examined experi-

mentally, followed by a summary and outlook.

Chapter 2 provides an overview on sensors installed within commodity smartphones, and

their contribution towards indoor localization and navigation. They can be divided into two

14 CHAPTER 1. INTRODUCTION

major groups: sensors providing absolute information, that is, hints on potential whereabouts,

and sensors providing relative information, or hints on potential movements. To also consider

sensor noise and errors, the focus is on a probabilistic analysis, determining the likelihood of

current sensor observations matching with certain pedestrian movements or whereabouts.

Chapter 3 introduces the topic of pedestrian movement prediction, and resulting differences

when additionally including the building’s floorplan. Again, the focus is on a probabilistic inter-

pretation, determining the likelihood for certain movements, restricted by the floorplan, and, if

available, additional knowledge. This e.g. includes the aspect of navigation, how to determine

realistic walking paths within buildings, and how to include them when predicting potential

pedestrian movements. Intentions are comparable to a navigation system for cars, where poten-

tial movements are limited by the car’s velocity, roads, and the requested destination.

Having introduced two viewpoints of indoor localization and navigation, the perspective of

sensors observations, and restrictions imposed by pedestrian walking behavior and a floorplan,

chapter 4 discusses the theoretical background required for fusing all available information

probabilistically. This topic is examined from both, an analytical viewpoint, limited to certain

types of problems, and a simulation-based implementation, required for the overall system.

Hereafter, several peculiarities are discussed briefly in chapter 5. This covers implications

for the intended use on smartphones with limited memory and computational power, optimiza-

tions for real-world scenarios, as well as generating required building floorplans.

All aforementioned aspects are examined experimentally in chapter 6. To ensure the gen-

eral suitability of each sensor and component, several synthetic tests are performed beforehand.

Hereafter, actual pedestrian walks, conducted within several buildings, are used to examine the

contribution of the individual components, presented in chapter 2 and chapter 3. The experi-

ments conclude with localization results, determined from the combined, final system.

Finally, all discussed aspects are summarized in chapter 7, accompanied by an outlook on

topics to address and improve in the future, given in chapter 8.

Chapter 2

Probabilistic Sensor Models

As shown in figure 1.3, core component of localization and navigation systems are sensors, re-

turning a plethora of data, used to infer the current location and guide the navigation process.

Depending on the sensor’s type, the source for its data, the way provided readings are handled,

and the contribution to the overall system, can be completely different. Concerning the local-

ization problem, two major groups can be identified. Sensors providing absolute information

on the location or orientation of the pedestrian, and relative ones, describing location or orienta-

tion changes. Within car navigation systems, the GPS returns approximate whereabouts of the

car, and thus an absolute information. The speedometer allows for inferring the distance taken

within some time period, that is, details on relative changes. At a first glance, relative sensors

might appear unnecessary, and absolute sensor components seem able to solve the problem of

localization on their own. However, they are similarly valuable to the overall system. On the

one hand, to compensate for sensor faults, e.g. when a car drives through a tunnel and the GPS

is lost, on the other hand, to stabilize the overall system performance. While the speedometer

does not provide any absolute location, the returned data is more stable, compared to the GPS.

Yet, neither of both sensors return exact readings, and every indication contains some degree

of uncertainty. That must be known and addressed, when working with the provided data. The

same facts hold true for smartphone-based indoor localization and navigation, relying on a vari-

ety of different sensors, installed in today’s smartphones. Within this section, available sensors,

their potential contribution towards indoor localization and navigation, as well as how to han-

dle their readings on a probabilistic basis, including expected errors, will be examined. While

most sensor outputs belong to exactly one of the two groups, absolute or relative, some can be

applied to both, resulting in different advantages and disadvantages. The following discussions

will later be revisited and combined with other prior information to derive the overall system.

15

16 CHAPTER 2. PROBABILISTIC SENSOR MODELS

0

20

40

60

80

12m/s 13m/s 14m/s 15m/s

true valuemean
accuracy

precision

sa
m

p
le

s

Figure 2.1: Several synthetic readings from a velocity sensor, observing a constant velocity of 14m/s.
The histogram of all observed samples indicates that the sensor’s accuracy is off by 0.5m/s. The width

of the histogram, that is, the amount of deviation around the mean value, denotes the sensor’s precision,

where smaller is better. Adapted from [Smi99, p. 33].

2.1 Sensor Errors

If every sensor always provided exact readings, one absolute sensor on its own would suffice

to solve the problem of (indoor) localization, and many other problem formulations as well.

For real-world conditions, every sensor faces some sort of error present within its readings.

Depending on the requirements, this error is either acceptable or needs to be addressed in some

way. Early car navigation systems used the GPS as single data source, and even though provided

readings were off by several meters, this was sufficient for large scale outdoor navigation. Major

drawbacks only occurred when the car slowed down and had to take an intersection in locations

with several possible options. For addressing such situations, the error of the sensor must be

known. Yet, the term error is ambiguous, as there are two main types, each sensor is influenced

by, and thus must be distinguished. Both are shown in figure 2.1.

On the one hand, the sensor might not provide the true value. In such cases, there is an offset

between every indicated value and the corresponding truth. This is referred to as the accuracy

of the sensor’s measurements. The second type of error addresses the sensor’s noise. When

measuring the same constant measurand several times, provided readings will not be constant

but varying. The amount of variation denotes the sensor’s precision.

From a statistic point of view, the difference between a constant measurand and the mean

of several measurements, represents the accuracy, and the variance among all measurements

equals the sensor’s precision. Ideally, the sensor provides both, a high accuracy and a high

precision. Either, or both, requirements will often not hold true for real-world scenarios. While

accuracy issues can be addressed via calibration, precision is a given factor that can not be

altered directly. At least, it can not when referring to only a single measurement [Smi99].

To improve a sensor’s accuracy by calibration, its offset from the true value must be deter-

mined. Depicted in figure 2.2, several offset types must be distinguished. Additive offsets can

be addressed by subtracting a calibrated constant. The same holds true for multiplicative offsets,

2.1. SENSOR ERRORS 17

(a) noise

target
actual
average

(b) additive + noise (c) multiplicative + noise (d) non-linear + noise

Figure 2.2: Types of errors observable between a target value (x) and its measurement (y). The most

desirable is just noise around the target value (a), and should be provided by calibrated sensors. Without

calibration, the sensor might provide readings that are: shifted by a constant offset (b), scaled by a

constant offset (c), a combination of both, or, at worst, a non-linear modification of the target value (d).

using a division by a calibrated factor. Non-linear modifications of the underlying target-value,

however, require a linearization of the actual readings. When used within digital components,

this can e.g. be achieved by using a calibrated lookup table (LUT), containing several pairs of

actual sensor readings and corresponding true values, provided by a calibrator. Entries must be

provided for the whole measuring range, and spaced as closely as possible. To reduce the num-

ber of samples needed, readings are often assumed to behave linearly between adjacent entries,

which allows for linear interpolation [LC13]. The three error types, additive, multiplicative and

non-linear are also referred to as offset, gain and linearization errors [PPG05].

What kind of calibration procedure is the best, depends not only on the use-case and the

type of error, but also on the kind of data provided by the sensor. For single valued sensors, like

speed or temperature, a simple n-point calibration is often sufficient. Here, n pairs of sensor

reading and corresponding true value are used to estimate the sensor’s behavior between two

adjacent pairs, similar to the aforementioned LUT approach. While a one-point calibration

can only mitigate offset errors, a two-point calibration is able to address both, offset and gain.

For non-linear sensors, like many temperature sensors that are based on electric resistance (NTC

thermistor), more than two reference measurements are required [JP04; SB13; LC13]. In case of

multi-valued sensors, the correct calibration strategy depends on whether the individual values

are independent or connected in some way. For a 3-axis accelerometer, it is apparent, that

all three axes are dependent on each other, and should be calibrated together, e.g. by rotating

it around all three axes, hereafter ensuring that the observed measurements denote a sphere

[Ols+16]. However, if the three axes are misaligned, no sphere can be constructed and additional

compensations are required. That is, several levels of calibration complexity can be identified.

Besides this obvious case of dependency, others are less apparent, and dependencies can

also exist between physically unconnected sensors. Temperature and Hall effect sensors (mag-

netometer) seem independent at a first glance, but the latter is dependent on the ambient tem-

perature, and its readings will vary with changing ambient conditions [Cho+12]. To receive

18 CHAPTER 2. PROBABILISTIC SENSOR MODELS

correct readings for various working conditions, independent of the current temperature, the

magnetometer must be calibrated for several temperature ranges beforehand.

Due to the behavior of many electronic components, most sensors can only be calibrated

for specific environmental conditions, and calibration procedures are required to follow strict

ambient conditions. The German Accreditation Office (DAkkS), for example, requires official

calibration documents to contain the values of all influencing ambient conditions, prevailing

during the calibration [Deu10]. For electronic devices, the ambient temperature is the most crit-

ical value. In rare cases, relative humidity and atmospheric pressure are also required [VDIb].

Detailed calibration requirements are mentioned within the series [VDIa], and depend on the

type of the unit under test. Many vendors thus explicitly specify allowed conditions for using

their equipment. A temperature around (23± 5) °C and relative humidity < 90% are common

requirements for using calibrated electronic devices [Flu99].

Besides aforementioned simple n-point calibrations there are many other variants, differing

in required calibration time, computational complexity, necessary amounts of memory during

runtime, resulting accuracy, and whether they need to be supervised. Bouhedda [Bou13] sug-

gests using neural networks for calibrating non-linear sensors, and compares a network-based

calibration of a temperature sensor against using a LUT and a known polynomial describing the

sensor’s nonlinearity. He concludes that this approach is very accurate and requires only a few

basic mathematical operations, making it suitable for implementation within FPGAs.

If a sensor is used outside of its calibrated range for temperature and humidity, the indicated

values might not match the calibrated ones, due to new errors in both accuracy and precision.

Even if a sensor is calibrated, changing ambient conditions can affect provided readings. This

has to be kept in mind, to avoid unexpected drifting and other issues, e.g. by adjusting the

expected precision accordingly. Depending on sensor and measurand, self-calibration might

be supported and automatically triggered, whenever the values returned by the sensor seem

questionable. Such recalibrations and other strategies are presented and compared in [PPG05].

Besides ambient conditions, the sensor’s error can be affected by multiple other factors.

Clausen et al. [Cla+17] describe various sources, influencing accuracy and precision of a gy-

roscope and how to address them via calibration in a stochastic manner. Furthermore, they

envision to apply their approach over time, to compensate for changes of stochastic environ-

mental influences on the sensor. Additional calibration schemes, as well as their advantages

and disadvantages can be found in [LC13; JP04; Ols+16; SB13].

The sensor’s expected precision, or uncertainty, within each measurement is usually deter-

mined during calibration, but may also be estimated on its own, when the calibration results

are unknown or undisclosed. Latter is important, as many (smartphone) sensors are factory

calibrated, but their precision is unknown to the user. It can e.g. be estimated by taking several

2.2. PROBABILISTIC PROBLEM FORMULATION 19

samples of a constant measurand and creating a histogram, as depicted in figure 2.1. Accord-

ing to the central limit theorem, the histogram usually follows a normal distribution, with σ

denoting the precision, and, for calibrated sensors, its mean equal to the measurand’s true value

[Smi99]. While σ often is a constant value throughout the whole range of the sensor – same un-

certainty when measuring e.g. 0 °C or 100 °C – the applied calibration can modify the constant

throughout the measuring range. Quantization noise, for example, induced by the analog-to-

digital converter (ADC) present within most sensors, is an additive zero mean uniform noise,

independent of the magnitude of the to-be-digitized value x, with the simplified representation

fquant (x) = ⌊x+ 0.5⌋ , εquant = (x− fquant (x)) ∼
uniform distribution︷ ︸︸ ︷
U (−0.5,+0.5) . (2.1)

When a calibration function fcalib (fquant (x)) performs (non-linear) scaling on the quantized

result, εquant is also scaled, yielding a change in precision throughout the measuring range.

Often, the precision can be increased, e.g. by averaging several measurements. Success,

however, is strongly related to the initial cause of the precision error. Depending on the used

measurement hardware and the measurand, various sources for stochastic and non-stochastic

errors exist. While typical sampling errors, like quantization noise, can be reduced by averaging,

(temporal) environmental influences like temperature, humidity or ambient surroundings, can

not [Cla+17]. Furthermore, as a moving average filter is the same as a convolution with several

constants, that is, a rectangle, it introduces a delay to the filtered output [Smi99]. Especially for

sensors with low sample rates, this might introduce new use case dependent issues. Success of

averaging, and other filtering approaches thus strongly depends on the sample rate of the sensor,

the amount of noise present, and the delay introduced by the filter.

2.2 Probabilistic Problem Formulation

Instead of reducing the error via filtering, potentially introducing new issues, inaccuracies can

be included within calculations, using probabilities for all indicated values, based on the sen-

sor’s known precision. Assuming the GPS to indicate a current location ρ using Cartesian co-

ordinates (x, y, z)T with an estimated error of 3m. When observations are provided only once

per second [TY09], averaging increases delays beyond limits acceptable for car navigation. In-

stead, the 3m uncertainty can be addressed probabilistically, assigning a certain likelihood to

the indicated location and its vicinity. While the observation from the GPS might describe the

most likely whereabouts of the receiver, depending on the error, surroundings are likely as well.

20 CHAPTER 2. PROBABILISTIC SENSOR MODELS

From the user’s point of view, this might read as: “assuming I am currently here, how likely

is it to receive the values that are currently indicated by the GPS?”, that is

p(ρ | ρ̃), ρ, ρ̃ = (x, y, z)T , (2.2)

the probability of the GPS indicating ρ as current location while actually residing at ρ̃. Yet,

this formulation is not limited to 3D positions and GPS sensors. In general, an observation o

provided by a sensor, yields a hint on some current state q, which e.g. refers to a 3D location, a

current speed, heading, or other metric relevant to a given problem. Matching with the recursive

nature briefly mentioned in the introduction (cf. figure 1.3), both, observation and state, are

time-dependent, and there is not a single instance, but many, belonging to different points in

time. They are therefore referred to as ot and qt, and are part of a time series

〈o〉t = o1:t = o1, . . . ,ot−1,ot with 〈o〉t = 〈(. . .)〉t
〈q〉t = q0:t = q0, . . . , qt−1, qt with 〈q〉t = 〈(. . .)〉t ,

(2.3)

where o1 is the first observation at time t = 1, ot the current observation at time t, and ot−1 the

previous one. The general version of (2.2) is thus given by the probability (2.4), of receiving

sensor observations ot at a point t in time, given some state qt

p(ot | qt) . (2.4)

As (2.4) uses a direct comparison between a state and various sensor observations, it is limited

to sensors providing absolute values concerning the problem, like the GPS when questioning

the current location. Referring to the introduction, velocity readings, from e.g. a speedometer,

denote a relative indication. The currently indicated speed can not be directly compared against

a potential location, but only against a change in location. Relative sensor observations can be

included by considering both, the current state qt and the previous one qt−1, yielding

p(ot | qt, qt−1) . (2.5)

(2.5) allows for both, absolute and relative comparisons, hereafter referred to as evaluation, as

it evaluates the probability for observations ot, given a state qt, or change in state qt−1 → qt.

The point of view can be inverted to “assuming the previous state was qt−1, and the previous

sensor observations were ot−1, what could the next state qt look like?”, written as

p(qt | qt−1,ot−1) , (2.6)

and hereafter referred to as transition, as it describes potential transitions from a previous state

qt−1 into a new state qt, given some sensor observations ot−1. The minor difference of (2.5)

2.3. GLOBAL POSITIONING SYSTEM 21

using ot and (2.6) using ot−1 as observation, is due to mathematical definition, and can be

considered to be identical [TBF05]. While both viewpoints hereafter appear to be the same,

there is an important difference between both, that will become relevant within chapter 4.

Due to essential differences in requirements for absolute and relative sensors, the contents of

ot and qt are dependent on available sensors, and the actual problem formulation. Throughout

this work, ot contains values provided by various sensors installed within commodity smart-

phones, discussed within this chapter. The state qt contains attributes needed to locate, track

or navigate a pedestrian within a building. For single floors, this covers at least the current 2D

location (x, y)T . For multistory buildings, (x, y, z)T is required, to include the current floor.

Depending on the sensors available within a phone, additional attributes, such as the current

walking direction Θ, can also be part of the state. When individual values from the state or

observation are used within equations, this is indicated by e.g. q
(x)
t from qt, or o

(Θ)
t−1 from ot−1.

The following sections focus on several sensors available within modern smartphones, pro-

viding valuable information towards localization and navigation within a building. For every

sensor, its group (absolute/relative), potential calibration approaches, to be expected errors, and

contributions towards the overall system are examined. Depending on the sensor’s group and

use case, probabilistic models for (2.4), (2.5) and (2.6) are derived and discussed in detail.

2.3 Global Positioning System

As of today, the global positioning system (GPS) is a well-known method for outdoor localiza-

tion almost anywhere on earth. Being expensive at first, receivers are now available as cheap

modules, installed within tracking devices, smartphones, and portable navigation systems, offer-

ing outdoor localization on land, sea and in the air. While GPS does not work indoors [Och+14;

GGB12], the sensor is still valuable for indoor localization and navigation, e.g. directly before

entering, or when walking between adjacent buildings [Hut+16; CPP10; Tor+17]. Furthermore,

many aspects discussed for the GPS apply to other localization components as well.

To provide location information, a receiver listens for data frames from moving satellites,

equipped with high-precision atomic clocks. Each frame contains the satellite’s current position

and the timestamp it was sent at. Combining the frames from several satellites allows the

receiver to use the time difference of arrival (TDOA) method, to infer the time needed for the

signals to travel from each satellite, hereafter converted into a distance, based on the speed of

light. Each estimated distance denotes the radius of a sphere around the known position of its

corresponding satellite. The receiver’s location can be inferred using multiple measurements,

and resides where all their spheres intersect. For a 3D estimation (including altitude) at least

four measurements are required. This process is known as lateration or multilateration [DH10].

22 CHAPTER 2. PROBABILISTIC SENSOR MODELS

Multilateration Due to measurement noise, however, the distance information is inaccurate,

and there is no exact point of intersection between all surfaces. The receiver’s whereabouts are

thus approximated by determining the location that fits all measurements best. Without loss of

generality, using Cartesian 3D coordinates (x, y, z)T instead of latitude, longitude and altitude:

The relationship between the receiver’s real location ρ̃, its estimated position ρ̂, the position

ρ
sat

of some satellite and the measured distance dsat towards the satellite is constrained by

‖
known︷︸︸︷
ρ

sat
−

unknown︷︸︸︷
ρ̃ ‖ ≈

measured︷︸︸︷
dsat

!
=

calculated︷ ︸︸ ︷
‖ρ

sat
− ρ̂‖ , ‖ρ‖ =

√(
ρ(x)
)2

+
(
ρ(y)
)2

+
(
ρ(z)
)2

. (2.7)

The location ρ
sat

of every satellite is known from transmitted data, and dsat represents the mea-

sured distance towards it, given by the TDOA. Using several of above constraints, the receiver’s

estimated location ρ∗ is assumed to be the location that minimizes the (quadratic) error between

the measured and the calculated distance when assuming the receiver to reside at ρ̂

ρ∗ = argmin
ρ̂

∑

sat

(
‖ρ

sat
− ρ̂‖ − dsat

)2
. (2.8)

Assuming (2.8) to be a continuous and convex function, ρ∗ can be determined using numerical

optimization strategies such as gradient descent [HS06; RHG13] or the Nelder-Mead method,

also called downhill simplex method [NM65; Pow62]. These try to estimate a function’s global

minimum (or maximum) using multiple iterations, like known from Newton’s method [New67].

If the given function is not convex or non-monotonic, they face the risk of getting stuck within

a local minimum instead, thus being only suited for certain types of functions.

Alternatively, (2.8) can be solved using an analytical approximation. Applying a lineariza-

tion to the quadratic equation (2.7), allows for rewriting the problem as a linear systemAx = b

[GV13]. For better readability, the linearization is presented in general, relating distances di

measured towards known locations (xi, yi, zi)
T to the unknown location (x̂, ŷ, ẑ)T

di
!
=

√
(xi − x̂)2 + (yi − ŷ)2 + (zi − ẑ)2 , i ∈ {1, . . . , N} . (2.9)

Squaring (2.9) to remove the root, and expanding the parentheses yields

d2i = (x2
i − 2xix̂+ x̂2) + (y2i − 2yiŷ + ŷ2) + (z2i − 2ziẑ + ẑ2) . (2.10)

For a system of linear equations, the three unknowns with exponent, x̂2, ŷ2 and ẑ2, must be

removed from (2.10). One common solution is to subtract the first equation, the one that belongs

2.3. GLOBAL POSITIONING SYSTEM 23

to d1, from all others {d2, . . . , dN}, resulting in a system of N − 1 equations [Li+05]:

d2i − d21 =
(
(x2

i − 2xix̂+ x̂2) + (y2i − 2yiŷ + ŷ2) + (z2i − 2ziẑ + ẑ2)
)
−

(
(x2

1 − 2x1x̂+ x̂2) + (y21 − 2y1ŷ + ŷ2) + (z21 − 2z1ẑ + ẑ2)
)

= x2
i − x2

1 + 2x̂(x1 − xi) + y2i − y21 + 2ŷ(y1 − yi) + z2i − z21 + 2ẑ(z1 − zi) ,

(2.11)

which can hereafter be rewritten as a system of linear equations,Ax = b

x1−x2 y1−y2 z1−z2
x1−x3 y1−y3 z1−z3

...

x1−xi y1−yi z1−zi

x̂

ŷ

ẑ

 =

1

2

(d22 − d21) + (x21 − x22) + (y21 − y22) + (z21 − z22)

(d23 − d21) + (x21 − x23) + (y21 − y23) + (z21 − z23)
...

(d2i − d21) + (x21 − x2i) + (y21 − y2i) + (z21 − z2i)

. (2.12)

When more than four equations are given, the system is overdetermined and (2.12) can be solved

using x = A+b, where A+ is the Moore–Penrose inverse A+ = (ATA)−1AT [Pen55]. This

yields an approximate solution ρ∗ = (x̂, ŷ, ẑ) that, similar to (2.8), minimizes the quadratic error

between measured and calculated distances. However, due to the linearization via subtraction,

the result represents an approximation, slightly differing from the one provided by (2.8) [Li+05].

For simplicity, above calculations were based on 3D Cartesian coordinates. The values g

provided from actual GPS sensors, however, are polar coordinates with latitude g(lat), longi-

tude g(lon), an altitude g(alt) and an error estimation g(err), e.g. returned by the NMEA protocol

[AAO11] of portable receivers, or smartphone operating system APIs. The longitude is given

between −180° and 180° or from west to east. When walking along the equator, only the lon-

gitude is changed. It will hereafter be referred to as the x-axis within the building’s coordinate

system. The latitude runs from −90° to 90° or from south to north, and is referred to as y-axis.

Floorplan Mapping For being used by indoor localization, coordinates supplied by the GPS

must be converted to the coordinate system of the floorplan. This requires a calibrated reference

(reflon, reflat, refalt) → (refx, refy, refz), e.g. for the building’s center, and a rotation angle refα,

aligning the x and y axes with longitude and latitude, depending on the building’s orientation.

As the GPS is only intended for outdoor use, altitude information can usually be omitted. Here-

after, changes in longitude and latitude around their reference correspond with changes in x and

y around the building’s center. While the transformation between both is nonlinear due to the

earth’s curvature, it can be assumed as linear throughout the relatively small size of the building.

Using the earth’s perimeter around the equator and converting this value to m/°

2πrearth

360°
=

400 007 862m

360°
= 111 132.95m/° , (2.13)

24 CHAPTER 2. PROBABILISTIC SENSOR MODELS

yields a constant, relating changes of ° in latitude to m, valid at alt = 0m. As the earth’s

latitudinal-perimeter decreases when moving towards the poles, the reference for changes in

longitude along this perimeter is varying, dependent on the current latitude:

flat (∆lat) = ∆lat 111 132.95 , flon (∆lon) = ∆lon
(
cos(reflat) 111 132.95

)
. (2.14)

As the earth is not perfectly round, but an ellipsoid, (2.14) represents a simplification. Usually

several compensation terms are added to the equation to improve correctness [MS10]. Alterna-

tively, other approaches, such as the one presented by Vincenty [Vin75], can be used. However,

using this linear approach with a constant value, yields a computationally efficient, yet suffi-

ciently accurate solution for the intended use case. The final conversion from polar coordinates

within g to Cartesian coordinates, including the calibrated reference, is hereafter given by

posgps (g) =

refx

refy

refz

+

cos (refα) − sin (refα) 0

sin (refα) cos (refα) 0

0 0 1

flon

(
g(lon) − reflon

)

flat

(
g(lat) − reflat

)

(g(alt) − refalt)

 . (2.15)

Independent of the strategy used to estimate the location ρ of the GPS receiver, it will deviate

from the device’s actual position. Depending on satellite visibility, quality of the time measure-

ments and used hardware components, the sensor’s precision and accuracy will vary. Most GPS

receivers provide an error estimation g(err) (in m), that yields an indication on the quality of the

current location estimation. This value is determined by the sensor itself, in a similar way to

examining the variance among all individual distance errors from (2.8):

σ2
gps = E(X 2)− (E(X))2 , X = {

∣∣‖ρ
sat
− ρ∗‖ − dsat

∣∣ | ∀sat} . (2.16)

The resulting error indication can be used to describe the likelihood of the receiver residing di-

rectly at, or near the estimated position, also addressing bad reception conditions when buildings

or trees occlude the satellite signals [AAO11]. Based on the notation introduced in section 2.2

GPS evaluation︷ ︸︸ ︷
pgps (ot | qt) =

normal distribution︷ ︸︸ ︷
N
(
d
∣∣ 0, σ2

gps

)
,

difference between GPS indication and unknown state︷ ︸︸ ︷
d = ‖posgps

(
o
(g)
t

)
− posxyz (qt) ‖

〈o〉t = 〈(g, . . .)〉t︸ ︷︷ ︸
observations (2.3)

, 〈q〉t = 〈(x, y, z, . . .)〉t︸ ︷︷ ︸
unknown state (2.3)

, g = (lon, lat, alt, err)︸ ︷︷ ︸
GPS receiver provides

, σgps = g(err)

︸ ︷︷ ︸
uncertainty

,
(2.17)

(2.17) denotes the corresponding evaluation (2.4). It describes a probabilistic relation between

potential pedestrian whereabouts (x, y, z)T , part of the unknown state qt, and current GPS read-

ings g, part of the observation ot. This probability depends on the distance between both, es-

2.3. GLOBAL POSITIONING SYSTEM 25

-0.2

0

0.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

σ 2σ

Figure 2.3: GPS localization deviation (in m) for a static receiver under good reception conditions.

Assuming normally distributed measurements, the two ellipses depict the corresponding confidence in-

tervals for σ(≈ 68%) and 2σ(≈ 95%). Shape and rotation depend on the actual location on earth. Axis

labels are therefore omitted. The median (left dot) does not resemble the average (centered dot).

timated after converting the GPS readings to the building’s Cartesian coordinate system using

(2.15), and extracting (x, y, z)T from the unknown state

posxyz (qt) =
(
q
(x)
t , q

(y)
t , q

(z)
t

)T
. (2.18)

That is, (2.17) relates unknown states and the observation from the GPS by using a normal

distribution based on their distance, and the uncertainty indication g(err), given by the receiver.

Sensor Uncertainty For many sensors and use-cases, their error/noise is assumed to follow a

zero mean Gaussian distribution, like in (2.17) [Smi99]. This implies, that the values returned

by some sensor are symmetrically distributed around the real value, and the average of an in-

finite number of measurements, produces the real value. While being a correct assumption for

most calibrated sensors, aforementioned environmental conditions can affect the measurement

noise. Especially a bad line of sight towards the sky can greatly affect the accuracy of the lo-

cation estimations returned by a GPS receiver [Och+14; DH10]. Such conditions can yield a

non zero mean measurement noise, where all estimations drift from the actual location. Figure

2.3 depicts several measurements from a static receiver with a clear line of sight towards the

sky. Even under ideal conditions, they can be influenced and might be shifted from the actual

location. Comparing their median (left dot) and average (centered dot) indicates that this is the

case for the depicted observations. Still assuming a zero mean Gaussian noise in such cases,

yields an error, as the density is shifted from the real value.

With the direction of the shift unknown, and the sensor only providing a hint on its amount,

a uniform distribution comes to mind as potential alternative. However, while this ensures that

every location within the confidence-radius around the sensor’s estimation has the same prob-

ability, all values outside of this region receive a likelihood of zero, which is usually incorrect.

This can be addressed by combining both aforementioned distributions: A uniform distribution

for all values within the range of the indicated error g(err) and a normal distribution for all values

outside of this region. The transition between both distributions should be continuous and the

26 CHAPTER 2. PROBABILISTIC SENSOR MODELS

0

0.1

0.2

0.3

0.4

-4 -3 -2 -1 0 1 2 3 4

raR
(x
|µ

,r
a
)

cropped normal distribution
normal distribution

Figure 2.4: Modification of the normal distribution, created by inserting a uniform distribution in the

center. The filled and crossed parts denote the redistribution, ensuring the result sums to 1.0.

area of the resulting probability density function (PDF) must satisfy

∫ ∞

−∞

p(x) dx= 1.0 . (2.19)

To meet those requirements, the overall density can e.g. be conceived as an equal split between

the uniform and the normal distribution, shown in figure 2.4. The true location often resides

somewhere within the region of ±g(err) around the indicated value, or µ± ra in general. This is

covered by a uniform distribution U (µ− ra, µ+ ra) around the center µ. The width 2ra of the

distribution is variable and depends on the error currently indicated by the receiver. Considering

just the uniform distribution, the height rh must be chosen to ensure the area satisfies (2.19),

that is: 2 ra rh = 1.0. To seamlessly connect both distributions, the normal distribution’s highest

point has to be on par with the height of the uniform distribution. Its σ is thus constrained by

rh
!
= max

(
N (. . . , σ2)

)
=

1√
2πσ2

⇒ σ =
1√
2πrh

. (2.20)

The combined distribution is calculated by making each input variable x zero mean, condition-

ing the next step on whether this intermediate value resides within the uniform or within the

normal distribution, and normalizing the result by 0.5, to satisfy (2.19), summing up to 1.0

R (x | µ, ra) =
1

2

U(x′ | −ra,+ra) for x′ < ra

N (x′ − ra | 0, σ2) else

x′ = |x− µ| , rh =
ra

2
, σ =

1√
2πrh

.

(2.21)

When using (2.21), the evaluation (2.17) of the pedestrian’s whereabouts is rewritten as

pgps (ot | qt) = R
(
d
∣∣ 0, g(err)

)
. (2.22)

One major issue presented by the GPS is the time needed until the first fix, or location informa-

tion, is provided. Especially when leaving a building to move between adjacent complexes, the

2.4. INERTIAL MEASUREMENT UNIT 27

amount of time can be too short for a fix to become available. Furthermore, in case of adjacent

buildings, the signal might be shadowed, increasing the time even further, hereafter providing

only coarse location estimations due to bad satellite visibility [DH10; Ebn+17]. Another draw-

back is presented by increased energy consumption when a smartphone’s GPS is active. Thus,

it should only be enabled when it is expected to provide viable results, that is, outside of a build-

ing [Cap+17]. Therefore, Zhou et al. [Zho+12] proposed a system that uses other smartphone

components, such as the light sensor, or the celltower signal strength, to distinguish between

indoors and outdoors. However, they also denote that the accuracy outdoors will greatly vary

depending on surroundings and weather conditions. For large error indications it thus makes

sense to ignore readings provided by the GPS, and rely on other sensors instead.

2.4 Inertial Measurement Unit

As mentioned initially, a navigation system for cars benefits from additional information besides

the GPS, such as the current driving speed or direction. Both values can be used to stabilize

the localization when the GPS is unreliable, or to provide location updates whenever it is un-

available, e.g. when driving through a tunnel. A similar procedure has been used by seafarers

for decades, estimating the ship’s current location based on its revolution counter and a com-

pass, when astronomical fixes, such as stars, were invisible or ambiguous [Ser28]. Approaches

based on those two parameters, speed and heading, are known as inertial navigation systems

INS, or dead reckoning. They predict the current position based on the previously known posi-

tion and heading, using recent information for movement/speed and heading/direction-changes,

thus representing a relative location estimation. It also applies to aviation, where the current air-

speed, measured by Pitot tubes, is combined with the heading provided by a magnetic compass

and gyroscope, to navigate relatively between landmarks with known absolute locations [Pit32].

When the initial location and heading are known, dead reckoning can be applied for pedestrian

indoor navigation and localization as well. In many scenarios a pedestrian enters a building at a

known location, or this location can be provided by the last GPS readings, just before entering

the building [Hut+16; Och+14]. Starting from this known state, dead reckoning can be used to

update the pedestrian’s location based on relative movements. This itself is a well established

field of research, known as pedestrian dead reckoning (PDR).

Almost all modern smartphones contain a so-called inertial measurement unit (IMU), which

is a group of several individual sensors, related to inertial measurements. As of today, the IMU

within most devices provides an accelerometer for absolute gravity/pose measurements, a gyro-

scope for relative pose changes, and a magnetometer for absolute magnetic field measurements.

Based on those three sensors, it can be inferred whether the pedestrian is currently walking,

28 CHAPTER 2. PROBABILISTIC SENSOR MODELS

taking stairs, or changing the heading. While walking speeds can roughly be approximated

[Yu+19], the quality strongly depends on how the pedestrian holds the smartphone while walk-

ing. Dedicated foot-mounted accelerometers are more suited for this estimation, as the impact

of acceleration is very pronounced, and can be used to estimate the distance taken with every

single step [NPM13]. This, however, is impracticable when dealing with smartphone-based

indoor localization and navigation, where the pedestrian often holds the phone in front of the

body. Here, the required forward acceleration is mainly measurable when starting or stopping

to walk, and can easily be confused with shaking the phone during the walk [KWS12].

While aforementioned velocity estimation is rather unstable, single steps made by the pedes-

trian create a measurable change in acceleration, representing the base for step-detection. Com-

bined with average human step lengths, the walking speed is approximated [TS12; Köp+14;

SD16]. Likewise, the gyroscope measures relative changes in pitch, roll and yaw, and thus

provides a corresponding turn-detection for the pedestrian [Ebn+15; Jan+15; Li+12]. Due to

only capturing relative changes, the current absolute heading depends on the availability of the

initial heading, which is hereafter adjusted by all measured changes. This drawback can be

mitigated by readings from a magnetometer, which serves as an eCompass, providing a coarse

information on the current absolute heading, yet, prone to errors e.g. induced by nearby metal

objects [Goy+11; ND97; She+09; Goz+11].

Despite apparent simplicity, this topic is still under extensive research. Even though sensor

accuracies are steadily increasing, filtering is still required. Not only to distinguish between

actual data and sensor noise, but also to prevent temporal errors, like metallic objects influencing

the compass, and to stabilize the resulting estimations over time [Tia+15; ND97]. While most

of today’s sensors provide very accurate readings, with small amounts of noise [Mou+15], their

values do not allow for absolute location estimations, but only for relative changes, representing

one of the major issues of dead reckoning. Even if individual readings only face a small error

ε, they contribute to every relative adjustment and thus accumulate over time

dt+1 = dt + (v + ε)∆t , dt+2 = dt+1 + (v + ε)∆t → dt+n = dt + n(v + ε)∆t . (2.23)

Within (2.23), the distance dt from an initially known position is adjusted at fixed time intervals

∆t by using the current velocity-indication v, which faces an error ε. As mentioned earlier, this

error is often assumed to be normally distributed. The resulting cumulative error E is thus given

by a normal distribution, with mean and uncertainty dependent on the number of cumulations

εi ∼ N (µ, σ2) , E =
N∑

i=1

εi ⇒ E ∼ N (Nµ,Nσ2) . (2.24)

2.4. INERTIAL MEASUREMENT UNIT 29

x

y

z

x

y

z

Figure 2.5: Coordinate system of most smartphone’s IMU-sensors [Goob; App] (left). When the pedes-

trian holds the device in front, slightly tilting it for a good view angle, this coordinate system is rotated

with respected to the world’s coordinate system (right), affecting the readings from contained sensors.

For calibrated sensors, the error should be zero mean, and thus Nµ = 0. Cumulation still

yields an average of zero and only the variance σ2 increases linearly with N . That is, the result

after cumulation is close to the true value, but its uncertainty has increased, yielding a lower

precision. For most real-world scenarios, however, accuracy is not ideal and a constant offset µ

cumulates over time, yielding results which are neither accurate, nor precise [Smi99].

Assuming an object to travel with 14m/s, and the error of its velocity sensor to be zero

mean Gaussian with σ = 0.5m/s. According to (2.24), after 120 s it traveled 1680m, with an

uncertainty σ = 5.5m. Based on the integral
∫ +2σ

−2σ
N (1680, 5.52), the real distance is within

(1680± 11)m, with a confidence of ≈ 95%. Even though the uncertainty of 0.5m/s and the

timeframe of 120 s are rather large, ±11m is small compared to 1680m. However, if the sen-

sor is slightly off, indicating 14.1m/s instead, the object is expected to have moved 1692m

after 120 s. The small offset of 0.1m/s yields an average result, outside of the previous confi-

dence interval of (1680± 11)m. Especially for problems with cumulative errors, such as dead

reckoning, offsets in accuracy must be prevented. To address those offsets, the sensor requires

calibration to determine both, the type (cf. figure 2.2) and amount of the induced error [Tia+15].

For constrained use-cases, where a cumulative error is tolerable, and both, starting position

and heading, are well known, just using PDR without additional sensors might already be suf-

ficient. State of the art PDR solutions provide viable results with minimal sensor requirements

and little or no prior knowledge about the walkable area. For longer walks within complex

architecture, however, PDR will suffer from increasing errors and requires stabilization using

absolute location information [CHP16; JPP18; Kna17].

To use a smartphone’s IMU for PDR, the observations from its sensors must be interpreted

correctly. As of today, the contained accelerometers, gyroscopes, and magnetometers all pro-

vide readings for three orthogonal axes. Typically, all three sensors are placed in the same way,

30 CHAPTER 2. PROBABILISTIC SENSOR MODELS

sharing the same alignment of these axes. Figure 2.5 depicts the coordinate system used within

most smartphones [Goob; App]. When the device is placed display-up on a table, the sensors are

aligned parallel to the earth’s surface, with the z-axis pointing upwards, and measurements from

the accelerometer are approximately ≈ (0, 0, 9.81)m/s2. Within the following discussions, the

pedestrian is expected to hold the smartphone in one hand in front of the body, slightly tilting

it for a good display viewing angle (cf. figure 2.5). This pose is expected to be typical for most

pedestrians using indoor navigation, watching routing advice on the device’s screen. Due to the

tilt, the smartphone’s coordinate system is rotated, affecting the readings provided by all IMU

sensors. This rotation must be considered to correctly interpret sensor readings, aligning them

with the coordinate system assumed for the world, that is, the building’s floorplan.

The following sections discuss IMU-based approaches that are viable for a smartphone-

based indoor localization and navigation system. This covers the three main topics of step-

detection, turn-detection and eCompass. Handling the rotation induced by the pedestrian tilting

the smartphone will be covered in detail. Discussions also include expected errors, to derive

probabilistic models including each sensor’s uncertainty. Where applicable, potential calibra-

tions, to increase accuracy, are examined as well.

2.4.1 Step-Detection

As previously mentioned, determining the pedestrian’s current walking speed based on available

smartphone sensors is inaccurate, at least when the device is held upfront. This drawback is

mitigated by step-detection, serving as an approximate velocity indicator for the dead reckoning

process. When a pedestrian walks along a corridor, each step creates a measurable change in

acceleration, once when a foot is lifted, and once when touching the ground [TS12]. Those

changes yield a unique pattern, detectable for all smartphone poses, within the data provided by

the accelerometer, measuring the current gravity.

Due to the IMU coordinate system (cf. figure 2.5), measurements a = (x, y, z) provided by

the accelerometer are approximately a ≈ (0, 0, 9.81)m/s2 when the phone is placed display-up

on the ground. When holding the device in the same way while walking, that is, parallel to the

earth’s surface, only the z-axis experiences aforementioned acceleration changes, and fluctuates

around 9.81m/s2, denoting individual steps. When navigating, the pedestrian usually looks at

the smartphone’s display by slightly tilting the upper screen edge towards the head, resulting in

a rotation around the x-axis (see figure 2.5). After applying this rotation to the readings from

the sensor, the x-value still stays near zero and only contains the natural left-right-fluctuation of

humans moving their hands while walking. The earth’s gravity, however, is redistributed among

the y and z-axis, depending on the tilting angle, and the step-pattern can also be observed when

2.4. INERTIAL MEASUREMENT UNIT 31

−4
0

4

8

12

2 s 4 s 6 s 8 s 10 s 12 s 14 s 16 s 18 s 20 s

z

y

x

ac
ce

le
ra

ti
o

n
(m

/
s2

)

Figure 2.6: Readings from a smartphone’s 3-axis accelerometer sensor over time, sampled at 20Hz for a

better visibility. The pedestrian walked along a hallway, holding the smartphone slightly tilted in front of

the body (cf. figure 2.5), ≈1.3m above ground. Each major spike on the z or y-axis denotes one single

step. The x-axis is based on left-right-movements of the pedestrian’s right arm during the walk.

examining the data of the y-axis. A matching example is shown within figure 2.6. While the

used smartphone holding pattern is typical for indoor navigation, it can not be assumed to be

a given, and the pedestrian might refer to other poses, such as landscape-mode, or carrying the

phone within trouser pockets, listening to navigation advice via earphones [Kus+15].

As the direction of change in acceleration is not required for detecting steps, rotation invari-

ancy is achieved by using the magnitude of the sensor readings [SD16]. That is, the Euclidean

norm ‖(a(x), a(y), a(z))T‖ of the measurement. This value still yields an average of≈ 9.81m/s2,

and preserves the deviations imposed by each step. However, this will usually introduce some

side-effects and generate spikes that are not related to actual steps, e.g. when the pedestrian

shakes the device, or changes the orientation from landscape to portrait or vice versa [Ebn+15].

Alternatively to using the magnitude, the accelerometer readings can be transformed. This

is achieved by undoing the rotation introduced by the pedestrian tilting the device. Hereafter,

the adjusted sensor readings are similar to the ones from the phone placed parallel to the ground,

where a(x) and a(y) are almost 0 and a(z) fluctuates around 9.81m/s2, containing the typical step

pattern [Tia+15]. Mathematical details on how to undo the rotation induced by the pedestrian

holding the smartphone will be discussed in section 2.4.2. When e.g. carrying the phone within

trouser pockets, this rotation is not constant, but changes throughout every step. Furthermore,

vibrations and the effect of acceleration changes are different when the device is carried in this

way. Park et al. [PHP17] suggest additional machine learning via SVM classification to detect

potential smartphone poses, improving rotation invariance and the overall detection of steps.

Independent of the approach chosen for rotation invariance, the resulting data features a

step-specific pattern, consisting of a steep increase, followed by a steep decrease [TS12; Li+12].

Basic strategies thus e.g. determine peaks that are above an empiric threshold. If a peak is de-

tected, the process is stopped for some time, to prevent multiple small peaks in sequence, usu-

ally vibration or noise, from also triggering detected steps. This blocking-period is a heuristic,

dependent on the expected step frequency [PHP17]. The requirement for this delay can clearly

32 CHAPTER 2. PROBABILISTIC SENSOR MODELS

be identified when looking at the z-axis signal course in figure 2.6. While the steps between

7 s and 14 s are relatively clear, many occurrences of minor local peaks can be observed as well

(around 6 s or 19 s), yielding too many step-detections when not being suppressed.

More robust approaches focus on finding local maxima within a certain timeframe. Using a

window of several samples provides the same effect as aforementioned delay times, preventing

several nearby peaks from triggering too many detected steps [TS12]. Besides local maxima,

zero crossings can also be used to realize step detection, where two zero crossings denote one

step. For this to work, readings from the accelerometer must be approximately zero mean. In

case of the magnitude-based approach this is e.g. achieved by subtracting the constant gravity of

9.81m/s2, or, in general, by subtracting a long-term average of the signal from itself [Kir+18].

Both techniques, detecting zero crossings and making a signal zero mean, are computationally

inexpensive, thus ideal for use on embedded devices, such as smartphones [Goy+11].

Efficient Noise Reduction As indicated in figure 2.6 and figure 2.7, there is a significant

amount of noise within the measurements, affecting the step-detection process. Using zero

crossings and local maxima detection mitigates the problem only to some degree. For a more

robust stabilization, independent of the used detection method, the input signal should be filtered

beforehand. With noise typically being a fast-changing component, a low-pass filter can be used

to remove high frequencies from the signal [Kir+18]. The most simple low-pass is the moving

average filter, using the average of several consecutive samples to suppress fast changes. While

being computationally efficient, its configurability is rather limited.

For frequency-based filters to be used on a discretely sampled signal, it must be provided at a

constant sample-rate [Smi99]. However, as neither sensor nor API of common smartphones are

required to provide samples at equidistant intervals, a constant sample rate can not be assumed

in general. This also imposes potential issues when searching for a specifically-shaped pattern

within the provided sensor data. To construct a fixed sample rate, a combination of interpolation

and resampling can be applied to the incoming measurements. Update rates provided by an

accelerometer usually are high, 200Hz and above, thus requiring for downsampling to lower

rates, sufficient for the step-detection process. This is e.g. achieved by selecting the nearest

neighbor, the reading that is temporally next to the required output, or by interpolating between

the two nearest ones. If the sample rate of the sensor is much higher than the required output,

using the nearest neighbor is sufficient in terms of precision [Smi99]. For all following steps,

measurements are assumed to occur at a fixed rate of 100Hz, which is an empiric choice that is

sufficiently fast to detect individual steps, yet conserving computational power [SD16; PHP17].

With the signal now available at a fixed sample rate, a configurable low-pass can be applied,

by using either a finite impulse response (FIR) or an infinite impulse response (IIR) filter. Gen-

2.4. INERTIAL MEASUREMENT UNIT 33

7

9

11

13

15

10 s 20 s 30 s 0Hz 2Hz 4Hz 6Hz

m
ag

n
it

u
d

e
(m

/s
2
)

am
p

li
tu

d
e

Figure 2.7: Magnitude of accelerometer readings, fluctuating around 9.81m/s2, for a pedestrian walking

along a hallway while holding the smartphone in front of the body (left). The corresponding frequency

spectrum (right) denotes the signal’s composition, and indicates the pedestrian’s step-rate of ≈ 1.8Hz.

erally, the latter is computationally less complex, but the former provides better results. In this

context, better refers to undesired frequencies being removed more effectively, without affect-

ing the desired ones. That is, the cut-off between required and unwanted parts of the signal is

more rapid, and the attenuation of the unwanted stopband is higher. However, while the IIR

involves just a few multiplications and additions with small delays, the improved attenuation of

FIR filters comes at the cost of required computational power, and larger delays [Smi99].

To be consistent with the notation typically used in digital signal processing, the following

filter equations will re-purpose previously introduced variables.

A well known variant of IIR is the second-order or biquad filter, using three coefficients

b0, b1, b2 on the discrete input signal x[], and three a0, a1, a2 on previous discrete outputs y[],

thus creating an infinite recursion. An implementation in so-called direct form 1 is given by

y[n] =
1

a0

(
b0x[n] + b1x[n−1] + b2x[n−2] − a1y[n−1] − a2y[n−2]

)
. (2.25)

It only requires a few multiplications, additions and a history of two previous inputs and outputs,

well suited for realtime use. The coefficients a0, a1, a2 and b0, b1, b2 are determined based on

the desired effect. Noise can e.g. be removed from the input signal by configuring a low-pass

filter, removing all frequencies above a certain cut-off frequency. The required values for the

six components can directly be calculated based on the desired cut-off frequency, and sensor

sample rate. Equations and further details are found in [Ror93; WT06; Smi99].

The low-pass’ cut-off frequency depends on the pedestrian’s walking speed, shown on the

right side of figure 2.7. Its result is sufficient for most step-detection strategies, such as afore-

mentioned peak detection. Others, like searching for zero-crossings, require the signal to be zero

mean, with the constant gravity offset removed. To include this additional requirement, a band-

pass filter can be used, keeping only the desired frequencies around ≈ 1.8Hz (cf. figure 2.7).

While all six coefficients are again directly calculable, there is less control on the actual size

of the passband, which, however, is an important requirement to correctly adapt to significantly

34 CHAPTER 2. PROBABILISTIC SENSOR MODELS

−2
−1
0

1

2

10 s 20 s 30 s 40 s

m
ag

n
it

u
d

e
(m

/s
2
)

step

Figure 2.8: Band-pass filtered zero mean accelerometer magnitude, using the input from figure 2.7. The

applied step-detection searches for local maxima that are above a certain threshold (grey line).

varying individual step frequencies [Sau+11]. More control is given by cascading multiple IIR

filters. For example, one high-pass to remove the constant gravity and low frequency noise, like

the pedestrian shaking the phone while walking, and one low-pass to suppress noise.

More versatile, in terms of configurability, are FIR filters, based on a discrete convolution of

the input signal with some kernel. As a convolution in the time domain equals a multiplication

in the frequency domain, the kernel can easily be created by choosing the frequencies to keep,

and applying an inverse Fourier transform [Smi99]. The drawback of this approach is increased

computational overhead. The filter’s quality directly depends on the size kernel, which is thus

required to have a decent size. Furthermore, the convolution introduces delays based on this

size, delaying the output of the accelerometer, and thus the step-detection process. For example,

a sample rate of 100Hz required N ≥ 101 coefficients for the band-pass’ kernel, yielding a
N−1
2
≥ 500ms delay. Further details and considerations can be found in [Ror93; Smi99].

Besides using an IIR or FIR band-pass, low frequency noise and the constant gravity offset

can also be removed by subtracting the input’s moving average of size N ′ from it

y[n] = x[n] −
1

N ′

N ′∑

n′=0

x[n−n′] , (2.26)

hereafter sending the result through a low-pass filter to remove high frequency noise. While the

moving average also introduces a delay based on N ′, it can be neglected, as the to-be-removed

components (e.g. gravity) are approximately constant, not causing any delays for the actual

step-pattern. Which of the discussed filtering variants serves best for an actual system, strongly

depends on required quality, acceptable delays, and available computational performance.

Probabilistic Assembly After filtering, one of the described strategies can be used to detect if

the n-th sample denotes a step. A local maximum detection on the discrete, filtered magnitude

A[] = filter
(
‖a[]‖

)
(2.27)

2.4. INERTIAL MEASUREMENT UNIT 35

requires values before and after the maximum for a correct identification, that is, future values,

thus introducing slight delays to drop this requirement when evaluating live readings

fstep

(
A[], n

)
= (A[n−2∆] < A[n−∆]) ∧ (A[n−∆] > A[n]) , ∆ ∈ N>0 . (2.28)

Whether a detected maximum denotes a step also depends on its magnitude [Köp+14; PHP17].

This is depicted in figure 2.8, where only peaks above a certain threshold heuristic are classified

as steps. Instead of a constant, heuristic threshold, the signal’s moving variance could be used,

detecting all peaks that are beyond the signal’s average fluctuation. Yet, this imposes issues for

situations where the pedestrian isn’t walking. Standing still yields a low overall variance, and

peaks induced by noise can cause false-positives, thus requiring additional handling [TS12].

As mentioned earlier, when computational power is limited, step-detection can be performed

without prior filtering, at the expense of accuracy. The maximum detection (2.28) is still viable,

but requires a dead-time after each detected step to prevent noisy spikes within the magni-

tude from causing false positives. While more sophisticated algorithms can cope with multiple

smaller peaks and are also able to search for periodic occurrences within the signal, well-suited

for step-detection [SBW12], they come at the expense of required computational power.

All of the mentioned detection approaches performed a binary yes/no classification for steps,

based on some metric or heuristic. For values that are far beyond the chosen threshold, the

classification is clear. If the value is only slightly above or below the threshold, the correctness

of the algorithms classification is uncertain. This can be addressed by using a probabilistic

classification instead, where each potentially detected step is assigned a probability for it to

represent a real step. The probability e.g. depends on how pronounced the step appears within

the accelerometer readings, where the magnitude can be used to infer a probability pstep

(
A[n]

)

for A[n] to denote a step, by applying a probability distribution. As more pronounced peaks

usually are more likely to represent a step, the corresponding probability can e.g. be inferred by

sending the reciprocal of A[n] into an exponential distribution with some value for λ

pstep

(
A[n]

)
= λ exp

(
−λ
(
A[n]

)−1
)
, λ > 0 , A[n] ≥ 0 . (2.29)

When results are preferred within the range of [0, 1], (2.29) can be unnormalized

pstep’

(
A[n]

)
= exp

(
−λ
(
A[n]

)−1
)
. (2.30)

The result of applying this unnormalized version to the data from figure 2.8, is shown in fig-

ure 2.9. The probability of all obvious steps is approximately the same. Peaks that were below

the threshold within figure 2.8 are now also detected, but rated with a much lower probability.

36 CHAPTER 2. PROBABILISTIC SENSOR MODELS

0

0.2

0.4

0.6

0.8

1

10 s 20 s 30 s 40 s

p
st

ep
’

(A
[n

])

Figure 2.9: Result after applying (2.30) with λ = 0.15 to the data from figure 2.8, omitting all values

≤ 0. While all obvious steps share approximately the same probability, uncertain steps are still detected,

but rated with a much lower probability.

Köping et al. mention that, while more pronounced peaks usually denote an increased proba-

bility, peaks above a certain threshold might not be related to steps, but to other events, like the

smartphone being shaken by the pedestrian. Therefore they propose using a Gamma distribution

instead, to model an area of interest up to a certain threshold [KGD14].

Independent of whether a binary or probabilistic classification is used, step-detection only

estimates the number of steps taken. Unlike a car’s speedometer, there is no hint on the current

walking speed, which also depends on the pedestrian’s step size. This size not only varies from

person to person, but also over time, and is dependent on current ambient conditions. While

climbing stairs, the pedestrian usually takes one tread at a time, and the step size matches the

width of each tread. For stairs to be comfortable, the tread size should follow some rules, based

on average step sizes along ground and the stair’s inclination, first mentioned by Blondel in

the 17th century [Blo83, pp. 672]. As of today, most stairs use a tread size somewhere around

29 cm [RRF02; SJP13]. The step size on ground, however, is more variable, and depends on

age and sex of the pedestrian. Saunier et al. mention that reliable sources for pedestrian step

sizes are hard to find, and thus conducted own experiments with subjects from several countries.

Depending on the dataset, they conclude that the average step size is around 0.68m with a high

deviation of ±0.22 [Sau+11]. Other approaches therefore try to dynamically estimate the step

length, which is only practical when the smartphone is held in a specific pose [Yu+19].

Combining the mentioned aspects, an evaluation (2.5) working for both, discrete yes/no

o
(step)
t ∈ {0, 1}, and continuous probabilistic o

(step)
t ∈ [0, 1] step observations, is given by

pstep

(
ot | qt, qt−1

)
=

step made︷ ︸︸ ︷
o
(step)
t N

(
d
∣∣ µstep, σ

2
step

)
+

no step made︷ ︸︸ ︷
(1− o

(step)
t)N

(
d
∣∣ 0, σ2

stand

)

d = distxy

(
qt−1, qt

)
, 〈q〉t = 〈(x, y, z, . . .)〉t , 〈o〉t = 〈(step, . . .)〉t ,

(2.31)

using the two dimensional Euclidean distance

distxy

(
qt−1, qt

)
= ‖posxy

(
qt−1

)
− posxy (qt) ‖ (2.32)

2.4. INERTIAL MEASUREMENT UNIT 37

between two states, based on the two dimensional location contained within each one

posxy (qt) =
(
q
(x)
t , q

(y)
t

)T
. (2.33)

(2.31) converts every potential state change from qt−1 to qt into a distance, which is compared

using two normal distributions, depending on whether a step has been detected, o
(step)
t = 1, or

not o
(step)
t = 0. When detected, this distance should be near the pedestrian’s step size µstep, with

some uncertainty σstep. Otherwise, there should be no movement, thus comparing against a zero

mean normal distribution. The same holds true if o
(step)
t is not a discrete yes/no decision, but a

continuous probability for the current detection to denote a step. Here, the two distributions are

combined based on the value of o
(step)
t ∈ [0, 1], resulting in a mixture distribution.

Depending on the pedestrian’s step frequency [Sau+11] and the timeframe between qt and

qt−1, more than a single step might have occurred. For handling such cases, the discrete o
(step)
t

could e.g. be replaced by a number of detected steps, resulting in

psteps

(
ot | qt, qt−1

)
=

N
(
d
∣∣ nµstep, nσ

2
step

)
n > 0

N (d | 0, σ2
stand) n = 0

n = o
(steps)
t , o

(steps)
t ∈ N0 , 〈q〉t = 〈(x, y, z, . . .)〉t , 〈o〉t = 〈(steps, . . .)〉t .

(2.34)

All presented evaluations used the readings from a phone’s accelerometer, to infer the likelihood

of potential movements based on detected steps. Combined with either an estimated or empiric

choice for the step size, it constrains the distance, walkable within a certain timeframe.

2.4.2 Turn-Detection

Besides the distance moved within a certain timeframe, inferred by e.g. a car’s speedometer,

or step detection for pedestrians, this movement’s direction is also required, to perform relative

location updates. In case of outdoor navigation within cars, this heading is only of minor impor-

tance, as potential movements are spatially limited by the road network. Assuming the driver to

stay on the last known road, the direction of the movement is defined by this road’s course. In

case of U-turns and intersections, however, heading changes are mandatory. A sensor directly

installed within the car’s steering wheel is able to provide very high resolutions at almost no

error [XYH09], and yields the current steering angle, chosen by the driver. Combined with the

car’s velocity, a turn-rate in °/s can be determined. The sensor thus provides relative heading

changes, requiring the previous heading to be known. For car navigation, this value can often

be estimated, e.g. by using the course of the currently expected road as absolute heading.

38 CHAPTER 2. PROBABILISTIC SENSOR MODELS

Within open environments, as in seafaring, aviation or large buildings, estimating the head-

ing based on the current location often is unfeasible, as potential directions are rarely con-

strained by the environment. Furthermore, in contrast to the sensor of the car’s streering wheel,

sensors within a ship’s or airplane’s rudder are less reliable, as the actual direction is also af-

fected by ocean current, crosswinds or similar. That is, even though the sensor’s indication itself

is precise and accurate, the actual direction can deviate due to environmental influences. Con-

cerning pedestrians, the problem is even more pronounced, requiring for different approaches.

While a compass is one of the first sensors that comes to mind when thinking of heading,

there are several drawbacks. The earth’s magnetic field is relatively weak, compared to the in-

fluence of metal objects or magnets near the sensor. Provided readings are thus easily distorted,

and often unreliable, especially indoors [Goz+11]. Furthermore, the compass relies on a decli-

nation angle, to relate magnetic and geographic north. As the earth’s magnetic field is subject to

changes, this value is not constant, and also depends on the current location on earth, requiring

the absolute location on earth to be approximately known [MMM96]. Aforementioned issues

lead to the compass not being the first sensor-choice for heading estimation indoors.

Typically, cars, airplanes, ships and pedestrians move within a plane that is parallel to the

ground, which, regarding the coordinate system from figure 2.5, is the (x, y)-plane. Changes in

heading are thus given by a rotation around the perpendicular z-axis. As building floors, and

thus the (x, y)-plane, are parallel to the earth’s surface, gravity manifests along the z-axis of this

coordinate system. Rotating around this axis will therefore not affect the measurable gravity,

and accelerometers are unable to infer the current heading when moving along that plane.

To address the problem, ships use a so-called gyrocompass. This instrument contains a

fast-spinning flywheel, attached to a gimbal ring, aligning itself parallel to the earth’s rotation

axis, and thus pointing towards geographic north/south, independent of a magnetic field. The

flywheel keeps this alignment, similar to the wheels of a fast moving bicycle. When turning the

gyrocompass, the gimbal ring allows the wheel to stay as-is. The device thus provides the ship’s

current absolute heading with respect to the earth’s geographic north/south [Lu+94; Wes50].

Airplanes often rely on a more general version of the gyrocompass, called gyroscope, al-

lowing for more degrees of freedom, needed for the plane’s attitude, heading and turn. The

gyroscope also features a fast spinning flywheel, but is allowed to rotate freely around all three

axes. Due to spinning, the flywheel keeps its orientation, even when its exterior (the plane itself)

is moving. Compared to the gyrocompass, there is no absolute alignment for the flywheel. It

just keeps the pose it had during the time of spin-up. Especially within smaller aircrafts, the

pilot thus has to manually adjust the instrument to display the correct value for the current point

in time, e.g. by using an additional compass. Hereafter, the instrument shows all movements

2.4. INERTIAL MEASUREMENT UNIT 39

relative to this initial position [ND97]. Due to the relative aspect and mechanically moving

parts, the instrument is expected to suffer from drifts, increasing over time [FM63].

This type of sensor, yet much smaller and less mechanical, is installed within most smart-

phones’ IMU. Opposed to instruments found in ships and airplanes, this sensor does not provide

an absolute angle θ′(t) with respect to the earth’s north/south (ship’s gyrocompass), or the initial

spin-up (airplane’s gyroscope), but denotes how fast it is currently being turned by influences

from the outside. This angular velocity ω′(t) is given in rad/s (or °/s) for any given instant

in time t. An absolute value is thus given by cumulating all changes since t = 0, that is, the

integral over all consecutive readings

ω′(t) =
dθ′

dt
, θ′(t) =

∫ t

0

ω′(t) dt , ω′ = (x, y, z)T . (2.35)

When dealing with discrete sensor readings ω′

[], provided by a smartphone’s operating system,

an approximation of (2.35) must be used instead. As mentioned earlier, readings will not neces-

sarily be provided at equidistant points in time. Therefore, the (varying) time ∆t since the last

reading has to be included as well, to correctly convert rad/s to rad

θ′(t) ≈
N∑

n=1

∆tω′

[n−1] , ∆t = ftime (n)− ftime (n− 1) , ftime (N) ≤ t . (2.36)

(2.36) approximates the continuous integral, with the error becoming infinitesimally small for

∆t → 0. However, this value depends on the sensor’s sample rate and e.g. callbacks provided

by a smartphone’s operating system. Besides other workarounds, the trapezoid rule (2.37) is an

often used improvement when dealing with discrete integrals [KU94]:

θ′(t) ≈
N∑

n=1

∆tω′

[n−1] +∆t
ω′

[n] − ω′

[n−1]

2
=

N∑

n=1

∆t
ω′

[n−1] + ω
′

[n]

2
. (2.37)

(2.36) and (2.37) provide the three angles θ′(x), θ′(y) and θ′(z) in rad, the gyroscope has been ro-

tated by since t = 0. When adding the initial, absolute alignment, this derives the smartphone’s

current pose. To prevent errors, ∆t should not only be as small as possible, according to above

equations, it should be as exact as possible. Every error in measuring this time difference will

directly affect the result of (2.36) and (2.37). If it is off by 1%, so is the cumulated output.

As long as the IMU’s z-axis is aligned parallel to the world’s z-axis, that is, the smartphone

being placed parallel to the ground, ω′(z) read from the gyroscope directly denotes the pedes-

trian’s change in heading per second. If the phone is not parallel to the ground, this turn-rate is

split among all three axes, ω′(x), ω′(y) and ω′(z), depicted in figure 2.10. This is similar to the

40 CHAPTER 2. PROBABILISTIC SENSOR MODELS

z

x

z

x

z

y

z

y

Figure 2.10: Impact of the smartphone’s pose with respect to the ground on its gyroscope’s readings

when being rotated counter clockwise around z. The length of the vector denotes the rotation speed.

issues previously described in section 2.4.1, examining rotation invariance of the step-detection,

where the issue was addressed by using the accelerometer’s magnitude to overcome the impact

of rotation. In theory, the same approach is feasible for turn-detection, but only if several con-

straints are met. As the magnitude removes the sign, and thus the direction of the turn, it needs

to be reconstructed. When the smartphone is held by the pedestrian in front of the body, most

rotation changes will be similar to the ones shown in figure 2.10. For typical holding patterns

with the phone slightly tilted (see figure 2.5), the z-axis will often contain a significant amount

of the pedestrian’s turn-rate ω, and can thus be used as basis for the sign reconstruction

ω[n] = sgn
(
ω′(z)

[n]

)∥∥ω′

[n]

∥∥ . (2.38)

If the pedestrian continuously holds the smartphone in the same pose, (2.38) will provide viable

results. Shaking the phone left/right or forward/backward, however, also contributes to the

vector’s magnitude. Those movements can not be detected and removed from ω, artificially

increasing this value, even if the pedestrian keeps the current heading.

Tilt Compensation For a general solution to the problem, the gyroscope’s readings ω′ must

be projected onto the ground-plane (parallel to the earth’s surface) prior to integration (2.37).

That is, converting them into what they would look like if the phone was placed parallel to

the ground. To perform this alignment, its current pose with respect to this plane must be

determined. As mentioned earlier, the accelerometer is able to provide this information. Ex-

amining the constant gravity present within a, the phone’s rotation around the x and y-axis can

be identified. Figure 2.11 describes expected accelerometer readings, depending on the phone’s

pose. Comparing those values against previous findings within figure 2.10, both sensor values

– accelerometer and gyroscope – are influenced in the same way. Therefore, any function that

reverses the effect of the pedestrian tilting the phone, converting the accelerometer’s readings

back to a ≈ (0, 0, 9.81)T , will also convert the gyroscope’s readings ω′ to a form where solely

ω′(z) denotes rotations around the global z-axis, and thus the pedestrian’s turn-rate ω.

One solution is given by estimating a rotation matrix, that reverses the rotation imposed by

the pedestrian holding the phone, hereafter multiplying all sensor readings ω′ with this matrix,

2.4. INERTIAL MEASUREMENT UNIT 41

a = (0, 9.81, 0)T a = (9.81, 0, 0)T

a = (0, 0, 9.81)T

x

z

z z

z

y

y
x

x
y

y

x

z

y

Figure 2.11: Impact of the smartphone’s pose with respect to the ground on its accelerometer’s readings.

prior to the integration step (2.37). As shown within figure 2.11, the accelerometer’s readings

a denote the z-axis of the phone’s coordinate system with respect to the world’s coordinate

system. The two remaining axes are created using the cross product and an auxiliary vector,

which must not be parallel to z. As rotations around the z-axis do not need to be considered to

project the gyroscope’s readings, (1, 0, 0)T or (0, 1, 0)T are viable choices. Depending on the

chosen temporal vector, its cross product with a either denotes the y or x-axis. The order within

the cross product is important, to ensure that a right-handed coordinate system is created. The

third axis is then given by the cross product of z and the one just created. After normalizing each

to a length of 1, they denote an orthonormal coordinate system and a rotation matrix R, that

converts (0, 0, 9.81)T into a. The inverseR−1 ofR, given byR−1 = RT due to orthogonality,

then represents the required rotation matrix that reverses the effect of tilting the phone

uz = a

ux = (0, 1, 0)T × uz

uy = uz × ux

R =

(
ux

‖ux‖
uy

‖uy‖
uz

‖uz‖
)

R−1 = RT .

(2.39)

The projected turn-rate ω is then given by

ω =
(
R−1ω′

)(z)
. (2.40)

However, when projecting the gyroscope’s readings to undo the rotation, changing the phone’s

orientation, e.g. from portrait to landscape, manifests as a large heading change. This problem

can be addressed by examining the behavior of the accelerometer’s readings a. The vector’s

direction changes only slightly while walking and turning, but rapidly, when the phone’s ori-

entation is changed. Whenever detected, e.g. by using a Principal Component Analysis (PCA),

readings from the gyroscope should be ignored or assumed to be uncertain [Ebn+15].

Similarly, previous discussions of the accelerometer’s readings indicated the presence of

noise (cf. figure 2.6), demanding for low-pass filtering to derive a stable smartphone pose esti-

mation (2.39). Overmuch filtering, however, will suppress minor pose changes, yielding poten-

42 CHAPTER 2. PROBABILISTIC SENSOR MODELS

tially incorrect projections, and thus divergent turn-rates (2.40). A similar effect occurs when

the pedestrian turns rapidly, creating a measurable change in acceleration, and thus invalid pose

estimations, affecting the turn-rate.

Besides turns, the three axes of the gyroscope also provide information on pose changes,

and, due to the integration step, suffer from a reduced amount of high frequency zero mean

noise, at the drawback of increasing drifts [Smi99]. Examining the advantages and disadvan-

tages of both sensors, it becomes clear that the accelerometer, due to its noise level, is well

suited for slow changes and absolute indications. In contrast, the gyroscope very well captures

rapid changes, but suffers from cumulating drifts. By combining both sensors, the best of each

can be used. For the described use case, this sensor fusion is e.g. provided by a complementary

filter [GY15], depicted in figure 2.12, meant for combining the data x′
[] and x′′

[] from two sensors

using a low-pass fLo (), and complementary high-pass filter fHi ()

y[] = fLo

(
x′
[]

)
+ fHi

(
x′′
[]

)
, (2.41)

with both filters together satisfying

fLo

(
x[]

)
+ fHi

(
x[]

) !
= x[] . (2.42)

Designing a complementary low-pass and high-pass is simple for FIR based filters, described

in section 2.4.1, as a direct complement can be calculated for every filter kernel [Smi99]. For

second- and higher order IIR filters, designing complements is possible, but results will not

always satisfy (2.42). This requires special complementary versions, like Linkwitz-Riley filters

[Har+13]. For both setups, the two sensors are required to provide readings at the same instant

in time, sharing a well known sample rate. As discussed, this can not be guaranteed when refer-

ring to smartphone sensors. However, as exact cut-off frequencies are not necessarily required

for gyroscope/accelerometer fusion, real-world setups often refer to a simpler form of (2.41),

inspired by IIR filters, satisfying (2.42), and mitigating aforementioned requirements [Isl+16]

y[n] = κ
(
y[n−1] +

∆x′

[n]︷ ︸︸ ︷(
x′
[n] − x′

[n−1]

))

︸ ︷︷ ︸
high-pass

+(1− κ)x′′
[n]

︸ ︷︷ ︸
low-pass

, 0.0 < κ < 1.0 . (2.43)

κ within (2.43) adjusts the strength of the high-pass, and (1 − κ) the complementary low-

pass. As x′
[] is high-pass filtered, it can be provided as relative input ∆x′

[], just like turn-rates

from the gyroscope. The low-pass on x′′
[] filters accelerometer readings. By combining both,

the accelerometer provides a stable pose, delayed by the low-pass, which is compensated by

2.4. INERTIAL MEASUREMENT UNIT 43

ω′

a

ω′ 7→ rω
′

a 7→ ra

HP

LP

+ r̂

Σrω
′

gyroscope:

accelerometer: 0

1

am
p

li
tu

d
e

frequency

low-pass
high-pass
combined

Figure 2.12: Layout and behavior of a complementary filter which combines the values provided by

an accelerometer and a gyroscope. After converting their readings to absolute rotations, the converted

results are applied to a low-pass and a high-pass filter, which are complementary to each other.

the relative adjustments from the gyroscope, passed through the high-pass. Using this setup

provides a low-noise, yet low-delay, pose estimation for the phone without drift [YN01].

However, as both sensors supply different kinds of data, angular velocity from the gyro-

scope, and absolute acceleration from the accelerometer, readings must be converted into a

shared unit, before (2.43) can be used.

One option is to convert both into Euler angles, describing a rigid body’s orientation by three

consecutive rotations around orthogonal axes [Die06]. According to figure 2.11 and [Jan+15],

these three Euler angles α, β, γ, consecutively rotating around x, y, and z, can be derived from

the direction of the constant gravity, present within the accelerometer’s readings a

α = atan2
(
a(y), a(z)

)
, β = atan2

(
−a(x),

√(
a(y)
)2

+
(
a(z)
)2
)

, γ = 0 , (2.44)

where atan2 (y, x) is a modified version of tan−1(y/x), respecting the four possible quadrants.

As mentioned earlier, the accelerometer does not provide any valuable information on the rota-

tion around the z-axis with respect to the world coordinate system, and thus γ = 0 in (2.44).

At first glance, the integration (2.37) seems sufficient for deriving a similar representation

from the gyroscope readings ω′. However, they describe changes based on the sensor’s point

of view, often referred to as body frame [NPM13]. With respect to the outside view, or inertial

frame, the orientation changes after every new sensor reading. This would require a cumulative

adjustment prior to the integration, converting the angular velocityω′ as seen from the sensor, to

a change in Euler angles, or Euler angle rates, as seen from the outside, described in [Jan+15].

However, due to required trigonometric operations, this approach is limited to [−π,+π], caus-

ing discontinuous behavior near ±90°. While not being a problem in general, this imposes

issues when applying digital filters, e.g. fading from −π to +π or vice versa. Furthermore,

required calculations suffer from constraints, known as Gimbal lock problem [Jan+15].

All issues can be addressed by using quaternions Q instead of Euler angles [Vin17]. In

place of three consecutive rotations, orientation is described using a complex representation of

44 CHAPTER 2. PROBABILISTIC SENSOR MODELS

a rotation axis u and a corresponding angle α to rotate around it

Q = (α,u) =
(
cos
(α
2

)
+ sin

(α
2

)(
u(x)i + u(y)j + u(z)k

))
, Q ∈ H

with i2 = j2 = k2 = ijk = −1 , |u| !
= 1 .

(2.45)

Similar to (2.39), in order to convert the orientation measured by the accelerometer into a quater-

nion, the rotation axis must be chosen so that rotating around it converts a to≈ (0, 0, 9.81)T , or

(0, 0, 1)T when normalized. It is thus given by the normalized cross product between those two

vectors. The amount of rotation is denoted by the angle between both, that is, their dot product

Qa[n] =

(
α,

u

‖u‖

)
, α = cos−1

(
a[n]∥∥a[n]

∥∥ • (0, 0, 1)
T

)
,

u = a[n] × (0, 0, 1)T =
(
a
(y)
[n] ,−a

(x)
[n] , 0

)T
.

(2.46)

The angular velocity ω′, provided by the gyroscope, can directly be converted into a quaternion

Qω
′

, where the normalized vector describes the rotation axis, and the rotation angle is defined

by the vector’s magnitude, multiplied with the elapsed time

Qω
′

[n] =

(
∆t
∥∥ω′

[n]

∥∥ , ω′

[n]∥∥ω′

[n]

∥∥

)
. (2.47)

Subsequent Qω
′

[n] can then be cumulated by quaternion multiplication. In contrast to using Euler

angles, a prior adjustment of the current readings is not required, as the quaternion multiplica-

tion directly adjusts the rotation axis

Qθ
′

[N] =
N∏

n=1

Qω
′

[n] ⇒ Qθ
′

[n] = Qω
′

[n]Q
θ′

[n−1] . (2.48)

This aspect simplifies using gyroscope readings within the complementary filter

Q̂[n] = κ

integral like (2.48)︷ ︸︸ ︷(
Qω

′

[n]Q̂[n−1]

)
+(1− κ)Qa[n] , 0 < κ < 1 . (2.49)

(2.49) multiplies the current turn-rates Qω
′

[n] from the gyroscope with the previous filter output

Q̂[n−1]. This represents an integration similar to (2.48), and denotes the high-pass part. Its result

is interpolated with the quaternion Qa[n] from the accelerometer, which contributes slowly by

(1 − κ), representing the low-pass. For increased accuracy, a spherical interpolation [Vin17]

should be used. The required rotation matrixR−1 can hereafter be derived by converting Q̂ into

a 3× 3 rotation matrix, as shown in [Die06]. An example is provided in appendix A.1.

2.4. INERTIAL MEASUREMENT UNIT 45

(2.49) provides a stable pose estimation, suppressing drift and noise. The resulting rotation

matrixR−1 is used within (2.40), undoing the effect of the pedestrian tilting the phone, deriving

the projected turn-rate ω. Hereafter, mentioned discrete integration techniques are applied to

cumulate the turn-rate, yielding the change in heading within a certain timeframe

θt =
∑

n

∆tω[n] , (t− 1) ≤ ftime (n) < t , (2.50)

or the absolute heading with respect to the pedestrian’s initial orientation Θ0

Θt = Θ0 +
∑

n

∆tω[n] , 0 ≤ ftime (n) < t . (2.51)

Probabilistic Assembly Both values can be used for a probabilistic evaluation of potential

pedestrian movements, constrained on the absolute heading Θ, or the change in heading θ within

a certain timeframe. While the latter can be expected to be stable for shorter timeframes, the

absolute Θ will suffer from cumulating errors, independent of the chosen pose estimation and

gyroscope projection, as it can not be compensated by the sensor fusion with the accelerometer.

Depending on the building’s architecture, one way of dealing with drifts and cumulating uncer-

tainties is to discretize turns, e.g. to multiples of 90°. Using discrete options, no-turn, 90° left

and 90° right, mitigates the impact of cumulating sensor drift and spreading uncertainties, yet,

at the cost of accuracy, especially when walking within large, open areas [Köp+14; Ebn+14].

Drifts and other errors are therefore addressed by probabilistic models, including uncertain-

ties when comparing the observed absolute heading against the pedestrian’s walking direction

in the (x, y) plane, given by the angle between two states, with respect to the x-axis

∠xy

(
qt−1, qt

)
= atan2

(
q
(y)
t − q

(y)
t−1, q

(x)
t − q

(x)
t−1

)
. (2.52)

The smallest signed difference between two angles in rad is then given by

∠∆ (α, β) = atan2 (sin(β − α), cos(β − α)) . (2.53)

This difference, between the angle qt−1 → qt and the absolute observed heading, should be

close to 0, including an uncertainty, e.g. given by a normal distribution

pabsTurn

(
ot | qt, qt−1

)
= N

(
∠∆

(
α, o

(Θ)
t

) ∣∣∣ 0, σ2
turn

)

α = ∠xy

(
qt−1, qt

)
, 〈q〉t = 〈(x, y, . . .)〉t , 〈o〉t = 〈(Θ, . . .)〉t .

(2.54)

46 CHAPTER 2. PROBABILISTIC SENSOR MODELS

Due to o
(Θ)
t suffering from cumulating errors, the corresponding uncertainty σturn must increase

over time. Furthermore, this approach requires the pedestrian’s initial heading offset Θ0 to be

known. Both drawbacks can be mitigated by using relative comparisons instead.

To compare potential pedestrian movements with an observed change in heading, three

consecutive states qt−2 → qt−1 → qt must be considered. The heading change is then defined

by the difference between the two absolute walking angles ∠xy

(
qt−2, qt−1

)
, and ∠xy

(
qt−1, qt

)
.

This change is then compared against the observed one, also including an uncertainty:

prelTurn’

(
ot | qt, qt−1, qt−2

)
= N

(
∠∆

(
α, o

(θ)
t

) ∣∣∣ 0, σ2
turn

)

α = ∠∆

(
∠xy

(
qt−2, qt−1

)
,∠xy

(
qt−1, qt

))

〈q〉t = 〈(x, y, . . .)〉t , 〈o〉t = 〈(θ, . . .)〉t .

(2.55)

To omit the need for including qt−2 within the equation, the previous heading ∠xy

(
qt−2, qt−1

)

can be remembered by adding it as a variable to the state, slightly altering above equation

prelTurn

(
ot | qt, qt−1

)
= N

(
∠∆

(
α, o

(θ)
t

) ∣∣∣ 0, σ2
turn

)

α = ∠∆

(
q
(Θ)
t−1,∠xy

(
qt−1, qt

))
, 〈q〉t = 〈(x, y,Θ, . . .)〉t , 〈o〉t = 〈(θ, . . .)〉t .

(2.56)

While the normal distributions used in (2.54), (2.55) and (2.56) are a common choice for mod-

eling uncertainties, they are not ideal when referring to angular units, as
∫ +π

−π
N (x | 0, σ2) dx

will only sum up to ≈ 1.0, and only for smaller σ, yielding potential normalization issues. This

can be addressed by using distributions intended for angular use cases, with the range of ±π in

mind, such as the von Mises distribution [Mis18; For+10]. By being both, normalized for the

interval [−π,+π], and periodic, angular uncertainties are handled more suitably.

Independent of the chosen distribution, an uncertainty value must be determined. Keller et

al. [KWS12] provide an overview on expected uncertainties, by examining sensors within both,

laboratory and real-world conditions. They estimated noise levels, scale offsets and long-term

drifts of gyroscope sensors, by using accurate references. Hereafter, they compared the results

of an 80m long walk using step and turn detection, with and without prior sensor calibration,

clearly indicating calibration improvements. While hardware based drifts or scale offsets can

be estimated during a calibration process, the behavior of the pedestrian can not [ST14]. As

mentioned earlier, some movements, like fast turns, affect the measured acceleration, and thus

the pose estimation and gyroscope projection, yielding incorrect turn-rates. It therefore makes

sense to not assume a constant uncertainty in rad/s or °/s, but also a dynamic amount that is

increased whenever major changes within the gyroscope or accelerometer readings are detected.

2.4. INERTIAL MEASUREMENT UNIT 47

60

55
5045

40
35

30

25

55

35

4045
50

55
60

65
-20° -40°

-60°
-80°

0°+20°
+40°+60°

0°

-10°
+10°

+10° -10°

0°

+20°

Figure 2.13: Local intensity of the magnetic field (magnitude of B′) in µT, and declination correction

Θdec. Adapted from the World Magnetic Model 2019, developed by NOAA/NCEI/CIRES [NOA].

A potential heuristic for smaller timeframes could thus read as follows:

σturn = ∆t

constant︷ ︸︸ ︷(
1 °/s

π

180°

)
+

variable︷ ︸︸ ︷(
κ |o(θ)t |

)
, κ ≥ 0 . (2.57)

Within (2.57), a constant turn error in °/s is combined with a variable component, depending

on the amount of change, with its impact adjusted by κ. Both values are an empiric choice and

depend on the quality of the sensors installed within a phone. For a truly dynamic uncertainty

estimation, based on observations and other prior knowledge, more sophisticated approaches

are required [Bra+05; CYJ15]. Especially when working with absolute headings (2.54), the

uncertainty depends on the time elapsed since start, and eventually reaches a level where the

sensor stops to provide usable information. Thus, the gyroscope is mainly suited for relative

predictions, such as (2.56). For absolute indications, other sensors are better suited.

2.4.3 eCompass

As shown, relative turn information suffers from cumulating errors, eventually becoming un-

stable. This is mitigated by sensors providing absolute heading indications. Mentioned earlier,

ships use a gyrocompass pointing towards the earth’s geographic north/south by aligning itself

onto the rotation axis. A compass provides similar information, except that the alignment is

based on magnetism, and that it points towards the earth’s geomagnetic north. The geomag-

netic north differs from the geographic north, and is subject to changes over time, currently

moving by over 55 km per year from Canada towards Siberia [Cla16; Wit19].

The indication from an analog compass is provided by a magnetized needle that is allowed to

spin freely around one axis. If this axis is aligned parallel to the earth’s z-axis, pointing upwards,

the needle aligns itself towards north/south of the earth’s magnetic field. Within smartphones,

similar readings are provided by the magnetometer, present within most IMUs. Instead of a

48 CHAPTER 2. PROBABILISTIC SENSOR MODELS

y
x

y

z

S

N

geographic North Polegeomagnetic North Pole
x

y

z

B′

inclination

declinationN

Figure 2.14: Behavior of the earth’s magnetic field and its relation to the geographic poles. If a smart-

phone is placed parallel to the surface, just like an analog compass, the direction towards magnetic north

is given by the magnetometer’s readings B′(x) and B′(y). Right half adapted from [Cla16, p. 198].

magnetized needle, the sensor’s internals leverage the principle of the Hall effect. When a

constant current is passed through a conductive material, every magnetic force perpendicular

to the movement direction of the electrons passing the conductor, deflects them in a direction

that is perpendicular to both, the moving direction and the magnetic flux, forcing the electrons

towards one side of the conductor (Lorentz force). Between this side and its opposite, a voltage

proportional to the applied magnetic force can be measured [Pop+07]. In contrast to other

probes, such as inductors, Hall sensors are also capable of measuring the influence of static

magnetism, like non-moving magnetic objects [Cul56]. Most smartphones are equipped with a

3-axis magnetometer where three Hall sensors are combined, measuring the current magnetic

flux density B′ = (x, y, z) in µT, along three orthogonal directions. Actual intensities are

location dependent, with typical values shown in the left half of figure 2.13.

Figure 2.14 depicts the geographic and magnetic relations needed to derive a heading from

the readings B′ of a magnetometer. While the earth’s geographic north and south poles (true

north/south) are defined by its rotation axis, the geomagnetic north and south poles are defined

by its internal magnetic field, which is slightly different. This difference is called declination,

depends on the actual location on earth and, as mentioned, is subject to changes over time.

Current values are shown in the right half of figure 2.13.

The geomagnetic north pole can be thought of the magnetic south pole of a dipole bar

magnet, the compass points to. If a smartphone is placed parallel to the ground, the direction

towards geomagnetic north ΘNmag
is given by the magnetometer’s readings in x and y

ΘNmag
= atan2

(
B′(y), B′(x)

)
. (2.58)

To derive the angle ΘNgeo
towards the geographic north, the current location’s declination cor-

rection Θdec from figure 2.13 must be added

ΘNgeo
= ΘNmag

+Θdec . (2.59)

2.4. INERTIAL MEASUREMENT UNIT 49

y
x x

y

portrait
upright

portrait
upside down

orientation condition yaw Ψ

portrait upright
∣∣a(x)

∣∣ <
∣∣a(y)

∣∣ ∧ a(y) ≥ 0 (90± 45)°
portrait upside down

∣∣a(x)
∣∣ <

∣∣a(y)
∣∣ ∧ a(y) < 0 (270± 45)°

landscape left
∣∣a(x)

∣∣ ≥
∣∣a(y)

∣∣ ∧ a(x) < 0 (180± 45)°
landscape right

∣∣a(x)
∣∣ ≥

∣∣a(y)
∣∣ ∧ a(x) ≥ 0 (0± 45)°

landscape left

landscape right

y

x

x

y

Table 2.1: Smartphone orientation dependent on accelerometer readings. Adapted from [Bos14].

While Θdec is location dependent, it changes hardly within the range of a few hundred kilome-

ters, visualized in figure 2.13. For indoor localization and navigation scenarios, it can thus e.g.

be stored within a floorplan, where the building is aligned towards the geographic north.

Shown in figure 2.14, there is another angle besides ΘNgeo
. The inclination, or angle of

dip, describes the upwards/downwards direction of the magnetic field, mainly dependent on the

current latitude. While the exact direction of the magnetic field is defined by those two angles

combined, inclination is usually omitted for north/south estimations [Cla16].

To determine ΘNmag
for arbitrary smartphone poses, a combination of magnetometer and

accelerometer, also referred to as eCompass [KC15], is required. This need can be confirmed

when referring to the previously discussed turn-detection, but also when observing an analog

compass. To prevent its needle from touching the casing, the latter must be aligned parallel to

the angle of dip, which is approximately parallel to the ground, when not residing near the poles.

Just like earlier for the turn-rate, a heading estimation requires a projectionR−1 onto the world’s

(x, y)-plane, using the techniques discussed in section 2.4.2, referred to as tilt compensation

ΘNmag
= atan2

(
B(y), B(x)

)
, B = R−1B′ . (2.60)

Due to sensor noise, low-pass filtering is advisable, if not already conducted by the magnetome-

ter itself [Pop+07; BS12; KS18]. To prevent jumps near 0° ↔ 360° or −180° ↔ +180°, the

input vectors B′ or B, should be filtered instead of ΘNmag
. In (2.60), all candidates for esti-

mating R−1, previously described in section 2.4.2, are applicable. However, in contrast to the

relative turn-detection based on the gyroscope, the absolute eCompass requires more caution as

the result from (2.60) rotates together with the phone. This refers to the four different smart-

phone orientations: landscape and portrait, each up and down. Changing the orientation directly

affects the eCompass’ heading indication. To compensate this, the pedestrian is either required

to hold the phone using an exactly defined pose, as it is the case for most analog compasses, or

the system must be able to distinguish between several pre-defined poses, such as portrait and

landscape mode [Ngu+16]. Integrated sensor components therefore contain some heuristic to

50 CHAPTER 2. PROBABILISTIC SENSOR MODELS

distinguish between various orientations, based on the current accelerometer readings a and the

resulting yaw angle Ψ = atan2
(
a(y), a(x)

)
shown in table 2.1 [Bos14]. A general solution for

the pedestrian e.g. carrying the phone within trouser pockets, requires additional sensors besides

the smartphone. To relate the tilt-compensated compass’ north with the pedestrian’s current axis

of forward motion. When estimating this axis using just the smartphone’s sensors, results can

be unstable, and are subject to delays [Kus+15]. The heading provided by the eCompass is

usually off by several degrees [Cas+14]. Using the phone’s estimated orientation for projection

thus is a viable choice for smartphone-only indoor localization and especially navigation, where

the pedestrian faces the phone’s display, similar to holding an analog compass.

Besides tilting issues, everything that affects the magnetic field will also cause a measur-

able effect on the sensor’s readings and thus the heading estimation. While this is often not a

problem within large, open-space outdoor environments, it is a problem indoors, where many

metal objects, such as steel-reinforced concrete, handrails, door handles, elevators and inductive

electricity, are present [Goz+11; Par+06].

However, despite negative influences on heading estimation, this allows for completely dif-

ferent inputs towards indoor localization. Architectural effects on the magnetic field can be very

unique for different regions within a building, allowing for magnetic matching [Goz+11]. Here,

the readings of the magnetic field are recorded once, for many locations within the building.

Every recording describes the magnetic behavior at a location, serving as its fingerprint. Dur-

ing the localization process, the current readings from the phone’s magnetometer are compared

against all known fingerprints. The location of the best matching one is likely to denote the

pedestrian’s current whereabouts [Shu+15]. However, it requires significant effort to record the

fingerprint database, which is also subject to changes over time. Setup and update issues can

be mitigated, e.g. using a self location and mapping (SLAM) approach, where localization is

initially provided by other sensors and the, yet unknown, magnetic field is recorded during the

localization process. The system then stabilizes itself over time, refining both, the localization

and the magnetic information, with every additional walk through the building [KS18].

Alternatively to complex fingerprinting, Ehrlich et al. [EBS16] suggest installing a few spe-

cial coil-transmitters within the building, each creating a unique magnetic signature within a

confined area. Those signatures can be measured by the magnetometer, and compared against a

database of known transmitter signatures. This approach allows for additional location hints by

using a controlled setup, as the strong coil-signature is barely affected by ambient conditions. If

three or more signatures can be detected by the magnetometer, even multilateration is possible

(cf. section 2.3) by inferring the distance from the strength of the magnetic field.

However, within this work, the focus is on absolute heading estimation, not requiring addi-

tional hardware installations or time-demanding setups.

2.4. INERTIAL MEASUREMENT UNIT 51

Sensor Calibration Independent of the chosen approach, the magnetometer must be cali-

brated to compensate for soft iron and hard iron effects. Magnetic or metallic objects mounted

together with the magnetometer, like the phone’s speaker, introduce hard iron effects. They off-

set all provided readings, independent of the phone’s current orientation. On the other hand, soft

iron effects are induced by the outside world, through nearby objects, thus yielding influences

on sensor readings, dependent on its location and orientation. Therefore, location independent

hard iron effects are easier to calibrate [Kon09]. While alignment differences between the ac-

celerometer, providing the pose projection, and the magnetometer should be considered as well,

this is not an issue for today’s smartphones, as the alignment is usually accurate [ZY15].

When placing the smartphone parallel to the ground, and rotating it around the z-axis (cf.

figure 2.14), the measurements (B′(x), B′(y))T provided by a calibrated magnetometer denote

a circle, centered at (0, 0)T . As the actual magnitude of the sensor readings is not required to

derive the heading (2.60), the calibrated circle’s radius can be of any size. When performing

a manual calibration, normalizing the measurements to denote a unit-circle is thus fine for the

intended use case. The same holds true for the three dimensional case. Rotating the phone

around all three axes, the resulting sensor readings should denote a sphere centered at (0, 0, 0)T .

A corresponding mean squared error metric for both cases is thus given by

ε =
1

N

N∑

n=1

(
1−

∥∥B′
[n]

∥∥
)2

, B′ =

(x, y)T for 2D

(x, y, z)T for 3D .
(2.61)

During the calibration process, allB′
[] are adjusted using a set of parameters, depending on the

calibrations to address, to reduce the error (2.61). Deviations from the center (0, 0, 0)T can be

addressed by one offset parameter per axis. Similarly, the scale for each axis can be adjusted

using one scale parameter for each. Calibration hereafter represents an optimization problem

argmin
u,w

N∑

n=1

(
1−

∥∥(B′
[n] − u

)
⊙w

∥∥
)2

, (2.62)

where the offset is adjusted by subtracting u, and the scale is corrected by a componentwise

multiplication ⊙ with w. By calculating the 2nd partial derivative for all to-be-optimized pa-

rameters, and examining the requirements for each derivative to be > 0, it can be shown that the

function is convex for typical sensor inputs, offsets starting at (0, 0, 0)T , and scales > 0. Thus,

optimization can be performed using common approaches such as gradient descent [HS06] or

downhill simplex method [Pow62; NM65]. (2.62) covers most constellations, but omits rare

cases where readings provided by the sensor denote a rotated ellipse/ellipsoid, requiring addi-

52 CHAPTER 2. PROBABILISTIC SENSOR MODELS

tional rotation parameters for correction [Fan+11]. In case of many outliers, (2.62) will not pro-

vide ideal results. A solution can be the random sample consensus (RANSAC) [FB81], where

not all, but a (random) fraction of all inputs is used for the optimization. This step is repeated

several times, depending on the amount of outliers, eventually deriving a superior result.

As shown later, for many smartphone models aforementioned manual calibration schemes

are not required, as they are integrated directly into the operating system or sensor. The proce-

dure is triggered whenever the sensor is active, and the user rotates the phone around all three

axes, hereafter removing the influences of constant offsets, such as hard iron effects.

Probabilistic Assembly While, in theory, the eCompass can hereafter be used as single (ab-

solute) heading source, its practical use is limited by aforementioned environmental effects and

the pedestrian. Together with the turn detection from section 2.4.2, however, it can compensate

the cumulating heading drifts on the z-axis, the accelerometer isn’t able to address [Har+03].

Besides directly fusing both readings, e.g. via a complementary filter, the sensor can be eval-

uated on its own, using a probabilistic approach to model expected uncertainties, allowing for

later combination. Similarly to the heading evaluation for the gyroscope, the current eCompass

heading ΘNmag
is compared against the pedestrian’s potential heading, either given by qt−1 → qt

or q
(Θ)
t . The difference between geomagnetic north from the sensor, and the orientation of the

building is addressed by Θbldg, describing the angle between the floorplan’s x-axis and geomag-

netic north, estimated once per building. Potential walks are hereafter evaluated by

pcomp

(
ot | qt, qt−1

)
= N

(
∠∆

(
α, o

(ΘNmag)

t

) ∣∣∣ 0, σ2
comp

)

α = ∠xy

(
qt−1, qt

)
+Θbldg , 〈q〉t = 〈(x, y, . . .)〉t , 〈o〉t = 〈(ΘNmag

, . . .)〉
t
.

(2.63)

If the heading is stored as part of the unknown state, (2.63) simplifies to

pcomp (ot | qt) = N
(
∠∆

(
α, o

(ΘNmag)

t

) ∣∣∣ 0, σ2
comp

)

α = q
(Θ)
t +Θbldg , 〈q〉t = 〈(x, y,Θ, . . .)〉t , 〈o〉t = 〈(ΘNmag

, . . .)〉
t
.

(2.64)

The value for σcomp depends not only on the quality of accelerometer and magnetometer, but

also on the pedestrian’s behavior when holding the phone (steady/shaking), and nearby metallic

or magnetized objects. The resulting heading precision can thus vary between errors as low as

1° [Kon09] and up to tens of degrees depending on location and tilt [Li+12; Hil+14; WGN15].

Changes in tilt can be detected when analyzing the accelerometer’s readings within the pose

estimation. The same holds true for changes of the magnetic field. Without architectural in-

fluences, the magnitude ‖B′‖ varies only slightly throughout the building. Whenever large

changes are detected, σcomp can be increased accordingly. Similarly, the uncertainty can be in-

2.5. BAROMETER 53

creased whenever the eCompass reports major heading changes, but the gyroscope does not.

Depending on hardware and surrounding architecture, it thus can be advisable to use a discrete

comparison instead, limiting potential directions based on heuristics κcomp and τ comp [Ebn+17]

pcomp (ot | qt) = η

κcomp ∠∆

(
α, o

(ΘNmag)

t

)
< τ comp

(1− κcomp) else
, α = q

(Θ)
t +Θbldg , (2.65)

or a compromise between (2.64) and (2.65), using the distribution from (2.21)

pcomp (ot | qt) = R
(
∠∆

(
α, o

(ΘNmag)

t

) ∣∣∣ 0, σ2
comp

)
. (2.66)

Yet, in case of e.g. turn rates beyond the pedestrian’s normal behavior, the eCompass can be

considered unstable, not providing a viable evaluation and thus pcomp (ot | qt) = const.

2.5 Barometer

The first sensor providing absolute location hints is the barometer. It measures the current

atmospheric pressure in hPa, which is influenced by the amount of air that is “piled up” above

the sensor, allowing to infer the current altitude, usually measured above mean sea level. If this

altitude increases, the amount of air above the sensor decreases, indicating a drop in pressure.

This change of atmospheric pressure can be measured e.g. by analyzing the change in size of an

air-filled, flexible object, like a balloon. An increasing height above mean sea level will yield a

growing balloon, as the outside pressure decreases, while the pressure inside remains constant.

Most common analog barometers used another approach, based on a vertical column filled with

mercury, placed within a reservoir. Depending on the surrounding pressure, mercury is pressed

from the reservoir into the column, or moves from the column into the reservoir. This yields

a vacuum of varying size within the column, which adjusts until the forces inside and outside

are equal. The height of mercury remaining within the column is proportional to the current

atmospheric pressure. Therefore, besides hPa, inch of mercury (inHg), millimeter of mercury

(mmHg) or Torr also are common measuring units for atmospheric pressure [Tor44; Tim82].

As of today, some smartphone models are equipped with a barometer sensor, based on

piezo-resistive pressure sensing [Bos15; Bos18]. Initially, it was intended to speed-up the GPS’

initialization times by providing a coarse altitude information. However, experiments indicated

that its success was questionable, as GPS lock times did not improve with a barometer present

[KWS12]. As the sensor remained present within many newer models, its contribution towards

indoor localization and navigation was examined [Mur+14], e.g. by relating atmospheric pres-

54 CHAPTER 2. PROBABILISTIC SENSOR MODELS

T0 288.15 °K temperature at sea level ̺0 1013.25 hPa pressure at sea level

R 8.314 46 Nm/molK (ideal) gas constant L 0.0065 °K/m temperature lapse rate

g 9.806 65 m/s2 gravity of earth M 0.028 96 kg/mol molar mass of dry air

Table 2.2: Constants required to relate atmospheric pressure and altitude [TT08; Stu15].

sure and altitude above the mean sea level

f̺ (h) = ̺0

(
T0

T0 + Lh

) gM

RL

fh (̺) =
T0

L

((
̺

̺0

)−RL
gM

− 1

)
. (2.67, 2.68)

(2.67) and (2.68) require several physical and chemical constants listed in table 2.2 [TT08;

Stu15]. To be consistent with their typical notation, some previously introduced variables are

re-purposed for the barometer. For both relations, the pressure at the mean sea level is assumed

to remain constant at ̺0 = 1013.25 hPa, at a temperature of T0 = 15 °C, decreasing constantly

with L = 6.5 °C/km, referred to as standard atmosphere. The ideal gas law derives the air’s

density, expecting it to be absolutely dry (0% rel. humidity). It thus relates atmospheric pres-

sure to a column of height h, filled with a gas of some density. Corresponding results are valid

up to ≈ 11 km in altitude, before the temperature lapse rate L becomes zero [OAS76; Stu15]

For pedestrian navigation indoors and outdoors, the first few hundred meters above sea level

are the most important. The 6.5 °C/km change in temperature can thus be omitted. Hereafter,

the relation of altitude and pressure is approximately exponential, and (2.67)/(2.68) simplify to

f̺ (h) ≈ ̺0 e

(

−gM

RT0
h
)

≈ ̺0 e

(

−0.0342° K/m

T0
h
) fh (̺) ≈

ln
(

̺
̺0

)
T0

−0.0342 °K/m
, (2.69, 2.70)

where all constants are combined as a single value [Stu15]. Figure 2.15 shows the relation

between altitude and pressure. While the approximations are similar in shape during the first

few hundred meters, a closer look reveals a noticeable offset, potentially causing issues when

working with absolute pressure readings and altitudes, e.g. yielding an invalid floor number

estimation for the pedestrian. However, due to aforementioned assumptions on dry air, fixed

temperature and pressure at mean sea level, the more correct equations also represent an approx-

imation. Every change in climatic conditions will void these assumptions, producing incorrect

results, decreasing or increasing local pressure indications, as visualized in figure 2.16.

For compensation, pilots e.g. adjust their plane’s altimeter to a reference pressure during

takeoff and landing, currently measured at the corresponding airport, known as QNH or QFE. In

doing so, the instrument denotes the height above the airport with respect to the current weather

conditions [Eur04]. During flight, the exact altitude is less important, as long as obstacles like

2.5. BAROMETER 55

700

800

900

1000

0m 1000m 2000m 3000m

902
905
908

p
re

ss
u

re
(h
P
a

)

(2.67)
(2.69)

700 hPa800 hPa900 hPa1000 hPa
0

1000

2000

3000

930

960

h
ei

g
h

t
ab

o
v
e

se
a

(m
)

(2.68)
(2.70)

Figure 2.15: Relation between atmospheric pressure and height above sea level according to (2.67),

(2.69) and (2.68), (2.70). As can be seen within the zoomed regions, the approximation is only suited for

relative comparisons due to absolute errors of several meters.

mountains are safely overflown. The distance towards other airplanes nearby is more important,

and pilots therefore adjust their altimeter to the same reference of 1013.25 hPa. While the indi-

cated height above ground will change with weather conditions, nearby aircrafts are influenced

by the same effect, ensuring that their distance in altitude remains measurable [Fed16].

Probabilistic Assembly Azevedo and Crisóstomo propose a similar approach for smartphone

based localization. The current relative pressure at several known points is recorded and shared

with the phone, to provide a relative alignment. This data is e.g. provided by nearby weather

stations and hereafter interpolated to estimate the pressure at the building’s altitude [AC16]. Or

the weather station resides within the building itself [EBS16]. Instead of using the pressure

readings from nearby transmitters, readings from the phone itself can also be used. Here, an

initial measurement ̺ref from the barometer at a known altitude href serves as reference. This

also prevents potential calibration offsets, mitigates the impact of current weather conditions,

and does not require additional infrastructure or a data connection to a server. The altitude href

of this reference measurement can e.g. be inferred by using the last GPS fix before entering

the building [AY12], performing an optical localization using the phone’s camera [HB08], the

pedestrian scanning nearby QR-Codes or RFID/NFC tags [Lee+14; Jim+12].

In order to include an obtained reference, (2.67) and (2.68) must be adjusted, to operate

relative to an arbitrary altitude instead of the mean sea level [OAS76]. The current altitude can

hereafter be estimated directly based on incoming sensor readings, as long as local climatic

conditions are not changing, and the reference remains valid [KWS12]

f̺ (h) = ̺ref

(
T0

T0 + L(h− href)

) gM

RL

fh (̺) = href +
T0

L

((̺

̺ref

)−RL
gM − 1

)
. (2.71, 2.72)

The readings from the barometer can hereafter be converted to an altitude, and compared against

potential whereabouts. However, all barometer altitudes are with respect to mean sea level, and

the pedestrian’s unknown z-location with respect to e.g. the first floor of the building. Thus, an

56 CHAPTER 2. PROBABILISTIC SENSOR MODELS

990.2

990.3

990.4

5min 10min 15min 20min

191.5

192.5

193.5

992.45

992.55

5min 10min 15min 20min

173.7

174

174.3

174.6

p
re

ss
u

re
(h
P
a

)

pressure avg(pressure) avg(altitude)

al
ti

tu
d

e
(m

)

Figure 2.16: Readings from a barometer at a fixed location on two different days (left and right). While

the left shows a significant variation of > 2.5m in altitude, the right one denotes only≈ 1m of variation.

However, due to different climatic conditions there is an absolute difference of ≈ 20m between both.

offset constant hbldg is required, to relate both. Independent of whether (2.68), (2.70) or (2.72) is

used, the pedestrian’s potential whereabouts in z can then be compared against the barometer’s

readings, e.g. by using a normal distribution to model sensor uncertainties

pbaroAbs (ot | qt) = N
(
q
(z)
t + hbldg

∣∣∣ fh
(
o
(̺)
t

)
, σ2

alt

)

〈q〉t = 〈(z, . . .)〉t, 〈o〉t = 〈(̺, . . .)〉t .
(2.73)

As discussed, a pressure reference requires either additional hardware or infrastructure within

the building, or the correct altitude of a reference measurement observed by the phone itself. To

drop those requirements, but still benefiting from the advantages of relative pressure readings,

a workaround is required. By changing (2.73) from an absolute to a relative comparison, with

respect to the first smartphone pressure reading, the reference becomes obsolete. In other words,

an initial atmospheric pressure is known from the barometer, but the corresponding altitude is

not. That is, the pedestrian is assumed to have started at an unknown height. While walking,

the sensor’s pressure readings, and the pedestrian’s altitude, both change with respect to their

initial values. Even though the starting altitude is unknown, the evaluation can examine if the

pedestrian’s change in altitude since the start at t = 0 resembles the barometer’s change in

pressure since t = 0 [Ebn+15; Tor+17].

To compare pressure changes with altitude changes, the relative relation between both is

required. That is, the change in pressure per meter of altitude (hPa/m) at a certain altitude h

above sea-level, given by the derivative of (2.67)

ḟ̺ (h) = −
gM̺0T0

(
T0

T0+Lh

) gM

LR
−1

R (T0 + Lh)2
. (2.74)

For buildings with rather few floors, only a small range of the function is required. Within this

range, (2.67) can be assumed to behave linearly, and its derivative (2.74) denotes a constant,

2.5. BAROMETER 57

Altitude h f̺ (h)(2.67)
ḟ̺ (h)(2.74)

1/ḟ̺ (h)(2.74)

0m 1013.25 hPa 0.120 hPa/m 8.32m/hPa
200m 989.56 hPa 0.117 hPa/m 8.56m/hPa
400m 966.53 hPa 0.114 hPa/m 8.81m/hPa
600m 944.13 hPa 0.110 hPa/m 9.05m/hPa

Table 2.3: Expected atmospheric pressure and corresponding change rate, dependent on the altitude.

solely dependent on the building’s height above mean sea level hbldg. Resulting change rates for

typical altitudes are shown in table 2.3. The adjusted evaluation

pbaroRel (ot | qt) = N
(

∆hPa→∆m︷ ︸︸ ︷
∆̺

ḟ̺ (hbldg)

∣∣∣∣ ∆z, σ2
alt

)

〈q〉t = 〈(z, . . .)〉t , 〈o〉t = 〈(̺, . . .)〉t , ∆z = q
(z)
t − q

(z)
0 , ∆̺ = o

(̺)
t − o

(̺)
0 ,

(2.75)

matches the pedestrian’s potential whereabouts against current sensor readings, by comparing

the change in altitude ∆z since start t = 0 with the change in atmospheric pressure ∆̺ since

start. For comparing, the latter is converted to meters based on the expected pressure change per

meter at the building’s altitude hbldg, given by the reciprocal of (2.74). To remove the required

o0 from (2.75), a virtual barometer sensor can be created, directly providing the required ∆̺

as its observation. Similarly, ∆z can be added directly to the unknown state, and is hereafter

updated for every movement qt−1 → qt, dropping the requirement for q0. However, even with

pressure readings relative to the start of the walk, changing weather conditions, opening/closing

doors or windows, can still cause several meters of fluctuation. Changing weather conditions

usually take at least several minutes to manifest. Those long-term changes become relevant for

longer localization and navigation scenarios, where the initial reference ̺ref or o
(̺)
0 gets invalid.

This can e.g. be addressed by not using t = 0 as reference within (2.75), but a short timeframe

of several seconds, sufficient for determining floor changes [Mur+14].

Ye et al. [Ye+14] compensate ambient conditions by crowdsourcing, using measurements

from other smartphones within the same building. Local temporal effects can be compensated,

as they manifest similarly for all users. This allows to distinguish them from pressure changes

due to stairs or elevators. Their approach could also be used to estimate σalt, which is barely

possible without additional information. As depicted in figure 2.16, temporal effects can cause

pressure changes similar to changes in altitude > 1m, and a floor-correct estimation is not al-

ways possible [Mur+14]. When considering data from nearby pedestrian’s, σalt can be adjusted

accordingly, based on ambient conditions. Yet, due to the requirement of a server for exchang-

58 CHAPTER 2. PROBABILISTIC SENSOR MODELS

ing the data, this imposes potential data privacy issues, and requires other pedestrians using the

same software within the same building at the same instant in time.

Another option for uncertainty estimation and/or suppression of temporal influences is sim-

ilar to approaches described in section 2.4.3. By including additional sensors, it becomes more

clear whether pressure is changing due to taking stairs/elevators, or temporal effects, as e.g. the

pedestrian’s step interval and pattern will change when stairs are involved (cf. section 2.4.1).

However, with ambient conditions changing rather slowly, it can also make sense to use the

barometer only for short-term indications, to e.g. determine whether the pedestrian is currently

taking stairs or not.

2.6 Activity-Detection

Previous components provided a continuous estimation of absolute and relative changes in po-

sition or heading, but suffered from various uncertainties, such as drifts, which can be hard to

address. Besides a direct indication of location or heading, a discrete classification can be used,

e.g. to determine the pedestrian’s current activity. As mentioned for the barometer, due to envi-

ronmental effects, it can be more robust to determine whether the pedestrian is currently taking

a stair, than estimating a continuous change in altitude on a per meter basis [Fet+16; Ebn+17].

The same holds true for other sensors besides the barometer, allowing to distinguish between

various types of activities for the pedestrian. Among the most common for indoor localization

and navigation are standing, walking, turning, and using stairs, elevators or escalators [Fet+16;

Elh+14; ABA11]. For an overview, the following activity classes Ω are distinguished

Ω ∈ { standing, walking, stair↑, stair↓} . (2.76)

Recognition is based on sensor data, observed during a certain timeframe, estimating the activity

that took place within. The actual classification can be as simple as a binary decision tree,

with multiple yes/no paths based on some features, extracted from the windowed sensor data

[Elh+14; Fet+16]. As described earlier in section 2.4.1, steps cause an observable fluctuation of

the accelerometer’s magnitude ‖a‖. The variance fσ(a[],∆N) of all readings within a certain

timeframe can thus be used to estimate whether steps were made or not. For better readability,

the timeframe is defined by the most recent ∆N samples, received from the sensor

fσ(a[],∆N) =

√√√√ 1

∆N

∑

n

(
‖a[n]‖

)2 −
(

1

∆N

∑

n

‖a[n]‖
)2

with N −∆N < n ≤ N , N = |a[]| .

(2.77)

2.6. ACTIVITY-DETECTION 59

fΩ

(
a[], ̺[],∆N

)

fσ(a[],∆N) < τ accel

|f∆(̺[],∆N)| < τ baro

|f∆(̺[],∆N)| < τ baro

standing

f∆(̺[],∆N) < 0
potentially

elevator or

escalator

walking

f∆(̺[],∆N) < 0
stair↑

stair↓

yes

no

yes

no

yes

no

yes

no

Figure 2.17: Binary decision tree example for activity recognition based on accelerometer and barom-

eter. If there is few variation within the accelerometer’s magnitude, the pedestrian is either standing,

or e.g. taking an elevator or escalator, distinguishable by the barometer. If there is variation within the

magnitude, this is either due to walking normally or taking stairs, distinguishable by the barometer.

If (2.77) is above a certain threshold, the pedestrian is expected to be currently walking along

a floor or taking stairs. Accelerating and decelerating elevators also affect the magnitude, how-

ever, usually in a much less pronounced way than steps do [Zho+15]. It is important to notice

that the two sums from (2.77) can suffer from precision issues, when implemented using float-

ing point numbers. The result will be incorrect for
∑

x[] ≫ x[n], that is, larger ∆N . This issue

can be addressed by data types offering more precision, if available, or via compensated sum-

mation, e.g. by using the Kahan summation algorithm, tracking individual summation errors

and adjusting a compensation value, included for the next addition [Hig02].

While both, step pattern and (2.77), are slightly different when taking stairs compared to

walking along a hallway (cf. figure 2.7), information provided by the barometer is more valuable

to distinguish between walking and stair↑/stair↓. The change of pressure within a short

timeframe indicates changes in altitude, and is invariant to environmental long-term influences

f∆(̺[],∆N) = ̺[N] − ̺[N−∆N] , N = |̺[]| . (2.78)

Similarly, elevators should manifest as anomalies within the magnetometer’s readings [She+09].

However, this is rarely described in literature, or the sensor’s actual contribution is hidden be-

hind machine learning and neural networks [Zha+18a]. Elevators can also be detected by ex-

amining precise gravity changes, yielding a hint on the change in altitude, by integrating the

accelerometer’s tilt compensated z-axis [Cil+14]. For a simple yes/no decision, elevators could

be assumed when a change in altitude is indicated by the barometer, but no steps are detected.

Decision Tree Classification Figure 2.17 shows a binary decision tree, combining the men-

tioned aspects to determine the current activity Ω = fΩ
(
a[], ̺[],∆N

)
. The two required

thresholds τ accel and τ baro are estimated empirically. To compare the detected activity with po-

tential pedestrian movements, the building’s floorplan needs semantic information on the type

60 CHAPTER 2. PROBABILISTIC SENSOR MODELS

of ground for every reachable location ρ, indicating whether it belongs to a stair, escalator, el-

evator or normal ground [Ebn+17]. This information is assumed to be provided by a function

ftype (ρ). To support all activities from (2.76), two types are distinguished

type ∈ {floor, stair} , (2.79)

where stair is only used for the skewed stair parts, and plateaus are handled by the same type as

normal ground floor. Potential locations within the building can then be evaluated by comparing

the detected activity with a location’s type. The uncertainty within the activity recognition is

modeled by an empiric mixing value κmatch

pactivity

(
ot | qt, qt−1

)
=

κmatch d < τ dist

(1− κmatch) else

}

o
(Ω)
t = standing

κmatch d > τ dist ∧ type = floor

(1− κmatch) else

}

o
(Ω)
t = walking

κmatch d > τ dist ∧∆z > 0 ∧ type = stair

(1− κmatch) else

}

o
(Ω)
t = stair↑

κmatch d > τ dist ∧∆z < 0 ∧ type = stair

(1− κmatch) else

}

o
(Ω)
t = stair↓

d = distxy

(
qt−1, qt

)
, type = ftype

(
posxyz (qt)

)
, ∆z = q

(z)
t − q

(z)
t−1

〈q〉t = 〈(x, y, z, . . .)〉t , 〈o〉t = 〈(Ω, . . .)〉t .

(2.80)

To estimate the required thresholds τ accel, τ baro, τ dist and the impact κmatch, labeled training data

can be used. It is e.g. obtained from recorded pedestrians walks, where each part of the walk

is labeled with the current activity. This data is hereafter passed through (2.77) and (2.78), to

derive the two features after every sensor reading. All features for one activity can then be used

to estimate thresholds, and plotting the entirety yields a hint on separability [Nie83].

Naive Bayes Classification Instead of a binary decision tree, the training data can be used

to derive one multidimensional normal distribution for each activity class Ω, by estimating the

mean µΩ and covariance ΣΩ of all extracted features c belonging to it

p(c | Ω) = N (c | µΩ,ΣΩ) , c =
(
fσ(a[],∆N)

(2.77)
, f∆(̺[],∆N)

(2.78)

)T
. (2.81)

In the simplest case, omitting any prior knowledge, the most likely activity Ω is the one where

the associated normal distribution yields the largest result for a new feature c

Ω∗ = argmax
Ω

N (c | µΩ,ΣΩ) , (2.82)

2.6. ACTIVITY-DETECTION 61

often referred to as Naive Bayes classifier. Required derivations, corresponding proof and reper-

cussions can be found in [Nie83]. Ω∗ from (2.82) can be used to replace the result of the decision

tree within (2.80). However, doing so discards additionally available information, as only the

most likely activity is considered, while others might be likely as well. This is especially im-

portant for a transition (2.6) , where potential movements are predicted based on the likelihood

of current activities, derived from sensor readings. Depending on the estimated probability of

each known activity, some transitions might use the stair, while others stay on the same floor,

acknowledging the likelihood for every single activity

pactivity

(
qt | qt−1,ot−1

)
∝

p(c | standing) when qt−1 → qt is not moving

p(c | walking) when qt−1 → qt moves along floor

p(c | stair↑) when qt−1 → qt moves upstairs

. . . .

(2.83)

Besides indoor localization, the field of human activity recognition also attracts public interest,

e.g. for supervising elderly people living on their own, where recognized activities are used

to detect whether the person might have fallen, and needs assistance [KSG18]. With other

types of sensors, such as wristbands, even typical household activities, like vacuuming, can be

detected [ABA11]. This information can e.g. be used to detect whether elderly people can cope

with their daily chores. Furthermore, detecting changes within the daily routine, gathered over

longer periods, allows for early diagnostics of diseases. Using more sophisticated classification

approaches such as the support vector machine (SVM), artifical/convolutional neural networks

(ANN, CNN) and similar, even more fine grained activities, such as whether a drawer is being

opened or closed, can be distinguished [Li+18]. Here, calculations like (2.77) and (2.78) are

often not required, as the raw sensor data within some timeframe is used instead.

Li et al. [Li+18] compare a multitude of different approaches with varying number of sen-

sors towards a detailed activity recognition. As expected, by using more sensors, more fine

grained distinctions between activities become possible. With rising pervasiveness of smart-

watches, and increasing computational power available from CPUs, GPUs and AI accelerators,

aforementioned classification and recognition approaches become of interest for smartphone-

based indoor localization and navigation as well.

Yet, while recognized activities can already be used to reduce the number of potential where-

abouts, e.g. when taking stairs, elevators or escalators is detected, this technique does not pro-

vide absolute location hints in general. Thus, other sensors still are required to solve the overall

problem of smartphone-based indoor localization and navigation.

62 CHAPTER 2. PROBABILISTIC SENSOR MODELS

2.7 Wi-Fi and Bluetooth Beacons

Aforementioned sensors either provided relative location changes, only limited hints on ab-

solute indications, or were intended for outdoor use. Even if the pedestrian’s initial position

within the building is known, e.g. from the last GPS fix before entering, most sensors allow for

incremental updates only. Any error of the initial whereabouts will thus propagate and, due to

cumulating errors, increase over time. Therefore the question arises, whether there is a compo-

nent that is able to provide absolute estimations for the phone’s current whereabouts indoors,

at least at a coarse level, but preferably as accurate as the GPS. Matching with section 1.1, this

component should be available within every modern smartphone, and the requirements con-

cerning the building itself should be as small as possible. Every architectural style should be

supported, and it should not require costly hardware, setup or maintenance.

Back in 2000, Bahl and Padmanabhan conducted an experiment with three Wi-Fi trans-

mitters, statically installed within a floor about 44 × 23m in size. A portable receiver picked

up those signals and measured their strength, referred to as received signal strength indication

(RSSI). Due to physical effects and obstacles within the floor, the three measurable RSSIs vary

depending on the receiver’s location. The authors used this effect to roughly determine the

receivers current location, by comparing the three received measurements to what should be

measurable given a certain location. Thereby they created a positioning system, similar to the

GPS, but operating indoors, working with almost every Wi-Fi equipped hardware [BP00].

As of today, every smartphone contains a Wi-Fi component, capable of measuring RSSIs

by scanning for nearby transmitters. Likewise, the required infrastructure, namely Wi-Fi access

points, is present within an increasing number of public buildings, where localization and navi-

gation would provide a benefit, such as airports, rail stations, universities and hospitals. When

this infrastructure is not yet available, such as in older museums, a cheap solutions is given by

installing small, inexpensive transmitters within the area of interest [Fet+18]. One drawback of

this approach is the time, and thus costs, required for an initial setup and maintenance in case

of changes afterwards. The behavior of the signal strength has to be well known throughout the

whole building, for the described location estimation to work.

To determine how this comparison is conducted, which components and information are re-

quired, the following sections will first examine the basic behavior of radio signal propagation.

Hereafter, several comparison techniques with their benefits and drawbacks will be discussed,

including required prior knowledge, and how to obtain it. Finally, several strategies to signifi-

cantly reduce setup and maintenance times will be presented and discussed in detail.

2.7. WI-FI AND BLUETOOTH BEACONS 63

−80 dBm −60 dBm −40 dBm −20 dBm 0dBm 20dBm

P
G
PL
G

RSSI

Figure 2.18: Influences on RSSI, adapted from [Rac07, p. 117]. P denotes the power used by the hard-

ware, transmitting signals into the sending antenna. This antenna might bundle the energy, yielding an

increase G . While traveling towards the receiver, the signal is attenuated by PL, increasing with distance.

Finally, bundling by the receiving antenna yields another increase G, resulting in the final RSSI.

2.7.1 Signal-Strength and Propagation

The main metric in the approach presented by Bahl and Padmanabhan is the RSSI of the three

transmitters, measured by the portable receiver. This value provides information on the strength

of a signal that remains at the location it was picked up by a receiver. Generally, it decreases with

increasing distance, thus providing a rough hint on the distance towards its transmitter. Both, the

actual power of a radio signal, and the corresponding RSSI, are given in dBm or dBmW. How-

ever, how the RSSI is measured is not standardized, and different devices can provide varying

readings for the same absolute power [CB07]. Also, the signal’s strength is strongly affected

by the architecture between transmitter and receiver, varying with the receiver’s whereabouts.

Several studies thus concluded that the RSSI is too unreliable to provide a viable localization

[PHU09; Lui+11; Jun+12]. While this is true for the analytical relation between RSSI and

distance, depending on required accuracy, distance-based localization is still possible [BP00;

YA05]. Furthermore, architectural effects often yield unique RSSI behavior, which can be used

for matching approaches, to infer a location [JLH11; Sen+12; Zha+18b]. Nevertheless, due to

the rising interest in location based services and similar, newer wireless standards aim to include

additional metrics besides RSSI. For instance, travel-time measurement, especially targeting lo-

calization, addressing aforementioned drawbacks [BSA16; Ibr+18; Dvo+19]. Gradually, they

might replace RSSI-based approaches, as soon as hardware and software are commonly avail-

able. For now, using the RSSI is still the most versatile approach.

Figure 2.18 gives an overview on all components influencing RSSI readings, for a sig-

nal traveling from a transmitter, called access point (AP) or base station, towards a receiver.

The first component is the transmitter itself, where the strength is influenced by the configured

transmission power P . While increasing the power yields an increased range for the signal,

this factor is limited by local authorities to prevent pollution of radio frequencies and collisions

between nearby devices. The generated signal is passed through an antenna, distributing it into

the transmitter’s surroundings, causing an additional gain G , depending on the antenna. Radio

64 CHAPTER 2. PROBABILISTIC SENSOR MODELS

Figure 2.19: Simplified radiation pattern of a dipole antenna, dependent on the opening angle. The

distance from the antenna denotes the amount of energy transmitted into a certain direction. Wider

ellipses transmit more power to the horizontal plane than to the vertical plane.

waves hereafter propagate through air and architectural obstacles, losing a major part of their

initial power, referred to as path loss (PL). The receiving antenna slightly increases the power by

G, as multiple beams are picked up and accumulated. The receiving circuit then measures the

signal’s power, resulting in the RSSI. Whether this circuit recognizes a signal or not, depends

on its remaining power. If it is below a certain threshold, or the amount of ambient noise is too

high, there will be no indication at all [Rac07]. Due to environmental, physical and technical

influences on radio waves, the resulting reception quality is often distributed unevenly among

all places where it is required.

A countermeasure to weak signal qualities often suggested among hobbyists, is using a

larger transmitter antenna, to increase G . This, however, does rarely work as expected and

usually presents other drawbacks. As the transmission power P of the base station is constant,

the overall output after an antenna also remains the same, independent of the chosen antenna.

Different models only affect the way this input energy is distributed into free space. The most

common antenna type for Wi-Fi is the dipole. It transmits the signals in a pattern often described

as “donut shaped”, shown in figure 2.19. Dependent on the antenna’s opening angle, the pattern

approximates a torus, stretched into a certain direction. Antennae with a smaller opening angle

distribute most of the energy to the horizontal plane, and the signal strength, measurable by

devices on the same floor, will increase. Energy distribution to the vertical plane, or adjacent

floors, however, is reduced. This is similar to the effect of a satellite dish, focusing the signal

into a narrow beam, significantly increasing the transmission distance, without changing the

overall amount of energy [CB07]. Yet, for a robust two-way communication, the receiver should

use the same kind of antenna, to reliably transmit a response back to the transmitter. Antennae

influence how available energy is distributed from a transmitter into its surrounding area, and

how these radio signals are captured on the receiving side. It thus represents a crucial component

when relating to signal strengths and RSSI.

2.7. WI-FI AND BLUETOOTH BEACONS 65

After the antenna, each radio wave follows a straight line, until obstacles are encountered,

affecting the signal in both, direction and strength. The latter is also reduced by air molecules,

yielding an attenuation, increasing with distance. Combined with the attenuation by obstacles,

this is referred to as path loss. Common effects on radio waves along their path are shown in

figure 2.20 and described hereafter [Rac07; Sey05]:

Absorption/Shadowing Architectural materials, but also humans, can absorb high frequency

radio signals [Gra+11]. Within buildings, this often occurs for steel-reinforced concrete walls

and floors. Dependent on the spacing of the contained steel grid, the wall’s thickness, and used

radio frequency, signals can be completely absorbed. Due to the wavelength’s impact, 5GHz

signals, e.g. used within 802.11ac, behave differently for the same materials.

Reflection Smooth surfaces, such as metal or glass, tend to reflect the majority of incoming

radio waves. For rough surfaces, such as walls, reflection, if any, is usually less pronounced.

The amount of reflection also depends on the signal’s angle with respect to the surface. Some

of the signal’s energy is lost within this process, yielding a redirected, weaker signal. This can

yield multiple “copies” of the original signal, reaching the recipient with differing delays.

Scattering Similar to reflection is scattering. Instead of one reflection with a well-known

angle, multiple reflections with varying angles are created. This mainly occurs among rough

surfaces, where a smooth reflection is impossible. This effect can also be observed when the

surrounding air is filled by many small particles, such as water. Rain, fog and snow will yield

large amounts of reflection and scattering, often causing transmissions to fail.

Refraction The effect of refraction is well-known from water surfaces, affecting the direction

of light, due to a change in media. For radio signals, this mainly occurs among thick obstacles

of a monotonic structure, such as solid concrete objects. When the signal leaves the wall, the

direction is changed again. This also causes the signal’s overall traveling distance to increase.

Diffraction Obstacles are unable to occlude a light source in a binary on/off way. As light

rays are able to slightly bend around corners, shadows do not exhibit sharp edges, but are faded.

The same holds true for radio signals. After doors or corners, a slow fade in signal strength can

be recognized between the line of sight towards the transmitter and the edge of the obstacle.

Attenuation/Free Space Loss All aforementioned effects cause attenuation, reducing the

signal’s strength. However, due to the surrounding air molecules, attenuation also occurs along

the line of sight between a transmitter and receiver. The amount of attenuation depends on the

used wireless standard, and 2.4GHz signals behave differently than 5GHz versions [Hee+11].

66 CHAPTER 2. PROBABILISTIC SENSOR MODELS

diffraction

shadowing refraction

reflection

scattering

free space loss

absorption

Figure 2.20: Effects on radio signals due to air and architectural components. While some influences

just reduce the signal’s strength, others also affect the direction, or split it into multiple, weaker signals.

Multipath Propagation The effect of multiple signal copies reaching the recipient via differ-

ent paths, is called multipath propagation. The delay and attenuation along each path is crucial.

If two copies are equal in strength, but delayed by half the wavelength, they cancel each other

out. Likewise, it is possible that the first signal reaching the recipient isn’t the strongest signal,

as there might be longer paths with less attenuation. Therefore, multipath propagation plays a

vital role concerning reception quality, and indicated strength of the received signal [Dvo+19].

After propagation, signals are picked up by the receiving antenna and hardware. For the

latter, the Wi-Fi standard defines minimum requirements regarding acceptable error rates for

certain signal strengths [IEE12; IEE16]. These are a hint towards receiver sensitivity, and the

weakest signal that will be receivable by hardware. Yet, actual hardware might be better than

the minimum requirements demand. Thus, a weak−90 dBm signal might be recognized by one

smartphone, but not by another [Liu+07]. This aspect imposes potential issues when comparing

RSSI readings to infer the current location.

Figure 2.21 shows real-world RSSI readings and aforementioned influences. Even for di-

rect line of sight conditions between a transmitter and a smartphone, used as receiver, signal

strength readings are varying (figure 2.21a). If pedestrians are crossing this line of sight, the av-

erage signal strength is slightly reduced and the variance around this average value is increased

(figure 2.21b). This clearly depicts the mentioned influence of the pedestrian. Similarly, when

holding the smartphone while walking along a hallway, all transmitters behind the pedestrian

will be attenuated, yielding smaller RSSIs [Gra+11]. This effect can even be used for passive lo-

calization. Youssef et al. [YMA07] presented a system with several transmitters and receivers,

all installed at well-known locations. Humans walking between them affect the measurable

signal strengths, allowing for wireless human presence detection, and even a coarse location

estimation. The impact of antennae is shown in figure 2.21c, where the phone, and thus its an-

tenna, is slowly rotated, at a constant distance of 10m. While the change of the average value is

insignificant, rotating the antenna increases the variance significantly. Most readings are within

2.7. WI-FI AND BLUETOOTH BEACONS 67

−80 dBm
−70 dBm
−60 dBm
−50 dBm
−40 dBm
−30 dBm

µ = −56.36, σ = 1.18

(a)

µ = −57.56, σ = 2.88

(b)

µ = −55.40, σ = 5.78

(c) (d)

Figure 2.21: Time behavior of measurable signal strength outdoors under line of sight conditions with

10m distance between phone and transmitter (a), 10m distance and pedestrians walking between trans-

mitter and phone (b), 10m distance and changing the phone’s orientation (c), a pedestrian holding the

phone and walking towards the transmitter (50m to 1m) at a constant speed (d).

a ±10 dB boundary around the mean, with one −20 dB outlier. For comparison, figure 2.21d

shows the readings for a pedestrian, 50m away from the receiver, walking towards it. The signal

strength of the outlier from figure 2.21c is below the one at a distance of 50m.

As shown, the value of RSSI readings depends on surroundings, hardware and antennae.

The next section revisits aforementioned aspects from an analytical viewpoint, discussing mod-

els that can be used to predict signal strength behavior within buildings.

2.7.2 Signal-Strength Prediction Models

As discussed, free space and obstacles attenuate radio waves during their propagation. These

effects can be simulated by signal strength prediction models, providing an estimation of the

signal strength, that is expectable at a given distance or location. Such models are often used

to predict where, and how many, transmitters should be installed, when buildings are newly

equipped with Wi-Fi [Raj+96]. However, as discussions will show, they can also be used for

Wi-Fi-based indoor location estimation.

Simple models only focus on aforementioned free space loss, within line of sight conditions,

where the signal is solely attenuated by the surrounding air. For walls, floors and other obstacles

to be considered as well, more advanced models are required, to include corresponding effects

on radio waves. This section provides an overview on models often used in the context of Wi-Fi

and indoor localization. While simple free space models offer analytical benefits, they are not

well suited for more complex architecture. Therefore, additional parameters and techniques to

approximate the buildings architecture will be discussed as well.

Log-Distance Model Most of the simple models are intended for outdoor use, line of sight

conditions, and are related to Frii’s transmission equation [Fri46]:

P

P
=

λ2G

4π

λ2G

4π

1

d2λ2
= GG

(
λ

4πd

)2

. (2.84)

68 CHAPTER 2. PROBABILISTIC SENSOR MODELS

Office 1 Office 2 Grocery Store Retail Store Textile Metalworking

MHz 914 914 914 914 4000 1300
γ 3.5 4.3 1.8 2.2 2.1 3.3
σrssi 12.8 dB 13.3 dB 5.2 dB 8.7 dB 9.7 dB 6.8 dB

[SR92] [SR92; ARY95] [ARY95]

Table 2.4: Typical values for γ and uncertainty σrssiwithin (2.85), both varying significantly based on

surroundings and used radio frequency. Details on the actual structure of the listed environments are of

less importance here, but can be found within the provided sources.

(2.84) describes the ratio between the power P used by the transmitter and the power P remain-

ing at the receiver, dependent on their antennae, used wavelength λ and the distance d between

both devices. Antennae are modeled using aforementioned gain factors G and G, which de-

pend on the chosen type [Fri71]. For isotropic antennae, which distribute energy equally into all

directions, G ,G = 1. The wavelength λ depends on the used Wi-Fi standard (2.4GHz/5GHz).

Both power indications, P and P , are absolute, and given in dBm. The equation indicates a

direct connection between the RSSI, given by P , and the distance d from a transmitter.

For Wi-Fi and indoor use, (2.84) is modified, to approximate the impact of air and obstacles

along the line of sight, using an attenuation factor γ. Put simply, γ describes the average signal

attenuation per meter. This modified version is often referred to as log-distance model [Rap02]

P (d) = P0 − 10γ log10
d

d0

optional︷ ︸︸ ︷
+ X , X ∼ N (0, σ2

rssi) . (2.85)

Here, the power P measurable by a receiver, depends on the distance d from the transmitter,

the attenuation factor γ, and a reference P0. The latter describes the signal strength, measurable

at a known distance d0 from the transmitter’s antenna, serving the same purpose as P within

(2.84). In literature, P0 is often given at a distance d0 = 1m [SR92; Sey05]. As mentioned

earlier, P , and thus P0, depend on regulations made by local authorities. Typical values for P

of the hardware circuit are around 15 dBm to 23 dBm (≈ 32mW to 200mW), and −40 dBm
to −20 dBm for P0, after a distance of one meter, when using typical Wi-Fi antennae [Liu+07;

Hee+11; Che+12; OCV12]. Uncertainties due to noise and ambient conditions, such as mul-

tipath effects, scattering and similar (cf. figure 2.21) are modeled by the zero mean Gaussian

random variable X . When this variable is present, the model is also referred to as log-normal

shadowing model [Rap02]. The degree of attenuation per increase in distance from the transmit-

ter is modeled by the path loss exponent γ, where higher values denote an increased attenuation,

similar to more obstacles along the line of sight. Typical values for γ and σrssi are shown in ta-

2.7. WI-FI AND BLUETOOTH BEACONS 69

−70dBm

−60dBm

−50dBm

−40dBm

5m 10m 15m 20m

20m

40m

60m

80m

100m

−90dBm−70dBm−50dBm

γ = 2.5

γ = 2.0

γ = 3.0

−69dBm

−69dBm

−57dBm

5m

Figure 2.22: Signal strength prediction heat map for a transmitter (black dot), using (2.85) or (2.87) with

γ = 2.5 and P0 = −40 dBm at d0 = 1m. The reference-circles are 2m apart. The charts on the left

depict the relation between signal strength and distance, when varying the path loss exponent γ,

ble 2.4, whereby the actual structure of the listed surroundings is unimportant. But, as can be

seen, due to different architectural materials, like drywall, metal and concrete, the number of

obstacles, and their placement, values are varying significantly, including a notable uncertainty.

Similar to (2.84), (2.85) clearly relates the power measurable by a receiver to its distance

from the transmitter. This relation can be inverted, to directly convert a signal strength reading

into an estimated distance towards its transmitter, based on aforementioned model parameters

dLD (P) = d0 10
(P0−P +X)/(10γ) . (2.86)

As can be seen, (2.86) is a crucial component towards absolute location estimation based on

the measurable signal strength of radio waves. Omitting X for now, a single RSSI reading can

directly be converted into a distance. If the location of the signal’s transmitter is known, the

location of the receiver can be constrained using (2.86), similar to earlier for the GPS (2.7).

Potential whereabouts then denote a circle around the transmitter for the 2D case, and a sphere

for the 3D variant, with the radius equal to the estimated distance. By using measurements from

several transmitters, multilateration (see section 2.3) provides a coarse location estimation for

the receiver, e.g. a smartphone, depending on the model’s correctness.

For an impression of the model’s quality, it is applied to an example floorplan with drywall

interior and concrete exterior, using a typical transmission power of P0 = −40 dBm at d0 =

1m, and a path loss exponent γ = 2.5. The results are depicted in figure 2.22. As can be

seen, the attenuation always follows the shown curves. Neither walls nor windows affect the

signal strength. γ approximates all of the transmitters surroundings as a single value, without

any locality. While this will yield large regional errors, not matching real-world behavior, this

location invariance is the basis, required for the existence of the inverse equation (2.86).

70 CHAPTER 2. PROBABILISTIC SENSOR MODELS

Dependent on the use case, more accurate model predictions, considering walls and other

obstacles, can be required. To include local elements, the transmitter’s and receiver’s locations

must be part of the equations. Within the following, d is therefore replaced by the Euclidean

distance between the known location ρ of the transmitter and the location ρ
•

to estimate the

signal strength for. To ensure readability, all parameters required for a certain model are grouped

within the tuple ψ, and d0
!
= 1m, to remove the fraction, changing (2.85) to

PLD

(
ρ
•
,ψ
)
= P0 − 10γ log10

∥∥ρ− ρ
•

∥∥+ X
P0, γ,ρ,X ∈ ψ , X ∼ N (0, σ2

rssi) .
(2.87)

Extended Log-Distance Model Especially within larger buildings, using a mixture of mas-

sive concrete and decent drywalls, the approximation given by the single path loss exponent

γ will yield model predictions that are too strong behind concrete walls, and too weak for the

remaining regions of each floor. Therefore, Seidel and Rappaport proposed an extension to the

log-distance model, including local effects of floors and walls, named floor attenuation factor

path loss model (FAF) [SR92]. This extension was picked up by the work of Bahl and Padman-

abhan. They slightly adjusted the model and named it wall attenuation factor model (WAF)

[BP00]. The idea behind both versions is basically the same, and given as

PeLD

(
ρ
•
,ψ
)
= P0 − 10γ log10

∥∥ρ− ρ
•

∥∥+ Γ(ρ,ρ
•
,φ) + X

P0, γ,ρ,X ,φ ∈ ψ .
(2.88)

The additional Γ(ρ,ρ
•
,φ) denotes attenuations by floors, walls and other obstacles, blocking

the line of sight between the transmitter and the location, the signal strength is estimated for.

Based on the type/material of the obstacle, a certain amount is removed from the signal strength.

This negative attenuation factor for each material – like drywall, glass or concrete – must be

chosen beforehand, either by measuring, or using values from literature. After determining all

obstacles within the line of sight, each single object contributes to the signal strength estimation,

by removing a constant factor based on its type, briefly described as

Γ(ρ,ρ
•
,φ) =

∑

i∈isects

fφ (i) ,

isects = {all walls intersecting the line from ρ to ρ
•
}

φ = {φceiling, φconcrete, φdrywall, . . . }
fφ : i 7→ φ ∈ φ .

(2.89)

(2.89) determines all obstacles intersecting the line of sight between ρ and ρ
•
, and sums their

attenuation factors φ, describing each material’s attenuation as a negative number.

2.7. WI-FI AND BLUETOOTH BEACONS 71

Window Drywall Door Brickwall Concrete Wire Frame

[Wil02] −0.5 −0.5 −4.4 −21.0
[Ric+00] −6.4 −2.6 −5.9 −7
[Rac07, p. 116] −2 to −8 −2 to −4 −5 to −8 −10 to −15 −5 to −8

Table 2.5: Attenuation factors φ for typical building materials, examined using different measuring meth-

ods, under varying ambient conditions.

Regarding the influences described earlier, (2.88) additionally models the effects of absorp-

tion and shadowing. While reflection, refraction, diffraction and scattering are still omitted, this

represents a major improvement compared to (2.87). This, however, comes at the cost of draw-

backs. To determine the attenuation by walls and floors (2.89), the building’s floorplan must

be known, including semantic information. While a scanned image can be sufficient for inter-

section testing, it does not provide semantic information on used materials, thus enforcing the

same attenuation factor for every obstacle, representing an unnecessary approximation [BP00].

Another drawback of (2.88) is its irreversibility. It can not be solved for a distance d or location

ρ
•
, due to the required intersection tests. Furthermore, these tests are costly, especially with

increasing complexity of the floorplan, thus potentially unsuited for embedded use [Ebn+15].

Depending on required accuracy, a compromise might be to only include floors and concrete

walls, omitting minor obstacles with small attenuation values. These values can either be deter-

mined by measurements, or taken from literature. As can be seen in table 2.5, however, there

is a large variation among different sources. This is due to variations within the architectural

structure, real vs. laboratory conditions, and the used signal frequency [Wil02].

Figure 2.23 depicts a heat map for the example floor when using (2.88). Compared to fig-

ure 2.22, the value for γ is reduced to an empirical 2.2, and mainly models free space loss, as

wall attenuations are now given separately. White elements depict drywalls, dark gray elements

represent concrete walls, including cutouts for windows. Interior obstacles, such as tables and

chairs, are not considered by this propagation model. While they do affect the signal strength

[Raj+96], including them within the model would require even more computational power.

Furthermore, their location is volatile, requiring maintenance, whenever furniture is relocated.

Thus, only static furniture, such as cabinets within a museum, should be considered [Fet+18].

Examining the chart in the left half of Figure 2.23, the behavior of the extended model is clearly

visible. As soon as a wall is encountered, the estimated signal strength is reduced by the ob-

stacle’s constant attenuation factor. For the depicted example, (2.87) and (2.88) provide similar

estimations, until the concrete exterior is encountered, ≈ 13m along the line of sight.

72 CHAPTER 2. PROBABILISTIC SENSOR MODELS

−70dBm

−60dBm

−50dBm

−40dBm

5m 10m 15m

log-distance

log-distance + walls

−76dBm

−78dBm

−57dBm

5m

Figure 2.23: Signal strength prediction for a transmitter (black dot), using (2.88) with γ = 2.2, P0 =
−40 dBm, φdrywall = −1 dB, φdoor = −3 dB, φwindow = −4 dB, φconcrete = −8 dB. The left depicts a

comparison between (2.87) and (2.88) along the path towards the lower right reference, clearly indicating

the concrete wall’s attenuation.

Ray Tracing To further enhance predictions, including reflection and refraction, more com-

plex approaches, not relying on a line of sight assumption, must be used. One potential can-

didate is ray tracing, known from computer vision, e.g. used for rendering photo-realistic 3D

images [Shi03]. Here, one ray per pixel is sent from a virtual camera, eventually colliding with

objects, placed within a virtual scene. After hitting an object, its color and lighting information

is determined, based on the location and angle it was hit. The same technique can be used to

simulate signal strength propagation within a building, by emitting several rays from a trans-

mitter’s location. As soon as a ray encounters an obstacle, the collision angle is calculated to

determine further actions. Depending on this angle, and the encountered material, the signal is

shadowed, absorbed, reflected or refracted, by emitting new rays, starting at the collision, into a

direction defined by the physical effect to simulate. This process continues, until the way along

consecutive rays reached a certain length, and the signal is too weak to be recognized. Actual

signal strengths are then determined similarly to the extended log-distance model, depending

on the distance, encountered obstacles, and reflections along a ray. Most locations are crossed

by more than one ray. Their signal strength is thus e.g. given by the maximum encountered,

or the one from the first ray reaching it, that is, the one with the smallest distance towards the

transmitter [ElK+10; Raj+96].

Figure 2.24 depicts a potential prediction result, using the same transmitter parameters and

attenuation factors as figure 2.23. Both results are similar, but differ in some regions, especially

visible near windows. Signal strengths were estimated by rasterizing all emitted rays. When

some location within the building is not traversed by a ray, its signal strength remains unknown.

Thus, this approach does not allow for determining the signal strength for arbitrary positions,

but relies on a computationally complex simulation for the whole building. To perform actual

2.7. WI-FI AND BLUETOOTH BEACONS 73

−75dBm

−78dBm

−57dBm

5m

Figure 2.24: General ray tracing procedure (left) with refraction (red), reflection (blue) and both com-

bined (black). The corresponding signal strength prediction (right) for the transmitter located at the

black dot uses γ = 2.2, P0 = −40 dBm, φdrywall = −1 dB, φdoor = −3 dB, φwindow = −4 dB,

φconcrete = −8 dB.

lookups, this prediction is calculated once, and persisted hereafter. The amount of required

memory depends on the size of the building, and the number of installed transmitters. Further-

more, this technique requires an accurate floorplan representation, including semantic details

on obstacle material and thickness. Especially for the 3D case, walls and floors must be mod-

eled in a non-intersecting way, for the ray tracing to correctly determine when the obstacle is

entered and left, requiring a complex and semantic 3D model. Hence, ray tracing is mentioned

for completeness, but focus remains on aforementioned signal strength prediction models.

2.7.3 Probabilistic Location Estimation

Having discussed signal propagation and prediction by models, localization strategies are now

examined. Here, three techniques, varying in complexity and accuracy, will be distinguished.

The simplest approach uses lateration via (2.86), to provide a coarse location estimation,

only requiring each access point’s position within the building, and two parameters P0 and γ.

However, depending on architecture and use case, results can be too vague [Ebn+17].

To overcome these limitations, and include surrounding architecture, a discrete approach

can be used, where real-world measurements throughout a building serve as reference. Record-

ing such initial measurements once, is often referred to as offline phase [YA05]. Localizing the

pedestrian then represents the online phase, where current smartphone readings are compared

against the offline-database, to determine the most likely whereabouts [BP00]. In literature, this

is referred to as fingerprinting, as each location within the building presents a unique combina-

tion of visible transmitters and signal strengths [CPP10; Lui+11]. While being accurate, due to

real-world measurements, initial setups are time-consuming, costly and hard to maintain.

74 CHAPTER 2. PROBABILISTIC SENSOR MODELS

Therefore, a compromise between simple lateration and costly fingerprinting will be dis-

cussed, allowing for rapid and inexpensive setups within new environments, still providing

viable accuracy for most use cases [Ebn+15; Ebn+17]. Due to aforementioned influences on

radio signals, several drawbacks need to be addressed, independent of the chosen localization

procedure. Techniques to compensate uncertainty must be examined as well as approaches

mitigating the influence of different software, hardware and antennae [YA05; Ebn+17; Fet+17].

To conduct a smartphone-based Wi-Fi signal strength location estimation, the current RSSIs

of all nearby transmitters are required, including an unique identifier for each of them. In case

of Android, this is e.g. achieved by triggering a Wi-Fi scan, searching for all access points

nearby, returning their unique MAC address and corresponding RSSI. In general, two different

scan-types are available: active scan, which is the default, and passive scan [Baw+15; YA05].

By briefly discussing the two, some limitations on Wi-Fi location estimation are made clear.

For the active variant, the Wi-Fi hardware selects a channel to scan, broadcasts a request and

waits a short period for access points to respond. Transmitters might be overlooked, dependent

on the time waiting for this response, the number of nearby devices and package collisions.

This procedure must be repeated for every available Wi-Fi channel, which depends on the used

Wi-Fi standard, and local regulations [IEE07]. For 2.4GHz, usually 13 or 14 channels are

available. For the 5GHz variants, even more channels are usable, but local regulations are

strongly varying. European regulations on available channels and allowed transmission powers

are given in [ETS12]. Depending on the hardware component, not all of the allowed channels

will be available. The number of 5GHz channels thus can be up to approximately 30, requiring

more time for scanning than 2.4GHz. While a Google Nexus 6 takes around 600ms to scan

the 2.4GHz band for nearby transmitters, a Samsung Galaxy S5, scanning both 2.4GHz and

5GHz, needs around 3500ms. Scanning times thus add a noticeable delay to the localization.

The passive variant relies on beacon frames, periodically sent by access points, usually every

100ms, carrying similar information as responses to scan requests. Passive scans take longer, as

each channel must be surveyed for at least 100ms, to reliably detect all transmitters. However,

not actively probing keeps the radio channel clean, as no additional frames are transmitted,

which can be a benefit, when many smartphones are using the system. As of today, this variant

is not available for most smartphone’s firmware, and can only be used by dedicated hardware.

Throughout the following, the current signal strength readings for nearby transmitters mea-

sured by the pedestrian’s smartphone are given by

s = (sap1
, sap2

, . . .) , (2.90)

2.7. WI-FI AND BLUETOOTH BEACONS 75

where the MAC address allows for a direct mapping between any sap and its transmitter, includ-

ing all required parameters, such as its position. For fingerprinting, training of signal strength

prediction models, and performance evaluation, additional reference measurements throughout

a building are required. They are conducted by placing a receiver at various locations within the

building, and scanning for nearby transmitters multiple times, to provide a robust estimation for

every part of the building. This offline database is given by

ς = (. . . , ςfp,ap,n, . . .) , (2.91)

containing n consecutive measurements, at a location denoted by fp, for the access point given

by ap. The central question is then given by

p(ρ | s) , (2.92)

the probability for the pedestrian to reside at ρ, given the smartphone currently measures the

signal strengths s. However, as only the signal strength’s behavior given a certain location is

known, determined either by fingerprints or a prediction model, the two operands of (2.92) must

be swapped. Both points of view are related by Bayes’ rule

p(ρ | s) = p(s | ρ) p(ρ)
p(s)

∝ p(s | ρ) = pwifi (ot | qt)

assuming p(ρ), p(s) = const , 〈q〉t = 〈(x, y, z, . . .)〉t , 〈o〉t = 〈(s, . . .)〉t .
(2.93)

When omitting prior knowledge, assuming p(ρ) and p(s) to be constant, both viewpoints are

proportional. This notation also matches with the evaluation (2.4), introduced in section 2.2.

2.7.4 Location Estimation Using Lateration

As mentioned, the simplest Wi-Fi localization approach is based on multilateration (cf. GPS in

section 2.3), using the signal strengths of nearby Wi-Fi base stations, received by the smart-

phone. If an access point’s transmission power P0 and path loss exponent γ are known, (2.86)

can be used to convert its measured RSSI into an approximate distance dap towards it. Similar

to GPS satellites, for a transmitter to serve as a localization reference, its position ρ
ap

must also

be known. The connection between the receiver’s real whereabouts ρ̃, potential whereabouts ρ̂,

and the measured signal strength sap, converted to a distance dap, is given by

‖
known︷︸︸︷
ρ

ap
−

unknown︷︸︸︷
ρ̃ ‖ ≈

measured︷︸︸︷
dap

!
=

calculated︷ ︸︸ ︷
‖ρ

ap
− ρ̂‖ , dap = dLD (sap)(2.86)

, sap =̂ P . (2.94)

76 CHAPTER 2. PROBABILISTIC SENSOR MODELS

When the phone receives a decent number of transmitters, its estimated location ρ∗ is the one

that minimizes the differences between measured and actual distances towards each transmitter

ρ∗ = argmin
ρ̂

∑

ap

(
‖ρ

ap
− ρ̂‖ − dap

)2
. (2.95)

As (2.12) for the GPS, (2.95) can be estimated using numerical optimization, or by solving a

linearized version of the equation [Pow62; Li+05; DH10]. Depending on the chosen approach,

at least four measurements are required, to estimate 3D whereabouts. The result is a single

location the pedestrian might currently reside at. Similar to (2.17), as nearby locations are

likely as well, the evaluation is given by the distance of a potential state qt from ρ∗

pwifiLatD (ot | qt) = N
(
d
∣∣ 0, σ2

ld

)
, d = ‖ρ∗ − posxyz (qt) ‖ . (2.96)

Exemplary measurements and corresponding location results are shown in figure 2.25. As can

be seen, there might be real-world constellations, where outliers distort the localization result.

While the two leftmost results provide a viable localization for the given reference points and

distances, the two rightmost might differ from expectations. In 2.25c, four crossings can be ob-

served, not denoting a clear solution, but (2.96) estimates the result to reside directly within the

center. In 2.25d, a single outlier affects the ideal intersection between the three other reference

points, shifting the estimation (2.96) away from this intersection.

In contrast to common GPS receivers, where only the result ρ∗ is disclosed by the hardware,

for the described Wi-Fi scenario, all individual distances from the transmitters are known. By

assigning an uncertainty to every single distance estimation, and assuming statistical indepen-

dence between the measurements, they can be combined into a mixture distribution, which is

able to address aforementioned issues, by introducing multimodalities

pwifiLatC (ot | qt) =
∏

ap

N
(∥∥∥ρap

− posxyz (qt)
∥∥∥
∣∣∣ dap, σ

2
lc

)
, dap = dLD (sap)(2.86)

. (2.97)

Instead of estimating a single location, and applying an uncertainty hereafter, (2.97) directly in-

cludes every distance within its own uncertainty. The most likely whereabouts are given by the

location where all probabilities join together. While (2.97) uses a normal distribution to model

these uncertainties, other distributions can be applied as well, such as the one discussed in sec-

tion 2.3. For visualization reasons, figure 2.26 depicts the evaluation results, when using an

exponential distribution. As shown, size and shape of the likely area (dark regions) directly de-

pend on the quality of the calculated distances. In case of accurate observations (figure 2.26a),

the probable region is rather small. For poor distance estimations, like within 2.26b and 2.26c,

2.7. WI-FI AND BLUETOOTH BEACONS 77

(a) (b) (c) (d)

Figure 2.25: Discrete lateration results (black dot) when using (2.95) on four reference points (gray dots)

with the measured distances (arrows). While the two leftmost results seem viable, the two rightmost

estimations might not be as expected.

the probable area is spreading. In contradictory cases, such as 2.26d, the resulting mixture den-

sity adjusts its shape and size to match the distance estimations. While this seems ideal at the

first glance, the amount of adjustment in shape and size strongly depends on the chosen distri-

bution and uncertainty σlc. While larger values allow for joining, when distance estimations are

bad, they unnecessarily increase the uncertainty when estimations are good.

One advantage of the discrete approach (2.96) over the continuous (2.97), is quantitative er-

ror estimation. While the density (2.97) somewhat adjusts its shape and size, this error can only

be visualized, but not directly quantified. (2.95), however, allows for comparing the estimated

whereabouts with all measured distances, to infer an error approximation, similar to the one

discussed for the GPS. For some use cases, this might be the preferred solution, as the quality

of signal strength readings can be quantified, e.g. to suppress potential outliers.

This leads to the question of actual values for σld and σlc. While σld can be estimated

using aforementioned error quantification, e.g. by using the standard deviation of all differences

between measured and actual distance towards (2.95)

σ2
ld = E(X 2)− (E(X))2 , X =

{∣∣
∥∥∥ρap

− ρ∗
∥∥∥− dap

∣∣ | ∀ap
}
, (2.98)

σlc is a rather empiric choice, based on signal strength variations, discussed in section 2.7.1.

To summarize, lateration enables a simple, computationally efficient localization, able to

provide continuous evaluation results. However, localization quality suffers from the simplic-

ity of the underlying signal strength model (2.86), where walls and other obstacles can not be

included. Furthermore, to convert measured RSSIs to distances using (2.86), the position ρ,

transmission power P0 and path loss exponent γ of all transmitters, must be known. While P0

and γ can be chosen empirically, the position is crucial, but might be unavailable within some

buildings, e.g. due to non-disclosure agreements or data privacy issues. Furthermore, measuring

and recording the exact position of all transmitters is a time consuming task. Chintalapudi et

al. [CPP10] therefore suggested a big data approach, where all three parameters are assumed

78 CHAPTER 2. PROBABILISTIC SENSOR MODELS

(a) (b) (c) (d)

Figure 2.26: Continuous lateration results when using (2.97), but with an exponential distribution, on four

reference points (gray) with given distances (circles’ radius). The intensity of the background denotes

the likelihood to reside at a certain location, where dark areas are more likely.

unknown. Based on signal strengths recorded by pedestrians with smartphones walking through

the building, they optimize a model, containing not only each transmitter’s parameters ρ, P0 and

γ, but also the unknown pedestrian locations ρ at the time of each measurement. To estimate

absolute positions with respect to the building, they include information provided by a few GPS

fixes, while the pedestrians walked outdoors. If GPS fixes are unavailable, other landmarks,

such as stairs or elevators, can be detected, using additional sensors (see section 2.6), and com-

pared against the building’s floorplan, providing the same absolute mapping [AY12]. While not

requiring prior parameter knowledge, this approach demands for a large dataset of pedestrian

measurements, throughout all parts of the building, not easily available. Similar and alternative

evaluation and optimization strategies thus are the topic of the following sections.

2.7.5 Location Estimation Using Fingerprints

Depending on the building’s architecture, and the multitude of environmental influences dis-

cussed in section 2.7.1, simple signal strength prediction models will often be inaccurate. A

straightforward, yet time consuming, solution to this problem is given by conducting actual

real-world measurements at known locations throughout the whole building, capturing the re-

alities of the signal strength’s behavior. Due to architectural influences and other effects, RSSI

readings will vary greatly throughout the building, and sometimes even within several meters.

This uniqueness is similar to the one of human fingerprints, therefore in literature often referred

to as fingerprinting [Li+05; CPP10; Lui+11; Pal+11]. Mentioned earlier, it was first introduced

by Bahl and Padmanabhan [BP00], even though they named it offline phase. Their installation

contained three transmitters within an 980m2 office floor, with 70 fingerprints, recorded solely

along the floor’s hallway, with a varying distance of approximately 2m. To achieve a stable es-

timation, the average of 20 consecutive readings was stored. After recording this database, they

performed several walks using the same receiving hardware. Current RSSI measurements were

compared with the database, using the Euclidean distance between the three currently received

2.7. WI-FI AND BLUETOOTH BEACONS 79

Figure 2.27: Real-world fingerprint example for an area of 110 × 21m and eight nearby access points.

At each location, the average RSSI for every of the eight APs is denoted by a bar, where the highest

signal strength is black. If a bar is missing (white), the transmitter could not be received at this location.

RSSIs and the three recorded for each fingerprint. The pedestrian’s most likely whereabouts are

given by the fingerprint with the smallest indicated distance in this signal space. Their approach

yielded a median distance error of 2.94m along all measurements, indicating that Wi-Fi signal

strength and fingerprinting is a viable solution for absolute indoor localization.

For an impression of discriminability, figure 2.27 depicts a 110×21m section of a real-world

scenario with eight access points installed along the floor. The eight bars beside each finger-

print denote the RSSI for every of the eight transmitters, where black describes the strongest

signal. Even for directly adjacent fingerprints, some variation can be observed. This effect

will intensify with the number of installed transmitters, as each is affected by different environ-

mental influences, increasing the chance for separability. Missing bars indicate that the access

point’s signal was too weak to be detected. Only for one in 18 fingerprints, all transmitters were

visible. This represents a crucial aspect for the comparison between the smartphone’s current

RSSI readings and the fingerprint database. Test arrangements often focus on a small area,

where every transmitter can be received at each potential location. For real-world scenarios,

like large buildings with multiple floors, this assumption won’t hold [BP00]. When the phone

receives a transmitter, that is unknown to the database, e.g. due to newly installed hardware or

temporal Wi-Fi hot spots, effects are similar. While both cases can be addressed by ignoring

the respective entries, doing so discards available information, or might render entries incom-

parable. If a transmitter was recorded with a weak signal during the time of fingerprinting, it

is likely for the smartphone to not receive this transmitter, depending on the sensitivity of the

internal Wi-Fi component (see section 2.7.1). If the signal was strong while fingerprinting, it

is unlikely for the phone to miss this transmitter. Cheng et al. [Che+05] even suggested using

the amount of invisibility of a transmitter as metric, as it strongly depends on the distance from

it. This, however, requires several consecutive measurements to provide viable results, adding

delays to the localization process. Roos et al. [Roo+02] replace missing entries with a weak

dummy signal strength, as the transmitter might just be temporarily unavailable or was recently

removed. Yet, without additional prior knowledge, there is no ideal answer to the question of

80 CHAPTER 2. PROBABILISTIC SENSOR MODELS

how to handle missing RSSI readings. Furthermore, it strongly depends on how the actual com-

parison between current readings from the phone and offline database is conducted, to infer the

most likely whereabouts.

Comparison with Euclidean Distances The simplest approach to determine the best match-

ing fingerprint compares the difference between live and offline RSSI readings by calculating

the distance between both, e.g. via the Euclidean or Manhattan distance metric. Intended for ge-

ometrical comparisons, it works reasonably well for comparisons in signal space [BP00]. While

the phone’s current RSSI readings s contain just a single signal strength per nearby transmit-

ter, the fingerprint database contains multiple measurements, to accurately capture the signal’s

behavior at every location. For comparison, all offline measurements for one transmitter must

be combined into a single one. The most common approach uses the average of all consecu-

tive measurements for one transmitter and location [YA05; YMA07]. The comparison between

current smartphone readings s and the offline database ς at the fingerprint fp is given by

∆euclid (s, ς, fp) =

√∑

ap

(
sap − E(ς fp,ap)

)2
, (2.99)

comparing the RSSI sap of each access point received by the smartphone with its corresponding

average from the database

E(ς fp,ap) =
1

|ς fp,ap|
∑

n

ςfp,ap,n . (2.100)

The number of access points contained within ς fp varies depending on the fingerprint fp, as

two fingerprints will probably contain a different number of visible APs (cf. figure 2.27). For

fingerprints to be comparable using (2.99), the same number of transmitters must be considered,

independent of the fingerprint. All access points present within s, but missing within ς , can

safely be omitted, as the offline database has no knowledge about them. Vice versa, if one

transmitter is not present within the smartphone readings s, but visible at some fingerprint, this

is viable information, and must not be ignored. To ensure that the number of comparisons is

the same for every fingerprint, all comparisons consider the entirety of all transmitters known

to the offline database. Missing entries, sap or ς fp,ap, are replaced by a constant. As this value

models a missing/invisible transmitter, it can e.g. be chosen to be near the receivers sensitivity,

approximately around ≈ −90 dBm [Roo+02]. Hereafter, all fingerprints, and the smartphone’s

current readings, contain the same number of entries, equal to the total number of transmitters

known to the database, allowing for a valid comparison. The pedestrian’s current whereabouts

2.7. WI-FI AND BLUETOOTH BEACONS 81

are then given by the fingerprint that minimizes the distance to the phone’s current readings

fp∗ = argmin
fp

∆euclid (s, ς, fp) . (2.101)

Due to its simplicity, (2.99) suffers from an important drawback. By incorporating fingerprints

using just the average of several long-term readings, information on the signal’s actual behavior

is discarded. This is addressed by using a probabilistic comparison instead.

Comparison with Probability Distributions Depending on architectural surroundings, the

RSSI of a transmitter behaves differently throughout a building. Due to multipath propagation,

there will often be more than one way for a signal to reach a location. This not only causes

its average strength to be different between locations, but also its variance. Depending on

paths and architectural influences along them, the variance ranges from small to pronounced.

Using all consecutive scans at every location from the offline fingerprint database, the variance

can be determined alongside the mean, afterwards allowing for a more profound comparison

with the smartphone’s readings. Youssef et al. [YA05; YAA05] suggest using the fingerprint

measurements to estimate a normal distribution for every access point and location. These are

then used to calculate the probability for each of the phone’s current readings to match

p(sap | ς fp,ap) = N
(
sap

∣∣ µ, σ2
)

with µ = E(X) , σ2 = E(X 2)− (E(X))2 , X = {ςfp,ap,n ∈ ς fp,ap} .
(2.102)

Assuming statistical independence of all access points installed within a building, a fingerprint’s

overall likelihood is given by the product of the individual probabilities from (2.102)

p(s | ς, fp) =
∏

ap

p(sap | ς fp,ap) . (2.103)

When using probabilities for comparing live RSSI readings against fingerprints, transmitters

unseen by the phone can be handled in similar ways as described earlier. They can either be

replaced with a small constant probability or by a constant, weak RSSI, that is hereafter applied

to (2.102), or to a distribution around the weak constant, if the transmitter is unknown to the

current fingerprint. While the latter seems to be the most profound solution, as it directly yields

the likelihood of measuring a weak signal, the actual value can not be quantified directly.

While using a normal distribution instead of the mean value yields improvements, it is still

not ideal. Due to multipath propagation, the mean value might not be the one with the highest

probability, and there can be situations where a transmitter’s long-term signal for some location

denotes multiple peaks, as it arrives via more than one path. In those cases, the signal strength’s

behavior is non Gaussian, requiring for approaches that support multimodalities.

82 CHAPTER 2. PROBABILISTIC SENSOR MODELS

0

0.04

0.08

0.12

0.16

−90 dBm −80 dBm −70 dBm

(a)|X | = 120
w = 1dB

−90 dBm −80 dBm −70 dBm

(b)µ = −74.95
σ = 5.28

−90 dBm −80 dBm −70 dBm

(c)bw = 1.00
bw = 2.15

Figure 2.28: Strategies to approximate the signal strength distribution for one access point and location.

A histogram of all readings (120) using a bin size w = 1dB (a) with the mean (dashed) for comparison,

a normal distribution estimated around this mean (b), and a KDE for two different bandwidths (c), where

the dashed bw = 1.00 is an empiric choice, and bw = 2.15 was determined using (2.108).

Comparison with Histograms One way to model arbitrary distributions of measurements is

the histogram [Pea95; Smi99; YAS03; YA05]. All RSSI readings for one access point at one

location from the offline phase are grouped into bins, where each bin denotes the number of

measurements contributing to it. After normalizing the sum of all bins to one, each bin directly

denotes the likelihood of measuring a signal strength within the range covered by it

p(sap | ς fp,ap) =
1

|ς fp,ap|
∑

n

1 bin(sap) = bin(ςfp,ap,n)

0 else
, bin(x) =

⌊x
w

⌋
. (2.104)

The bin size w can be chosen freely, but is hard to determine correctly. Using w = 1dBm per

bin directly resembles RSSI readings, usually provided as integers by the underlying hardware.

This, however, might yield single bins with a count of zero, causing gaps within the histogram

(see figure 2.28). Meng et al. [Men+11] therefore suggest using a w = 2dBm to address this

problem and simultaneously halve the amount of memory required for storing the histogram.

Using larger bins decreases the overall quality, as similar RSSI readings might be treated with

the same likelihood. This problem can be addressed by interpolating between adjacent bins,

using a weighted result, creating a more continuous output [McC86; DT05].

Besides gaps, the edge-areas of the histogram are difficult to handle as well, as every RSSI

not encountered during the offline phase is assigned a probability of zero. This is correct from

the histogram’s point of view, but does not resemble real-world conditions, where the likelihood

is not zero but infinitesimally small. When (2.104) is used within (2.103), a single zero makes

the whole fingerprint unlikely. Roos et al. address this issue by pre-assigning a very small

constant likelihood to every bin contained within the histogram [Roo+02]. While this mitigates

the problem, it is still incorrect, as the probability is not constant, but varying depending on

the distance towards the nearest and actually covered bin. Both of the discussed issues can be

targeted by smoothing the histogram, e.g. by using a kernel density estimation (KDE).

2.7. WI-FI AND BLUETOOTH BEACONS 83

Comparison with Kernel Density Estimation For a continuous result, the histogram’s dis-

crete binning (2.104) is replaced by a continuous function, referred to as kernel, e.g. being some

narrow distribution, shaped like a smoothed bin. The idea is the same as for aforementioned

lateration approaches, including every measured distance by its probability. Therefore, all in-

dividual probabilities, given by comparing all offline readings for one location and transmitter

with the corresponding one from the smartphone, are summed up, and normalized

p(sap | ς fp,ap) =
1

|ς fp,ap|bw

∑

n

K

(
sap − ςfp,ap,n

bw

)
. (2.105)

While most use cases refer to a Gaussian kernel

KGauss(x) =
1√
2π

e−
1
2
x2

= N (x | 0, 1) , (2.106)

differently shaped functions can be used as well [Roo+02; GCC12]. The overall process is often

referred to as kernel density estimation (KDE) or Parzen/Rosenblatt estimation [Par62; Ros56].

For Gaussian kernels, (2.105) can be rewritten, emphasizing its essence

p(sap | ς fp,ap) =
1

|ς fp,ap|
∑

n

N
(
sap

∣∣ ςfp,ap,n, σ
2
)
, σ = bw . (2.107)

By using the KDE, gaps within the histogram are closed, and multimodalities are preserved.

Yet, the result strongly depends on the chosen bw, referred to as bandwidth. While small values

preserve tiny variations, gaps will remain open. On the other hand, larger values create smoother

results, but suppress minor variations. Literature covers a variety of metrics to estimate the best

bandwidth, to minimize the error between the KDE and the unknown density function [SS09;

BN09]. For many use cases, the rule-of-thumb described by Silverman [Sil86] provides viable

results, whenever a Gaussian kernel is used. Here, the bandwidth depends on the number and

standard deviation of all signal strengths recorded for one access point and location

bw(ς fp,ap) =

(
4σ5

3|X |

) 1
5

, σ =

√
E(X 2)− (E(X))2 , X = {ςfp,ap,n ∈ ς fp,ap} . (2.108)

Figure 2.28 depicts a comparison of all discussed techniques using 120 real-world readings for

one transmitter at one location. As can be seen within the histogram 2.28a, the measured RSSIs

are split into two large groups. The average is exactly between both of them, indicating major

drawbacks for the simple Euclidean distance approach. The same holds true for the normal

distribution 2.28b, relying on the same mean value. Using the histogram itself is slightly better,

yet there are major gaps throughout the recorded data, yielding near-zero probabilities for some

RSSIs. Both issues are addressed by the KDE in 2.28c, where gaps are closed, but still included.

84 CHAPTER 2. PROBABILISTIC SENSOR MODELS

Location Estimation Previously discussed techniques yield a distance/probability for every

fingerprint within the building, based on the current phone RSSIs s. The pedestrian’s most

likely whereabouts are given by the position of the fingerprint which matches best. Similar to

lateration described in section 2.7.4, this yields a single, discrete location, even if nearby loca-

tions are just as likely. When two, or more, fingerprints are similar, they can easily be confused

with each other, independent of the chosen metric, potentially causing large localization errors

and jumps [Liu+12]. Just like with lateration, this can be addressed by letting every single

fingerprint contribute to the solution, instead of solely focusing on the best one.

Bahl and Padmanabhan [BP00] suggested using the average of the positions of the k nearest

fingerprints. While this provides a more continuous result, all k fingerprints are treated equally,

even though their Euclidean distance might vary. While the resulting location is not bound to

fingerprint positions, it is still a discrete location. Therefore, Youssef et al. [YA05] focused

on discussed probability metrics, to hereafter estimate the regional weighted average position

among the k most likely fingerprints, weighted by their probabilities. While including weights

yields more viable results, the output is still a single, discrete position.

As each fingerprint’s probability represents a discrete, weighted sample, like a bin within

the histogram, the KDE can be used to estimate the unknown continuous density, by combining

adjacent fingerprints [TBF05]. In contrast to the KDE applied to signal strengths, a three dimen-

sional kernel is required for estimating a position within the building. However, when assuming

the same bandwidth bw for all three dimensions, the kernel can be reduced to a single dimen-

sion, using the distance d between each fingerprint’s three dimensional position posxyz (fp) and

a potential location posxyz (qt) within the building. The evaluation of the pedestrian’s current

RSSI readings depending on this location is then given by

pwifiKDE (ot | qt) =
∑

fp

distance kernel︷ ︸︸ ︷
N
(
d
∣∣ 0, σ2

)
fingerprint probability︷ ︸︸ ︷
p(s | ς, fp)(2.103)∑

fp

(
1 + p(s | ς, fp)(2.103)

)

with d = ‖posxyz (fp)− posxyz (qt) ‖ , σ = bw ,

(2.109)

where the denominator is required for normalization. (2.109) provides viable results if the band-

width bw is determined correctly, and the building is covered by a decent number of fingerprints.

However, this approach relies on multiple nested loops. One for all fingerprints, one for all ac-

cess points for each fingerprint (2.103), and, dependent on the chosen comparison strategy, all

consecutive measurements for every fingerprint and access point (2.104) or (2.105). This yields

O(n3) as worst case scenario for every single location evaluation, potentially causing issues for

embedded use when multiple locations are evaluated, and many fingerprints must be examined.

2.7. WI-FI AND BLUETOOTH BEACONS 85

2.7.6 Location Estimation Using Propagation Models

The approaches from section 2.7.4 and 2.7.5 come with different benefits and drawbacks.

Lateration solely requires the positions of all access points installed within the buildings

and some empirically chosen parameters for P0 and γ. Yet, it only supports simple invertible

signal strength prediction models, thus tendentially providing poor results, especially under the

influence of heavily attenuating concrete walls, which can not be included individually.

Fingerprinting addresses this problem via real-world signal strength measurements. How-

ever, the time needed for the initial setup, creating hundreds of fingerprints, each with several

consecutive measurements, is tremendous. Recommendations for those repetitions range be-

tween 20 [BP00] and 1000 [Men+11], being almost unfeasible for large buildings like airports,

or other multi-level architecture. Palaniappan et al. [Pal+11] therefore suggest using robots to

perform required measurements automatically. While this can reduce setup/maintenance time

and costs, necessary efforts are still notable. Furthermore, fingerprints are discrete and require

for costly computations, such as the kernel density estimation, to infer continuous results. While

techniques to perform rapid KDE approximations exist [Bul+18], required computational power

is still a concern for recent smartphone CPUs/GPUs, especially when considering the third di-

mension as well. Also, fingerprinting needs special treatment of invisible transmitters for valid

comparisons with smartphone readings. Thus, neither of the two approaches represents an ideal

choice for an indoor localization system that is accurate, fast to set up and easy to maintain.

A compromise between both is utilizing advanced signal strength prediction models. As

they usually are not invertible, they can not be used to convert a phone’s measured RSSI into

a distance estimation, like performed in section 2.7.4. Instead, the models are used to estimate

each transmitter’s signal strength, that is, predicting what fingerprints would look like [ElK+10].

Thus, the strategies presented in section 2.7.5 are applicable, comparing smartphone readings

with model predictions, instead of fingerprints. However, in contrast to the latter, model pre-

dictions are calculable for every single location within a building. Thus, transmitters are never

invisible to the model, and this approach is completely continuous. This reduces computational

costs, not requiring any interpolation steps, such as the KDE. To use this strategy, the parame-

ters required by a chosen model, like γ and P0, must be determined in some way. Depending

on available prior knowledge, like known transmitter locations, and the chosen model, these pa-

rameters can either be determined empirically, or must be estimated. This can e.g. be performed

by training, based on a few reference measurements. While these measurements are similar to

fingerprinting, they are much more sparse, and thus significantly faster to set up and maintain.

For this approach, setup and maintenance times are reduced at the cost of accuracy, depending

on the chosen model and reference measurements [Ebn+14; Ebn+15; Ebn+17].

86 CHAPTER 2. PROBABILISTIC SENSOR MODELS

The following discussions focus on comparing RSSIs received by the phone with model

predictions, and how to determine necessary model parameters. They are provided in a general

form, independent of a chosen model. That is, they apply to all signal strength prediction

models, including the three representatives (log-distance model, extended log-distance model,

ray tracing) discussed in section 2.7.2. Implementation examples are provided afterwards.

Comparing RSSIs With Model Predictions In the following, a model’s signal strength pre-

diction for a location ρ
•

and access point ap is referred to as Pmdl

(
ρ
•
,ψap

)
. It is based on the

parameters ψap required for a transmitter, containing e.g. its location (cf. section 2.7.2). The

probability for residing at ρ
•

is then given by comparing sap measured by the phone with the

model’s prediction (cf. section 2.7.5). For example, by using a probability density function

(PDF), including the model’s uncertainty, and the signal’s multipath behavior at this location

p(sap | ρ
•
,ψap) = p

(
sap |

model prediction︷ ︸︸ ︷
Pmdl

(
ρ
•
,ψap

)
,

PDF dep.︷︸︸︷
. . .
)

︸ ︷︷ ︸
PDF for model/multipath uncertainty

, ρ
ap

,

model dep.︷︸︸︷
. . . ∈ ψap︸ ︷︷ ︸

model parameters for one AP

. (2.110)

Type, shape and additional parameters of the PDF strongly depend on the chosen model. The

log-distance model, and its extended version, predict the mean signal strength given one loca-

tion, with the uncertainty being a zero mean random variableX ∼ N (0, σ2
rssi) (cf. section 2.7.2).

Here, the PDF from (2.110) can be chosen to be a normal distribution. Its σrssi is either deter-

mined empirically, or estimated, e.g. by comparing the model predictions with reference mea-

surements. However, for more advanced prediction models, supporting multipath propagation,

such as ray tracing, more complex PDFs are required, including support for multimodalities

[Ebn+14]. Every single ray reaching the location in question could e.g. be added to a histogram,

hereafter applying a KDE to estimate the signal’s unknown distribution for this location. Again,

this represents a tradeoff between quality, and memory/computational complexity.

Assuming statistical independence of all access points, the evaluation of the phone’s current

RSSI values s against a state qt is given by the product of the individual probabilities (2.110)

pwifiMdl (ot | qt) =
∏

ap

p
(
sap | posxyz (qt) ,ψap

)
(2.110)

〈q〉t = 〈(x, y, z, . . .)〉t , 〈o〉t = 〈(s, . . .)〉t .
(2.111)

As mentioned, compared to fingerprinting, prediction models are always able to provide a sig-

nal strength estimation, even if the resulting value is far below the sensitivity of the receiving

hardware. This reduces the problem of invisible transmitters solely to the smartphone side,

where unknown entries can simply be ignored, using only transmitters that are both, currently

seen by the phone and known to the model [Ebn+14].

2.7. WI-FI AND BLUETOOTH BEACONS 87

Model Parameter Estimation To calculate Pmdl

(
ρ
•
,ψap

)
in (2.110), the parametersψap, for a

certain model and transmitter, must be known. Shown earlier, most models require the transmit-

ter’s location ρ
ap

, to infer the distance towards it, and to perform intersection tests. Besides, they

e.g. require values for the signal’s attenuation within free space, or for encountered obstacles,

discussed in section 2.7.2. The following discussions examine potential estimation strategies.

For simple models it is possible to use the positions of all transmitters installed within a

building, and using empirical choices for the remaining parameters [Ebn+14; Ebn+15]. How-

ever, for larger public buildings it can be hard to gain access to documents containing these

positions, if available. Also, physical access to the transmitting hardware can be prohibited, or

the number of installed transmitters is too large for this approach to be worthwhile [Tor+17].

Alternatively, by conducting several reference measurements at known locations throughout

the walkable area, numerical optimization can be used to estimate all required parameters. Goal

of the optimization is to determine ψap (e.g. ρ, P0, γ or φ), so that the model’s predictions

hereafter match with real-world signal strength behavior. Being similar to recording a few

fingerprints, reference measurements are also referred to as fp, stored within the database ς .

When referring to the extended log-distance model, every transmitter has its own location

ρ
ap

and transmission power P0ap. In theory, the remaining parameters γ and φ, are identical

among all transmitters, and could thus be optimized together. However, this model represents a

vague approximation of the signal’s real behavior, omitting many physical effects. Estimating

parameters per transmitter instead of globally will thus often increase its prediction quality

[Ebn+17]. For more realistic models, such as ray tracing, a global parameter estimation can

be suitable, as it increases the amount of available training data, and allows for a more robust

estimation, e.g. of the individual attenuation factorsφ, also reducing the risk of overfitting. With

the required equations being marginally different, the following focuses on the per transmitter

optimization only, without loss of generality.

Independent of the chosen model, its predictions must match real-world conditions as closely

as possible. This is achieved by comparing predictions with conducted reference measurements,

determining their difference. The to-be-optimized target function for a single transmitter’s

model parameters ψap is defined as the sum of squared errors between each reference mea-

surement at position posxyz (fp) for this transmitter, and the corresponding model prediction

εap

(
ς, ap,ψap

)
=
∑

fp

repetitions︷︸︸︷∑

n

(
measured︷ ︸︸ ︷
ςfp,ap,n −

model prediction, e.g. (2.87)︷ ︸︸ ︷
Pmdl

(
posxyz (fp) ,ψap

))2
. (2.112)

As can be verified, this error should be as small as possible. For a quantification of resulting

values, it makes sense to also determine the Root Mean Square Error (RMSE), dividing (2.112)

88 CHAPTER 2. PROBABILISTIC SENSOR MODELS

by the total number N of the two nested summations, and extracting the square root

RMSEap

(
ς, ap,ψap

)
=

√
1

N
εap

(
ς, ap,ψap

)
. (2.113)

Concerning optimization, there is no difference between (2.112) and (2.113), as the general be-

havior remains the same, and actual values are unimportant, as long as the minimum is reached.

However, due to requiring less mathematical operations, optimizing (2.112) is faster. Thus, the

best model parameters ψ∗
ap for one access point are the ones that minimize (2.112) or (2.113)

ψ∗
ap = argmin

ψap

εap

(
ς, ap,ψap

)
= argmin

ψap

RMSEap

(
ς, ap,ψap

)
. (2.114)

(2.114) is solved by using the previously mentioned optimization algorithms. Which one per-

forms best, strongly depends on the chosen signal strength prediction model. While simple

models can denote continuous convex target functions, advanced variants often show discontin-

uous behavior, with many local minima. Details are now discussed by using a synthetic example

for the log-distance and the extended log-distance model.

Optimizing the Log-Distance Model When using the log-distance model (2.87) as imple-

mentation for Pmdl

(
ρ
•
,ψap

)
, five model parameters ψap must be optimized for every transmitter

ρ
ap
, P0ap, γap ∈ ψap , ρ

ap
= (x, y, z)T . (2.115)

Figure 2.29 depicts an example setup, optimizing these parameters based on 14 reference mea-

surements, shown in the upper left corner. The 14 values were generated by the ray tracing

simulation, depicted in figure 2.24. Minimizing (2.113), minimizes the difference between

these 14 reference measurements and corresponding model predictions, by adjusting ψap. The

optimal result ψ∗
ap corresponds to the one with the smallest error. Resulting differences in dB,

between reference measurements and predictions based on ψ∗
ap, are shown in the upper right.

The floorplan is drawn transparently, to emphasize that the log-distance model is unaware of

any obstacles. The RMSE of 0.6 dB can be verified by squaring each of the 14 differences, sum-

ming the squared values, and taking the sum’s square root. As can be seen, the error between

model predictions and reference measurements is negligible, and the black cross, indicating the

estimated access point position ρ
ap

, almost matches the actual location. The same holds true for

P0ap and γap, both being close to values used for generating the reference from figure 2.24. The

five plots below denote the change in error (2.113) when using ψ∗
ap, but modifying one of the

five parameters. That is, keeping all values as determined by the optimization process, but e.g.

moving the access point left or right. Denoted by the first three plots, changing the transmitter’s

2.7. WI-FI AND BLUETOOTH BEACONS 89

-56 -67

-63

-54

-53
-52

-56

-60 -64

-64-62
-48

-55

-55

5m

+0.3 +0.9

-0.5

+0.8

-0.8
+0.6

-0.4

+0.0 +0.4

-0.9+0.1
-0.3

+0.5

-0.8

0

5

10

15

−5 5 15 −5 5 15 −6 −1 4 9 −41 −36 −31 2.3 2.8 3.3

er
ro

r
(d
B

)

x-position (m)

ρ(x)
ap

y-position (m)

ρ(y)
ap

z-position (m)

ρ(z)
ap

TX-power (dBm)

P0ap

path loss exponent

γap

Figure 2.29: Optimizing the log-distance model (2.87), by minimizing (2.113) to match the 14 reference

measurements shown in upper left (in dBm), with the two axes denoting (0, 0). Resulting model param-

eters ψ∗
ap were ρap = (5.6, 5.0,−0.4), P0ap = −36.0 and γap = 2.8, yielding a RMSE of 0.6 dB. All

individual errors are depicted in the upper right (in dB), where blue denotes a model prediction lower,

and red higher than the reference measurement. The five plots below depict the change in RMSE (2.113)

when manually adjusting a single parameter from ψ∗
ap.

location can yield non-convex behavior of the error function, with causes shown in figure 2.22.

Due to the nonlinear behavior of the log-distance model, individual errors behave in the same

way. Depending on the location of each reference measurement, the change in error between

prediction and reference is different when moving the transmitter, yielding non-convex behav-

ior. In contrast, changing P0ap or γap denotes a convex output, as they represent an addition and

a multiplication, affecting the signal strength prediction model (2.87) linearly.

While results are encouraging, there is a major caveat, as the presented setup referred to a

drywall-only environment. Typically, drywalls attenuate radio signals only slightly, approxi-

mately matching with the continuous behavior of the log-distance model. Within most build-

ings, other materials, such as concrete and metallized glass, significantly attenuate radio propa-

gation, causing discontinuous behavior. Repercussions are determined by adding four additional

reference measurements, residing behind concrete walls, shown in figure 2.30. The four new

reference measurements are strongly attenuated by the concrete, yielding a rapid depletion in

signal strength. This behavior does not match with the floorplan-agnostic log-distance model.

The impact is shown within the upper right part of the figure, depicting the differences between

predictions and reference measurements, where the three leftmost entries clearly deviate from

their reference measurements. While the center one (−3.0 dB) is within the line of sight to the

transmitter, the upper (+3.8 dB) and lower (+3.6 dB) ones are occluded by concrete. To miti-

gate this impact, the optimization process chose the path loss exponent to be γap = 8.1, which

90 CHAPTER 2. PROBABILISTIC SENSOR MODELS

-56 -67

-63

-54

-53
-52

-56

-60 -64

-64-62

-68 -79

-75-67

-48
-55

-55

5m

-1.6 -3.1

-1.4

+3.2

-0.2
-0.6

+2.1

+1.2 -0.9

-3.2+1.2

+3.6 +3.0

-0.1+3.8

-2.2

-1.5

-3.0

0

10

20

−13 −3 7 17 −5 5 15 −13−6 1 8 15 14 19 24 7.3 7.7 8.1 8.5 8.9

er
ro

r
(d
B

)

x-position (m)

ρ(x)
ap

y-position (m)

ρ(y)
ap

z-position (m)

ρ(z)
ap

TX-power (dBm)

P0ap

path loss exponent

γap

Figure 2.30: Optimizing the log-distance model (2.87), by minimizing (2.113) to match the 18 ref-

erence measurements, shown in upper left (in dBm). Resulting model parameters ψ∗
ap were ρap =

(6.7, 5.1,−5.7), P0ap = 19. and γap = 8.1, yielding a RMSE of 2.3 dB. The four new reference mea-

surements cause significant errors, due to the attenuating concrete.

is unnaturally high, and causes a more rapid drop in signal strength with increasing distance.

Additionally, the process placed the transmitter 5.7m below ground, increasing the distance

towards all reference measurements. In doing so, the optimization tries to increase the dis-

tance/path loss towards the four exterior reference measurements, to match their lower RSSIs.

By increasing the distance towards all reference measurements, the process works within an

almost linear range of the log-distance model, explaining why changing the transmitter’s x or y

now looks more convex than earlier. To compensate for the large γap and increased distances, the

optimization determined the transmission power to be P0ap = 19 dBm, which is numerous times

the typical value of≈ −40 dBm, indicating an overfitting to the given problem. When reference

measurements on additional floors above and below are introduced, the situation changes, as the

z-coordinate can not be used for compensation. With γap being the only remaining parameter,

the model will yield unsatisfying results for most multistory buildings [Ebn+17].

Optimizing the Extended Log-Distance Model When using the extended log-distance model

(2.88) for Pmdl

(
ρ
•
,ψap

)
, γap mainly models free space attenuation. Walls and ceilings along the

line of sight are included as separate attenuations based on their material. Within the following,

six materials are distinguished

φ = (φceiling, φconcrete, φdrywall, φglass, φmetalGlass, φdoor) , (2.116)

where φdoor is only required when doors are considered, and assumed to be closed. The corre-

sponding optimization process estimates the same parameters as for the log-distance model, but

2.7. WI-FI AND BLUETOOTH BEACONS 91

additionally includes the attenuation factors φ

ρ
ap
, P0ap, γap,φ ∈ ψap , (2.117)

yielding a highly multidimensional optimization problem. As discussed earlier, this model rep-

resents a discontinuous function. When the line of sight intersects an obstacle from the floor-

plan, its attenuation is added, yielding a jump of the predicted signal strength, also affecting the

to-be-optimized target function. Previously used optimization algorithms will rarely converge

when dealing with discontinuous functions. Yet, brute force approaches might not converge

either, due to the “curse of dimensionality” [Nie83].

Another option is given by choosing optimization algorithms that are better suited for dis-

continuous and non-convex problems. Typical representatives are all types of genetic algorithms

[Rec73; Sch77; HNG94], where optimization is performed by creating a population of several

entities. Every entity is e.g. initialized by drawing a random value for each to-be-optimized

model parameter. Hereafter, the whole population is sorted by its fitness, e.g. using (2.113),

determining the quality of the parameters within each entity. The best entities, with the lowest

errors, are randomly combined with each other, e.g. by exchanging, averaging or mutating their

values, hopefully using the best parts of both, hereafter replacing unfit entities. Sorting and

combining is repeated several times, until a limit is reached. Due to the random approach, the

probability of finding a better, global minimum is increased, yet, not guaranteed to converge.

The chance for convergence can be increased by a few adjustments. For the discussed target

function/model, the range of the individual parameters is approximately known beforehand.

This knowledge can be included during the process, by randomly creating the initial population

based on the provided min/max range for every parameter of ψap. The access points can e.g. be

assumed to reside somewhere within the building’s bounding box. Similarly, typical values for

P0, γ and the attenuations φ were presented in section 2.7.2. After sorting the population by its

fitness (2.114), some % of best entries are kept as they are, in order to not lose good results. The

remaining population is replaced by randomly combining fit entities, and/or creating a copy of

a random fit entity, with slightly mutated values. In order to find a stable minimum, the amount

allowed for these changes starts with a fraction of the known parameter range, and is further

reduced over time, inspired by cooling from simulated annealing [KGV83]. Using such random

adjustments of promising starting values needs some time to converge, but often yields viable

results for hard optimization problems, such as the presented one [Ebn+17]. The same strategy

can be applied to other complex signal strength prediction models, like ray tracing.

Figure 2.31 depicts the result of using (2.88) in (2.113), with the reference measurements

from figure 2.30. The RMSE of 0.3 dB denotes a viable estimation, confirmed by the 18 indi-

92 CHAPTER 2. PROBABILISTIC SENSOR MODELS

-56 -67

-63

-54

-53
-52

-56

-60 -64

-64-62

-68 -79

-75-67

-48
-55

-55

5m

+0.0 -0.6

+0.2

+0.2

-0.3
-0.2

-0.0

+0.1 +0.2

+0.2-0.4

+0.3 +0.5

-0.4-0.2

-0.2

+0.2

+0.0

0

5

10

15

20

−5 5 15 −5 5 15 −3 0 3 6 −45 −40 −35 1.75 2.25 2.75 −11 −8 −5

er
ro

r
(d
B

)

x-position (m)

ρ
(x)
ap

y-position (m)

ρ
(y)
ap

z-position (m)

ρ
(z)
ap

TX-power (dBm)

P0ap

path loss exponent

γap

concrete attenuation

φconcrete

Figure 2.31: Optimizing the extended log-distance model (2.88), by minimizing (2.113) to match the 18

reference measurements, shown in upper left (in dBm). Resulting model parameters ψ∗
ap were ρap =

(5.8, 5.2, 2.3), P0ap = −39.5, γap = 2.2, φconcrete = −7.9 and φdrywall = −0.9, yielding a RMSE of

0.3 dB. Changing the transmitter’s position yields highly discontinuous behavior, clearly denoting the

location of the exterior concrete wall, ground-floor and ceiling.

vidual errors within the upper right of the figure. Furthermore, all resulting parameters are close

to the ones used for the ray tracing that generated the synthetic reference measurements (cf. fig-

ure 2.24). Shown in the plots below, the behavior when changing the transmitter’s location is

highly discontinuous. The first two plots modify its x and y, clearly indicating the location of

the exterior concrete wall as an abrupt change in error by φconcrete. Similarly, adjusting z denotes

the location of ground-floor and ceiling. As earlier, changing γap and P0ap yields a linear impact,

as does changing the attenuations φ, which represent an additive factor, defined in (2.89).

While the presented optimization will consume significant amounts of time for larger build-

ings and numerous transmitters, it needs to be performed only once. During the localization

of the pedestrian’s smartphone, however, many intersection tests must be performed, in order

to determine all attenuations induced by obstacles. Depending on the building’s architecture,

these intersection tests can be costly. Furthermore, for being used within the prediction model,

the floorplan should be detailed, and must include information on each obstacle’s material. For

real-world scenarios, and use on smartphones, a compromise between both, the log-distance

model and the extended log-distance model, should be taken into account.

Regional Log-Distance Model To be suited for use on smartphones, the complexity of the

extended log-distance model must be reduced, e.g. by lowering the number of needed intersec-

tion tests. One way of doing so is focusing only on obstacles imposing major attenuations, like

ceilings, concrete walls and metallized glass. The latter are mainly found along a building’s

exterior, affecting localization outdoors, where GPS is available, and thus might be irrelevant,

2.7. WI-FI AND BLUETOOTH BEACONS 93

(a) (b) (c) (d)

Figure 2.32: Potential encounters with floors/ceilings between a transmitter and some other location, in

multi-level buildings. Several floors of equidistant height (a), cutouts for stairs or elevators (b), adjacent,

shifted floors with different heights (c), atriums or galleries (d).

depending on the use case and building. Also, many modern buildings use steel-reinforced con-

crete in a few regions for structural purposes, and can thus be omitted as well. If the intersection

problem is reduced to just ceilings, computational complexity can be decreased even further.

For buildings with stacked and similarly sized floors, ceilings can be expected everywhere,

except a few small cutouts for stairs, and elevators. One option for modeling the effect of

floor/ceiling attenuation is then given by artificially scaling the z-distance within the model. By

increasing the distance towards the transmitter, the attenuation is increased as well. Doing so

yields a target function similar to the one presented for the log-distance model, allowing for

typical optimization algorithms. However, besides other drawbacks, such as invalid predictions

along stairs, this approach is only suitable for buildings with equidistant floor heights.

Alternatively, the intersection test is replaced by discretely counting the number of floors be-

tween the transmitter’s z-coordinate, and the one of the location in question. This also supports

varying floor heights. Within older buildings, however, floors often are not evenly stacked, and

multiple floors of different altitudes are adjacent to each other [Fet+18]. Here, the number of

floors in between is (x, y) location dependent, requiring a different approach. The same holds

true when floors contain larger cutouts, yielding a direct line of sight towards other levels, often

encountered within modern architecture, with atriums, galleries, light wells, and observation

platforms. When near such regions, counting the number of floors/ceilings will yield results

differing from an actual intersection test [Ebn+17], with the signal strength estimation of the

model far below real-world readings, due to invalid attenuations. The discussed cases are shown

in figure 2.32, where counting the number of floors (dashed lines) between transmitter (black

dot) and location in question (gray dot) is not always equal to an intersection test (cross).

One way to address aforementioned issues is given by splitting the building into sections,

and to estimate one model for each such region. This is achieved by defining several bounding

boxes, e.g. one per floor. All reference measurements that belong to one bounding box are used

to optimize one log-distance model for every transmitter receivable within this bounding box.

For evaluating the pedestrian’s potential whereabouts based on current smartphone readings,

the models that belong to the bounding box containing the location in question are compared

94 CHAPTER 2. PROBABILISTIC SENSOR MODELS

Figure 2.33: Example separation for a regional signal strength prediction model. By dividing a building’s

area into several regions, signal strength prediction models can focus on special needs within every

section, thus reducing prediction errors.

with the phone’s readings. As the check, whether a bounding box contains some point, is cheap,

especially for axis-aligned bounding boxes, this approach yields major performance improve-

ments compared to intersection tests. Furthermore, it is possible to use additional bounding

boxes for sensitive areas, where the optimization process indicates major model errors, e.g.

within stairwells, surrounded by massive concrete walls, shown in figure 2.33. However, every

single bounding box needs at decent number of reference measurements for the optimization to

converge, and to prevent overfitting [Ebn+17]. Also, similar to fingerprinting, invisible access

points must be considered, as not all transmitters are visible within every bounding box, thus

not yielding a model that provides predictions for every transmitter and location.

Bluetooth Beacons While aforementioned discussions were solely focused on RSSIs from

Wi-Fi, they also apply to different radio hardware available for pedestrian smartphone local-

ization, such as Bluetooth beacons. Independent of varying transmission protocols, they use

similar frequencies, and are thus influenced by the same effects. One major difference is given

by the transmission powers P and P0. Like with access points, P is configurable for beacons.

Yet, P0 is also broadcasted by the protocol, making it visible to receiving clients. In theory,

this value can thus be omitted from the presented optimization processes. However, as previ-

ous discussions have shown, models represent an approximation of real-world conditions, and

parameters resulting from optimization are not necessarily equal to real-world parameters. Fur-

thermore, beacons often are battery powered, thus using lower transmission powers than access

points, also ceasing gradually. Thus, they are mainly suited for coarse location based services,

or as supplement, used in locations, where Wi-Fi reception is poor [Ebn+15; Ebn+16].

2.7. WI-FI AND BLUETOOTH BEACONS 95

2.7.7 Error Compensation

All of the discussed Wi-Fi localization approaches suffer from similar types of errors and un-

certainties. Many of them could be addressed by using specialized hardware, which is not (yet)

available within commodity smartphones. While current development is promising, eventually

providing new components that increase the accuracy of smartphone-based location estimation

[Ibr+18; Dvo+19; BSA16], it will take time for them to become widely available. The follow-

ing paragraphs thus focus on the most common issues encountered for signal strength-based

location estimation, and how to mitigate them.

Effects on RSSI As mentioned in section 2.7.1, different kinds of antennae strongly affect the

RSSI measurable by the smartphone. They are encountered as an additive gain sap = s′ap + G,

present within all readings received by the phone (cf. (2.84) and figure 2.18), affecting all evalu-

ations presented earlier. Chintalapudi et al. [CPP10] address this problem by treating the indoor

localization as crowd-based global optimization problem, where all unknowns, pedestrian lo-

cations and model parameters, are optimized together via genetic algorithms. While they also

compensate for individual antenna gains, this is a big data approach with huge computational

complexity, mainly intended for offline use. Wang et al. [Wan+11b] propose a more versatile

solution. As antenna gain is a constant factor, all readings from a phone are affected in the same

way. By evaluating relative instead of absolute signal strengths, the additive gain is removed

sap1
= s′ap1

+G , sap2
= s′ap2

+G

sap2
− sap1

= (s′ap2
+G)− (s′ap1

+G) = s′ap2
− s′ap1

.
(2.118)

To use relative RSSIs, a common basis must be defined. Wang et al. suggest using the strongest

transmitter received by the smartphone as reference, where all of the RSSIs within s are con-

verted to be relative to the strongest one. Depending on the setup, the same step is applied

to each fingerprint, or the values returned from signal strength prediction models. They are

converted to be relative to the transmitter that was the strongest within the phone’s readings.

Discussed evaluations pwifi (ot | qt) can hereafter be performed analogously [Ebn+14]. While

this approach will often work as expected, the influence of the pedestrian shadowing all trans-

mitters behind the phone can cause severe estimation errors. However, the same effect is also

noticeable when using absolute readings [Zha+11].

Human Influence As water strongly affects propagation of radio waves, and human bodies

mainly consist of water, they strongly absorb Wi-Fi signals. When a pedestrian carries the

phone upfront (cf. figure 2.5), all transmitters behind the pedestrian are attenuated, causing

errors within the fingerprint or model comparison. If the current position and absolute walking

96 CHAPTER 2. PROBABILISTIC SENSOR MODELS

direction are known, e.g. from a previous location estimation or the phone’s eCompass, and

the pedestrian is assumed to carry the phone upfront, the measured RSSIs for all transmitters

behind the pedestrian can be artificially increased, to compensate the effect of the human body.

Grouping Virtual Access Points Another major drawback is presented by signal strength

fluctuation due to environmental effects, such as multipath propagation, influences between

nearby transmitters, and other pedestrians moving within the building, absorbing radio waves

[YAS03]. While this can be addressed by low-pass filtering incoming RSSI readings, this causes

already discussed side-effects, such as increased delays, affecting responsiveness [Ebn+14].

Network infrastructure within public buildings is often separated into domains with vary-

ing access rights. While staff members log into Wi-Fi A, guests use Wi-Fi B. To not require

two identical installations for such scenarios, most access points support virtual access points

(VAPs). Here, the same hardware supplies several networks, usually on the same channel

[Kit06]. This fact can be exploited while scanning for nearby transmitters, as each VAP will

send its own response to a phone’s scan request. VAPs can usually be identified by analyzing the

MAC address, where only the last byte is different. This yields several RSSIs for the same phys-

ical hardware, sent with a minuscule time delay between them. By using the measurements’

mean or median, the RSSI can be stabilized without introducing notable delays [Ebn+17].

This strategy especially applies to passive scans. If the receiving hardware supports promis-

cuous mode, which captures every single packet on one Wi-Fi channel, each data frame sent

by a transmitter can be used as RSSI measurement. Within public buildings, where a constant

amount of traffic can be expected, this provides dozens of additional signal strength indications,

on each currently examined channel.

Varying Infrastructure A major problem for all discussed Wi-Fi localization approaches are

changes in infrastructure. When new transmitters are installed, or existing ones are (re)moved,

new fingerprints or reference measurements must be conducted, or models must be adjusted.

While new installations do not directly affect the location estimation, the system will not ben-

efit from them until they are added. The impact of removing transmitters strongly depends on

how invisible access points are handled within comparisons (cf. section 2.7.6). When exist-

ing transmitters are relocated, the evaluation becomes inoperable, as future smartphone RSSI

readings do not match with fingerprints or model predictions. Similarly, within most build-

ings, there are more Wi-Fi transmitters besides the permanently installed infrastructure, such as

smart TVs, digital projectors, medical equipment, personal hot spots, etc. Such non-stationary

devices must be omitted within fingerprints or reference measurements, to ensure system oper-

ability. Besides consulting the building’s IT Service Center to get an explicit list containing all

permanent transmitters, manual approaches can be used as well. Usually, most administrators

2.7. WI-FI AND BLUETOOTH BEACONS 97

will tend to install a single brand of devices for the Wi-Fi network architecture. By using the

MAC address, the hardware vendor of a transmitter can often be identified.

Setup and Maintenance Times For new installations, or major changes of the Wi-Fi infras-

tructure, fingerprints and reference measurements must be (re)created. In case of fingerprinting,

robots can be used to automate and speed up the process [Pal+11]. Instead of conducting indi-

vidual measurements at fixed locations, walks along several ground truth points can be used to

reduce the amount of time required for reference measurements [Tor+17]. Here, a few locations

within the building are selected, and connected to denote a path. A person carrying a smart-

phone walks along this path at a constant speed, meanwhile recording the current signal strength

readings and confirming whenever a ground truth point is reached. The constant walking speed

allows for linear interpolation between adjacent ground truth locations. Combined with the

timings of whenever such a location was reached, the pedestrian’s position during the time of

any RSSI measurement recorded by the phone can be determined [Gui+16]. This is similar to

individual reference measurements, and can hereafter be used for model optimizations.

Overfitting When optimizing models based on training data, there is always a risk of overfit-

ting. Thus, a decent number of reference measurements is required, especially when optimizing

regional models for smaller fractions of the building. Another way to prevent such issues is

given by including prior knowledge within the optimization process [SS09; GI10]. Applied

to the presented target functions, the unknown parameters can be limited to a range, which is

expected to be sane for real-world values. Whenever one of the parameters is outside of its sane

range, the output of the target function is artificially increased, e.g. by adding a large penalty.

The penalty should not be introduced abruptly but e.g. in a linear fashion, depending on how far

the parameters are out-of-range, to not render the target function unnecessarily discontinuous.

Other Metrics Predicting signal strengths often is erroneous. Complex models, detailed

floorplans, and reference measurements are required to achieve good results. Even if the models

produce accurate results, or fingerprints are used, the pedestrian carrying the smartphone and

the phone’s antennae affect the RSSIs. This leads to the question of alternative metrics besides

RSSI, that are more stable, less affected by architecture, and require reduced setup efforts.

Sen et al. [Sen+12] proposed a fingerprint-based approach, including additional information

from the hardware layer of the Wi-Fi component. By using the phase and magnitude of multiple

signal subcarriers instead of the RSSI, they achieved an accuracy of ≈ 1m. While the used

hardware components were typical consumer products, the required metric is neither available

by every commodity hardware, nor exported by smartphone operating systems.

Ancient seafarers and surveyors often used visible landmarks at known positions, such as

special buildings, to estimate the current position. As the distance towards them was unknown,

98 CHAPTER 2. PROBABILISTIC SENSOR MODELS

they referred to angles, drawing lines, cutting each landmark at the observed angle, hereafter

revealing the own position where all drawn lines intersect, known as triangulation. Applied to

radio waves, multiple antennae, or antenna arrays, can be used to estimate the angle a signal

is arriving from. Due to discussed multipath effects, however, there often might be more than

one angle, or the required line of sight angle is not observed due to attenuation [DLK07]. Fur-

thermore, smartphones and/or transmitters would require special antennae, potentially affecting

their cost or normal use of Wi-Fi data transmission [HBS09].

Another complex thus focuses on the time needed for the signal to travel from the transmitter

towards the receiver, referred to as time of arrival (TOA). Slight variations use the time differ-

ence of arrival (TDOA), where the timing difference between several signals is used instead,

known from the GPS. The signal transit time is less affected by obstacles than the RSSI and thus

more reliable [GH05]. Yet, multipath effects still play an important role [Ibr+18; McC+00].

Due to the speed of light, radio waves just need ≈ 3.3 ns to travel 1m. Distance measurements

based on such timings thus require complex and fast dedicated hardware components, suffering

from drifting over time, demanding for compensation techniques [McC+00; KAO08]. Günther

and Hoene [GH05] suggested an approach that is intended to work with consumer hardware,

measuring the round trip time between transmitter and receiver on the hardware level, using a

certain part of the Wi-Fi standard, where the receiver is required to immediately respond to a

received packet. As their hardware only contained timers with 1 µs accuracy (≈ 300m), they

utilized several statistical effects to estimate more accurate timings by combining many individ-

ual measurements. They point out that a viable distance estimation from a transmitter is possible

after approximately 1000 measurements, or ≈ 1 s. With at least three distances required for a

2D location estimation, the resulting delays are too substantial for indoor navigation.

Lately, distance measurements based on the signal’s time of flight (TOF) have been added

to the Wi-Fi standard [IEE16], referred to as fine timing measurement (FTM). Hardware com-

ponents supporting this standard are able to infer their distance towards each other, using the

TOA. By adding this to the standard, upcoming smartphones and corresponding operating sys-

tems will, or already do include this technique [Gooa], yielding completely new attempts for

smartphone based indoor localization. While Ibrahim et al. [Ibr+18] have recently shown that

this approach works in general, they still observed large errors due to multipath and similar

effects. Nevertheless, this approach is expected to be refined over time, offering new fields of

research, increasing the accuracy of upcoming Wi-Fi-based localization techniques.

2.8. SUMMARY 99

2.8 Summary

Throughout this chapter, sensors available within commodity smartphones were examined, con-

cerning their suitability for indoor localization and navigation. Therefore, sensor errors were

discussed, distinguishing between accuracy and precision. Hereafter, these errors and indoor

localization were brought together, by giving a probabilistic problem formulation, introducing

the concept of evaluation and transition. Both relate to an unknown state, which is problem

and sensor dependent, and e.g. denotes the pedestrian’s unknown whereabouts, and the walking

direction. Then, the general functionality of every sensor was presented, including required

equations, providing an impression on repercussions, advantages and disadvantages. Thereby,

a new probabilistic model was derived for every component, implementing the evaluation, de-

noting the probability for certain sensor observations, given some potential state.

Unavailable indoors, the global positioning system was mentioned for reference, and to

discuss the concept of multilateration, which applies to other sensors as well. The location

information provided by this sensor often is not zero mean. Therefore, a new probability density

function was introduced, similar to a normal distribution, but without a clear mean value. This

density is applicable to other sensors and components as well.

After introducing (pedestrian) dead reckoning, the smartphone’s IMU was presented. Its ac-

celerometer was used to perform a step-detection, by analyzing the behavior of the measurable

gravity. To enhance detection results, sensor noise was suppressed using digital filters, which

were introduced briefly. With steps being not always clearly measurable, the concept of prob-

abilistic steps was introduced. Afterwards, step-detection was accompanied by turn-detection,

using the gyroscope to estimate the pedestrian’s turning behavior. For this to work, the readings

from the gyroscope must be projected into what they would look like if the phone was placed

parallel to the ground. This tilt compensation was given by the accelerometer’s gravity read-

ing, which was improved by the complementary filter, including readings from the gyroscope.

However, due to the nature of the gyroscope, the probabilistic evaluations developed hereafter,

suffer from cumulating drifts and increasing uncertainties.

The magnetometer was then presented as a source for absolute heading indications. Similar

to the gyroscope, it required a prior projection, based on aforementioned concepts. Hereafter,

probabilistic evaluations were developed and presented. With the sensor being subject to en-

vironmental effects, causing offsets, the density introduced for the GPS was applied to this

evaluations as well. While not providing accurate results, the sensor can be used in conjunction

with the gyroscope to suppress cumulating drifts.

Afterwards, the barometer was introduced as absolute altitude estimator. However, based on

brief experiments, the influence of ambient conditions was depicted. Relative-pressure strate-

100 CHAPTER 2. PROBABILISTIC SENSOR MODELS

gies were introduced, to mitigate some of the resulting offsets. Yet, results are only valid as

long as ambient conditions remain stable. Therefore, a relative probabilistic evaluation was

developed besides the absolute variant.

With the barometer being mainly suited for short-term information, the field of activity-

detection was briefly discussed. Here, the barometer was e.g. used to detect short-term altitude

changes, to infer whether the pedestrian is currently taking stairs or walking along ground. The

developed probabilistic evaluation provided a coarse absolute location estimation, for example

by limiting potential whereabouts to staircases.

With neither of the previous sensors providing true 3D location estimations, Wi-Fi was

introduced as a potential source for 3D localization indoors. After discussing physical effects

on radio waves, the relation between signal strength and distance became clear. Hereafter,

signal strength prediction models were briefly introduced. One of them was used to convert

measured signal strengths into distances, allowing for lateration, as introduced for the GPS.

With the resulting accuracy being too coarse, and results limited to a single result, the concept of

fingerprinting was introduced. Based on numerous real-world measurements, they allow for an

accurate, yet discrete, probabilistic localization. A compromise was developed, using advanced

signal strength prediction models, predicting what fingerprints should look like. This allowed

for a continuous and probabilistic location estimation, but required several model parameters

to be estimated. The latter was performed using a few reference measurements, and numerical

optimization. Hereafter, several workarounds were developed, improving the localization result.

Based on the presented models, potential pedestrian movements and whereabouts can now

be evaluated in a probabilistic manner. However, it is yet unclear how to combine the infor-

mation of all individual sensors. Furthermore, with only Wi-Fi providing 3D localization, ad-

ditional information and constraints are required, like from the building’s floorplan. Similarly,

for navigation to be performed, this mapping information is required as well. These aspects

represent the topics of the two following chapters.

Chapter 3

Probabilistic Movement Models

One of the main problems with previously discussed sensors is measurement noise, even if their

uncertainty is known beforehand and modeled via probability densities. The location estimation

given e.g. by a GPS sensor can span several meters, even under good conditions. While weather

has only a minor effect on accuracy, occlusion by trees and tall buildings affects performance,

reducing the number of usable satellites [Oga11]. However, no commercial navigation system

displays a virtual car jumping around the screen, while waiting at a red traffic light, surrounded

by skyscrapers. For the described situation, additional information, such as the car’s current

velocity, might be used to suppress movement due to GPS measurement noise, e.g. by using the

presented complementary filter [Bon+01; AP99; SND99]. While this approach will work for a

non-moving vehicle, it is only a partial solution when moving, as the known velocity can only

be used to limit the distance of the movement, not to constrain its direction.

As cars can be expected to reside on a road most of the time, mapping information provides

additional constraints. Therefore, navigation systems e.g. snap the virtual car onto the street

nearest to the estimated position, using some sort of heuristic or geometric rules [JSZ04]. Yet,

if there is more than one street nearby, like for trunks and intersections, this approach can yield

incorrect results, snapping the estimation onto the wrong street (cf. figure 3.1a). Furthermore,

while this ensures the virtual car to be located on some street, measurement noise can still cause

leaps along, or jumps between adjacent roads. As with the sensor estimations from chapter 2,

such discrete approaches often do not provide a satisfying solution to the problem. Instead,

the derived continuous probabilities for sensor readings should be used, and combined with the

map. To suppress invalid locations on a probabilistic basis, leaving only those that match with

the surroundings, shown in figure 3.1c. When additional information, such as the current driving

direction is available, potential whereabouts can be constrained even further. In figure 3.1d, a

single road remains likely, with the car’s location uncertainty distributed alongside.

101

102 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

?

(a) (b) (c) (d)

Figure 3.1: Example combinations of sensor readings and map data for car navigation. Snapping discrete

GPS indications to the nearest street (a), using probabilities without map knowledge (b), combining map

and probability information (c), additionally including movement direction information (d).

The described approach does not only improve the current location estimation, but can also

be used to refine subsequent steps. Dependent on the receiver, the GPS provides the next loca-

tion reading between one and ten times per second [TY09]. Hereafter, the car’s new location

is not only constrained by recent sensor values and the map. New whereabouts also depend

on the previous location, the elapsed timeframe, current driving speed, surroundings, like the

type of street (highway, farm road), nearby intersections, one way streets, and similar. The road

map, and some set of rules on typical car movements, can be used to create a model, statis-

tically predicting the car’s potential movements, incorporating additional information, such as

speed limits, the size of the vehicle, whether it has to slow down to take a certain road with

a narrow turn, the driver’s desired destination, and many more. Instead of simply snapping a

single discrete measurement onto the nearest street, the probabilistic prediction of the model is

combined with recent measurements, including their uncertainty. New potential whereabouts

are then given where both, the model and the sensor readings, agree.

3.1 Probabilistic Problem Formulation

The same applies to the scenario of indoor localization and navigation, where the model de-

scribes potential pedestrian movements within a certain timeframe. Instead of road maps, the

building’s floorplan is used to limit potential walks and whereabouts. This prevents noisy sen-

sor data from yielding unlikely or impossible movements, by including walls, obstacles, stairs,

and elevators. Describing the change, or transition, from one location, or state, to a new one

within some timeframe, it is referred to as transition model. It defines the probability of a new

state qt after some time ∆t, given an old state qt−1. The probability to “move” from one state

to another during some time ∆t is written as

p(qt | qt−1) . (3.1)

A simple 1D transition model is depicted in figure 3.2. The pedestrian is assumed to walk to the

3.1. PROBABILISTIC PROBLEM FORMULATION 103

t = 0 t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6

µstepσstep

Figure 3.2: Several one-dimensional transitions using (3.2), starting from a known position at time t = 0.

Each transition makes one step to the right, using an average step size µstep with some uncertainty σstep.

The uncertainty of the potential whereabouts increases with every additional transition.

right, with an average step-size µstep, and uncertainty σstep, modeled by a Gaussian. Walking is

limited solely to the x-dimension, and initial whereabouts q
(x)
0 at time t = 0 are known exactly

p(qt | qt−1) = N
(
q
(x)
t

∣∣∣ q(x)t−1 + µstep, σ
2
step

)
, 〈q〉t = 〈(x)〉t . (3.2)

Regarding probabilities, the exactly known initial position q
(x)
0 is denoted by a single spike.

A transition from this position is similar to the pedestrian taking one step, introducing some

uncertainty, which is equal to σstep after the first step. Intuitively, this uncertainty increases with

every subsequent transition, similarly to the cumulative sensor errors discussed in section 2.4.

For predicting actual pedestrian movements indoors, the state is required to contain at least

the current 2D location for single floors, or 3D for multistory buildings. The actual formulation

strongly depends on available knowledge. Based on the initial car navigation example, a floor-

plan, the current walking speed, and heading represent a valuable contribution. The following

discussions gradually include prior knowledge, starting without using sensor information at all.

The model’s suggestion for new whereabouts is constrained by the distance a pedestrian is

able to walk within a certain timeframe. Depending on age and gender, the average walking

speed ranges around 1.4m/s with a deviation of approximately 0.1m/s [KPN96; Bro+06],

varying with the current surroundings. Regarding pedestrian walking behavior near outdoor

street crossings, or indoors when taking stairs, the deviation in walking speed among several

study participants was as large as 0.25m/s [GB15; FT04]. In case of stairwells, the taken step

size directly depends on the tread length of the stair [TG91]. If the model is able to distinguish

between situations, such as walking outdoors, indoors or along stairs, it could simply rely on

average speeds from literature. However, the pedestrian might not be moving at all, resting at

the current position. This behavior could be described by a model including both cases, where

some transitions use the average velocity, and others do not move at all. Alternatively, the

velocity could be completely randomized. Yet, this mainly yields movement predictions not

resembling real-world conditions [Ebn+14; KGD14].

104 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

While walking speeds can be included using values from literature, this does not apply to the

current heading and its changes. Even if the previous heading is given, the amount of change

within a certain timeframe is unknown for pedestrians. Unlike with cars, where the driving

direction can be assumed to follow the course of the road until some intersection is reached,

indoor navigation is often open-spaced, providing fewer limitations on potential movements.

While there are experimental analysis of human walking behaviors, e.g. for pedestrian groups

leaving narrow passages conducted by Daamen and Hoogendoorn [DH03], it usually does not

make sense to assume a fixed heading deviation for the pedestrian, as directional adjustments

are based on desired destination, obstacles, and building architecture. While simply using an

empiric best-fit choice as heading deviation is possible, a single value does not model all poten-

tial walks, as the pedestrian might turn at any point in time. Like with walking and resting, there

are several options to address this issue. Assuming a large heading deviation per second, using

a small deviation but allowing multiple directions (forward, left, right, turning backwards), or

omitting the heading information completely, to allow walking into any reachable direction.

Especially the latter reveals an important aspect on the behavior of transition models.

To examine the impact, (3.2) is altered, omitting the known movement direction towards

the right, by replacing +µstep with ±µstep. For the newly created model there now is a major

difference between one prediction of a 5 s timeframe and five consecutive predictions, with 1 s

each. For the first case, the velocity is simply increased by a factor of 5, with the result denoting

two peaks. One to the left, one to the right, both at a distance equal to the adjusted velocity. For

the second case, the behavior is far more complex. After the first of five steps, two peaks with

their distance equal to 1 s of walking are created. The second transition starts from this result,

again into an unknown direction, yielding two new peaks for each of the previous ones. After

five steps, this produces a highly complex, non Gaussian, and possibly unexpected result.

This lack of prediction quality, resulting from the unknown heading, can e.g. be improved

by information from turn-detection or the eCompass (cf. section 2.4) [Ebn+14; Ebn+15]. To

include such observed sensor data within the transition in general, (3.1) is adjusted, yielding the

same notation as (2.6), previously discussed in chapter 2

p(qt | qt−1,ot−1) . (3.3)

Depending on the information available, the prediction of the model will look completely dif-

ferent. Furthermore, its behavior depends on the required dimensionality. In a two dimensional

setup, sufficient for single floor buildings, possible movements can be described using velocity

and a heading angle Θ, restricted by walls or obstacles. Referring to three dimensional se-

tups, implementation strongly depends on the surroundings. For mid-air airplanes, for example,

3.1. PROBABILISTIC PROBLEM FORMULATION 105

samples KDE Gaussian KDE samples

≈ 6=

simulation of a Gaussian simulation of a non Gaussiananalytical

Figure 3.3: Brief comparison between analytical and simulated probability density estimation. When

using random samples and a KDE, arbitrary non-analytical densities can be modeled. Shown in the

right, this e.g. allows for obstacles (dashed-line) to be considered within predictions.

there is no limitation on potential movements in 3D space, described by a velocity and, at least,

two angles, or a 3D heading vector. In pedestrian indoor localization, however, only stairs,

escalators and elevators allow for changes along the z-axis. Most of the time, movements are

restricted to the (x, y)-plane, and the possibility of z-changes depends on the underlying archi-

tecture. This drops the requirement for a second angle, and the floorplan represents the most

important information to constrain potential walks.

As walking through walls is impossible, and movements in the z-direction require stairs,

escalators or elevators, the floorplan adds discrete constraints on potential transitions. A wall

within figure 3.2 would prevent movements, causing an abrupt drop in probability for all loca-

tions behind it. Due to this discontinuous impact, analytical solutions, such as (3.2), are often

unavailable, and the density can neither be calculated nor visualized directly.

Complex transition models are thus statistically approximated by simulation. For every

input state qt−1, potential output samples qt are created by a random process, approximating

p(qt | qt−1) or p(qt | qt−1,ot−1), with theoretical backgrounds examined in chapter 4. The

resulting density is described by a set of multiple samples. Similar to the discussions on finger-

printing (see section 2.7), a continuous representation can hereafter be derived, e.g. by applying

a KDE to these samples. A brief comparison between a 1D analytical and simulated represen-

tation is shown in figure 3.3, where a wall abruptly limits density propagation. The number

of samples required for such an approximation strongly depends on the to-be-approximated

density, where broader densities require more samples for a viable result. However, due to

computational costs, this number is a crucial aspect, concerning use on embedded devices.

This chapter focuses on presenting different types of movement models, with and without

additional sensor information, ranging from simple analytical setups without prior knowledge,

towards complex discontinuous approaches based on a floorplan. Though not explicitly men-

tioned within above notation, all models can utilize this floorplan. For now, it is assumed to

be given, including all semantic details, potentially required for a specific model, shown in fig-

ure 3.4. This mainly covers individual floors including their walls, obstacles, doors, stairs, and

106 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

5m

Figure 3.4: Example showing a 3D and top-view of a single floor with a corridor and adjacent rooms.

Besides walls, there can be other types of obstacles. The upper floors can be reached via a stairwell.

elevators, which are relevant to localization and navigation. The actual creation of the floorplan

is discussed later in chapter 5.

Due to the work’s focus on smartphone-based pedestrian indoor localization and naviga-

tion, computational complexity and memory constraints are examined as well. This not only

affects the complexity of the possible movement models, but also the complexity of included

prior information, such as the floorplan. Depending on the actual use case, simple analytical

models without architectural knowledge might be sufficient, and allow for fast calculations with

small memory footprint. For fully featured navigation, more sophisticated setups, including the

actual architecture, are required. Resulting constraints, advantages, and disadvantages of the

individual approaches will also be part of the following discussions. Furthermore, the different

requirements between single-floor 2D and multi-floor 3D setups are examined as well.

3.2 Simple Models without Floorplan Information

Similar to sensors in chapter 2, models for potential movements should include uncertainty ex-

pectations, as depicted for the unconstrained one dimensional walk in figure 3.2. Instead of

using a single scalar value to describe new whereabouts, a distribution models the likelihood of

nearby locations as well. The most simple setup uses a normal distribution to describe this un-

certainty around the mean, or expected value. This section introduces simple transition models,

based on such analytical distributions, and examines the required steps to adapt them for 2D and

3D localization setups. While being both, computationally efficient and continuous, environ-

mental information, such as a floorplan, can not be considered. Due to the continuous nature,

the distribution propagates through walls and other obstacles, reducing the number of use cases.

3.2. SIMPLE MODELS WITHOUT FLOORPLAN INFORMATION 107

Similar to the 1D case from figure 3.2, for a simple setup with no obstacles nearby, a 2D/3D

variant is given by the multivariate normal distribution, describing the uncertainty around a

mean value µ using a matrix Σ, resulting in a multidimensional Gaussian:

p(q) = N (q | µ,Σ) =
1√

(2π)d det (Σ)
exp

(
−1

2
(q − µ)TΣ−1(q − µ)

)
. (3.4)

In (3.4), q and µ e.g. denote a 2D location (x, y)T or 3D location (x, y, z)T . The covariance

Σ describes the uncertainty around µ. For the 1D case, the uncertainty σ distributes equally to

either side of the mean. For the multidimensional case, it distributes into as many directions

as the problem has dimensions. While the distribution is still symmetric around µ, it is neither

distributed with the same amount into each dimension, nor are the dimensions required to be

aligned with the axes of the coordinate system, as long as they are orthogonal. This can easily

be verified when looking at pedestrian movements. Depending on current heading and speed,

x, y and z will be affected differently. The amounts and directions of uncertainty distributions

are modeled within the covariance matrix Σ [BC12; HTF09].

Assuming a 2D localization problem, where the pedestrian’s initial position q0 = (x, y)T

at time t = 0 is known with some uncertainty, and no additional information is available.

The initial whereabouts q0 can be described using a two dimensional normal distribution, with

the mean equal to the known position, and the covariance as diagonal matrix with the same

uncertainty in x and y, and no dependency between both

p(q0) = N (µ0,Σ0) , q0 = µ0 = (x, y)T , Σ0 =

(
σ2 0

0 σ2

)
. (3.5)

The 1σ contour of (3.5) denotes a circle around the mean that ensures with ≈ 68% confidence

that the pedestrian resides within. If neither the current heading nor the velocity are known, this

uncertainty is expected to grow around the initial center over time. This is achieved by keeping

µ as-is, and increasing σ, e.g. by the average walking speed of 1.4m/s, every second. The

resulting 1σ contour still contains the pedestrian with a confidence of 68%, when not walking

faster than 1.4m/s on average

p(qt) = N (µ0,Σt) , Σt =

((
(t+ 1)σ

)2
0

0
(
(t+ 1)σ

)2

)
= (t+ 1)2

(
1.42 0

0 1.42

)
. (3.6)

As (3.6) describes σ linearly increasing with t, visualizing the 1σ contour for several t yields a

set of circles with their radius increasing by a constant factor, shown in figure 3.5. This absolute

notation, describing the uncertainty at time t, can be converted to the initially introduced relative

108 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

notation (3.1), describing the change in uncertainty between two timesteps, by using the linear

increment that must occur for every such step

p(qt | qt−1) = N
(
d1
∣∣ ζd2, σ2

)
, σ → 0

d1 = distxy (q0, qt) , d2 = distxy

(
q0, qt−1

)
, 〈q〉t = 〈(x, y)〉t , ζ =

t+ 2

t+ 1
.

(3.7)

Assuming p(q0) was well defined, e.g. by using (3.5), (3.7) ensures that all subsequent steps

propagate in the same manner. If qt−1 was d away from the initial q0, qt must be ζd away

from it, where ζ enforces the linear growth from (3.6). When not insisting on this growth to be

linear, just allowing some variation within every timestep, the relative update from (3.7) can be

reduced to a significantly simpler, straightforward representation [Ebn+15]:

p(qt | qt−1) = N
(
qt
∣∣ qt−1,Σ

)
, Σ =

σ2
xy 0 0

0 σ2
xy 0

0 0 σ2
z

 , 〈q〉t = 〈(x, y, z)T 〉t . (3.8)

(3.8) enforces qt to be within the vicinity of qt−1, and also applies to the 3D case, allowing for

a different variation along the z axis, which is usually smaller than for x and y [Ebn+15].

While (3.6) is an absolute analytical model that is directly calculable, (3.7) and (3.8) are

not. As they are relative, they depend on the previous density, to perform the adjustments. The

coherence between both is given by the law of total probability [BC12, pp. 69]:

p(qt) =

∫
p(qt | qt−1) p(qt−1) dqt−1 . (3.9)

As can be seen, (3.9) denotes a recursive chain that propagates until the terminal p(q0) is

reached. Whether it can be calculated in an analytical way, depends on the used probability

density functions (PDFs). While (3.7) can be calculated analytically by (3.6), most transition

models presented within this chapter can not, and are approximated by simulation. To derive

p(qt), the simulation starts with the set of samples for p(q0), and applies (3.9) recursively, where

each qt−1 leads to a new sample set for p(qt). To accurately approximate the resulting density, a

decent number of samples is required, strongly dependent on its size and shape. An example is

shown in Figure 3.5, containing both, the analytical 1σ contours shown as circles, and simulated

samples shown as dots. In the right, the expected continuous output after applying a KDE to the

samples from the left, is shown as dark background shading. While the 1σ contour increases

constantly over time, the figure clearly shows that major parts of the probability mass remain

centered around the mean value, typical for a single Gaussian. Intuitively, this setup does not

represent true expectations on pedestrian movements indoors.

3.2. SIMPLE MODELS WITHOUT FLOORPLAN INFORMATION 109

−15

−10

−5

0

5

10

15

−15−10 −5 0 5 10 15

t = 0

−15−10 −5 0 5 10 15

t = 4

5m

Figure 3.5: Behavior of (3.6)/(3.7) during five timesteps, with corresponding 1σ contours as circles. The

two left images denote the simulated sample sets and contours for t = 0 and t = 4. In the right, the

contours for t ∈ {0, . . . , 4} are shown together with p(qt) at t = 4 denoted as dark shading.

A slightly more realistic model is given by the following assumption: At any point in time

t, a pedestrian could either be walking with a velocity µwalk, or resting, with the information e.g.

provided by an observed activity o
(Ω)
t−1 (see section 2.6):

p(qt | qt−1,ot−1) =

N (d | µwalk, σ

2
walk) o

(Ω)
t−1 = walking

N (d | 0, σ2
stand) o

(Ω)
t−1 = standing

d = distxy

(
qt−1, qt

)
, 〈q〉t = 〈(x, y, . . .)〉t , 〈o〉t = 〈(Ω, . . .)〉t .

(3.10)

The standing case of (3.10) is similar to the previous model, and describes an increase in uncer-

tainty, around the previous location estimation qt−1. The walking case, however, is completely

different, and models the next whereabouts to reside along the circumference of a circle, with

the radius defined by the expected walking speed µwalk. Even though the walking case is de-

scribed using a normal distribution, the resulting likelihood denotes a non Gaussian distribution

(cf. figure 3.6). If the information, whether the pedestrian is walking or resting, is unavailable,

heuristic assumptions can be made instead [Ebn+15]:

p(qt | qt−1) = κw/sN
(
d
∣∣ µwalk, σ

2
walk

)
+ (1− κw/s)N

(
d
∣∣ 0, σ2

stand

)
. (3.11)

Using κw/s ∈ [0, 1], a general empiric probability for walking or resting can be used to mix both

cases. Figure 3.6 shows a simulation for κw/s = 0.9, with the chance of standing to be 10%,

and a small uncertainty σwalk = σstand = 0.05 for visualization reasons. After one timestep, the

result is as expected. One inner spot that kept the previous position, and a circle µwalk = 1.4m

apart. The results of the followings steps are rather unexpected. As (3.10) and (3.11) do not

contain any constraints on the walking direction, all movements from (b) to (c) are completely

110 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

−4

−2

0

2

4

−4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4

(a)

t = 0

−4 −2 0 2 4

(b)

t = 1

−4 −2 0 2 4

(c)

t = 2

−4 −2 0 2 4

t = 3

Figure 3.6: Simulated behavior of (3.11) using µwalk = 1.4m and σwalk = σstand = 0.05. While the

first step is as expected, all following steps behave differently. This is due to (3.11) not constraining the

walking direction, just staying at or departing from the previous location by a given distance. All samples

from (b) end up in (c) somewhere nearby (when resting), or are located along a circle (when walking).

undirected, and solely enforced to either rest with a chance of 10%, or move by approximately

1.4m. This yields each simulated sample from (b), to end up in (c) with the same spot/circle

pattern, as from (a) to (b). An unrestricted heading for every subsequent step within a small

timeframe does not resemble human walking behavior. As within chapter 2, considering the

heading in some way seems mandatory.

Again, this can be addressed by adding a heading information Θ to the unknown state q.

If no prior information is available, the initial heading q
(Θ)
0 at time t = 0 remains unknown,

and thus q
(Θ)
0 ∼ U (0, 2π). When simulating p(q0), this yields a set of samples, with uniformly

distributed heading. All subsequent transitions use this heading, and allow only slight deviations

from it, modeling a pedestrian walking almost straight from the starting position. Assuming

statistical independence, this is achieved by multiplying another probability as constraint

p(qt | qt−1,ot−1) = N
(
α
∣∣ 0, σ2

turn

)
p(qt | qt−1,ot−1)(3.10)

p(qt | qt−1) = N
(
α
∣∣ 0, σ2

turn

)
p(qt | qt−1)(3.11)

α = ∠∆

(
q
(Θ)
t−1,∠xy

(
qt−1, qt

))
, 〈q〉t = 〈(x, y,Θ, . . .)〉t .

(3.12)

The additional constraint enforces the state’s heading to be kept approximately, yielding almost

straight walks. This is achieved by comparing the expected direction q
(Θ)
t−1 against every potential

heading, given by the angle between previous and new whereabouts ∠xy

(
qt−1, qt

)
(2.52). The

difference ∠∆ (α, β) between the expected and the potential angle is provided by (2.53). This

angular difference should be rather small, and is thus applied to a zero mean normal distribution

with some uncertainty, to allow slight variations. Again, other PDFs, such as the von Mises

distribution [Mis18], are possible as well. The simulated result of (3.12) is shown in figure 3.7,

and resembles water drops, with several equidistant circles, denoting the potential whereabouts

after consecutive transitions.

3.2. SIMPLE MODELS WITHOUT FLOORPLAN INFORMATION 111

−4

−2

0

2

4

−4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4

t = 0

−4 −2 0 2 4

t = 1

−4 −2 0 2 4

t = 2

−4 −2 0 2 4

t = 3

Figure 3.7: Simulated behavior of (3.12) with uniform initial heading q
(Θ)
0 ∼ U (0, 2π), walking speed

µwalk = 1.4m/s, and uncertainties σwalk = σstand = σturn = 0.1. The result looks similar to sea waves,

where the equidistant circles denote potential whereabouts, created by the underlying model.

(3.12) is versatile, and also applies when the pedestrian’s initial heading is known, e.g.

from an eCompass, or prior knowledge. However, it does not define how this assumed heading

might change between q
(Θ)
t−1 and q

(Θ)
t , e.g. when the pedestrian is turning. Therefore, another

component is added. It describes the probability of the new state’s heading, based on observed

changes (2.50), absolute indications (2.51) and (2.60), or when unobserved by sensors

p(qt | qt−1,ot−1) = phead

(
qt | qt−1,ot−1

)
p(qt | qt−1,ot−1)(3.12)

phead

(
qt | qt−1,ot−1

)
=

N
(
q
(Θ)
t

∣∣ q(Θ)
t−1 + o

(θ)
t−1, σ

2
turn

)
, 〈o〉t = 〈(θ, . . .)〉t relative

N
(
q
(Θ)
t

∣∣ o(Θ)
t−1, σ

2
turn

)
, 〈o〉t = 〈(Θ, . . .)〉t absolute

N
(
q
(Θ)
t

∣∣ q(Θ)
t−1, σ

2
turn

)
unobserved .

(3.13)

A simulation of (3.13) for a synthetic scenario, where the pedestrian’s initial whereabouts and

heading are approximately known, and updated relatively hereafter, is shown in figure 3.8. Up

until (c), the behavior is similar to the one from figure 3.7, except that the whereabouts only

denote a fraction of a circle, due to the initially known heading. As soon as a sensor indicates

relative changes, this rotation affects the shape of the whole probability density. After several

45° turns, the result in (h) does not resemble an arc, but looks similar to a Gaussian. This effect

occurs after consecutive larger turns, increasing the uncertainty in multiple directions, based on

σturn. For longer straight walks, the density will often be shaped as seen in (b) and (c).

When not distinguishing between walking and resting, or this information is provided by

some sensor, it is possible to approximate aforementioned model analytically. Using a single

normal distribution with a relative update function, the model becomes directly calculable, and

does not require simulation. The current covariance, omitting time indices for readability, can be

derived by using an uncertainty for the walking speed, and one for the heading. This diagonal

covariance matrix Σ is hereafter transformed by a 2D rotation matrix R (see section 2.4.2),

112 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3.8: Simulated behavior of (3.13) with narrow initial heading q
(Θ)
0 ∼ N (0, 0.1), walking speed

µwalk = 1.4m/s, and uncertainties σwalk = σstand = 0.05 for speed, and σturn = 0.25 for heading.

Visible in (b) and (c), the approximately known initial heading yields only a fraction of the circle from

figure 3.7. When the heading starts to change between (c) and (d), the shape of potential whereabouts is

affected, and rotated as well. After several 45° turns, the result in (h) is similar to a Gaussian.

defined by the current heading q
(Θ)
t . RΣRT (see [CK08]) rotates the uncertainties in speed and

direction, defined in Σ, to match the current heading. The covariance at time t can be combined

with the previous one from t− 1, adjusting its shape and size over time. The new mean value µ

at time t is given, by adding a vector denoting the current walking direction (cos q
(Θ)
t , sin q

(Θ)
t)T

times the estimated walking speed µstep, to the previous mean from t − 1. Even though being

an approximation of the unique shapes from figure 3.8, such basic analytical setups, also like

(3.8), can already be sufficient for certain use cases.

However, neither of the presented methods considered actual floorplan information when

deriving new whereabouts. Shown in figure 3.5, this creates potential issues, with predictions

crossing walls. Including obstacles is non-trivial, as it results in discontinuous behavior. Deriv-

ing movement models with support for such information will be the topic of the next section.

3.3 Simple Models with 2D Floorplan

To accurately predict potential whereabouts after a certain amount of time, constraints given

by the surroundings must be considered. Similar to car navigation systems, which limit poten-

tial movements based on mapping data. Within indoor environments, walls and other obstacles

limit the pedestrian’s potential movements. When currently residing in front of a wall, the pos-

sibility of being located on the opposite side after a certain amount of time is rather small, and

strongly depends on the presence of nearby doors. Including such constraints in an analytical

way, where one equation describes a probability density function based on the current where-

abouts, considering obstacles, is not feasible. Literature suggests several strategies, which are

mainly based on aforementioned approximation, by simulating several potential movements,

each considering the ambient surroundings.

Proceeding from one of the previous relative movement models, such as (3.13). A simple

solution for considering obstacles is then given by adding a new probability, testing whether the

3.3. SIMPLE MODELS WITH 2D FLOORPLAN 113

5m

Figure 3.9: Potential whereabouts (3.14) after 1, 3 and 5 consecutive transitions, starting from the black

dot, walking straight with µwalk = 1.4m/s and σwalk = 0.1, into an unknown direction q
(Θ)
0 = U (0, 2π).

Darker shadings denote an increased likelihood. After 1 s, whereabouts are placed along a circle, similar

to figure 3.7. As soon as obstacles are encountered, the potential walk is blocked. After 5 steps, the

circular shape is still visible, split into several fractions, where movements were not blocked by obstacles.

potential movement from location posxy

(
qt−1

)
towards posxy (qt) is blocked by an obstacle,

and, if so, assign this movement a zero or near-zero probability [Ebn+14]:

p(qt | qt−1,ot−1) = pfree

(
qt | qt−1

)
p(qt | qt−1,ot−1)(3.13)

pfree

(
qt | qt−1

)
=

1.0 qt−1 → qt free

0.0 qt−1 → qt blocked .

(3.14)

A simulation example for p(qt | qt−1)(3.14)
is shown in figure 3.9. It starts from the position

indicated by the black dot, with an initially unknown heading. Each heading is kept approxi-

mately, using σturn = 0.05. The mean walking distance µwalk is 1.4m with an uncertainty of

σwalk = 0.1. The three figures denote the resulting density p(qt) after 1, 3 and 5 consecutive

simulations. When no obstacles are blocking the movement, results are similar to figure 3.7. In

case of obstacles, walking is prevented, and rooms can only be entered using doors.

How to determine whether there is an obstacle between qt−1 and qt, depends on the way the

floorplan is modeled. For two dimensional setups, walls could e.g. be given as lines between

two points, allowing for a simple geometric intersection test [Ber17; Sch17] of the line between

posxy

(
qt−1

)
and posxy (qt), and each wall from the floorplan. However, depending on the

number of required samples, and the number of obstacles within the floorplan, the amount of

required intersection tests can be significant. Especially when used on smartphones, realtime

usage is limited [Ebn+14].

Besides describing obstacles by lines, there are other options for storing the building’s floor-

plan, such as the occupancy grid [Mor88], often used for mobile robots and simultaneous local-

114 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

ization and mapping (SLAM) [GSB05; Elf89; Thr03]. Here, a discrete grid with many small

cells is used to remember whether a location contains an obstacle (is occupied), or not. This al-

lows for quickly testing whether a known location is blocked. Furthermore, it corresponds with

sensors measuring distances, often used for mobile robots, such as the LIDAR [Hes+16]. They

can be used to populate the grid, and to compare measurements against it. This storage strategy

affects the intersection testing between the potential walk from qt−1 to qt and known obstacles.

The way from A to B is blocked, if there is one occupied grid cell along it. Performance thus

directly depends on the distance between both points, scaling linearly with the number of cells

to be checked for occupancy. The provided result is an approximation, depending on the size of

each grid cell, used for discretization. Furthermore, depending on the size of the floorplan and

the chosen cell size, the grid might require large amounts of memory for storage, demanding

for special data structures to reduce this overhead [JGB14].

The grid’s concept of locality can be applied to the line-based representation, reducing the

number of required intersection tests, by only examining walls that are of interest when moving

from qt−1 towards qt. That is, all obstacles which are near the potential walk, and thus might af-

fect it. This question can quickly be answered using data structures such as the octree [Mea80]

or k-d tree [Ben75], both dividing multidimensional space into smaller sections, storing all ob-

jects belonging to them. This allows for fast lookups of all obstacles that are near posxy

(
qt−1

)

and posxy (qt), and potentially block this transition. The strategy is also applicable to three

dimensional setups, where walls and obstacles are defined as 3D objects. By adding them to

a spatial hierarchy, fast spatial lookups are possible. This is well-known from ray tracing in

computer graphics, where data structures, such as the bounding volume hierarchy, are used to

speed up required intersection tests [Shi03].

Nurminen et al. [NRP16] propose a different solution to prevent time consuming intersection

tests at runtime, by moving them into an offline phase. Therefore, they divide the walkable

area into a grid of 0.5m sized cells. For every such cell an intersection test is performed,

starting from the cell’s center into each possible direction 0° to 360° using 5° steps. For the

resulting 72 rays, the distance to the nearest intersection is determined and remembered. This

approach yields a database containing the nearest obstacle, depending on the current position

and walking direction, with some degree of uncertainty due to the discretization to 0.5m in

location, and 5° in direction. This database not only allows fast lookups whether a potential

movement is restricted by architecture, but also favoring movements into more open spaces. As

it is less likely for pedestrians to walk near or to approach obstacles, directions with no nearby

intersections are more likely to be taken. Therefore, Nurminen et al. converted their database

into a PDF, describing the likelihood for walking into some direction, based on the distances of

3.3. SIMPLE MODELS WITH 2D FLOORPLAN 115

surrounding obstacles. Due to the 0.5m spacing, memory consumption is moderate, and only

critical for large multistory buildings.

Though simple in implementation, this approach shows an important drawback. p(qt | qt−1)

and p(qt | qt−1,ot−1) are small, when the movement is blocked by an obstacle. Even if there is a

door, or other type of entrance, nearby. Thus, this approach will not provide viable predictions,

whenever an obstacle can be avoided, or circumvented. Yet, as each detour takes additional

time, this flaw becomes mainly relevant when predicting movements for larger timeframes. It

is unlikely for a pedestrian to circumvent a wall with a door nearby during one footstep or one

second. After five or more seconds, however, chances are much more likely.

Thus, for all following discussions, the timeframe used for the prediction will be considered,

as most models work better for small timeframes up to a few seconds. Similarly, the visual

representation of a navigation system is more appealing to the user, when updates occur more

often. This can be verified by comparing today’s car navigation systems with older ones. Recent

devices update the location estimation several times per second. Older ones only every one or

two seconds. However, while increasing accuracy, more updates require more calculations, and

thus easily exceed the limits of embedded computation power and battery life [Ebn+15].

To address the problem of including potential detours within the movement prediction pro-

cess, a different approach is required. Previous models were based on the assumption of the

pedestrian walking straight most of the time. In case of obstacles, this is incorrect. Most likely,

the pedestrian uses the shortest way possible to circumvent the obstacle. That is, the shortest

distance required to reach any arbitrary location from the starting point must be considered.

This still matches with the previous discussions, as walking straight yields the shortest distance

towards a target location. Potential whereabouts after a certain timeframe are given by locations,

where expected walking distance µwalk, and the smallest distance dist∗xyz

(
qt−1, qt

)
required for

reaching, are similar:

pdist

(
qt | qt−1

)
= N

(
d∗
∣∣ µwalk, σ

2
walk

)
, d∗ = dist∗xyz

(
qt−1, qt

)
(3.15)

Within this example, the probability of the pedestrian currently resting instead of walking, and

the current heading, are omitted, to focus solely on the impact of detours. To determine the

shortest path dist∗xyz

(
qt−1, qt

)
between two locations qt−1 and qt, algorithms such as Dijkstra

[Dij59], or its modification A∗ [HNR68], can be used. Both require a graph-based data structure,

using vertices connected by edges, to derive the shortest possible connection between two ver-

tices, if there is one. To apply this algorithm to navigation indoors, a graph must be built based

on the building’s floorplan beforehand. Discussed in detail later, vertices are placed throughout

the whole walkable area, e.g. using an equidistant spacing as placement pattern, similar to the

116 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

5m 5m

Figure 3.10: Simulation of (3.15) for a 1 s, 3 s and 5 s timeframe, assuming the pedestrian to use the

shortest way possible to reach a location, starting from the black dot, walking with ≈ 1.4m/s into an

unknown direction. The shortest path is estimated using a graph based data structure, partially shown on

the left. After 1 s, whereabouts are placed along a circle, denoting straight walks from the center. When

obstacles prevent straight movements, the shortest detour is used. For the 5 s timeframe, the circular

shape vanishes and is split into several arcs, e.g. after entering a room through a narrow door.

approach presented by [NRP16]. Hereafter, adjacent vertices are connected by a bidirectional

edge, if there is no obstacle in between [Ebn+15]. An exemplary fraction of such a graph is

shown in the left of figure 3.10. This data structure is able to determine the shortest possible

way dist∗xyz

(
qt−1, qt

)
between two locations qt−1 and qt within the building, by following the

created edges. As the state q contains a continuous 2D or 3D location, determining the ver-

tices corresponding to qt−1 and qt involves numerical rounding of the coordinates. If there is

no direct correspondence in location between the state and a vertex, the nearest vertex can e.g.

be used instead. The quality of the returned result thus directly depends on the distance cho-

sen for placing the vertices, where smaller distances, that is, more vertices, yield better results.

Again, the simulated timeframe must be considered. For longer timeframes, the approximation

imposed by larger vertex distances is barely noticeable. For shorter ones, like 1 s or 1.4m, the

impact of a larger vertex spacing is significant. This correlation results in a tradeoff between

required precision, resulting memory footprint, and computation time [Ebn+16; Hil+14].

A simulated result of (3.15) is shown in figure 3.10, using a 20 cm distance between the

vertices. The left shows an excerpt of the underlying graph, using 50 cm vertex spacing for

visualization. Potential whereabouts, when starting from q0, are simulated for walking dura-

tions of 1 s, 3 s and 5 s. All resulting locations qt are placed directly on the vertices, that is,

all resulting coordinates are multiples of 20 cm. Within 1 s, no obstacles are encountered, and

the whereabouts predicted by (3.15) are equal to the ones from (3.12), denoting a circle. For

longer simulation timeframes, µwalk and its uncertainty σwalk were adjusted accordingly. As

soon as obstacles are encountered, the overall circular shape vanishes, and smaller circles start

3.3. SIMPLE MODELS WITH 2D FLOORPLAN 117

to form immediately after narrow passages, such as doors, visible within the room in the lower

right corner. Compared to figure 3.9, figure 3.10 indicates potential whereabouts near the ones

within the line of sight from the starting point, yielding more realistic results.

One important drawback of this approach is computation time. Mentioned earlier, multi-

ple samples are required to approximate pdist

(
qt | qt−1

)
by simulation. That is, the shortest

path algorithm must be executed for every unique qt−1, to determine which qt are reachable.

Depending on the actual implementation, Dijkstra’s algorithm has a time complexity between

O(|V | log |V |+ |E|) and O(|V |2+ |E|) for the number |V | of vertices and |E| edges within the

graph [Cor09]. Together, this prevents realtime use on embedded devices. Even though the A∗

variant is faster, computational requirements are still significant.

Similar to the aforementioned enhancements from Nurminen et al., Köping et al. address

this issue by pre-calculating all costly operations once during an offline phase, yielding a data

structure that provides efficient lookups [Köp+12; KGD14]. However, a data structure contain-

ing the shortest distance from every single vertex towards all other vertices within a building,

will consume large amounts of memory, and does not scale for larger floorplans [ARC12].

Furthermore, (3.15) does not consider prior knowledge on the current heading, introduced in

(3.12). This absence will yield a similar behavior as shown in figure 3.6. For every consecutive

simulation, starting from a previous result, the walking direction is completely randomized,

causing unexpected behavior. Yet, it is unclear how to correctly combine the shortest path

approach with heuristic heading constraints, such as (3.12). Especially when longer walks are

simulated and detours due to obstacles are required, as taking a detour does not match with

the assumption of the pedestrian walking straight. For small timeframes, however, a movement

prediction based on shortest paths requires a very dense graph-based data structure, to prevent

errors, introduced by rounding. Furthermore, when the simulated timeframe is decently small,

shortest path calculations can often be completely omitted, as detours rarely occur within short

timeframes. The shortest path approach is thus mainly suited for smaller buildings, and for

longer simulation timeframes, e.g. stabilized by additional sensor observations.

One important drawback that concerns most models discussed within this section, is their

applicability to three dimensional setups. For the 2D case, movements in (x, y) are sufficient.

For true three dimensional approaches, a continuous z-coordinate is required as well, to model

movements along stairs, escalators and elevators. Assuming the floorplan contains the required

semantic information, some sort of data structure is needed for the transition model. It denotes,

when the z-component must remain static, due to walking along ground floor, and when it

requires adjustment, due to using stairs, escalators or elevators.

The additional z-component also affects intersection tests discussed for (3.14). Simple 2D

line-line intersections will not work, when the pedestrian is taking a stair, escalator or elevator,

118 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

due to insufficient information on the third dimension. For most floors, the (x, y) coordinate of

a 3D setup can be assumed to be unique, as walking below stairs is rarely possible or required,

and typical stairs reach the next floor with ≤ 180° turns, that is, the stair does not overlap

itself in (x, y) within the same floor. While the discussed shortest paths, based on a grid, are

close to being suited for 3D, they need adjustments as well, to properly include the additional

z-component, and to correctly model potential and invalid movements in all three dimensions.

To prevent requiring large amounts of memory for 3D representations, many approaches

found in literature revert to a tradeoff, keeping each floor continuous in (x, y), but using dis-

crete values for z, simply representing the current floor level [GF06; Hil+14; WH08]. Those

2.5D approaches allow for using all of the techniques discussed above, and discretely change

to another floorlevel, when needed. The current level can be determined e.g. by using current

barometer readings [EBS16; Ebn+15], or Wi-Fi measurements [Zha+18b; Ebn+17], represent-

ing a discretization of the approaches discussed in chapter 2. While this is a viable solution in

terms of data structures and implementation, user experience is reduced [Ebn+16].

Referring to user experience, additional aspects are important for indoor localization and

navigation. For wheelchair users, semantic information whether some area is passable, or the

elevator is suited, represents crucial information. Partially blind pedestrians might benefit from

restricting the walkable area, to proactively avoid nearby obstacles for a safer navigation. Within

security aware areas, access rights to certain doors or elevators might be viable as well. Again,

those requirements clearly denote that a single Gaussian and most other analytical representa-

tions are unable to model movement predictions, considering all environmental constraints.

The following sections will focus on movement models allowing for true three dimensional

setups with respect to the building’s floorplan, including a continuous z-component for stairs,

escalators and elevators, providing realistic predictions with support for prior information, such

as the current heading, still being computationally efficient, suited for smartphone use.

3.4 Overview on Spatial Models for Indoor Floorplans

To calculate realistic movement predictions within indoor environments, the building’s floorplan

must be considered in some way [AY12; Fro+13; Ebn+14]. Literature provides an extensive

list of strategies for creating required spatial models, supporting for different types of lookups

needed for localization and navigation. A brief example is shown in figure 3.11. Afyouni et al.

[ARC12] and Yanbing [Yan06] conducted a survey on different options, mainly related to the

field of geographic information systems (GIS), yet also applicable to indoor use cases. Among

all presented variations, two major groups can be identified, either using a regular or irregular

way of representing the underlying architecture.

3.4. OVERVIEW ON SPATIAL MODELS FOR INDOOR FLOORPLANS 119

Figure 3.11: Brief overview on various spatial representations for the single floor in the left.

The group of regular patterns can be summarized as a sort of equidistant rasterization of a

floor’s or building’s architecture. Either in 2D or 3D space, dividing the architecture e.g. into

several, equally sized rectangles (2D) or cubes (3D). This group is often related to autonomous

mobile robots, having to navigate within their surroundings [Sie04; Sch+12]. One simple im-

plementation are 2D or 3D arrays, where each index corresponds with a real-world location.

The values stored in such an array e.g. denotes whether an index’ location, and its vicinity, be-

long to free space, or represent a blocking obstacle. This type of representation is thus often

referred to as occupancy grid [Mor88]. The size of the array’s dimensions depends on the size

of the modeled architecture, as well as the required resolution. More entries correspond to more

locations with smaller vicinities within real world, and thus a higher spatial resolution.

This information can also be provided by irregular patterns. However, when e.g. using dy-

namically sized rectangles or cubes, it is not directly clear what the best size for each of them

might be. Each object should be sized in correspondence with its neighbors, to accurately de-

scribe the building without gaps (cf. figure 3.11). Therefore, most irregular approaches refer

to other geometrical structures or primitives. One example is known from computer graphics,

where 3D objects are often described using differently sized and connected polygons, referred

to as meshes [KSS17]. Applied to architectural use cases, the walkable area can e.g. be tesse-

lated, converting it into arbitrary geometric objects, connected to denote the surface [Led06].

Size, shape and placement of those geometric objects strongly depend on the chosen algorithm.

For most real-world architecture, this results in irregular sizing and placement, to correctly de-

scribe local architectural details [Wu10]. It can be thought of as describing indoor environments

using a mesh of connected primitives, such as triangles or polygons. Each primitive denotes a

part of the walkable surface, such as a floor or stair. The irregular nature allows for an accu-

rate representation of wide open areas, as well as narrow passages, such as doors, stairwells

or elevators [Fet+18]. In contrast to cubes, these meshes describe a surface, instead of a 3D

volume. However, for indoor localization and navigation this is sufficient, as the pedestrian can

only walk along ground. Whereas underwater or mid-air use cases require the whole volume to

be modeled.

120 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

Concerning indoor localization, navigation, and movement prediction models, both groups

come with benefits and drawbacks that relate to lookup strategies for different types of queries,

memory requirements affecting embedded use, and accuracy of the architectural representation.

[Wu10] mentions different data structures and options, including underlying storage strategy

for efficient lookups, that can be used for regular or irregular representations. Similarly, Yan-

bing [Yan06] provides a list of various real-world examples using different models and types of

geometrical shapes for their respective use cases, also with corresponding data structures, used

to improve lookups, as well as resulting advantages and disadvantages of each approach. Be-

sides the already mentioned requirements, there can be additional constraints, dependent on the

actual use case, such as semantic information to support navigation for the visually impaired, or

wheelchair users. Afyouni et al. [ARC12] list several requirements concerning spatial models

for indoor environments in general, and give an extensive overview on potential candidates for

different groups of models, dependent on the use case. They also mention the importance of

realtime capabilities, support for semantic information, the tightly coupled memory concerns,

and maintenance options, often requiring a compromise between all aspects.

Independent of the chosen representation, the to-be-modeled floorplan must be provided,

which is a broad field of research on its own. It e.g. covers reconstruction based on panorama

images [CF14], or an automatic conversion of scanned blueprints to semantic vector graphics

including rooms, walls, doors and obstacles [Liu+17]. 3D scans from depth cameras [Zha+15],

or laser scanners [SCI13], can also be used to estimate geometry and obstacles. For example, by

using autonomous mapping-robots equipped with LIDAR scanners to derive a map [Hes+16].

But even crowd-based movement data from pedestrians can be used to estimate rooms, and

corridors [AY12]. Within this work, the floorplan is assumed to be a given, including all the re-

quired semantic information to derive a corresponding spatial model. Details on a tool-assisted

creation of the floorplan from blueprints are omitted for now and briefly discussed later on.

Based on the existing floorplan, the following two sections focus on two different spatial

models, viable for representing indoor architecture, compatible with the discussed transition

models, and suitable for smartphone use. One of them belongs to the group of regular models,

the other one is irregular. Each of which comes with certain advantages and disadvantages,

that are tightly coupled to the explicit use case scenario. Both are derived from the floorplan

automatically, ensuring a fast setup time for the overall system.

3.5 Regular Spatial Models for 3D Movement Prediction

Afyouni et al. identified grid-based models to be one of five groups of geometric models, suit-

able to spatially model indoor environments. Grids, which belong to the type of regular repre-

3.5. REGULAR SPATIAL MODELS FOR 3D MOVEMENT PREDICTION 121

sentations, are able to accurately describe complex architecture and obstacles, are well suited

for different types of lookups, and support adding semantic information. The authors also men-

tion that this type of representation requires high amounts of memory when large buildings are

modeled by a dense grid. However, their perception of grid-based is mainly related to afore-

mentioned occupancy grids [Mor88], where each floor is stored within something similar to a

2D array or an image, with each pixel’s color denoting whether the corresponding real-world

location is part of free space, or occupied. Occupancy grids are often created dynamically, e.g.

by combining several noisy sensor measurements, to distinguish between free and occupied

space [ME85]. Thus, the occupancy information is rarely stored as a binary indication, but as

a probability, increasing the memory requirements. Depending on the ratio between one pixel

and the real-world area covered by it (resolution), as well as the size and number of floors of the

building, memory requirements can be significant. This is also due to the image representation

being dense, covering a rectangular area, using one pixel for every location, even if it is not

part of the building’s area. This effect increases if three dimensional environments are to be

modeled, requiring several stacked images per floor. The resulting data structure is referred to

as voxel grid, as it divides the volume of the building into many small cubes, called voxels. As

mentioned, volumes are not required for pedestrian indoor localization, and are better suited for

aerial or nautical use cases [DMX10; LJ14]. Concerning pedestrians, only stairs, escalators and

elevators provide a walkable connection between adjacent floors. The surrounding areas might

not be blocked by obstacles, but are still unreachable, as they reside in mid-air. Within voxel

grids, those areas require large amounts of unnecessary data that could safely be omitted.

Furthermore, if the grid is crafted based on an actual, exact blueprint of a building’s floor-

plan, probabilities can be omitted and replaced by discrete free/occupied entries, requiring a

single bit for each location, significantly reducing the memory footprint. However, if semantic

information is to be added for each location, memory requirements are increased by the amount

of this information, again consuming unnecessary data for impassable locations. As discussed,

especially for 3D grids, this effect will severely affect the applicability for embedded use.

Sparse storage strategies address this issue. Instead of e.g. dense bitmaps, a sparse list of

walkable locations can be used, dropping the requirement to store regions that are impassable by

pedestrians. For the three dimensional case, this reduces the number of stored elements signif-

icantly. Furthermore, when using a sparse data structure, all occupied locations can be omitted

as well, as it is unimportant whether a location is unreachable due to obstacles, or any other

reason. This results in a list of all walkable locations within the building, each with correspond-

ing semantic information, if required. To still provide efficient lookups, like within occupancy

grids, an appropriate data structure is required [ARC12; Yan06]. For discrete queries, determin-

ing whether some location belongs to the list, and thus the walkable surface, trees or hash-sets

122 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

5m

Figure 3.12: Two regular spatial models for an example floorplan (left). The occupancy grid (center)

shows walkable areas in white, obstacles in black, and unknown regions, which might either be free or

blocked, in gray. The graph on the right describes the walkable area using equidistant (here: 50 cm)

vertices (circles), which are connected by edges (lines), if walking between them is physically possible.

[GD18] are a viable choice. For spatial or range-based queries, octrees or k-d trees are a suitable

alternative [Mea80; Ben75].

Again, to determine whether walking from one location to another is possible, it must be

checked whether both are part of the list, and connected by entries in between. However, the

latter information is not yet part of the list-based representation described above. Being sparse,

there is no indication whether two walkable locations are adjacent, and reachable from one an-

other. Thus, this connectivity information must be added explicitly. While this increases mem-

ory requirements, these connections also allow for adding semantic information concerning the

corresponding movement, and provide additional benefits for previous transition models.

The resulting data structure represents a graph, with its vertices denoting the walkable area,

connected by edges, if walking between them is physically possible [Ebn+15; Ebn+16]. For the

2D case, it will consume more memory than dense occupancy grids, due to additionally storing

individual edges. For the 3D case, however, memory consumption can be assumed to be less

than for a dense voxel grid, due to the sparse nature of the graph. Actual requirements strongly

depend on the building’s architecture, the amount of semantic information to be stored, and the

needed resolution, which is given by the distance between two adjacent vertices. However, be-

sides memory overhead, the described representation offers several benefits, that are especially

useful for indoor localization and navigation, discussed within the following.

Figure 3.12 depicts a comparison between a dense occupancy grid and a sparse graph-based

representation for an example floorplan. The grid stores a probability for each pixel being free

(white), occupied (black) or unknown (gray). The graph places vertices only along the actually

walkable area, connecting adjacent ones by edges. This section focuses on the graph-based

representation of building floorplans, as they are suited for indoor localization on smartphones.

3.5. REGULAR SPATIAL MODELS FOR 3D MOVEMENT PREDICTION 123

The first part examines the detailed representation of the graph and how to derive it from var-

ious types of existing blueprints or floorplans. Hereafter, actual movement prediction models

p(qt | qt−1,ot−1) are discussed in detail, referring to the requirements and issues discussed for

previous transition models.

3.5.1 Generation Based on an Existing Floorplan

To use a graph-based data structure as transition model, it must be created based on the buildings

architecture. The graph G = (V ,E) uses vertices v ∈ V to denote all the reachable locations

within the building. The edges e ∈ E model the reachability between two vertices. Each vertex

vi stores at least its own 3D position within the building, and optionally, additional semantic

information, thus vi = {x, y, z, . . .}. Two vertices vi and vj are connected if there is an edge

ei,j ∈ E, which is also able to store semantic information ei,j = {. . .}. Differing from typical

notations for graphs, like the ones used in [Tit11; Aig15], edges do not contain their starting

and ending vertex, due to the way the data structure will be kept in memory. All required steps

and the final result are shown in figure 3.13, and will now be discussed in detail.

Within this work, deriving the graph requires the floorplan to be readily available, and to

contain all required semantic information. Concerning a single floor, this e.g. refers to knowl-

edge on whether some location is walkable, and if the line of sight between two locations is

blocked by an obstacle. The described creation process is independent of the format the floor-

plan is provided with, as long as it contains the required information. Potential formats cover

scans from blueprints, 2D vector representations, or complex 3D meshes of the building.

Using this information, the first step places vertices throughout the walkable ground of each

single floor. Depending on the floorplan’s representation, this area is e.g. given by a connected

group of white pixels within a scanned blueprint. Within this step, only the two dimensions x

and y are considered, and three dimensional architectural objects within each floor are omitted.

The z-value of all newly created vertices is assumed constant, and equal to the height the current

floor resides at, e.g. relative to the building’s main entrance.

Concerning the vertex placement strategy, the two previously presented options are appli-

cable. Either using a regular placement pattern, similar to the occupancy grid, or using an

irregular pattern, adjusting to the shape of the architecture. The latter can provide a better

approximation of the underlying architecture, e.g. in case of curves or other non-axis-aligned

architectural components [Hil+14]. A regular pattern is deterministic, as potentially walkable

locations are well defined by the pattern itself, and can thus easily be retrieved from the data

structure [Ebn+15]. The following discussions thus focus on the regular placement only.

124 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

(a) (b) (c)

(d) (e) (f) (g)

Figure 3.13: Individual steps to derive a walkable 3D graph based on an existing floorplan: Add vertices

along every floor using (3.16) with gs = 50 cm (a), add vertices along stairs, escalators, and elevators

(b), remove impassable vertices above and below stairs (c), remove vertices blocked by obstacles (d),

add semantic information (e.g. doors) (e), three-dimensionally connect adjacent vertices using (3.19) if

they are physically connected (f), remove small isolated areas (g).

All vertices are placed with a constant distance in between, referred to as grid size gs

∀v ∈ V : v(x), v(y) = n gs , n ∈ N . (3.16)

Due to this equidistant spacing, each vertex denotes a rectangle, centered at the vertex’ position

(v(x), v(y)), and its width and height equal to gs , referred to as navigation grid.

Depending on the use case, semantic information, whether a vertex belongs to a specific re-

gion, can be valuable. Vertices near doors can e.g. be handled differently during movement pre-

dictions [Ebn+16]. Similarly, the information whether a vertex belongs to an outdoor or indoor

region can e.g. be used to determine whether the GPS is trustworthy at its location [Ebn+17]. If

this information is not given by the floorplan, it can sometimes be estimated based on the cre-

ated navigation grid. Whether a vertex belongs to a door can e.g. be determined by considering

all vertices within the vicinity that were omitted due to obstacles. If such omitted vertices exist,

their locations can be used to calculate a 2D covariance matrix. When the two corresponding

eigenvalues greatly differ in size, and the covariance is rather elliptic than circular, a narrow

passage, thus potentially a door, has been found [Ebn+16].

Hereafter, adjacent vertices are connected by edges, to model all physically possible moves.

Visualized in figure 3.13, depending on the vertex placement, and the floorplan, there can be

situations where adjacent vertices are not reachable from one another, separated by an obstacle.

In such cases, not placing an edge between both denotes their physical separation. Due to the

3.5. REGULAR SPATIAL MODELS FOR 3D MOVEMENT PREDICTION 125

placement pattern (3.16), only eight potential neighbors need to be considered for potential

connections. The locations of all eight neighbors are well defined. If such a neighbor exists

∀ei,j ∈ E : (i 6= j) ∧ (vi ∈ V ∧ vj ∈ V) ∧ (v
(x)
j = v

(x)
i + d) ∧ (v

(y)
j = v

(y)
i + d)

d ∈ {− gs, 0,+gs} ,
(3.17)

and there is no obstacle in between, the vertices vi and vj are connected by an edge ei,j . This

algorithm yields a graph for one floor of the building. Individual floors are yet to be connected.

The simplest solution just needs the information on starting and ending positions of stairs,

escalators and elevators, and directly adds a single edge between them. Such approaches are

often referred to as 2.5D, as changes along the z-axis are discontinuous, and based on dis-

crete floor levels [EBS16; GF06]. While working reasonably well for straight stairs, escalators

and elevators, it represents a harsh approximation for stairs that include turns (see figure 3.13),

present within the stairwells of most larger buildings. Furthermore, this discretization imposes

issues during the movement prediction. The single edge has a long distance between the start-

ing and ending point, and strongly deviates from the regular gs. If potential movements are

evaluated per-edge, and constrained by sensor readings (see chapter 2), model and the sensor’s

observations might not match. A barometer, for example, denotes continuous pressure changes

while walking upstairs. The single edge between two floors, however, denotes an abrupt and

large change in z. An evaluation of the barometer’s indicated pressures changes does not match

with moving directly from one floor to another, and floor changes can be missed [Ebn+15].

True 3D connections, as used in figure 3.13, thus represent the desired way of modeling, to

accurately resemble actual architecture, and to match with expected sensor readings. In case of

straight stairs, escalators, and elevators, this is e.g. accomplished by replacing aforementioned

single edge with multiple vertices and edges along its way, using interpolation. Every new

edge represents a small segment, and thus a small change in z. For complex stairs, e.g. includ-

ing turns, more sophisticated approaches are needed, and the provided floorplan must contain

semantic information on size, shape and inclination of individual stair segments. Such infor-

mation could e.g. be given by describing each stair as 3D mesh. Here, the stair’s vertices can

be created through samples from the mesh’s surface by using inclusion checks [NS80; Gla90],

and are simultaneously satisfying (3.16). For typical stairs in buildings, with all vertices’ (x, y)

pairs being unique throughout a single floor, rasterization can be reduced to a 2D problem.

First, the z-component of all stair primitives is omitted, sampling 2D raster points in the (x, y)

plane, similar to the previously discussed rasterization of the floor itself. Hereafter, the omitted

z-values are re-calculated via interpolation. This approach is well known from computer graph-

ics, where barycentric coordinates are used for arbitrary interpolations within triangles [Vin17].

A similar approach is suitable for quadrilaterals, where a bilinear interpolation can be applied

126 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

after projecting the quad to a unit rectangle, using an affine transformation [SGM14]. In case

of polygons, a prior triangulation is required [Ber+08]. The described process will often create

stair vertices having the same (x, y, z) as an existing floor vertex. This is addressed by simply

omitting duplicates

∀vi, vj ∈ V : (v
(x)
i 6= v

(x)
j) ∨ (v

(y)
i 6= v

(y)
j) ∨ (v

(z)
i 6= v

(z)
j) . (3.18)

The described creation process can be thought of projecting the whole stair onto the 2D plane

of the floor it starts at, rasterizing vertices (x, y) within the area of the projected stair, hereafter

undoing the projection by interpolating the correct z-value. Whether the resulting z-values need

rounding to multiples of gs to match the regular pattern from (3.16), is not directly clear. Stairs

come with various inclinations that are usually well below 45° to be walkable [RRF02]. A

potential gsz for z should thus be smaller than the gs used for x and y, to allow for such angles,

and a smooth linear z-transition between adjacent vertices. Furthermore, for stairs, the z-value

is the result of undoing the projection. Increasing or decreasing a potential gsz will not alter

the number of vertices required for each stair, but only the smoothness of their placement. It

thus makes sense to keep the z-value as-is, and only round it within the data-structure used for

lookups. An actual grid spacing gsz for z is only important for elevators, where the vertical

placement requires sampling along the z-axis [Ebn+15]. Yet, this neither affects the amount of

required memory to hold the graph data structure, as there will not be many elevator vertices,

nor will the accuracy of elevators increase when choosing values gsz ≪ gs.

To ensure proper modeling of stairwells, the algorithm hereafter removes all vertices that

are directly above or below a stair. That is, vertices sharing the same (x, y) as a stair vertex,

with their distance in z below a certain threshold. Put another way, this step removes impassable

vertices above or below stairs, where the pedestrian would e.g. have to crouch, in order to fit

beneath. This deletion is shown in figure 3.13c.

Typical stairs, with one plateau in between, consist of two parts. One with treads, and one

without, parallel to the ground (cf. figure 3.13). Mentioned earlier, for both, the pedestrian’s

walking speed will be different. The same holds true for elevators and escalators, where the

pedestrian might move without necessarily walking. To be considered during movement pre-

dictions, the vertices must carry appropriate semantic information.

To finally connect all floors, (3.17) is altered, in order to also search for neighbors that are

slightly above or below. In doing so, vertices related to stairs, escalators, and elevators are

connected as well as the ground floor

∀ei,j ∈ E : (i 6= j) ∧ (vi ∈ V ∧ vj ∈ V)

∧ (v
(x)
j = v

(x)
i + d) ∧ (v

(y)
j = v

(y)
i + d) ∧ (v

(z)
j = v

(z)
i + d) .

(3.19)

3.5. REGULAR SPATIAL MODELS FOR 3D MOVEMENT PREDICTION 127

(3.19) yields a maximum of 26 connections per vertex, nine above, nine below, and eight di-

rectly around it. However, for real-world setups, ten neighbors are sufficient, e.g. for elevators,

where all eight (x, y) neighbors are present, and two additional, for moving up and down.

Based on the building’s architecture, the described algorithm can cause small groups of

adjacent vertices that are disconnected from the vast majority of the others. Such isolated

regions can safely be removed, to reduce the amount of required memory. This is performed by

searching for the largest connected set, and deleting all vertices and edges that are not part of it.

Such a disconnected group, and its deletion, is shown in figure 3.13f.

After the algorithm used for creating, the navigation grid’s data storage is briefly discussed.

As mentioned, vertices are stored within a sequential list, where each vertex can uniquely be

identified by its index. Besides variable semantic information, each vertex contains, at least, its

position (x, y, z) within the building. Due to the regular, discrete placement, this position can

e.g. be stored as integer value in cm. Even when the grid size is as small as gs = 1 cm, 16 bit

are sufficient for 216 cm ≈ 650m in each dimension. A hash-map provides fast lookups, using

a combination of x, y, and z as hash value, and returns the vertex’ index within the list.

For directed graphs without additional semantic information, edges are typically modeled

by an adjacency matrix [Tit11; Aig15]. This is a square matrix, where each cell denotes the

number of edges between the vertex identified by the row index towards the vertex identified by

the column index. For the presented use case, this would yield a large matrix with many entries

equal to zero, and thus is impractical. As vertices are uniquely identified by their index, each

vertex can store a list of indices, pointing to its connected neighbors. While this is typically

done using some sort of dynamic data structure [GD18], a fixed-size list is possible as well.

Discussed earlier, the largest number of neighbors is assumed to be ten, for elevator vertices.

While the smallest number of neighbors is one, most vertices will belong to open spaces, with

an average of eight neighbors. Using a fixed-size list for up to ten neighbors, storing their index

numbers, thus is a viable choice. Furthermore, this keeps the neighbor-information close to

the vertex’ details, which allows for caching [BD13]. However, when edges are additionally

equipped with semantic information, a dynamic data structure will be more suited, and reduces

the memory overhead by not storing unused placeholders.

To summarize, the resulting navigation grid describes the building’s walkable area as small

rectangles, defined by vertices. They are connected to neighboring tiles, if there is no physical

object in between. Due to each vertex holding a list of its adjacent neighbors, they can quickly

be identified. As will be shown, this setup allows for various movement prediction strategies,

and for incorporating prior knowledge, such as the pedestrians desired destination when navi-

gating through a building.

128 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

3.5.2 Random Walks on Graphs

As within section 3.3, the navigation grid is used to estimate the probabilities p(qt | qt−1)

and p(qt | qt−1,ot−1) of potential pedestrian movements during a certain timeframe. Initial

discussions will focus on p(qt | qt−1), where no additional prior knowledge ot−1 is available.

Previous techniques suffered from various drawbacks, such as producing poor results, being

computationally complex, or limited to two dimensional predictions only. Based on the created

navigation grid, a completely different strategy is used for the movement prediction. Instead of

deriving a calculable representation like (3.15), p(qt | qt−1) is estimated by simulation, using a

technique referred to as random walks on graphs [GS97; DS84; Gri18; Tia+02]. In contrast to

section 3.3, this approach is computationally efficient, and allows for 3D movement predictions,

based on the building’s floorplan, discussed within the following.

As with all previous simulations, the starting setup for time t = 0 is given by q0. The

term p(qt | qt−1) denotes one simulation of a certain timeframe, given by two points in time,

t− 1 and t. Each random walk is initialized by looking up the vertex corresponding to its start,

denoted by qt−1. This is the vertex vi with its position

posxyz (vi) =
(
v
(x)
i , v

(y)
i , v

(z)
i

)T
, (3.20)

equal to the position posxyz

(
qt−1

)
stored within the starting state qt−1, after rounding it to

multiples of gs. This vertex can be determined instantly, using aforementioned hash-map. The

algorithm then randomly walks along one of the edges connected to vi, to reach another vertex

vj . Hereafter, the process continues from the newly reached vertex in the same way. Thus, at

every vertex, a new edge is taken by chance. For every such edge, its individual distance

||ei,j|| = distxyz (vi, vj) = ‖posxyz (vi)− posxyz (vj) ‖ (3.21)

is added to a cumulated value. The simulation stops, as soon as this value reaches a chosen

distance dwalk ∑
||ei,j|| ≤ dwalk . (3.22)

The vertex, this simulation ends at, is remembered. As earlier, the probability p(qt | qt−1) of

reaching qt from qt−1 could be derived by repeating this process several times, creating mul-

tiple samples. By applying a KDE, a continuous approximation of this probability is derived.

Alternatively, the sampled result could be used to determined how often qt was reached among

all samples, also resulting in aforementioned probability. Similar discussions, using random

walks for simulating electric networks, can be found in [DS84]. Which strategy serves best, is

discussed within the following.

3.5. REGULAR SPATIAL MODELS FOR 3D MOVEMENT PREDICTION 129

Performing multiple random walks to derive the probability for a single destination, is sim-

ilar in complexity to calculating shortest paths. Yet, random walks provide several advantages,

like considering additional information, such as semantics attached to vertices and edges. Fur-

thermore, as within section 3.2 and 3.3, the number of simulations required for a stable result

strongly depends on the behavior of the underlying density. The same holds true for the time-

frame of the prediction. Smaller timeframes result in less scattering, thus narrower densities,

and less samples required. The underlying model, assumed for pedestrian movements, affects

the size and shape of the density in a similar way: If dwalk is the only constraint, and the heading

is completely flexible, the resulting density resembles a Gaussian with increasing size, as in

figure 3.5. When the model also distinguishes between walking and standing still, the density

loses its Gaussian shape, as in figure 3.6. If the pedestrian is assumed to walk straight, potential

whereabouts denote a circle, similar to figure 3.7. When the heading is approximately known,

only a small fraction of this circle remains likely, as depicted in figure 3.8. As can be seen, de-

pending on available constraints, the number of required samples can be reduced considerably.

Due to the navigation grid being a discrete spatial representation, the number of likely vertices

is even smaller. Depending on the model and resulting density, down to a few. To be suited

for smartphone use, this number should be as low as possible, yet, high enough to accurately

describe the resulting density throughout the whole state space [Ebn+16].

Within the following, several movement models with increasing complexity and amount

of used prior knowledge are discussed. Regarding strategies, the ideas from section 3.2 and

section 3.3 are considered, and applied during the random walk, where edges are picked based

on a probabilistic metric. For every single step between two vertices, each outgoing edge ei,j of

a source vertex vi is assigned its own probability p(ei,j | qt−1), which is equivalent to

p(ei,j | qt−1) = p(vj | vi , qt−1) . (3.23)

If additional prior knowledge ot−1 is available, p(ei,j | qt−1,ot−1) is used instead. After this

assignment, one of the up to ten edges is randomly selected, with respect to the calculated

probability. Edges with higher probabilities are thus selected more often than ones with a lower

probability. Actual algorithms for this kind of biased random selection process are topic of

chapter 4, and, for now, assumed to be given.

For comparison, a truly random, and thus unbiased, strategy assumes all outgoing edges of

one vertex to have the same, constant probability

pconst

(
ei,j | qt−1

)
=

1

| neighbors(vi)|
, (3.24)

130 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

which depends on the total number | neighbors(vi)| for each vertex vi. This is similar to using

a random number generator [HD62], to draw a uniformly distributed random index, deciding

which edge (neighbor) to take. After every random selection, the process continues from the

newly reached vertex vj , until the walking distance is reached. As earlier strategies, (3.24) is

inaccurate in several ways. It allows for walking back and forth between two vertices, which is

unlikely for actual pedestrian movements. Furthermore, the number of potential whereabouts is

expected to be fairly large, requiring many samples for a stable result.

According to the findings from section 3.2 and section 3.3, pedestrians tend to keep their

walking direction most of the time. The recent heading should thus be considered, when select-

ing edges within the random process. As earlier, the heading is modeled as part of the unknown

state using q(Θ). Even if the initial heading is unknown, and thus q
(Θ)
0 ∼ U (0, 2π), it is as-

sumed to be fairly constant throughout a random walk. At least, for short timeframes. In case

of existing observations, it can be updated between consecutive transitions, using (3.13)

phead

(
ei,j | qt−1

)
= N

(
α
∣∣ 0, σ2

turn

)
, α = ∠∆

(
∠xy (ei,j) , q

(Θ)
t−1

)

q
(Θ)
t ∼ phead

(
qt | qt−1,ot−1

)
(3.13)

, 〈q〉t = 〈(Θ, . . .)〉t .
(3.25)

(3.25) determines a potential edge’s 2D angle ∠xy (ei,j) in the (x, y) plane, relative to the x-axis

∠xy (ei,j) = atan2
(
v
(y)
j − v

(y)
i , v

(x)
j − v

(x)
i

)
, (3.26)

and compares it against q
(Θ)
t−1. The difference between both should be close to 0°, thus using a

zero mean Gaussian, or comparable von Mises, as PDF. Here, one important aspect must be

considered. Due to the regular placement of vertices, and each vertex being connected only to

adjacent neighbors, all edge angles ∠xy (ei,j) are multiples of 45°. This would require σturn from

(3.25) to be relatively large, for other edges to be considered at all, which does not match previ-

ous findings on straight walks. When using (3.25) as-is, an absolute heading, such as q
(Θ)
t−1 = 5°,

can not be modeled at all. For small σturn, the random process will almost always choose the

same edge, in this case, the one pointing towards the positive x axis having ∠xy (ei,j) = 0°.

This drawback can be addressed by modifying (3.25) to include an error value εhead as part

of the state, remembering the difference between the desired heading q
(Θ)
t−1, and every actually

walked heading ∠xy (ei,j). The angle used for comparison within (3.25) is then adjusted by this

error, and approximates the desired angle using zig-zack walks along the navigation grid. This

approach resembles Bresenham’s line-drawing algorithm [Bre65], known from 2D graphics.

Similar to the angular error, rounding vertex locations to multiples of gs yields an error in

walking distance. Adjacent vertices are either gs or
√
2 gs apart. Walking exactly 1.4m, for ex-

3.5. REGULAR SPATIAL MODELS FOR 3D MOVEMENT PREDICTION 131

ample, is impossible for gs = 30 cm. This can be addressed in the same way, by storing another

error εdist, carrying the previous overshoot compared to the requested walking distance. Con-

secutive random walks, continuing from qt, consider this overshoot, and reduce the requested

walking distance. For several walks in sequence, the desired distance is met approximately.

1: function WALK(dwalk, qt−1)

2: d′ ← q
(εdist)
t−1

3: εhead ← q
(εhead)
t−1

4: vi = FINDVERTEXFORPOS(posxyz

(
qt−1

)
)

5: while d′ < dwalk do

6: Θ← q
(Θ)
t−1 + εhead

7: vj ← PICKRANDOMNEIGHBOR(vi, Θ)

8: εhead ← εhead + ∠∆

(
q
(Θ)
t−1,∠xy (ei,j)

)

9: d′ ← d′ + ||ei,j||
10: vi ← vj
11: end while

12: εdist ← d′ − dwalk

13: qt ←
(
posxyz (vi) , q

(Θ)
t−1 , εdist , εhead

)

14: return qt
15: end function

Algorithm 1: Directed random walk, including distance and heading error compensation.

The overall process is best explained using the pseudo code, shown in algorithm 1. First,

distance and heading errors from previous runs, if any, are retrieved in 1.2 and 1.3. These values

are considered when limiting the walk’s length in 1.5, and when randomly selecting an edge in

1.7 that matches the requested heading, after applying the compensation in 1.6. For every taken

edge, 1.8 adjusts the heading error by the difference between requested and taken angle. The

error in walking distance is adjusted in 1.12, after the walk is completed. The reached location,

and both errors, are finally assigned to the returned qt in 1.13. That is, the errors are available,

when another walk is started from this result.

A schematic example of six consecutive random walks using algorithm 1 denotes the impact

of distance and heading error compensation, and is shown in figure 3.14. The requested heading

was q
(Θ)
0 = 5°, and the distance dwalk = 1.4m. Most of the time, 0° edges are used, as they are

closest to 5°. Due to the cumulating heading error, eventually a 45° edge is taken for correction.

Similarly, the length of each of the six random walks is adjusted, dependent on the distance

error of the previous one. For several consecutive walks, dwalk = 1.4m is met on average.

The impact of heading error compensation, and varying parameters for σturn, are shown in

figure 3.15. Based on a navigation grid with gs = 20 cm and no obstacles, four different setups

were simulated. Each performed 1000 random walks to estimate p(qt | qt−1), starting from qt−1

132 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

30 cm

150 cm 282 cm 564 cm 864 cm432 cm 714 cm

Figure 3.14: Schematic visualization of six consecutive 1.4m long random walks into q
(Θ)
0 = 5° along a

graph using gs = 30 cm, algorithm 1 with strategy (3.25) and σ2
turn near zero. Most of the time, 0° edges

are taken as they are closest to 5°. When the cumulated difference between requested and taken angles

becomes large, a 45° edge is taken instead. The same holds true for the distance. If the previous walk

was too long, the next one is shorter, approximating the requested distance throughout several walks.

located in the center, walking into an unknown direction q
(Θ)
t−1 = U (0, 2π). The dots denote the

distinct vertices, reached after the repetitions. Due to the discrete rasterization, the number of

different vertices is far below 1000. To visualize a continuous PDF, a KDE is applied to all

resulting samples, shown as gray background. When not using the heading error compensation,

and enforcing a small σturn = 0.01, as shown in 3.15a, the random walk always picks the

direction closest to the initial q
(Θ)
t−1. As all edges are multiples of 45°, the result is given by

eight distinct vertices, and the corresponding KDE denotes eight smaller blobs. Increasing the

allowed heading deviation to σturn = 0.1, the number of distinct vertices, shown in (b), increases

rapidly. The KDE, however, barely changes, and is as within (a). This is due to the majority

of the resulting samples still being the same. Only a few random walks used other directions,

enabled by the increased σ. When the allowed deviation is further increased to σturn = 0.5,

shown in (c), the number of distinct vertices advances again. This time, the KDE is affected

as well, starting to resemble a circle. Setting the allowed deviation back to σturn = 0.1 from

(b), and enabling the heading error compensation, the result of (d) is generated. Here, distinct

vertices are as within (b), but the KDE output is similar to (c). This is due to the vertices now

being uniformly distributed as they should be, based on q
(Θ)
t−1 = U (0, 2π).

The main intentions behind the graph-based approach are to avoid costly intersection tests

with the floorplan, introduce semantics, and to enable three dimensional setups. For the random

walk to be comparable against the continuous variant with floorplan intersection tests from

(3.14) and figure 3.9, two changes are required. Pedestrian’s can not be expected to walk exactly

1.4m/s, thus, a slight variation of the walking distance must be included. Furthermore, the

pedestrian might not be walking at all, but is currently resting [Ebn+16]. Both adjustments can

be included by modifying the walking distance dwalk, before every execution of algorithm 1

dwalk =

X stand Y ≤ κw/s

X walk + dwalk Y > κw/s

,
X stand ∼ N (0, σ2

stand)

X walk ∼ N (0, σ2
walk)

, Y ∼ U (0, 1) . (3.27)

3.5. REGULAR SPATIAL MODELS FOR 3D MOVEMENT PREDICTION 133

(a)

1.4m

(b)

1.4m

(c)

1.4m

(d)

1.4m

Figure 3.15: Result of a random walk (3.25), starting from the center, into an unknown direction q
(Θ)
t−1 =

U (0, 2π). Simulated 1000 times, and with four different parameter sets, along a graph of gs = 20 cm
with no obstacles. The first three results do not use heading error compensation, and σturn = 0.01 (a),

σturn = 0.1 (b), σturn = 0.5 (c). In (d), heading error compensation is used with σturn = 0.1. Dots denote

reached target vertices. The gray background is the result of a KDE on top of these vertices.

Both random variables X are used to adjust the requested walking distance dwalk by a zero mean

Gaussian with some uncertainty. Additionally, the uniformly distributed Y and the thresh-

old κw/s are used to decide, whether walking or standing behavior is used for a random walk.

κw/s = 0.1 equals a 10% chance of standing, and 90% chance of the simulation to be walk-

ing. Results after 1, 3 and 5 consecutive random walks with algorithm 1 are shown in fig-

ure 3.16. As each yields a single potential destination, the depicted densities were approxi-

mated by 5000 repetitions, generating 5000 potential destinations. The results are comparable

with figure 3.9. The three densities are less continuous, and expected circles appear as octagons.

Furthermore, the result after 5 consecutive walks looks notably different than the one from fig-

ure 3.9. This is due to a disparity between the graph-based simulation, and the intersection tests

from section 3.3. For the latter, all movements that crossed an obstacle were completely omitted

from the resulting density. For random walks, this is different. As soon as a walk encounters a

wall, it has reached a vertex with no neighbors pointing into the desired walking direction. The

closest possible direction is chosen instead, letting the random walk move alongside the wall.

Due to the heading error compensation, the algorithm alternates between the possible direc-

tions, trying to keep the heading. Large obstacles prevent further movements, and the random

walk gets stuck in front. The density shown in figure 3.16 thus contains high probabilities along

the corridor walls, as many simulations ended there, and could not move on.

To prevent such cases, several options can be taken into account. The walk’s uncertainties

can e.g. be redrawn, randomly selecting a new σwalk and σturn, hopefully not encountering the

obstacle when restarting with the changed parameters. Or, the result is simply omitted. The

latter assumes that it is not possible, or likely, to start walking from posxyz

(
qt−1

)
into the

direction given by q
(Θ)
t−1, as it will encounter an obstacle, a pedestrian would avoid. Further

details on strategies and implementations will be topic of the following two chapters.

134 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

5m

Figure 3.16: Result after 1, 3 and 5 consecutive random walks from the dot in the center using algo-

rithm 1 based on (3.25) and (3.27) with q
(Θ)
0 = U (0, 2π), dwalk = 1.4m and σwalk = 0.1, approximated

by 5000 samples. Darker shadings denote more likely regions. The result is directly comparable against

figure 3.9. Due to the regular placement, the density’s shape is more octagonal than circular. Further-

more, many simulations stopped at the walls thus yielding a different density than figure 3.9.

By replacing costly intersection tests with random walks, the computational complexity is

reduced significantly. Furthermore, additional benefits are enabled. One of which are flexible

walking speeds. Mentioned earlier, when taking stairs, the typical pedestrian walking speed

of ≈ 1.4m/s is reduced significantly, ranging somewhere around 0.55m/s [FT04; TG91],

dependent on the layout of the stair’s treads [SJP13]. The most simple solution uses semantic

data, to determine whether the starting vertex belongs to a stair-part with treads (see figure 3.13),

and, if so, adjusts the requested walking distance dwalk beforehand. This, however, yields issues

for larger timeframes, where a single walk covers both, vertices that belong to stairs, and ones

that do not. Here, a flexible walking speed is required, achieved by modifying algorithm 1.

Instead of cumulating the walking distance by each edge’s physical length ||ei,j|| in 1.9, this

value is artificially increased by 2.5, when the edge points upstairs or downstairs. Effectively,

this reduces the requested walking distance dwalk by a factor of 2.5, whenever taking stairs.

Furthermore, the semantic information on stairs is also well suited for the discussions from

section 2.6. Detected activities o
(Ω)
t−1 can e.g. be used to prioritize certain edges [Fet+16]:

pact

(
ei,j | qt−1,ot−1

)
=

κact o
(Ω)
t−1 = stair↑ ∧

(
v
(z)
j − v

(z)
i

)
> 0

κact o
(Ω)
t−1 = stair↓ ∧

(
v
(z)
j − v

(z)
i

)
< 0

. . .

(1− κact) else .

(3.28)

(3.28) represents a brief example of favoring edges that match a detected activity, like walking

stairs, by using an empiric value κact > 0.5 as importance heuristic. Assuming statistical in-

3.5. REGULAR SPATIAL MODELS FOR 3D MOVEMENT PREDICTION 135

dependence, (3.28) can be combined with (3.25) by multiplication, improving the movement

prediction model by including observed activities. Other observations, such as barometer read-

ings discussed in section 2.5, can be included similarly, favoring edges that match with the

readings from the sensors. As can be seen, the random walk allows for a powerful integration

of arbitrary metrics, to favor potential movements during the prediction process. Alongside

sensor observations, prior knowledge can be included in a similar way.

3.5.3 Navigation

Besides localization, navigation indoors also represents a crucial aspect, especially within large

public buildings like airports, hospitals, museums and similar [Fet+18]. As mentioned in sec-

tion 3.3, graph data structures are ideal for the required shortest path calculations. Previously,

they were used to estimate the shortest distance between two locations, to determine the proba-

bility for certain movements. With the number of potential locations being numerous and con-

stantly changing, this was inefficient, and computationally too complex. However, concerning

navigation, an efficient implementation for smartphone use is possible.

Typically, the user selects a destination, and the system determines the shortest path for

reaching it, once. As long as location estimations are stable, and the user follows the calculated

route, no additional calculations are required. Based on the discussions from chapter 2, the

location estimation can be assumed to often be unstable, and the pedestrian can not always be

expected to strictly adhere to a calculated route. Furthermore, the walkable area of a building

is more open than e.g. streets for car navigation. To provide a solution that is able to cope with

uncertain location estimations, and the pedestrian deviating from the shortest path, while still

being suited for smartphone use, the implementation should be different than for typical outdoor

navigation systems, which only consider a required fraction of the map [SA11].

After selecting the desired destination ρdest = (x, y, z), the corresponding vertex vdest within

the navigation grid is determined. Counter-intuitively, this vertex is used as starting point for

Dijkstra’s algorithm [Dij59]. By not specifying a target, the algorithm executes until all vertices

were visited. The required edge-weight is given by the three dimensional distance (3.21)

wdijkstra (ei,j) = wdijkstra (vj | vi) = distxyz (vi, vj)(3.21)
. (3.29)

After this calculation, every single vertex vi within the navigation grid knows its shortest phys-

ical distance dist∗xyz (vi, vdest) towards the destination vdest [Ebn+16]. Depending on the build-

ing’s size and gs, the calculation requires several seconds. However, it is valid as long as

the pedestrian’s destination remains as-is. A corresponding result within a two story example

building is shown in figure 3.17. The heat map denotes each vertex’ distance towards the desired

136 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

5m

Figure 3.17: Shortest path and distance example within a fraction of a two story building, using gs =
20 cm and (3.29). The requested destination is within a small room on the second floor, denoted by a

flag. A heat map visualizes the walking distance from this point towards all other locations within the

building. Warm colors (red) denote a short, and cold colors (blue) a long distance. If the pedestrian were

to reside in the lower left corner, two potential routes (black, gray) lead to the destination.

destination, which is within a small room on the upper side, denoted by a flag. Warm colors

indicate being near this destination, cold colors are farther away from it. To determine what this

means in terms of actual routing, two example paths are visualized. Assuming the pedestrian

currently resides at the lower left corner, two stairs are available for reaching the upper floor.

The black path, 25m in length, uses the right stair, and is the shortest path for reaching the

destination from the pedestrian’s current location. When the right stair is unavailable, e.g. due

to construction work, the left one can be used instead, shown by the gray path, 28m in length.

While the presented algorithm estimates the shortest path for every vertex within the building,

neither of the two depicted paths is realistic. Both stick unnaturally close to walls and obstacles.

To predict realistic pedestrian walking paths, a few modifications are introduced.

To avoid walking near walls and obstacles, exterior vertices must be treated specially during

the shortest path calculation. A simple solution is to artificially increase the weight between

two vertices, if one of both is near an obstacle. When using this adjusted weight within the

shortest path algorithm, walks along obstacles are made artificially longer than they physically

are. If the increase in distance is longer than the savings from sticking close to walls, resulting

paths are farther away from obstacles and more realistic [Ebn+16]. This is achieved by adding

a new semantic attribute v
(ι)
i to every vertex, denoting the likelihood for being stepped onto

by a pedestrian. To reduce this likelihood for vertices that are close to obstacles, the distance

towards the closest obstacle is determined. If this distance is small, an obstacle is nearby, and

the vertex is less likely to be considered by the pedestrian. To determine this distance, the

vertices themselves can be used. Mentioned earlier, most of the vertices have eight neighbors.

If a vertex is directly adjacent to an obstacle, this number is reduced. Thus, all vertices with

less than eight neighbors potentially belong to the exterior, close to obstacles. The distance

towards the closest obstacle is thus given by the smallest distance towards any vertex with less

than eight neighbors. This value can quickly be determined using data structures for nearest-

3.5. REGULAR SPATIAL MODELS FOR 3D MOVEMENT PREDICTION 137

Figure 3.18: Importance factors v
(ι)
i from (3.30), calculated for every vertex, when using σwall = 0.5m

and gs = 20 cm (left). Dark elements denote vertices near obstacles, which have a lower importance.

White elements are farther away from obstacles, resulting in an importance of ≈ 1. The right depicts the

shortest path and distance calculation towards the black flag, when including the importance factors by

using (3.31). Compared to figure 3.17, the two resulting paths are notably more realistic.

neighbor problems [Cla83; Ary+98]. To provide a smooth transition for the likelihood v
(ι)
i , a

continuous metric is used. It is designed to start at 1, decreasing when approaching an obstacle.

1−N (d | 0, σ2
wall), with the distance d towards the nearest obstacle, thus is a viable choice

v
(ι)
i = 1−N

(
d
∣∣ 0, σ2

wall

)

d = min
vj

distxyz (vi, vj) , vj ∈
{
v ∈ V

∣∣ | neighbors(v)| < 8
}
.

(3.30)

(3.30) is calculated only once, after the navigation grid was created. The left half of figure 3.18

visualizes the behavior of v
(ι)
i for every vertex when using σwall = 0.5m and gs = 20 cm.

Darker colors denote the adjacency to an obstacle, brightening up with increasing distance. To

affect the shortest path calculations, v
(ι)
i is used to adjust the weight metric (3.29)

wdijkstra (ei,j) = wdijkstra (vj | vi) =
1

v
(ι)
j

distxyz (vi, vj)(3.21)
. (3.31)

In (3.31), the Euclidean distance between two vertices is multiplied by the reciprocal of the

target vertex’ v
(ι)
j , causing an artificially increased distance when this importance is < 1. The

impact depends on the value chosen for σwall in (3.30). An example for σwall = 0.5m is shown

in the right half of figure 3.18. As can be seen, when approaching walls and other obstacles,

the distance towards the destination increases, denoted by the heat map’s color getting colder.

While still leaving room for further improvements, the two shortest paths from figure 3.17 are

now more realistic, avoiding obstacles, and using the center of narrow passages.

138 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

Finally, the modified weighting is used to favor all movements that approach the destination

pdest

(
ei,j | qt−1

)
=

κdest dist∗xyz (vj, vdest) < dist∗xyz (vi, vdest)

(1− κdest) else .
(3.32)

The heuristic κdest in (3.32) is used to adjust the importance of the destination. While lower val-

ues allow for detours, 1.0 enforces every taken edge to approach the requested destination. This

represents a tradeoff between prior knowledge, and the behavior of the pedestrian [Ebn+16].

Besides adjusting the weight metric (3.31) to yield more realistic walking paths, the vertex

likelihood (3.30) can also be used directly within the random process of algorithm 1, to proac-

tively avoid approaching nearby obstacles. v
(ι)
j can either be included using another threshold

heuristic, or directly as probability. Depending on the actually used metric, a normalization η

might be required beforehand

pwall

(
ei,j | qt−1

)
= ηv

(ι)
j . (3.33)

Using (3.33) within algorithm 1 alongside with other probabilities will yield more natural walks,

by avoiding obstacles whenever possible. Yet, it will not fully prevent the walk from getting

stuck near obstacles, when there is no other option.

3.5.4 Continuous Results

The main disadvantage of the navigation grid is its discrete nature. By randomly walking from

vertex to vertex, as shown in figure 3.19a, directions are limited to multiples of 45°, and dis-

tances to multiples of gs. While impacts are mitigated by the two introduced error metrics, gs

must still be reasonably small for individual errors to remain reasonable.

With walks and results directly tied to vertex positions, the approximated density p(qt |
qt−1) is also rather discrete. This can be mitigated by introducing additional noise. Instead of

using the last vertex directly as prediction result, this position can be slightly modified, creating

a slightly more continuous output. One option is to e.g. use a location drawn uniformly from the

rectangle denoted by this vertex instead [Ebn+17]. This is shown in figure 3.19b, where start

and end of the random walk are located somewhere within the rectangle around each vertex.

When performing thousands of random walks, this technique does neither affect the walking

distance, nor the heading, on average. The distance and heading of individual walks, however,

can deviate significantly, depending on the chosen walking distance dwalk and vertex spacing gs.

This approach thus represents only a minor improvement towards continuous results, and the

discussed KDE is a better, yet much more costly, alternative [Bul+18].

3.5. REGULAR SPATIAL MODELS FOR 3D MOVEMENT PREDICTION 139

(a) (b) (c) (d)

Figure 3.19: Different strategies for walking along a graph-based data structure. (a) matches the tra-

ditional approach, walking from vertex to vertex. (b) reduces the discreteness by randomly scattering

around the destination vertex. (c) completely omits edge probabilities, just picking the destination based

on given distance and heading, when such a location is reachable. (d) is a combination of all three,

randomly moving between adjacent cells, without being bound to the vertices themselves.

A solution that satisfies each requested walking distance and heading exactly, but is still

computationally efficient and suited for smartphone use, is given by using the continuous wall-

intersection approach from section 3.3, but replacing costly intersection tests with cheaper

queries on the graph data structure: Given a starting point qt−1, heading q
(Θ)
t−1, and walking

distance dwalk, the destination is known directly. This case is shown in figure 3.19c. Whether it

is actually reachable from the starting point, and not blocked by obstacles, can be determined by

following edges that approximately point into the requested direction, similar to the A∗ shortest

path algorithm [HNR68]. Compared to the intersection tests from section 3.3, the graph directly

allows for fast, locally constrained queries, considering only a few edges that reside within a

certain direction and distance. Furthermore, as the query returns the vertex that the requested

destination belongs to, if being reachable, it provides a 3D location with known z-component,

which was impossible for the 2D intersection tests from section 3.3.

Compared to random walks, there is no uncertainty or variation when using the approach. If

reachable, the destination is used directly as-is, based on the requested heading and distance. To

add an uncertainty in walking speed and direction, q
(Θ)
t−1 and dwalk must be modified beforehand,

e.g. by adding zero mean random variables N (0, σ2
turn) and N (0, σ2

walk). The navigation grid is

then solely used to replace the costly intersection test with a more efficient solution. Random

walks are completely omitted, as well as any semantic information stored on vertices. When

directly approaching an obstacle, where random walks got stuck in front, this approach will

directly indicate that the requested walk is impossible. As earlier, one of several options, like

omitting the current simulation, must be chosen, to address this case.

When modifying this setup, at least, the information whether a vertex belongs to a stair, can

be included, to dynamically adjust the walking distance. For that, the algorithm sequentially

departs from qt−1, into the direction indicated by the heading q
(Θ)
t−1. Each step is chosen to reach

140 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

the rectangle of the next vertex, if any, shown in figure 3.19d. In doing so, every segment of the

walk knows its underlying surface, enabling dynamic walking distance adjustments. However,

due to considering only vertices along the path defined by the requested heading, individual

probabilities assigned to edges can not be considered. As discussed in section 3.3, while such a

direct walking technique yields a continuous result, it is only suited for smaller simulation time-

frames, as it relies on line-of-sight connections, where walking around corners is impossible.

For longer simulations, the random walk is more suited, supporting fine-grained probabilities,

yet producing more discrete results.

Some issues with discreteness can be mitigated by decreasing gs. However, this has a nega-

tive effect on computational requirements, as random walks have to follow more edges to reach

a given distance, and memory requirements are increasing quadratically. For a 100m by 100m

sized single floor, where 80% of the surface is actually walkable, and 20% belong to walls and

other obstacles, 200 000 vertices are required when using a vertex spacing of gs = 20 cm. As

3D placement only occurs for stairs, escalators and elevators, this number scales approximately

linear with the number of floors in a building

|V | ≈ 80%

(
width

gs

depth

gs

)
N , N = |floors| . (3.34)

For a five story building, this results in 1M required vertices. To uniquely identify this many

vertices, a 24 bit integer is needed for the numbering index. As discussed earlier, vertices can

store their location (x, y, z) using e.g. three 16 bit integers. Besides location, every vertex has

to store a list of ten neighbor indices. All combined, each vertex requires at least 36 byte of

data storage. While today’s smartphones carry enough memory to easily handle this example,

the situation is different for much larger public buildings, such as airports or hospitals. In

case of multiple-compound buildings, connected by large outdoor areas, even more vertices are

required, to model their interconnection. When additional semantic details are added to vertices

and edges, memory consumption increases even further. At worst, a single map can require

several hundred megabytes, becoming impractical for use on smartphones.

According to (3.34), memory concerns can be addressed by increasing gs, at the cost of

accuracy. However, starting at gs >≈ 60 cm, there is an increasing risk for overlooking parts

of the building. When the regular placement pattern does not align with the walkable surface,

doors or narrow passages can be missed, excluding everything behind from being added to the

navigation grid. Real-world setups thus require more dense grids, ranging near gs ≈ 25 cm to

provide accurate results [Ebn+15; Ebn+16]. To predict movements within floorplans of huge

buildings, or multiple compounds connected by large outdoor areas, simultaneously addressing

the issue of discreteness, other data structures are required [Ebn+17].

3.6. IRREGULAR SPATIAL MODELS FOR 3D MOVEMENT PREDICTION 141

(a) (b) (c)

5m

Figure 3.20: Different irregular spatial models for an example floorplan (left). The navigation grid

can use irregular sizing and placements, to model the walkable surface using rectangles (a). Instead of

modeling the whole walkable surface, only the walkable paths can be described (b). Polygons properly

adapt to the shape of surrounding architecture (c).

3.6 Irregular Spatial Models for 3D Movement Prediction

As shown in the surveys from Afyouni et al. [ARC12] and Yanbing [Yan06], irregular placement

patterns can address some of the aforementioned problems. They are more flexible, and adjust to

local architectural details, allowing for a better representation with reduced memory footprint.

Especially when compared against the navigation grid. Referring to the latter, its vertices could

e.g. be placed irregularly. Using many small ones to describe stairs, doors, and narrow passages,

while approximating open spaces with a few larger ones saves memory, and adds details only

where required, shown in figure 3.20a. However, this causes the length of their connecting edges

to vary significantly. Likewise, walkable directions become more discrete, not allowing for the

random walks as discussed in section 3.5. Also, it is not directly clear how to correctly describe

neighborhoods, when a single vertex describes a large region and connects to many vertices

with smaller rectangles. Furthermore, rectangular shapes only work well with axis-aligned

architecture, like shown in the figure. For buildings with a complex interior, the rectangular

primitive suffers from several drawbacks, not representing an ideal data structure [Fet+18].

Besides modeling the walkable surface, some irregular approaches model only the walkable

paths within a building, shown in figure 3.20b. An often used representative, are minimum

spanning trees [Kru56] of a 2D Voronoi diagram [Lej50; Vor08]. First, the Voronoi diagram

tessellates the walkable surface into smaller sections, adjusting to architectural details, such

as doors, walls, and other obstacles. This results in an irregular placement of sub-surfaces,

represented by polygons (cf. figure 3.21b and 3.21d). The edges in between adjacent polygons

can hereafter be connected, forming a tree [Aur91]. A special variant of such a spanning tree

is the generalized Voronoi graph (GVG) [CB95]. Applied to indoor scenarios, it describes

potential routes through the building, similar to streets for car navigation, and can be used to

describe potential walks. It is often slightly modified, to remove some extends of the tree, which

142 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

(a) (b) (c) (d)

Figure 3.21: Delaunay triangulation and Voronoi diagram for an example floorplan. The corners of

walls and other obstacles, shown as black dots, are connected by a Delaunay triangulation (a). This

representation can be converted to its dual, the Voronoi diagram (b). Using additional interpolation

points along all wall segments increases the quality of both diagrams shown in (c) and (d). The GVG in

(d) connects edges of the underlying Voronoi, describing walkable paths within the floorplan.

are considered unlikely, or unnecessary for modeling pedestrian walking behavior. This variant

is referred to as reduced generalized Voronoi graph (RGVG) [NC99].

Mentioned earlier, another spatial representation are 3D meshes, describing the walkable

surface by triangles, or polygons in general, shown in figure 3.20c. A well known algorithm

for creating such meshes, based on a given set of edge-points, is the Delaunay triangulation

[Del34]. Aforementioned Voronoi graphs and Delaunay triangulation are closely related by

duality. That is, one representation can be created from the other [DZM07]. Due to this duality,

a 3D Voronoi graph can be derived from a triangulated 3D mesh, and vice versa. GVG and

RGVG routes thus also work for 3D walking paths within buildings, along stairs, escalators and

elevators, even though most of the aforementioned literature covered only 2D or 2.5D setups.

Depending on the way the floorplan is provided, the Voronoi diagram can e.g. be created by

first performing a Delaunay triangulation, using the corner points of walls and other obstacles

as to-be-triangulated vertices. This is shown in figure 3.21a, where all corner points, shown

as black dots, are connected by the Delaunay triangulation, which is hereafter converted to its

dual, the Voronoi diagram. This conversion can be performed by estimating a circle for each

triangle, covering its three corners. For any two adjacent triangles, the centers of their circles

are connected, forming the Voronoi diagram [Joe99]. However, the result in 3.21b does not

reveal any walkable paths. This is due to using only a few corners to perform the triangulation,

not clearly separating between walkable areas and obstacles. By interpolating additional ver-

tices along each wall segment, the Delaunay triangulation in 3.21c gets more dense. Now, the

walkable surfaces can clearly be separated from impassable areas. The latter is also described

by triangles, which must be deleted, as they reside within obstacles. Calculating the corre-

sponding Voronoi diagram 3.21d, the GVG is now visible as the spanning tree along the edges

of the Voronoi cells [CB95]. The quality of the GVG thus directly depends on the number of

3.6. IRREGULAR SPATIAL MODELS FOR 3D MOVEMENT PREDICTION 143

interpolations along obstacle outlines. When the building’s floorplan is provided as 2D vector

graphics, the Voronoi diagram can be created directly, using individual obstacle segments, given

as 2D lines [Kar04]. If the floorplan is provided as a triangulated 3D mesh, the corresponding

Voronoi and GVG can also be created directly, using aforementioned translation.

The GVG in figure 3.21d denotes walkable routes within the map, which are centered be-

tween walls and other obstacles [BJK05]. Resulting from an irregular tessellation, it can effi-

ciently model complex architecture, and requires only a fraction of the memory demanded by a

navigation grid. Similar to the latter, the GVG represents a walkable data structure, formed by

connecting several nodes. Yet, it models completely different movement predictions, as it does

not cover large open spaces. Containing only a single path for traversing every region of the

building, it is mainly suited for narrow corridors, shown in figure 3.20b. To also cover scenarios

with pedestrians walking through large open spaces, adjustments are required. Hilsenbeck et

al. [Hil+14] suggest a mitigation by placing a dense mesh of walkable nodes throughout large

open areas. While the result hereafter covers the whole walkable surface, it suffers from the

same issues with discrete headings, previously discussed in section 3.5.

GVG und RGVG denote only a fraction of actually possible walks within the building. This

has consequences for movement predictions p(qt | qt−1) and p(qt | qt−1,ot−1). In contrast

to random walks along the graph, the risk of simulations getting stuck in front of obstacles is

reduced, as there are less dead ends. On the other hand, only a fraction of all reachable lo-

cations can be predicted by this setup. In theory, algorithm 1, used for the random walk, still

applies to GVG. However, cumulative heading errors within (3.25) can not be compensated, as

often only two directions, back and forth, are possible. Similarly, the walking distance might

not match with the distance between adjacent nodes of the GVG, which can be rather large. As

a workaround, the random walk could stop somewhere along an edge, to match the requested

dwalk exactly by interpolation. The strong limitations on allowed movements can be considered

a benefit within narrow surroundings, such as hallways and stairwells. Getting stuck can be pre-

vented, and the binary direction choice can suppress issues with sensor uncertainties. The GVG

is also suited for navigation, supporting shortest path calculations, and adding constraints, like

in (3.32). Yet, only affecting intersections, navigation constraints might be completely over-

ruled by the heading. Furthermore, even after the adjustments from [Hil+14], the GVG suffers

from drawbacks within large open environments, yielding similar issues with discreteness, as

the navigation grid. For such regions, another spatial data structure is more suited.

144 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

5m

5m

Figure 3.22: Three navigation mesh examples using triangles as primitives, including semantic informa-

tion on indoor, outdoor, stairs and doors, shown in different colors. The segmentation algorithm ensures

that primitives adjust to both, semantic boundaries and the surrounding architecture.

3.6.1 3D Navigation Meshes

Besides forming the dual of the Voronoi diagram, a Delaunay triangulation also represents a 2D

or 3D mesh of the building’s floorplan. It is created by triangulating the vertices interpolated

along obstacle edges (cf. figure 3.21c). When omitting all triangles that would fully reside

within obstacles, all remaining ones denote the walkable surface. While this irregular result is

not viable for random walks, it can be used in the same way as discussed in section 3.5.4. Shown

within the following, it can efficiently determine whether two locations within a building are

disconnected by an obstacle, and it allows reconstructing the z-coordinate when changing floors.

Compared to the navigation grid, this irregular representation perfectly models surrounding

architecture, as it closely adheres to obstacle borders. Simultaneously, it conserves memory, as

the triangles are significantly larger than aforementioned 20 cm by 20 cm grid cells [Fet+18].

When using a Delaunay triangulation, the average size of the triangles directly depends on

the distance between the to-be-connected vertices (see figure 3.21). As the triangulation only

considers vertices, it is unable to distinguish between walkable surface and obstacles. Using

large distances thus increases the risk of triangles partially belonging to obstacles, shown in

figure 3.21a. For the created mesh to be correct, the interpolated vertices are thus required to

be rather close, like shown in figure 3.21c. This aspect unnecessarily increases the number of

required triangles. Other algorithms besides Delaunay thus are more suited.

The general type of resulting data structure is referred to as navigation mesh, or meadow

map [Ark87]. It is e.g. used in computer games, to model the walkable areas, and to provide

navigation [CS11]. While these meshes can be created from various data sources, a 3D model

of the building, containing floors, stairs, and objects combined with semantic information, is

ideal [Fet+18]. Literature provides various algorithms, such as watershed segmentation [VS91;

RM00]. They generate primitives which accurately resemble the floorplan, including its se-

mantic information, while trying to combine large regions into a single primitive. In general,

3.6. IRREGULAR SPATIAL MODELS FOR 3D MOVEMENT PREDICTION 145

the result describes the walkable surface using polygons. The algorithm ensures that adjacent

polygons share one of their edges, which is a crucial requirement for modeling adjacency.

As the result is used to represent the walkable surface, the same requirements as discussed

for the navigation grid (cf. section 3.5.1) apply. Walking below stairs or escalators is unlikely,

and corresponding surfaces should be removed whenever the pedestrian has to crouch to fit be-

neath. Similarly, walking close to walls and other obstacles is unlikely, and should therefore be

prevented. This can be addressed by eroding the resulting mesh after its creation, thus shrinking

the walkable surface by a given constant. To correctly determine pedestrian walking speeds for

a certain surface of the floorplan, semantic information must be retained. The polygons thus

must be placed in a way that each one belongs to exactly one semantic group, like stairs, esca-

lators or doors. Potential results are presented in figure 3.22. The depicted navigation meshes

use triangles as primitives, and adjust to semantic and architectural borders. The walkable re-

gion was slightly eroded to ensure that regions directly adjacent to walls and other obstacles are

not considered walkable. Compared to the navigation grid, only a few primitives are needed to

accurately cover every nook and cranny of the floorplan.

The following focuses on movement predictions p(qt | qt−1) and p(qt | qt−1,ot−1), when

the underlying spatial model is an irregular 3D navigation mesh of the walkable surface. While

also applying to polygons in general, the generated 3D mesh is assumed to contain only trian-

gles. This is due to the triangle primitive offering unique characteristics, yielding a speed-up

for many of the required calculations, which is important for use on smartphones. Using trian-

gles will slightly increase the required amount of memory, as more primitives and vertices are

needed. However, the result still consumes only a fraction of the navigation grid [Fet+18].

3.6.2 Movement Prediction

Similar to the navigation grid, the navigation mesh allows for several different approaches, to

predict potential movements. It can e.g. be used as a fast look-up, to determine whether two

locations are connected, and reachable within a certain distance, providing a speed-up for the

discussions from section 3.3. Like in (3.12) and (3.8), potential whereabouts p(qt | qt−1) are

determined by simulation, using a starting location, a walking direction, and distance, to predict

new whereabouts. In contrast to earlier, equations are described from another point of view,

directly describing new whereabouts as the result from a random process. Again, the starting

point for each simulation is given by posxyz

(
qt−1

)
, combined with the walking direction q

(Θ)
t−1,

and distance dwalk. The latter can e.g. be set to the average of 1.4m/s, or set to 0, to model the

146 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

case where the pedestrian is resting

q
(x)
t = q

(x)
t−1 + d cos(q

(Θ)
t−1)

q
(y)
t = q

(y)
t−1 + d sin(q

(Θ)
t−1)

d = dwalk + X walk

X walk ∼ N (0, σ2
walk)

〈q〉t = 〈(x, y, z,Θ, . . .)〉t . (3.35)

(3.35) predicts new potential whereabouts in x and y by moving a distance d from the starting

position, into a given direction. For now, the z-coordinate q
(z)
t is omitted, and will be discussed

hereafter. Similar to (3.27), uncertainty in walking speed is given by a zero mean Gaussian

X walk, added to the requested distance. The heading is incorporated based on available prior

knowledge. Like earlier, the initial walking direction often is completely unknown

q
(Θ)
0 ∼ U (0, 2π) . (3.36)

This heading is hereafter updated, depending on whether relative, absolute, or no heading ob-

servations are available

q
(Θ)
t ∼ phead

(
qt | qt−1,ot−1

)
(3.13)

. (3.37)

Again, due to the assumption of the pedestrian walking straight throughout a single simulation,

this setup is only suited for small timeframes and short walking distances dwalk. As within (3.14),

the result of (3.35) must only be accepted if posxyz (qt) can be reached from posxyz

(
qt−1

)
. This

information, and the omitted z-coordinate, are both provided by the navigation mesh.

To determine whether two locations are reachable within a given distance, the triangles

and their adjacency are used. First, the triangle the starting position posxyz

(
qt−1

)
belongs

to is determined, shown in figure 3.23a. This is achieved by using barycentric coordinates

[Vin17], describing the location of a point based on a triangle’s edges, hereby denoting whether

it resides within, or not. To prevent numerical issues, the z-component is allowed to vary, e.g.

by working with 2D triangles in the (x, y) plane, and ensuring the point’s z is somewhere within

the range of the original triangle’s z-coordinates. This is viable, as the created mesh ensures

that there is at least a pedestrian’s height between triangles stacked along the z-axis. Finding

this initial triangle is costly when creating many samples, due to O(n), having to check every

single triangle. This is addressed by caching, remembering the current triangle for every newly

sampled qt, made clear within the following.

Having found the initial triangle, its adjacent neighborhood is examined. A fraction from

the original navigation mesh is extracted, describing the reachable surface, when starting from

posxyz

(
qt−1

)
, and walking for a certain distance. This surface is created by recursively adding

adjacent triangles using breadth-first search [GD18]. That is, first adding all directly adjacent

triangles, hereafter adding their adjacencies, ignoring duplicates. The recursion is terminated

as soon as a certain distance threshold has been reached, which depends on the to-be-simulated

3.6. IRREGULAR SPATIAL MODELS FOR 3D MOVEMENT PREDICTION 147

ρ3
ρ1

ρ2

v

u

ρ

v

u
ρ′

ρ

(a) (b) (e)
(c) (d)

Figure 3.23: Process for uniformly sampling a new location within the vicinity of a starting point (black

dot) when using navigation meshes as floorplan. First, the triangle the starting point belongs to is iden-

tified (a). Second, a reachable fraction of the navigation mesh is extracted, based on some user-defined

threshold. One triangle within this fraction is chosen randomly, with respect to its size (b). Finally, a

random point within this triangle is created (c,d), hereafter denoting the destination (e).

walking distance dwalk. For short simulation distances dwalk, the extracted fraction of the navi-

gation mesh contains only a few triangles, visualized in figure 3.23b.

For posxyz (qt) to be reachable from posxyz

(
qt−1

)
, it must belong to one of the triangles

within the extracted fraction. As qt was calculated by (3.35), only x and y are valid for now.

Whether the new (x, y) results in a change in z, depends on the floorplan. If start and end of

the walk both belong to triangles that are part of the ground floor, the z-component remains

unchanged. If either of them e.g. belongs to a stair, the z-component is expected to be differ-

ent. Thus, to determine whether posxyz (qt) is part of the extracted fraction of the navigation

mesh, only (x, y) is used, examining whether this 2D location lies within any of the extracted

triangles, omitting their z-coordinate as well. If one triangle contains this 2D location, the

omitted z-coordinate is re-calculated via barycentric interpolation [Vin17]. It reconstructs the

z-coordinate based on (x, y), ensuring the resulting 3D coordinate resides on the triangle’s sur-

face. Again, omitting z is valid, if the simulated walking distance dwalk is small, and triangles are

ensured to have a reasonable distance along the z-axis, which is a given for the described navi-

gation mesh. To increase performance, the triangle that posxyz (qt) belongs to is remembered,

preventing costly inclusion checks for subsequent simulations.

If the location determined by (3.35) does not belong to any of the extracted triangles, it

is unreachable from the starting position posxyz

(
qt−1

)
. Similarly to previous discussions for

other movement predictions, there are various options for dealing with such cases. Either by

running the simulation again, yielding a slightly different location, due to the random noise for

heading and distance, or by omitting this single simulation completely. Yet, a different strategy

can be viable as well. Besides handling cases where the randomly determined location was

unreachable, it can serve as a complete walking prediction on its own, able to include arbitrary

probabilistic constraints, similar to the random walk from section 3.5.2.

148 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

According to section 3.2, a movement prediction model without prior knowledge just scat-

ters potential new locations around the initial one. Not constraining the walking direction, and

limiting the walking distance within a broad, uniform range. The models in section 3.2 per-

formed this kind of prediction, but were unable to consider the floorplan, and were only suited

for 2D setups. Using the navigation mesh, aforementioned model can be constrained by the

floorplan, and supports 3D location predictions, by re-calculating the missing z-component.

A predicted posxyz (qt) is somewhere near its origin posxyz

(
qt−1

)
. It can thus be generated

by determining the origins triangle, extracting a fraction of the mesh describing the walkable

surface around it, and randomly picking a destination that belongs to this walkable area. This

yields a new location within the vicinity of posxyz

(
qt−1

)
, constrained by the walkable surface,

including 3D location information. Here, p(qt | qt−1) is simulated by randomly picking a point

on the extracted fraction of the walkable surface. This is achieved by randomly choosing a

triangle that is part of the extracted surface, shown in figure 3.23b, hereafter selecting a random

point that resides within this triangle, visualized in figure 3.23c and 3.23d.

A random triangle is selected by drawing an uniformly distributed index, e.g. using a random

number generator. When performing an infinite number of simulations, this produces an equal

number of samples from every triangle. However, as the size of all triangles is irregular, this

yields a non-uniform distribution of points with respect to the walkable surface, as samples

will concentrate within smaller triangles. Thus, they must not be selected uniformly, but biased

based on their surface area, where larger triangles are chosen more often than smaller ones.

Each triangle’s probability is given by

p(trianglei) = η area(trianglei) , (3.38)

including a normalization constant η. Details on implementing biased random processes are

omitted for now, and presented later in chapter 4. As shown within figure 3.23c, every point ρ

within a 2D or 3D triangle is then uniquely identified by a linear combination of two edges

ρ = ρ1 + u(ρ2 − ρ1) + v(ρ3 − ρ1) , 0 ≤ (u+ v) ≤ 1 . (3.39)

A random point within the triangle can be sampled by creating two uniformly distributed ran-

dom numbers u, v ∼ U (0, 1). In case of (u + v) > 1, occurring for 50% of the samples, the

resulting point is outside of the triangle. Simply omitting those cases, and drawing a new one,

can affect the output of poor (pseudo-)random number generators. The rejected result can be

used when projecting the point back into the triangle, by mirroring it along the edge between

ρ2 and ρ3, visualized in figure 3.23d. Analytically this is achieved by

ρ = ρ1 + (1− u)(ρ2 − ρ1) + (1− v)(ρ3 − ρ1) , 1 < (u+ v) ≤ 2 . (3.40)

3.6. IRREGULAR SPATIAL MODELS FOR 3D MOVEMENT PREDICTION 149

When using the described approach, potential new whereabouts are given as samples, uniformly

distributed throughout the extracted fraction of the navigation mesh, shown in figure 3.24a. This

yields a discrete drop to a probability of zero when leaving the fraction, not being realistic. It

can be mitigated by applying a KDE to the samples, yielding a continuous probability density

function, slowly fading near the boundaries, shown in figure 3.24b.

In section 2.7, the KDE used on top of discrete fingerprints also included a weight for each

of them, based on their probability. That is, the weight favored some fingerprints over others,

concentrating a larger part of the resulting density around fingerprints with higher weights. The

same idea can be applied to the movement prediction. By calculating a weight w(qt) for each

sample qt, and applying a KDE afterwards, the uniform behavior is modified. Including weights

allows for creating arbitrary, non-uniform distributions, based on additional metrics, such as

w(qt) =

p(qt | qt−1) transition probability without observations

p(qt | qt−1,ot−1) transition probability with observation ,
(3.41)

hereafter being as powerful as the random walks. The behavior of (3.35) can e.g. be approxi-

mated by uniformly sampling multiple locations qt that are reachable from qt−1, and weighting

each one according to whether it matches the heading q
(Θ)
t−1, and walking distance dwalk, including

an uncertainty

w(qt) = p(qt | qt−1,ot−1) = N
(
α
∣∣ 0, σ2

turn

)
N
(
d− dwalk

∣∣ 0, σ2
walk

)

α = ∠∆

(
∠xy

(
qt−1, qt

)
, q

(Θ)
t−1

)
, d = distxy

(
qt−1, qt

)
, 〈q〉t = 〈(x, y,Θ, . . .)〉t .

(3.42)

An example of random sampling with and without weights is shown in figure 3.24. The first

two figures depict the unweighted uniform sampling from a fraction of the navigation mesh,

including a 3.5m radius around the start qt−1. The corresponding KDE in figure 3.24b shows

the uniform probability, fading to zero towards the borders. When adding weights (3.42), all

samples with matching distance and heading are more important than others, visualized in fig-

ure 3.24c. The corresponding KDE in figure 3.24d denotes a density, shaped as fraction of a

circle, where both, the requested heading and distance, are correct. This solution matches with

(3.12) and (3.14), yet, including the building’s floorplan, and supporting three dimensions.

Apart from the example (3.42), this approach yields room for an infinite number of met-

rics. Almost all of the densities discussed in chapter 2 can be applied as well, to combine a

uniform floorplan-based movement prediction with sensor observations. By adjusting weights,

an overall density is derived, that combines all individual viewpoints.

150 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

5m

(a) (b) (c) (d)

Figure 3.24: 1000 unweighted (a) and weighted (c) random samples from a fraction of the floorplan’s

navigation mesh, within a 3.5m radius around the start qt−1 (black dot). The corresponding KDEs are

shown as heat maps in (b) and (d). Weights used in (c) and (d) are based on (3.42), with dwalk = 2.8m

and σturn = 0.3, assuming the pedestrian’s heading to be q
(Θ)
t−1 = 45°.

Besides being versatile, this approach is often impractical for use on smartphones. As shown

in figure 3.24, numerous random samples are required, to derive new whereabouts, when start-

ing from a single origin. In contrast, (3.42) requires just a few calculations to provide a move-

ment prediction. As discussed earlier, if the uncertainties for σwalk and σturn are small, a single

prediction should be sufficient to approximate p(qt | qt−1).

However, this approach can e.g. be used for situations where the direct prediction (3.35)

is unable to provide a result due to obstacles. A result is then obtained by requesting one

uniform sample with additional weighting, denoting how well the uniformly sampled location

matches the initially requested heading and destination. Furthermore, the bottleneck solely

stems from the required uniform sampling, to ensure some samples with a decent weight are

present. The weighting process itself is efficient, and weights can e.g. be used to combine (3.35)

with navigation information, favoring results that approach the pedestrian’s destination.

3.6.3 Navigation

As briefly mentioned for the GVG, irregular spatial models are also suited for navigation pur-

poses. The internal data structure of a car navigation system is similar to the way the GVG

models walkable routes within the building. It describes streets and intersections by edges and

vertices, placed at arbitrary, irregular positions. As streets are rather narrow, they are well-

approximated by edges with a certain thickness. However, for large open spaces, often encoun-

tered indoors, a single edge does not provide a viable representation. It reduces the walkable

surfaces to a narrow channel, preventing the pedestrian from reaching any arbitrary location (cf.

figure 3.20). The previously presented navigation grid suffers from the same issue, but mitigated

it, by placing numerous vertices and edges throughout the whole walkable area. The irregular

navigation mesh models the same surface, but requires only a few triangles. However, shortest

3.6. IRREGULAR SPATIAL MODELS FOR 3D MOVEMENT PREDICTION 151

5m

Figure 3.25: Synthetic (left) and real-world example for shortest paths on navigation meshes when using

a graph created by connecting edge-midpoints for Dijkstra’s algorithm. Resulting paths avoid obstacles

but often suffer from abrupt heading changes or zig-zag patterns. The heat map visualizes the walking

distance towards the destination for every location within the building, where warm colors (red) are near,

and cold colors (blue) are farther away. The heat map is created by searching for the nearest edge-

midpoint, and using its known distance towards the destination.

path algorithms, like Dijkstra or A∗, rely on a graph-based data structure. Here, the navigation

mesh’s representation is disadvantageous. While adjacent triangles always share two vertices,

and thus also denote a graph-like structure, suited for Dijkstra or A∗, it is too sparse to provide

viable results. Furthermore, this representation tends to favor exterior edges, as they provide

the shortest possible connection [Kal10a], yielding the same unnatural walking patterns as the

graph without an obstacle-avoiding metric (see figure 3.17 and section 3.5.3).

A slight improvement is given when deriving a graph by connecting the edge-midpoints of

each triangle, instead of the their corner vertices. This avoids movements along outer edges

[Kal05; Cha82]. The results for a synthetic and a real-world example are shown in figure 3.25.

Except for some minor issues with abrupt heading changes, the overall result for the synthetic

floorplan is viable. Within the real-world example, large open spaces clearly suffer from the dis-

cussed drawbacks, indicated by zig-zag connections. The quality of the routing graph strongly

depends on the size and placement of the triangles, which in turn depend on the segmentation

algorithm used for deriving the navigation mesh. A shortest path calculation based on this result

thus represents an approximation of the actually required walking distance.

A corresponding distance-to-destination heat map is shown in the right of figure 3.25. For

every location, it depicts the nearest edge-midpoint’s known distance towards the destination.

The lower left of this heat map indicates major changes in distance between adjacent trian-

gles. Their size and placement is unfavorable for the shortest path calculation. While there are

many variations of this strategy, like connecting triangle-centers instead of edge-midpoints, or

a combination of both, they all suffer from similar drawbacks [Kal05].

Results can be improved by subdividing large triangles, before deriving the temporal graph.

This is similar to the evenly-sized tessellation of the walkable surface, presented by [Hil+14].

Yet, this causes new issues, as it increases memory requirements, which were originally meant

152 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

5m

Figure 3.26: Synthetic (left) and real-world example for shortest paths on navigation meshes when using

the funnel algorithm. Resulting paths are straight and realistic, but stick to obstacles (bold lines). The

extended version of the algorithm adds additional clearance, avoiding obstacles, being more realistic (thin

lines). The heat map (center) visualizes the walking distance towards the destination for every location

within the building, is smooth, but computationally expensive. It can be approximated by barycentric

interpolation (right), and differs only slightly from the original.

to be decreased by using the navigation mesh. Similarly, the complexity of all required compu-

tations increases as well, while still yielding inferior results.

A robust solution is given by the (extended) funnel algorithm [Kal10b; HS94]. Instead of

strictly walking along edges, it also allows for straight movements through primitives. This

is achieved by first calculating the shortest path like earlier, hereafter refining the result, by

walking directly through primitives whenever possible. That is, the algorithm analyzes the

walkable surface itself, instead of only the approximation. Its output is often superior to the

one derived from the navigation mesh in section 3.5.3. Results for a synthetic and a real-world

example are shown in figure 3.26. Compared to the one from figure 3.25, the path resulting from

the funnel algorithm is smooth and straight. However, it sticks unnaturally close to obstacles.

This is addressed by an extensions to the algorithm, adding margins, to walk around obstacles.

Hereafter, resulting paths resemble actual pedestrian walking behavior. Both algorithms are also

shown for the real-world floorplan. As earlier, when obstacles are not avoided, the upper-left

stairs denote the shortest path towards the destination. When adding a safety margin to avoid

obstacles, the shortest path uses the stairs on the right, and looks more natural.

While the algorithm provides realistic walking paths, it requires complex calculations for

every single location in question. Compared to the graph-based solution from section 3.5.3,

pre-calculating and storing the shortest path from every single location towards the destination,

is impossible. However, as mentioned within the discussions on movement predictions, the ac-

tual path is irrelevant. The only information required is whether a new prediction posxyz (qt)

is nearer to the destination than the previous one posxyz

(
qt−1

)
. To perform this comparison,

every location within the navigation mesh must know its distance towards the chosen destina-

tion. When using triangles as primitives, this information can be approximated by barycentric

interpolation. After choosing a destination, the funnel algorithm is used to calculate the dis-

3.7. SUMMARY 153

tance towards the destination for every vertex of the mesh’s triangles, once. This hereafter

allows estimating the approximate distance towards the destination for every location within

the triangles, using the barycentric interpolation. While results will be slightly different than

performing an actual calculation of the funnel algorithm, they are close enough. The inter-

polation is computationally inexpensive, and additional memory requirements for storing the

distance information are negligible, thus well-suited for smartphone use. Figure 3.26 shows the

corresponding heat maps, denoting the distance towards the destination within the small room

on the second floor. The left uses exactly calculated distances from the funnel algorithm, the

right is based on barycentric interpolation. As can be seen, there is only a minor difference

between both. The result can be used in a similar way as earlier for the navigation grid (3.32),

weighting movements on whether they approach the destination ρdest, or depart from it

w(qt) = pdest

(
qt | qt−1

)
, 〈q〉t = 〈(x, y, z, . . .)〉t

=

κdest dist∗xyz

(
posxyz (qt) ,ρdest

)
< dist∗xyz

(
posxyz

(
qt−1

)
,ρdest

)

(1− κdest) else .

(3.43)

3.7 Summary

Within this chapter, the likelihood for certain pedestrian movements and their probabilistic pre-

diction, based on a floorplan, was discussed. Similar to car navigation systems, this information

can be used to restrict certain movements, addressing sensor faults and uncertainties. Presented

models ranged from simple analytical 2D setups, to highly discontinuous 3D variants, consid-

ering the floorplan and sensor observations. The latter require spatial data structures, where two

representatives were introduced. Based on them, various new probabilistic movement predic-

tions were derived. Finally, the aspect of navigation was discussed, developing new algorithms

for realistic routing within buildings, and corresponding movement predictions.

For an initial impression, the first movement predictions were completely unconstrained,

analytical 2D variants. They visualized the drawbacks of not including the floorplan, and other

prior knowledge. Denoting large homogeneous shapes for new potential whereabouts, they are

viable for a few use cases only. As pointed out, especially the current walking direction is

crucial for the quality of the estimated predictions. However, including this information already

reached the limitations of analytical approaches. While possible in general, the result represents

only an approximation of actual likelihood.

Therefore, the concept of simulation was briefly introduced. Instead of analytical calcula-

tions, densities were represented by multiple samples. When applying a KDE on top of these

154 CHAPTER 3. PROBABILISTIC MOVEMENT MODELS

samples, a continuous and calculable density is derived. These simulations also enable consid-

ering the building’s floorplan. Each sampled movement can be examined whether it is blocked

by an obstacle, e.g. by using intersection tests. However, all discussed approaches referred to

two dimensional setups only. To efficiently predict 3D pedestrian movements, spatial floorplan

models are required, describing the walkable surface.

The first examined data structure was a graph with vertices and edges. Its vertices were

placed regularly throughout the whole walkable area of a building, covering ground floor, stairs

and similar. When two adjacent vertices are physically reachable from one another, they got

connected by an edge. The result describes the building’s walkable surface, referred to as nav-

igation grid. Hereafter, an algorithm to estimate new potential whereabouts based on random

walks along this graph was developed. A potential destination is created by starting from a

given origin, and randomly following adjacent edges. For derived destinations to be meaning-

ful, edges are chosen based on probability metrics, denoting their likelihood, for example based

on a known heading. Thus, all resulting samples are distributed based on the likelihood of the

edges they followed. The navigation grid allows for an efficient 3D movement prediction, based

on available knowledge. With graphs well suited for shortest path estimations, this strategy also

enabled navigation. By introducing some adjustments, the calculated paths became realistic, de-

noting potential routes through the building, and avoiding nearby obstacles. Yet, the navigation

grid requires large amounts of memory, and shows a rather discrete behavior.

Therefore, the navigation mesh was discussed as an alternative, also providing a spatial rep-

resentation, yet, requiring less memory. It describes a building’s interior by triangles of varying

size and location. As adjacent triangles share one of their edges, they closely resemble the

walkable surface. This data structure does not allow for random walks, and new probabilis-

tic predictions had to be developed. One was similar to an initial analytic variant, calculating

potential destinations based on walking speed, direction and uncertainty, yet, accepting it only

if physically reachable. In contrast to earlier, the navigation mesh determines the reachability

efficiently, and allows for a 3D estimation of the destination, impossible for the analytic variant.

However, including additional probabilistic constraints besides distance and heading is limited.

Therefore, the concept of uniform sampling and weighting was briefly introduced, equipping

each sample with a weight, which denotes the sample’s likelihood. These weights also allowed

for including navigational knowledge, indicating whether a potential movement approaches the

destination. The required routing was calculated by the extended funnel algorithm. It derives

realistic walking paths, by avoiding obstacles. To prevent costly calculations, an efficient inter-

polation strategy was developed that only needs to be calculated once.

The presented approaches allow an efficient prediction of potential movements, usable to

constrain sensor uncertainties. Combining both aspects is the topic of the following chapter.

Chapter 4

Recursive Density Estimation

As discussed within the two previous chapters, just using sensor observations to perform loca-

tion estimations will yield results that are unstable, due to noise and uncertainty present within

the readings. If the unknown state is observed by a single sensor only, and estimated solely by

its noisy measurement, the resulting estimation directly depends on this measurement’s quality.

By using additional information on surroundings, like a road map or the building’s floorplan,

impossible movements indicated by some sensor can be addressed and compensated. However,

there remains a discrepancy, when sensor readings are erroneous, but the indicated movement is

possible based on the map, yielding unstable and jumping location estimations. As discussed in

chapter 2, averaging is able to compensate sensor noise, especially when it is of the zero mean

Gaussian type, by using more than one reading to perform the estimation. However, the pre-

sented types of low-pass filters resulted in increased delays of the output. While delays are not a

problem for static measurands, like a moored ship, or a resting pedestrian, they are cumbersome

for dynamic systems with moving objects, which represent the main topic of this work.

The effect of using the moving average of sensor data to perform an estimation, is analyzed

by an example. Assuming the one dimensional problem, to determine the position of a static

object. Its current 1D position is observed within ot, by a noisy location sensor. For now, its real

position q̃t is constant, at 10m, and the location sensor’s uncertainty is a zero mean Gaussian:

q̃t = 10m , ot = q̃t +N (0, σ2) , σ = 3 . (4.1)

To improve the location estimation, the incoming sensor data ot is filtered by a moving average

low-pass filter. It is implemented using a continuous equation, similar to simple IIR filters and

the complementary filter discussed in section 2.4.1 and 2.4.2:

qt = κ qt−1 + (1− κ)ot , κ = 0.9 , q0 = 0 . (4.2)

155

156 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

In (4.2) the incoming observations o slowly contribute to the new state variable qt, linearly

mixed with the previous one qt−1, representing the low-pass. Due to the mixing, the estimated

result will experience a delay, as new observations are slowly faded in, depending on the value

of (1 − κ). This effect is depicted in figure 4.1a. After the sensor provides its first readings, it

takes some time for the estimation qt to move from q0 = 0 towards the real location. As the

latter belongs to a non-moving object, the system is stable after the low-pass filter converges.

If the underlying measurand is dynamic, e.g. a to be localized moving object, aforemen-

tioned delays remain present at any instant in time. For a corresponding example of a dynamic

case, the state of an object’s position is assumed to start at q̃0 = 10m, and hereafter increase by

0.5m/s. The behavior of the observation remains as for the static variant in (4.1):

q̃t = 10m + t 0.5m/s , ot = q̃t +N (0, σ2) , σ = 3 . (4.3)

The results are shown in figure 4.1b. While the output of (4.2) starts to approach the unknown

state of (4.3) based on the value chosen for κ, the state has already changed to a new value.

Thus, the filter’s output constantly lacks behind the real value. However, when the behavior of

the dynamic entity, like a car, ship or pedestrian, is known, assumptions on potential changes

can be made. This is where the dynamic transition models from chapter 3 come in to play.

When e.g. the speed of a moving object is known, future locations can be predicted, depending

on the elapsed amount of time. The delay in (4.2) results from the old estimation κqt−1 being

favored over new sensor readings, and qt is unable to catch up. This can be addressed when

the dynamic behavior is known. Instead of solely using κqt−1 as starting value for the next

estimation qt, the system’s behavior is included as well, predicting expected changes since qt−1.

If this prediction ∆qt is added to the previous estimation qt−1, the delay induced by the filter is

compensated by the known behavior. The resulting filter is written as follows:

qt = κ
(
qt−1 +∆qt

)
+ (1− κ)ot , 0.5 < κ < 1.0 , q0 = 0 , (4.4)

where ∆qt defines the system’s dynamic behavior from (4.3), in this case thus given by

∆qt
!
= q̃t − q̃t−1 = t 0.5m/s . (4.5)

(4.4) equals the complementary filter (2.43), except that its gyroscope sensor is replaced by a

prediction ∆qt of the system’s behavior. Figure 4.1c shows the resulting estimation when using

(4.4) and (4.5) with κ = 0.9, instead of (4.2). Due to the known system dynamics, the prediction

∆qt is able to compensate the introduced delay, and the filtered output converges similar to the

static version shown in figure 4.1a.

157

0
5
10
15
20
25

5 s 10 s 15 s 20 s

(a) (4.1) with (4.2)

5 s 10 s 15 s 20 s

(b) (4.3) with (4.2)

5 s 10 s 15 s 20 s

(c) (4.3) with (4.4)+(4.5)

p
o

si
ti

o
n

real
sensor

estimated

Figure 4.1: Behavior of a state estimation for (4.1) and (4.3), using the filters (4.2) or (4.4)+(4.5) on

sensor observations. When the measurand is static (a), the estimation stabilizes after several seconds. For

dynamic measurands, the estimation is a delayed version of the real value (b). This can be compensated

when the system’s behavior is known and can be predicted (c).

Figure 4.2 depicts the results for another dynamic system, where the unknown state performs

a sinusoidal oscillation, observed by a sensor within an uncertainty of σ = 1

q̃t = sin(0.125 t) 4m/s , ot = q̃t +N (0, σ2) , σ = 1 . (4.6)

The prediction ∆qt used within (4.4) is adjusted accordingly:

∆qt = q̃t − q̃t−1 = 4m/s
(
sin(0.125 t)− sin

(
0.125 (t− 1)

))

≈ ∆t

((
sin
(
0.125 (t− 0.5)

)
4m/s

) d

dt

)
= ∆t

1

2
cos
(
0.125 (t− 0.5)

)
.

(4.7)

As earlier, ∆qt within (4.7) describes the system’s dynamic change within a timeframe. Instead

of using the difference between q̃t and q̃t−1, this change can also be described by the derivative

of the underlying process, times the timeframe. While the latter is an approximation, it is

desirable for some situations, discussed later. As can be seen within figure 4.2a, when not using

a prediction, the filtered output quickly starts to deviate from the real underlying value. The

filter not only introduces a delay, the amplitude of the oscillation is changed as well. This is due

to its design, using (1 − κ) to slowly introduce new observations. As soon as qt gets near the

oscillation’s maximum amplitude, actual sensor values already started to decrease, preventing

the estimation from reaching it. For lower frequencies in (4.6), or smaller values of κ, the effect

of the changed amplitude becomes less pronounced. A smaller κ, however, increases the impact

of sensor noise, as it changes the low-pass filter’s cut-off frequency. When including the known

system behavior as prediction in figure 4.2b, filtered results become viable.

In the presented examples, κ was an empiric, constant choice, which will not suit real-world

scenarios. While lower values of κ introduce less delay, they pass more sensor noise, and

vice versa. κ thus depends on the amount of noise present within the sensor readings, which

might be dynamic as well. If noise is minor, (1 − κ) should be large, to favor the current

observation ot, and vice versa. Within previous examples, the system’s behavior was well-

158 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

−6
−3
0

3

6

10 s 20 s 30 s 40 s 50 s 60 s 70 s

(a) (4.6) with (4.2)

10 s 20 s 30 s 40 s 50 s 60 s 70 s

(b) (4.6) with (4.4)+(4.7)

p
o

si
ti

o
n

real
sensor

estimated

Figure 4.2: Behavior of a state estimation for (4.6) using the filters (4.2) or (4.4)+(4.7) on sensor ob-

servations. When no prediction is available (a) the estimation constantly lacks behind the real location.

With prediction (b), estimation and real value are almost identical.

known, and the prediction was expected to be exact without errors. For real-world use cases,

however, the prediction is uncertain as well. The dynamics often are not fully known, can not

directly be inferred for absolute points in time, and are as uncertain as the observed sensor data

[Jaz70; GSS93]. The movement behavior of a ship, for example, depends on the current speed

and rudder position, which are subject to changes, and can only be estimated based on sensor

readings. Furthermore, speed and current location are influenced by unknown external factors,

such as wind, waves and ocean current. Just as the unknown state, a prediction can be dependent

on sensor observations, and is subject to unknown external influences. This also leads to the

question of how trustworthy the prediction currently is.

While (4.4) already contains a concept for either favoring the prediction or the sensor, given

by κ, it supports only a single sensor. More could be added as (1 − κ)o terms – one for every

sensor, each using a different κ – but determining the correct value for each is cumbersome.

Furthermore, the presented example described the unknown state as a single scalar. For in-

door localization, however, the state contains the pedestrian’s 3D position and heading. Also,

not every sensor contributes to all four values (cf. chapter 2 and chapter 3). Additionally, the

presented prediction is unable to include prior information, e.g. given by a floorplan. Finally,

while (4.4)’s result was more realistic than the unfiltered observation, the quality of this result is

unknown. Also, it is unable to include known uncertainties in a probabilistic way, representing

a drawback, discussed in the two previous chapters.

This chapter thus focuses on methods and algorithms that can be used to combine multiple

sensor inputs, to optimally estimate an unknown state. Algorithms must be able to include un-

certainties present within both, sensor readings, and the dynamic prediction process. Referring

to indoor localization and navigation, the sensor readings from the smartphone, discussed in

chapter 2, are combined with potential movements of the pedestrian, discussed in chapter 3.

The unknown state, that is, the pedestrian’s whereabouts and heading, is determined based on a

probabilistic fusion of the evaluations and transitions, described within both previous chapters.

4.1. PROBABILISTIC INFORMATION FUSION 159

p(q)
p(q | o) = η p(o | q) p(q)

p(o | q)

Figure 4.3: Combining a prior estimation (left) with current sensor observations (right) to determine the

current posterior (center) via multiplication and normalization. Even though both probabilities (left/right)

seem near zero, normalization yields another Gaussian distribution.

4.1 Probabilistic Information Fusion

As discussed, to determine the unknown state of a dynamic system, such as a moving vehicle,

ship or pedestrian, information available by sensors and models should be combined in a prob-

abilistic manner. Doing so includes known uncertainties, and provides a result that is optimal

for the given values, including an accuracy indication for the output. Referring to the simple 1D

localization example from earlier, a probabilistic combination based on uncertainties is briefly

examined. Assuming the 1D location of the object to be known, including some uncertainty,

given by p(q) with q = x, referred to as prior. At the current location of the object, a sensor

reading o = x is observed, yielding a hint on the current location, as seen from the sensor,

called measurement p(o | q). According to Bayes’ rule, the object’s most likely whereabouts q

given the sensor reading o and initial guess p(q), is called posterior p(q | o) and defined as

posterior︷ ︸︸ ︷
p(q | o) =

measurement︷ ︸︸ ︷
p(o | q)

prior︷︸︸︷
p(q)

p(o)︸︷︷︸
normalization

= η p(o | q) p(q) =

p(o | q) p(q)∑
q′ p(o | q′) p(q′)

discrete

p(o | q) p(q)∫∞

−∞
p(o | q′) p(q′) dq′ continuous .

(4.8)

Shown within (4.8), the posterior is given by the product of the initial expectations and current

sensor observations, including a normalization, to ensure the integral of the result yields 1, and

thus describes a PDF as well. For readability, the normalization is abbreviated as η. Figure 4.3

depicts a corresponding example of the posterior resulting from prior and observation. Even

though both distributions barely overlap, and the result of their product is near zero, the normal-

ization η yields a new PDF. When both, prior and observation, are distributed normally, such as

within the figure, the normalized posterior denotes a normal distribution as well [Smi11]

ηN
(
x
∣∣ µ1, σ

2
1

)
N
(
x
∣∣ µ2, σ

2
2

)
= N

(
x
∣∣ µ1,2, σ

2
1,2

)
. (4.9)

160 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

The new µ1,2 and σ2
1,2 of the resulting distribution are given by

µ1,2 =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

, σ2
1,2 =

σ2
1σ

2
2

σ2
1 + σ2

2

. (4.10)

For the following discussions, a slightly different notation is used for µ1,2 and σ2
1,2, where a

part of the equations is shared, and denotes how the two PDFs are combined. By adding the

substitution term +(σ4
1 − σ4

1), σ1,2 can be rewritten as

σ2
1,2 =

σ2
1σ

2
2

σ2
1 + σ2

2

=
σ2
1σ

2
2 + σ4

1 − σ4
1

σ2
1 + σ2

2

=
σ2
1σ

2
2 + σ4

1

σ2
1 + σ2

2

− σ4
1

σ2
1 + σ2

2

= σ2
1 −

σ4
1

σ2
1 + σ2

2

. (4.11)

µ1,2 is adjusted similarly, by adding +(µ1σ
2
1)− (µ1σ

2
1)

µ1,2 =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

=
(µ1σ

2
1) + µ1σ

2
2 + µ2σ

2
1 − (µ1σ

2
1)

σ2
1 + σ2

2

=
µ1σ

2
1 + µ1σ

2
2

σ2
1 + σ2

2

+
µ2σ

2
1 − µ1σ

2
1

σ2
1 + σ2

2

=
µ1(σ

2
1 + σ2

2)

σ2
1 + σ2

2

+
σ2
1(µ2 − µ1)

σ2
1 + σ2

2

= µ1 +
σ2
1

σ2
1 + σ2

2

(µ2 − µ1) .

(4.12)

Finally, (4.10) can be condensed to

µ1,2 = µ1 + k(µ2 − µ1)

σ2
1,2 = σ2

1 − k σ2
1

with k =
σ2
1

σ2
1 + σ2

2

= σ2
1

(
σ2
1 + σ2

2

)−1
. (4.13)

According to (4.13), the new mean and variance are combined by a scalar value k, which solely

depends on the uncertainty of the to-be-combined distributions: the prior and the measurement.

Due to the fraction, 0 ≤ k ≤ 1 with k = 0 for σ1 = 0, and k = 1 for σ2 = 0. The new mean µ1,2

depends on the prior’s mean plus k times the difference between the prior and measurement. In

other words, for k = 0, the new mean equals the prior’s mean, for k = 1 the new mean equals

the measurement’s mean. For 0 < k < 1 it is somewhere in between. k thus works exactly

as κ within (4.2)/(4.4), deciding how to mix the prediction and the measurement. Yet, k is not

empirically chosen, but depends on uncertainties. If the σ1 of the prior is smaller than the σ2

of the measurement, k < 0.5, and the posterior is nearer to the prior than to the measurement.

If σ2 is the smaller one, k > 0.5, and the posterior shifts towards the measurement. In other

words, k decides whether the prediction or the measurement is to be trusted more.

As (4.13) points out, the new uncertainty σ1,2 is also affected by k. However, no mixing

between both uncertainties σ1 and σ2 is applied here. The new uncertainty equals the one of

the prior, minus a fraction of the same value. Thus, the uncertainty of the posterior is unable to

grow, but can only decrease. Put another way, the posterior will always be more accurate than

the prior, independent of the uncertainty of the measurement.

4.2. BAYES FILTER 161

The discussed concept also allows for adding observations from more than one sensor, that

occurred at the same instant in time. Assuming statistical independence of all sensors, the

combined probability of all currently available sensor readings o, given the current unknown

state q, is determined by the product of the individual probabilities

p(o | q) =
N∏

i=1

p(oi | q) , o = (o1, . . . , oN) . (4.14)

Again, if all observations are distributed normally

p(oi | q) = N
(
oi
∣∣ µi, σ

2
i

)
, (4.15)

the result of (4.14) is given by applying (4.13) N − 1 times, to combine all N sensor readings

into a single normal distribution. If some sensor was faulty and did not provide an observation,

it can simply be omitted. Due to (4.13), every additional sensor yields a decrease in uncertainty,

rendering the result more accurate. However, (4.15) only holds true for independent sensors,

providing their observations at the same instant in time. For subsequent observations, a different

approach is required, as it is still unclear how the time component, and e.g. older observations,

contribute to the overall result. Within the previously presented example of the IIR filter, new

sensor readings yielded a contribution as they occurred, stabilizing the location estimation of

an object over time, refining the previous estimation. Furthermore, a prediction was added, to

describe the system’s dynamic behavior and thus compensate delays introduced by the filtering

process. Both aforementioned aspects must be included within the probabilistic variant as well.

4.2 Bayes Filter

This leads to the question of how a probabilistic estimation can be improved when there are

subsequent observations from sensors at different points in time, that is, a history of observa-

tions, and when a system and its unknown state are dynamic. The answer to both is provided

by making the posterior p(q | o) from (4.8) dependent on the current time t, and conditioning

it not only on the current observation o, but on the complete history of observations o1:t since

the beginning up until t, as defined in (2.3). The dynamic behavior is added by conditioning the

posterior on all internal and external influences u1:t, that affect the state

〈u〉t = u1:t = u1, . . . ,ut−1,ut with 〈u〉t = 〈(. . .)〉t . (4.16)

162 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

For localization problems, ut might e.g. be given by a ship’s rudder angle, but is also affected

by environmental influences, such as wind and ocean current. In other words, influences that

somehow affect the whereabouts over time. The discussed adjustments result in

p(q | o)(4.8) → p(qt | o1:t, u1:t) = bel(qt) , (4.17)

which, in literature [TBF05; Jaz70; Aru+01], is also referred to as belief, how the unknown state

qt might currently look like, based on the complete history of observations o1:t, and influences

u1:t. The notation for the history of previous values is equivalent to

p(qt | o1:t, u1:t) = p(qt | ot, . . . , o1 , ut, . . . , u1) . (4.18)

To rewrite the conditional probability (4.18) just like earlier in (4.8), a modified version of

Bayes’ rule, conditioned on more than one variable, can be used

p(a | b, c, . . .) = p(a, b, c, . . .)

p(b, c, . . .)
| reorder, p(a, b) = p(b,a)

=
p(b,a, c, . . .)

p(b, c, . . .)
| apply p(a, b) = p(a | b) p(b)

=
p(b | a, c, . . .) p(a, c, . . .)

p(b | c, . . .) p(c, . . .) | apply p(a, b) = p(a | b) p(b)

=
p(b | a, c, . . .) p(a | c, . . .) p(c | . . .) p(. . .)
p(b | c, . . .) p(c | . . .) p(. . .)

=
p(b | a, c, . . .) p(a | c, . . .)
p(b | c, . . .) | move denominator to η

= η p(b | a, c, . . .) p(a | c, . . .) .

(4.19)

Applying (4.19) to (4.18) then yields:

bel(qt) = p(qt | ot, . . . , o1 , ut, . . . , u1)

= η p(ot | qt , ot−1, . . . , o1 , ut, . . . , u1) p(qt | ot−1, . . . , o1 , ut, . . . , u1)

= η p(ot | qt, o1:t−1, u1:t)︸ ︷︷ ︸
measurement probability

p(qt | o1:t−1, u1:t)︸ ︷︷ ︸
prior

,
(4.20)

which is still similar to (4.8), yet uses the discussed conditioning variables. However, (4.20)

can be simplified when introducing a new assumption: The overall problem formulation of es-

timating the current location of an object, based on sensor observations, influences, and prior

knowledge, can be described as a continuous (hidden) Markov model (HMM). Hidden refers to

observations that only provide implicit hints on the current state, as they denote only relative in-

formation, like speed and heading change, and/or are erroneous (cf. chapter 2) [BP66; TBF05].

4.2. BAYES FILTER 163

Such models satisfy the so called Markov property [Mar51]. Here, this property states that the

next state qt can be predicted solely by the previously estimated state qt−1, and the current ob-

servations ot, and influences ut, respectively. In other words, when the Markov property holds

true, past observations and influences provide no additional information. They are implicitly

contained within every state q. Thus, neither the history of estimated states, nor the observa-

tions and influences that lead to those estimations, are required. When the Markov property

holds true, the measurement probability from (4.20) can be simplified to

p(ot | qt, o1:t−1, u1:t) = p(ot | qt) . (4.21)

This is possible, because (4.21) is conditioned on qt, which fully contains all observations and

influences up to time t, when the Markov property holds true.

This simplification does not work for the prior given in (4.20), as it is not conditioned on

the state q. To also utilize the Markov property for the prior, the previous state has to be added

to the equation. This is achieved using the law of total probability [BC12]

p(a) =

∫
p(a | b) p(b) db

p(a | . . .) =
∫

p(a | b, . . .) p(b | . . .) db .
(4.22)

By applying (4.22), the prior from (4.20) can be conditioned on some new arbitrary variable.

This allows for conditioning the prior on the state q, required for utilizing the Markov property.

In this case, qt−1 is used as conditioning variable, for reasons yet to discuss

p(qt | o1:t−1, u1:t) =

∫
p(qt | qt−1, o1:t−1, u1:t) p(qt−1 | o1:t−1, u1:t) dqt−1 . (4.23)

As (4.23) is conditioned on qt−1, all information that lead to this state can be omitted. That

is, the history of observations o1:t−1, and the influences u1:t−1, except the most recent one ut.

Within the second parentheses, ut is removed, as this is future information regarding qt−1, and

can thus safely be omitted. The discussed changes result in

p(qt | o1:t−1, u1:t) =

∫
p(qt | qt−1, ut) p(qt−1 | o1:t−1, u1:t−1) dqt−1 . (4.24)

Examining (4.17), the second parentheses within (4.24) clearly denotes the previous believe, at

time t− 1. The resulting equation uses this previous believe, and combines ut with a transition

probability qt−1 → qt, to convert it into a new believe. For the localization problem this reads:

“Assuming the last believe was correct, given the current influences and some transition proba-

bility, where might the dynamic object have moved to?”. In literature, this equation is therefore

164 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

often referred to as predicted believe or prediction [GSS93; KB61; TBF05], written as

bel(qt) = p(qt | o1:t−1, u1:t) =

∫
p(qt | qt−1, ut)︸ ︷︷ ︸

prediction

bel(qt−1)︸ ︷︷ ︸
previous believe

dqt−1 . (4.25)

The predicted believe bel(qt) is given by the previous believe bel(qt−1) and a transition proba-

bility, modeling the object’s dynamics. As can be seen in (4.25), the prediction describes how a

single state qt−1 is converted into some new state, which is due to utilizing the law of total prob-

ability. As the old state represents a distribution as well, every potential value has to undergo

the prediction of what it might be hereafter, denoted by the integral. This can be interpreted as a

convolution between the prior and the prediction model. Applying the presented simplifications

from (4.21) and (4.24) to the initial equation (4.20), the posterior can be written as

bel(qt) = p(qt | o1:t, u1:t)

= η p(ot | qt, o1:t−1, u1:t) p(qt | o1:t−1, u1:t)

= η p(ot | qt) bel(qt)

= η p(ot | qt)︸ ︷︷ ︸
measurement

∫
p(qt | qt−1, ut)︸ ︷︷ ︸

prediction

bel(qt−1)︸ ︷︷ ︸
recursion

dqt−1 ,

(4.26)

representing the final equation. It infers the posterior, that is, the believe, or probability distri-

bution, of the unknown state qt at some point in time t, based on the current sensor observations

ot, the qt predicted from the influences ut, and the previous state qt−1. For clarification, it distin-

guishes between the predicted state qt, and the posterior qt. Due to the dependency on qt−1, the

equation represents a recursive process, which is often referred to as recursive state estimation,

recursive Bayesian estimation, Bayesian filtering, or, in short, Bayes filter [Sär13; TBF05]. For

it to work, the distribution of the first state q0 at time t = 0 must be provided. However, just

distributing it uniformly over the whole state space is a valid decision.

The behavior of the presented filter is depicted using a simple one-dimensional example,

similar to (4.3), yet utilizing probability distributions instead of scalar values. The unknown

state qt solely contains the object’s 1D location. Again, the object’s actual dynamic movement

is assumed with 0.5m/s, however, now also including a zero mean Gaussian uncertainty

q̃t = 10m + t (0.5m/s + X) , X ∼ N (0, . . .) . (4.27)

The initial believe bel(q0) at time t = 0 is the object’s initial location, if known, with some

degree of uncertainty. Here, it is expressed by the following distribution

bel(q0) = N (10, 0.22) . (4.28)

4.2. BAYES FILTER 165

The prediction also addresses the movement uncertaintyX from (4.27), by using another normal

distribution to introduce a similar uncertainty when predicting the object’s movement

bel(qt) = qt−1 +N
(
ut, σ

2
)
, σ = 0.1 , ut = 0.5 . (4.29)

Shown in (4.29), the new state qt depends on the previous state qt−1, plus the expected move-

ment of 0.5m/s, including an uncertainty σ. As (4.29) resulted from the law of total proba-

bilities, it denotes the transition from one explicit starting state qt−1. It thus has to be applied

to every potential prior state qt−1 (cf. integral (4.26)), which is somewhat similar to a convolu-

tion between the prior believe bel(qt−1), and each transition probability (4.29). The predicted

believe bel(qt) will thus become more uncertain. This effect is depicted in the left half of

figure 4.4, where the prediction is shifted by 0.5 to the right, and is slightly wider than the prior.

The increased uncertainty after the prediction is addressed by sensor observations. Within

this example, a sensor measures the object’s absolute position with a small uncertainty σ = 0.5.

This uncertainty is included by assigning a probability to the difference between the observa-

tions and the prediction bel(qt), that exactly resembles the expected sensor noise σ = 0.5

p(ot | qt) = N
(
ot
∣∣ qt, σ2

)
= N

(
∆
∣∣ 0, σ2

)
, σ = 0.5 , ∆ = ot − qt︸ ︷︷ ︸

∆sensor↔prediction

. (4.30)

Results after two prediction and measurement update iterations are depicted in figure 4.4. The

predictions, shown in the left half, clearly denote an increase in uncertainty whenever the ob-

ject’s dynamics are predicted. The resulting distribution is moved by 0.5 to the right, and gets

slightly wider. This is intuitive behavior, as estimating a moving object’s location, e.g. a car

passing a tunnel, will become increasingly inaccurate over time. Hereafter, the following mea-

surement update compares the current sensor observations ot against the prediction qt including

the known sensor noise. This step refines the prediction, and results in the posterior, which is

more accurate (figure 4.4, right half). If sensor observations are currently unavailable, the poste-

rior is equal to the predicted believe. The prediction ensures that the unknown state is adjusted,

even without observations, yielding an increasing uncertainty over time. Again, this is similar

to a car, passing a tunnel, and being tracked solely based on driving speed. This estimation

becomes increasingly uncertain. As soon as it exits the tunnel, observations are available, and

the cumulated uncertainty is decreased by the observations. Following previous discussions on

(4.13), observations decrease uncertainty, while the newly introduced prediction increases it.

The presented equations for prediction and measurement update clearly resemble the prob-

abilistic sensor and transition models discussed in chapter 2 and 3. Yet, it is unclear how to

actually calculate the densities for the prediction bel(qt) and posterior bel(qt). While some of

166 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

9 10 11 12 9 10 11 12

prediction

bel(q0)

bel(q1)

measurement update

bel(q1)

p(o1 | q1)
bel(q1)

bel(q1)

bel(q2)

bel(q2)

p(o2 | q2)
bel(q2)

Figure 4.4: Two prediction/update steps using the Bayes filter (4.26) on the presented example (4.27).

The left half denotes the prediction of the object’s dynamics (4.29). Due to uncertainties, the predicted

believe becomes wider than the prior. The right half shows the measurement update (4.30), where the

prediction is refined by the current sensor observations, yielding a slightly more certain posterior.

the models from the previous chapters are given as simple normal distributions, just like the

presented 1D example, others required multivariate normal distributions, or represent mixture

distributions. Dependent on the to-be-solved problem formulation, analytical versions for cal-

culating those densities exist. However, they often come at certain limitations. The same holds

true for more complex algorithms, with support for arbitrary distributions. While often being

more flexible, they suffer from other to-be-discussed drawbacks. The following sections will

focus on real-world implementations for applying the presented Bayes filter to actual problems,

and address potential advantages and disadvantages of specific implementations.

4.3 Kalman Filter

The Bayes filter is not limited to specific density functions, and supports arbitrary distributions

for believe, prediction and sensor noise. The way actual results are calculated within (4.26)

depend on the chosen models, and thus the used density functions. For both, simplicity and

correctness, analytical solutions to (4.26) are preferred. However, the analytical product and

summation of two densities is only available for a few representatives. The same holds true

for the prediction step, affecting the believe density, where analytical solutions are often only

available for simple, linear models [TBF05], also shown in chapter 3.

This section focuses on analytical solutions for the Bayes filter. It covers problems that can

solely be modeled using normal distributions for the believe, prediction and the measurement

update step, and where both, prediction and update, denote a linear system,Ax = b. Whenever

those constraints can be satisfied, the Kalman filter [Kal60; KB61] can be used as analytical

implementation of the Bayes filter. Even though normal distributions limit the applicability to

unimodal problems, and the requirement for linear systems restricts potential predictions and

4.3. KALMAN FILTER 167

measurement updates, it is still applicable to many real-world scenarios. Applications range

from general object tracking [CHP79], over inertial navigation [Meh70], and satellite localiza-

tion [Fit71], towards medical applications, such as tracking retinal blood vessels [CZK98].

The Kalman filter is based on the principles discussed in section 4.1 and 4.2. First, the prior

density is adjusted by a prediction step, hereafter being refined by a measurement update, re-

sulting in the posterior. Here, both steps solely refer to the adjustment of normal distributions.

Section 4.1 has already shown that the second step, of deriving the posterior, can be solved ana-

lytically, as the product of two normal distributions denotes another normal distribution. (4.13)

calculated the new µ and σ for the one dimensional case. However, it is yet unclear how to

handle the convolution required by the prediction within section 4.2, when using normal distri-

butions. Furthermore, for arbitrary problems, a single dimension is insufficient, and multiple

dimensions are required. 3D localization, for example, requires at least 3 dimension’s for the

whereabouts (x, y, z). The Kalman filter thus uses multivariate normal distributions, to describe

believe, prediction and sensor noise:

p(x) =
1√

(2π)d det (Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (4.31)

The distribution’s mean is given by the vector µ, and its uncertainty by the covariance matrix

Σ. The latter not only models the variance for every component, e.g. a position in x, y and z,

but also influences between the components, if any. For example, while the three position coor-

dinates might be statistically independent, yielding zeros beside the diagonal of the matrix, an

object’s speed or direction influence its position, creating a dependency and thus a covariance.

Likewise, the distribution’s center is given by the vector µ, holding the mean value for every

single component. Within the Kalman filter, the distribution’s µ represents the mean value of

the believe. The most likely estimation of the unknown state is thus directly given by this vector.

While the typical notation in literature uses x for the state, and either y or z for the observations

[TBF05; GA01; Kal60], to consent with the previous sections, within the following the state’s

mean is referred to as q, the observation as o, and the influences as u.

Following (4.26), the dynamics of the underlying model are defined within the prediction

step, where the prediction qt incorporates a set of known update rules based on the prior qt−1,

known internal influences ut, and unknown external influences, which represents a convolu-

tion of two distributions. Regarding normal distributions, a convolution of two yields another

one, which is due to the following facts: A convolution in sample space equals a multiplication

in frequency space [Smi99, p. 180], the Fourier transform of a Gaussian equals another Gaus-

sian [Smi99, p. 216], and the product of two Gaussians yields another Gaussian, as previously

shown in section 4.1. As a consequence, the convolution of the prediction step yields a new

168 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

normal distribution with different mean and covariance. For the Kalman filter, this adjustment

is described by a linear transformation. As will be shown shortly, a linear system applied to a

Gaussian will yield another Gaussian as well. The transformation is split into two steps, one for

the distribution’s mean and one for the covariance. The first is given by

qt = Aqt−1 +But (+X) , X ∼ N (0,Σ) . (4.32)

(4.32) derives the new predicted state qt based on the previous state qt−1, adjusted by a matrix

A. Additionally, known influences ut, adjusted by a matrix B, and unknown external influ-

ences X , are included as well. The matrix A describes the change in state, when no additional

influences are given. The matrix B denotes the mapping from the influences u onto the state

q. This mapping is necessary, as the influences might be expressed using different units, do not

affect every component of the state, or affect more than one component. The zero mean Gaus-

sian noise X has no impact on the calculation of qt, but is assumed to be present. It describes

expected uncertainties and systematic errors, increasing the uncertainty of the predicted state

qt, which is subject to an additional equation.

The essence of (4.32) can be explained using an example, often found in literature [Jaz70],

where an object’s location x and velocity ẋ represent the unknown state, which is affected by a

known acceleration ẍ and unknown influences, such as wind, ocean current or similar

xt =

previous position︷︸︸︷
xt−1 +

previous speed︷ ︸︸ ︷
ẋt−1∆t +

known acceleration︷ ︸︸ ︷
0.5ẍt(∆t)2

ẋt = ẋt−1︸︷︷︸
previous speed

+ ẍt∆t︸︷︷︸
known acceleration

.
(4.33)

To use (4.33) with the Kalman filter, it is rewritten according to (4.32)

qt =

(
1 ∆t

0 1

)

︸ ︷︷ ︸
A

(
xt−1

ẋt−1

)

︸ ︷︷ ︸
qt−1

+

(
0.5(∆t)2

∆t

)

︸ ︷︷ ︸
B

(
ẍt

)

︸ ︷︷ ︸
ut

(+X)

〈q〉t = 〈(x, ẋ)T 〉t , 〈u〉t = 〈(ẍ)〉t .

(4.34)

Within (4.34), the matrixA derives the new predicted location and speed qt, based on the prior

qt−1. Likewise, B incorporates the current influences ut, containing the known acceleration,

mapping the influences onto the state. As the state represents a normal distribution, this step

adjusts its mean, which can be thought of the average of a random variable X

E(X) =
1

N

N∑

i=1

xi . (4.35)

4.3. KALMAN FILTER 169

As can be seen, this value is linearly affected by multiplication and addition. The result of (4.32)

thus shifts the distribution’s mean, yielding the new center of the predicted state. Furthermore,

adding a zero mean random variable X does not affect the mean itself, but only its covariance,

referred to as P t. This value is also affected by the multiplication ofA, yet, in a different way.

In general, the covariance of a multidimensional random variable X is defined as

Cov(X) = E

((
X − E(X)

) (
X − E(X)

)T)
. (4.36)

According to (4.32), the covariance P t−1 belonging to qt−1 is affected byAqt−1, and +X . The

term +But has no impact, as adding a constant value does not affect the covariance, but only

the mean. According to (4.36), the zero mean Gaussian noise X from (4.32) is incorporated by

simply adding it to P t−1. The impact of the productAqt−1 on P t−1 is given by

Cov(AX) = E

((
AX − E(AX)

) (
AX − E(AX)

)T)

= E

((
AX −AE(X)

) (
AX −AE(X)

)T)
= E

(
A
(
X − E(X)

) (
A
(
X − E(X)

))T)

= E

(
A
(
X − E(X)

) (
X − E(X)

)T
AT
)
= AE

((
X − E(X)

) (
X − E(X)

)T)
AT

= ACov(X)AT .

(4.37)

Combining all aspects yields the Kalman filter’s equation for the predicted covariance P t

P t = AP t−1A
T +Q , (4.38)

that belongs to qt from (4.32). It is based on AP t−1A
T , to match the product Aqt−1, and

the matrix Q includes the impact of the previously excluded random variable X . Similar to

figure 4.3, (4.32) and (4.38) adjust the center, size, and orientation of a normal distribution.

Their combination thus resembles the Bayes filter’s convolution step.

After predicting the next state based on known behavior, sensor observations are used to

refine the believe, denoting the posterior. The combination of the prediction with the current

measurements is performed in the same way as discussed in (4.13). If the prediction’s covari-

ance P t is more certain than the measurement’s covariance Rt, it is preferred, and vice versa.

The linear mixing of both covariances is given by the Kalman gainK, describing the ratio

K = P t

(
P t +Rt

)−1
. (4.39)

K is hereafter used to infer the new mean, by interpolating between prediction and measure-

ment, and its covariance, by reducing the uncertainty based on the amount of mixing

qt = qt +K(ot − qt) , P t = P t −KP t . (4.40)

170 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

For now, (4.39) and (4.40) strictly used the same calculations as the one dimensional case (4.13).

However, just like the influences ut, the observations ot might use different units than the state,

refer only to some parts of it, or more than one part of it. Therefore, a translation between both

is required. This adjustment is provided by another matrix, in literature often named C or H ,

translating the predicted state qt into potential observations:

ot = Cqt (+X) , X ∼ N (0,Σobs) . (4.41)

Again, the relationship denoted by (4.41) reads as “assuming the object’s current state is qt,

what should the sensors observe?”. It is given by the mapping C, converting from the state to

the observations, including a known zero mean Gaussian sensor noise X . Again, the latter is

only given to denote the presence of noise, but is not included within the calculation. Actual

uncertainties of the current observation are denoted by the matrix Rt from (4.39). (4.39) and

(4.40) thus are only correct for the special case ofC = I , where the observations can be directly

mapped onto the state, without adjustments. For a general solution, qt must be converted to

measurement space using Cqt, before it can be compared against the observations. The same

holds true for their covariances. According to (4.37), the covariance P t from the state space is

converted to the measurement space usingCP tC
T . The Kalman gain (4.39) hereafter reads as

K ′ = CP tC
T
(
CP tC

T +R
)−1

. (4.42)

Due to the impact ofC, the result of (4.42) uses the coordinate system of the measurements, and

thus the measurement space. As the Kalman gain is used to adjust the state, and its covariance,

the result must be mapped from the measurement space back to the state space using C−1:

qt = qt +

state space︷ ︸︸ ︷
C−1K ′(ot −Cqt)︸ ︷︷ ︸

measurement space

, P t = P t −

state space︷ ︸︸ ︷
C−1

(
K ′
(
CP tC

T
)

︸ ︷︷ ︸
measurement space

)
C−1T

= P t −C−1K ′CP t .

(4.43)

However, when C is not a square matrix, e.g. when only some of the attributes are observed

by sensors, C−1 is undefined. While this can be addressed e.g. by using the Moore-Penrose

inverse [Pen55] instead, this introduces unnecessary roundoff errors. Therefore, the problem

is addressed by moving C−1 into the calculation of the Kalman gain K ′ from (4.42), which

cancels with the firstC . This step finally yields the well-known Kalman filter equations for the

measurement update step, where the Kalman gain is given by

K = C−1K ′ = C−1
(
CP tC

T
(
CP tC

T +R
)−1
)
= P tC

T
(
CP tC

T +R
)−1

, (4.44)

4.3. KALMAN FILTER 171

and is used to derive the posterior’s mean and covariance

qt = qt +K(ot −Cqt) , P t = P t −K(CP t) = (I −KC)P t . (4.45)

Just like for the 1D case, the posterior’s mean ranges somewhere in between the prediction

and the measurement, depending on the ratio K of the uncertainties. Similarly, the overall

uncertainty is reduced based on this ratio, refining the posterior over time.

Reverting to the example (4.34) of estimating an object’s 1D location and velocity, the

Kalman filter requires the initial believe bel(q0) as a starting point. In case it is unknown, it is

assumed to be distributed uniformly throughout the whole state space, which is approximated

by N (0,∞), or, in practice, some large numbers. Assuming that the initial location x of the

example object is approximately known, but its velocity ẋ is not

q0 =

(
0

0

)
, P 0 =

(
1 0

0 100

)
, (4.46)

and there are no known or unknown influences. That is, the prediction only depends on the

estimated state itself, and is assumed to be exact:

ut =
(
0
)
, Q =

(
0 0

0 0

)
. (4.47)

The first prediction after ∆t = 1 s will not affect the mean, as the currently estimated velocity

ẋ is still 0, causing no change in position. The state’s covariance, however, is updated:

P 1 = AP 0A
T +Q =

(
1 ∆t

0 1

)(
1 0

0 100

)(
1 0

∆t 1

)
+

(
0 0

0 0

)
=

(
101 100

100 100

)
. (4.48)

As can be seen in (4.48), the uncertainty in velocity directly creates an uncertainty in location,

as the location depends on the current velocity, and thus its variance. Now, the object is actually

moving at 5m/s, and a single sensor observes the current location x, at a variance of 2m. The

first observation takes place after ∆t = 1 s, where the object resides at x = 5m, and is related

to the predicted state q1 via C

o1 =
(
5
)
, R =

(
2
)
, C =

(
1 0

)
. (4.49)

The Kalman gainK denotes the ratio between predicted covariance and measurement noise

K1 = P 1C
T
(
CP 1C

T +R
)−1 ≈

(
0.98

0.97

)
, (4.50)

172 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

that is, the ratio between 101 and 101 + 2 for the location x, but in state space, including the

covariance between location and velocity. UsingK to estimate the posterior then yields

q1 = q1 +K (o1 −Cq1) ≈
(
4.90

4.85

)
, P 1 = P 1 −KCP 1 ≈

(
1.96 1.94

1.94 2.91

)
. (4.51)

(4.51) depicts two important aspects of the Kalman filter. Even though the initial velocity ẋ

was unknown, assumed 0, and not observed by any sensor, the filter was able to estimate the

current velocity based on the covariance between location and velocity. Furthermore, even

though the initial variance estimation for the velocity was 100, it dropped to 2.91 after a single

measurement update, which did not measure the velocity itself.

While the Kalman filter provides a robust estimation of the unknown state after only a few

measurement updates, it only supports for linear predictions and measurement updates. When

angles and trigonometric functions come into play, the Kalman filter can not be used as is, due

to their nonlinear behavior. Regarding the localization context, this relates to predictions where

an angular heading is involved, or measurement updates that contain angular information, such

as radar and LIDAR [SCI13; TBF05]. For those cases, adjustments are required.

4.4 Extended Kalman Filter

As discussed within the previous section, linear transformations of a normal distribution gener-

ate another normal distribution, which is scaled and shifted by constants. However, not all pre-

dictions and measurement updates can be described using linear systems. As soon as functions

like sine and cosine are involved, the system becomes nonlinear. For most navigation purposes,

however, those functions are mandatory, e.g. to adjust an object’s current whereabouts based on

the estimated heading and speed, as mentioned within chapter 3

xt = xt−1 + vt−1 cos(Θt−1)

yt = yt−1 + vt−1 sin(Θt−1) .
(4.52)

When such nonlinear predictions are applied to a Gaussian prior, the resulting predicted believe

will rarely be distributed normally around the mean value [TBF05]. This behavior is depicted

in figure 4.5, where the Gaussian prior from the upper left is adjusted by three different trans-

formation functions for comparison

fa(x) = 2x+ 2 fb(x) =

x |x| < 1

4x− 3 sgn(x) else
fc(x) = x+

3

4
cos(x) . (4.53)

4.4. EXTENDED KALMAN FILTER 173

(a) linear (b) nonlinear (c) nonlinear

−6
−3
0

3

6

−6 −3 0 3 6 −6 −3 0 3 6 −6 −3 0 3 6

Figure 4.5: Linear and nonlinear modification of a Gaussian prior (upper left). If the density is modified

by a linear transformation (a), the resulting distribution is another Gaussian. The nonlinear transforma-

tions of (b) and (c) yield a non Gaussian result. Here, a Gaussian can be approximated (dashed curves)

by linearizing the transformation (dashed lines). Adapted from [TBF05, p. 57] figure 3.4.

When the linear transformation fa(x), shown in figure 4.5a, is applied to the Gaussian prior, it

is shifted and stretched by a factor of 2, and the result represents another Gaussian. The trans-

formation fb(x) from figure 4.5b uses a conditional combination of two linear transformations,

thus being discontinuous. While each of the two just stretches the prior, the overall result is non

Gaussian. The same holds true for fc(x), shown in figure 4.5c. The impact of cos(x) moves the

density’s mass towards one direction, producing a non Gaussian result. Transformations such

as fb(x) and fc(x) thus can not be used within the Kalman filter.

This drawback is addressed by the extended Kalman filter (EKF) [SSM62; Jaz70]. Com-

pared to the regular Kalman filter, it allows for arbitrary prediction and measurement update

functions, but still relies on Gaussian distributions. Switching from linear to arbitrary func-

tions within the prediction and measurement update step is achieved by replacing the matrix

multiplications with two functions, often referred to as g() and h():

qt =

linear︷ ︸︸ ︷
Aqt−1 +But (+X) ⇒ qt =

nonlinear︷ ︸︸ ︷
g(qt−1,ut) (+X)

ot = Cqt (+X) ⇒ ot = h(qt) (+X) .

(4.54)

The new mean qt is the result of a prediction function g(), and is directly mapped onto the

observations using a translation h(). By replacing the linear matrix equations with functions, a

general solution for arbitrary models becomes available. However, with the underlying distribu-

tion still being a multivariate normal distribution, the previous calculations of P t (4.38) andK

(4.44) are no longer valid. With the linear matricesA andC replaced by nonlinear adjustments,

the uncertainty becomes distorted, and is no longer a Gaussian (cf. figure 4.5).

The main idea behind the EKF is to approximate the two matrices A and C, based on the

functions g() and h(), at the drawback of accuracy [Do+09; SSM62]. Both matrices denote

174 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

how a covariance is changed, when an underlying random variable is transformed by them. So

do the two newly introduced functions g() and h(). Except that their change is not necessarily

linear (cf. figure 4.5). However, by assuming them to behave linearly throughout the whole

range, that is, enforcing linearization, A and C can be approximated. As the covariance is

unaffected by addition of constants, the approximation is given by the partial derivative of g()

and h(), with respect to each output, that is, their Jacobian matrix [BC12]

J =

∂f1(x)
∂x1

+ . . .+ ∂f1(x)
∂xj

...
∂fi(x)
∂x1

+ . . .+ ∂fi(x)
∂xj

 ,

∂f(x)

∂xj

= lim
∆→0

f(x1, . . . , xj +∆, . . .)− f(x)
∆

(4.55)

Like A and C, their Jacobian describes each dimension’s change in output depending on a

change in input. Similar to a linear tangent around a center point, known from the Taylor

series [Tay15]. Regarding the prediction and measurement update of the EKF, the smaller the

adjustments made by g(qt−1,ut) and h(qt), the more accurate the assumption of the linear

behavior is. The same holds true for the size of the covariances, det(P t) and det(R), yielding

more accurate approximations for smaller values. As can be seen in (4.55), even if the partial

derivative can not be determined analytically, it can be approximated numerically [TBF05].

For the EKF, the two matricesA and C from the Kalman filter are thus replaced by

A =

∂g1(qt−1,ut)

∂q1
· · · ∂g1(qt−1,ut)

∂qj
...

. . .
...

∂gi(qt−1,ut)

∂q1
· · · ∂gi(qt−1,ut)

∂qj

, C =

∂h1(qt)

∂q1
· · · ∂h1(qt)

∂qj
...

. . .
...

∂hi(qt)

∂q1
· · · ∂hi(qt)

∂qj

, (4.56)

which are then often referred to as F andH , respectively [GA01; Sär13]. For linear models g()

and h(), such as the presented example from (4.33) and (4.34), the content of the two Jacobians

is identical to the Kalman filter’s original matrices:

∂xt

∂xt−1

= 1 ,
∂xt

∂ẋt−1

= ∆t ,
∂ẋt

∂xt−1

= 0 ,
∂ẋt

∂ẋt−1

= 1 ⇒ A =

(
1 ∆t

0 1

)
. (4.57)

The extended Kalman filter allows for combining multiple sensors and prediction models with

nonlinear behavior, while still maintaining the benefits of fast, analytical calculations. This puts

the filter to a broad use, from electronic battery impedance observing [Do+09], to multicopter

location estimation [Gar+16]. Especially for the latter, the EKF presents an ideal candidate, as

potential movements oudoors are unlimited by surroundings. Here, the assumption of unimodal

4.5. PARTICLE FILTER 175

normal distributions provides an efficient analytical solution, to combine multiple sensors with

predictable behavior. Indoors, however, potential movements are constrained by architecture,

often yielding multimodalities and discontinuities, discussed in chapter 3. Furthermore, com-

pared to controlled vehicles, the movement of pedestrians is much more uncertain, requiring the

prediction to predict all potential variants. For such use cases, Kalman filters are too restricted

in terms of predictions and density modeling, requiring for different approaches.

4.5 Particle Filter

Working based on a single, multivariate normal distribution is the (extended) Kalman filter’s

key for fast, analytical calculations. Yet, this also represents its strongest drawback. For many

real-world scenarios, the state space is constrained, requiring multimodal, arbitrarily shaped

distributions. Referring to the models discussed in chapter 2 and 3, it becomes clear that the

combination of a building’s architecture, and human walking behavior, often can not be repre-

sented by such simple distributions. The predicted density must not propagate through impass-

able objects, such as walls, and must be able to divide itself, when e.g. more than one walking

direction is likely. The Kalman filter and its variants thus can not be used for most of the proba-

bilistic prediction and measurement update models discussed in chapter 2 and chapter 3, as they

rely on more complex density functions than a single normal distribution.

Besides the Kalman filter as analytical implementation of the Bayes filter, there are other,

sometimes non-analytical, representatives, allowing for arbitrary density functions. One pool of

approaches is given by the so called Monte Carlo algorithms, named and described by Stanislaw

Ulam, John von Neumann and Nicholas Metropolis [Met87] in the mid 1940s. The method was

developed during World War II, to solve problems related to thermonuclear reactions, where

many calculations either could not be formulated in an analytical manner, or were too cum-

bersome to calculate. Due to the advent of the first electronic computers, such as the ENIAC,

simulations of physical circumstances, such as the behavior of particles, like neutrons, became

possible. The results of the simulations were used to gather details on processes that could

not be described in an analytical way. Here, a particle was a single entity with some state and

behavior, stored on a punched card [MU49]. The simulation used multiple particles, stored on

several punched cards, representing a sort of initial state. The cards were fed into the compu-

tation unit, applying known physical models based on the parameters stored for each particle,

to derive a new set of particles. To estimate the result after a certain amount of time, this step

was repeated. Seeming slow at first glance, as described by Metropolis and Ulam, this type of

simulation can be highly parallelized. Every particle can be simulated on its own, whenever the

problem formulation assumes independence. This, however, is not always a given [Del98].

176 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

(a) (b) (c)

Figure 4.6: Approximation of a Gaussian (dashed line) using 50 discrete samples (dots). Samples can be

placed according to the underlying probabilities, yielding a concentration based on the distribution (a).

Alternatively, samples can be distributed uniformly throughout the whole state space, and are hereafter

weighted (dot size) based on the underlying probability, shown in (b) and (c). A continuous representa-

tion (solid line) is provided by applying a kernel density estimation.

Before simulating complex physical behavior, Ulam used the Monte Carlo method for a

statistical analysis on the probability of winning the Canfiled solitaire card game. While think-

ing about a combinatorial solution to the problem, he envisioned a more practical approach. It

was given by simulating multiple games based on random moves, and counting the number of

positive outcomes, using the power of the first computers [Eck87]. As postulated by the central

limit theorem, for an infinite number of repetitions, such random experiments will yield an al-

most exact result. For a limited number of runs, the quality of the approximated result depends

on both, the number of runs, and the complexity of the simulated problem. The Monte Carlo

method thus allows for an approximation of various types of problems, and the name relates to

the eponymous casino, gambling, effects of randomness, simulation and approximation.

Besides simulating experimental results, this approach can also be used to approximate ar-

bitrary density functions. Similarly to estimating the chance of winning the Canfield Solitaire,

a density can be approximated by a limited number of random samples from it [Neu51]. This

is depicted in figure 4.6. Explained in detail later, a set of equally important random samples

is distributed based on the probability of the density. That is, more likely regions receive more

samples, and vice versa (cf. figure 4.6a). Assuming a sufficiently large number of samples, their

histogram resembles the underlying distribution. For a continuous solution, the discrete samples

can be applied to a KDE (cf. section 2.7) which can be thought of as a smoothed, interpolated

histogram. As discussed, this approximation requires the random samples to follow the behav-

ior of the to-be-approximated density. While describing a uniform distribution by generating

uniformly distributed samples within a certain range is trivial, generating non uniform samples

based on an arbitrary PDF is not [Neu51].

A solution is given by drawing samples uniformly throughout the whole domain of the PDF,

but hereafter weighting them based on the PDF’s probability, at each drawn location. When us-

ing the weighted samples within the histogram or the KDE, the same result is achieved, shown

in figure 4.6b and 4.6c. However, this approach usually requires more samples, as the whole

4.5. PARTICLE FILTER 177

(a) (b) (c)

Figure 4.7: Approximation of a multivariate Gaussian (ellipse = 2σ) using 325 discrete samples (dots).

Samples can be placed according to the underlying probabilities, yielding a concentration based on the

distribution (a). Alternatively, samples can be distributed uniformly throughout the whole state space,

hereafter weighted (dot size) based on the underlying probability, shown in (b) and (c). A continuous

representation is provided by applying a kernel density estimation, shown as gray background.

state space of the distribution, even unlikely regions, must be covered. This is especially cum-

bersome for unbounded PDFs, such as the normal distribution, ranging between ±∞. Uniform

samples can be created either in a random pattern (see figure 4.6b), or using an ordered, equidis-

tant spacing, shown in 4.6c. For both, the size of the samples depicted as dots represents their

weight. It is given by the to-be-approximated PDF, shown as dashed line. As can be seen within

figure 4.6b and 4.6c, many of the samples are located within unlikely areas, receiving infinites-

imally small weights. For 4.6a, where samples are equally important, and drawn based on the

distribution, this effect does not occur. While 4.6c yields a smooth symmetric result for the un-

derlying density, equidistant spacing is rather inflexible, especially for large, high-dimensional

state spaces. Yet, the same holds true for 4.6b. Uniform sampling of high-dimensional prob-

lems with large domain ranges will yield many samples belonging to insignificant regions, as

the probability mass often concentrates within a small area. Regarding indoor localization,

the state space is e.g. given by all possible 3D locations within a building. Depending on its

size, numerous samples are required, even though pedestrian whereabouts are expected to be

focused on a small region. This drawback can already be observed for two dimensions, de-

picted in figure 4.7. For the uniformly distributed and weighted samples in 4.7b and 4.7c, only

≈ 16% belong to the 2σ region of the underlying multivariate normal distribution, indicated by

an ellipse. Whereas, by definition, 95% of the samples from 4.7a reside within the 2σ contour.

Within the following discussions on a Monte Carlo-based implementation of the Bayes filter,

the mentioned approaches are used to derive the results of prediction, measurement update, and

thus the posterior. One state of the art representative for nonlinear and non Gaussian estimation

based on Monte Carlo methods is the particle filter [Del96], also referred to as sequential Monte

Carlo method [LC98]. It uses a set of weighted samples to approximate the Bayes filter’s PDF

of the unknown state, based on the history of all observations and influences

p(qt | o1:t−1,u1:t) →
{(
qt,[i], wt,[i]

)}N
i=1

. (4.58)

178 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

In (4.58), qt,[i] represents one potential state at time t including its weight wt,[i]. The overall

density is approximated by N of such weighted samples, referred to as particles. For this

representation to denote a proper PDF, the constraint

∫ +∞

−∞

p(qt | o1:t−1,u1:t) dqt
!
= 1 →

N∑

i=1

wt,[i]
!
= 1 . (4.59)

must be satisfied. Like earlier with fingerprinting (cf. section 2.7), given this discrete approxi-

mation of several weighted samples, a continuous representation can be derived, e.g. by apply-

ing a multivariate KDE, adding a small uncertainty around every individual sample

p(qt
′ | o1:t−1,u1:t) ≈ kde

(
qt

′,
{(
qt,[i], wt,[i]

)}N
i=1

)

=
1

N

N∑

i=1

wt,[i]

exp
(
−1

2

(
qt,[i] − qt′

)T
Σ−1

(
qt,[i] − qt′

))

√
(2π)dim det(Σ)

.

(4.60)

Σ adds a certain probability around each individual sample. The multivariate distribution also

fits the individual ranges of the state parameters, like location (x, y, z) and heading Θ. An

example result is shown in figure 4.7, with the KDE as dark background. As can be seen, the

KDE of all three presented sampling approaches is almost identical.

To implement the Bayes filter, the particle filter must approximate the density presented in

(4.26). Ideally, the algorithm uses an existing set of weighted samples, the prior, and, for every

step, derives a new set, with its samples distributed according to (4.26), including the prediction

and measurement update. However, analytical solutions to draw from such a mixture of distri-

butions rarely exist [RC01]. While they can be approximated, e.g. by using a KDE on the prior

set of samples, and randomly creating new samples based on the prediction and measurement

probability, this involves sampling from the whole state space and thus is inefficient.

Literature suggests a solution to this problem, which is similar to figure 4.7b. If sampling

directly from the Bayes filter’s posterior is impossible, samples are taken from another distri-

bution, referred to as proposal, and hereafter weighted based on the posterior. While using a

uniform distribution as proposal is possible, just like shown in previous figures, this yields many

samples within areas of low probabilities, thus requiring more samples. Therefore, the proposal

should be close to the posterior, to yield many samples within areas of high probabilities.

For uniformly distributed proposals, the samples are weighted solely by the probability of

the posterior, just as shown within the figures. For all other cases, the proposal is biased, and

the weights can not be used directly, as the bias has to be removed beforehand. In general, when

samples are drawn according to pb(qt,[i]) but should be distributed based on pa(qt,[i]), the bias

4.5. PARTICLE FILTER 179

of pb(qt,[i]) can be removed by division [RC01; GSS93; Aru+01; TBF05]

wt,[i] =
pa(qt,[i])

pb(qt,[i])
=

posterior

proposal
. (4.61)

While Doucet et al. [DGK01] have shown that an optimal proposal distribution exists, and

is given by the one that minimizes the variance among all wt,[i] from (4.61), this approach

is not efficient for most real-world scenarios [Aru+01]. Therefore, many different proposal

distributions are discussed in literature, ranging from simple approaches towards combinations

with the Kalman filter, and hybrid techniques, often dependent on explicit use cases [RC01;

Wan+11a]. An important aspect regarding this choice is given by the way the proposal and

posterior are used during the calculation: It must be possible to draw random samples from the

proposal. Also, both, proposal and posterior, must be evaluable, to calculate (4.61).

One common choice for the proposal distribution thus uses the prediction model [RC01;

Wan+11a; Aru+01]. Regarding (4.61), this yields the following weight update function:

w =
posterior

proposal
=

bel(qt)

bel(qt)

=
ηp(ot | qt)

∫
p(qt | qt−1,ut)bel(qt−1) dqt−1∫

p(qt | qt−1,ut)bel(qt−1) dqt−1

= ηp(ot | qt) .
(4.62)

As the filter works with discrete samples from those distributions, it is rewritten as

wt,[i] = ηp
(
ot | qt,[i]

)
. (4.63)

By using the prediction as proposal, only the measurement probability is required to be evalu-

able. The prediction is not evaluated, but must support for drawing random samples from it. As

can be seen, the resulting setup works similar to the Kalman filter, but with discrete samples.

Based on a set of weighted samples, denoting the prior, a new set of samples is created, repre-

senting potential states after the prediction step, increasing uncertainty. This set is reweighted,

based on the current sensor observations, decreasing uncertainty. The combination of drawing

and weighing creates the posterior, as shown within previous figures.

This setup is often referred to as bootstrap filter [GSS93] or CONDENSATION algorithm

[IB98]. The movement models discussed in chapter 3 were designed with this kind of setup in

mind: All of them support drawing random samples, but most of them can not be evaluated,

as their results are also created by some Monte Carlo-like random process, such as the random

walks along a grid. While using the prediction as proposal is a convenient solution, it represents

one important drawback: Random samples are drawn solely based on the prediction, without

180 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

considering the current measurements, yielding samples only in regions where the prediction

is likely. As long as the prediction is certain, samples are placed ideally. If, however, the

prediction is uncertain, and does not match with the sensor observations, samples are placed

inefficiently within unlikely regions, resulting in a poor sampling of the posterior [RC01]. Due

to its analytical nature, the Kalman filter does not suffer from such problems. All following

discussions are focused on a particle filter using the prediction as proposal distribution.

In particle filter literature, the prediction and measurement update steps are also referred

to as sampling/transition and weight-update/evaluation [Del96; LC98; GSS93; TBF05]. Their

implementation is explained best by using an example: Assuming a dynamic object, moving in a

direction Θ in 2D space (x, y), with the unknown state given by (x, y,Θ). When the initial state

q0 is known, the Kalman filter uses the known attributes as mean, and assigns corresponding

variances, depending on the expected accuracy. If the initial state is unknown, a zero mean

Gaussian with infinite variances approximates a uniform likelihood of all potential whereabouts.

Within the particle filter, unknown initial states are modeled by uniformly distributing random

samples throughout the whole state space, all with the same weight

p(q0)→
{(
q0,[i], w0,[i]

)}N
i=1

, 〈q〉t,[] = 〈(x, y,Θ)〉t,[]
q
(x)
0,[i] ∼ U (. . . , . . .) , q

(y)
0,[i] ∼ U (. . . , . . .) , q

(Θ)
0,[i] ∼ U (0, 2π) , w0,[i] =

1

N
.

(4.64)

As can be seen in (4.64), compared to the Kalman filter, the particle filter requires discrete

bounds for the two uniform distributions for x and y. Furthermore, depending on this range,

more samples might be needed, to accurately cover the whole state space (cf. figure 4.7). If the

initial state is well known, all samples can be initialized with the known value instead.

This set of weighted samples serves as an approximation of the unknown state’s initial

distribution, which is then subject to the prediction step. The Bayes filter’s prediction (4.25) de-

noted something similar to a convolution, where every potential prior is adjusted by a prediction

model. For the particle filter, (4.25) is reinterpreted as

bel(qt) =
1

N

N∑

i=1

p(qt | qt−1,[i],ut)wt−1,[i] , (4.65)

where every weighted sample (qt−1,[i], wt−1,[i]) from the prior contributes to the prediction, de-

pendent on its weight wt−1,[i] and transition probability p(qt | qt−1,[i],ut). As discussed, this

density is approximated using a new set of random samples, which are drawn based on this

likelihood, therefore referred to as importance sampling [LC98; TBF05]. Regarding discrete

convolutions, this is similar to creating N new samples per input qt−1,[i], based on a convolution

kernel given by p(qt | qt−1,[i],ut). This, however, increases the number of samples after every

4.5. PARTICLE FILTER 181

prediction, which is inconvenient for practical use. Due to required memory and computation

time, the number of new samples must be reduced. As described previously, a density is approx-

imated by N samples, with quality increasing for larger N . Thus, 1 new sample for every of the

N input samples is an approximation, but a valid decision. That is, every sample qt−1,[i] yields

exactly one predicted sample qt,[i], distributed according to p(qt,[i] | qt−1,[i],ut). All resulting

samples combined denote the proposal distribution.

4.5.1 Random Sampling

In general, there are various ways to sample from a distribution. Most of which start with a

uniformly distributed value, as this is well-researched and can be provided by dedicated hard-

ware components [HD62; SMV15]. This uniform value is hereafter adjusted in some nonlinear

way that the distribution of several repetitions approximates the underlying PDF. In general,

this effect can be achieved by using a function’s inverse [Met87]. Regarding distributions, this

only applies to the exponential distribution [Kne18], where the inverse function can be used

to convert a uniformly distributed random variable Y ∼ U (0,maxx f(x, λ)), into a random

variable X , that represents the exponential PDF. This is due to the exponential distribution’s

similarity between its PDF and cumulative distribution function (CDF)

P (x) =

∫ x

−∞

p(x′) dx′ with P (∞)
!
= 1 . (4.66)

The CDF represents a general solution for sampling analytical densities, as its codomain stays

within [0, 1], and the function is unique. Using a uniform random variable Y ∼ U (0, 1), the

inverse P−1() can be used to create X , which resembles the behavior of the corresponding

PDF [Neu51]. This technique is referred to as inverse transform sampling [Kne18]. As the

corresponding output of the CDF is unique, this approach also works for symmetric PDFs.

However, for many distributions, like the normal distribution and discontinuous representatives,

the CDF can not be described analytically, and/or the inverse is undefined due to non-invertible

functions, such as the factorial n!. To achieve invertibility, additional approximations, such as

Stirling’s equation for the factorial [Moi56], would be required.

While this drawback can be addressed by using a discrete, precomputed lookup table (LUT)

to draw from, doing so imposes new drawbacks: Within the LUT, the keys are usually placed

equidistant, and the input range [0, 1] is divided linearly into equally sized chunks. The output

range, following the sampled distribution, almost always follows a nonlinear behavior. Regard-

ing the inverse CDF of a normal distribution, a change around x≈ 0.5 yields almost no change

in the output of y = P−1(x). Near x≈ 0 and x≈ 1, however, y = P−1(x) changes dramat-

182 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

(a) (b) (c)

Figure 4.8: Rejection sampling for three probability density functions. The histogram of all accepted

samples (large dots) resembles the underlying PDF. While this works for arbitrary distributions, the

computation time depends on the number of outliers (small dots) during the sampling.

ically, converging towards ±∞. Within those regions, the LUT suffers from two aspects: For

small changes in x, which should yield fairly large changes in y, the LUT will often provide

the same output. Furthermore, the contents of the LUT are limited to a discrete range. The

values provided for P−1(0) and P−1(1) are thus discretely limited, not resembling the infinite

behavior of a real normal distribution. While these drawbacks can somewhat be mitigated using

interpolation and adding explicit entries for x= 0→ −∞ and x= 1→∞, such adjustments

strongly depend on the underlying distribution, and are not generally valid.

A practical solution, inspired by Monte Carlo methods, is rejection sampling [Neu51]. It

works for every density where the PDF can be evaluated, even if the function is multivariate, dis-

continuous, or not given analytically. For the one dimensional case, two uniformly distributed

random variables are drawn, and compared against each other using the PDF

X ∼ U (−∞,+∞)

Y ∼ U (0, 1)
⇒

Z = {x ∈ X | y ∈ Y ≤ η p(x)}
Z ∼ p(x) ,

(4.67)

where η is used as a scaling factor, to ensure that PDF is mapped to the [0, 1] interval of the

random variable Y , enforcing η p(x) ≤ 1 ∀x. Usually, only a fraction [minx,maxx] of the

PDF holds meaningful results. When this range is known, above equation is approximated by

X ∼ U (minx,maxx)

Y ∼ U
(
0,max

x
p(x)

) ⇒
Z = {x ∈ X | y ∈ Y ≤ p(x)}
Z ∼ p(x) .

(4.68)

(4.68) leads to a visual representation of rejection sampling, shown in figure 4.8. x is drawn

from the PDF’s domain, and y from its codomain. Accepted are all samples that reside below

the curve described by the PDF. Just requiring the latter to be calculable, this allows for sam-

pling from arbitrary, discontinuous, multivariate PDFs. The drawback is required computation

time. Most of the drawn pairs will reside outside of the curve, and thus are rejected. Fur-

thermore, unbounded intervals between ±∞ can not be used practically, requiring for discrete

limits.

4.5. PARTICLE FILTER 183

All of above approaches exhibit considerable drawbacks. Actual solutions are thus often

tailored directly to the distribution to sample from, such as the Box-Muller transform [BM58],

to draw from a standard normal distribution. However, this is not possible for all distributions.

The random walks along the navigation grid (cf. section 3.5.2), for example, were already based

on samples, and can be used as they are. Other variants, such as some from section 3.3, and the

navigation mesh-based movement models from section 3.6, however, can not. On a first glance,

predictions such as (3.12), can only be sampled by rejection sampling, which is unsuitable for

use on smartphones. However, the prediction model can be reformulated, significantly reducing

the sampling complexity

q
(Θ)
t,[i] = α

q
(x)
t,[i] = q

(x)
t−1,[i] + v cos (Θ)

q
(y)
t,[i] = q

(y)
t−1,[i] + v sin (Θ)

wt,[i] = wt−1,[i]

α = q
(Θ)
t−1,[i] +N (0, σ2

turn)

v = u
(v)
t +N (0, σ2

step)

〈q〉t,[] = 〈(x, y,Θ)〉t,[] , 〈u〉t = 〈(v)〉t .

(4.69)

Despite seeming completely different, (4.69) describes the same behavior as (3.12), yet, from

a sample-based perspective. For each transition qt−1,[i] → qt,[i], the new heading is given by

the heading of the input sample qt−1,[i], plus an uncertainty, that is drawn from a zero mean

normal distribution. The location of qt,[i] is then given by the location from qt−1,[i], adjusted

by this heading and the known velocity, which is also modified by a zero mean Gaussian, to

incorporate its uncertainty. As can be seen, this prediction denotes a nonlinear movement,

including uncertainties for velocity and direction changes, clearly representing a non Gaussian.

However, only two Gaussians are required to perform this prediction. The complex problem

(3.12) is reduced to updating discrete states, by drawing random samples from two Gaussian

distributions. Mentioned earlier, this is well-captured by the Box-Muller transform. As the

resulting prediction is based on sample locations, all weights remain as they are.

(4.69) yields a new sample set with more variance than before, as discussed for the Kalman

filter. When this prediction is used as proposal, the increased uncertainty is reduced by the

sensor observations, similar to the Bayes filter’s measurement update (4.26)

bel(qt) = p(ot | qt) bel(qt) with bel(qt)→
{(
qt,[i], wt,[i]

)}N
i=1

. (4.70)

For 1D and multivariate normal distributions, (4.70) was solved analytically in section 4.1 and

4.3. For sample-based density representations, the set of weighted samples denoting bel(qt) is

simply reweighted based on (4.63), also including the previous weight

wt,[i] = p(ot | qt,[i])wt,[i] . (4.71)

184 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

(a) initial (b) transition (c) evaluation (d) transition (e) evaluation

Figure 4.9: Two transition and evaluation steps for example (4.69) with prediction parameters (4.72), and

observation (4.73), starting from a well known location using a particle filter with 50 samples. Ellipses

denote the observation’s 95% confidence. The density resulting from a KDE is shown as black shading.

That is, every sample
(
qt,[i], wt,[i]

)
from the prediction is reweighted based on its likelihood

p(ot | qt,[i]) of matching the current sensor observations ot. If a sample does not resemble

the measurements, its weight is decreased, thus affecting the histogram or KDE of all samples.

Afterwards, all new weights are normalized, to satisfy (4.59).

To depict (4.69), the initial state is assumed to be well known, with the velocity and heading

update as follows

q0,[i] = (0, 0, 0°) ∀i , u
(v)
t = 0.7 , σwalk = 0.1 , σturn =

π

8
. (4.72)

Current whereabouts are observed by a sensor, measuring the location (x, y), with its uncer-

tainty given by a multivariate zero mean Gaussian

Σ =

(
0.16 0

0 0.01

)
. (4.73)

Results when approximating this setup by 50 samples are depicted in figure 4.9. The initial

state is shown in 4.9a, where all samples share the same location and heading. After the first

transition, the samples in 4.9b are spread according to the uncertain heading and velocity (4.72).

Hereafter, their individual weights wt,[i] are adjusted based on the sensor observation. The de-

picted ellipse denotes the 95% contour of the sensor’s uncertainty. The dot size and arrow

intensity in 4.9c depict the resulting weights. As can be seen, the KDE, shown as dark back-

ground, concentrates where prediction and observation match. After the next transition in 4.9d,

the samples are spread again, hereafter refined by an observation in 4.9e. This setup is referred

to as sequential importance sampling [DGK01].

The example depicts a previously discussed issue. While 33 of the 50 samples reside within

the 95% contour of the observation 4.9c, only 22 reside within the observation of 4.9e. Over

time, most of the samples receive a low observation probability, and the important parts of the

posterior are described by only a few samples. This aspect requires adequate countermeasures.

4.5. PARTICLE FILTER 185

4.5.2 Resampling

The particle filter uses a limited number of samples to approximate the density of the unknown

state. Therefore, as many samples as possible should reside within probable areas, to ensure a

viable approximation. Figure 4.7a represents the ideal situation, where the unweighted samples

are distributed according to a PDF, and most of them reside within likely regions. When using

the transition as proposal, it creates such a set of samples. Afterwards, they are weighted based

on the observation. When not matching with the observation, a sample’s weight is reduced. Se-

quentially repeating those two steps, an increasing number of samples will obtain infinitesimally

small weights, and the approximation of the density suffers, known as degeneracy problem or

sample impoverishment [RC01; Wan+11a; DGK01; Fet+17].

By resampling, the weighted representation is converted back to an unweighted one, where

samples are placed based on probabilities. For this, unlikely samples are removed, and replaced

by likely ones. The purpose is to redistribute samples according to the posterior. Thereby,

the actual density must not be altered, within the limits of an approximation. By omitting

unlikely samples and adding more important ones, the problem of degeneracy is addressed. The

combination of using the transition as proposal, weighting this result based on the observation,

and (occasionally) applying resampling, addresses aforementioned issue. Due to the additional

resampling step, this setup is referred to as sequential importance resampling [RC01; Sär13].

The most common resampling technique is based on previously discussed inverse transform

sampling [GSS93]. Here, the set of samples is converted into a CDF, by cumulating weights.

Then, a uniformly drawn random variable X ∼ U (0, 1) is used to randomly pick elements

{(
qt,[i],W t,[i]

)}N
i=1

with W t,[i] =
i∑

j=1

wt,[j] . (4.74)

For discrete samples, drawing random elements can easily be accomplished. Instead of cal-

culating P−1() for some random variable X , to determine the probability that lead to it, the

sample that lead to the corresponding W t,[i] is chosen. As the cumulative weights are strictly

ordered W t,[i] ≥ W t,[i−1], this sample is determined by a binary search that yields the first

sample satisfying W t,[i] ≥ X [IB98], resulting in the overall complexity of O(n log n). All

N newly generated samples are assigned the same normalized importance weight wt,[i] = 1/N.

As samples with high initial weights occupy a larger segment of the cumulative [0, 1] interval,

they are drawn more often than samples with lower weights. Unlikely samples thus often are

removed, slightly affecting the overall density approximation. This implementation is referred

to as multinomial resampling [DC05].

186 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

With minor adjustments, the complexity can be reduced to O(n). Instead of drawing one

uniformly distributed random number per output sample, the [0, 1] range of the CDF can be

sampled linearly, as shown in 4.6c and figure 4.7c. Pseudo random numbers are generated by

starting at e.g. x0 = 0, and using a fixed increment xj = xj−1 + 1/N. This also produces

uniformly distributed samples ∈ [0, 1], but in a linear way. As xj is strictly increasing, exactly

as the cumulative weights W t,[i], the binary search can be omitted. Dependent on its weight

interval [W t,[i−1],W t,[i][, and 1/N, a sample is skipped, or added more than once to the output.

Due to sampling evenly from the CDF, this is referred to as systematic resampling [BDH04].

Bolić et al. [BDH04] provide an overview on resampling techniques, comparing their com-

putational and memory performances, important for smartphone use. They also provide an

adjustment named residual-systematic resampling, where the cumulative weights (4.74) are

not required, further reducing the complexity. Another overview is given by Douc and Cappé

[DC05], yet focusing on probabilistic differences, such as the variance of the result.

Aforementioned approaches only use existing samples, and each input sample might be

contained more than once within the resulting sample set. While this still increases the number

of meaningful samples approximating the posterior, the variance of the state space is slightly

reduced. A more correct resampling is given by a continuous approach. First, the discrete

samples are converted to a continuous density, using the KDE (4.60). This creates a calcu-

lable PDF, which closely approximates the posterior. Hereafter, the presented rejection sam-

pling can be used to randomly draw samples from this PDF. For each dimension of the state,

a random sample is drawn within the range of its domain. For the current example, the co-

ordinates (x, y) might e.g. be constrained by the building, and Θ ∈ [0, 2π[. These randomly

sampled parameters denote a potential state q. It is accepted, when the corresponding KDE

kde (q, . . .) yields a probability that is higher or equal than an uniformly drawn random vari-

able X ∼ U (0,maxq kde (q, . . .)). This approach produces a completely new set of distinct

samples from the posterior, at the expense of significantly increased computational costs, due

to both, the KDE and the rejection sampling. While the KDE estimation can be accelerated

by approximations, the overhead is still notable. In practice, determining the upper bound

maxq kde (q, . . .), is non trivial as well [Ebn+17; Bul+18]. Furthermore, the KDE from (4.60)

is unconstrained. That is, regarding localization problems, if several samples are located near

physical obstacles, the KDE also assigns a non-zero probability to nearby locations behind the

obstacle. This potentially yields resampled samples moving through walls, and other obstacles.

The difference between discrete and continuous resampling is shown in figure 4.10. Simply

copying samples based on their probability reduces variation, as some appear more than once.

The KDE-based resampling, however, increases the variation. Within the depicted example, a

Gaussian with σx = σy = 0.05, σΘ = 0.03, and no covariance was used as KDE-kernel.

4.5. PARTICLE FILTER 187

(a) input (b) simple (c) KDE-based (d) input (e) simple (f) KDE-based

Figure 4.10: Comparison of two resampling strategies, for two weighted posteriors (a) and (d). The

simple approach in (b) and (e) uses direct copies from (a) and (d), based on their likelihood. Here,

some samples appear more than once. The KDE-based resampling in (c) and (f) draws new samples by

rejection sampling. The latter clearly shows more variation than the simple variant.

Independent of the strategy, resampling slightly affects the approximation of the posterior.

Therefore, it is often only applied when needed. That is, when an insufficient number of samples

has a significant weight assigned to them. This number is referred to as the effective sample size

[KLW94], depends on the variance among sample weights, and can be approximated [Aru+01]

Neff =

(
N∑

i=1

(
wt,[i]

)2
)−1

with

N∑

i=1

wt,[i]
!
= 1 . (4.75)

Whenever this number falls below a threshold heuristic, resampling is applied. However, with

resampling, one initially mentioned drawback of using the transition as proposal remains, and

gets even more pronounced. In case of an erroneous measurement, the approximated density

can end up with only a few samples with high weights, rendering the majority of samples unim-

portant. After resampling, unimportant samples are likely to be removed from the set. The next

transition is solely based on the samples that matched the erroneous measurement. Analytical

solutions, like the Kalman filter, are able to compensate such single faulty measurements. The

particle filter, however, entails the risk of not recovering from the faulty measurement, due to

insufficient samples belonging to actually more correct state representations [Fet+17].

4.5.3 Estimation

Yet unanswered is the question of how to infer the unknown state. For the Kalman filter, the

mean of the posterior denotes the most likely estimate of the unknown state, usable as-is. For

the particle filter, a similar estimation is given by the weighted average of all samples [CGM07]

qt
∗ =

N∑

i=1

qt,[i]wt,[i] when

N∑

i=1

wt,[i]
!
= 1 . (4.76)

Due to aforementioned effects, this estimation should be conducted before applying the resam-

pling step [LC98; CGM07]. When the sample set denotes a Gaussian, or at least an unimodal

188 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

(a) (b) (c) (d)

Figure 4.11: Estimation of the unknown state using either the (weighted) average of all samples (square)

or the location of the highest probability within the KDE (circle). For densities such as (a), both ap-

proaches provide similar results. For densities like (b) and (c), often encountered in indoor localization,

the KDE is able to provide more plausible results by focusing on the actual maximum. Especially for

(c), where the weighted average is located directly between two modes. In case of many regions with

equal probability (d), the KDE can not provide a stable result, as there is no clear maximum value.

distribution, the weighted average yields a viable, single estimation of the unknown state. For

multimodal distributions, however, this approach will often yield incorrect results. Assuming a

sample set with two modes, similar in probability. Here, the weighted average resides between

both modes, where the probability will, most likely, be rather small, as shown in figure 4.11c.

Literature suggests various other estimation techniques, often dependent on the use case and

resulting posterior. A broad overview on available discrete and continuous techniques is given

by Deng and Wickham, discussing limitations and applicability of several algorithms [DW11].

Due to its simplicity, a common approach is to just use the sample that corresponds to

the highest individual weight wt,[i], therefore named best particle [Nis+09]. However, this is

analytically incorrect for the presented filter setup. When the transition is used as proposal,

the weights only denote the likelihood of the observation. The probability of the predicted

prior is modeled solely by the placement of samples, and thus completely discarded when only

considering sample weights [CGM07]. A compromise is given by a spatially limited weighted

average, only considering the samples within some vicinity around the one with the highest

weight. Whether a sample belongs to this vicinity, is determined by a heuristic. For correctness,

the weights of all samples belonging to this region must be normalized to sum up to 1.

Adaptive clustering techniques are similar to this approach, approximating the density using

a reduced number of new samples based on their probabilities, referred to as vector quantization

[UN94]. They are especially useful when regional estimations are preferred over single scalar

results. Also, they can be considered within the resampling process, or to strategically decrease

the number of samples, to reduce computational requirements without affecting the quality.

Besides discrete approaches, other techniques derive a continuous representation of the sam-

ple set. Regression-based methods can e.g. be used to infer a nonlinear function that approxi-

mates the weighted samples. Type and degree of the function strongly depend on the underlying

4.5. PARTICLE FILTER 189

problem, as well as resulting samples [Loa99]. The derived function then serves as basis for

further evaluations. Similar to the KDE, this derives a continuous representation of the density,

approximated by the sample set. However, neither of both directly indicates the most likely

state, as given by the Kalman filter’s mean. Such a single value is given by finding the maxi-

mum within the continuous representation

qt
∗ = argmax

q

kde
(
q,
{(
qt,[i], wt,[i]

)}N
i=1

)
, qt

∗ = argmax
q

freg (q) . (4.77)

When the fitted freg (q) allows for calculating extrema, qt
∗ can be determined analytically. For

the KDE-based variant, however, optimization algorithms are required for estimating qt
∗. These

algorithms suffer from the risk of not converging, or getting stuck within a local maximum (see

section 2.7). Furthermore, the complexity of KDE calculations depends on the number of sam-

ples, and the chosen kernel. Discrete approximations can address this problem, simultaneously

providing the global maximum that was encountered during the discrete calculations [Bul+18].

Figure 4.11 depicts a comparison between the weighted average, and KDE-maximum estima-

tion techniques. In case of multimodalities, or oddly shaped densities, the KDE can circumvent

issues encountered with the weighted average (cf. 4.11b and figure 4.11c). For densities like

figure 4.11d, where many regions share a similar probability, the KDE can provide unstable

results. Additionally, small changes within the underlying sample set can shift the global maxi-

mum to some completely different state, yielding noisy estimations over time. This effect is not

confined solely the KDE, but affects others as well.

All aforementioned estimations derive the most likely state solely based on the current pos-

terior sample set. For many real-world use cases, like localization and navigation problems,

there is a strong temporal dependency between the sets. It thus makes sense to relate the cur-

rent, and previous estimations. This aspect is addressed by smoothing techniques, considering

not only the current but also previous sample sets, similar to a trajectory [GDW01].

By including the history of sample sets, temporal ambiguities can be addressed. A density

that is split in half by an obstacle yields potential issues within the estimation. If one of the

two modes gets unlikely over time, e.g. due to architectural constraints or sensor observations,

smoothing can be used to refine previous estimations, preventing splitting from the start. While

this is mainly suitable for offline use, where pre-recorded datasets are analyzed and refined,

online use is also possible. By slightly delaying the result presented to the user, future observa-

tions and predictions become available, and can be considered when deriving the delayed result.

This is referred to as fixed lag smoothing [PW09; Fet+16].

As shown, in contrast to the Kalman filter, the particle filter is more versatile, but comes at

the cost of being more discrete, and having increased computational requirements.

190 CHAPTER 4. RECURSIVE DENSITY ESTIMATION

4.6 Summary

Within this chapter, the theoretical background of sensor fusion was discussed. It is used to

combine the information from sensors (chapter 2) with the pedestrian walking models, and the

floorplan (chapter 3). The presented fusion uses the Bayes filter. It describes the most likely

state of a problem, based on the history of all sensor observations, and predictions. There

possible implementations for the Bayes filter were introduced: The Kalman filter, the extended

Kalman filter and the particle filter. During discussions, the benefits and drawbacks of each

implementation were pointed out.

After briefly describing the limitations of simple filtering, such as the moving average, the

concept of the probabilistic Bayes filter was introduced. It derives the likelihood of an unknown

state, based on sensor observations and predictions. That is, instead of using scalar values only,

it considers uncertainties, to derive both, the globally best result, and its quality. It also allows

combining multiple sensors, all contributing to the same result. A prediction step is used to

describe the behavior of the unknown state, and to include external influences.

The Kalman filter was introduced as an analytical implementation of the Bayes filter. It

uses matrices and vectors, to describe the unknown state, and its behavior, from the viewpoint

of multivariate normal distributions. While being analytical and optimal, it is limited in terms

of supported problems, which are required to be linear and Gaussian. The extended Kalman

filter mitigates some of these limitations, supporting nonlinear problems, but is still bound to

multivariate normal distributions. Thus, both filters are unsuitable for floorplan-based indoor

localization and navigation, as discrete influences, such as walls, can not be considered.

To handle the complex probability densities from chapter 2 and 3, the particle filter was

introduced. It also implements the Bayes filter, but uses discrete samples to approximate all

required probability densities. While this is more versatile, it introduces discreteness, and in-

creases computational overhead, dependent on the number of samples used. Furthermore, the

process requires drawing random samples from the densities described in 3. Therefore, the

concept of random sampling was introduced theoretically, including brief modifications, to re-

duce computational complexity. Hereafter, sensor observations are included by weighting all

resulting samples. To ensure that they remain representative, the concept of resampling was

discussed. Finally, the most likely state is inferred by one of several estimation techniques.

Focusing solely on the theoretical backgrounds, several problem-dependent aspects are still

unresolved. The following chapter will thus focus on the practical aspects concerning sensor

fusion in smartphone-based pedestrian indoor localization and navigation.

Chapter 5

Indoor Navigation

Previous sections examined the individual components, which are required for a smartphone-

based indoor localization and navigation system, as shown in figure 1.3. Observations from sen-

sors were used to evaluate potential movements or whereabouts, and models predicted pedes-

trian walking behavior, utilizing the building’s floorplan to restrict movements by known archi-

tecture. Hereafter, both parts were combined on a probabilistic basis, using recursive density

estimation to derive potential whereabouts after a certain amount of time, based on all sensor

observations, movement predictions and the building’s floorplan. However, many minor, yet

important, aspects are still vague or unclear. Such as the way observations and predictions are

fused within the recursive density estimation. While the general approach was discussed in

detail, it e.g. remains unclear whether sensors should be considered within the prediction or

evaluation step. Furthermore, while the necessity for an update interval was briefly discussed,

its actual timing, and whether it depends on the pedestrian currently walking or resting, is not

yet defined. Similarly, the semantic floorplan, used to derive the navigation grid or mesh from

chapter 3, was assumed to be a given. Actual strategies for deriving it, e.g. based on existing

floorplans, with support for later modifications, are yet to be discussed. Depending on the ar-

chitectural complexity of the building, and the resulting floorplan, certain issues might arise,

affecting the quality of the localization, eventually causing errors, yielding the recursive den-

sity estimation to get stuck. Potential issues, and how to address them, also require further

examination.

This section provides missing details, briefly describing requirements for editing and deriv-

ing indoor floorplans. How to actually fuse sensors on a smartphone, providing visual feedback

in realtime, without requiring large amounts of computational power and memory. Preventing

potential issues, and how to set up the system from scratch, with later experiments in mind.

191

192 CHAPTER 5. INDOOR NAVIGATION

(a) (b) (c) (d)

w
id

th

1

23

4 1

23

4

1’

2’
3’

4’

Figure 5.1: Representing walls using either a line between two points and a certain width, or a quad of

four points (a), and potential intersections between them (b). If one wall ends within another, two of its

four points are replaced by intersections (c). Two connected walls (same from/to) are either joined by

calculating an inner and outer intersection (d), or by cutting one and enlarging the other (dashed/dotted).

5.1 Complex Indoor Maps

Besides providing a visualization to the pedestrian, previous discussions on sensor and move-

ment models clearly indicated that a floorplan with semantic information yields substantial

improvements for the localization process. The following thus gives a brief overview on the

way floorplans are modeled, to be usable within the overall localization and navigation system.

Especially, not requiring large amounts of data, allowing for adding semantic information, and

maintenance [ARC12]. Omitting minor exceptions [Fet+18], most buildings are composed of

stacked floors with a constant height, connected by stairs, elevators or escalators, and their walls

starting at the bottom, up to the ceiling, using the complete height. Floors and walls can thus

be modeled in the 2D plane, e.g. by using 2D polygons, or other suitable primitives. For a 3D

representation, walls are extruded, e.g. based on the current floor’s height, reaching the ceiling.

For the presented system, all walls are modeled as 2D line-segments, defined by two points,

and a certain thickness, denoting a quadrilateral. The latter is extrudable up to the floor’s height,

to form a 3D obstacle. When using this representation, adjacent or intersecting walls do not

share a smooth interconnection. As depicted in figure 5.1, when the angle between both is not

a multiple of 90°, they overlap in one of the shown ways. While issues could be mitigated by

placing walls only at multiples of 90°, many buildings will not satisfy this requirement [Fet+18].

Incorrect intersections are only a minor problem for calculating the navigation grid/mesh, but

they impose issues when using the resulting model for 3D ray tracing, or within a 3D visual-

ization presented to the user. Depending on the type of overlapping, z-Fighting can e.g. cause

visual artifacts [VF13]. Also, 3D ray tracing approaches require clear entry and exit points for

the rays when traversing obstacles, such as walls. This requirement is not satisfied when one

wall ends within another. When wall thickness is considered, as depicted in figure 5.1, 2D ray

tracing is affected as well.

5.1. COMPLEX INDOOR MAPS 193

(a) (b) (c) (d)

Figure 5.2: Typical wall with cutouts for doors and windows (a). An optimal triangulation of the wall’s

front face requires 10 triangles (b). The discussed simple triangulation algorithm requires 12 triangles

(c). The final 3D result, including lateral surface and window frame, requires 48 triangles (d).

There are multiple options to address intersecting 3D elements. One of the most common

are Boolean operations on 3D meshes. However, depending on input geometry and Boolean

operation, related approaches often produce suboptimal results due to numerical issues [JHS98;

Wan11]. As all walls will be modeled in 2D, their intersection problem can also be solved

2D, using quadrilateral intersections, followed by extruding the modified quad by a predefined

height, to create the 3D obstacle. The two most common wall intersections within floorplans are

walls ending within another, and walls directly connected to each other, shown in figure 5.1b.

To detect walls ending within other walls, each of the four corner points from figure 5.1a is

tested, whether it is contained within the quad of another wall. This point-in-polygon problem

can e.g. be solved using the even-odd rule or by calculating the winding number [HA01]. If a

point is identified to end within another wall, its line segment is intersected with the ones from

the other wall, using simple line-line intersections.

Similarly, walls are connected to each other if they share one of their defining points. To

smoothly connect them by creating a corner, two intersection points are identified, and segments

are adjusted accordingly (cf. figure 5.1d). While this does not create realistic wall endings, as

both are joined via a shared edge, it works reasonably well for both, 3D visualization and ray

tracing. For a realistic joining, one of the two walls must be marked explicitly as the longer outer

one, and the other as the shorter inner one, depicted as dashed and dotted lines in figure 5.1d.

Here, it is not directly clear which of both variants is correct.

Additionally, cutouts for doors, and optionally windows, are required. Again, Boolean mesh

operations could create them by subtraction. However, assuming that all walls, doors and win-

dows are defined as extruded 2D quads, and doors/windows can not be placed above but only

beneath each other, the problem is reduced to a simple triangulation, shown in figure 5.2. Divid-

ing the wall into vertical slices, a window cutout is created by placing a 3D quad (two triangles)

above and below it. Likewise, doors are created by placing a 3D quad above. The remaining

empty parts right and left of the doors and windows are also filled by quads. This triangula-

tion scheme is depicted in figure 5.2c. While the result uses more than the optimal number of

triangles, shown in figure 5.2b calculated by 2D polygon Boolean operation [JHS98; MK89],

194 CHAPTER 5. INDOOR NAVIGATION

Figure 5.3: Stairs are defined by multiple adjacent quads (left), each given by two 3D points and a width.

When configuring adjacent quads to be joined by intersection (similar to figure 5.1), this method also

allows for approximating circular stairs. Quads can easily be converted into a 3D representation using

triangulation (right). The approximated circular stair differs only slightly from the correct representation.

the approach does not require costly intersection operations [HNU99], and is numerically sta-

ble. After triangulating the front and back of the wall, its lateral surface and window frame are

created by zig-zag connecting the front and the back face vertices, e.g. using a triangle strip

[KSS17]. Figure 5.2d shows the final 3D result for a wall with one door and one window.

Due to numerous architectural options, stairs require increased modeling effort. Yet, most

of them can be divided into several adjacent 3D quadrilaterals, defining both, the stair’s shape

and slope. To allow for 2D modeling, each quad is defined similarly to walls, using two points,

and a thickness. The required 3D component is included by assigning both points an altitude

above ground. A stair directly connecting two floors is thus expressed as a single quad, starting

at the current floor, and ending at some altitude above it. For typical stairs, three quadrilaterals

are used. One for the first slope, up to half the floor’s height, one for the plateau in between,

and one for the second slope, up to the next floor. This requires quads to be directly adjacent,

gapless, sharing one edge, and can be addressed similarly to walls, by intersecting adjacent

quads, adjusting their edge-points for a smooth intersection. All cases are shown in the left

of figure 5.3. As before, the quad-based definition is used to derive a 3D representation, by

linearly interpolating along each quad’s edges, dividing it into several treads, based on average

tread sizes. The interpolated points are then duplicated, and adjusted in altitude to denote the

edge-points of each tread’s upper and lower side. Pairs of eight vertices are then connected by

triangles, similarly to a cube. Resulting 3D representations are shown in the right of figure 5.3.

Similarly to stairs and walls, floors are modeled as 2D polygons, containing cutouts for stair-

wells, escalators and elevators. Each polygon is equipped with semantic information, whether

it belongs to an indoor or outdoor area, e.g. to disable or enable the GPS component. Including

cutouts directly when drawing a new polygon is often cumbersome. Therefore, the floor can

be modeled without cutouts first, hereafter defining additional cutout-polygons, and subtracting

them from the base using Boolean operations [Vat92]. To determine the polygon’s 3D repre-

sentation for visualizing or ray tracing, it is converted to triangles, using algorithms supporting

polygons with holes [Hel98].

5.2. FUSING ALL COMPONENTS 195

Figure 5.4: Screenshot of the developed Map-Editor, and a realistic rendering of the edited 3D map.

Maps discussed and presented within this work were created using a developed map-editor

(see figure 5.4), allowing for fast editing, and including semantic information. Its 2D definitions

are used to derive a 2D visualization for the pedestrian, and to generate the navigation grid

from section 3.4. Similarly, the derived 3D representation serves as 3D visualization, and is

required to build the navigation mesh from section 3.6. Even though it describes architecture in

2D and per-floor, instead of using real 3D modeling, all encountered buildings were editable,

representing a viable tool for the indoor localization and navigation system.

5.2 Fusing All Components

The two main approaches for fusing available sensors with potential pedestrian movements,

discussed in chapter 4, were the Kalman filter, and the particle filter. Both combined a move-

ment prediction with an evaluation based on current sensor observations, that is, a recursive,

periodic update routine, visualized in figure 5.5. While previous discussions focused mainly on

the mathematical background, they did not consider all aspects required for a smartphone-based

pedestrian indoor localization and navigation, examined within the following.

As pointed out, the Kalman filter is an analytical implementation of the Bayes filter. While

results can be calculated quickly without requiring large amounts of memory, it is limited to

linear Gaussian problems. This is mitigated by the extended Kalman filter with support for non-

linearity, yet, still limited to Gaussian formulations, neither supporting multimodalities, often

encountered with lateration (see section 2.7), nor offering capabilities for including floorplans.

The Kalman filter’s use concerning smartphone-based indoor localization and navigation is thus

rather limited. While there are constellations where analytical filters are sufficient, or can be

used additionally, the particle filter is a better suited implementation of the Bayes filter for an

indoor localization system. Its sample-based density representation allows for multimodalities,

encountered within observations from Wi-Fi, walks splitting into multiple directions, and non-

linear problems, like the heading-based movement required for most prediction models from

196 CHAPTER 5. INDOOR NAVIGATION

Acceleromter Gyroscope Magnetometer

IM
U

Wi-Fi GPS Barometer

S
en

so
rs

R
ec

u
rs

iv
e

D
en

si
ty

E
st

im
at

io
n

3D MapMovement Prediction

Evaluation

Location Estimation

Navigation Grid

Navigation Mesh

F
lo

o
rp

lan

Editor

R
ec

u
rs

io
n

Figure 5.5: Overview of the overall system. Used as visual reference for the following discussions.

chapter 3. By using individual samples, it is also possible to evaluate intersections with the

floorplan, for each potential movement. Furthermore, the sample-based representation directly

resembles the concept of simulation, introduced and required for the random walks in sec-

tion 3.5. Likewise, this filter matches both concepts for representing a sample-based density,

discussed for predictions on the navigation mesh in section 3.6: Either by the distribution of

samples with identical importance, or by assuming a uniform distribution, and applying weights

to them. As the particle filter is well suited for solving the overall problem formulation, this

section focuses solely on this type of filter, mentioning the Kalman filter only for reference, or

when explicitly applicable. Yet, the particle filter comes at the cost of significantly increased

computational requirements, already discussed for the simulations of statistical processes, as

the approximation quality strongly depends on the number of samples, that is, used particles.

Repercussions and potential workarounds will also be addressed by the following remarks.

For a first impression on the system’s behavior, figure 5.6 depicts a 2D example, using step-

detection, turn-detection, and an absolute evaluation, similar to the one provided by Wi-Fi or

GPS. The unknown state is defined as 〈q〉t = 〈(x, y,Θ)〉t . At t = 0, location and heading are

unknown. As discussed, this is modeled by uniformly placing particles (dots) throughout the

walkable area, each with a random heading (thin lines). When this initial density is updated, all

particles walk ≈ 0.7m (1.4m/s) into the direction of their currently assigned heading, causing

some of them to encounter impassable walls, indicated by gray dots for t = 1. With every

subsequent update, the heading q
(Θ)
t is adjusted based on turn-detection, before moving another

≈ 0.7m. The absolute evaluation at t = 3 favors all particles within the circle, denoting the

1σ contour. Most particles outside of this range are unlikely hereafter, indicated in gray. After

several updates, only a fraction of all initial particles remained likely, and the system converges

with the pedestrian’s actual walking path, indicated as thick line. Within the following, all

omitted details, on when to perform a filter update, which observations to include, how to handle

particles encountering an obstacle, which resampling and estimation to use, will be discussed.

5.2. FUSING ALL COMPONENTS 197

t = 0 t = 1 t = 3 t = 5 t = 9

Figure 5.6: Example behavior, ignoring implementation details. At t = 0 all particles (dots) are uni-

formly distributed. After one filter update (t = 1), many of them described impossible walks (gray dots).

The evaluation at t = 3 favors all particles within a small area (circle). Hereafter, the density converges

with the actual path (thick gray line). Estimations are based on the weighted average (black line).

5.2.1 Update Frequency

One major aspect of Bayes filters, also concerning system performance, is the time period be-

tween consecutive updates t−1→ t. That is, how often a prediction is performed and evaluated

against current sensor observations. It is indicated by the loop within the left of figure 5.5. This

time period influences how often new location estimations are available, and thus how often they

can be presented to the pedestrian holding the smartphone. In terms of user experience, faster

updates are preferred, as the pedestrian receives an immediate feedback on current whereabouts.

As discussed, the same holds true for most movement prediction models, being more suited for

shorter walks, that is, faster update rates (see chapter 3). Especially the navigation mesh, not

using shortest path calculations but simple reachability tests, is more accurate for smaller walk-

ing distances. On the other hand, faster updates require more computations, affecting battery

life. Many indoor localization systems refer to a constant update rate around 500ms [Jim+12;

Hel+13; Ndz+17; Ebn+17]. This value is potentially inspired by aforementioned pedestrian

walking speeds, of approximately two steps per second. However, when assuming a constant

update rate, predictions and evaluations are also performed when the pedestrian is currently

resting, draining the smartphone’s battery unnecessarily. To provide instant visual feedback,

still conserving energy, it therefore makes sense to couple updates with the step detection pro-

cess, only updating when a step was detected [Fet+18]. This strategy represents the basis for all

following discussions, and is shown in figure 5.7, giving an overview on time and data behavior,

that is, individual sensor contributions, intended as visual reference.

When using a step-detection-based update strategy, the current location of every particle is

first used to determine whether it belongs to a leveled ground floor, or a sloped part of a stair.

This information is then used to adjust the step length µstep, that is, the walking distance for the

prediction, discussed in chapter 3. When the pedestrian is currently resting, the necessity for

updates depends on the visualized information. If solely the current whereabouts are presented,

198 CHAPTER 5. INDOOR NAVIGATION

Gyroscope

Accelerometer

Wi-Fi / GPS

Predict

Evaluate

Resample

Estimate

Figure 5.7: Overview on the system’s time and data behavior. A prediction occurs when a step is indi-

cated by the accelerometer (big dot), and includes the cumulated change in heading from the gyroscope.

When Wi-Fi or GPS observations are available, the prediction is evaluated before conducting the estima-

tion and resampling. The barometer and magnetometer, not shown within this setup, are applicable to

both, prediction and evaluation. Theoretical backgrounds are discussed within the text.

no visual updates are required, as they remain constant. When the currently estimated heading

is visualized, updates might be required, e.g. by triggering them not only after every detected

step, but also after some timeout, when no steps were detected. In case of no steps, the walking

length for the prediction model can then be set to µstep = 0, with an uncertainty σstep > 0,

allowing for slight deviations [Ebn+15].

The step-based update also covers probabilistic step-detection variants, like (2.29). Here, a

filter update is performed for every peak detected within the accelerometer’s magnitude. De-

pending on its likelihood to denote a step, a fraction of the particles uses the estimated step

length. The remaining part uses a walking distance of zero with a small uncertainty. By con-

figuring the number of particles for each of the two fractions based on the step-probability, the

resulting prediction directly follows previous discussions on (2.29) and (2.31).

Shown in figure 5.5, independent of the chosen movement model, and the spatial model

used for representing the floorplan, the first action of the filter update performs a movement

prediction, by adjusting every single particle, e.g. based on a step length and heading. Here-

after, the evaluation fuses this intermediate result with current sensor observations to derive the

posterior. For this second step, it is not directly clear which values may be considered, and

which must not, as (4.21) includes only the most recent observations. Due to the sensors not

sharing a common update rate, there might be recent observations for sensor A, but none for

sensor B. When performing filter updates based on detected steps, that is, approximately every

500ms, all IMU Sensors and the barometer can be expected to have provided new observations

since the last filter update. Their readings can always be included within the evaluation to refine

the prediction. GPS and Wi-Fi, however, might not have provided new observations, as their

update rates are much slower, or they even might have failed completely. It is thus unclear how

to proceed during the evaluation, when no recent sensor observations are available.

5.2. FUSING ALL COMPONENTS 199

When referring to the GPS, the last received reading could be re-used, when its error in-

dication is adjusted depending on its age. That is, σgps increasing with the age of the sensor

observation. However, when using a Gaussian within (2.17), this yields an evaluation where

the last sensor indication still denotes the most likely whereabouts, but nearby locations now

being more similar in terms of likelihood, due to the increased uncertainty. When the regional

distribution (2.22) is used instead, the behavior is different, and more as intended, as the region

of potential whereabouts is increased, without favoring a single location. The correctness of

re-using old observations by increasing their uncertainty thus strongly depends on the chosen

probabilistic comparison. Similar rules hold true for Wi-Fi evaluations. However, as there are

multiple observations, one per access point, multiple uncertainties must be adjusted, depending

on the age of each measurement. After a certain amount of time, uncertainties become too large

for observations to be valuable. In such cases, simply omitting missing observations is a better

choice [TBF05]. The same holds true for normal distribution-based comparisons of old obser-

vations, as they can affect the result negatively. Thus, Wi-Fi and GPS are only included when

recent sensor readings are available. All other sensors provide a decent refresh rate, for observa-

tions to be available at every single filter update. This allows for including the current compass

heading, the latest absolute or change in atmospheric pressure, or the currently detected activity

within every single evaluation.

5.2.2 Including Observations

Mentioned within chapter 2 and figure 5.7, sensor observations can be applied to either the

prediction or the evaluation step. An example, denoting the difference between both, is shown

in figure 5.8. Here, a particle filter is combined with two movement prediction models, step-

detection and turn-detection, with the initial location and heading well known. The prediction in

the top and center row uses a walking distance of µstep = 70 cm with σstep = 10 cm, but does not

constrain the heading, proceeding into an unknown direction. This is similar to figure 3.6 and

(3.11), but omitting the case of the pedestrian currently resting. The evaluation then includes

heading and turn-detection from the gyroscope, with σturn = 3°. Hereafter, only the particles

moving to the right are likely, matching with the estimated pedestrian movement. During the

resampling step (center row), all unlikely particles are replaced by more likely ones. Due to

evaluation and resampling, the predicted density is refined from a circular shape into a single

spot, denoting the starting point for the next iteration. Compared to figure 3.6, this prevents

consecutive predictions from creating an unusual mixture of circles. If the resampling step is

omitted (top row), the system fails to converge, as no particle remained likely after three update

200 CHAPTER 5. INDOOR NAVIGATION

init pred1 eval1 resamp1 pred2 eval2 resamp2 pred3 eval3 resamp3

Figure 5.8: Three consecutive filter executions using a setup with: a poor prediction and evaluation (top

row), a poor prediction, evaluation, and resampling (center row), a good prediction (bottom row). Each

density is approximated by 100 particles, where more important ones are darker and slightly bigger.

When raising the number of particles, all three variants become increasingly similar.

steps, clarifying the importance of this step. Compared to top and center row, the results shown

in the bottom of figure 5.8 are significantly different, examined within the following.

Previous discussions of the Bayes filter were solely focused on the mentioned procedure:

Using a model to perform the prediction, hereafter including all sensor observations to calculate

the evaluation. Shown for the particle filter in figure 5.8, the prediction relocates the particles,

and the evaluation assigns some weight to them, with both steps together forming the resulting

posterior. As discussed, this two-step process is needed, as drawing directly from the posterior

is often impossible [RC01]. Ideally, the prediction and evaluation agree. That is, the prediction

places particles into regions, where the evaluation is likely as well. For an unconstrained pre-

diction of pedestrian movements, this requirement often is unfulfilled, clearly visualized in the

first two rows of figure 5.8. If the movement prediction is performed without any knowledge on

potential heading changes, all walking directions must be assumed possible, as the pedestrian

could have turned by 180° between two consecutive updates. Thus, particles are moved into

a random direction, with solely the distance being constrained. This prediction widely scat-

ters the previous set of particles. The evaluation then weights all resulting particles based on

whether their movement matches the gyroscope observations, which are strictly constrained by

σturn. Typically, this results in a large fraction of particles with small weights, as most predicted

movements did not match the evaluation. When proceeding from this result, only a few parti-

cles remain meaningful, degrading even further over time, depicted in the top row of figure 5.8.

This is addressed by resampling, replacing unimportant samples with important ones. How-

ever, when using the typical duplication-based resampling (cf. section 4.5.2), this still causes

the density approximation to degrade, as only a few samples remain distinct, visualized in the

center row. This problem can either be mitigated by utilizing advanced resampling techniques,

like the KDE (see figure 4.10), or, preferably, by enhancing the prediction (bottom row).

5.2. FUSING ALL COMPONENTS 201

As also stated by Thrun et al., it therefore makes sense to include sensor observations already

within the prediction, as if they were known external influences u, also referred to as control

data [TBF05]. The validity of using observations during the prediction step is confirmed by the

derivations from section 4.2, based on the Markov property assumption [KGD14]. The impact

is shown in the bottom row of figure 5.8. When the prediction directly includes the observation

on heading changes o
(θ)
t since the last filter update, particles can be moved into a single direc-

tion with an uncertainty σturn. To not add this information twice, it must be removed from the

evaluation. For the currently presented example, the evaluation can thus be completely omitted,

as every sensor contributes to the prediction. The posterior is thus modeled solely by particle

placement, all sharing an equal weight. Both shown variants, using observations within the

prediction and skipping the evaluation, and, using an unconstrained prediction adding obser-

vations during the evaluation, produce the same density in theory – when assuming an infinite

number of particles. Due to their limited number of particles, real-world setups will thus de-

viate significantly. As can be seen in the bottom row of figure 5.8, including the observation

within the prediction provides the best result, as all particles are distinct. The prediction with-

out observations, followed by evaluation and resampling (center row), also covered the likely

areas. However, the duplication within the resampling yields a less distinct result. Including the

observation directly within the prediction thus represents an effective way of preventing sample

impoverishment [Fet+17].

For the final indoor localization system, step-detection and turn-detection are used solely

within the prediction (cf. figure 5.7). Doing so not only prevents sample impoverishment, it

also helps the floorplan-based movement prediction to provide better results, based on the ad-

ditional constraints. Corresponding equations in chapter 2 were provided from the evaluation’s

point of view, with the prediction’s viewpoint derived in chapter 3. While eCompass, barometer

and activity could be added to the prediction as well, further increasing its quality, this is only

suited for random walks along the navigation grid (cf. section 3.5.2). For the navigation mesh,

however, drawing from the resulting mixture distribution is limited by computational complex-

ity. To ensure comparability between both spatial models and remain suitable for embedded

use, these three sensors are included as evaluation. While this might seem like a drawback, a

prediction based on step and turn-detection already is significantly constrained, and close to the

posterior. Similarly, Wi-Fi and GPS are only used for evaluation, as they denote rather broad

multimodal densities, also hard to draw random samples from. The resulting setup thus repre-

sents a combination of the center and bottom row from figure 5.8, trying to provide a prediction

that is close to the posterior, using only some sensors as evaluation, followed by resampling.

Due to the quality of the prediction, the computationally inexpensive simple resampling (see

section 4.5.2) can be used, and only when necessary, well suited for use on smartphones.

202 CHAPTER 5. INDOOR NAVIGATION

Figure 5.9: When particles (dots) are stopped in front of encountered obstacles, without taking further

measures, they eventually get stuck. This not only reduces the quality of the density approximation, but

also negatively affects the weighted average estimation (line), clearly lagging behind.

Furthermore, as this results in a tendentially more concentrated posterior with many distinct

particles, the number of particles required to provide a stable approximation is significantly

reduced. This matches with earlier discussions on the number of samples required for approx-

imating statistical processes in general, conducted in section 3.2. When including the obser-

vation within the prediction, and focusing on shorter update intervals, the number of particles

can be reduced, and it is sufficient to predict only a single qt,[i] for every qt−1,[i], instead of

multiples. The number of required particles thus remains constant throughout subsequent filter

updates, instead of constantly rising, again increasing suitability for smartphone use.

5.2.3 Handling Impossible Movements

When using an observation-based prediction and the building’s floorplan, some peculiarities

must be considered. The floorplan can yield negative side effects, independent of whether

intersection tests, random walks, or the navigation mesh are used (cf. chapter 3). An example is

shown in figure 5.9, where the prediction proceeds to the right, with a large heading uncertainty

of σturn = 7° for visualization. Here, all movements intersecting with a wall are stopped directly

in front of it, similar to the random walks, discussed in section 3.4, stopping in front of obstacles,

due to the unavailability of walkable edges with high probabilities (cf. figure 3.16). Without

further measures, this yields and increasing number of particles to get stuck and ineffective over

time, and also affects the estimation negatively. Figure 5.9 uses the common estimation, based

on the weighted average of all particles (see section 4.5.3), shown as a black line. Including

caught particles causes incorrect results, shifting the estimated whereabouts. The weighted

average clearly starts to stay behind the meaningful particles, as soon as the door is reached.

This issue is mitigated when using a particle filter and absolute location estimations (e.g. Wi-Fi),

which eventually re-weight unlikely particles. Yet, the problem can be prevented beforehand.

One discussed solution was to repeat impossible movements, randomly drawing new values

for distance and heading, eventually encountering a possible solution. However, for most cases,

the probability of finding a valid solution within a few retries is rather low, especially when

directly facing an obstacle. Another approach from literature simply deletes each particle that

belongs to an invalid movement [EBS16]. Yet, this causes their number to deteriorate over time,

5.2. FUSING ALL COMPONENTS 203

Figure 5.10: Particles (dots) encountering an obstacle are assigned a weight of zero (gray, cf. (3.14)), and

thus replaced during resampling. This suppresses impossible walks, and still ensures that the majority of

particles remains effective. Compared to (5.9), the estimation (line) is now as desired.

e.g. requiring a prediction that increases the number of particles. Alternatively, the transition

itself should directly mark each sample that causes an impossible movement as unlikely, by

assigning it a weight of (near) zero (3.14) [Ebn+14]. Within the evaluation, such particles are

(almost) nonexistent, and the overall number remains constant. During the resampling step,

low-weight particles are replaced by duplicating more likely ones, restoring the number of

effective ones. While the duplication reduces distinctiveness, it is viable, as it typically affects

only a small fraction of all particles, and is computationally efficient. The result for this strategy

is shown in figure 5.10, where zero-weight particles are drawn in gray, directly before they are

removed by the particle filter’s resampling. The estimation lag present in figure 5.9 (black line)

is corrected, all particles define a homogeneous density, and the estimation is located correctly.

This strategy was also applied for creating the initial example, shown in figure 5.6.

While down-voting particles that denoted impossible movements was able to address the

previous problem, there are constellations where it is unable to, or causes new problems: When

receiving erroneous sensor observations, like invalid heading changes due to the pedestrian

shaking the smartphone, or invalid Wi-Fi location estimations due to poor signal strength pre-

dictions, particles might e.g. be forced into some corner of the floorplan. Depending on how the

pedestrian continues to walk, that is, upcoming observations, these particles are either able to

leave the corner, or get caught within. An example is shown in figure 5.11, again, solely based

on step-detection and turn-detection. Between the first and second prediction, the pedestrian

shakes the phone, causing a sensor fault. This yields an incorrect relative heading observation,

changing it by approximately 30° to the left (counter clockwise). Instead of moving along the

corridor, almost all particles are forced into the adjacent room. The following observations are

accurate again, representing the pedestrian’s walk along the corridor. That is, three steps with-

out change in heading, followed by a 90° turn to the left, hereafter walking straight again. As

can be seen, this causes all particles to get trapped within the room, unable to leave.

Again, there are various options for addressing this type of error. When using analytical den-

sities, the problem is mitigated, as the room’s exterior still remains likely, even if infinitesimally

small. However, most analytical approaches are unable to accurately model discontinuous prob-

lems, as discussed for the Kalman filter. This type of issue thus represents a compromise that

comes with the advantages of the sample-based particle filter. One solution is to (significantly)

204 CHAPTER 5. INDOOR NAVIGATION

Figure 5.11: Example with a sensor fault between the first and the second prediction. Instead of moving

along the corridor, most particles (dots) are forced inside a room, unable to leave. This behavior occurs

for all three variants: predicting movements into all directions followed by evaluation and resampling

(top row), observation-based prediction and stopping in front of obstacles (center row), and observa-

tion-based prediction, down-weighting invalid movements (gray) and removing them during resampling

(bottom row). For the latter, the last step contains only particles with a weight of zero, thus having failed.

increase the number of particles, enhancing the quality of the approximation, hopefully causing

some particles to remain outside of the room, eventually recovering. Working in theory, this

clearly represents a bottleneck for realtime use on smartphones. Alternatively, the uncertainty

(here: σturn) could be increased, ensuring that a decent number of particles remains within the

corridor. However, when increasing uncertainties for all predictions, the ones with valid sensor

observations are rendered unnecessarily uncertain, causing a broad and growing density. Ide-

ally, the false reading is detectable in some way, increasing uncertainties only when needed.

For the presented example, where the fault is caused by the pedestrian shaking the phone, the

uncertainty could be adjusted as described in the end of section 2.4.2. A corresponding example

is shown in figure 5.12, where the false reading between the first two predictions is detected,

and addressed by increasing σturn. In comparison to figure 5.11, the particles after the second

prediction now form a much wider density, including many particles with the correct walking

direction. As the following sensor observations are accurate again, all subsequent steps continue

from this broader density using a smaller σturn. Even though some particles enter the room, the

majority uses the correct path along the corridor. While all three variants – stopping in front

of obstacles, using zero-weights and resampling, using a coarse prediction followed by evalu-

ation and resampling – have improved, only the zero-weights method (bottom row) produces

a desirable result. Here, all trapped particles are eventually removed, as they do not match

with subsequent observations. The evaluation-based approach (top row), which does not use

observations within the prediction, provides almost the same estimation result, but with a less

distinct particle set. The variant with the particles stopping in front of obstacles (center row)

suffers from the same drawbacks as already indicated by figure 5.9, thus being impractical.

5.2. FUSING ALL COMPONENTS 205

Figure 5.12: Example with a sensor fault between the first and the second prediction. If this fault can be

detected, and the sensor-uncertainty is adjusted accordingly (compare against figure 5.11), getting stuck

can be mitigated for all three cases: predicting movements into all directions followed by evaluation and

resampling (top row), predicting based on the observation and stopping in front of obstacles (center row),

and predicting based on the observation, down-weighting invalid movements (gray) and removing them

during resampling (bottom row).

5.2.4 Detecting and Handling Deadlocks

However, as already mentioned briefly, not all types of sensor faults are detectable. Especially

for the Wi-Fi component, which is the only sensor providing absolute location information in-

doors, potential error sources are numerous. The pedestrian, holding the phone, might attenuate

signals due to the shadowing of the body. Depending on the type of antenna installed within

the smartphone, tilting it might alter receivable signal strengths as well. When signal strength

prediction models are used, they can differ significantly from real-world readings. For all those

cases, there is no clear indication whether some observation is suitable or erroneous. Without

adjusting uncertainties accordingly, particles can easily get stuck, depending on their surround-

ings, requiring other mitigation approaches [Fet+17; Ebn+17].

One option is to detect such deadlock situations, e.g. when the random walk indicates that

many unlikely edges were taken, too many particle movements triggered a positive intersection

test, or the largest weights after an evaluation are below a certain threshold. The most simple

solution is then given by restarting the particle filter. That is, uniformly distributing all particles

throughout the walkable area, assigning each one a uniform random heading q
(Θ)
0 ∼ U (0, 2π).

Restarting is basically the same as for every starting situation, where the current whereabouts

are unknown. This was shown in figure 5.6, starting with a uniform distribution at t = 0, scatter-

ing all particles throughout the walkable area, using an unknown heading. Restarting addresses

the deadlock, but causes the next few estimations to be unusable. Yet, as within figure 5.6, after

several steps, impossible movements will cause many particles to be replaced during resam-

pling. As soon as new Wi-Fi observations are available (as for t = 3 in figure 5.6), additional

206 CHAPTER 5. INDOOR NAVIGATION

locations can be ruled out, assuming the sensor works as expected. Until t = 5 the density

became compact, and starts to resemble the actual ground truth. While taking some time to

recover, the deadlock is addressed. When absolute location observations are unavailable, recov-

ery strongly depends on the size and complexity of the floorplan, and the number of particles

used. For a large multistory building it is unlikely that a uniform distribution of a few hundred

particles contains the actual whereabouts, thus requiring better solutions.

To reduce the time needed for the system to stabilize, and prevent invalid estimations after

a restart, a heuristic could be applied. It is unlikely for the pedestrian to have moved across

the whole building or several floors within a short timeframe. Thus, instead of distributing all

particles uniformly, the stuck density could be scattered within a certain radius. Alternatively,

only a fraction of the stuck density could be replaced by uniform samples, approximately keep-

ing the last whereabouts, but allowing for other locations as well. Although, for this case, it is

unclear how to weight the old and the new samples, and neither of the two methods represents

an analytically profound solution.

One solution is the Interacting Multiple Model Particle Filter (IMMPF) [DB05], where a

second, less restrictive, filter is added besides the particle filter with floorplan-knowledge. That

is, e.g. a particle filter without floorplan considerations. With the second filter being less restric-

tive, it can not get stuck, but the quality of its estimation is reduced. The intention is to use both

filters in parallel, based on the same input data. When a major difference between both filters is

detected, the restrictive version might be stuck. This difference is determined analytically, e.g.

by the Kullback-Leibler divergence [KL51], estimating the dissimilarity of two densities. For

every filter update, a new set of particles is derived by mixing both based on their divergence.

The one with floorplan knowledge is dominant, and therefore preferred. When the divergence

is large, and the dominant one got stuck, the second, or support, is preferred instead. This is

achieved by placing an exponential distribution on top of the Kullback-Leibler divergence dKL

pdom (dKL) = e−λdKL , psup (dKL) = 1− pdom (dKL) , λ > 0 , (5.1)

defining the probability for drawing a particle from either of the filters. This implements previ-

ous discussions on filter restarts, and how to prevent them from being too strict. The IMMPF can

be thought of as providing an alternative density with tolerable quality that can be referred to,

when the, usually better, dominant density got stuck. This provides a concept similar to restart-

ing, without scattering particles within an unnecessarily large region. Compared to previous

heuristic ideas, this variant is based on the well-researched Kullback-Leibler divergence, and

requires only a single empiric value λ, deciding when to mistrust the dominant filter [Fet+17].

5.3. REAL-WORLD CONSIDERATIONS 207

5.3 Real-World Considerations

Besides filter and sensor related issues, other aspects, affecting the system’s estimation qual-

ity and computational performance based on a building’s actual architecture, available infras-

tructure and similar, must be considered as well. Within the following, common pitfalls and

potential workarounds are briefly examined.

5.3.1 Sensitive Locations

As discussed in section 2.7, most buildings will contain locations, where the estimations from

signal strength prediction models are significantly erroneous. In such places, the evaluation of

the Wi-Fi component will not provide viable results, yielding aforementioned drawbacks, of the

system potentially getting stuck. Using special signal strength prediction models, limited to the

sensitive region, can address such issues by explicitly modeling local signal strength behavior

(cf. section 2.7.6). This, however, might yield new problems, in areas where two regional

models are adjacent to each other. Due to completely different signal strength estimations

within both regions, the evaluation for one of both will often be very unlikely compared to its

neighbor. The discontinuity between both models can cause particles to wait within one of the

two regions, until the smartphone’s readings eventually agree. This yields new problems, when

not matching with other sensor observations, such as step-detection or turn-detection [Ebn+17].

Stairwells often represent a sensitive area, with their steel-reinforced concrete significantly

attenuating access points. As Wi-Fi reception is not required in stairwells, installing transmitters

within is unreasonable. For indoor localization, battery powered supplementary devices, such as

Bluetooth beacons, are a viable alternative, providing signal strength-based localization within

areas of the building, where Wi-Fi is too weak, or model predictions inaccurate. Yet, they

demand for additional maintenance, and can suffer from signal strength depletion based on

their battery level. Installing them within the whole building is thus not advisable. For sensitive

areas, however, they provide valuable additional localization information [Ebn+15].

Nevertheless, the observations from supplementary transmitters compete with the divergent

Wi-Fi-readings, potentially still causing localization errors. If so, Wi-Fi should be considered

unstable, relying solely on the supplement, such as aforementioned Bluetooth beacons. Often,

more than one access point is affected by local effects within sensitive areas, e.g. yielding gen-

erally weak RSSIs, except for a few transmitters. Whenever this constellation is encountered,

the Wi-Fi component can be assumed unstable, and temporally excluded from the evaluation.

208 CHAPTER 5. INDOOR NAVIGATION

Situations, where disabling is advisable, can be detected by a quality heuristic [Ebn+17]

quality(s) = max

(
min

(
E(s)− τwMin

τwMax − τwMin

, 1

)
, 0

)
. (5.2)

(5.2) maps the mean signal strength of all currently visible transmitters to a range of 0 ≤
quality(s) ≤ 1, by using two empiric thresholds τwMax and τwMin. If its result drops below a

certain value, Wi-Fi is disabled. The three thresholds can e.g. be determined by using empir-

ically chosen values, or by estimating them within the model optimization process, letting the

metric produce low outputs, whenever the model estimations are especially erroneous [Ebn+17].

A more profound, yet more complex approach is e.g. given by training an artificial neural net-

work, converting RSSI readings into a quality indication. Training data is e.g. given by the

error between reference measurements and model estimations (2.112), or by evaluating the po-

sition of the reference measurement against the optimized model (2.111). Again, invisible and

non-permanent transmitters must be considered to provide viable results.

Besides completely disabling the Wi-Fi sensor, its impact can be limited. The uncertainty

within the evaluation pwifi (ot | qt) can e.g. be increased, to address expected errors. Whenever

the Wi-Fi component yields erroneous evaluations, there is a risk of the particle density getting

stuck within the building, due to the restricting floorplan. Another alternative is thus given

by temporarily disabling obstacles within the transition process, when a low Wi-Fi quality is

detected. As the metric is not binary but continuous, both variants, with and without obstacles,

can be mixed continuously. Whenever the metric indicates viable Wi-Fi readings, obstacles

provide additional localization quality. For weak Wi-Fi signals, they are omitted, ensuring

the localization process does not fail by getting stuck. That is, the Wi-Fi quality serves as an

additional mixing constraint to the IMMPF, deciding which filter to trust [Fet+17].

5.3.2 Data Acquisition

Another aspect is data acquisition. While this relates mainly to using the system for localizing or

navigating with a smartphone, it also concerns the setup phase, e.g. conducting Wi-Fi reference

measurements (see section 2.7.6) within a building, where the phone can be used as well.

Sensor sample rates, like for the IMU and barometer, can be controlled to some extend, by

selecting from a few pre-defined options (Android). Yet, actual rates can vary, and are hardware

dependent. Requesting the fastest sample rate often is a safe choice. The associated arithmetic

operations are either inexpensive, or downsampling is easily possible, e.g. by cumulating con-

secutive readings (gyroscope), or simply discarding some observations (accelerometer, magne-

tometer). The barometer typically uses low sample rates, not requiring adjustments [Bos15].

5.3. REAL-WORLD CONSIDERATIONS 209

For Bluetooth beacons, behavior is slightly different, as the detection is usually performed

passively. That is, the smartphone scans without actively requesting data, and beacons actively

send advertisements, without being asked for them. With each beacon controlling its own ad-

vertisement interval, their sample rate can not be controlled by the phone, and varies among

transmitters. Common rates are somewhere near 2Hz, representing a tradeoff between battery

life, accuracy, and not polluting the radio channel [Lin15; Mic18].

As discussed, scanning for nearby Wi-Fi transmitters is performed actively, requesting a

response from access points on every supported channel. Achievable sample rates thus strongly

depend on the number of channels to scan. While using both, 2.4GHz and 5GHz, provides

more readings, and thus a potentially better location estimation, including the 5GHz-band sig-

nificantly increases scanning times [Ebn+15; Ebn+17]. For some Android devices, 5GHz can

be disabled within the Wi-Fi settings, to increase the sample rate. If this option is unavailable,

there is a chance it is still available as hidden API, accessible via reflection. However, for more

modern devices, both options tend to be unavailable. Also, starting with Android 9, the Wi-Fi

scanning rate is limited to a few times per minute, considerably reducing usefulness. This

can be addressed by reverting to Bluetooth beacons, not affected by this limitation, and sup-

ported by most devices, or by using the upcoming FTM (cf. section 2.7.7), if supported by used

smartphones and existing infrastructure. Android version 9 thus faces an important restriction,

limiting the use of already installed infrastructure, requiring for new hardware, unnecessarily

increasing the price, rendering indoor localization less pervasive and affordable. As of today,

manual scanning for Wi-Fi transmitters is not allowed by the iOS operating system. Similarly

to Android version 9, Bluetooth beacons can be used instead, with future versions of hardware

and operating system eventually supporting Wi-Fi FTM as well.

Reference measurements, required for training signal strength prediction models (cf. sec-

tion 2.7.6), can be conducted similarly, using commodity smartphones. For an adequate sample

of real-world behavior, the whole walkable area of a building should be covered [Ebn+17]. By

using the semantic floorplan described earlier, actual locations can be added to the map, ensur-

ing the position stored within a database matches with the location in the building. To ensure

a stable signal strength estimation, several measurements are conducted at every such location,

similar to fingerprinting [BP00; Shu+15; Men+11]. Effects of the phone’s antenna can be com-

pensated by using different poses while measuring, e.g. by slowly turning, holding the phone

upfront. The resulting database can hereafter be used to estimate the parameters required for

a chosen signal strength prediction model. Being used for all upcoming experiments and eval-

uations, this approach was also applied for participating in the IPIN 2016 Indoor Localization

Competition, taking around 60 minutes of recording time within the competition building, with

the presented system providing the best results among all competitors [EvA16].

210 CHAPTER 5. INDOOR NAVIGATION

5.4 Performance Considerations

The goal is to provide an indoor localization and navigation system that is accurate, easy to set

up, inexpensive, and suited for smartphone use. Memory and performance aspects thus play

an important role besides financial considerations for required infrastructure, setup and main-

tenance times. Fingerprints, for example, generally provide the most accurate Wi-Fi results,

due to real-world measurements (cf. section 2.7.5). If conducted for every square meter of a

building, with an average of ten access points visible at every fingerprint, and only their average

signal strength stored as a single byte, a floor of 100m by 100m in size requires ≈ 100KiB

of memory. Thus, the amount of data is manageable for most buildings, even when decimal

numbers, Gaussian distributions or histograms are stored (cf. section 2.7). Yet, a major issue,

besides the time required for conducting fingerprints, are computational requirements within the

evaluation, when e.g. a KDE is used to determine the probability for every particle, depending

on the likelihood of surrounding fingerprints. Based on the number of fingerprints and particles,

the computational complexity can easily exceed the abilities of embedded devices.

5.4.1 Precomputed Model Predictions

When replacing fingerprinting with e.g. the log-distance model from section 2.7.6, computation

times to predict the signal strength at the location of each particle, for every currently visible

access point, are minimized to a few arithmetic operations. This comes at the cost of reduced

localization quality, with the log-distance model being less accurate than fingerprints. A mit-

igation is given by using the extended log-distance model instead. However, its complexity

depends on the number of obstacles included within the prediction process (cf. section 2.7.6).

When solely floors and ceilings are considered, there is only a slight overhead compared to the

log-distance model. Yet, including all types of walls within each floor significantly increases

computation time, requiring intersection tests for all obstacles along the line of sight from each

particle towards every visible access point. Depending on the complexity of the floorplan, and

the number of particles, embedded devices might fail to perform required computations in time.

Similar to solving the problem of costly shortest path calculations, the spatial models from

section 3.4 can also be used to store precomputed signal strengths, at the cost of memory. Within

the navigation grid, the result from a signal strength prediction model can be stored directly onto

each vertex. The evaluation is then reduced to inexpensive lookups and comparisons, denoted

in figure 5.13a. However, the amount of required memory can be significant. When vertices

are placed every 25 cm, the 100m by 100m wide example floor, with ten access points visible

per location, already requires ≈ 1.5MiB, when storing a single byte per transmitter. However,

5.4. PERFORMANCE CONSIDERATIONS 211

(a) (b) (c) (d) (e)

Figure 5.13: Varying strategies for precomputed signal strengths. Storing a value every few centimeters,

e.g. directly on grid vertices (a). Using larger distances between predictions, still providing fast lookups

(b). Grouping similar predictions, storing references to them on grid vertices (c). Attaching values to

triangle edges of the navigation mesh followed by barycentric interpolation (d) and (e).

to maintain the signal strength prediction model’s ability to estimate a signal strength for every

transmitter and location, all access points within a building would have to be stored on every

single vertex. This is unfeasible for larger buildings with many transmitters.

Typically, only a few transmitters are actually visible at any location within a building (cf.

figure 2.27). One option to address memory consumption is thus given by storing only meaning-

ful transmitters, with a prediction above some threshold. That is, if a transmitter’s predicted sig-

nal strength for the location of some vertex is below this threshold, it is not stored, but assumed

constant, using the value of the threshold. This significantly reduces memory requirements. The

error that results from using a constant instead of actual predictions can be limited by choosing

this constant to be near typical receiver sensitivity, where signals often are unrecognized by the

hardware anyway.

Also, signal strengths do not change substantially within 25 cm, at least when no obstacles

are nearby. A less dense data-structure can thus be sufficient, e.g. storing predictions within a

separate 1m by 1m grid. However, this introduces the risk of not aligning with obstacles. Indi-

cated within figure 5.13b, there are many locations where the same signal strength is predicted

in front of and behind a wall, potentially causing errors within the evaluation.

Ideally, locations are only grouped together when they share similar signal strength predic-

tions for all transmitters, yielding an irregular data structure. While being feasible for a single

transmitter, shown in 5.13c, there is no memory benefit. To the contrary, additional memory is

required to store both, each group, and a reference to it for every lookup location. The size of

this reference depends on the number of distinct groups, which in turn depends on the number of

installed transmitters. The chance for two nearby locations to have a similar signal strength pre-

diction decreases with an increasing number of transmitters, due to physical effects discussed

in section 2.7. This potentially causes many small groups, not saving memory at all. Besides,

while grouping can reduce the required amount of memory, it introduces discreteness. With

each prediction belonging to a larger area, discontinuous jumps between adjacent groups are

generated, clearly visible within figure 5.13b and 5.13c, which negatively affect the evaluation.

212 CHAPTER 5. INDOOR NAVIGATION

When the navigation mesh is used as spatial data structure, recuperations are different. Simi-

lar to vertices, precomputed RSSIs can be stored onto each triangle-corner within the mesh. Due

to using only a few triangles, in contrast to many grid vertices, memory savings are significant.

Furthermore, this also reduces the effect of discontinuity, as signal strengths can be estimated by

barycentric interpolation within the triangle a particle belongs to, increasing evaluation quality.

A corresponding example is shown in figure 5.13d and 5.13e. However, interpolated predictions

can still be significantly different from actual model values. As RSSIs are calculated only for

triangle-corners, results strongly depend on their placement. This can be verified by comparing

figure 5.13d and 5.13e, where the lower and upper right side clearly differs. While larger trian-

gles reduce the memory footprint, they also diminish quality, not aligning with or resembling

the actual signal strength behavior. When enforcing smaller triangles, this strategy is viable for

most locations within a building, well-aligning with obstacles. This type of interpolation can

also be used for making fingerprints continuous, without requiring a costly KDE. Yet, conducted

fingerprints can not be assumed to align with an algorithm’s triangle placement, thus being un-

clear which RSSIs to assign to every triangle corner. One approach is e.g. given by inverse

distance weighting [AC16], estimating the RSSIs for a triangle corner based on nearby finger-

prints and their distance. Here, obstacles can be considered, ignoring all fingerprints where the

line of sight is occluded. Besides its computational efficiency due to being precomputed, con-

sidering obstacles denotes another advantage to the KDE-based approach, which is not directly

able to consider walls and other obstacles (cf. section 2.7.5).

As can be seen, the strategy for including the Wi-Fi component strongly depends on re-

quired quality, size of the floorplan, number of installed access points, and available compu-

tation power. For buildings with many drywalls, signal strength behavior is rather continuous

and an extended log-distance model just considering floors and ceilings, is fast and sufficient

[Ebn+17]. Besides improving model predictions in surroundings with complex architecture,

reference measurements can also be used to determine, whether more complex models and

precomputation can provide a benefit.

5.4.2 Code Optimization

Besides engineering or deciding on appropriate algorithms and data structures to perform re-

quired calculations, their actual implementation also plays an important role, affecting both,

performance and memory requirement, briefly discussed within the following.

Programming Language One aspect is the programming language used for implementing

all previously discussed models and calculations for smartphones. Especially when referring

to Android-based smartphones, mainly programmed using Java or Kotlin [Lin+11]. Perfor-

5.5. SUMMARY 213

mance impact is often workload dependent, subjective, and thus hard to argue scientifically and

in general [LZQ15]. Therefore, the following is mainly based on experience, gathered while

developing the overall system. The implementation was solely based on native C++ code. A de-

cision also made for portability reason, supporting Linux, Android and iOS. This also allowed

for operator overloading, simplifying the code for statistics, filtering, and estimation. Perfor-

mance and memory considerations were also part of this decision. For Android and Java, early

setups indicated significant overheads, especially related to the particle filter. This was also due

to the unavailability of plain memory objects, such as C structs, and not being able to store

scalar types, like int or float, within lists or similar data structures.

Particles and Multithreading Besides programming language, the number of particles rep-

resents a critical aspect, affecting overall system performance. As prediction, evaluation, and

estimation are performed per-particle, their number has a direct influence. While using less

particles enhances battery life, it negatively affects the quality of the recursive density estima-

tion. As shown within previous figures, a decent number is required for a proper initialization,

and to capture all likely whereabouts. It thus represents a tradeoff between quality, battery life,

and available computational power. The presented system used between 5000 and 10 000 par-

ticles, which is way more than used by competitors [NRP16; KS18; Gui+16; Shu+15]. This

was achieved by optimized C++ code, and by leveraging the previously mentioned fact, that the

particle filter is parallelizable (cf. section 4.5). Both, the prediction and evaluation step process

particles in parallel, using multiple threads, well suited for today’s multi-core smartphones.

5.5 Summary

This chapter provided the missing links between the required theory, presented within the three

previous chapters. Therefore it concentrated on less scientific and more technical aspects, re-

lated to the overall system implementation.

The first section was related to modeling a building’s floorplan, suitable for deriving one of

the spatial data structures discussed for the movement models in chapter 3. Main focus was on

a fast creation process with support for later modifications. It thus referred to 2D drawings per

floor. Yet, the result is still suitable to derive accurate 3D representations, including doors and

windows, for both, visualization and e.g. ray tracing. Furthermore, it allows including semantic

information, like the type of ground, required for movement predictions.

Hereafter, the overall system was assembled, choosing the particle filter as implementation

of the Bayes filter for the recursive density estimation process. This part described the way sen-

sors are included within the overall system, using the step-detection as pacemaker, triggering the

214 CHAPTER 5. INDOOR NAVIGATION

filter update procedure. In contrast to typical convention, turn-detection was also used directly

within the transition process, providing more robust movement predictions, and suppressing

sample impoverishment. To reduce computational complexity, eCompass, activity-detection,

Wi-Fi, Bluetooth beacons, and GPS were used within the evaluation step, well suited for result-

ing multimodalities. While this decision seems like a drawback in terms of density accuracy,

this represents a viable tradeoff between quality and required computational complexity.

Furthermore, due to the floorplan, the system’s prediction already is rather restrictive. Po-

tential ways for handling impossible movements were discussed. Especially sensor faults, such

as an invalid turn-detection, can easily cause all particles to get stuck within a room. When

this situation occurs, recovery often is unlikely. Techniques for handling such situations were

briefly introduced, including their advantages and disadvantages. While a simple uniform restart

is possible, it suffers from various drawbacks, and should thus be avoided.

The next part concentrated on real-world aspects, and how to ensure a decent absolute lo-

cation estimation from radio transmitters, even within sensitive areas of a building. This was

achieved by either adding additional transmitters within those areas, or by adjusting the used

signal strength prediction models, using regional limitations or more advanced variants. This

also lead to the question of data acquisition on smartphones. The topic was related to both,

recording prior reference measurements, and actual observations when the pedestrian uses the

localization and navigation system. Both aspects were briefly described, explaining how refer-

ence measurements were conducted, and how sensor observations are sampled, adjusted, and

included within the filter.

With the quality of the particle filters approximation depending on the number of parti-

cles, this lead to the final question on how to handle a decent number of particles on today’s

smartphones. By using precomputations where applicable, a suitable programming language,

and multithreading, several thousand particles are manageable, sufficient for approximating the

complex behavior of pedestrians walking indoors.

Chapter 6

Experiments

Previous chapters examined smartphone-based pedestrian indoor localization and navigation

from different points of view.

First, individual sensor components and their contribution were discussed in chapter 2. Their

observations were used within a probabilistic relation. Either to evaluate potential pedestrian

whereabouts, or their changes, based on analytical constraints. Hereafter, pedestrian movement

predictions based on a building’s floorplan were examined in chapter 3. They were used to

estimate the likelihood of certain movements, based on obstacles and the walkable surface.

This also allowed for a continuous 3D estimation, when utilizing appropriate spatial models.

The link between both viewpoints is recursive density estimation, introduced in chapter 4. Here,

several potential variants, as well as their advantages and disadvantages, were discussed. While

analytical implementations are computationally inexpensive, they are too restrictive, unable to

consider the floorplan. Therefore, the particle filter was introduced, approximating probability

densities using multiple samples, well-suited for considering the floorplan. However, at the

cost of increased computational complexity. Afterwards, chapter 5 presented several real-world

considerations. This concerned the 2D/3D setup of floorplans, and how to handle their obstacles

in a probabilistic and computationally efficient manner. Therefore, the filter’s update interval,

and the inclusion of sensor observations were discussed in detail. Closed by remarks on the

programming language’s impact of achievable performance.

Finally, this chapter provides an experimental viewpoint of all previous aspects. First, the

testbed is described in detail, covering used devices, examined buildings, data acquisition, and

ground truth estimation. Following the preceding structure, sensors and movement models

are hereafter evaluated separately, estimating individual contributions, and limitations, before

examining their combination.

215

216 CHAPTER 6. EXPERIMENTS

All tests also refer to synthetic and constrained setups, minimizing external influences while

focusing only on the aspects that are essential for a component. Additionally, actual real-world

scenarios are examined, and, if applicable, compared against the findings from their synthetic

counterparts. Hereafter, the overall indoor localization and navigation system is examined,

backed by all initial findings. These tests are based on actual pedestrian walks, conducted

within multiple buildings, where indoor localization and navigation provide a benefit. To ensure

representative results, all experiments were performed with multiple smartphones that vary in

price and age, and actual pedestrian walks were conducted by different persons.

6.1 Testbeds and Data Acquisition

This section provides an overview on used devices, and synthetic/real-world scenarios, required

for examining all system components. Missing details are provided later, for each test setup.

Devices In terms of pervasiveness and price, as of today, Android-based smartphones repre-

sent the most desirable platform to support initially. Disallowing scanning for nearby Wi-Fi

transmitters, iOS-based smartphones lack an important sensor, which is crucial for indoor lo-

calization and navigation. Even though supporting Bluetooth beacons, also usable for inferring

absolute whereabouts, most buildings are not equipped with the additionally required infras-

tructure. Thus, iOS-based smartphones were not considered within this work. Based on their

relatively low market share, the same holds true for phones using a Microsoft operating system.

Without loss of generality, all tests are based on several different Android smartphones, of all

brands, prices and ages. The diversity of phone vendors brings varying sensor brands, different

internal assemblies, and various operating system versions. The chosen devices thus provide

a broad spectrum for the system to deal with, enforcing general solutions, preventing overfit-

ting. Table 6.1 lists all smartphones used within evaluations, their initial date of release, used

operating system version, and a brief overview on supported sensors. In general, recent models

support Wi-Fi in all relevant frequency ranges, Bluetooth Low Energy – required for Blue-

tooth beacons to be detected – and a gyroscope for fine-grained heading estimations. Solely the

barometer is rarely found. Accuracy and precision of these sensors will be examined later.

Syntehtic and Constrained Testbeds To examine components individually, special setups

were constructed, minimizing external influences, focusing only on important aspects, and pro-

viding a well-known ground truth for error estimations. For step-detection, this covers pedes-

trian walks following a defined pattern, with a known number of steps. For turn-detection by the

gyroscope, and absolute heading estimation from the magnetometer, a turntable is used, allow-

ing for exact angular movements, providing an ideal ground truth. Additional pedestrian walks

6.1. TESTBEDS AND DATA ACQUISITION 217

Vendor Model Manufacturer Year Android Acc Gyr Mag Bar 2.4 5 BLE

Motorola Milestone 2 Motorola 2010 4.4.4 1 X - X - X - -

Motorola Milestone 4 Motorola 2012 7.1.2 2 X - X - X - -

Samsung Galaxy S3 mini Samsung 2012 5.1.1 3 X X X - X X X

Google Nexus 6 Motorola 2014 7.1.1 X X X X X X X

Samsung Galaxy S5 Neo Samsung 2015 6.0.1 X X X - X X X

Motorola Moto Z Motorola 2016 9.0.0 4 X X X - X X X

LG G6 LG 2017 8.0.0 X X X X X X X

Google Pixel 2 XL LG 2017 9.0.0 X X X X X X X

BlackBerry KEY2 TCL 2018 8.1.0 X X X - X X X

Table 6.1: Overview on examined smartphones, their date of initial release, currently running operat-

ing system version, and supported sensors: accelerometer, gyroscope, magnetometer, barometer, Wi-Fi

2.4GHz/5GHz and Bluetooth Low Energy (BLE), required for Bluetooth beacons.
1 CyanogenMod 11, 2 LineageOS 14.1, 3 CyanogenMod 12.1, 4 LineageOS 16.0

allow for a visual impression on the corresponding behavior under real-world conditions. For

the barometer, walks through a stairwell with known altitudes provide the ground truth for error

estimation. Similarly, activity-detection was performed based on walks annotated with labels,

describing the pedestrian’s current activity. For Wi-Fi, brief constrained tests were performed,

as external influences can not fully be prevented. These tests refer to general signal strength

behavior, providing an insight on the quality of prediction models. For actual model optimiza-

tion and error estimation, real-world setups are required. Movement prediction and navigation

are examined based on synthetic floorplans. While not always being realistic, they provide a

visualization of the model’s behavior, translatable to real-world scenarios.

Real-World Testbeds Besides synthetic and constrained testbeds, Wi-Fi predictions, absolute

location estimation, and the overall system are examined within real-world scenarios, covering

three completely different buildings, varying in age, materials, floor layout, and infrastructure.

The SHL, shown in figure 6.1, is a modern university complex, completed in 2011. It is

divided into a main building, with four stacked floors, and a two story annex. While the first

floor is directly connected, the 2nd floor is separated by a small outdoor area, shown in the

upper right of the figure. The walkable area covers ≈ 12 000m2 when including outdoor areas,

and ≈ 8500m2 without. Walls are mainly made of drywall, using steel-reinforced concrete

only for stairwells, and in places where structural stability is required. The whole complex is

equipped with 34 access points, using both, the 2.4GHz and 5GHz range. Due to legal issues,

their locations must not be disclosed, and are therefore omitted within the figures.

The Museum 1 (cf. figure 6.2) was built in 1908, with three floors, each split into two halves.

That is, there is a small change in altitude between both halves, requiring short stairs. Besides

being separated, the building is characterized by a predominant concrete structure, using only a

218 CHAPTER 6. EXPERIMENTS

few drywalls. The walkable area is≈ 3200m2. While a partial Wi-Fi-infrastructure is available,

it does not cover the whole walkable area. Therefore, additional Wi-Fi-beacons, based on the

ESP8266, were installed, yielding 41 transmitters for the absolute location estimation.

The Museum 2 in figure 6.3 was built as a convent in the 13th century, and serves as a museum

since 1936. Besides one main floor, there is no clear structure, and the seven annexes are placed

at various altitudes and locations. Being directly attached to the old town wall, the building is

characterized by massive concrete walls, using only a few drywalls. When including the garden,

≈ 3000m2 are walkable, and ≈ 2400m2 without. As there is no existing Wi-Fi infrastructure

at all, 45 ESP8266 Wi-Fi-beacons were installed to provide absolute location estimation.

Required Wi-Fi reference measurements were recorded by a pedestrian, residing at well-

known positions, holding the smartphone upfront, slowly turning around in a circle, while the

device scans for nearby transmitters. This yields multiple measurements for each single loca-

tion, reducing the influence of the antenna and the human body. The number and locations of

these measurements are presented, when examining the Wi-Fi component.

Within the shown buildings, various walks (see figure 6.4, 6.5 and 6.6) were conducted by

several pedestrians, using different smartphones. The ground truth required for error estimation

is provided by the pedestrian: All walks are defined by points with exactly known location, con-

nected to a path. Whenever reaching such a point, the pedestrian added a label to the recording.

Assuming a constant walking speed, this allows for interpolating a position along the path, for

any point in time. Even though being inexact, accuracy is sufficient for the intended use.

Shown in figure 6.4, 6.5 and 6.6, the conducted walks cover completely different scenarios.

Four of the five walks within SHL are close to a shortest path from A to B scenario. Only walk A4,

a two-story loop using a stairwell, is mainly synthetic. While some walks within Museum 1

and Museum 2 resemble a shortest path, most of them were conducted with exhibition watching

behavior in mind. That is, the pedestrian carrying the smartphone behaved like a normal visitor,

sometimes resting in front of exhibits. The vertical lines within Museum 1 are due to using an

elevator to change the current floor. Thus, all examined walks represent various real-world

scenarios for an indoor localization and navigation system, examined within the following.

6.1. TESTBEDS AND DATA ACQUISITION 219

Figure 6.1: SHL – University of Applied Sciences Würzburg-Schweinfurt. Modern building completed in

2011, with four stacked floors, surrounded by a facade of metallized glass, approximately 75 × 50m in

size (upper left). Via an outdoor area, the main building is connected to a two story annex (lower right),

with an overall size of approximately 110×60m. The walkable area spans≈ 12 000m2 when including

outdoor areas, and ≈ 8500m2 when not. The right half shows an increased distance between floors.

Figure 6.2: Museum 1 – Gäubodenmuseum Straubinga. A museum built in 1908, with three floors, each

split into two halves (see right figure). Between the two halves, there is a small offset in altitude, yielding

an uneven distribution of the floors. The museum’s overall size is approximately 55 × 40m, with the

walkable area being ≈ 3700m2. The right half shows an increased distance between floors.

Figure 6.3: Museum 2 – RothenburgMuseumb. A museum since 1936, but initially built as a 13th century

convent. Floors are arranged in various shapes, sizes, and altitudes, yielding a chaotic layout, with one

main area, and seven annexes. Being directly attached to the old town wall, the building is characterized

by massive concrete structures. The overall size is approximately 70× 50m, covering ≈ 3000m2 when

including the garden, and≈ 2400m2 without. The right half shows an increased distance between floors.

ahttp://www.gaeubodenmuseum.de/
bhttps://www.rothenburgmuseum.de/

http://www.gaeubodenmuseum.de/
https://www.rothenburgmuseum.de/

220 CHAPTER 6. EXPERIMENTS

start of a walk

destination of a walk

shared start/destination (loop)

walk A1 207m
walk A2 146m
walk A3 100m
walk A4 169m
walk A5 97m

Figure 6.4: Pedestrian walks conducted within SHL.

walk B1 337m
walk B2 102m
walk B3 223m

Figure 6.5: Pedestrian walks conducted within Museum 1.

walk C1 161m
walk C2 223m
walk C3 246m
walk C4 335m

Figure 6.6: Pedestrian walks conducted within Museum 2.

6.2. EVALUATION OF SENSOR COMPONENTS 221

Model accelerometer gyroscope magnetometer barometer

Motorola Milestone 2 107.3 33.5 - - 9.7 0.8 - -

Motorola Milestone 4 48.0 52.1 - - 95.2 15.5 - -

Samsung Galaxy S3 Mini 101.2 17.5 101.4 17.6 49.3 4.5 - -

Google Nexus 6 227.0 3.5 227.0 3.5 75.7 1.0 32.4 0.1

Samsung Galaxy S5 Neo 200.6 0.6 200.6 0.6 102.1 20.4 - -

Motorola Moto Z 198.1 0.8 198.1 0.8 49.5 0.1 - -

LG G6 398.3 2.2 398.3 2.2 99.7 5.5 26.0 0.5

Google Pixel 2 417.2 2.6 417.2 2.6 52.2 0.5 26.0 0.3

BlackBerry KEY2 208.0 0.7 208.0 0.7 50.0 0.2 - -

Table 6.2: Mean sample rate (in Hz) and standard deviation of each IMU-sensor and the barometer, for

all devices listed in table 6.1. A dash indicates a phone’s lack of support for a given sensor.

6.2 Evaluation of Sensor Components

All sensor components are examined, following the preceding structure. As the GPS is al-

ready well-researched, and only of minor importance for indoor localization, no additional tests

were performed. The focus is solely on IMU, barometer and Wi-Fi. As influences on the IMU

sensors are numerous, synthetic benchmarks are conducted beforehand, analyzing the general

quality of accelerometers, gyroscopes and magnetometers installed within smartphones. These

examinations provide an impression on issues concerning accuracy and precision of relative

and absolute heading estimations. After evaluating each sensor on its own, combined tests are

presented, estimating the quality of pedestrian dead reckoning (PDR), when omitting sensor

fusion, and absolute location indications. For Wi-Fi, the first step estimates the model predic-

tion quality, when training them based on real-world reference measurements. Hereafter, the

accuracy of location estimation is examined, when using these trained models.

6.2.1 Sensor Overview

Before presenting results for step-detection, turn-detection, eCompass, barometer and activity-

detection, general parameters of smartphone sensors are briefly examined. For now, the Wi-Fi

component is omitted. Table 6.2 provides an overview on sensor sample rates and the estimated

standard deviations for various smartphones, when requesting the fastest rate possible. As can

be seen, there are notable differences among the listed devices, concerning both, sample rate and

standard deviation. Especially older phones tend to suffer from rather aperiodic sensor readings,

potentially causing issues, e.g. within frequency-based filters, relying on fixed sample rates.

While the examined modern smartphones provided stable sample rates, individual frequencies

varied significantly. To ensure that results among different devices are identical, this must be

considered for filters, such as the moving average or complementary filter (see section 2.4).

222 CHAPTER 6. EXPERIMENTS

Type Variant Description

FIR low-pass gravity removed by subtraction, cut-off at 3Hz, kernel size N = 29
IIR low-pass gravity removed by subtraction, cut-off at 3Hz, Q = 0.7

FIR band-pass centered at 2Hz, width of ±1Hz, kernel size N = 101
IIR band-pass centered at 2Hz, Q = 1.5 (approximating the width of the FIR)

IIR HLL-pass high-pass (>1Hz) followed by two low-pass (<3Hz) filters

Table 6.3: FIR and IIR setups, used for filtering the accelerometer’s magnitude (see appendix A.2).

−50 dB

−25 dB

0dB

0Hz 5Hz 10Hz 15Hz 0Hz 5Hz 10Hz 15Hz

IIR low-pass
FIR low-pass

IIR HLL-pass
IIR band-pass
FIR band-pass

Figure 6.7: Frequency response of the FIR/IIR low-pass and band-pass described in table 6.3.

6.2.2 Step Detection

Discussed in section 2.4.1, readings from the accelerometer contain notable amounts of noise,

especially when the smartphone is held upfront by the pedestrian. The contribution of filtering is

examined for the two presented candidates, IIR and FIR. Determining the parameters required

for (2.25), or a discrete convolution kernel, to create a low-pass, high-pass or band-pass is

beyond the scope of this work. Equations and further details can be found in [Smi99; Smi11;

WT06; Ror93]. Used setups are shown in table 6.3 and appendix A.2. Besides the IIR band-

pass, a chained (1 high-pass 2 low-pass) IIR filter is used, providing more control on the width

of the passband. Input to all filters was the accelerometer’s magnitude, recorded by a pedestrian

walking along a hallway, holding the phone upfront (cf. figure 2.6), resampled to 100Hz.

Based on the step frequency results from figure 2.7 and [Sau+11], the low-pass filters were

configured with a cut-off frequency of 3.0Hz, also covering pedestrians who walk faster than

the average ≈ 1.8Hz. The IIR’s Q ≈ 0.7 was chosen to resemble a Butterworth filter (see

e.g. [Smi99]). For the FIR low-pass, the kernel’s size N = 29 was selected to provide results

similar to the IIR. To also remove the DC component for these two filters, a constant 9.81m/s2

was subtracted from the magnitude beforehand. As can be seen in figure 6.7, until 5Hz, the

attenuation provided by IIR/FIR is almost identical. Hereafter the FIR provides a much better

damping, at the expense of increased delays and required computational power.

The two band-pass filters were configured similarly, using 2Hz as center frequency. For the

FIR, a width of±1Hz was chosen, to match with the low-pass filters. The corresponding kernel

6.2. EVALUATION OF SENSOR COMPONENTS 223

7.4
9.4

11.4
13.4 unfiltered

−2
0
2
4 IIR low-pass

−2
0

2

4

5 s 10 s 15 s

FIR low-pass

−2
0
2
4 IIR band-pass

−2
0
2
4 IIR HLL-pass

−2
0

2

4

5 s 10 s 15 s

FIR band-passam
p

li
tu

d
e

(m
/s

2
)

Figure 6.8: Impact of applying the filters from table 6.3 to the accelerometer’s magnitude. The vertical

line and a rectangle visually indicate each filter’s delay. All band-pass-like setups suffer from an initial

peak, resulting from the constant gravity contained within the signal. While the FIR band-pass provides

the smoothest result, its delay is clearly notable. Circles denote issues, explained within the text.

required N = 101 entries, to correctly remove the DC component from the accelerometer’s

magnitude. With the sample rate of 100Hz, this causes a delay of≈ 500ms. The IIR’s Q = 1.5

was configured to match the ±1Hz bandwidth of the FIR. Due to the large kernel size, the FIR

provides a good attenuation, and fast cut-offs. The IIR shows a viable cut-off only for the lower

frequencies, with the attenuation of higher ones being less pronounced (cf. figure 6.7). While

this can be mitigated by further increasing Q, it also reduces the width of the passband, allowing

only for walks at a well known step frequency, affecting the filter’s general purpose.

This is addressed by chaining three IIR filters to approximate the FIR band-pass: A high-

pass removes frequencies below 1Hz, and two low-pass filters attenuate everything above 3Hz.

This combination, referred to as HLL-pass, creates a filter similar to a (2± 1)Hz band-pass,

and is stronger than a single IIR. Shown in figure 6.7, this compromise between the IIR and FIR

band-pass provides more control on passband and cut-offs, while retaining viable delay times.

Figure 6.8 shows the results when applying these filters to the magnitude of accelerometer

readings for a normally paced walk, sampled at 100Hz. While peaks are distinguishable for all

shown contestants, the FIR band-pass provides the smoothest result. However, as can be seen

by comparing the vertical lines, both FIR filters, especially the band-pass with its larger kernel,

introduce a significant delay. All three band-pass-like setups need some time to recognize and

remove the gravity as DC component from the signal, rendering the first few seconds of output

unusable. This can be addressed by pre-feeding the filters with several constant readings of

≈ 9.81m/s2. Another aspect that divides low-pass and band-pass is the positive/negative peak

ratio. As mentioned in section 2.4.1, the step pattern usually consists of one positive, and one

negative peak, where the positive one is slightly more pronounced. This ratio is kept by the low-

224 CHAPTER 6. EXPERIMENTS

−3

−1

1

3

5

5 s 10 s 15 s 20 s 25 s 30 s

m
ag

n
it

u
d

e
(m

/s
2
)

−3

−1

1

3

5

5 s 10 s 15 s 20 s 25 s 30 s

straight stair up straight+turn stair down straight

Figure 6.9: Magnitude of the accelerometer, filtered by the IIR low-pass from table 6.3. The device was

held upfront while walking 10 steps along a hallway, climbing a stair with 10 treads, making 10 steps

including a 180° turn, hereafter walking the same way back again.

Name Input Filtering Detection Scheme Name Filtering

SD1 magnitude - peak + dead time

SD2a magnitude IIR low-pass local maxima SD2b IIR HLL-pass

SD3a magnitude IIR low-pass zero crossing SD3b IIR HLL-pass

SD4a tilt compensated z IIR low-pass zero crossing SD4b IIR HLL-pass

Table 6.4: Examined step detectors and their configuration according to section 2.4.1.

pass filters, but removed by the band-passes, as it denotes a low frequency. When the desired

step detection method relies on this ratio, band-pass filters can not be used.

Despite their abilities, FIR filters are overstated for the step detection problem. Due to both,

delay and computational requirements, the following experiments omit the FIR filters, focusing

only on IIR versions. For the shown example, the IIR HLL-pass performed slightly better than

the IIR band-pass, at a similar delay. However, for faster walks (see figure 6.10), the latter fails,

due to aforementioned limitations, while the HLL-pass yields viable results. Being limited to a

narrow range of walking speeds, the IIR band-pass is omitted as well. Actual step-detection is

performed using the IIR low-pass, the IIR HLL-pass, and no filtering for comparison.

Figure 6.9 depicts the accelerometer’s magnitude for a walk of 50 steps in length, includ-

ing a stair, and one 180° turn, filtered by the IIR low-pass from table 6.3. During the turn, at

around 17 s, several zero crossings appear within the filtered signal, causing potential issues,

depending on the chosen pattern detector. While the magnitude’s fluctuation is approximately

constant throughout the walk, the steps at 17 s, 26 s and 28 s are barely pronounced. In contrast,

walking downstairs, between 20 s to 25 s, peaks increase in both directions. Besides this diver-

sified walk, a simple 50-steps-straight setup is examined as well. To estimate the quality of the

step pattern detection algorithms discussed in section 2.4.1, both walks were conducted several

times, by multiple persons with varying footwear, using different devices. Table 6.4 lists all ex-

amined contestants, including their detection and filtering strategy. Within recordings, the step

6.2. EVALUATION OF SENSOR COMPONENTS 225

−3
−2
−1
0
1
2
3

10 s 15 s 10 s 15 s 20 s 10 s 15 s 20 s

m
ag

n
it

u
d

e
(m

/s
2
)

Figure 6.10: Accelerometer’s magnitude for a fast paced walk. The raw data (left) contains significant

amounts of noise, and does not allow for a robust step detection. Applying the IIR low-pass (middle)

yields a noticeable improvement, but indicates several issues (filled circles), due to the present low and

high frequency noise. Using the HLL-pass instead (right), enhances the overall result.

Dataset Walks SD1 SD2a SD2b SD3a SD3b SD4a SD4b

straight only 22 50.0 51.7 51.8 50.0 50.6 50.0 50.6

straight only, fast 12 49.8 52.5 50.6 49.9 50.6 49.8 50.7

typical mix 25 47.1 48.9 52.8 49.4 50.1 49.1 49.9

typical mix, fast 20 40.0 41.2 48.5 44.8 48.8 43.9 48.5

overall 79 46.5 48.3 51.1 48.5 50.0 48.2 49.9

Table 6.5: Number of detected steps for all detectors presented in table 6.4, averaged by dataset. The

correct number of steps is 50 for all cases.

frequency resided somewhere around ≈ 1.8Hz. For this input, all strategies provided viable

results. Even when no filtering was used (SD1), deviations were only marginal.

Additionally, faster walking speeds were examined as well. When increasing the step fre-

quency beyond 2.2Hz, most detection schemes started to fail, missing up to 15% of the taken

steps. While the IIR low-pass used within SD2a-SD4a mitigated this problem, the overall num-

ber of detected steps remained too low. Analyzing the raw accelerometer magnitude for those

walks (see figure 6.10) reveals that the amount of noise increased significantly for both, high and

low frequencies. The low-pass filtered signal (middle) thus fluctuates at a very low frequency,

removing some zero crossings. An IIR band-pass (not shown in the figure) provided slightly

better results and reduced the number of missed steps, still with room for improvements, due

to its slow cut-off. The IIR HLL-pass addresses this issue with its two chained low-pass filters,

and one high-pass, effectively removing all noise components from the raw signal (right).

Table 6.5 contains detailed results for all presented detectors and datasets. For normally

paced walks, all detectors provided viable results. As expected, the straight walks yielded the

best overall results. When variations, like stairs, are introduced, the risk for missing steps during

the detection process increases. For highly paced walks, the HLL-pass, used in SD2b, SD3b and

SD4b, provides better detection rates than the single low-pass used in other setups.

226 CHAPTER 6. EXPERIMENTS

bracket

turntable

motor

mount

79

142

45°

50

110

Figure 6.11: Layout of the turntable used for synthetic IMU tests. The direct-drive stepper motor ensures

a valuable ground truth. The bracket is used to place the smartphone into portrait and landscape mode,

with a constant 45° tilt, required for tilt estimation tests. All distance units are given in mm.

6.2.3 Relative and Absolute Heading Estimation

The suitability of a smartphone’s IMU for turn-detection with the gyroscope, or absolute head-

ing estimation by the eCompass, is examined synthetically, using a 3D-printed turntable (cf.

figure 6.11). It is driven by a 17MH5417 stepper motor, with a physical resolution of 0.9 °/step,

and executes requested rotations with accuracy and precision down to 1°. The resolution is fur-

ther increased by a TMC2100 stepper driver, configured for 1/16 microstep interpolation, with a

full 360° turn thus requiring 6400 steps. To ensure that the motor does not skip any steps, and

the smartphone keeps its enforced alignment, an acceleration and deceleration phase is used.

Tests examine three aspects, under controlled conditions: estimating accuracy and drift of

the gyroscope, testing the magnetometers suitability for absolute heading estimation, and de-

termining whether tilt compensation works as expected. Thus, experiments used three different

device orientations: The first places the phone flat onto the turntable, with its z-axis pointing

upwards, and a rubber mat in between ensuring the device remains in place. To examine tilt

compensation, the phone is also placed in portrait and landscape mode, both with a 45° tilt an-

gle, similar to a pedestrian holding the device upfront, fixed by a bracket shown in figure 6.11.

While the turntable is aligned parallel to the earth’s surface, a phone placed on top can not

be ensured to read an exact 0° angle, due to slight misalignments. All devices were manually

aligned, ensuring that accelerometer readings match 0° as closely as possible. Angular values

shown within the following experiments will thus vary slightly.

Results - Overview To determine the quality of tilt compensation and turn-detection, all three

poses were examined using three different turning rates: 62.7 °/s, 122.5 °/s and 234.0 °/s. Ta-

ble 6.6 shows the results for measuring this turning rate, by using the median of the gyroscope’s

magnitude (see (2.38)), and the results for the placement angle, determined by the average dot

product between normalized accelerometer readings and (0, 0, 1)T (see (2.46)).

6.2. EVALUATION OF SENSOR COMPONENTS 227

0° flat landscape at 45° portrait at 45°

62.7 °/s 122.5 °/s 234.0 °/s 62.7 °/s 122.5 °/s 234.0 °/s 62.7 °/s 122.5 °/s 234.0 °/s

S3 Mini 1.7° 1.4° 1.7° 45.8° 46.2° 47.5° 45.0° 44.7° 45.1°

57.9 °/s 112.9 °/s 215.5 °/s 57.9 °/s 112.9 °/s 215.2 °/s 58.4 °/s 114.1 °/s 217.8 °/s
Nexus 6 0.9° 0.9° 1.6° 47.3° 47.1° 48.0° 46.5° 46.2° 45.3°

62.4 °/s 121.9 °/s 232.7 °/s 62.2 °/s 121.4 °/s 231.9 °/s 62.0 °/s 121.4 °/s 232.1 °/s
Moto Z 1.5° 2.0° 3.4° 44.9° 44.9° 44.6° 45.1° 44.8° 43.5°

62.6 °/s 122.2 °/s 233.4 °/s 63.0 °/s 123.1 °/s 234.8 °/s 62.0 °/s 121.5 °/s 233.0 °/s
LG G6 1.3° 1.5° 3.2° 45.7° 46.3° 48.1° 45.4° 45.5° 45.8°

63.0 °/s 123.2 °/s 235.3 °/s 63.2 °/s 123.2 °/s 235.0 °/s 62.5 °/s 122.8 °/s 235.7 °/s
Pixel 2 1.9° 1.5° 3.1° 45.3° 45.9° 47.7° 45.9° 45.6° 45.8°

62.6 °/s 122.3 °/s 233.6 °/s 62.6 °/s 122.3 °/s 233.6 °/s 63.7 °/s 124.5 °/s 237.7 °/s
KEY2 0.9° 1.4° 2.9° 45.4° 45.5° 45.9° 44.9° 44.2° 42.2°

62.6 °/s 122.5 °/s 233.8 °/s 62.6 °/s 122.1 °/s 233.0 °/s 62.9 °/s 123.0 °/s 235.6 °/s

Table 6.6: Results of a turntable experiment, using three different device placements, each with three

turning speeds. For every phone, the first row shows the tilt angle, estimated by the average dot product

between (0, 0, 1)T and the normalized readings from the accelerometer (see (2.46)). The second row

contains the measured angular velocity, estimated by the median of the gyroscope’s magnitude.

For all devices, except the S3 Mini, turn rates are viable, and, due to using the magnitude,

independent of the phone’s orientation. The S3 Mini is one of the first containing an IMU with

gyroscope (see table 6.1). Besides comparatively poor sensor resolution, neither its accelerom-

eter nor its gyroscope seemed to be correctly calibrated. Within all tests, the accelerometer’s

z-axis was off by a constant +0.13 g, and the gyroscope’s x and z were off by +0.015 rad/s

and +0.005 rad/s, respectively. While the latter seems small, it denotes a drift of 17.19 °/min,

significantly affecting turn-detection. The same holds true for tilt compensation. Depending

on the way this device is held, the tilt-vector deviates, due to the constant z-offset. While the

accelerometer of the Milestone 2 behaved similarly, all other examined smartphones did not

show major offsets for their accelerometers or gyroscopes. Yet, for all contestants, the estimated

angle indicated a dependency on the current turning rate, examined within the following.

Results - Pose Estimation Discussed in section 2.4.2 and 2.4.3, readings from gyroscope and

magnetometer are orientation dependent. The following examines the required tilt compensa-

tion, using the turntable as controllable testbed, before evaluating actual pedestrian walks.

Figure 6.12 shows a setup, with the LG G6 placed flat onto the turntable, examining the influ-

ence of the rotation axis, by moving it into six different positions: Centered within the turntable

where the rotation axis matches the phone’s center, aligned with the left or right boundary of the

turntable, moved to the top or bottom, and with the rotation axis matching the actual location

of the IMU. This location, shown for the LG G6, is model dependent, was determined by hard-

ware teardown, and confirmed by experiments. The turntable was configured to perform ten

turns counterclockwise (CCW), a short break, and ten turns clockwise (CW). The ten turns are

228 CHAPTER 6. EXPERIMENTS

0°

2°

4°

6°

0°

2°

4°

6°

10 s 30 s 50 s 70 s 10 s 30 s 50 s 70 s 10 s 30 s 50 s 70 s

center left right

top bottom at IMU
IMU

Figure 6.12: Behavior of accelerometer and gyroscope readings from the LG G6, based on the location

of the rotational axis, and rotation speed. The estimated angle between the z-axis and the readings from

the accelerometer (solid lines) should be ≈ 0°, as the phone is aligned parallel to the earth’s surface. Its

average is indicated as horizontal line. The absolute turn-rate measured by the gyroscope’s z-component

(dashed lines) is equal for all six variants, showing the same output with a maximum of ≈ 234 °/s.

divided into three sections: four turns of acceleration, spinning two turns with a target speed of

234.0 °/s, followed by four turns of deceleration. With the phone placed flat onto the table, the

angular velocity is measurable solely within the gyroscope’s z-component, depicted as dashed

line in figure 6.12. For visualization reasons, the absolute of this value is depicted, yielding

two positive turn-rate-peaks. Both, accelerometer and gyroscope readings were filtered using

a 1000ms moving average filter, to remove spikes, visualizing only the important aspects. As

can be seen, the turn-rate in z is unaffected by the position of the phone. For the accelerome-

ter, results are different. The impact of the rotation axis is determined by calculating the angle

between (0, 0, 1)T , and the readings from the accelerometer (see (2.46)). On a first impression,

this angle should remain stable while turning. Yet, this only holds true if the IMU is located

directly within the rotation axis. If not, readings are influenced by a centripetal force, depend-

ing on the current angular velocity, and the IMU’s distance towards the rotation axis. This is

confirmed by the plots shown in figure 6.12. For the left and bottom variant, the LG G6’s IMU is

moved farther away from the rotation axis, increasing the centripetal force, thus the accelerom-

eter’s readings for x and y, and thus the angle with respect to the z-axis. For right and top, the

IMU is nearer to the rotation axis, reducing the centripetal force, and thus the angle.

This result is important, as the additional force, besides gravity, affects the tilt compensation,

and thus turn or heading estimations. Depending on the angular velocity, faster turns will cause

larger errors. As the location of the IMU depends on the device, effects vary between models,

explaining the results in table 6.7, where the error between actual and estimated angle increased

differently for faster turning rates, dependent on the current orientation. When the phone is held

by a pedestrian upfront, this effect intensifies, as the distance towards the rotation axis of the

turning pedestrian increases, thus affecting the tilt compensation.

6.2. EVALUATION OF SENSOR COMPONENTS 229

27°

30°

33°

36°

−4°

0°

4°

2 s 4 s 6 s 76 s 78 s 80 s 152 s 154 s 156 s

Figure 6.13: Consecutive ±15° CCW and CW rotation of a turntable tilted by 15°, with the phone in

45° portrait mode. The two rows denote the tilt angles in x (top) and y (bottom), estimated from the

accelerometer (gray), gyroscope (dashed black) and complementary filter with κ = 0.998 (solid black).

By combining both, the filter compensates noise from the accelerometer, and drift of the gyroscope.

The complementary filter (cf. section 2.4.2) provides a partial solution. By applying a low-

pass filter to the accelerometer, temporal anomalies are compensated. Yet, this only addresses

small timeframes, unsuitable for longer turns, or the synthetic tests on the turntable. While the

complementary filter can be configured to rely even more on the gyroscope, when increasing

the timeframe of compensation, drift becomes notable, causing new issues. These effects, and

the impact of the filter, are shown in figure 6.13, where the LG G6 was placed in 45° portrait

mode, onto the turntable, which was tilted backwards by 15°, causing a 30° angle between

phone and ground. The turntable was configured to perform ±15° turns around this initial

position, that is, 15° CCW once, followed by a repetition of 30° CW and 30° CCW, alternating

around the initial center. This results in a shaking movement, similar to a walking pedestrian,

holding the smartphone upfront. Figure 6.13 shows the estimated rotation for the phone, around

its x and y axis (see (2.39) and (2.49)). As the gyroscope measures only relative changes, its

cumulation was initialized using the first few estimations from the accelerometer. As can be

seen, the accelerometer provides an absolute estimation, but contains significant amounts of

noise. While the gyroscope does not show notable noise, it suffers from cumulating drifts, with

the 30° angle reaching 36° after ≈ 130 s. This is addressed by a complementary filter with

an empiric κ = 0.998, combining accelerometer and gyroscope, deriving a stable, noise-free

estimation, suited for tilt compensation. While results were depicted and discussed for a single

phone, all other devices showed similar behavior, yet, dependent on the location of their IMU.

Results - Turn Angles The quality of gyroscope-based turn-detection is examined by the

turntable performing ten turns CCW, followed by ten turns CW, using the three mentioned

speeds and orientations. Ground truth is the cumulated angle after the first ten, and all 20 turns,

which should read 3600° and 0°, respectively. It is estimated using four different strategies:

Integrating the gyroscope’s z-component (2.36), using the gyroscope’s signed magnitude (2.38),

230 CHAPTER 6. EXPERIMENTS

performing tilt compensation solely by the accelerometer using (2.49) with κ = 0, and, applying

tilt compensation by the complementary filter using (2.49) with an empiric κ = 0.998.

Results are listed in table 6.7. As expected, just integrating the gyroscope’s z-component

(each 1st row) provides valid results only when the smartphone is placed parallel to the earth’s

surface. The 45° landscape and portrait modes should read approximately sin(45°) 3600° ≈
2546°. While using the gyroscope’s signed magnitude (each 2nd row) addresses this issue, this

is only valid for the presented turntable tests, where the induced rotation has a single source

axis. When a pedestrian holds the smartphone while walking, shaking additionally affects the

magnitude, invalidating the cumulated angle. For pedestrian walks, tilt compensation (each

3rd and 4th row) should be applied to the gyroscope measurements, prior to the integration

step. While the accelerometer is able to provide this compensation on its own (each 3rd row)

previous experiments indicated that using a complementary filter (each 4th row) is advisable.

This is again confirmed by the values of the 45° portrait setup in table 6.7. When the

bracket holds the smartphone in portrait mode (see figure 6.11), each device picks up a notable

amount of noise, resulting from a disadvantageous center of mass. When using solely the

accelerometer for tilt compensation (3rd row), this noise affects the estimated tilt, and thus the

resulting cumulated angle, clearly indicated by the divergent results. The complementary filter

is able to address this issue by filtering the accelerometer, and including the gyroscope.

Counterintuitively, the KEY2 and Moto Z show larger errors for the flat placement, than for

the other two orientations. Analyzing the raw readings from the gyroscope indicated that the

sensor within these devices provides slightly divergent turning rates for CCW and CW rotation,

at least, for readings of the z-axis. Even though this difference is marginally, it cumulates over

time, causing notable deviations after the 20 turns. As it is less pronounced for faster turning

rates, that is, shorter test-runs, it might be caused by a minor, constant calibration offset.

While repeatability is good for most devices, all absolute readings are slightly off. That is,

the measured turn-rate (see table 6.6) does not match with the actual one, yielding the cumula-

tions (see table 6.7) to be off as well. Especially the Pixel 2 in portrait mode deviates more than

1% from the actual turn-rate. Yet, for all examined devices, results were viable with relatively

small errors for shorter timeframes, well suited for assisting coarse absolute headings.

Results - ECompass Even though the results for gyroscope-based turn-detection are promis-

ing, they remain relative. When not knowing the pedestrian’s initial heading, and/or suffering

from cumulating drift, absolute indications are helpful, even if they are less accurate.

To ensure the magnetometer points towards geomagnetic north, a brief test compared the

estimated angle (2.60) with the one from an analog compass, when placing each device flat

onto the ground. Being inexact, results are not provided as actual angular values. Nevertheless,

6.2. EVALUATION OF SENSOR COMPONENTS 231

0
°

fl
at

la
n

d
sc

ap
e

at
45

°
p

o
rt

ra
it

at
4
5°

62
.7

°/
s

12
2.
5

°/
s

23
4
.0

°/
s

62
.7

°/
s

12
2
.5

°/
s

23
4
.0

°/
s

6
2
.7

°/
s

1
2
2
.5

°/
s

2
3
4.
0

°/
s

S3Mini

3
3

3
7

.0
3

7
.9

3
3

2
8

.4
2

1
.1

3
3

2
2

.5
1

0
.8

2
1

1
4

.2
3

6
.5

2
1

0
3

.5
1

5
.8

2
1

0
2

.5
1

1
.4

2
1

9
3

.6
3

3
.8

2
1

9
6

.2
1

5
.0

2
1

9
1

.7
1

1
.5

3
3

4
7

.0
4

4
.3

3
3

3
5

.1
2

7
.0

3
3

2
7

.6
1

5
.1

3
3

7
8

.5
1

0
7

.9
3

3
5

0
.3

5
6

.0
3

3
3

9
.5

3
3

.8
3

3
7

2
.2

3
3

.5
3

3
6

9
.2

1
8

.3
3

3
6

2
.1

1
4

.6

3
3

3
4

.4
3

5
.1

3
3

2
7

.7
2

0
.1

3
3

2
2

.6
1

0
.4

3
3

5
8

.0
1

0
3

.5
3

3
3

9
.3

5
5

.1
3

3
3

4
.4

3
3

.3
3

3
5

5
.8

3
0

.7
3

3
4

5
.4

7
.9

3
3

4
8

.1
9

.5

3
3

3
5

.9
3

6
.0

3
3

2
7

.9
2

0
.0

3
3

2
2

.0
1

0
.2

3
3

6
1

.4
1

0
3

.9
3

3
3

9
.3

5
5

.5
3

3
3

1
.4

3
2

.2
3

3
5

8
.8

3
0

.4
3

3
5

0
.0

8
.1

3
3

5
0

.9
1

0
.1

Nexus6

3
5

7
9

.7
-4

.5
3

5
8

2
.9

-1
.4

3
5

7
9

.9
-1

.9
2

4
3

7
.1

1
0

.9
2

4
5

0
.9

-0
.5

2
4

5
0

.1
-0

.4
2

4
6

6
.5

-2
.6

2
4

6
9

.3
-3

.7
2

4
7

3
.6

-1
.3

3
5

7
9

.9
-4

.8
3

5
8

3
.2

-1
.4

3
5

8
0

.1
-1

.9
3

5
6

9
.6

0
.9

3
5

6
9

.6
0

.8
3

5
6

8
.5

0
.0

3
5

8
3

.1
-2

.6
3

5
6

9
.7

-2
.1

3
5

7
1

.6
-1

.5

3
5

7
9

.5
-4

.5
3

5
8

2
.6

-1
.4

3
5

7
8

.3
-0

.9
3

5
6

7
.2

4
.7

3
5

6
8

.4
0

.4
3

5
6

5
.9

0
.2

3
5

5
7

.1
-1

1
.4

3
5

6
6

.1
-3

.8
3

5
6

9
.0

-1
.4

3
5

7
9

.6
-4

.6
3

5
8

2
.7

-1
.4

3
5

7
9

.4
-1

.7
3

5
6

8
.7

2
.6

3
5

6
8

.8
0

.6
3

5
6

6
.9

-0
.2

3
5

6
9

.7
0

.3
3

5
6

8
.5

-1
.9

3
5

7
0

.7
-0

.4

MotoZ

3
5

9
8

.8
1

4
.1

3
5

9
4

.7
5

.8
3

5
9

3
.2

3
.1

2
5

3
1

.7
1

1
.4

2
5

3
0

.3
7

.7
2

5
2

9
.2

4
.5

2
5

0
9

.3
9

.0
2

5
0

7
.9

4
.9

2
5

0
7

.6
2

.4

3
5

9
9

.6
1

4
.4

3
5

9
5

.4
6

.0
3

5
9

4
.0

3
.3

3
6

1
9

.1
8

.0
3

6
1

7
.7

5
.9

3
6

1
5

.8
3

.3
3

5
9

9
.8

1
2

.9
3

5
9

1
.1

5
.7

3
5

8
7

.6
2

.6

3
5

9
8

.8
1

4
.2

3
5

9
3

.7
5

.7
3

5
8

6
.8

3
.3

3
6

1
5

.7
6

.9
3

6
1

4
.2

4
.7

3
6

1
0

.3
1

.8
3

5
4

3
.4

-3
1

.8
3

5
5

5
.5

-1
3

.7
3

5
7

3
.2

0
.5

3
5

9
9

.0
1

4
.2

3
5

9
4

.4
5

.8
3

5
8

9
.9

3
.9

3
6

1
7

.1
7

.4
3

6
1

5
.4

5
.0

3
6

1
3

.4
2

.8
3

5
9

0
.3

1
0

.1
3

5
8

7
.6

5
.3

3
5

8
1

.6
3

.7

LGG6

3
6

1
9

.7
-0

.0
3

6
1

9
.8

-0
.3

3
6

2
0

.0
-0

.1
2

5
5

7
.3

0
.2

2
5

5
8

.6
-0

.2
2

5
5

7
.3

-0
.1

2
5

5
3

.9
-0

.7
2

5
5

4
.8

-0
.4

2
5

5
5

.9
-0

.2

3
6

1
9

.9
-0

.1
3

6
1

9
.9

-0
.3

3
6

2
0

.1
-0

.2
3

6
1

7
.7

0
.1

3
6

1
7

.1
-0

.2
3

6
1

7
.1

-0
.5

3
6

3
3

.5
-0

.3
3

6
2

6
.6

-1
.2

3
6

2
5

.7
-0

.3

3
6

1
8

.5
-0

.3
3

6
1

8
.1

-0
.1

3
6

0
9

.4
-0

.6
3

6
1

1
.8

-0
.8

3
6

1
2

.3
-0

.5
3

6
0

2
.0

-0
.9

3
5

6
7

.1
-4

0
.4

3
5

9
3

.0
-9

.1
3

6
1

2
.5

-2
.2

3
6

1
9

.5
-0

.0
3

6
1

9
.2

-0
.3

3
6

1
2

.4
0

.1
3

6
1

6
.1

0
.1

3
6

1
5

.2
-0

.2
3

6
0

6
.5

0
.3

3
6

2
4

.0
-0

.7
3

6
2

4
.2

-0
.4

3
6

1
9

.9
-0

.0

Pixel2

3
5

9
4

.4
-0

.2
3

5
9

4
.5

-0
.1

3
5

9
4

.1
-0

.1
2

5
2

5
.5

-0
.8

2
5

2
7

.2
-0

.6
2

5
2

8
.2

0
.2

2
5

2
7

.9
-0

.6
2

5
2

9
.8

0
.0

2
5

3
0

.9
-0

.3

3
5

9
4

.6
-0

.2
3

5
9

4
.6

-0
.1

3
5

9
4

.2
-0

.0
3

5
9

5
.0

-1
.2

3
5

9
3

.9
-1

.6
3

5
9

4
.1

-1
.0

3
6

6
5

.5
-5

.9
3

6
5

7
.4

-0
.8

3
6

5
7

.0
-1

.2

3
5

9
1

.6
0

.1
3

5
9

2
.7

0
.3

3
5

8
4

.6
0

.3
3

5
9

0
.1

-2
.4

3
5

9
1

.8
-1

.5
3

5
8

3
.1

0
.2

3
6

2
2

.5
-2

.4
3

6
4

4
.8

-0
.9

3
6

4
4

.2
1

.9

3
5

9
4

.2
-0

.2
3

5
9

3
.6

-0
.1

3
5

8
6

.4
0

.2
3

5
9

3
.5

-1
.2

3
5

9
2

.9
-1

.6
3

5
8

6
.8

-0
.5

3
6

5
5

.2
-1

.1
3

6
5

4
.4

-0
.3

3
6

4
8

.1
0

.0

KEY2

3
5

9
0

.6
-1

1
.6

3
5

9
3

.4
-6

.0
3

5
9

5
.1

-3
.4

2
5

0
3

.7
-0

.1
2

5
0

4
.8

0
.5

2
5

0
4

.7
-0

.0
2

5
3

2
.7

-0
.7

2
5

2
5

.4
-0

.5
2

5
2

6
.4

-0
.4

3
5

9
1

.1
-1

2
.1

3
5

9
4

.0
-6

.4
3

5
9

5
.7

-3
.7

3
5

9
1

.8
9

.9
3

5
8

9
.2

6
.0

3
5

8
7

.4
2

.0
3

6
3

1
.7

-1
0

.7
3

6
2

3
.6

-5
.0

3
6

2
4

.3
-2

.7

3
5

9
0

.3
-1

1
.0

3
5

9
0

.8
-6

.0
3

5
8

2
.7

-3
.7

3
5

8
7

.7
1

1
.4

3
5

8
6

.7
7

.2
3

5
7

7
.4

3
.6

3
5

9
5

.0
-2

2
.4

3
6

1
7

.5
-5

.8
3

6
0

9
.0

-3
.2

3
5

9
0

.7
-1

1
.4

3
5

9
2

.3
-5

.9
3

5
8

7
.4

-1
.2

3
5

9
1

.4
1

1
.2

3
5

8
8

.2
7

.1
3

5
8

0
.3

4
.6

3
6

1
9

.7
-1

0
.3

3
6

2
0

.9
-4

.8
3

6
1

5
.9

1
.3

T
ab

le
6
.7

:
R

es
u
lt

s
o
f

th
e

tu
rn

ta
b
le

ex
p
er

im
en

ts
,
p
er

fo
rm

in
g

te
n

C
C

W
tu

rn
s,

fo
ll

o
w

ed
b
y

te
n

C
W

tu
rn

s,
u
si

n
g

th
re

e
d
if

fe
re

n
t

sm
ar

tp
h
o
n
e

p
la

ce
m

en
ts

,

ea
ch

w
it

h
th

re
e

tu
rn

in
g

sp
ee

d
s.

F
o
r

ev
er

y
p
h
o
n
e,

th
e

cu
m

u
la

te
d

h
ea

d
in

g
ch

an
g
e

af
te

r
th

e
fi

rs
t

te
n

C
C

W
tu

rn
s

(l
ef

t
v
al

u
e,

sh
o
u
ld

b
e
36

00
°)

an
d

af
te

r
ad

d
it

io
n
al

te
n

C
W

tu
rn

s
(r

ig
h
t

v
al

u
e,

sh
o
u
ld

b
e
0°

)
is

d
et

er
m

in
ed

u
si

n
g

fo
u
r

d
if

fe
re

n
t

st
ra

te
g
ie

s:
In

te
g
ra

ti
n
g

th
e

g
y
ro

sc
o
p
e’

s
z

-c
o
m

p
o
n
en

t
as

-i
s

(2
.3

6
)

(1
st

ro
w

),
u
si

n
g

th
e

g
y
ro

sc
o
p
e’

s
si

g
n
ed

m
ag

n
it

u
d
e

(2
.3

8
)

(2
n
d

ro
w

),
p
er

fo
rm

in
g

ti
lt

co
m

p
en

sa
ti

o
n

so
le

ly
b
y

th
e

ac
ce

le
ro

m
et

er
u
si

n
g

(2
.4

9
)

w
it

h
κ
=

0
(3

rd
ro

w
),

an
d

ap
p
ly

in
g

ti
lt

co
m

p
en

sa
ti

o
n

b
y

th
e

co
m

p
le

m
en

ta
ry

fi
lt

er
u
si

n
g

(2
.4

9
)

w
it

h
κ
=

0.
99

8
(4

th
ro

w
).

232 CHAPTER 6. EXPERIMENTS

0°

180°

240°

300°

360°

10 s 20 s 30 s 40 s 50 s

354°

357°

360°

363°

366°

11 s 12 s 13 s 14 s

60°

120°

180°

49 s 50 s 51 s 52 s

Figure 6.14: Angle estimated by (2.60) for the LG G6, after offset-removal and unwrapping for visualiza-

tion reasons. The gray line denotes the angle derived from the raw sensor data, the black line resulted

from prior low-pass filtering. Shown in the left, the unfiltered result contains significant amounts of

noise, mitigated by the filter. The right denotes a minor nonlinearity throughout the rotation.

all examined errors remained within ±20°, and the majority within ±10°. While not ideal, this

is still suited for a probabilistic absolute heading, backed by a fine relative turn-detection.

Potential accuracy, precision, and lag were examined by placing each device flat onto the

turntable, using a spacer of approximately 250mm in between, to prevent the motor from in-

fluencing sensor readings. The turntable’s pattern is changed to three repetitions of, 360° CCW

followed by 360° CW, matching the value range of the magnetometer. Acceleration and de-

celeration were disabled, to visualize the linearity of the sensor. However, this limits testing

to the slowest speed of 62.7 °/s, ensuring the phone stays in place, and the motor not skipping

steps. To allow comparing against a known ground truth, all angles calculated from magnetome-

ter readings are adjusted to be relative to the initial one, eliminating offsets towards magnetic

north. The result is unwrapped to remove jumps, e.g. between 0° and 360°, allowing for contin-

uous drawing in figures. Additionally, a 250ms moving average filter is applied to each of the

three magnetometer axes, before estimating the angle (2.60). Filtered and raw results are shown

in figure 6.14. As can be seen, without filtering, a significant amount of noise is present within

the estimated angle (left). Independent of filtering, the behavior while turning indicates a mi-

nor nonlinearity, deviating from a straight line (right), observable for all tested devices. While

sources for this behavior are numerous, it is most likely related to minor calibration issues.

Mentioned earlier, the magnetometer is affected by hard iron and soft iron effects, requir-

ing (re)-calibration. For all examined devices (see table 6.1) except the Milestone 4, the

magnetometer calibrated itself when being active, and the smartphone rotated several times

around all three axes. The quality of this calibration is examined by fitting an ellipse onto

the (x, y) readings, which, for the conducted test, should form a circle around (0, 0). The

fitting is performed by solving an over-determined set of linear equations, determining six

ellipse-parameters to match with all measured samples, based on the general ellipse equation

ax2 + bxy + cy2 + dx + ey + f = 0. It is hereafter converted to the geometric form, with a

6.2. EVALUATION OF SENSOR COMPONENTS 233

−20

0

20

−20 0 20

−42

−38

−20 0 20

−42

−38

x/y (µH)

y/z (µH)

x/z (µH)

Figure 6.15: Raw (gray) and filtered (black) magnetometer readings for the LG G6, that lead to figure 6.14.

The fitted ellipse (dotted white) indicates an offset from (0, 0), including a minor unroundness. Similarly,

both plots on the right reveal a minor sensor-tilt, affecting the roundness as well.

center, length of major/minor axis, and rotation [WGN15; Ber17]. The result for the LG G6 is

shown in figure 6.15, containing the raw and filtered readings for all three magnetometer axes.

As can be seen, the fitted ellipse is slightly off-center, and shows a minor unroundness, affecting

the linearity, as depicted earlier in figure 6.14. While this can be addressed using the presented

calibration (2.62), differences in accuracy were negligible for most devices.

Table 6.8 presents an average out of several repetitions, for each examined smartphone. The

quality of automatic calibration is given by the average magnitude of the magnetometer readings

(1st column), and the center of the estimated ellipse (2nd and 3rd column), which should be

(0, 0). While not being ideal, automatic calibration is sufficient for absolute heading estimation.

Only for the Milestone 4, the calibration was performed manually using (2.62). Besides the

center of the ellipse, the ratio between the size of its minor and major axis (see figure 6.15)

is calculated (4th column), indicating the roundness of the sensor readings, which should be

1.0 for an ideal circle. While some of the devices show a tendency towards an ellipsoid, their

sensor readings are still viable for heading estimations. Sensor-tilt (5th column) also affects the

roundness and angular results. The listed value denotes the angle between the x-axis, and a line

defined by the range of the magnetometer’s z-readings. For the presented turntable pattern, the

latter should also yield a horizontal line, and thus an angle of 0° (see figure 6.15 right). While

some devices indicated a slight tilt, results remained within a viable range, with no significant

impact on the estimated angles.

The right half of table 6.8 shows the angles estimated in between the turntable’s actions.

They are based on the same values, as have been used for figure 6.14. That is, filtered, offset-

corrected, and unwrapped. Entries are derived by searching for a minimum/maximum at each

of the 0°/360° plateaus. As can be seen, while the angles do not exactly conform with an

alternating pattern of 0° and 360°, they are well within range, even for older smartphone models.

234 CHAPTER 6. EXPERIMENTS

Magnitude/Center (µH) Roundness Angular Values (°)

mag x y ratio tilt (°)

Milestone 2 46.41 0.54 2.13 0.98 0.93 -2.3 363.5 -2.3 362.6 -0.9 361.9 -2.4

Milestone 4 - - - 0.95 0.24 -2.0 360.4 -1.2 360.0 -1.6 360.1 -2.2

S3 Mini 42.63 0.37 -0.68 0.92 2.31 -2.0 359.8 -2.5 359.5 -3.0 357.9 -3.6

Nexus 6 44.46 0.62 0.58 0.99 0.37 -1.4 361.5 -0.7 361.5 -0.8 361.0 -0.7

S5 Neo 42.38 1.84 3.07 0.97 0.90 -0.3 361.0 -0.6 360.0 -2.1 360.4 0.5

Moto Z 45.88 0.10 -1.87 0.98 1.74 -2.2 360.7 -3.5 361.3 -0.9 361.9 -2.1

LG G6 44.14 0.12 2.44 0.95 1.43 -2.1 362.9 -0.0 362.1 -0.1 362.2 0.9

Pixel 2 43.90 1.07 -1.13 0.96 0.61 -1.0 360.8 -0.8 360.6 -0.8 360.5 -0.7

KEY2 46.19 -0.54 2.33 0.94 0.65 -0.6 362.3 -0.9 361.1 0.1 361.6 -1.2

Table 6.8: Results of the turntable experiments, performing three times a sequence of: 360° CCW and

360° CW at 62.7 °/s, with the smartphone placed flat onto the turntable. Besides the seven estimated

angles (right), calibration-related metrics are shown (left), covering the average magnitude, offset from

(0, 0), and the result’s roundness, explained within the text.

Tests requiring tilt compensation are presented only briefly, for two reasons. On the one

hand, the turntable setup is not suited for a 45° portrait/landscape alignment with enough space

between the device and the motor, without introducing misalignment and shaking. On the other

hand, previous results for the gyroscope have already shown the validity of the tilt compensa-

tion. Yet, examinations conducted with additional spacing indicated results similar to the ones

from the gyroscope, with tilt compensation working as expected.

Not shown within figures, the angle estimated from the magnetometer was also compared

against the one determined from the gyroscope, indicating no significant delay between both,

when using the raw magnetometer data. Even for devices where the sensor seems to perform

internal filtering (S3 Mini, S5 Neo and Moto Z), lag was moderate, as low as a few milliseconds.

Especially for the S3 Mini, the magnetometer was significantly more stable than its gyroscope,

which suffered from aforementioned drifts. Thus, the conducted synthetic tests indicate that

absolute heading from the magnetometer is suited for supporting the gyroscope.

6.2.4 Pedestrian Dead Reckoning

The actual quality of IMU-based turn-detection, and absolute heading estimation is determined

by a pedestrian walking while holding the smartphone upfront. For an impression of the esti-

mation results, the previously examined step-detection is included as well, yielding a pedestrian

dead reckoning setup, depicting individual aspects for each of the two heading methods. It also

provides an impression on the capabilities of smartphone-based PDR. That is, expected local-

ization quality, when not using sensors for absolute location estimations, omitting probabilistic

approaches, recursive density estimation, and constraints from an underlying floorplan.

6.2. EVALUATION OF SENSOR COMPONENTS 235

0m

4m

8m

−8m −4m 0m 4m 8m 10 s 20 s 30 s 40 s 50 s 60 s 70 s

0°

180°

360°

45 µH
gyroscope

magnetometer

Figure 6.16: PDR for walking four times around a 7.5 × 2.5m railing, consisting of wood and metal,

holding the Pixel 2 upfront. Even though their heading estimations (lower right) are often similar, the

estimated path (left) is significantly different between using the cumulated gyroscope (black), and using

the magnetometer (grey) as heading indicator. The impact of the environment is also indicated by the

behavior of the magnetometer’s magnitude (upper right, showing (45± 20) µH).

The walking path is estimated by starting at (0, 0), hereafter adjusting this location when-

ever a step is detected, moving 70 cm into the direction indicated by the tilt compensated mag-

netometer (2.60), or the cumulated and tilt compensated gyroscope (2.51). Due to previous

results, tilt compensation uses the complementary filter (2.49). Magnitude-based turn-detection

(2.38) was omitted after brief tests, where shaking, induced by holding the phone, accumulated

rapidly, causing large drifts, rendering this variant unusable for pedestrian walks.

To ensure comparability, the heading from the magnetometer is adjusted to start at 0°, inde-

pendent of the local declination, the building’s orientation (2.60), and the offset for the device

being held in portrait mode (see table 2.1). Within the plotted paths, the correct orientation is

used, matching with the building’s floorplan, and might thus deviate. Additionally, estimated

angles are modified, adding±360° to reduce the difference between gyroscope and magnetome-

ter. The latter was re-calibrated before every walk. Even when figures depict the results from a

single smartphone only, all walks were conducted using multiple devices. They all captured the

same local influences, with only minor deviations, due to hardware differences.

For the first walk, the pedestrian held the smartphone upfront, walking four times around a

7.5× 2.5m railing, made of wood and metal. Results for the Pixel 2 are shown in figure 6.16.

For visualization, the gyroscope’s cumulation is wrapped to 0° when reaching 360° after one

complete turn. As can be seen, the estimation from the gyroscope is close to the actual path,

with start (cross) and end (dot) being almost identical. Even though the drift is only minimal

(see right half), the result clearly shifts with every subsequent turn. The wavy pattern, visible

within the estimated heading when walking straight, is caused by the pedestrian shaking the

smartphone, slightly altering its pose. While the heading derived from the magnetometer often

is similar, its PDR estimation diverges significantly. The overall shape remains recognizable,

but some estimations are notably different, due to outliers, caused by the metal railing. En-

236 CHAPTER 6. EXPERIMENTS

−8m

−4m

0m

4m

−12m−8m −4m 0m 4m 10 s 20 s 30 s 40 s 50 s

−540°

−360°

−180°

0°

180°

45 µH

gyroscope
magnetometer

downwards, CW

1
8
0

°,
C

C
W

upwards, CCW

Figure 6.17: PDR for holding the Pixel 2 upfront, walking two floors downwards in CW direction,

turning by 180° CCW in place, walking two floors upwards in CCW direction, reaching the origin.

The stairwell’s environment affects the magnetometer significantly, indicated by changes in magnitude

(upper right, showing (45± 20) µH), causing heading inversions in some locations (lower right plot).

Consequently, the path estimated from the magnetometer’s heading (left plot) is rendered unusable.

vironmental influences are also notable within the sensor’s magnitude, depicted in the upper

right plot, showing a range of (45± 20) µH. While the presented example seems like an ideal

candidate for the complementary filter, compensating gyroscope drift with a low-pass filtered

magnetometer, this does not hold true in general. Temporal environmental effects can yield

heading offsets with unknown duration and impact, uncorrectable by the complementary filter.

This can be seen within a second setup, with a pedestrian walking two floors downwards

in CW direction, performing a 180° turn in place, walking back to the origin, shown in fig-

ure 6.17. The environment is characterized by steel-reinforced concrete, a facade made of glass

and metal-bars, and large radiators for heating the stairwell. Shown within the plots, local influ-

ences, like the radiators, can cause the indicated heading to be the opposite of the real direction,

uncorrectable by initial calibration. The magnitude of the magnetometer readings, shown within

the upper right plot, also indicates the effect of surrounding metal objects. However, for the de-

picted walk, there is no direct temporal correspondence between changes in magnitude, and

heading errors. Besides heading, the estimated distance also unveils important results. While

the plot indicates a walking distance in x-direction of ≈ 8m, the actually walked length mea-

sures only ≈ 4m. This is due to assuming a constant step length of 70 cm, which is incorrect

while taking stairs. Here, the step length is given by the size of the stair’s treads, which was

≈ 30 cm. As mentioned in chapter 3, this will be addressed later, by including the building’s

floorplan, adjusting the step length, whenever the underlying ground denotes treads of a stair.

A third walk is used to determine the long-term stability of step-detection, gyroscope and

magnetometer, when walking mainly straight forward. For this setup, the pedestrian held the

smartphone upfront, walking ≈ 60m straight through the building, taking one 90° CCW turn,

proceeding straight for ≈ 40m. Results are depicted in figure 6.18, for two different devices,

the Pixel 2 (solid lines), and the LG G6 (dashed lines). For both, the estimated walking distance

6.2. EVALUATION OF SENSOR COMPONENTS 237

magnetometer
gyroscope

50m

10 s 20 s 30 s 40 s 50 s 60 s 70 s

0°

90°

45 µH

Figure 6.18: PDR for holding the Pixel 2 upfront, walking ≈ 100m straight, with one 90° CCW turn

in between. The magnetometer’s magnitude (upper right, showing (45± 20) µH) changes significantly

throughout the walk, so does its estimated heading (lower right). The result for both smartphones – the

Pixel 2 (solid), and the LG G6 (dashed) – slightly overshoots the actual destination (lower left). While

the gyroscope-based PDR diverges between both, the magnetometer-based variant is notably similar.

is slightly larger than the actual value, overshooting by approximately 2m, due to an incorrect

step length constant. Concerning turn-detection, the two devices seem slightly biased, visible

as individual bending of their estimated paths. For the magnetometer’s estimation, both results

are notably similar, showing the same local effects along the walking path, even though both

were recorded one after another. Yet, besides being notably similar, and the overall shape

recognizable, there are major drawbacks for the magnetometer heading’s accuracy. The first

half of both walks is off by ≈ 15° from the horizontal ground truth. Within the second half,

this error increases to ≈ 25° from the vertical ground truth. The difference between the halves

clearly indicates that this can not be addressed by a constant angular calibration offset.

The examined walks thus yield several conclusions. Similar to previous experiments, step-

detection is accurate, but walking distance estimations can vary, especially when invalid as-

sumptions on the pedestrian’s step length are made. In some cases, like the depicted overshoot-

ing, this can be mitigated by including the building’s floorplan, preventing impossible walks.

The gyroscope-based turn-detection is almost free of noise, accurate within shorter time-

frames, but suffers from cumulating drifts, notably affecting PDR-based location estimation.

Furthermore, the amount of drift, and its direction, vary between the tested devices. Again,

these issues can be mitigated by including a floorplan, limiting impossible walks.

The magnetometer can provide a coarse absolute heading, at least in some parts of the build-

ing, but might suffer from unpredictable, large errors in other regions. As there was no direct

correspondence between changes in magnitude and observed errors, predicting outliers seems

difficult. Only within measurements belonging to straight walks, or when compared against

turn-detection, assumptions on potential outliers can be made. Even after outlier filtering, the

accuracy of the estimated heading remains unclear (see (6.18)), influenced by the surrounding

environment. However, based on the presented results, including the magnetometer probabilis-

238 CHAPTER 6. EXPERIMENTS

994.9

995.1

995.3

995.5

995.7

0 s 20 s 40 s 60 s 80 s 100 s 120 s

147
148
149
150
151
152
153
154 994

994.2

994.4

994.6

994.8

0 s 10 s 20 s 30 s 40 s 50 s 60 s

154
155
156
157
158
159
160
161

p
re

ss
u

re
(h
P
a

) ground truth
measured

al
ti

tu
d

e
(m

)

ground truth
measured

Figure 6.19: Measured pressure over time, for a pedestrian walking upstairs by two stories, then down-

stairs again, using the LG G6. At each plateau, the pedestrian either rested shortly (left), or kept walking

(right). Solid lines denote the first walk, dashed lines all repetitions, made within a ten minute timeframe.

Between the five walks on the left, and the ones on the right, one hour has passed. The ground truth was

determined by (2.71), based on the building’s altitude, a measured reference pressure, and the stair.

tically for a coarse heading estimation, seems feasible (cf. section 2.4.3). Corresponding results

will be discussed when examining the overall system, including sensor fusion by recursive den-

sity estimation, and constraints imposed by the building’s floorplan.

6.2.5 Altitude Estimation

To evaluate the contribution of smartphone barometers, discussed approaches, and issues, sev-

eral walks with varying hardware, location, and ambient conditions were conducted. The ex-

periments focus on accuracy, precision, delays, environmental influences, and consequences.

Repeatability of measurements was examined by conducting a two story walk (first up, then

down) several times, within a timeframe of ten minutes, using the LG G6, during cloudy weather

conditions. The difference in altitude between both stories was estimated using a plumb bob and

is ≈ 5.54m. While walking, four stairs, each ≈ 1.38m in height, and five plateaus (including

start and end) were taken. Figure 6.19 shows the results for five consecutive first-up-then-down

walks. At each plateau, the pedestrian rested either ≈ 10 s (left half) or kept walking (right

half). The solid lines describe the first of five repetitions, all others are denoted by dashed lines.

Between both variants, with and without resting at plateaus, one hour has passed, and, as can be

seen, the atmospheric pressure changed by about 1 hPa, equal to 8m in altitude. Even between

the repetitions, there is a difference in altitude of up to 1.0m, and the atmospheric pressure

reading varies notably. This clearly indicates a major drawback when using absolute pressure

indications. Besides, figure 6.19 also indicates a poor repeatability during each single walk, as

there is no symmetry between both halves (walking upstairs/downstairs). However, compared

with the 1 hPa difference, deviations throughout the walk were less severe.

As can also be seen, sensor readings appear unnaturally smooth, most probably due to fil-

tering inside the sensor or operating system. This causes the plateaus, where the pedestrian

6.2. EVALUATION OF SENSOR COMPONENTS 239

Altitude Change Seconds per Stair Steps/Treads per Second

µ σ µ σ µ σ

stair↑ 31.5 cm/s 3.99 cm/s 4.38 0.66 1.85 0.23
stair↓ 36.2 cm/s 3.78 cm/s 3.84 0.47 2.09 0.22

Table 6.9: Average stair walking speeds among several pedestrians for the staircase from figure 6.19.

was standing still, to barely appear as a flat line. For the non-resting walk, they are completely

unrecognizable. That is, all measurements appear like a low-pass filtered version of the ground

truth, yielding a curved and delayed output. This delay was first estimated visually, by moving

the measurements to the left until they match the ground truth, indicating ≈ 3 s. Likewise, the

delay was determined mathematically via numerical optimization of an error function, given by

the vertical distance between measurements and ground truth, indicating a delay of ≈ 3.4 s.

To estimate the impact of this delay, the pedestrian’s average change in altitude per second,

and the time needed for climbing the examined staircase, are determined. For this, several

pedestrians walked within the staircase from figure 6.19, while taking the exact time at the

beginning and end of each individual stair. Results of this analysis are shown in table 6.9. As

can be seen, delays presented by the LG G6’s barometer are almost equal to the average time it

takes a pedestrian to climb each stair, that is, half a floor. Even though the barometer indicates

the first changes in atmospheric pressure slightly before the estimated delay, this still causes

issues when evaluating the probability for potential pedestrian movements.

Figure 6.20 depicts the resulting evaluation, comparing barometer readings and ground truth

probabilistically. For the absolute variant (2.73), the current atmospheric pressure and altitude

above mean sea level are required for the examined stairwell. Both values together are used

to convert the readings from the barometer into an expected altitude. This result is comparable

against the walk’s ground truth, using (2.73) with σalt = 1m. The uncertainty was determined

empirically, based on previous evaluations. It implies that > 99% of all sensor readings are

expected to stay within a ±3m boundary, or approximately one floor level. When using the

relative approach (2.75), by using the first barometer reading as 0-reference, no absolute values

are required, comparing solely relative pressure and altitude changes.

Figure 6.20 compares both variants. The absolute approach shows a poor repeatability. Due

to changing ambient conditions, the conducted repetitions are significantly different. Thus, the

absolute evaluation of barometer readings does not provide a viable solution to estimate the

pedestrian’s altitude. This is effectively addressed by the relative strategy, where all repetitions

start with the same likelihood, due to the initial pressure reference. However, even the relative

variant suffers from changing weather conditions, as they invalidate the initial reference even-

240 CHAPTER 6. EXPERIMENTS

0.1

0.2

0.3

0.4

20 s 40 s 60 s 80 s 100 s 120 s

off by 1.5m

off by 2.0m

0.1

0.2

0.3

0.4

10 s 20 s 30 s 40 s 50 s 60 s

(2
.7

5
)

[r
el

at
iv

e]
(2

.7
3

)
[a

b
so

lu
te

]

Figure 6.20: Absolute (2.73) and relative (2.75) evaluation of barometer readings for the data from

figure 6.19. The absolute variant clearly lacks repeatability, due to the ambient pressure slightly changing

between the conducted walks. Spikes within all results are caused by the sensor’s delay. For the walks

where the pedestrian rested at each plateau (left) the probability is able to recover. For the non-resting

walks (right), the delay becomes even more apparent, with more and wider spikes.

tually. It is thus advisable, to use a time-limited approach, comparing the pressure and altitude

change during the last few seconds, instead of since start.

For both variants, the sensor delay yields noticeable drops in likelihood whenever taking a

stair, with spikes similar to being off by half a floor. When resting for 10 s at each plateau, the

probability is able to recover. For the non-resting variant, however, additional spikes appear

and blend together, causing a period of reduced probability. Not shown within the figure, when

compensating the sensor delay manually, the spikes are significantly reduced, yielding almost a

horizontal line, that is, a constant probability, indicating the general viability of the sensor.

Both, the presented delays and repeatability, are sensor dependent attributes. Conducting

a similar walk with a Google Nexus 6, equipped with a barometer from Invensense, yields

the results shown in figure 6.21. While the direct output of the sensor is less smooth, due to a

decreased number of significant digits, delays are smaller, repeatability is better, and response

is more direct. Even when the pedestrian is not resting at the plateaus, they are visible within

the data provided by this sensor. Furthermore, starting and ending pressure are almost identical,

yielding a good repeatability of the measurements. Finally, the delay between ground truth and

indicated readings is notably smaller, compared to the LG G6 with a Bosch BMP280 barometer.

Optical and numerical analysis of the delay indicated ≈ 2.1 s. Thus, even though the output

from the Nexus 6 looks less pleasing, it is more useful for indoor localization and navigation.

Experiments also indicated a phenomenon, concerning the initial readings of the barome-

ter. Shown in figure 6.21, in the beginning, the readings change rapidly by about one complete

floor, stabilizing hereafter. While not being present within all recordings and/or hardware com-

ponents, it was observed several times. Likewise, neither the direction nor the amount of change

6.2. EVALUATION OF SENSOR COMPONENTS 241

990.4

990.6

990.8

991

0 s 20 s 40 s 60 s 80 s 100 s 120 s 140 s 160 s 180 s

186
187
188
189
190
191
192
193

p
re

ss
u

re
(h
P
a

)

al
ti

tu
d

e
(m

)ground truth
measured

Figure 6.21: Measurements from the barometer installed within the Google Nexus 6, held upfront by a

pedestrian, while walking a staircase up and down, twice.

were the same throughout tests. Even the timeframe the effect occurred for was varying, but

ranged somewhere around 5 s. While the source for this behavior is unknown, it might be related

to filters, installed within the sensors [Bos15; Bos18]. As this phenomenon strongly affects the

relative evaluation (2.75), it must be addressed by omitting the initial readings of the barometer,

until they are assumed stable, e.g. by using the first reading after several seconds as reference.

To summarize, while the barometer is able to provide hints on the current altitude, these are

only stable when referring to smaller timeframes, which reduce the impact of environmental

changes. The sensor is thus unsuited for absolute altitude estimations, but e.g. well suited for

determining whether the pedestrian is currently taking stairs, that is, activity-detection.

6.2.6 Activity Detection

To determine the potential and accuracy of activity recognition, a tagged dataset containing all

activities was recorded for several pedestrian walks with varying devices. 10% of this dataset

was used as training data, to estimate one 2D normal distribution per activity, based on the

accelerometer’s variance (2.77), and the barometer’s delta (2.78), both within a certain time-

frame. A new 2D feature pair consisting of those two values is calculated for every incoming

barometer reading. Aforementioned distributions are estimated using the mean and covariance

of all pairs belonging to the same activity. While smaller timeframes introduce less delays,

they are expected to be less accurate due to sensor noise. Corresponding results can be seen in

figure 6.22, where three different timeframes, 250ms, 500ms and 1000ms, are depicted. The

focus of the figure is on separability. Actual values are thus omitted, and listed in table 6.11.

For each activity, the estimated distribution is visualized using one ellipse for 1σ, and one for

2σ around the mean, containing ≈ 68% and ≈ 95% of all samples, respectively.

As can be seen, a timeframe of 250ms is too narrow to provide a viable separation between

activities. Unexpectedly, however, this is not only due to the barometer, but also the accelerom-

eter. The pedestrian slightly shaking the phone while holding it changes the short term variance

242 CHAPTER 6. EXPERIMENTS
(2

.7
8

)
[b

ar
o

m
et

er
]

(2.77) [accelerometer]

250ms

(2.77) [accelerometer]

500ms

(2.77) [accelerometer]

1000ms

stair↑

stair↓

standing walking

Figure 6.22: Estimated normal distributions for activity detection using the accelerometer’s variance

(2.77), and the barometer’s delta (2.78) within three different timeframes. Dark and light gray ellipses

denote the 1σ and 2σ region around the mean. For visibility, scales are omitted, and listed in table 6.11.

real

Ω
standing walking stair↑ stair↓

standing 95.8% 4.2% 0.0% 0.0%
walking 4.2% 91.7% 2.2% 1.8%
stair↑ 0.0% 3.1% 95.1% 1.8%
stair↓ 0.0% 1.4% 0.0% 98.6%

real

Ω
standing walking stair↑ stair↓

standing 97.4% 1.5% 1.1% 0.0%
walking 0.0% 97.0% 1.4% 1.6%
stair↑ 0.0% 3.1% 95.6% 1.3%
stair↓ 0.0% 0.4% 0.0% 99.6%

Table 6.10: Accuracy of activity recognition using one normal distribution for each activity Ω based on

(2.77) and (2.78) with a 250ms (left) and 500ms (right) data window. The class Ω is determined by the

distribution with the highest probability (2.82).

of the magnitude in a similar way the step pattern does. Therefore, standing and walking

can not be well distinguished. Using 500ms timeframes increases the separability. While the

2σ regions (light gray ellipses) of the distributions are still overlapping, the 1σ regions (dark

gray ellipses) are clearly separated. Increasing the timeframe even further to 1000ms provides

only marginal improvements compared to 500ms, and addresses the impact of noise as well

as other effects on the barometer. For older barometer sensors with a lower sample rate and

higher noise levels, the larger timeframe will yield improved results, at the cost of increased

delays. However, as the sensors themselves also introduce lag (see section 6.2.5), additional

delays introduced by the recognition step should be as short as possible.

The actual accuracy is determined by the amount of misclassifications. Therefore, each

feature pair not used for training is compared against the estimated distributions, to determine

the best matching one, based on the highest probability (2.82). The number of classifications for

each class is then converted to a percentage. Results for the 250ms and 500ms timeframe are

listed in table 6.10. Values for the 1000ms timeframe are almost identical to 500ms, and thus

omitted. Similar to the overlapping seen in figure 6.22, misclassifications between standing

and walking are notable for the 250ms timeframe. As the 500ms timeframe provides a viable

tradeoff between delay and misclassifications, further examinations focus only on this setup.

6.2. EVALUATION OF SENSOR COMPONENTS 243

−0.03
−0.02
−0.01

0

0.01

0.02

0 0.5 1 1.5 2

(2
.7

8
)

[b
ar

o
m

et
er

]

(2.77) [accelerometer]

500ms

stair↑

stair↓

standing
walking

Figure 6.23: Heuristic thresholds τ accel and τ baro (solid lines) for the decision tree classifier. Ideally, the

vertical split should be diagonal (dashed), to correctly distinguish between stair↑ and standing.

Ω
(2.77) (2.78)

µ σ µ ×10−2 σ ×10−3

standing 0.28 0.12 −0.10 1.86
walking 1.60 0.39 −0.08 2.54
stair↑ 1.29 0.60 −1.51 6.16
stair↓ 1.67 0.48 1.62 4.23

real

Ω
standing walking stair↑ stair↓

standing 97.0% 3.0% 0.0% 0.0%
walking 0.1% 98.1% 0.4% 1.4%
stair↑ 3.2% 3.4% 92.1% 1.3%
stair↓ 0.5% 1.7% 0.0% 97.8%

Table 6.11: Mean and standard deviation of the estimated distributions for the 500ms window (left), and

corresponding classification results when using a decision tree derived from these values (right).

In the following, the two thresholds τ accel and τ baro for the decision tree are estimated. This

can be done visually, by dividing the distributions in figure 6.22, or mathematically, using mean

and covariance of the distributions. The discussed decision tree (cf. figure 2.17) only allows

for horizontal (barometer) and vertical (accelerometer) splits. When deriving τ accel and τ baro

mathematically, only the center diagonal of each covariance matrix needs to be considered. The

corresponding µ and σ for each activity are listed in table 6.11. Figure 6.23 shows the splits τ accel

and ±τ baro, placed by optically separating the distributions. The resulting values, τ accel = 0.61

and τ baro = 0.0065, are similar to using ≈ µ ± 2.5σ for the values from table 6.11. The

listed average pressure change of 0.016 hPa per 500ms, when walking upstairs or downstairs,

equals a change in altitude of approximately 0.25m/s, and depends on the pedestrian’s walking

speed, and the height of the stair’s treads. Also shown in figure 6.23, the decision tree will

cause classification errors between standing and stair↑, as a correct split would require a

diagonal (dashed line). The results, using the 500ms window with the decision tree are listed

in table 6.11, clearly denoting the mentioned classification error.

In some cases, the mentioned numeric precision errors (cf. section 2.6), that can e.g. occur

when estimating the average value of many sensor readings within a certain timeframe, were en-

countered. Even though all errors were relatively small, they did affect results when being used

within (2.77) to determine the variance. Without compensated summation, this often resulted

in E(X 2)− (E(X)2) < 0, and thus an invalid square root for the standard deviation.

244 CHAPTER 6. EXPERIMENTS

2.4GHz only 2.4GHz & 5GHz
Model Connected Disconnected Connected Disconnected

Motorola Milestone 2 0.46 0.011 0.53 0.004 - - - -

Motorola Milestone 4 1.35 0.055 1.85 0.450 - - - -

Samsung Galaxy S3 Mini 1.06 0.042 0.85 0.015 0.25 0.003 0.28 0.001

Google Nexus 6 2.74 0.131 1.84 0.066 0.44 0.769 0.34 0.001

Samsung Galaxy S5 Neo 1.11 0.027 0.88 0.039 0.25 0.002 0.29 0.002

Motorola Moto Z* - - - - 0.07 0.042 0.07 0.042

LG G6 1.11 0.081 0.97 0.072 0.25 0.041 0.30 0.024

Google Pixel 2* - - - - 0.07 0.036 0.07 0.036

BlackBerry KEY2 - - - - 0.19 0.031 0.45 0.013

Table 6.12: Mean sample rate (in Hz) and standard deviation of the Wi-Fi component within each phone

listed in table 6.1. Data was collected with both, a currently active Wi-Fi connection, and a disconnected

component. Scanning was conducted using the 2.4GHz range only, and 2.4GHz & 5GHz combined, if

possible. Dashes indicate that some mode is unsupported by the phone’s hardware or operating system.

To summarize, activity-detection based on accelerometer and barometer provides a viable

accuracy for a smartphone held upfront, independent of using a Bayes classifier, or a decision

tree. Additional delays, besides the ones from the sensors themselves, can be as low as 500ms.

While even lower values are possible, they affect accuracy, and are thus not recommended.

6.2.7 Wi-Fi Location Estimation

Within the following, the quality of Wi-Fi-based absolute location estimation is examined. This

covers a brief overview on Wi-Fi hardware installed within smartphones, to determine data

acquisition speed, crucial for instantaneous system behavior. Hereafter, signal strength pre-

diction accuracy is examined, by optimizing the discussed signal strength prediction models,

using reference measurements recorded within the buildings from section 6.1. Based on the

trained prediction models, a Wi-Fi-only absolute location estimation is performed, determining

its accuracy, potential drawbacks within real-world scenarios, and how to address them.

Data Acquisition Mentioned in section 2.7, one potential drawback of the Wi-Fi-component

is the time required to scan for nearby transmitters. It depends on the actual implementation

within the hardware component and its driver, whether the smartphone is currently connected

to some transmitter, and the to-be-scanned frequency range. For some devices, the latter can

be limited by software, scanning only the 2.4GHz band, ignoring the 5GHz range, providing

faster scanning times, but reducing the number of visible transmitters. Table 6.12 lists a brief

comparison for all examined smartphones, testing both, the connected and disconnected state,

and, when supported, a scan limited to the 2.4GHz range.

6.2. EVALUATION OF SENSOR COMPONENTS 245

Strategy Model Obstacles Setup

oELD log-distance model none empiric, one model per AP

oLD log-distance model none optimized, one model per AP

oLDC extended log-distance model ceilings only optimized, one model per AP

oLDCW extended log-distance model ceilings & walls optimized, one model per AP

oLDCPF extended log-distance model ceilings only optimized, one model per AP and floor

Table 6.13: List of all strategies used for optimizing signal strength prediction models.

As can be seen, the scanning rate varies significantly among all examined devices, ranging

form 0.46Hz to 2.74Hz when using only 2.4GHz, and from 0.07Hz to 0.44Hz when scanning

both ranges. However, the 0.07Hz is due to the software limitation introduced with Android 9,

restricting the allowed scanning rate for the devices marked with an asterisk. The listed results

also denote a few peculiarities. When examining only 2.4GHz, scanning is often faster, when

the device is currently connected to some access point. When examining both frequency ranges,

however, the opposite is true, increasing the scanning speed, when disconnecting from the base

station. While using both ranges increases the number of measurements, assuming 5GHz trans-

mitters are installed within a building, it significantly increases scanning times, causing delays.

Therefore, it is advisable to limit scanning to the 2.4GHz band, if supported, to increase the

responsiveness of the Wi-Fi component. If limiting is supported, Wi-Fi can provide absolute

location information approximately every second, similar to typical GPS receivers.

Signal Strength Prediction Strategies Mentioned in section 2.7.5 and 2.7.6, to perform a

probabilistic Wi-Fi location estimation, either a database of fingerprints, or a signal strength

prediction model is required. As fingerprinting is time-consuming, this work focuses on pre-

diction models only. Within the following, several models and optimization strategies (see

table 6.13) are examined and compared regarding their prediction quality for real-world sce-

narios. This covers: an instantaneous setup, when the locations of all installed transmitters are

known, and aforementioned optimization strategies based on a few reference measurements.

oELD If the locations of all transmitters installed within a building are known, the fastest setup

strategy uses the log-distance model (2.87) with these locations, and an empiric choice for P0

and γ, yielding one model per transmitter. If all transmitters use identical hardware, the same

P0 can be used. γ, however, is chosen based on the transmitter’s surroundings. For buildings

with homogeneous interior, the same value can be used for all transmitters, ranging somewhere

between 2.0 (mainly free space attenuation), and 3.0 (typical drywall/concrete mixtures). As

no reference measurements are required, the setup time is reduced to a minimum, at the cost of

accuracy, with unknown prediction quality, therefore referred to as empiric log-distance (oELD).

246 CHAPTER 6. EXPERIMENTS

22

2

APs: 34

24

4

APs: 41

19
4

APs: 45

Figure 6.24: Location of reference measurements within the three buildings from figure 6.1-6.3, indicat-

ing the number of visible transmitters by sized dots, and their total number in the lower left.

oLD For some buildings, the locations of installed transmitters might be unavailable, or undis-

closed. Here, reference measurements can be used, to optimize the log-distance model (2.87),

estimating each transmitter’s location, P0 and γ. For single-floors and drywalled interior, this

strategy can provide sufficient accuracy, and will be referred to as log-distance (oLD).

oLDC As steel-reinforced concrete strongly attenuates radio signals (cf. section 2.7.1), floors

and ceilings should be considered within multistory buildings, when estimating signal strengths

for transmitters installed within adjacent floors. Similar to oLD, this strategy uses reference

measurements, but trains the extended log-distance model (2.88). It includes an additional at-

tenuation factor for each transmitter’s model, to consider the impact of floor/ceiling attenuation,

based on the building’s floorplan, therefore referred to as log-distance with ceilings (oLDC).

oLDCW When the building’s interior relies on a mixture of materials, such as drywalls, glass

and concrete, including all individual obstacles can be required. Here, reference measurements

are used to train an extended log-distance model (2.88), not only including floors/ceilings, but

also all wall-obstacles, using an individual attenuation factor for every material. As mentioned

earlier, while this offers an improved prediction quality, it significantly affects performance,

requiring numerous intersection tests to estimate a single signal strength. Within the following,

this strategy is referred to as log-distance with ceilings and walls (oLDCW).

oLDCPF The complexity of oLDCW can be reduced by a tradeoff, where only floors/ceilings are

considered, and the model for each transmitter is not trained for the whole building, but for

individual regions within it, e.g. on a per-floor basis. Based on the reference measurements for

one floor, one extended log-distance model (2.88) including only floors/ceilings is trained for

every visible transmitter, referred to as log-distance with ceilings, per floor (oLDCPF).

Within the following, all discussed strategies are applied to the buildings introduced in sec-

tion 6.1, providing a detailed examination of achievable results. The empiric oELD is provided

only for SHL and Museum 2, as the required transmitter locations were unknown for Museum 1.

Mentioned earlier, reference measurements, required for the other strategies, were recorded by

6.2. EVALUATION OF SENSOR COMPONENTS 247

Building APs FPs oELD oLD oLDC oLDCW oLDCPF

SHL 34 121 8.7 dB 6.3 dB 4.7 dB 4.0 dB 3.1 dB
Museum 1 41 139 - 4.8 dB 4.2 dB 3.6 dB 2.6 dB
Museum 2 45 130 11.2 dB 5.4 dB 4.3 dB 3.3 dB 2.7 dB

Table 6.14: RMSE (2.113), but among all access points of each examined building (see section 6.1 and

figure 6.24), and chosen optimization strategy (cf. table 6.13).

holding a smartphone upfront, slowly turning around in a circle, while scanning, yielding mul-

tiple measurements for each transmitter visible at a location. Here, only static transmitters,

belonging to the building’s Wi-Fi infrastructure, were considered. That is, all dynamic access

points, such as smartphone hot spots, smart presenters, Wi-Fi-equipped televisions, and similar,

were omitted. Figure 6.24 depicts all reference measurements, with their dot-size representing

the number of distinct transmitters visible at each location. While this number is not a direct

indicator for prediction and localization quality, it can provide hints on sensitive areas, where

the number of visible transmitters is too low to provide a stable localization.

The quality of the trained models is quantified by the RMSE among all transmitters, similar

to (2.113). That is, the square root of the average squared difference between model prediction

and reference measurement, for all fingerprints, access points, and repetitions. While this metric

does not indicate outliers or regionally limited issues, it yields a brief quality estimator, shown

in table 6.14. A corresponding probabilistic evaluation is provided by a cumulative distribution

function, indicating the percentage of estimations that stay below a certain absolute error value

P (X < x) , with X =

absolute differences between all predictions and measurements︷ ︸︸ ︷{∣∣Pmdl

(
posxyz (fp) ,ψap

)
− ςfp,ap,n

∣∣ | ∀fp, ap, n
}
, (6.1)

shown in figure 6.25. As can be seen in table 6.14 and figure 6.25, an empiric choice, using the

same P0 and γ for all transmitters, yields the highest RMSE. Here, the same P0 = −40 dBm
and γ = 3 were used for Museum 2 and SHL, with significantly varying error results. This is due

to the number of transmitters installed within Museum 2 being more dense, and the architecture

of both buildings being completely different, requiring smaller values for γ.

For all examined cases, the RMSE and the corresponding CDF fully agree. Smaller RMSEs

are due to improvements throughout the whole error spectrum (see figure 6.25). The quality of

the optimization strategies follows the order they were presented in. As expected, optimizing

one log-distance model per transmitter based on reference measurements (oLD) yields a lower

RMSE than a pure empiric choice, using the same P0 and γ for all access points (oELD). Addi-

tionally including floors/ceilings (oLDC) further increases the prediction quality, especially for

248 CHAPTER 6. EXPERIMENTS

0.0

0.2

0.4

0.6

0.8

1.0

2 dB 5 dB 8 dB 11 dB 2 dB 5 dB 8 dB 11 dB 2 dB 5 dB 8 dB 11 dB

SHL Museum 1 Museum 2

oELD
oLD
oLDC
oLDCW

oLDCPF

Figure 6.25: Result of the cumulative distribution function (6.1), for the absolute difference between all

reference measurements and corresponding model predictions, based on the examined building, chosen

model, and optimization strategy. As expected, the empiric variant oELD yields the largest errors.

the SHL and Museum 2. Intuitively, the amount of potential improvements strongly depends on

the building’s architecture. This can be seen by additionally including wall obstacles (oLDCW),

where Museum 2 gained the most improvements, due to its massive concrete walls. Intended as

a compromise, the per-floor optimization without wall-knowledge (oLDCPF) provided the best

results for all examined buildings. This is due to the complex nature of radio signals, being

affected by far more influences than are addressed by the presented models, such as reflection

and refraction. By regionally limiting the signal strength prediction model, the number of ef-

fects to be dealt with is reduced, thus increasing the chance for better predictions. While using

even smaller regions than per-floor is possible, it is not always advisable. Mentioned within

the theoretical discussion, training requires a decent amount of reference measurements to be

stable and converge. With smaller regions, the chance for potential issues, and poorly optimized

models for some transmitters, increases.

Locally limited issues, e.g. within concrete stairwells, can be visualized by calculating the

average signed, and the maximum absolute error, for every location where reference measure-

ments were conducted. That is, at every such location, each received RSSI for every known

transmitter is compared against the corresponding model prediction for the same location

εavg (fp) = E(X)
εmax (fp) = max(|X |)

with X =

differences between predictions and measurements, for one fp︷ ︸︸ ︷{
Pmdl

(
posxyz (fp) ,ψap

)
− ςfp,ap,n | ∀ap, n

}
. (6.2)

The average signed error provides an impression whether a model tends to predict too weak

or too strong signal strengths for a location. Similarly, the maximum absolute error yields an

overview on the model’s worst-case behavior. The results for both metrics, and all examined

buildings are shown in figure 6.26, 6.27, and 6.28.

As can be seen, while the behavior of the maximum absolute error is approximately com-

parable between the buildings, the signed average behaves differently. The SHL (cf. figure 6.26)

6.2. EVALUATION OF SENSOR COMPONENTS 249

+7.9

-8.7
+6.9

-5.2
-3.9

+6.4

+5.6

-3.3

23.8

16.5

21.0

15.3

−8.7 dB 7.9 dB 0dB 23.8 dB

Figure 6.26: SHL (cf. figure 6.1) – average signed (top) and maximum absolute (bottom) deviation be-

tween model predictions and reference measurements, when using oLD, oLDC, oLDCW, oLDCPF (left to

right). Within the top row, blue indicates too weak, and red too strong model predictions.

+4.4

-3.6

-4.3

+3.2

-3.8
+3.1

-2.2+2.3

25.5 24.3 21.8

11.0

−4.3 dB 4.4 dB 0dB 25.5 dB

Figure 6.27: Museum 1 (cf. figure 6.2) – average signed (top) and maximum absolute (bottom) deviation

between model predictions and reference measurements, when using oLD, oLDC, oLDCW, oLDCPF (left to

right). Within the top row, blue indicates too weak, and red too strong model predictions.

-4.6
+4.7

+3.9

-4.0

+3.0-3.5 +3.7
-2.8

23.2

21.2 18.7

13.3

−4.6 dB 4.7 dB 0dB 23.2 dB

Figure 6.28: Museum 2 (cf. figure 6.3) – average signed (top) and maximum absolute (bottom) deviation

between model predictions and reference measurements, when using oLD, oLDC, oLDCW, oLDCPF (left to

right). Within the top row, blue indicates too weak, and red too strong model predictions.

250 CHAPTER 6. EXPERIMENTS

denotes the highest errors, which is due to a lower number of transmitters per building size. With

Museum 1 (figure 6.27) and Museum 2 (figure 6.28) being smaller, regional effects become more

pronounced, visualized by red and blue alternating within several areas. Yet, for all buildings,

regional errors follow previous findings, decreasing in the order of the examined optimization

strategies. Similar to the RMSE, including wall-obstacles improves only some regions of the

SHL, while using oLDCPF enhances predictions throughout the whole building, indicated by less

saturated colors for both, signed average, and absolute maximum. Museum 1 is similar, show-

ing most improvements for oLDCPF. Within Museum 2, however, including wall-obstacles clearly

enhances prediction quality, by considering the building’s massive concrete exterior.

Effects of certain materials on radio signal propagation is best explained within SHL, where

the indoor and outdoor areas of the first floor (cf. figure 6.1) are separated by a facade of met-

allized glass. This causes attenuations of 10 dB and above, visible within the average signed

errors of figure 6.26, where the outdoor area is predicted too strong (red), and indoor areas too

weak (blue). While this can be mitigated by considering such obstacles (oLDCW), required inter-

section tests are costly. Thus, the prediction from oLDCPF, with an average error of ≈ 3 dB is

an ideal candidate for a computationally efficient, model-based location estimation.

Concerning the number of reference measurements required for a stable model estimation,

there is no rule of thumb. For simple models, like oLD, half of the shown reference measure-

ments can be removed, without significantly affecting the prediction quality of the resulting

models. For more complex variants, especially oLDCW, a decent number of reference measure-

ments is mandatory for a stable optimization. This number thus represents a tradeoff between

accuracy and setup time. Ideally, the whole walkable area is covered uniformly with measure-

ments, to prevent regional overfitting. Similarly, neuralgic regions, like stairwells, should be

included as well, to provide a general signal strength prediction solution.

Location Estimation Based on the optimized prediction models, Wi-Fi location estimation

can be performed. Within the following experiments, the whereabouts are estimated for every

Wi-Fi scan s from the recorded walks, and compared with the corresponding ground truth (cf.

figure 6.4, 6.5 and 6.6). Whereabouts are determined by two different strategies:

lBest The first strategy estimates the current location by numerically optimizing (2.111) with

σrssi = 8, determining the best matching result. To increase the chance of finding a global

maximum, the optimization process is repeated 10 000 times, each starting from a different

random location, which belongs to the walkable area of each building.

lFilter The second strategy is based on the particle filter, and starts by uniformly sampling

the walkable area, using 5000 particles. Each particle is evaluated, assigning a weight given

by (2.111) with σrssi = 8. The weighted average of all particles represents the first location

6.2. EVALUATION OF SENSOR COMPONENTS 251

estimation (see section 4.5). For every new Wi-Fi scan, the process continues from the previous

set of particles, after scattering it by (3.10), with µwalk = 2.5m and σwalk = 1.0m. In other

words, potential whereabouts are modeled by random samples. Between two Wi-Fi scans, these

samples are relocated, but only within aforementioned constraints. After this spreading, they

are re-weighted by the current Wi-Fi observation. Afterwards, their weighted average denotes

the next location estimation. Eventually, resampling is applied, to ensure a decent amount of

particles remain efficient. For the next Wi-Fi scan, the process starts all over. The resulting

behavior is similar to (3.8), prevents the Wi-Fi estimation from causing large jumps in location,

and supports multimodalities unsupported by the Kalman filter.

While the first strategy (lBest) returns estimations that are independent of the previous

ones, the particle filter, used for the second strategy (lFilter), implicitly includes previous

measurements, mitigating the impact of outliers, and regionally poor signal strength predictions.

As no floorplan is included for now, its behavior is continuous, similar to a Kalman filter.

An example for one repetition of walk A1 is shown in figure 6.29. Even if examining only a

single walk, this is without loss of generality, as all others indicate similar effects. Comparing

the shown setups, the benefits of the particle filter (lFilter) become visible. Without filtering

(lBest), the location estimations based on the oLD optimization strategy are noisy, with large

regional errors. The particle filter suppresses outliers by restricting location changes between

two measurements via (3.10). This yields smoother results, with reduced errors. Yet, filtering

only improves temporal effects, but is unable to address long-term issues, e.g. based on invalid

signal strength predictions, occurring around 10 s and 20 s.

These errors can be addressed by using more complex signal strength prediction models,

like the depicted oLDC. Shown within the figure, this reduces the error between 10 s and 20 s

from 30m to 12m, as the model provides better predictions. Also shown within the figure,

oLDC significantly improves the location estimation in z, when compared with oLD. Mentioned

earlier, oLDC considers floors and ceilings within signal strength predictions, by including dis-

crete attenuations. Predicted signal strengths will thus vary notably between adjacent floors,

which matches with the actual real-world behavior. This also holds true for oLDCW and oLDCPF,

not shown within the figure. Most of the time, their predictions match best with the correct floor,

rendering adjacent floors unlikely, as shown within the figure. However, for all presented in-

stances, the upper right outdoor area, labeled as (3), clearly causes significant problems. These

errors are examined by using another visualization of potential whereabouts.

Figure 6.30 depicts a probability heat map (2.111) for two points in time of walk A1. It de-

notes the likelihood for residing at any location within the building, for the Wi-Fi measurements

received at t = 14 s directly after the start (top row), and at t = 97 s having reached the outdoor

area (bottom row). For the latter, all examined signal strength prediction models fail. Several

252 CHAPTER 6. EXPERIMENTS

oLD + lBest

oLD + lFilter

oLDC + lFilter

F3
F2
F1

F0

F3

F2

F1

F0

(1)

(2) (3)

(4)

(5)

0m

10m

20m

30m

40m

20 s 40 s 60 s 80 s 100 s 120 s 140 s 160 s 180 s

oLD - lBest
oLD - lFilter
oLDC - lFilter

(1) (2) (3) (4) (5)

Figure 6.29: Location Estimation (top) and 3D error over time (bottom), for one repetition of walk A1

(see figure 6.4), when using oLD + lBest, oLD + lFilter, and oLDC + lFilter. The three columns show

the side-view (left), perspective (center), and top-view (right) of each estimation result.

areas within the building are more likely than the actual ground truth (black dot). This is due

to the building’s facade made of metallized glass, attenuating radio signals, thus leaving a blind

spot. In such situations, even the accurate fingerprinting can fail, as the number of receivable

transmitters is low, and their RSSIs are all rather similar.

Figure 6.30 also denotes the impact of including attenuating ceilings and obstacles. For oLD,

the predictions for adjacent floors are similar, as they are only a few meters apart, not causing

major free space attenuation. Not being able to provide floor estimations is a major drawback of

oLD’s simplicity. For all other methods, the floor estimation is mostly accurate. However, within

unusual buildings like Museum 2, the estimation can fail, due to their irregular floor layout.

Besides the shown benefits, including obstacles causes unwanted discontinuous behavior of

the signal strength prediction. As soon as an obstacle intersects the line of sight, it causes a drop

in signal strength. Due to physical effects like reflection and diffraction, the real-world behavior

deviates, is smoother, and less discontinuous. However, these effects are not considered by most

6.2. EVALUATION OF SENSOR COMPONENTS 253

oLD oLDC oLDCW oLDCPFi

Figure 6.30: Probability heat map (2.111), from warm (likely) to cold (unlikely), showing potential

whereabouts for walk A1 at t = 14 s (top) and t = 97 s (bottom), based on the chosen optimization

strategy. The ground truth is indicated by a dot. The additional oLDCPFi is explained within the text.

prediction models. This aspect also influences the probability for residing at certain locations,

which will show the same discontinuous drops. For oLDC, this behavior is expected between ad-

jacent floors only, where ceilings are considered. For oLDCW, the impact is also expected along

each floor, as walls are considered as well. However, shown in the magnified region of fig-

ure 6.30, oLDC also shows discontinuous behavior along floors, which is unexpected. The effect

is caused by the optimization, which sometimes places access points outside of the building.

This affects the behavior of ceiling intersection tests. When transmitters reside outside of the

building, there is not necessarily a ceiling along the line of sight, even when the transmitter is on

another floor. This is addressed by oLDCPFi, a modified version of oLDCPF – which is similar to

oLDC concerning this behavior – forcing AP positions to remain inside the building, by adding

a penalty to the target function. As can be seen, this mitigates discontinuous behavior. Even

though the resulting signal strength prediction resulted in slightly increased errors (0.2 dB), the

location estimation is less erroneous, as the density is more continuous. Yet, this is not a com-

plete fix, as irregular building shapes, as in SHL and Museum 2, can still contain constellations

with no ceiling along the line of sight from a transmitter to a location on another floor.

Figure 6.31 depicts one cumulative distribution function (CDF) per building, containing the

localization errors of all walks. These are given by the 3D distance between each position esti-

mated from a Wi-Fi scan s, using either lBest and lFilter, and the ground truth interpolated

for the scan’s timestamp (see section 6.1). Additionally, the error in z is determined separately,

as correctly indicating the current floor is a significant benefit. Matching with previous discus-

sions, the three buildings behave differently, due to architectural and infrastructural differences.

254 CHAPTER 6. EXPERIMENTS

0.25

0.50

0.75
0.90

0.25

0.50

0.75
0.90

3m 6m 9m 12m 15m 3m 6m 9m 12m 15m 3m 6m 9m 12m 15m

SHL Museum 1

3
D

-
l
B
e
s
t

Museum 2

3
D

-
l
F
i
l
t
e
r

oELD oLD oLDC oLDCW oLDCPF oLDCPFi

0.00

0.25

0.50

0.75

1.00

1m 2m 3m 4m 5m 6m 1m 2m 3m 4m 5m 6m 1m 2m 3m 4m 5m 6m

z
-
l
F
i
l
t
e
r

Figure 6.31: CDF of the 3D/z localization error, for the walks from section 6.1, based on the previously

introduced optimization strategies, plus one additional variant, described within the text. The difference

between the lBest (top) and lFilter (center) location estimation strategy is clearly visible.

The top row of figure 6.31 shows the CDFs based on all walks within each building, when

using the lBest localization strategy. As can be seen, SHL causes the largest errors, with 50%

of them being worse than ≈ 6.6m. This is due to a comparatively low number of installed

transmitters, covering approximately 350m2 per AP. For Museum 1 and Museum 2, this value is

90m2 and 67m2, respectively, thus yielding better results. Furthermore, some of the walks

conducted within SHL used the outdoor area, which is not well-covered by radio signals, due

to the facade made of metallized glass. These outdoor parts yield large localization errors (see

figure 6.29), and cause 10% of all 3D location estimation errors to be greater than ≈ 20m. For

the two other buildings, this value is as low as ≈ 7m and ≈ 10m, respectively.

The center row of figure 6.31 depicts the CDFs when using lFilter as location estimation.

Compared with lBest, the resulting errors are notably reduced, which matches earlier findings.

While the lower 50% of all errors remain almost unaffected, the last 25% and 10% denote

significant enhancements. This behavior is as expected, with the recursive density estimation

mainly suppressing outliers, by preventing major jumps within the estimated location, based

on the described movement restriction. The depicted improvements, especially for SHL, clearly

indicate the possibilities offered by recursive density estimation.

The bottom row of figure 6.31 depicts the CDFs for the error in z, when using lFilter as

location estimation. For SHL, the results are as expected. As soon as ceilings are considered

by the model, z-estimations become viable. For the other two buildings, however, z-errors are

6.2. EVALUATION OF SENSOR COMPONENTS 255

0.25

0.50

0.75

0.90
1.00

SHL Museum 1 Museum 2

oELD
oLD
oLDC
oLDCW

oLDCPF
oLDCPFi

Figure 6.32: CDF of the Kullback-Leibler divergence (KLD), for the walks from section 6.1, based on

the previously introduced optimization strategies, plus one additional variant, described within the text.

As the KLD’s value does not convey a quantifiable meaning, the x-axis is unlabeled.

moderate even when ceilings remain unconsidered. This is due to the number of densely packed

transmitters, generally providing a higher accuracy, also affecting z.

When comparing figure 6.25 and 6.31, it becomes clear that better signal strength predic-

tion models do not necessarily yield better location estimations, and that location errors are

relatively similar among most models. While oLDCPF provides the best estimations for SHL and

Museum 1, it does not for Museum 2, where 20% of the results denote larger errors than the ones

provided by the simple oLD. While this is mitigated by lFilter, it still remains present. Forcing

all estimated transmitter positions to remain inside the building (oLDCPFi) not only addresses

discontinuities, but also suppresses additional outliers, yielding the best overall results.

Location Probability Figure 6.31 determined Wi-Fi localization quality by comparing the

most likely whereabouts against the ground truth. While this is a common strategy for error es-

timation, it is not ideal for the intended use case. Within the overall localization and navigation

system, Wi-Fi is meant to weight particles on whether their state (location) is likely, or unlikely,

based on the current signal strength readings from the smartphone. In other words, Wi-Fi is not

used to directly infer a location (x, y, z), but to derive probabilities for arbitrary whereabouts.

When used like this, two aspects are implied: Ideally, the location of the current ground truth,

and its vicinity, should be as likely as possible, whereas all other locations should be unlikely.

Besides visually inspecting figure 6.30, both requirements can be quantified by the Kullback-

Leibler divergence (KLD), measuring the (dis)similarity between the Wi-Fi density (2.111), and

ground truth. For the latter, any empiric distribution, modeling the likelihood of the ground

truth and its vicinity, can be chosen. For experiments, a multivariate normal distribution with

42, 42, 0.752 along the diagonal of Σ was used, to favor floor accuracy over (x, y). Both den-

sities are compared by generating 50 000 random samples throughout the whole walkable area

of each building. Similar to an error distance, the KLD yields a single scalar result, describ-

ing the dissimilarity between the density around the ground truth, and the density of potential

whereabouts, based on the current Wi-Fi measurements. All resulting scalars are combined into

256 CHAPTER 6. EXPERIMENTS

a CDF, containing all walks within a building, shown in figure 6.32. As can be seen, results

are similar to figure 6.31, which depicted the CDF for the error in m. However, as the density

chosen for the ground truth enforces a higher z-accuracy, oELD and oLD yield inferior results.

Again, among all examined walks and buildings, oLDCPFi provided the best estimation, well

suited for a computationally efficient evaluation within the recursive density estimation process.

6.3 Evaluation of Movement Models

After examining all sensors for the overall indoor localization and navigation system, and pro-

viding a first PDR example, the impact of adding a floorplan in combination with probabilistic

movement prediction is examined. The discussions from chapter 3 and 5.2 already included

synthetic examples for the propagation of each movement prediction density. Therefore, this

section focuses on real-world setups, the amount of memory required for storing a spatial floor-

plan model, its probabilistic aspect, the capability of performing 3D estimations based on 2D

sensor data, and including additional knowledge/sensors, using semantic information provided

by the floorplan. As discussed in section 5.2, to perform probabilistic predictions on a navi-

gation grid with random walks (cf. section 3.5.2), or on a navigation mesh (cf. section 3.6.2),

sampling is required. All experiments thus focus on a recursive density estimation using the

particle filter (see section 4.5), including transition, evaluation, estimation and resampling.

6.3.1 Spatial Floorplan Representation

Before evaluating the advantages of a floorplan-based probabilistic movement prediction, the

quality of the two discussed spatial representations, the navigation grid and the navigation mesh,

is briefly examined. The focus is on spatial accuracy for real-world scenarios, and required

memory consumption, essential for use on embedded devices.

Memory Consumption To determine memory consumptions for both models based on their

configurable parameters, the three floorplans from section 6.1 are used, supplemented by four

additional buildings, not examined in terms of conducted walks, but concerning their floorplan:

UAH – is the University of Alcalá de Henares’ polytechnic building, with four floors and

130m to 130m in size, where the presented system participated in the IPIN 2016 Indoor Local-

ization Competition, which required the floorplan. One of its floors is shown in figure A.1.

CAR – also belongs to the University of Alcalá de Henares, was part of the IPIN 2016 Indoor

Localization Competition, and has one floor, 65m to 40m in size, surrounded by a large outdoor

area, shown in figure A.2.

6.3. EVALUATION OF MOVEMENT MODELS 257

Navigation Grid Navigation Mesh

20 cm 30 cm 40 cm 50 cm Triangles Quads Pentagons Hexagons

SHL 518 k 228 k 128 k 82 k 4164 2527 2187 2035
Museum 1 96 k 42 k 23 k 14 k 1852 1155 980 903
Museum 2 83 k 33 k 17 k 11 k 857 531 448 411
UAH 955 k 424 k 238 k 152 k 3206 2035 1788 1662
CAR 105 k 46 k 25 k 16 k 801 479 424 387
Townhall 182 k 80 k 45 k 28 k 2876 1806 1542 1425
Museum 3 76 k 34 k 19 k 12 k 1223 748 633 581

Table 6.15: Number of vertices/primitives required to describe building floorplans, when using a naviga-

tion grid with varying grid size gs, or a navigation mesh with different primitives.

Navigation Grid Navigation Mesh

20 cm 30 cm 40 cm 50 cm Triangles Quads Pentagons Hexagons

SHL 30MiB 13MiB 7MiB 5MiB 248KiB 191KiB 172KiB 164KiB
Museum 2 5MiB 2MiB 1MiB 636KiB 51KiB 40KiB 35KiB 33KiB
Museum 1 5MiB 2MiB 1MiB 811KiB 110KiB 87KiB 77KiB 73KiB
UAH 55MiB 24MiB 14MiB 9MiB 191KiB 155KiB 141KiB 134KiB
CAR 6MiB 3MiB 1MiB 930KiB 48KiB 36KiB 33KiB 31KiB
Townhall 10MiB 5MiB 3MiB 2MiB 171KiB 136KiB 121KiB 115KiB
Museum 3 4MiB 2MiB 1MiB 687KiB 73KiB 57KiB 51KiB 48KiB

Table 6.16: Memory required to store building floorplans, when using a navigation grid with varying

grid size gs, or a navigation mesh with different primitives.

Townhall – is the townhall of Würzburg, with four floors, but only two of them were mod-

eled, approximately 60m to 100m in size, including a large courtyard for the first floor.

Museum 3 – models the Deutsches Hutmuseum in Lindenberg, which is a museum with five

floors, approximately 40m to 20m in size, shown in figure A.3.

For the navigation grid, the memory consumption directly depends on the number of vertices

and edges needed to model the building’s floorplan, which in turn depend on its size and number

of floors, and the chosen grid size, where smaller values yield a better spatial quality at the cost

of memory. For the navigation mesh, there is no direct correspondence between the size of each

floor and required memory, as the data structure is irregular, able to model large areas with a

single primitive. The number of primitives depends on the architectural obstacles found within

each floor, dividing larger primitives into multiple smaller ones. Similarly, the type of primitive

(triangle, quad, ...) also affects the required number, and thus memory.

Setting-dependent results for both models are shown in table 6.15 and table 6.16. The largest

among all examined buildings, UAH, requires most vertices for the navigation grid, yielding a

memory requirement of 55MiB for gs = 20 cm. When using the navigation mesh, the smaller

SHL requires more primitives and memory. This is due to architectural differences, with SHL

258 CHAPTER 6. EXPERIMENTS

Figure 6.33: Comparison of navigation grid (gs = 40 cm) and navigation mesh, for advanced floorplans.

While both produce viable results for complex circular stairs (left), elements not aligned to multiples of

45°, like two of the three stairs in the right setup, indicate potential drawbacks of the navigation grid.

consisting of many small rooms, whereas UAH has larger rooms, thus requiring less primitives.

Independent of such differences, the navigation mesh consumed less than 1MiB for all exam-

ined buildings. For the navigation grid, this is only possible when using large grid sizes of

50 cm and above, providing only a coarse representation of the building. Nevertheless, even a

gs = 20 cm navigation grid of a large building is still manageable by a modern smartphone.

However, the numbers from table 6.16 refer to the smallest possible amount, storing only

vertices and edges, and in a very dense manner. As soon as additional attributes are involved,

such as shortest path estimations (see section 3.5.3 and 3.6.3), or pre-computed Wi-Fi sig-

nal strengths (cf. section 5.4), numbers might exceed the manageable range: Storing the 20

strongest access points for each vertex would require at least 40 byte per vertex (id and RSSI),

adding additional 40MiB to the UAH. Which model is applicable for a specific use case, thus

strongly depends on the building’s architecture, and additional performance/quality require-

ments.

Even though triangles require slightly more memory than other primitives (cf. table 6.16),

they allow for interpolation and fast inclusion checks, and thus are preferred.

Spatial Quality Besides differences in memory consumption, the spatial representations also

vary in quality. While the navigation mesh is considered general purpose, the navigation grid’s

regular structure is mainly suited for axis-aligned floorplans, with obstacles oriented in multi-

ples of 45° or, even better, 90°, discussed in section 3.5.1. While this requirement holds true for

many modern buildings, like SHL, it does not for older ones, or more complex architecture.

Figure 6.33 used complex architecture to compare a navigation grid with gs = 40 cm against

a navigation mesh with triangles, constructed by the algorithms discussed in section 3.5.1 and

3.6.1, respectively. For a wide circular stair (left), both produce results that appear viable. Even

though the navigation grid’s exterior is more discrete, compared to the navigation mesh, this is

still within limits, and the stair is covered by a multitude of walkable nodes and edges, even

when using gs = 40 cm. The semantic information, indicated by different colors (gray, black,

blue), e.g. required for reducing the pedestrian’s step length throughout the stair, also works for

both spatial models. However, one of the three doors is not correctly labeled for the navigation

6.3. EVALUATION OF MOVEMENT MODELS 259

grid. This is due to the chosen spacing not yielding vertices within the door’s center, but only

directly before and behind it. This can be mitigated by using a smaller grid size.

Within the right half, three stairs with varying orientation and adjacent doors are shown.

While the axis-aligned stair in the center is well suited for the regular navigation grid, the two

others are not. Even though visually fine, the direction of edges is not ideal for predicting

movements along the stair, potentially yielding the depicted zig-zag pattern. The same applies

to the circular stair on the left, often not providing edges that follow the ideal path. Such cases,

where the to-be-predicted walking direction does not match with the direction of edges, can not

be addressed by using smaller grid sizes, and are a general problem of the navigation grid.

Furthermore, figure 6.33 indicates a significant number of nodes and edges required for the

navigation grid, even when using a large grid size of gs = 40 cm. In contrast, the naviga-

tion mesh is able to model fine details, adjusts to different alignments, while combining large

connected areas into a few primitives. From the viewpoint of both, memory consumption and

spatial quality, the navigation mesh thus is more promising than the navigation grid.

6.3.2 Navigation

One benefit of including a floorplan, discussed in section 3.5.3, is navigation. Not only for guid-

ing the pedestrian towards a desired destination, but also to favor movements approaching this

location, increasing the quality of the overall system. The impact is examined using simulations

of random walks along a navigation grid, using algorithm 1. It is started at a given location, and

executed until the given destination is reached. The algorithm is thus executed with an unlim-

ited walking distance dwalk. Only the destination-approaching metric (3.32) is used to determine

the probability for each edge, that is, the heading is completely unconstrained. Thus, edges are

solely chosen on whether they approach the destination, or not. The weight of the edges used

within Dijkstra’s algorithm is given by either (3.29) or (3.31), depending on whether walls are

to be avoided, or not. For a robust estimation of the random walk’s behavior, this simulation is

repeated 5000 times. Results are visualized using a heat map, indicating how often every vertex

of the graph was visited among all repetitions. Cold colors (blue) denote fewer visits than warm

colors (red). In case of no color, the vertex has not been visited at all.

Figure 6.34 shows the impact of different values for κdest, indicated by the heatmap of 5000

random walks through a synthetic maze. κdest affects the probability of favoring edges ap-

proaching the destination over edges that depart from it. A value of κdest = 0.50, shown in

the left of figure 6.34, implies that all edges are equally important, and the destination does

not affect the probability for taking an edge at all. Such a truly random walk will require a

significant amount of time, until the requested destination is reached by chance. As can be

260 CHAPTER 6. EXPERIMENTS

κdest = 0.50 κdest = 0.55 κdest = 0.70 κdest = 1.00

Figure 6.34: Impact of κdest on random walks approaching the destination via (3.32), weighted by (3.29)

running simulation algorithm 1 along a gs = 20 cm grid. The heatmap denotes how often each vertex

of the grid was visited during 5000 random walks, starting from the upper center, each running without

distance limitation, until reaching the destination in the lower center.

seen, the first few meters of the walk share the same color, indicating a similar number of visits.

As soon as the maze allows for more than one walking direction, the colors get colder, and

the random walks split into several directions. Approaching the destination, colors are getting

warmer again, as all random walks have to reach the destination. Being accessible from two

sides, and the option to walk backwards, colors surrounding the destination are colder than the

ones around the origin. When the heuristic is slightly increased to κdest = 0.55, the effect of

favoring destination-approaching edges is already significant. Most locations within the maze

are rarely visited (blue), or not visited at all (white). Furthermore, when the maze splits into

three potential walking directions, only two of them are considered, as the third one is a dead

end. The impact is even more pronounced for κdest = 0.70, where most regions remain unvis-

ited, and the left of the two valid paths is frequented more often, as it is slightly shorter than

the alternative on the right. For κdest = 1.00, the simulation ignores all edges departing from

the destination, leaving very narrow trails, with some vertices visited during almost every of the

5000 repetitions, shown as red spots. While higher values for κdest yield a more direct approach

of the destination, they allow for less deviations from the shortest path, ignoring alternatives,

and the pedestrian not following the system’s recommendation. Estimating the correct value is

thus an empiric choice, as tradeoff between a closely directed route, and allowed variation.

As can be seen in figure 6.34, all routes closely adhere to walls, slightly reducing the distance

of the shortest path. Discussed in section 3.5.3, this is atypical for pedestrian walking behavior.

By artificially increasing the distance for edges near obstacles, the shortest path becomes more

realistic. The impact of this adjustment is shown in figure 6.35. When obstacles are not con-

sidered, the result is unnaturally close to all obstacles, and only the left of two potential routes

is used, as it is several meters shorter than using the stair on the right. Artificially adjusting the

distance between edges using (3.31), the second route along the right stair is more attractive,

6.3. EVALUATION OF MOVEMENT MODELS 261

κdest = 0.75, not avoiding walls (3.29) κdest = 0.75, avoiding walls via (3.31)

Figure 6.35: Impact of the wall avoiding metric (3.30) on random walks approaching the destination

via (3.32), weighted by (3.31) running simulation algorithm 1 along a gs = 20 cm grid. The heatmap

denotes how often each vertex of the grid was visited during 20 000 random walks starting in the lower

left, each running without distance limitation, until reaching the destination in the upper center.

being a few centimeters shorter. Furthermore, both routes are more natural, keeping some dis-

tance towards obstacles, walking through the centers of doors and narrow passages. Yet, the

negative impact of the discrete regular grid is clearly visible. For segments of the shortest path,

that have a direction which is not a multiple of 45°, there often is no single best choice that

yields the shortest path, and several equidistant ways connect the segment’s ending points. This

is highlighted in figure 6.35, where dashed lines denote equidistant connections between two

points. The heatmap around such segments appears much wider, covering all potential paths,

indicated by larger cold (blue) regions. When the direction is a multiple of 45°, a single shortest

connection exists, shown by all narrow warm (green/red) streams within the figure. This effect

could be addressed by using more than eight adjacent neighbors, also considering vertices fur-

ther away to introduce new walking directions, such as 22.5°. However, as those edges are even

longer than
√
2 gs, the distance error discussed in section 3.5.3 becomes more pronounced, and

memory requirements are increasing, potentially imposing issues on embedded use.

While the navigation mesh does not suffer from these discrete limitations, it potentially

requires more computations to include the destination information correctly. Discussed in sec-

tion 3.6, the most efficient movement prediction for the mesh directly calculates a potential

transition based on distance and heading from the origin, including some noise (3.35). In con-

trast to probabilistic random walks along a navigation grid, the only way to also include a

navigation likelihood, is by using particles, and adjusting their weight accordingly. However, as

the result of (3.35) is very constrained, covering only a small area, the resulting density might

lack particles in areas that are likely in terms of navigation. This is a typical limitation of the

particle filter, discussed in section 4.5. The posterior is modeled by both, placement and weight

of the particles. If the placement (proposal distribution) does not cover areas likely in terms

262 CHAPTER 6. EXPERIMENTS
u

n
co

rr
ec

te
d

co
rr

ec
te

d

grid, gs = 20 cm grid, gs = 30 cm grid, gs = 40 cm navigation mesh

Figure 6.36: Comparison of navigation grid and navigation mesh, for one of the PDR examples from

section 6.2.4 (see figure 6.16). For the navigation grid, different grid sizes gs were used, also examining

the impact of distance and heading error compensation (cf. algorithm 1).

of weight, the result is not optimal. This can be mitigated by using the full sampling approach

shown in figure 3.24, covering large areas with samples, hereafter weighting them based on all

metrics, that is, matching distance, heading, and navigation. While this variant ensures that the

whole area of importance is sampled, it requires more samples and thus computations to do so,

unsuited for use on embedded devices. When navigation is the only prediction constraint, as in

figure 6.35, full sampling is the only option, as no limiting heading information is available. As

can be seen, in terms of flexibility, the navigation mesh is thus more constrained than random

walks along a navigation grid.

6.3.3 Floorplan-Based Probabilistic Pedestrian Dead Reckoning

Advantages and disadvantages of including a building’s floorplan and probabilistic movement

prediction are examined for the pedestrian dead reckoning setups from section 6.2.4. Although

regionally limited, they include every essential behavior, and allow for focusing on the impor-

tant aspects, without loss of generality. The floorplan not only prevents impossible walks, it

also allows for 3D estimations, and its semantic information enables including probabilistic

assumptions, additional prior knowledge, as well as new smartphone sensors. Besides step-

detection, turn-detection, and absolute headings, which are typical for PDR, activity-detection

and navigational knowledge can now be considered as well. Additionally, differences between

the two presented spatial models are examined, emphasizing distinctions between discrete ran-

dom walks along a navigation grid and continuous estimations on the navigation mesh. All of

the following experiments refer to a probabilistic simulation using the particle filter.

6.3. EVALUATION OF MOVEMENT MODELS 263

Graph and Navigation Mesh A comparison, of the navigation grid’s and navigation mesh’s

behavior, is shown in figure 6.36. Its results are based on one of the previous PDR examples (see

section 6.2.4), walking four times around an obstacle. Similar to earlier, initial whereabouts and

heading are well-known. A transition is performed whenever a step was detected, and proceeds

with µstep = 70 cm into the direction of the heading updated by the gyroscope. In contrast to

earlier, navigation grid and navigation mesh now allow for a probabilistic transition, each using

1000 particles to include an uncertainty in step length σstep = 10 cm and turning σturn = 1°,

both applied for every filter update, also preventing impossible movements, by down-weighting

particles that encountered an obstacle, or would represent an impossible transition.

For both models, the fastest calculable transition, well-suited for smartphone use, was cho-

sen: Within the navigation mesh, each transition is determined by directly calculating the des-

tination based on walking distance and estimated heading (3.35), including some uncertainty

for both (3.37). If a calculated destination is reachable (contained within an adjacent triangle),

it is accepted, otherwise the particle’s weight is reduced to zero (see section 5.2.3). Within the

navigation grid, edges are weighted based on whether their direction matches with the estimated

heading (3.25), and drawn randomly, until the walking distance of dwalk is reached. Discussed

in section 3.5.2, this approach causes discretization errors based on the graph’s grid size, and

multiples of 45° for walkable edges, requiring compensation, introduced in algorithm 1.

Figure 6.36 depicts the necessity for this error compensation. Without it, walking distances

are longer than requested, dependent on the underlying grid size, visible as increased radius

within the three depicted results. Likewise, the 45°-structure becomes apparent, with the esti-

mated path resembling an octagon. Yet, the overall results, when not using error compensation,

appear consistent in their size and shape. This is due to the discretization, preventing minor an-

gular changes. When all conducted turns are multiples of 45°, this can be considered a benefit.

In general, however, this suppresses minor changes, or discretizes them into larger ones, causing

issues for walks and buildings not aligned to multiples of 45°. Also visualized in figure 6.36,

compensation from algorithm 1 addresses this issue, reducing the size of the estimated path, and

producing correctly rounded turns, even for larger grid sizes. The right shows the same result

when using the navigation mesh. It is similar to the navigation grid with error compensation,

but shows slightly more variation, due to its continuous approach.

Discussed in section 5.2.3, detecting impossible walks is one important aspect the floorplan

model must provide. For the navigation mesh this is identified when the calculated destination

is not covered by a triangle, or its triangle is too far from the starting point. For random walks

along the navigation grid, however, this is more complex (see section 3.5.2). As random walks

follow adjacent edges, drawn by weighted random sampling, they always produce a prediction,

reachable from the starting point. To prevent particles from getting stuck in front of an obstacle,

264 CHAPTER 6. EXPERIMENTS

Figure 6.37: PDR with step and turn-detection, for the data from figure 6.17, now using a probabilistic

estimation, including the building’s floorplan based on navigation grid (top) and navigation mesh (bot-

tom). The result for both spatial models is similar, corrects gyroscope drift, and enables 3D estimations.

they must be identified. For the depicted example this was addressed by the obstacle-prevention

(3.30). All nodes with less than eight neighbors are flagged, and particles residing at such nodes

are down-weighted. In figure 6.36, those nodes are shown in black for gs = 20 cm. The particle

down-weighting is indicated by their color, shown for t = 54 s, where blue indicates a low, and

red a high weight. As can be seen for both, navigation grid and navigation mesh, particles near

obstacles are unlikely, compared to others in their vicinity. This prevents impossible movements

from affecting the estimation, and resampling eventually replaces such particles by more likely

ones, ensuring stability throughout the walk. Comparing the depicted results against the raw

PDR from figure 6.16, the advantages of including a floorplan become apparent.

3D Component Another benefit of including the floorplan is the ability to allow 3D walks,

modeling the walkable surface by some spatial structure, which not only prevents impossible

walks, but also introduces possible movements in z. This is shown for another result from the

previous PDR examples (figure 6.17), walking downwards by two stories within a stairwell, and

then upwards again. As can be seen in figure 6.36, both, navigation grid and navigation mesh,

allow for 3D walks, even when only relative 2D sensors (step and turn-detection) are used. For

the navigation mesh, each particle, not shown within the figure, is moved in the 2D plane, by

calculating a potential destination, hereafter determining its z-component based on barycentric

interpolation (cf. section 3.6.2). For the navigation grid, the random walk follows adjacent

edges, updating the particles z-component with every edge. The result of both spatial models is

similar. Shown in the 2D top view on the right, the floorplan not only adds the z-component, it

also addresses drifts, discussed and shown previously for the raw PDR in figure 6.17.

Including Additional Knowledge Discussed in chapter 3 and 5, the quality of movement

prediction increases with every added information (origin, step length, heading, activity, des-

6.3. EVALUATION OF MOVEMENT MODELS 265

t = 0 s t = 13 s t = 26 s t = 39 s

Figure 6.38: Probabilistic PDR based on the building’s floorplan, with location and heading of the initial

state q0 well known, hereafter using step and turn-detection with the navigation mesh.

t = 0 s t = 13 s t = 26 s t = 39 s

Figure 6.39: Probabilistic PDR based on the building’s floorplan, with location and heading of the initial

state q0 unknown, modeled by a uniform distribution, hereafter using step and turn-detection.

tination). Predictions without distance and heading information are barely useful, especially

when performed several times in sequence. Therefore, step-detection and turn-detection are

assumed to be available, provided by the accelerometer and gyroscope installed within every

modern smartphone. The impact of including additional knowledge besides these two, is exam-

ined using another short walk, conducted with the LG G6. It consists of walking along a hallway,

opening the door into a stairwell, moving up by one floor, leaving the stairwell through another

door, walking along the hallway. This setup examines the impact of including a known origin,

activity-detection, and navigation, as the walk represents a shortest path towards the destination.

To improve 2D visualizations, floors and stairwell are separated by a blue glass facade.

Figure 6.38 shows the result when using only step-detection and turn-detection based on

the navigation mesh, with the initial whereabouts and heading well known. As can be seen,

the floorplan allows for an almost ideal result, entering the stairwell, walking along the stair’s

center, reaching the next floor, and the destination. The result for the navigation grid is similar.

Figure 6.39 depicts the same experiment, but with the initial whereabouts and heading un-

known, modeled by a uniform distribution. As the shown floorplan is very limited, most of the

initial particles eventually yield incorrect movements, removed by resampling, leaving only a

few likely spots after 13 s. This effect increases when the pedestrian starts to walk along the

stair, causing impossible turns for many of the particles. Having reached the end of the stair, the

density converges, concentrating most of the particles near the actual whereabouts. The chance

for converging strongly depends on the conducted walk, as well as the layout of the floorplan.

Yet, it can be increased by adding other sensors besides step and turn-detection.

266 CHAPTER 6. EXPERIMENTS

t = 0 s t = 13 s t = 26 s t = 39 s

standing

walking

stair↑
stair↓

−0.02 hPa
0 hPa

5 s 10 s 15 s 20 s 25 s 30 s 35 s

Figure 6.40: Probabilistic PDR based on the building’s floorplan, with location and heading of the initial

state q0 unknown, modeled by a uniform distribution, hereafter using step, turn, and activity-detection

by the Bayes classifier (see section 2.6 and 6.2.6), to distinguish between walking and taking stairs. The

stair↑ at 12 s is a false positive, caused by opening the door into the stairwell. After some delay, the

activity is correct at 15 s, removing all non-stair particles until 26 s. At 34 s, another false positive occurs,

again caused by opening the door. The change in atmospheric pressure within 500ms is shown below.

Mentioned in section 2.6, activity-detection is one component, providing some sort of ab-

solute location information, e.g. by focusing solely on stairs, when the corresponding activity

was detected. Figure 6.40 shows the result for unknown initial whereabouts, when including

activity-detection based on the Bayes classifier (cf. section 2.6 and 6.2.6), using the semantic

information from the navigation mesh and (2.80) with κmatch = 0.6, slightly favoring all transi-

tions matching with the currently detected activity. At 9 s, the pedestrian rests to open the door

into the stairwell, detected as standing. Opening causes a change in atmospheric pressure,

which yields an incorrect stair↑ at 12 s, instead of walking. After some delay, at 15 s, the

activity is correct, and the density slowly starts to concentrate along the stair. When leaving the

stairwell at 30 s, there is another false detection, again caused by opening a door to leave the

stairwell. For this example, including the activity causes the density to converge a few seconds

after taking the stairs, representing a major benefit. As can be seen from the incorrectly detected

activities, and the underlying change in atmospheric pressure within a 500ms window (see sec-

tion 6.2.6), the barometer itself is rather erroneous, affected by opening the door into or out of

the stairwell. When Wi-Fi is used as well, providing an absolute z-estimation, it is advisable

to omit the barometer as z-indicator, and refer to activity detection, to prevent negative side ef-

fects. While the barometer is useful for a coarse z-estimation in buildings with numerous floors,

Wi-Fi provides a similar quality (cf. section 6.2.7), and is available within far more devices.

In contrast to Wi-Fi, activity, or the barometer, knowledge on the pedestrian’s desired des-

tination does not directly exclude locations within the building, but is able to favor some of the

6.3. EVALUATION OF MOVEMENT MODELS 267

t = 0 s t = 13 s t = 26 s t = 39 s

Figure 6.41: Probabilistic PDR based on the building’s floorplan, with location and heading of the initial

state q0 unknown, modeled by a uniform distribution, hereafter using step-detection, turn-detection, and

the pedestrian’s desired destination, evaluating all potential moves using the navigation grid with (3.32)

(top), and the navigation mesh (bottom), both with κdest = 0.7. The distance of each location towards

the destination is shown in the left (far: blue, near: red). For both spatial models, at t = 13 s particles

concentrate along or near the stairwell, quickly converging hereafter.

potential movements. For the example shown in figure 6.41, the destination is assumed on the

second floor. The distance towards it is calculated once for every location within the building,

as shown in the left. Starting from a uniform distribution, the same step and turn-detection as

earlier is applied, but all movements approaching the destination are slightly favored by (3.32)

with κdest = 0.7. While this still allows for movements departing from the destination, the

density starts to concentrate, where several consecutive transitions approached the destination.

For the examined walk, the result of the navigation grid (top) and navigation mesh (bottom)

is similar. As can be seen, assuming the pedestrian to use the shortest path towards a desired

destination can improve movement predictions, helping the density to converge.

Similar to navigation is the eCompass (see section 2.4.3), limiting potential walking direc-

tions, based on the absolute heading estimated from the magnetometer. Shown in section 6.2.4,

architectural influences prevent using the compass directly as sole heading indicator. However,

when working with relative heading adjustments based on the gyroscope, as earlier, and in-

cluding the eCompass as a coarse heading evaluation, it can provide an additional benefit. In

the following example, the eCompass is included by (2.66), with a width of ±30°. That is, all

particles with a heading deviating less than 30° from the eCompass’ indication receive the same

weight, diminishing when the difference is above 30°. In doing so, the eCompass limits only

movements deviating significantly. While (2.21) does not sum to 1 for the range of [0, 2π], the

error is marginal and re-normalized by the particle filter. An example is depicted in figure 6.42,

re-using the data from figure 6.16, walking four times around an obstacle, where the compass

indicated only minor outliers. Starting from a uniform distribution with random heading, the

evaluation removes all particles pointing in the opposite direction. Even though the final den-

268 CHAPTER 6. EXPERIMENTS

Figure 6.42: Probabilistic PDR based on the building’s floorplan, with location and heading of the initial

state q0 unknown, modeled by a uniform distribution, hereafter using step-detection, turn-detection and

absolute heading from the eCompass based on (2.64).

sity did not fully converge, showing a second mode (lower left particles), and thus an invalid

weighted-average estimation, the ground truth is covered by the majority of the density.

Figure 6.43 depicts another result of probabilistic PDR, including the building’s floorplan

for the data from figure 6.18. Seen on the left, when the origin is known, the floorplan corrects

the drift of the gyroscope and yields an almost ideal result. Additionally including the eCompass

as evaluation ((2.64) or (2.66)), is shown by two additional estimations: One using a normal

distribution (ND) with σcomp = 45°, and one using the distribution from (2.21) (RD) at a width

of ±30°. The normal distribution keeps the mean of the eCompass, which was erroneous for

this walk (see figure 6.18), forcing the density towards the right, corrected by the floorplan,

preventing some impossible walks. When using (2.21) as distribution, there is no clear mean, as

all particles with approximately matching heading receive the same weight, mitigating the drag

onto the mean. The right half of the figure shows the result for an unknown origin, modeled

by a uniform distribution. When the eCompass is unavailable, the density converged a few

seconds before reaching the destination (lower left). With the eCompass enabled, convergence

is improved, although it still mistakenly enters the room in the upper left. The effect of using

a normal distribution for evaluating the eCompass is similar to the left half. Since the mean is

preserved, the estimation is dragged to the right. This is partly compensated by the floorplan,

which prevents resulting impossible walks.

While the previous results were viable, to prevent negative effects of architectural influences

(cf. figure 6.17), further increasing σ or temporally disabling the eCompass can be required.

6.3.4 Limitations

One main limitation of the presented movement predictions is convergence. This not solely

relates to the prediction model or the underlying floorplan, but also stems from the required

simulation: As discussed earlier, both, the navigation grid and the navigation mesh, do not

directly provide densities, but approximate one based on samples. Therefore, multiple samples

are required, with the quality directly proportional to their number (cf. section 4.5). Indicated

6.3. EVALUATION OF MOVEMENT MODELS 269

origin known origin unknown

step/turn

step/turn/compass (ND)

step/turn/compass (RD)

Figure 6.43: Probabilistic PDR based on the building’s floorplan, combined with step-detection, turn-

detection and absolute heading from the eCompass using (2.64) with a normal distribution (ND), and

using (2.66) with (2.21) (RD). Once with a known origin (left), and with an unknown origin (right).

by previous experiments, the floorplan, and additionally available information also affect this

quality. Especially when starting from a uniform prior, the chance for a limited sample-set to

contain the correct origin and heading strongly depends on the size of the floorplan.

The impact of certain aspects is analyzed by executing a walk-simulation multiple times,

using pseudo-random numbers based on a seed. For each of the repetitions, a different seed is

used, ensuring a varying pseudo-random process, and thus another result. Likewise, consecutive

tests may refer to the same seed, to produce the same random numbers, e.g. for testing solely

the influence of the number of particles, keeping all other random decisions.

An example is visualized in the left of figure 6.44. When starting from a uniform prior

with 1000 particles, the chance for convergence is poor, depicted by the results for two different

seeds, shown in black and red. While the black one walked in the opposite direction, the red

one was closer to the actual solution, but did still not converge. When increasing the number of

particles, the results (blue and green) converged, reaching the actual destination.

A similar problem arises from invalid assumptions made during the movement prediction.

As discussed in section 2.4.1, while detecting pedestrian steps is easy, estimating their size

is not, especially when the phone is held upfront. Thus, apart from stairs, where the tread-

size is known, a constant step length of µstep ≈ 70 cm is assumed, including σstep = 10 cm

for uncertainty. The impact of adjusting this assumption, which is similar to the pedestrian

changing the step length, is shown in the right of figure 6.44. While the larger step length (red)

converges eventually, the shorter one (blue) does not, as all particles get trapped within a room.

A related problem occurs for many of the real-world walks, conducted in Museum 1 or

Museum 2. Here, the pedestrian often rested in front of exhibits, slowly turning to watch multiple

items. This looking-around typically involves minor foot movement, to turn the body, misclas-

sified as steps, causing the movement prediction to update the estimated location. Depending on

270 CHAPTER 6. EXPERIMENTS

1000 particles (seed 1)

1000 particles (seed 2)

10 000 particles (seed 2)

100 000 particles (seed 2)

µstep = 63 cm

µstep = 70 cm

µstep = 77 cm

origin unknown origin known

Figure 6.44: Limitations of probabilistic PDR based on the building’s floorplan. When using only step

and turn-detection, starting from a uniform distribution (left), the chance for convergence is poor. For

1000 particles, most results are like the black and the red path. For ≥ 10 000 particles (blue,green),

the chance is increased. When starting from a known origin (right), invalid sensor readings, or false

assumptions, can lead to similar problems, depicted by using three different step sizes for the same walk.

the surrounding architecture, and the pedestrian’s behavior, this can lead to the whole density

getting trapped, walking against obstacles. This e.g. happens within walk C2. After walking

a few seconds, the pedestrian watches exhibits, slowly turning, with the detected steps caus-

ing the density to approach a corner, unable to move any further, indicated by the red path in

figure 6.45e. This can often be mitigated by using the probabilistic step-detection (2.9) and

(2.31), instead, as the magntitude of the accelerometer is significantly smaller when turning on

the spot. While the binary yes/no step-detection got stuck after a few seconds of walking, the

probabilistic variant (blue path) converged, with an average error of ≈ 1.5m.

A similar problem occurs for walk A4, after finishing most of the walk without issues. Dur-

ing climbing stairs, the step-detection indicates a false positive, yielding almost the whole den-

sity to leave the stairwell through an adjacent door, shown in figure 6.45c and 6.45d. While a

few particles remained on the stair, taking the correct path, they collided with the stair’s bound-

ary, caused by a slight drift of the gyroscope, and were lost during resampling.

For walk A1, shown in figure 6.45a, the density does not get stuck, but does not converge

either. When re-entering the building, some of the (red) particles use the correct path, while

others refer to an adjacent stair. The density then splits into two modes, and remains like this for

a few seconds (green particles). With the following right turn, many of the particles within the

building collide with the floorplan, while the outdoor-ones can freely proceed without obstacles.

Even though a few (cyan) reached the actual destination, the majority remained outside, causing

the weighted average estimation to indicate an incorrect path.

For walk A2, shown in figure 6.45b, obstacles within the outdoor area caused the red density

to split into two modes. Without other obstacles nearby, this yields a large and growing uncer-

6.3. EVALUATION OF MOVEMENT MODELS 271

(a) walk A1 - top (b) walk A2 - top

(c) walk A4 - 3D
(d) walk A4 - top

(e) walk C2 - top

Figure 6.45: Issues of probabilistic PDR, for some of the real-world scenarios from section 6.1. Black

and blue lines denote ground truth and estimation. Detailed descriptions are provided within the text.

tainty. The upper mode eventually vanishes, colliding with the building’s exterior. The lower

one enters the building through two doors, one of them connected to the destination.

Thus, matching with prior discussions (cf. section 5.2), the floorplan yields both, advantages

and disadvantages. Without, 3D estimations can not be performed, at least, not when using only

2D sensors. Similarly, when not limiting impossible walks, a uniform prior can not converge

without additional absolute sensors, such as Wi-Fi. However, when assumptions or sensor data

are invalid, these benefits become a drawback and the overall density might get stuck, unable to

recover, requiring for a restart or similar techniques (see section 5.2).

To get an impression on actual numbers, two of the previously discussed PDR walks were

simulated 100 times, for each of which two metrics were determined: The first denotes if the

density got stuck, which is the case when all particles received a weight of 0, denoting they

were unable to move. The second identifies whether the final location estimation was valid,

matching with the ground truth, determined using a threshold of 1.5m. Results for the walk,

using a stairwell to change the floor, are shown in table 6.17. The longer walk along a floor’s

hallway is listed in table 6.18. By comparing both, various aspects can be recognized. As

expected, the number of particles is important, affecting whether getting stuck, or yielding a

valid estimation. In all cases, the resulting quality was directly proportional to the number

272 CHAPTER 6. EXPERIMENTS

100 particles 250 particles 500 particles 1000 particles

valid stuck valid stuck valid stuck valid stuck

known origin 100% 0%
uniform 13% 66% 28% 31% 41% 8% 67% 1%
uniform, activity 15% 69% 34% 28% 47% 6% 70% 1%
uniform, navigation 22% 65% 47% 30% 80% 5% 91% 1%

Table 6.17: Convergence results for the data from figures 6.38, 6.39, 6.40, 6.41 using 100 simulations.

The metrics stuck and valid are explained within the text.

1000 particles 2500 particles 5000 particles 10000 particles

valid stuck valid stuck valid stuck valid stuck

known origin 100% 0%
known origin, compass 100% 0%
uniform 5% 95% 10% 90% 33% 67% 50% 50%
uniform, compass 41% 59% 73% 27% 96% 4% 100% 0%
uniform, navigation 61% 39% 89% 11% 98% 2% 100% 0%

Table 6.18: Convergence results for the data from figure 6.43, using 100 simulations.

of particles used. Also as expected, the larger floorplan requires more particles, at least, when

starting from an uniform prior. The listed values also denote the impact of additional informa-

tion, like a known origin, activity, eCompass or known destination. In all cases, this information

increased the correctness of the final result, and reduced the risk of getting stuck.

Between both walks, there is a noteworthy difference. For the longer one (table 6.18), all

simulations that did not get stuck, actually returned the correct location estimation for the final

position, which is not the case for the shorter walk (table 6.17). This behavior is induced by the

floorplan: For the shorter walk, the destination on the upper floor is surrounded by free space,

for the longer walk, it represents a dead end. Thus, the floorplan concentrates the density around

the desired destination, increasing the chance for matching with the ground truth.

As denoted by the presented results, probabilistic floorplan-based PDR is powerful. When

the pedestrian’s origin and initial heading are known, assumed step lengths are correct, and

sensors do not suffer from major errors, the result converges, yielding an average accuracy of

≈ 1.5m for most parts of a walk. However, in case of sensor errors or invalid assumptions, the

density easily gets stuck, unable to recover. Furthermore, origin and initial heading are unknown

for most use cases, and, if entered manually by the pedestrian, too inaccurate to converge.

Both can be addressed by additionally including sensors that provide absolute location esti-

mations, like Wi-Fi or Bluetooth beacons, examined within the following, final experiments.

6.4. EVALUATION OF THE OVERALL SYSTEM 273

6.4 Evaluation of the Overall System

As indicated by previous experiments, Wi-Fi can provide a coarse absolute location estima-

tion indoors, with the quality dependent on the available infrastructure and the chosen signal

strength prediction model. When initial heading and whereabouts are known, and a spatial floor-

plan model is available, PDR can provide accurate results, at the risk of getting stuck, increasing

with time, and within large open spaces. When both components are combined, knowledge on

initial whereabouts is not required, as they are provided by Wi-Fi, whereas accurate probabilis-

tic movement predictions are included by the floorplan-based PDR, yielding the final indoor

localization and navigation system.

The performance of this final system is analyzed using the walks from section 6.1. Each

transition is performed using the probabilistic PDR based on the navigation mesh, as it is more

suited for embedded use, requiring less memory than the navigation grid. Potential movements

are predicted whenever a pedestrian step is detected, moving into the direction given by each

particle’s heading, adjusted by the cumulated turn rate and some uncertainty (see (3.35) and

(3.37)). If a destination is not reachable, the particle remains in place, and is assigned a weight

of zero. As some of the walks also include standing and turning in front of exhibits, periodic

updates are forced every 1000ms, when no steps were detected.

For the final system, all individual uncertainties are slightly increased, to prevent either

component from being too strict, reducing the risk of getting stuck. The chosen walking dis-

tances were µstep = 70 cm with σstep = 15 cm when a step was detected, and µstep = 0 cm with

σstep = 5 cm for forced periodic updates every 1000ms, when no step occurred. Along stairs,

their known tread-size is used with σstep = 10 cm. The heading is updated with an uncertainty

of σturn = 3°, applied when a step is detected, or a forced update is issued, thus equal to either

3 °/s or 6 °/s. The Wi-Fi component uses oLDCPFi as optimization strategy and signal strength

prediction model (see section 6.2.7), which is evaluated against the smartphone’s RSSI read-

ings using (2.111) and σrssi = 10 dB as uncertainty for every single transmitter. As earlier, the

activity-detection (2.80) is included using κmatch = 0.6, slightly favoring movements matching

the detected activity. That is, the barometer is not included individually, but only as part of the

activity-detection, serving the same purpose, with a reduced risk for temporal environmental in-

fluences. Based on previous findings, the eCompass is included using (2.21) with a large width

of 60°, but only if the last 3 s provided an almost stable reading, hopefully catching outliers

heuristically. The only walk covering an outdoor area, where GPS could be used, is walk A2.

However, the actual time outdoors was too short for most smartphone GPS sensors to reach a

stable fix, thus not providing a benefit. Including navigational knowledge is only possible for

274 CHAPTER 6. EXPERIMENTS

(a) (b)

Figure 6.46: Results for walk C2 (a) and walk C3 (b), estimated once using only PDR from a known

origin (blue), and once with an unknown origin, using the final system (green). Due to the weighted

average estimation, the latter starts in the building’s center of mass, taking some seconds to determine

likely whereabouts based on nearby access points. Hereafter, both variants yield similar results. Only in

some regions Wi-Fi affects the estimation, slightly dragging the density.

walk A3 and walk C1, as all others do not follow a shortest path. While walk A1 and walk A2 are

close to using the shortest path, the remaining ones contain loops, and are thus unsuited.

If not mentioned otherwise, experiments were based on the particle filter (see section 4.5)

using 5000 particles. This value was chosen empirically, and is suited for most smartphones

that are currently in use. Corresponding location estimations are determined by the weighted

average of all particles (cf. section 4.5.3).

Figure 6.46 shows the results for two walks, comparing a known-origin PDR, against the

final system with an unknown origin. The latter’s initial uniform distribution yields an estima-

tion starting in the building’s center of mass. After a few seconds, and some RSSI readings

from nearby access points, the distribution starts to focus. Hereafter, both variants produce very

similar results, as the main focus is on the PDR, and the constraints imposed by the floorplan.

However, in some regions and cases, the Wi-Fi estimation can cause dragging, forcing the

density onto a location more likely in terms of Wi-Fi signals. This is similar to earlier findings

for the eCompass, when evaluated based on a normal distribution (cf. figure 6.43). This was ad-

dressed by using the distribution from (2.21) instead, canceling the observation’s mean. While

(2.21) can be applied to Wi-Fi as well, it only affects the probability for single transmitters.

Similar to the law of total probability, the product of several such distributions – required for

the combined Wi-Fi likelihood (2.111) – will contain peaks, again causing dragging towards

some location. The impact can be seen when comparing the blue path of figure 6.47a – where

Wi-Fi is enabled – against figure 6.45b, displaying the same walk, but using only PDR. The

poor radio coverage of the outdoor area causes the Wi-Fi component to provide invalid estima-

6.4. EVALUATION OF THE OVERALL SYSTEM 275

(a) (b)

Figure 6.47: Results for walk A2 and walk A3, estimated by the final system. In contrast to the blue

result, green also included navigational knowledge in the evaluation, based on κdest = 0.7. For (a), this

enhances the last segment of the walk, straightening the outdoor area. Within (b), the initial uncertainty

of using the stair is addressed, yielding a faster convergence.

tions, dragging the density. When additionally including navigational knowledge for this walk

(green path of figure 6.47a), the effect is mitigated, as walking straight towards the destination

in the lower right is more likely. For figure 6.47b the effect of including navigational knowledge

(green path) is similar, correctly using stairs instead of staying on the starting floor (blue).

The impact of using other Wi-Fi optimization strategies is shown in figure 6.48. oELD was

not further examined, as it requires the locations of the transmitters to be known and added

manually to the floorplan. This information often is unavailable, and conducting a few reference

measurements takes similar amounts of time, but offers improved accuracy (cf. section 6.2.7).

Likewise, oLDCW is omitted, as it provided only minor improvements compared to oLDC, but

comes with a computational overhead, exceeding the capabilities of commodity smartphones.

While the results for oLDCPFi, oLDCPF and oLDC were very similar, oLD suffers from previously

indicated z-estimation problems: By not considering ceilings, adjacent floors receive a similar

likelihood from the Wi-Fi component. With the initial density thus splitting onto multiple floors,

a decent number of particles is required to converge and prevent the estimation from settling

on the wrong floor. This is visualized in figure 6.48b and 6.48c, where the latter used only

1000 particles, causing the recursive density estimation to settle for the wrong floor (yellow

particles), unable to converge, eventually getting stuck. When using oLDCPFi, oLDCPF or oLDC,

Wi-Fi provides an accurate floor-preference, shown in figure 6.48a. While the estimations in x

and y are similar between the depicted models, the error in z is significantly different.

The stability of the final system is also analyzed based on the pedestrian walks from sec-

tion 6.1. Each of the 12 paths was conducted by various pedestrians and smartphones. All

resulting recordings are simulated by the final system 50 times, each of which using a different

seed, to adjust underlying pseudo random processes. For all results it is determined, whether

the estimation converged, and reached the path’s destination. The resulting chances for not

276 CHAPTER 6. EXPERIMENTS

(a) (b) (c)

Figure 6.48: Results for walk A1, estimated by the final system. When using oLDCPFi, oLDCPF or oLDC

as Wi-Fi model (a), results are almost optimal. For oLD, however, the z-estimation is not ideal: For 5000
particles (b), the estimation eventually converges. For 1000 particles (c), it also starts on all four floors

(blue), but settles on the wrong one after a few seconds (yellow), finally getting stuck.

reaching the destination are listed in table 6.19. For most walks, this risk ranged well below

10%. Only walk A2 suffered from a much higher chance, stemming from the walk itself: It

starts within a region with viable Wi-Fi location estimation, but after a few steps the pedestrian

enters an adjacent stairwell, with poor Wi-Fi-coverage, due to massive concrete walls. Even

though a few particles follow into the stairwell, take the stair, matching with the detected activ-

ity, the majority remains outside, within areas much more likely in terms of Wi-Fi. That is, the

initial uniform distribution did not have enough time to settle on a stable mode, thus failing to

converge after a few seconds. This can be mitigated by disabling the Wi-Fi sensor as soon as

the stairwell is entered, e.g. by using the Wi-Fi quality metric (5.2). As all measurable RSSIs

are rather low throughout the stairwell, the quality metric approaches zero, indicating that the

observations are unlikely to be valid. When including this technique within the final system,

the number of failed results was reduced from 25% to 15%. Still being higher than for the

other examined walks, this is due to the outdoor area, directly before this walk’s destination.

Previous experiments have shown that the Wi-Fi-coverage outdoors is poor for this building,

and signal strength predictions are rather erroneous in this area. Thus, many of the seeded sim-

ulations entered through a wrong door, or got stuck shortly before the destination. This could

not be mitigated by the GPS either, as the time outdoors was too short for the GPS to estimate a

viable fix on most smartphones. Both issues could be addressed by installing additional trans-

mitters throughout such regions. Especially within stairwells, one or two Bluetooth beacons are

sufficient to significantly increase localization accuracy, and prevent potential issues.

The localization accuracy of the final system is calculated based on all simulations that

converged, reaching the correct destination. For error visualization, the 3D Euclidean distance

between estimation and ground truth was determined every 500ms. Individual results for ev-

ery walk are shown in figure A.7 to A.15. The corresponding overall results are provided as

cumulative distribution functions, grouped by building, shown in figure 6.49. When compared

against the Wi-Fi-only location estimation from figure 6.31, the benefit of including additional

6.4. EVALUATION OF THE OVERALL SYSTEM 277

SHL Museum 1 Museum 2

A1 A2 A3 A4 A5 B1 B2 B3 C1 C2 C3 C4

4% 25% 0% 8% 9% 8% 9% 6% 6% 6% 8% 7%

Table 6.19: Number of results that got stuck or did not reach the correct destination, determined by

applying the final system – 5000 particles, activity-detection, Wi-Fi – 50 times with 50 different seeds,

to the conducted pedestrian walks from section 6.1.

0.25

0.50

0.75

0.90
1.00

2m 4m 6m 8m 10m 2m 4m 6m 8m 10m 2m 4m 6m 8m 10m

SHL

walk A2 omitted

Museum 1 Museum 2

Figure 6.49: Cumulative distribution function after simulating all walks from section 6.1 using the final

system, showing the 3D distance error between estimations and ground truth, grouped by building.

sensors and the building’s floorplan becomes evident. As earlier, the two museums yield more

accurate results, which is mainly due to an increased number of available Wi-Fi transmitters,

with respect to each building’s size. However, when omitting the results for walk A2 (dashed

line), suffering from the mentioned outdoor errors, the results for SHL become similar.

As can be seen from the final experiments, for most cases, the presented final system pro-

vides viable results with a median error somewhere around 2m to 3m. While the floorplan al-

lows for 3D location estimation and navigation, preventing impossible movements is not always

a benefit. Based on the values listed in table 6.19, there still is a notable risk of the recursive

density estimation getting stuck, like for PDR-only approaches. While Wi-Fi was intended to

address this risk, it can also be its root cause, when predicted signal strengths do not match with

real-world behavior, dragging the density to some location. The presented quality metric (5.2)

can mitigate the problem, but does not provide a general solution, as it estimates potential issues

solely on low signal strengths. To address these remaining cases, more complex prevention and

reset strategies will be required (cf. section 5.2.4), to further enhance the stability in the future.

278 CHAPTER 6. EXPERIMENTS

6.5 Summary

This chapter provided experimental results for all previously introduced techniques. The testbed

was based on synthetic tests using a turntable and confined scenarios, as well as real-world

walks of several pedestrians within multiple buildings. First, the probabilistic sensor models

from chapter 2 were examined, using both, synthetic and real-world setups. Second, the proba-

bilistic movement models from chapter 3 were tested, using synthetic and real-world floorplans,

with and without recursive density estimation. Finally, the overall indoor localization and navi-

gation system was evaluated, applying it to multiple walks within actual buildings.

Section 6.1 briefly described the testbed used for all experiments. To allow focused exami-

nations of sensors and effects, synthetic tests were included alongside real-world scenarios. The

synthetic variants were based on smartphones placed on a turntable, as well as walks conducted

under constrained conditions. Additionally, three different buildings were examined, varying

in architecture, size and age. All tests were conducted using Android smartphones of different

price classes and ages, carried by several pedestrians in case of real-world walks.

Section 6.2 gave a brief overview on sensors available within various smartphone models.

Most of today’s devices contain an IMU with accelerometer, gyroscope and magnetometer.

While Wi-Fi was available within all examined phones, the barometer is rather rare.

Then, section 6.2.2 examined the accelerometer-based step-detection from section 2.4.1. All

conducted tests indicated the benefits of filtering, and the differences between the two discussed

implementations, FIR and IIR. The latter is computationally efficient, and, when chained, suf-

ficient for filtering noise, without introducing large delays. A simple peak detection within the

filtered accelerometer magnitude was sufficient to provide a robust step-detection. Solely for

fast paced walks, the detection rate was reduced, which is due to increasing amounts of noise.

In section 6.2.3, relative turn-detection and absolute heading (section 2.4.2 and 2.4.3) es-

timation were examined. First, each smartphone was mounted onto a turntable, providing the

ground truth for angular changes. This allowed determining the accuracy of the gyroscope, the

magnetometer, and the required tilt compensation (see section 2.4.2). For all examined cases

and devices, results were promising. Both, turn-detection and eCompass, were off by only

a few degrees, indicating that both, sensors and algorithms, are viable. However, real-world

experiments conducted in section 6.2.4 denoted several issues. The gyroscope’s drift cumu-

lates significantly over time, and the magnetometer is often notably influenced by the buildings

architecture.

Shown in section 6.2.5, readings from the barometer (see section 2.5) are also strongly

dependent on the current ambient conditions. Absolute altitude estimations thus require some

sort of reference. Using changes in altitude since starting to walk thus significantly improved

6.5. SUMMARY 279

the probabilistic evaluations. Yet, after walking several minutes, the initial reference is expected

to be invalid, due to constantly changing ambient conditions.

An alternative was examined in section 6.2.6. The barometer’s change in pressure and the

accelerometer’s standard deviation within a short timeframe are used for pedestrian activity-

detection (cf. section 2.6). While not providing actual altitude estimations, this allows distin-

guishing between standing, walking and taking stairs, and remains stable even for longer walks.

Yet, the detection suffered from notable delays, mainly caused by the barometer sensor itself.

In section 6.2.7, absolute location estimation was examined, provided by the smartphone’s

signal strength indications for nearby access points (section 2.7). First, signal strength predic-

tion models were trained, based on a few reference measurements conducted within a building.

As shown, the quality of the resulting predictions is strongly dependent on the trained model,

and the building’s architecture. While simple prediction models can be sufficient for some build-

ings, others require more complex variants, also considering architecture details. Experiments

indicated that at least floors and ceilings should be considered to provide viable predictions.

Then, based on the trained models, location estimations were performed. While more accurate

prediction models tendentially provided better location estimations, the difference between all

examined models was less significant. Yet again, the model should at least consider floors and

ceilings, as this notably improved floor-level estimations. Independent of the chosen model,

often more than one location is likely based on the current readings from the smartphone. Fur-

thermore, Wi-Fi location estimations are noisy, often encountering large jumps. Due to both,

filtering is strongly recommended. Results when applying a simple particle filter with an uncon-

strained prediction yielded notably improved results, by suppressing major outliers. However,

even with filtering Wi-Fi on its own is insufficient to solve the problem of indoor localization.

Section 6.3 examined the benefits of including the building’s floorplan by using the two

spatial models introduced in chapter 3, with and without additional recursive density estima-

tion and sensor fusion. First, the navigation grid and the navigation mesh were utilized to

model various real-world buildings, which pointed out major differences. The navigation grid

is rather discrete, more suited for axis-aligned architecture, and can require extensive amounts

of memory. The navigation mesh adapts to the local architecture, and requires significantly less

memory, due to the irregular triangle (primitive) placement. Concerning movement prediction,

random walks (see section 3.5.2) are more versatile than the approaches supported by the nav-

igation mesh, as they allow for efficient random sampling based on arbitrary metrics. Yet, for

real scenarios and short simulation timeframes, this aspect was less critical than its limitations,

producing rather discrete results, and requiring large amounts of memory.

Nevertheless, both spatial models allowed for realistic 3D movement predictions, examined

by a pedestrian dead reckoning setup. Here, step-detection and turn-detection were combined

280 CHAPTER 6. EXPERIMENTS

with a known starting position, which was hereafter adjusted based on sensor observations and

the floorplan. As shown, this enabled 3D location estimations, even though sensors provide

only 2D data. Yet, the impact of cumulating drifts and sensor errors became clear. Probabilistic

setups based on the particle filter, including additional knowledge, are thus advisable.

Section 6.3.2 examined the impact of including navigational knowledge, supported by both

the navigation grid and navigation mesh. First, both variants required adjustments to prevent the

estimated shortest paths from adhering unnaturally close to obstacles. Hereafter, both spatial

models provided routes that match with typical pedestrian walking behavior. When included

within the probabilistic process, the desired destination can be used to rule out unlikely move-

ments. This often helped the density to converge, especially when starting from a uniform prior.

Likewise, when currently taking stairs, activity-detection reduces the likely whereabouts to

a few regions. Shown in section 6.3.3, this often presented major improvements concerning

convergence. While the magnetometer’s compass can be included in a similar way, to limit

potential headings, results strongly depend on ambient conditions. Nearby metal objects often

affected observations negatively. Therefore, uncertainty ranges and influences were examined

as well, e.g. comparing a normal distribution against the modified version from section 2.3.

By not using a clear mean value, the adjusted distribution can prevent negative impacts from

biased sensors, such as the magnetometer. The section concluded by examining the contribution

of individual components, by calculating the amount of random simulations that got stuck or

did not fully converge towards the destination. When the origin is well-known, floorplan-based

probabilistic PDR without Wi-Fi provides viable results, as long as no major sensor faults occur.

When including Wi-Fi, initial whereabouts need not be known, and faults from other sensors can

be compensated. However, poor signal strength readings can also cause the density estimation

process to get stuck, sometimes unable to recover.

Finally, section 6.4 examined the overall system behavior for multiple long real-world walks

within three buildings, conducted by several pedestrians. The results notably varied between

the three buildings, but also among walks within the same building. This is mainly due to

certain regions, where Wi-Fi reception is poor, causing significant temporal errors. These errors

can also cause the estimation to get stuck, unable to recover. Except for one walk, this risk

was similar between all examined walks and buildings. The building with the poorest results

among the three was equipped with significantly less wireless transmitters than the other two.

While Wi-Fi can compensate gyroscope drift, and drops the requirement for knowing the initial

origin, its uncertainty is significant, and often reduces the overall localization result, which

could be better when referring to the remaining sensors. Thus indicating the necessity for

further improvements.

Chapter 7

Summary

In contrast to navigation outdoors, which has been well established during the last two decades,

indoor localization and navigation still remains a niche existence. However, due to the ever

expanding need and wish to travel, it becomes of increasing importance. Locating the terminal

at an unknown airport, finding the correct ward within a large hospital, or receiving additional

information on nearby exhibits within a museum, denote just a few of the numerous use cases.

For this new technique to be successful, it should be cheap, easy to set up, and be based on

readily available components. These requirements are not limited solely to the system’s user, but

also apply to its vendors, and the owners of each specific building where the system is installed.

Leaving industrial use cases and special hardware components aside, this work focused on

pedestrian indoor localization and navigation only. With smartphones being almost always at

hand, and containing a variety of sensors, these devices represent a desirable target platform.

The first chapter thus presented various smartphone sensors as well as their contribution

towards pedestrian indoor localization and navigation. As the observations from every sen-

sor are noisy or in some way uncertain, they are examined on a probabilistic basis, where the

expected amount of noise is included as uncertainty. Throughout the chapter, a relation be-

tween sensor readings and potential pedestrian whereabouts or movements within the building

was established. After introducing required preprocessing steps, probabilistic evaluations were

developed, assigning a quantified likelihood to all potential whereabouts and movements, de-

pendent on expected sensor errors. Based on the well-known global positioning system, a brief

example was provided. However, with this localization component unavailable indoors, other

smartphone sensors are required. An alternative to the GPS that can be used indoors, and is

already available within many public buildings, is Wi-Fi. The smartphone’s signal strength

readings from nearby transmitters can be used to infer the distance towards them, e.g. allowing

multilateration. However, as radio signals are notably affected by walls and other obstacles,

281

282 CHAPTER 7. SUMMARY

multilateration is too coarse within most buildings. Thus, Wi-Fi is often combined with fin-

gerprinting, performing hundreds of signal strength measurements throughout the building to

determine the behavior of the radio signals. Each smartphone observation for nearby trans-

mitters can then be compared with the recorded fingerprints, determining the one that matches

best. While offering the best accuracy, the setup process is time consuming. This work thus

presented a compromise based on signal strength prediction models that are able to include

obstacles within their calculations. These models were trained based on a few reference mea-

surements, hereafter providing signal strength estimations for every transmitter, throughout the

whole building. The trained models enable probabilistic location estimations, determining the

likelihood for certain whereabouts by comparing their corresponding signal strength predictions

with the smartphone’s observations. Yet, sometimes being inaccurate, this component is unable

to solve the localization problem on its own. If the smartphone contains a barometer sensor, it

can be used in a similar way, determining the most likely floor, based on the current ambient

pressure readings. Though, with these observations dependent on the weather and changing

over time, they require some sort of calibrated reference. Thus, the concept of relative pres-

sure readings was introduced. However, dependent on the duration of the walk and the age of

the reference, it eventually becomes invalid, requiring for another approach. This was given

by activity-detection, combining the accelerometer and barometer readings within a short time-

frame to determine the likelihood of the pedestrian to be currently resting, walking or taking

stairs. While it does not provide absolute floor estimations, this approach is unaffected by slow

changes in ambient pressure and limits potential whereabouts when taking stairs is detected.

Also based on the accelerometer, step-detection was used to infer individual steps made by the

pedestrian. Combined with an assumption on the average step size, and including an uncer-

tainty, this provides information on potential movements within a certain timeframe. Besides

this velocity, the current walking direction is of similar importance. The magnetometer installed

within smartphones was therefore used as a compass, to estimate the heading with respect to ge-

omagnetic north. Yet, indoor environments significantly affect its readings, causing the sensor

to often be unstable. More stable and unaffected by surroundings is the gyroscope, which was

used to infer changes in heading, referred to as turn-detection. However, as this sensor requires

mathematical integration, it suffers from cumulating drifts. The uncertainty thus cumulates over

time, and eventually reaches a level where the sensor can not provide a contribution.

Similar to navigation outdoors, mapping information can not only be used to estimate the

shortest path to a desired destination. It can also be considered to limit impossible movements,

and thus to reduce cumulating uncertainties. For this, two spatial models were introduced, mod-

eling the walkable surface: A graph with vertices and edges, referred to as navigation grid, and

the navigation mesh, using adjacent and irregularly sized triangles. Both spatial models allow

283

for movement predictions based on the building’s floorplan. The presented random walks along

the graph, for example, estimate all pedestrian movements that are possible within a certain

timeframe. The intention is similar to the approaches used within car navigation systems. A

car’s last known velocity, heading, and road can be used to provide predictions, even when the

GPS is temporarily unavailable, like within a tunnel. Furthermore, this approach can also be

used to suppress outliers, when the GPS indicates a faulty reading that does not conform with

the last known heading and velocity. Yet, in contrast to car navigation, pedestrian movement

behavior is significantly less restricted, and usually not limited to certain paths or directions.

Unlike cars, a pedestrian can stop, accelerate, or turn at any given instant. This aspect was

examined based on movement prediction models with and without knowledge of the build-

ing’s floorplan. As pointed out, the quality of movement predictions depends on the available

prior knowledge. When assumptions on velocity, heading, and surrounding obstacles can be

made, results are significantly more realistic than without. Including the information from step-

detection, turn-detection is thus strongly advisable, notably limiting potential movements. This

also concerns navigational knowledge. When the pedestrian’s desired destination is known, the

shortest route for reaching it can be estimated. For this, common routing algorithms were used,

with a modification to create realistic walking paths through the building, while avoiding nearby

obstacles. The system then assumes that the user follows the presented routing. While deviating

from it is still possible, it is typically less likely.

The combination of both aspects, sensor observations and floorplan-based movement pre-

diction, was provided by recursive density estimation, using the Bayes filter. It enables a prob-

abilistic fusion of multiple individual aspects, including their expected uncertainties, hereafter

deriving the most likely result. Applied to localization indoors, the Bayes filter estimates the

pedestrian’s most likely whereabouts based on the history of all sensor observations, and con-

straints given by the floorplan. This also increases the usefulness of relative sensors, like step-

detection and turn-detection, as their whole series of observations is considered, and matched

against the floorplan. While the Bayes filter can be implemented analytically using the (ex-

tended) Kalman filter, this variant is too restricted for indoor localization, as it does not support

the discontinuous constraints from the floorplan. This was addressed by using the particle filter

instead, which approximates all required densities based on several discrete samples, referred

to as particles. Each of the particles represents one potential location the pedestrian might cur-

rently reside at, including an estimated walking direction. The particles can directly be used to

simulate potential movements, e.g. by relocation based on an assumed walking speed, hereafter

determining whether the resulting movement is possible by the floorplan.

For an efficient, yet flexible, implementation of the overall system, floorplan design choices

were briefly discussed. A manually modeled floorplan is hereafter used to automatically derive

284 CHAPTER 7. SUMMARY

a navigation grid or navigation mesh for movement predictions. When using the particle filter

as implementation, particles can denote impossible movements, if they collide with a wall or

another obstacle. These impossible movements must be addressed, to prevent negative influ-

ences, and to ensure that all particles remain likely. For this, several strategies were discussed,

such as assigning corresponding particles an infinitesimally small weight, which causes them to

be replaced during the particle filter’s resampling step.

Shown by experiments, all examined smartphone sensors provide a viable contribution to-

wards indoor localization. Their general suitability was examined by synthetic tests, suppress-

ing unwanted influences, and focusing on individual sensors only. A turntable provided an ac-

curate ground truth to inspect turn-detection and absolute heading estimations, indicating viable

results among all examined smartphones. Likewise, step-detection applied to constrained walks

was accurate, as long as the pedestrians used typical pace. While both sensors combined already

enable indoor localization via pedestrian dead reckoning, this setup requires initial whereabouts

to be well known, and is likely to fail eventually, due to cumulating sensor errors. While Wi-Fi

provides absolute location estimations, its estimated whereabouts can notably deviate from the

ground truth. Corresponding estimations were performed within three buildings, based on sig-

nal strength prediction models, trained by a few reference measurements. Comparing the re-

sults, the limitations of the examined prediction models became clear. Simple line of sight

models are too inaccurate to provide viable estimations, and at least floors and ceilings should

be considered. Using multiple models, each focusing on a fraction of the building, further in-

creased the prediction quality. Matching with these findings, the probabilistic setup, based on

the particle filter, has proven to be notably more robust. Triggering updates whenever a step is

detected, each particle’s heading estimation is updated based on turn-detection and the associ-

ated uncertainty. This relocates all particles to new whereabouts, if the floorplan conforms with

a potential movement. If not, the movement is unlikely and thus suppressed. Similarly, move-

ments not matching with the currently detected activity are suppressed as well. Additionally,

Wi-Fi weights all particles based on whether the signal strength prediction for their location

matches with the smartphone’s current observations. Over time, this combination of multiple

sensors, movement prediction, and the building floorplan yields a robust probabilistic location

estimation. When assumptions on sensor noise and errors are correct, every additional compo-

nent increases the quality of the particle filter’s estimation. Yet, sensor faults, like poor Wi-Fi

observations, or magnetometer readings affected by nearby metal objects, can cause the density

approximation to destabilize. When encountered for longer timeframes, the particles can e.g.

get stuck within a room, unable to leave. While several techniques for mitigation exist, which

strategy and combination serves best, is one of several topics to be examined in the future.

Chapter 8

Future Work

Discussed within previous chapters and confirmed by experiments, the presented indoor local-

ization and navigation system provided an accuracy that is sufficient for localization and routing

within most buildings. However, indicated by the examined real-world walks, some caveats re-

main and should be addressed in the future to further improve accuracy and stability.

The used step-detection e.g. relies on an empiric choice for the pedestrian’s step length and

its uncertainty. While this was sufficient for most of the examined cases, it is not a generic

solution. To improve this part of the system, a dynamic step length estimation should be con-

sidered, such as the ones provided by [Goy+11] or [Yu+19]. In doing so, varying walking

patterns, like hectically pacing towards a gate in an airport, can be supported as well. While the

presented turn-detection itself does not rely on such constants, its uncertainty assumed within

evaluations also is a rather empiric heuristic. Here, additional research should examine meth-

ods to determine the sensor’s current uncertainty on a profound basis [Cla+17]. This allows

detecting sensor errors, and situations where the turn-detection is unstable. As shown within

experiments, while the magnetometer can generally provide a stable heading, the influences

within indoor environments significantly limit its applicability. Here, further research should

be conducted to determine whether environmental influences can be detected from the observa-

tions themselves. If so, the magnetometer should only be considered when it is expected stable.

Besides, due to these influences being region-dependent, this opens room for absolute location

estimations based on magnetic fingerprinting [Shu+15; KS18]. Just like Wi-Fi fingerprinting,

this compares the current sensor observations against a database of several localized measure-

ments. Somewhat similar, critical areas of a building could also be equipped with devices that

transmit unique magnetic patterns, to provide additional location estimations by detecting these

patterns within observations [EBS16]. To further improve accuracy, these techniques should

be examined and integrated if they match with the requirement of being cheap and easy to set

285

286 CHAPTER 8. FUTURE WORK

up. While the barometer also indicated room for further improvements, its limited availability

within recent smartphones does not suggest that further research is advisable. To the contrary,

this indicates the need for modifying the activity-detection to work without this sensor. More

complex estimators, additionally including the gyroscope and magnetometer, could be used to

distinguish between the presented activities, without requiring a barometer [Cil+14; Li+18].

However, indicated by sensor data gathered during experiments, when the smartphone is held

upfront, the difference between walking and taking stairs is minimal, and thus potentially hard

to classify. This indicates the need for additional research concerning smartphone-only pedes-

trian activity-detection. Wi-Fi signal strength prediction and location estimation also yield room

for further improvements. The used reference measurements already provided setup times that

are notably faster than the ones required for fingerprinting. Yet, these times could further be re-

duced by modifying their acquisition. Instead of resting and measuring at predefined locations,

the pedestrian could walk consistently through the building, following a defined path. Based on

the recorded data, the exact location belonging to each received measurement can be interpo-

lated along the path, similar to the ground truth estimations discussed in section 6.1. Just like

step-detection and turn-detection, the uncertainty assumed for measured Wi-Fi signal strengths

also relies on an empiric choice, and research on potential dynamic estimations for this value

should be conducted. Furthermore, shown within experiments, sometimes Wi-Fi estimations

are completely invalid, which indicates a non zero mean error. To prevent corresponding obser-

vations from causing localization errors, circumstances should be further examined, to derive a

more robust metric for sensor fault detection.

Like the sensors, indoor maps and corresponding pedestrian movement predictions also

hold room for further improvements. Discussed only briefly, escalators and elevators should

be modeled, and considered within predictions. However, while supported by the navigation

grid, elevators represent a problem for the navigation mesh. The mesh describes the walkable

surface, but vertical surfaces are neither supported by the mesh, nor by the movement prediction

algorithms presented for it, thus requiring future work on potential solutions. Besides, both

presented spatial models, navigation grid and navigation mesh, are derived from a manually

created indoor map. Depending on the size of the building, the time needed for creating this

floorplan can be significant. Therefore, further research should be conducted, examining the

suitability of other means for creating them, such as using scanned blueprints, cameras, laser-

scanners, SLAM, robots, or similar [Çel+09; Hes+16; SCI13; Zha+15; Liu+17; CF14].

When examining the results from the overall system, a few caveats can be detected as well.

Even though the floorplan prevents walking through walls, many of the displayed paths, esti-

mated from the particle filter, did directly cross obstacles. While this is not an issue in general,

as the pedestrian is only interested in the current whereabouts and not their history, it leads to

287

related future work. The reason for the issue lies, among others, within the used weighted av-

erage estimation, which, for multimodal densities, often resides in between all modes, and thus

anywhere on the map, independent of obstacles. This can e.g. be addressed by using the maxi-

mum of a KDE instead, at the cost of computational complexity [Bul+18]. On the other hand,

the discussed behavior also results from the path being constructed by simply connecting con-

secutive estimations, not considering obstacles in between. Briefly mentioned earlier, this can

be improved by introducing a slight delay on the results presented to the user, thereby making

future observations available to the estimation process. Doing so allows for retrospective result

smoothing, which yields better paths, but, more importantly, also stabilizes the estimations pre-

sented to the pedestrian, at the cost of a slight delay [Fet+16]. Another floorplan-related issue

is the risk of the recursive density estimation process to get stuck. Poor Wi-Fi estimations, or

other sensor faults, can cause the density to get dragged into some room, unable to leave. De-

scribed only briefly, these situations should be detected and handled, e.g. by running multiple

particle filters (IMMPF), one with floorplan and one without, mixing both based on error esti-

mations [Fet+17]. Besides causing the density to get stuck, Wi-Fi can also yield more subtle

issues. Shown in experiments, when the pedestrian’s origin is known, particle filter-based PDR

provides viable results. When including Wi-Fi, a known origin is not required, and its abso-

lute indications can correct gyroscope-drift. However, Wi-Fi often showed a negative effect,

increasing the localization error unnecessarily. Here, further research should be conducted, e.g.

using the IMMPF to mix between PDR and Wi-Fi only when necessary, using the best of both

estimation results.

Concerning an indoor navigation product, additional aspects not discussed within this work

should be considered. One of which are viable visualization strategies. Potential options are to

present the pedestrian a 2D top view of the current floor, a 3D view in first person perspective, or

an augmented reality, where routing information is displayed on top of the smartphone’s camera

image [HB08]. Here, further research should be conducted, examining which variant provides

the best usability. Also, due to the large variety of different smartphones and corresponding

sensors, localization accuracy will vary between different brands and models. Especially when a

sensor component is unavailable, or provides erroneous observations. These and similar aspects

should be taken into account as well, examining the impact on an even broader range of devices.

288 CHAPTER 8. FUTURE WORK

List of Figures

1.1 Complex Single-Floor Indoor Map Example 5

1.2 Complex Multi-Floor Indoor Map Example 6

1.3 Overview of the Overall System . 8

2.1 Synthetic Velocity Sensor Readings . 16

2.2 Types of Measurement Errors . 17

2.3 GPS Localization Deviation for Good Reception Conditions 25

2.4 Modified Normal Distribution . 26

2.5 IMU and World Coordinate System . 29

2.6 Accelerometer Readings When Walking . 31

2.7 Accelerometer Magnitude and Frequency Spectrum When Walking 33

2.8 Step Detection from Accelerometer Magnitude 34

2.9 Probabilistic Step Detection from Accelerometer Magnitude 36

2.10 Impact of the Smartphone’s Pose on Gyoroscope Readings 40

2.11 Impact of the Smartphone’s Pose on Accelerometer Readings 41

2.12 Complementary Filter Layout . 43

2.13 Local Declination and Average Intensity of the Earth’s Magnetic Field 47

2.14 Magnetic Field and Magnetometer Coordinate System 48

2.15 Relation Between Atmospheric Pressure and Height Above Sea Level 55

2.16 Barometer Readings at a Fixed Location . 56

2.17 Activity Recognition Using a Binary Decision Tree 59

2.18 Influences on RSSI by Various Components 63

2.19 Simplified Dipole Antenna Radiation Pattern 64

2.20 Effects on Radio Signals . 66

2.21 Behavior of Measurable Signal Strength . 67

2.22 Log-Distance Signal Strength Prediction Model 69

2.23 Extended Log-Distance Signal Strength Prediction Model 72

2.24 Ray-Tracing Signal Strength Prediction Model 73

289

290 LIST OF FIGURES

2.25 Discrete Lateration Examples . 77

2.26 Continuous Lateration Examples . 78

2.27 Real-World Fingerprint Example . 79

2.28 Signal Strength Uncertainty Distributions . 82

2.29 Optimization Example for the Log-Distance Model (1) 89

2.30 Optimization Example for the Log-Distance Model (2) 90

2.31 Optimization Example for the Extended Log-Distance Model 92

2.32 Potential Encounters with Floors and Ceilings in Multi-Level Buildings 93

2.33 Regional Signal Strength Prediction Model Separation 94

3.1 Potential Combinations of Sensor Readings and Mapping Data 102

3.2 Example of Several 1D Transitions from a Known Origin 103

3.3 Comparison Between Analytical and Simulated Densities 105

3.4 Example Single-Floor Floorplan . 106

3.5 Behavior of Uncertainty for Potential Whereabouts 109

3.6 Walk Simulation Using Walking and Resting without Heading Constraints . . . 110

3.7 Walk Simulation Using Walking and Resting with Heading Constraints 111

3.8 Walk Simulation Using Walking, Resting and Turning 112

3.9 Walk Simulation Including a Floorplan . 113

3.10 Walk Simulation Using Shortest Paths . 116

3.11 Overview on Different Spatial Floorplan Representations 119

3.12 Comparing Two Regular Spatial Models . 122

3.13 3D Navigation Grid Creation Steps . 124

3.14 Discrete Behavior of Random Walks . 132

3.15 Random Walk Heading Error Compensation 133

3.16 Random Walk Example . 134

3.17 Shortest Path Example (1) . 136

3.18 Shortest Path Example (2) . 137

3.19 Strategies for Walking Along a Graph-Based Data Structure 139

3.20 Various Irregular Spatial Models . 141

3.21 Delaunay Triangulation and Voronoi Diagram for a Floorplan 142

3.22 Navigation Mesh Examples . 144

3.23 Random Sampling on a Navigation Mesh (1) 147

3.24 Random Sampling on a Navigation Mesh (2) 150

3.25 Shortest Path on Navigation Meshes Using Edge-Midpoints 151

3.26 Shortest Path on Navigation Meshes Using the Funnel Algorithm 152

LIST OF FIGURES 291

4.1 Behavior of a State Estimation Using a Low-Pass Filter (1) 157

4.2 Behavior of a State Estimation Using a Low-Pass Filter (2) 158

4.3 Combining a Prior Estimation with an Observation to Create a Posterior 159

4.4 Bayes Filter Example . 166

4.5 Linear and Nonlinear Density Modifications 173

4.6 Sampled Gaussian and KDE . 176

4.7 Sampled Multivariate Gaussian and KDE . 177

4.8 Rejection Sampling for Three Probability Density Functions 182

4.9 Particle Filter - Process Example . 184

4.10 Particle Filter - Comparing Discrete and Continuous Resampling 187

4.11 Particle Filter - Estimation Example . 188

5.1 Complex Indoor Maps - Wall Intersections . 192

5.2 Complex Indoor Maps - 3D Walls with Doors and Windows 193

5.3 Complex Indoor Maps - Defining Stairs . 194

5.4 Complex Indoor Maps - Map-Editor and Realistic Rendering of a Map 195

5.5 System - Overview . 196

5.6 System - Behavior over Time . 197

5.7 System - Time and Data Diagram . 198

5.8 Comparison of Filter Update Strategies . 200

5.9 Handling of Colliding Transitions - Issues . 202

5.10 Handling of Colliding Transitions - Fix . 203

5.11 Prediction Example with Sensor Fault - Issue 204

5.12 Prediction Example with Sensor Fault - Fix 205

5.13 Strategies for Precomputed Signal Strength Lookups 211

6.1 Floorplan of SHL . 219

6.2 Floorplan of Museum 1 . 219

6.3 Floorplan of Museum 2 . 219

6.4 Pedestrian Walks Conducted within SHL . 220

6.5 Pedestrian Walks Conducted within Museum 1 220

6.6 Pedestrian Walks Conducted within Museum 2 220

6.7 Frequency Response of FIR and IIR Filters for Step Detection 222

6.8 Filtered Accelerometer Magnitude . 223

6.9 Accelerometer Magnitude for a Walking Pedestrian (1) 224

6.10 Accelerometer Magnitude for a Walking Pedestrian (2) 225

6.11 Layout of the Turntable Used for Synthetic IMU Tests 226

292 LIST OF FIGURES

6.12 Impact of the Rotation Axis on Accelerometer and Gyroscope 228

6.13 Turntable Tilt Estimation and Complementary Filter 229

6.14 Turntable Results - Estimated Magnetometer Angle 232

6.15 Turntable Results - Raw Magnetometer Data 233

6.16 Comparing Magnetometer and Gyroscope for PDR (1) 235

6.17 Comparing Magnetometer and Gyroscope for PDR (2) 236

6.18 Comparing Magnetometer and Gyroscope for PDR (3) 237

6.19 Repeatability of Barometer Measurements . 238

6.20 Comparison of Absolute and Relative Barometer Evaluation 240

6.21 Barometer Measurement and Corresponding Ground Truth 241

6.22 Activity Classification Based on Normal Distributions 242

6.23 Estimating a Decision Tree for Activity Detection 243

6.24 Location of Reference Measurements Conducted within Three Public Buildings 246

6.25 CDF of Wi-Fi Signal Strength Prediction Errors 248

6.26 Signal Strength Prediction Errors within SHL 249

6.27 Signal Strength Prediction Errors within Museum 1 249

6.28 Signal Strength Prediction Errors within Museum 2 249

6.29 Wi-Fi Location Estimation for a Real Walk 252

6.30 Wi-Fi Probability Heat Map for a Real Walk 253

6.31 CDF of Wi-Fi Localization Errors . 254

6.32 CDF of the Kullback-Leibler Divergence Between Estimation and Ground Truth 255

6.33 Spatial Comparison of Graph and Navigation Mesh 258

6.34 Impact of the Shortest Path Likelihood Heuristic 260

6.35 Impact of Wall Avoidance on the Shortest Path Likelihood 261

6.36 Comparison of Grid and Navigation Mesh . 262

6.38 Floorplan-Based PDR with Known Initial Whereabouts 265

6.39 Floorplan-Based PDR with Unknown Initial Whereabouts 265

6.40 Floorplan-Based PDR, Including Activity Detection 266

6.41 Floorplan-Based PDR, Including Navigational Knowledge 267

6.42 Floorplan-Based PDR, Including the eCompass (1) 268

6.43 Floorplan-Based PDR, Including the eCompass (2) 269

6.44 Limitations of Movement Prediction . 270

6.45 Potential Issues of Real-World Probabilistic PDR 271

6.46 Comparison of PDR and the Final System . 274

6.47 Impact of Navigational Knowledge within the Final System 275

6.48 Impact of Wi-Fi Model and Number of Particles within the Final System 276

LIST OF FIGURES 293

6.49 CDF of Errors Resulting from the Final System 277

A.1 First Floor of UAH . 332

A.2 Floorplan of CAR . 333

A.3 Floorplan of Museum 3 . 333

A.4 Final Result for walk B1 . 334

A.5 Final Result for walk B2 . 334

A.6 Final Result for walk B3 . 334

A.7 Final Result for walk A1 . 335

A.8 Final Result for walk A2 . 335

A.9 Final Result for walk A3 . 335

A.10 Final Result for walk A4 . 335

A.11 Final Result for walk A5 . 335

A.12 Final Result for walk C1 . 336

A.13 Final Result for walk C2 . 336

A.14 Final Result for walk C3 . 336

A.15 Final Result for walk C4 . 336

294 LIST OF FIGURES

List of Tables

2.1 Smartphone Orientations . 49

2.2 Constants Relating Atmospheric Pressure and Altitude 54

2.3 Absolute and Relative Pressure Dependent on Altitude 57

2.4 Typical Radio Signal Attenuation Factors . 68

2.5 Attenuation Factors for Typical Building Materials 71

6.1 Overview on Examined Smartphones . 217

6.2 Mean Sensor Sample Rates of the Examined Smartphones 221

6.3 FIR and IIR Filter Setups Used for Step-Detection 222

6.4 Overview on Examined Step Detectors . 224

6.5 Step Detection Results . 225

6.6 Turntable Results - Estimated Speed and Angle 227

6.7 Turntable Results - Cumulative Angles Based on Strategy 231

6.8 Turntable Results - Magnetometer Angular Values 234

6.9 Average Stair Walking Speeds . 239

6.10 Accuracy of Activity Recognition When Using Normal Distributions 242

6.11 Accuracy of Activity Recognition When Using a Decision Tree 243

6.12 Mean Wi-Fi Sample Rates of the Examined Smartphones 244

6.13 Examined Wi-Fi Model Optimization Strategies 245

6.14 Wi-Fi Model RMSE Based on Building and Setup 247

6.15 Floorplan Model - Number of Required Primitives 257

6.16 Floorplan Model - Memory Requirements . 257

6.17 Convergence of Probabilistic Movement Prediction (1) 272

6.18 Convergence of Probabilistic Movement Prediction (2) 272

6.19 Chance for a Walk to Get Stuck within the Final System 277

A.1 IIR Filter Parameters for Step-Detection . 331

A.2 FIR Low-Pass Kernel for Step-Detection . 331

A.3 FIR Band-Pass Kernel for Step-Detection . 331

295

296 LIST OF TABLES

LIST OF SYMBOLS 297

List of Symbols

Sign Description

α, β general purpose angles

d general purpose scalar distance value

κ general purpose scalar value used for mixing κ and (1− κ)

η general prupose normalization constant

τ general purpose threshold value

u,v general purpose vectors

v general purpose velocity value

ε general purpose error value

E general purpose cumulative error value

ρ general purpose 3D point

ρ(x), ρ(y), ρ(z) components of a 3D point

X ,Y ,Z general purpose random variables

ρdest the pedestrian’s desired destination

Q quaternion

bw KDE bandwidth

q unknown state vector

q
(x)
t , q

(y)
t , . . . attributes of the unknown state at time t

q
(Θ)
t unknown state heading at time t

q
(εhead)
t−1 unknown state cumulated heading error at time t− 1

q
(εdist)
t−1 unknown state distance error at time t− 1

o observation vector

o
(Θ)
t , o

(s)
t , . . . attributes of the observation at time t

w probabilistic weight

W cumulated probabilistic weight

G = (V,E) graph with vertices and edges

vi vertex within a graph G

v
(x)
i , v

(y)
i , . . . attributes of vertex i

298 LIST OF SYMBOLS

Sign Description

ei,j edge between vertex vi and vj

vdest vertex for the pedestrian’s desired destination

gs distance between adjacent graph vertices in x and y

gsz distance between adjacent graph vertices in z

p(ei,j | qt−1) probability to walk the given edge

g GPS observation (lon, lat, alt, err)

a accelerometer observation (x, y, z)

ω′ gyroscope observation, turn rate (x, y, z)

θ′ cumulative gyroscope turn rates

Qω
′

, Qθ
′

, Qa, Q̂ quaternions for: gyro turn rates, cumulative gyro turn rates, pose

from accelerometer, filtered pose

R smartphone pose rotation matrix

R−1 tilt compensation matrix

ω the pedestrian’s turn rate

θ relative heading indication (cumulated within a timeframe)

Θ absolute heading indication (cumulated since start)

B′ magnetometer observation, magnetic flux density (x, y, z)

B magnetic flux density vector, after tilt compensation

ΘNmag
angle towards geomagnetic north

ΘNgeo
angle towards geographic north

Θdec local declination correction

Θbldg local declination correction, including building orientation

̺ barometer observation, atmospheric pressure

h altitude

hbldg building’s first floor’s altitude, above mean sea level

Ω activity class

s observed Wi-Fi signal strengths

sap observed Wi-Fi signal strength for one transmitter

LIST OF SYMBOLS 299

Sign Description

ς offline RSSI database (fingerprints/reference measurements)

ςfp,ap,n n-th measurement for transmitter ap at location fp

λ wavelength

ρ
•

3D position of a model prediction

ρ,ρ 3D position of a transmitter/receiver

P , P signal power at a transmitter/receiver

G ,G Wi-Fi antenna gain for a transmitter/receiver

γ Wi-Fi path-loss exponent

φ attenuation factor for a material

ψ signal strength prediction model parameters

ψap signal strength prediction model parameters for one AP

κdest empiric value for favoring the shortest path

κact empiric value for favoring the same activity

κw/s empiric value to mix standing and walking

300 LIST OF SYMBOLS

Bibliography

[AP99] E. Abbott and D. Powell. “Land-Vehicle Navigation Using GPS”. In: Proceedings

of the IEEE 87.1, 1999.

[ARC12] Imad Afyouni, Cyril Ray, and Christophe Claramunt. “Spatial Models for Indoor

Context-Aware Navigation Systems: A Survey”. In: Journal of Spatial Informa-

tion Science 4, 2012.

[Aig15] Martin Aigner. Graphentheorie : Eine Einführung aus dem 4-Farben Problem.

Wiesbaden: Springer Spektrum, 2015.

[AY12] Moustafa Alzantot and Moustafa Youssef. “CrowdInside: Automatic Construc-

tion of Indoor Floorplans”. In: International Conference on Advances in Geo-

graphic Information Systems. 2012.

[ARY95] Jørgen Bach Andersen, Theodore S. Rappaport, and Susumu Yoshida. “Propa-

gation Measurements and Models for Wireless Communications Channels”. In:

IEEE Communications Magazine, 1995.

[ABA11] J. Andreu, R. D. Baruah, and P. Angelov. “Real Time Recognition of Human Ac-

tivities from Wearable Sensors by Evolving Classifiers”. In: IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE). 2011.

[App] Apple. Documentation - Core Motion - Getting Raw Accelerometer Events.

https://developer.apple.com/documentation/coremotion/getting raw accelerometer

events. Accessed: 2020-01-04.

[AAO11] A. A. B. Ariffin, N. H. A. Aziz, and K. A. Othman. “Implementation of GPS for

Location Tacking”. In: IEEE Control and System Graduate Research Colloquium.

2011.

[Ark87] Ronald Craig Arkin. “Towards Cosmopolitan Robots : Intelligent Navigation in

Extended Man-made Environments”. PhD thesis. University of Massachusetts,

1987.

301

https://developer.apple.com/documentation/coremotion/getting_raw_accelerometer_events
https://developer.apple.com/documentation/coremotion/getting_raw_accelerometer_events

302 BIBLIOGRAPHY

[Aru+01] Sanjeev Arulampalam et al. “A Tutorial on Particle Filters for On-line Non-linear

/ Non-Gaussian Bayesian Tracking”. In: IEEE Transactions on Signal Processing

50, 2001.

[Ary+98] Sunil Arya et al. “An Optimal Algorithm for Approximate Nearest Neighbor

Searching Fixed Dimensions”. In: Journal of the ACM (JACM) 45.6, 1998.

[Aur91] Franz Aurenhammer. “Voronoi Diagrams - A Survey of a Fundamental Geometric

Data Structure”. In: ACM Computing Surveys (CSUR) 23.3, 1991.

[AC16] J. Azevedo and S. Crisóstomo. “Weather Stations-Assisted Barometric Altimeter

for Android: Interpolation Techniques for Improved Accuracy”. In: IEEE Sensors

Applications Symposium (SAS). 2016.

[BP00] Paramvir Bahl and Venkata N. Padmanabhan. “RADAR: An In-Building RF-

based User Location and Tracking System”. In: Annual Joint Conference of the

IEEE Computer and Communications Societies. Vol. 2. 2000.

[BSA16] Leor Banin, Uri Schatzberg, and Yuval Amizur. “WiFi FTM and Map Informa-

tion Fusion for Accurate Positioning”. In: International Conference on Indoor

Positioning and Indoor Navigation (IPIN). 2016.

[BP66] Leonard E. Baum and Ted Petrie. In: The Annals of Mathematical Statistics 37,

1966.

[Baw+15] B. Bawazeer et al. “Reducing Scanning Delay for WiFi-to-WhiteFi Handovers”.

In: Fifth International Conference on Digital Information and Communication

Technology and its Applications (DICTAP). 2015.

[BJK05] P. Beeson, N. K. Jong, and B. Kuipers. “Towards Autonomous Topological Place

Detection Using the Extended Voronoi Graph”. In: IEEE International Confer-

ence on Robotics and Automation. 2005.

[Ben75] Jon Louis Bentley. “Multidimensional Binary Search Trees Used for Associative

Searching”. In: Communications ACM 18.9, 1975.

[Ber17] Florian Berchtold. Geometrie : von Euklid bis zur hyperbolischen Geometrie mit

Ausblick auf angrenzende Gebiete. Springer Spektrum, 2017.

[Ber+08] Mark de Berg et al. Computational Geometry: Algorithms and Applications.

Springer, 2008.

[BD13] Gérard Blanchet and Bertrand Dupouy. Computer Architecture. Iste Wiley, 2013.

[Blo83] Jacques-François Blondel. Cours d’architecture. 1683.

BIBLIOGRAPHY 303

[BDH04] Miodrag Bolić, Petar M. Djurić, and Sangjin Hong. “Resampling Algorithms for

Particle Filters: A Computational Complexity Perspective”. In: Journal on Ad-

vances in Signal Processing (EURASIP) 15, 2004.

[BC12] William Bolstad and James Curran. Introduction to Bayesian Statistics. Wiley,

2012.

[Bon+01] P. Bonnifait et al. “Data Fusion of Four ABS Sensors and GPS for an Enhanced

Localization of Car-like Vehicles”. In: IEEE International Conference on Robotics

and Automation (ICRA). Vol. 2. 2001.

[BN09] A. G. Bors and N. Nasios. “Kernel Bandwidth Estimation for Nonparametric

Modeling”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cy-

bernetics) 39.6, 2009.

[Bos14] Bosch Sensortec. BMC156 - 6-axis eCompass. BST-BMC156-DS000-01. 2014.

[Bos15] Bosch Sensortec. BMP180 - Digital pressure sensor. BST-BMP180-DS000-12.

2015.

[Bos18] Bosch Sensortec. BMP280 - Digital pressure sensor. BST-BMP280-DS001-19.

2018.

[Bou13] M. Bouhedda. “Neuro-Fuzzy Sensor’s Linearization Based FPGA”. In: IEEE In-

ternational Conference on Intelligent Data Acquisition and Advanced Computing

Systems (IDAACS). Vol. 1. 2013.

[BM58] George Edward Pelham Box and Mervin Edgar Muller. “A Note on the Genera-

tion of Random Normal Deviates”. In: The Annals of Mathematical Statistics 29,

1958.

[Bra+05] D. Braganza et al. “Tracking Control for Robot Manipulators with Kinematic and

Dynamic Uncertainty”. In: IEEE Conference on Decision and Control. 2005.

[Bre65] J. E. Bresenham. “Algorithm for computer control of a digital plotter”. In: IBM

Systems Journal 4.1, 1965.

[Bro+06] Raymond C. Browning et al. “Effects of obesity and sex on the energetic cost and

preferred speed of walking”. In: Journal of Applied Physiology 100.2, 2006.

[Bul+18] Markus Bullmann et al. “Fast Kernel Density Estimation using Gaussian Filter

Approximation”. In: International Conference on Information Fusion (FUSION).

2018.

304 BIBLIOGRAPHY

[BS12] M. Butta and I. Sasada. “Sources of Noise in a Magnetometer Based on Orthog-

onal Fluxgate Operated in Fundamental Mode”. In: IEEE Transactions on Mag-

netics 48.4, 2012.

[CF14] R. Cabral and Y. Furukawa. “Piecewise Planar and Compact Floorplan Recon-

struction from Images”. In: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2014.

[CGM07] O. Cappe, S. J. Godsill, and E. Moulines. “An Overview of Existing Methods and

Recent Advances in Sequential Monte Carlo”. In: Proceedings of the IEEE 95.5,

2007.

[Cap+17] N. Capurso et al. “An Android-Based Mechanism for Energy Efficient Localiza-

tion Depending on Indoor/Outdoor Context”. In: IEEE Internet of Things Journal

4.2, 2017.

[CB07] Tom Carpenter and Joel Barrett. CWNA Certified Wireless Network Administra-

tor Official Study Guide (Exam PW0-100). 4th ed. McGraw-Hill Osborne Media,

2007.

[Cas+14] D. Caspari et al. “Smartphone Sensor Based Algorithms for Dead Reckoning Us-

ing Magnetic Field Sensor and Accelerometer for Localization Purposes”. In: In-

ternational Symposium on Wireless Systems within the Conferences on Intelligent

Data Acquisition and Advanced Computing Systems. 2014.

[Çel+09] Koray Çelik et al. “Monocular Vision SLAM for Indoor Aerial Vehicles”. In:

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

2009.

[CHP79] Y. T. Chan, A. G. C. Hu, and J. B. Plant. “A Kalman Filter Based Tracking Scheme

with Input Estimation”. In: IEEE Transactions on Aerospace and Electronic Sys-

tems 2, 1979.

[Cha82] B. Chazelle. “A Theorem on Polygon Cutting with Applications”. In: Annual

Symposium on Foundations of Computer Science (SFCS). 1982.

[CYJ15] Y. Chen, J. Yang, and S. Jiang. “Data Validation and Dynamic Uncertainty Es-

timation of Self-validating Sensor”. In: IEEE International Instrumentation and

Measurement Technology Conference (I2MTC). 2015.

[Che+05] Yu-Chung Cheng et al. “Accuracy Characterization for Metropolitan-scale Wi-Fi

Localization”. In: International Conference on Mobile Systems, Applications, and

Services. 2005.

BIBLIOGRAPHY 305

[Che+12] Yan-Ming Cheng et al. “Analysis on Interference Impact of WiFi on DTV”. In:

World Automation Congress. 2012.

[CHP16] C. Chesneau, M. Hillion, and C. Prieur. “Motion estimation of a Rigid Body with

an EKF using Magneto-Inertial Measurements”. In: International Conference on

Indoor Positioning and Indoor Navigation (IPIN). 2016.

[CPP10] Krishna Chintalapudi, Anand Padmanabha Iyer, and Venkata N. Padmanabhan.

“Indoor Localization Without the Pain”. In: Annual International Conference on

Mobile Computing and Networking (MobiCom). ACM, 2010.

[Cho+12] I. N. Cholakova et al. “Temperature Influence on Hall Effect Sensors Character-

istics”. In: Telecommunications Forum (TELFOR). 2012.

[CB95] H. Choset and J. Burdick. “Sensor Based Planning, Part I. The Generalized Voronoi

Graph”. In: IEEE International Conference on Robotics and Automation. Vol. 2.

1995.

[CZK98] O. Chutatape, Liu Zheng, and S. M. Krishnan. “Retinal blood vessel detection and

tracking by matched Gaussian and Kalman filters”. In: International Conference

of the IEEE Engineering in Medicine and Biology Society. Vol. 6. 1998.

[Cil+14] F. De Cillis et al. “Indoor Positioning System using Walking Pattern Classifica-

tion”. In: Mediterranean Conference on Control and Automation. 2014.

[Cla83] K. L. Clarkson. “Fast Algorithms for the All Nearest Neighbors Problem”. In:

Annual Symposium on Foundations of Computer Science (SFCS). 1983.

[Cla+17] P. Clausen et al. “An Overview of a New Sensor Calibration Platform”. In: IEEE

International Workshop on Metrology for AeroSpace (MetroAeroSpace). 2017.

[Cla16] Christoph Clauser. Einführung in die Geophysik : globale physikalische Felder

und Prozesse in der Erde. Springer Spektrum, 2016.

[Cor09] Thomas Cormen. Introduction to Algorithms. MIT Press, 2009.

[CK08] Erhard Cramer and Udo Kamps. Grundlagen der Wahrscheinlichkeitsrechnung

und Statistik. Springer, 2008.

[CS11] Xiao Cui and Hao Shi. “A*-based Pathfinding in Modern Computer Games”. In:

International Journal of Computer Science and Network Security (IJCSNS) 11.1,

2011.

[Cul56] E. G. Cullwick. “Electromagnetic Momentum and Electron Inertia in a Current

Circuit”. In: Proceedings of the IEE - Part C: Monographs 103.3, 1956.

306 BIBLIOGRAPHY

[DH03] Winnie Daamen and Serge Hoogendoorn. “Experimental Research of Pedestrian

Walking Behavior”. In: Transportation Research Record Journal of the Trans-

portation Research Board 1828, 2003.

[DT05] N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human Detec-

tion”. In: IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR). Vol. 1. 2005.

[Del98] Pierre Del Moral. “Measure Valued Processes and Interacting Particle Systems.

Application to Non Linear Filtering Problems”. In: The Annals of Applied Proba-

bility 8, 1998.

[Del96] Pierre Del Moral. “Nonlinear Filtering: Interacting Particle Solution”. In: Markov

Processes and Related Fields 2, 1996.

[Del34] B. N. Delaunay. “Sur la sphère vide”. In: Bulletin de l’Académie des Sciences de

l’URSS 1934.6, 1934.

[DLK07] Nikos Deligiannis, Spiros Louvros, and Stavros Kotsopoulos. “Optimizing Loca-

tion Positioning Using Hybrid TOA-AOA Techniques in Mobile Cellular Net-

works”. In: International Conference on Mobile Multimedia Communications.

2007.

[DW11] Henry Deng and Hadley Wickham. Density estimation in R. Tech. rep. 2011.

[Deu10] Deutsche Akkreditierungsstelle. DAkkS-DKD-5 - Anleitung zum Erstellen eines

Kalibrierscheines. 1st ed. Version 2. 2010.

[Die06] James Diebel. “Representing Attitude: Euler Angles, Unit Quaternions, and Ro-

tation Vectors”. In: Matrix 58, 2006.

[Dij59] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In: Nu-

merische Mathematik 1.1, 1959.

[Do+09] D. V. Do et al. “Impedance Observer for a Li-Ion Battery Using Kalman Filter”.

In: IEEE Transactions on Vehicular Technology 58.8, 2009.

[DH10] Hans Dodel and Dieter Häupler. Satellitennavigation. 2nd ed. Springer, 2010.

[DC05] Randal Douc and O Cappe. In: 2005.

[DGK01] A. Doucet, N. J. Gordon, and V. Krishnamurthy. “Particle Filters for State Esti-

mation of Jump Markov Linear Systems”. In: IEEE Transactions on Signal Pro-

cessing 49.3, 2001.

[DS84] Peter Doyle and James Snell. Random Walks and Electric Networks. American

Mathematical Society, 1984.

BIBLIOGRAPHY 307

[DB05] H. Driessen and Y. Boers. “Efficient particle filter for jump Markov nonlinear

systems”. In: IEE Proceedings - Radar, Sonar and Navigation 152.5, 2005.

[DMX10] I. Dryanovski, W. Morris, and J. Xiao. “Multi-Volume Occupancy Grids: An Effi-

cient Probabilistic 3D Mapping Model for Micro Aerial Vehicles”. In: IEEE/RSJ

International Conference on Intelligent Robots and Systems. 2010.

[Dvo+19] Nir Dvorecki et al. “A Machine Learning Approach for Wi-Fi RTT Ranging”. In:

International Technical Meeting of The Institute of Navigation. 2019.

[DZM07] Ramsay Dyer, Hao Zhang, and Torsten Möller. “Voronoi-Delaunay Duality and

Delaunay Meshes”. In: ACM Symposium on Solid and Physical Modeling (SPM).

2007.

[Ebn+15] Frank Ebner et al. “Multi Sensor 3D Indoor Localisation”. In: International Con-

ference on Indoor Positioning and Indoor Navigation (IPIN). 2015.

[Ebn+16] Frank Ebner et al. “On Prior Navigation Knowledge in Multi Sensor Indoor Lo-

calisation”. In: International Conference on Information Fusion (FUSION). 2016.

[Ebn+17] Frank Ebner et al. “On Wi-Fi Model Optimizations for Smartphone-Based Indoor

Localization”. In: International Journal of Geo-Information (ISPRS) 6.8, 2017.

[Ebn+14] Frank Ebner et al. “Robust Self-Localization using Wi-Fi, Step/Turn-Detection

and Recursive Density Estimation”. In: International Conference on Indoor Posi-

tioning and Indoor Navigation (IPIN). 2014.

[Eck87] Roger Eckhardt. “Stan Ulam, John Von Neumann, Monte Carlo Method”. In: Los

Alamos Science, 1987.

[EBS16] C. R. Ehrlich, J. Blankenbach, and A. Sieprath. “Towards a Robust Smartphone-

based 2.5D Pedestrian Localization”. In: International Conference on Indoor Po-

sitioning and Indoor Navigation (IPIN). 2016.

[Elf89] A. Elfes. “Using Occupancy Grids for Mobile Robot Perception and Navigation”.

In: Computer 22.6, 1989.

[Elh+14] M. Elhoushi et al. “Using Portable Device Sensors to Recognize Height Chang-

ing Modes of Motion”. In: IEEE International Instrumentation and Measurement

Technology Conference (I2MTC). 2014.

[ETS12] ETSI. Broadband Radio Access Networks (BRAN); 5 GHz high performance RLAN;

Harmonized EN covering the essential requirements of article 3.2 of the R&TTE

Directive. 2012.

[Eur04] Eurocontrol. Guidance Material for Transition Altitude Change. 2004.

308 BIBLIOGRAPHY

[EvA16] EvAAL. IPIN 2016 Indoor Localization Competition - Results.

http://evaal.aaloa.org/2016/competition-results. Accessed: 2020-01-04. 2016.

[Fan+11] J. Fang et al. “A Novel Calibration Method of Magnetic Compass Based on Ellip-

soid Fitting”. In: IEEE Transactions on Instrumentation and Measurement 60.6,

2011.

[Fed16] Federal Aviation Administration (FAA). Pilot’s Handbook of Aeronautical Knowl-

edge. Aviation Supplies and Academics, 2016.

[Fet+16] Toni Fetzer et al. “On Monte Carlo Smoothing in Multi Sensor Indoor Localisa-

tion”. In: International Conference on Indoor Positioning and Indoor Navigation

(IPIN). 2016.

[Fet+17] Toni Fetzer et al. “Recovering from Sample Impoverishment in Context of In-

door Localisation”. In: International Conference on Indoor Positioning and In-

door Navigation (IPIN). 2017.

[Fet+18] Toni Fetzer et al. “Smartphone-Based Indoor Localization within a 13th Century

Historic Building”. In: Sensors 18, 2018.

[FB81] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm

for Model Fitting with Applications to Image Analysis and Automated Cartogra-

phy”. In: Communications of the ACM 24.6, 1981.

[Fit71] R. Fitzgerald. “Divergence of the Kalman Filter”. In: IEEE Transactions on Au-

tomatic Control 16.6, 1971.

[Flu99] Fluke Corporation. Dual Display Multimeter - Service Manual. PN 609203. 1999.

[FG02] R. J. Fontana and S. J. Gunderson. “Ultra-wideband precision asset location sys-

tem”. In: IEEE Conference on Ultra Wideband Systems and Technologies. 2002.

[For+10] Catherine Forbes et al. Statistical Distributions. 4th ed. Wiley, 2010.

[FM63] S. M. Forman and M. J. Minneman. “A Magnetic Induction Gyroscope”. In: IEEE

Transactions on Military Electronics MIL-7.1, 1963.

[Fri46] Harald T. Friis. “A Note on a Simple Transmission Formula”. In: Proceedings of

the IRE 34.5, 1946.

[Fri71] Harald T. Friis. “Introduction to Radio and Radio Antennas”. In: Spectrum, IEEE

8.4, 1971.

[Fro+13] M. Froehle et al. “Cooperative Multipath-Assisted Indoor Navigation and Track-

ing (Co-MINT) Using UWB Signals”. In: IEEE International Conference on

Communications Workshops (ICC). 2013.

http://evaal.aaloa.org/2016/competition-results

BIBLIOGRAPHY 309

[FT04] Taku Fujiyama and Nick Tyler. “An Explicit Study on Walking Speeds of Pedes-

trians on Stairs”. In: International Conference on Mobility and Transport for El-

derly and Disabled People. 2004.

[Gar+16] S. Garcı́a et al. “Indoor SLAM for Micro Aerial Vehicles Control Using Monoc-

ular Camera and Sensor Fusion”. In: International Conference on Autonomous

Robot Systems and Competitions (ICARSC). 2016.

[GCC12] Shima Gerani, Mark Carman, and Fabio Crestani. “Aggregation Methods for Prox-

imity-Based Opinion Retrieval”. In: ACM Transactions on Information Systems

30.4, 2012.

[GY15] M. Ghanbari and M. J. Yazdanpanah. “Delay Compensation of Tilt Sensors Based

on MEMS Accelerometer Using Data Fusion Technique”. In: IEEE Sensors Jour-

nal 15.3, 2015.

[GI10] T. Glasmachers and C. Igel. “Maximum Likelihood Model Selection for 1-Norm

Soft Margin SVMs with Multiple Parameters”. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence 32.8, 2010.

[Gla90] Andrew Glassner. Graphics Gems. Academic Press, 1990.

[GDW01] S.J. Godsill, Arnaud Doucet, and Mike West. “Maximum a Posteriori Sequence

Estimation Using Monte Carlo Particle Filters”. In: Annals of the Institute of Sta-

tistical Mathematics 53, 2001.

[GV13] Gene Golub and Charles Van Loan. Matrix Computations. Johns Hopkins Uni-

versity Press, 2013.

[Gooa] Google. Android Developers - android.net.wifi.rtt.

https://developer.android.com/reference/android/net/wifi/rtt/package-summary.

Accessed: 2020-01-04.

[Goob] Google. Android Developers - Sensors Overview.

https://developer.android.com/guide/topics/sensors/sensors overview. Accessed:

2020-01-04.

[GSS93] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. “Novel approach to nonlinear/non-

Gaussian Bayesian state estimation”. In: IEE Proceedings F - Radar and Signal

Processing 140.2, 1993.

[Goy+11] P. Goyal et al. “Strap-Down Pedestrian Dead-Reckoning System”. In: Interna-

tional Conference on Indoor Positioning and Indoor Navigation (IPIN). 2011.

https://developer.android.com/reference/android/net/wifi/rtt/package-summary
https://developer.android.com/guide/topics/sensors/sensors_overview

310 BIBLIOGRAPHY

[Goz+11] B. Gozick et al. “Magnetic Maps for Indoor Navigation”. In: IEEE Transactions

on Instrumentation and Measurement 60.12, 2011.

[Gra+11] Ben Graham et al. “Analysis of the Effect of Human Presence on a Wireless Sen-

sor Network”. In: International Journal of Ambient Computing and Intelligence

(IJACI) 3.1, 2011.

[GA01] Mohinder Grewal and Angus Andrews. Kalman filtering : theory and practice

using MATLAB. 2nd ed. Wiley, 2001.

[Gri18] Geoffrey Grimmett. Probability on Graphs : Random Processes on Graphs and

Lattices. Cambridge University Press, 2018.

[GS97] Charles Grinstead and James Snell. Introduction to Probability. 2nd ed. American

Mathematical Society, 1997.

[GSB05] G. Grisettiyz, C. Stachniss, and W. Burgard. “Improving Grid-based SLAM with

Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resam-

pling”. In: IEEE International Conference on Robotics and Automation. 2005.

[GGB12] S. Grzonka, G. Grisetti, and W. Burgard. “A Fully Autonomous Indoor Quadro-

tor”. In: IEEE Transactions on Robotics 28.1, 2012.

[GB15] Frederico Gualberto and Heloisa Barbosa. “Factors That Influence Pedestrians

Behaviour at Crossings”. In: International Conference on Mobility and Transport

for Elderly and Disabled Persons. 2015.

[Gui+16] V. Guimarães et al. “A Motion Tracking Solution for Indoor Localization Using

Smartphones”. In: International Conference on Indoor Positioning and Indoor

Navigation (IPIN). 2016.

[GH05] André Günther and Christian Hoene. “Measuring Round Trip Times to Determine

the Distance between WLAN Nodes”. In: International Conference on Research

in Networking. 2005.

[GF06] W. Guo and N. P. Filer. “2.5D Indoor Mapping and Location-Sensing using an Im-

pulse Radio Network”. In: IET Seminar on Ultra Wideband Systems, Technologies

and Applications. 2006.

[Gus10] F. Gustafsson. “Particle Filter Theory and Practice with Positioning Applications”.

In: IEEE Aerospace and Electronic Systems Magazine 25.7, 2010.

[GD18] Ralf Güting and Stefan Dieker. Datenstrukturen und Algorithmen. 4th ed. Springer,

2018.

BIBLIOGRAPHY 311

[Har+03] T. Harada et al. “Portable Orientation Estimation Device Based on Accelerom-

eters, Magnetometers and Gyroscope Sensors for Sensor Network”. In: IEEE

International Conference on Multisensor Fusion and Integration for Intelligent

Systems. 2003.

[Har+13] F. Harris et al. “An Extension of the Linkwitz-Riley Crossover Filters for Audio

Systems and Their Sampled Data Implementation”. In: International Conference

on Systems, Signals and Image Processing (IWSSIP). 2013.

[HNR68] P. E. Hart, N. J. Nilsson, and B. Raphael. “A Formal Basis for the Heuristic De-

termination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science

and Cybernetics 4.2, 1968.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statisti-

cal Learning - Data Mining, Inference, and Prediction. Springer, 2009.

[Hee+11] F. Heereman et al. “Development of path loss model for 802.11n in large confer-

ence rooms”. In: IEEE International Symposium on Antennas and Propagation

(APSURSI). 2011.

[Hel98] M. Held. “Efficient and Reliable Triangulation of Polygons”. In: Computer Graph-

ics International. 1998.

[Hel+13] H. Hellmers et al. “An IMU/magnetometer-based Indoor positioning system using

Kalman filtering”. In: International Conference on Indoor Positioning and Indoor

Navigation (IPIN). 2013.

[HS94] John Hershberger and Jack Snoeyink. “Computing minimum length paths of a

given homotopy class”. In: Computational Geometry 4.2, 1994.

[Hes+16] W. Hess et al. “Real-time Loop Closure in 2D LIDAR SLAM”. In: IEEE Interna-

tional Conference on Robotics and Automation (ICRA). 2016.

[Hig02] Nicholas Higham. Accuracy and Stability of Numerical Algorithms. Society for

Industrial and Applied Mathematics, 2002.

[HB08] H. Hile and G. Borriello. “Positioning and Orientation in Indoor Environments

Using Camera Phones”. In: IEEE Computer Graphics and Applications 28.4,

2008.

[Hil+14] Sebastian Hilsenbeck et al. “Graph-based Data Fusion of Pedometer and WiFi

Measurements for Mobile Indoor Positioning”. In: International Conference on

Ubiquitous Computing (UbiComp). 2014.

312 BIBLIOGRAPHY

[HA01] Kai Hormann and Alexander Agathos. “The Point in Polygon Problem for Arbi-

trary Polygons”. In: Computational Geometry 20, 2001.

[HNG94] J. Horn, N. Nafpliotis, and D. E. Goldberg. “A Niched Pareto Genetic Algorithm

for Multiobjective Optimization”. In: IEEE Conference on Evolutionary Compu-

tation. IEEE World Congress on Computational Intelligence. 1994.

[HBS09] Xu Huang, Mark Barralet, and Dharmendra Sharma. “Accuracy of Location Iden-

tification with Antenna Polarization on RSSI”. In: International MultiConference

of Engineers and Computer Scientists. Vol. 1. 2009.

[HS06] Thomas Huckle and Stefan Schneider. Numerische Methoden: Eine Einführung

für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker. 2nd ed.

Springer, 2006.

[HD62] T. Hull and A. Dobell. “Random Number Generators”. In: SIAM Review 4.3,

1962.

[HNU99] F. Hurtado, M. Noy, and J. Urrutia. “Flipping Edges in Triangulations”. In: Dis-

crete & Computational Geometry 22.3, 1999.

[Hut+16] D. P. Hutabarat et al. “Human Tracking in Certain Indoor and Outdoor Area by

Combining the use of RFID and GPS”. In: IEEE Asia Pacific Conference on Wire-

less and Mobile (APWiMob). 2016.

[Ibr+18] Mohamed Ibrahim et al. “Verification: Accuracy Evaluation of WiFi Fine Time

Measurements on an Open Platform”. In: Annual International Conference on

Mobile Computing and Networking (MobiCom). 2018.

[IEE07] IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications. Institute of Electrical and Electronics Engineers, Inc. IEEE Com-

puter Society, 2007.

[IEE12] IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications. Institute of Electrical and Electronics Engineers,f Inc. IEEE Com-

puter Society, 2012.

[IEE16] IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications. Institute of Electrical and Electronics Engineers, Inc. IEEE Com-

puter Society, 2016.

[IB98] Michael Isard and Andrew Blake. “CONDENSATION - Conditional Density Prop-

agation for Visual Tracking”. In: International Journal of Computer Vision 29,

1998.

BIBLIOGRAPHY 313

[Isl+16] M. S. Islam et al. “A Low Cost MEMS and Complementary Filter Based Attitude

Heading Reference System (AHRS) for Low Speed Aircraft”. In: International

Conference on Electrical Engineering and Information Communication Technol-

ogy (ICEEICT). 2016.

[JHS98] Matthew J. Katz, Mark H. Overmars, and Micha Sharir. “Efficient Hidden Surface

Removal for Objects with Small Union Size”. In: Computational Geometry 2,

1998.

[JSZ04] G. R. Jagadeesh, T. Srikanthan, and X. D. Zhang. “A Map Matching Method for

GPS Based Real-Time Vehicle Location”. In: Journal of Navigation 57.3, 2004.

[Jan+15] Aleš Janota et al. “Improving the Precision and Speed of Euler Angles Computa-

tion from Low-Cost Rotation Sensor Data”. In: Sensors 15.3, 2015.

[Jaz70] A.H. Jazwinski. Stochastic Processes and Filtering Theory. Mathematics in Sci-

ence and Engineering. Elsevier Science, 1970.

[JGB14] J. Jessup, S. N. Givigi, and A. Beaulieu. “Merging of Octree Based 3D Occupancy

Grid Maps”. In: IEEE International Systems Conference Proceedings. 2014.

[Jim+12] A. R. Jimenez Ruiz et al. “Accurate Pedestrian Indoor Navigation by Tightly Cou-

pling Foot-Mounted IMU and RFID Measurements”. In: IEEE Transactions on

Instrumentation and Measurement 61.1, 2012.

[Joe99] Nigel P. Weatherill Joe F. Thompson Bharat K. Soni. Handbook of Grid Genera-

tion. CRC Press, 1999.

[JP04] J. Jordana and R. Pallas-Areny. “Optimal Two-point Static Calibration of Mea-

surement Systems with Quadratic Response”. In: IEEE Instrumentation and Mea-

surement Technology Conference (I2MTC). Vol. 1. 2004.

[JPP18] H. Ju, S. Y. Park, and C. G. Park. “A Smartphone-Based Pedestrian Dead Reck-

oning System With Multiple Virtual Tracking for Indoor Navigation”. In: IEEE

Sensors Journal 18.16, 2018.

[JLH11] Sukhoon Jung, Choon-oh Lee, and Dongsoo Han. “Wi-Fi Fingerprint-based Ap-

proaches Following Log-Distance Path Loss Model for Indoor Positioning”. In:

IEEE MTT-S International Microwave Workshop Series on Intelligent Radio for

Future Personal Terminals. 2011.

[Jun+12] Wook Rak Jung et al. “Potential Risks of WiFi-based Indoor Positioning and

Progress on Improving Localization Functionality”. In: ACM International Work-

shop on Indoor Spatial Awareness (SIGSPATIAL). 2012.

314 BIBLIOGRAPHY

[ElK+10] Kareem El-Kafrawy et al. “Propagation Modeling for Accurate Indoor WLAN

RSS-Based Localization”. In: Vehicular Technology Conference (VTC). 2010.

[Kal10a] Marcelo Kallmann. “Navigation Queries from Triangular Meshes”. In: Motion in

Games. 2010.

[Kal05] Marcelo Kallmann. “Path Planning in Triangulations”. In: Workshop on Reason-

ing, Representation, and Learning in Computer Games, International Joint Con-

ference on Artificial Intelligence (IJCAI). 2005.

[Kal10b] Marcelo Kallmann. “Shortest Paths with Arbitrary Clearance from Navigation

Meshes”. In: Eurographics / SIGGRAPH Symposium on Computer Animation

(SCA). 2010.

[Kal60] R. E. Kalman. “A New Approach To Linear Filtering and Prediction Problems”.

In: Journal of Basic Engineering (ASME) 82D, 1960.

[KB61] R. E. Kalman and R. S. Bucy. “New Results in Linear Filtering and Prediction

Theory”. In: Journal of Basic Engineering 83, 1961.

[Kar+17] A. Karaagac et al. “Evaluation of Accurate Indoor Localization Systems in Indus-

trial Environments”. In: IEEE International Conference on Emerging Technolo-

gies and Factory Automation (ETFA). 2017.

[Kar04] Menelaos Karavelas. “A robust and efficient implementation for the segment

Voronoi diagram”. In: International Symposium on Voronoi Diagrams in Science

and Engineering, 2004.

[KC15] L. Kau and C. Chen. “A Smart Phone-Based Pocket Fall Accident Detection,

Positioning, and Rescue System”. In: IEEE Journal of Biomedical and Health

Informatics 19.1, 2015.

[KWS12] F. Keller, T. Willemsen, and H. Sternberg. “Calibration of Smartphones for the use

in indoor navigation”. In: 2012 International Conference on Indoor Positioning

and Indoor Navigation (IPIN). 2012.

[KSS17] John Kessenich, Graham Sellers, and Dave Shreiner. OpenGL programming guide

: the official guide to learning OpenGL, version 4.5 with SPIR-V. Addison-Wesley,

2017.

[KAO08] T. J. S. Khanzada, A.R. Ali, and A.S. Omar. “Time Difference of Arrival Estima-

tion using Super Resolution Algorithms to Minimize Distance Measurement Error

for Indoor Positioning Systems”. In: IEEE International Multitopic Conference.

2008.

BIBLIOGRAPHY 315

[Kir+18] M. P. R. S. Kiran et al. “A Novel System Architecture for Real-time, Robust and

Accurate Step Detection for PDR based Indoor Localization”. In: World Forum

on Internet of Things (WF-IoT). 2018.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated An-

nealing”. In: SCIENCE 220.4598, 1983.

[Kit06] Thenu Kittappa. Virtual Access Points. Tech. rep. Aruba Networks, 2006.

[Kna17] S. Knauth. “Smartphone PDR Positioning in Large Environments Employing WiFi,

Particle Filter, and Backward Optimization”. In: International Conference on In-

door Positioning and Indoor Navigation (IPIN). 2017.

[Kne18] Ronald Kneusel. Random Numbers and Computers. Springer, 2018.

[KPN96] Richard Knoblauch, Martin Pietrucha, and Marsha Nitzburg. “Field Studies of

Pedestrian Walking Speed and Start-Up Time”. In: Transportation Research

Record 1538, 1996.

[KS18] Manon Kok and Arno Solin. “Scalable Magnetic Field SLAM in 3D Using Gaus-

sian Process Maps”. In: International Conference on Information Fusion (FU-

SION). 2018.

[KLW94] Augustine Kong, Jun S. Liu, and Wing Hung Wong. “Sequential Imputations and

Bayesian Missing Data Problems”. In: Journal of the American Statistical Asso-

ciation 89.425, 1994.

[Kon09] C Konvalin. Compensating for Tilt, Hard-Iron, and Soft-Iron Effects. Tech. rep.

FierceElectronics, 2009.

[KGD14] Lukas Köping, Marcin Grzegorzek, and Frank Deinzer. “Probabilistic Step and

Turn Detection in Indoor Localization”. In: Conference on Data Fusion and Tar-

get Tracking: Algorithms and Applications (DFTT). 2014.

[KSG18] Lukas Köping, Kimiaki Shirahama, and Marcin Grzegorzek. “A general frame-

work for sensor-based human activity recognition”. In: Computers in Biology and

Medicine 95, 2018.

[Köp+14] Lukas Köping et al. “Indoor Localization Using Step and Turn Detection Together

with Floor Map Information”. In: FHWS Science Journal, 2014.

[Köp+12] Lukas Köping et al. “Indoor Navigation Using Particle Filter and Sensor Fusion”.

In: Annual of Navigation 19, 2012.

[KU94] Arnold R. Krommer and Christoph W. Ueberhuber. Numerical Integration on Ad-

vanced Computer Systems. Springer, 1994.

316 BIBLIOGRAPHY

[Kru56] Joseph B. Kruskal. “On the Shortest Spanning Subtree of a Graph and the Travel-

ing Salesman Problem”. In: American Mathematical Society 7.1, 1956.

[KL51] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In: Annals of

Mathematical Statistics 22.1, 1951.

[Kus+15] R. Kusber et al. “Direction Detection of Users Independent of Smartphone Orien-

tations”. In: Vehicular Technology Conference (VTC2015-Fall). 2015.

[Led06] Hugo Ledoux. “Modelling Three-dimensional Fields in Geoscience with the Vo-

ronoi Diagram and its Dual”. PhD thesis. University of Glamorgan, 2006.

[Lee+14] S. J. Lee et al. “Autonomous Tour Guide Robot by using Ultrasonic Range Sen-

sors and QR code Recognition in Indoor Environment”. In: IEEE International

Conference on Electro/Information Technology. 2014.

[Lej50] G. Lejeune Dirichlet. “Über die Reduction der positiven quadratischen Formen

mit drei unbestimmten ganzen Zahlen”. In: Journal für die reine und angewandte

Mathematik 40, 1850.

[Li+12] Fan Li et al. “A Reliable and Accurate Indoor Localization Method Using Phone

Inertial Sensors”. In: International Conference on Ubiquitous Computing (Ubi-

Comp). 2012.

[Li+18] Frédéric Li et al. “Comparison of Feature Learning Methods for Human Activity

Recognition Using Wearable Sensors”. In: Sensors 18.2, 2018.

[LJ14] J. Li and M. Johnson-Roberson. “Multi-altitude Multi-sensor Fusion Framework

for AUV Exploration and Survey”. In: Oceans - St. John’s. 2014.

[Li+05] Zang Li et al. “Robust Statistical Methods for Securing Wireless Localization

in Sensor Networks”. In: International Symposium on Information Processing in

Sensor Networks. IEEE Press, 2005.

[Lin+11] C. Lin et al. “Benchmark Dalvik and Native Code for Android System”. In: Inter-

national Conference on Innovations in Bio-inspired Computing and Applications.

2011.

[Lin15] Joakim Lindh. Bluetooth® low energy Beacons. Texas Instruments. 2015.

[Liu+17] Chen Liu et al. “Raster-To-Vector: Revisiting Floorplan Transformation”. In: IEEE

International Conference on Computer Vision (ICCV). 2017.

[Liu+12] Hongbo Liu et al. “Push the Limit of WiFi based Localization for Smartphones”.

In: International Conference on Mobile Computing and Networking. 2012.

BIBLIOGRAPHY 317

[LC98] Jun Liu and Rong Chen. “Sequential Monte Carlo Methods for Dynamic Sys-

tems”. In: Journal of the American Statistical Association 93, 1998.

[Liu+07] Shih-Ping Liu et al. “Miniaturized WiFi System Module Using SiP/IPD for Hand-

held Device Applications”. In: International Microsystems, Packaging, Assembly

and Circuits Technology. 2007.

[LZQ15] Y. Liu, P. Zhang, and M. Qiu. “Fast Numerical Evaluation for Symbolic Expres-

sions in Java”. In: International Conference on High Performance Computing and

Communications. 2015.

[Loa99] Clive Loader. Local Regression and Likelihood. Springer, 1999.

[LC13] A. J. Lopez-Martin and A. Carlosena. “Sensor Signal Linearization Techniques:

A Comparative Analysis”. In: IEEE Latin American Symposium on Circuits and

Systems (LASCAS). 2013.

[Lu+94] G. Lu et al. “Performance Analysis of A Shipborne Gyrocompass With A Multi-

Antenna GPS system”. In: IEEE Position, Location and Navigation Symposium

(PLANS). 1994.

[Lui+11] Gough Lui et al. “Differences in RSSI Readings Made by Different Wi-Fi Chipsets:

A Limitation of WLAN Localization”. In: International Conference on Localiza-

tion and GNSS. 2011.

[MK89] Avraham Margalit and Gary D. Knott. “An algorithm for computing the union, in-

tersection or difference of two polygons”. In: Computers & Graphics 13.2, 1989.

[Mar51] A. A. Markov. “The theory of algorithms”. In: Trudy Mat. Inst. Steklov. Vol. 38.

1951.

[McC86] Robert K. McConnell. “Method of and apparatus for pattern recognition”. US

4567610A. 1986.

[McC+00] Dennis D. McCrady et al. “Mobile Ranging Using Low-Accuracy Clocks”. In:

IEEE Transactions on Microwave Theory and Techniques 48.6, 2000.

[Mea80] Donald Meagher. Octree Encoding: A New Technique for the Representation, Ma-

nipulation and Display of Arbitrary 3-D Objects by Computer. Tech. rep. Image

Processing Laboratory, 1980.

[Meh70] R. Mehra. “On the Identification of Variances and Adaptive Kalman Filtering”.

In: IEEE Transactions on Automatic Control 15.2, 1970.

318 BIBLIOGRAPHY

[Men+11] Wei Meng et al. “Secure and Robust Wi-Fi Fingerprinting Indoor Localization”.

In: International Conference on Indoor Positioning and Indoor Navigation (IPIN).

2011.

[MMM96] Ronald Merrill, Michael McElhinny, and Phillip McFadden. The Magnetic Field

of the Earth : Paleomagnetism, the Core, and the Deep Mantle. Academic Press,

1996.

[Met87] Nicholas Metropolis. “The Beginning of the Monte Carlo Method”. In: Los Alamos

Science 15, 1987.

[MU49] Nicholas Metropolis and Stanislaw Ulam. “The Monte Carlo Method”. In: Jour-

nal of the American Statistical Association 44.247, 1949.

[Mic18] EM Microelectronic. Bluetooth® Low-Energy Proximity Beacon With Accelerom-

eter - EMBC22. 2018.

[Mis18] R von Mises. “Über die Ganzzahligkeit der Atomgewichte und verwandte Fra-

gen”. In: Physikalische Zeitschrift 19, 1918.

[Moi56] Abraham de Moivre. The Doctrine of Chances: Or, A Method of Calculating the

Probability of Events in Play. 3rd ed. A. Millar, 1756.

[ME85] H. Moravec and A. Elfes. “High Resolution Maps from Wide Angle Sonar”. In:

IEEE International Conference on Robotics and Automation. Vol. 2. 1985.

[Mor88] Hans P. Moravec. “Sensor fusion in certainty grids for mobile robots”. In: AI

Magazine 9, 1988.

[Mou+15] Quentin Mourcou et al. “Performance Evaluation of Smartphone Inertial Sensors

Measurement for Range of Motion”. In: Sensors 15.9, 2015.

[Mur+14] Kartik Muralidharan et al. “Barometric Phone Sensors – More Hype Than Hope!”

In: ACM HotMobile. 2014.

[MS10] C. Murphy and H. Singh. “Rectilinear Coordinate Frames for Deep Sea Naviga-

tion”. In: IEEE/OES Autonomous Underwater Vehicles. 2010.

[NC99] K. Nagatani and H. Choset. “Toward Robust Sensor Based Exploration by Con-

structing Reduced Generalized Voronoi Graph”. In: IEEE/RSJ International Con-

ference on Intelligent Robots and Systems. Vol. 3. 1999.

[Ndz+17] S. G. Ndzukula et al. “A Bluetooth Low Energy based system for personnel track-

ing”. In: Conference of the IEEE Industrial Electronics Society (IECON). 2017.

BIBLIOGRAPHY 319

[ND97] E. Nebot and H. Durrant-Whyte. “Initial calibration and alignment of an inertial

navigation”. In: Conference on Mechatronics and Machine Vision in Practice.

1997.

[NM65] John A. Nelder and Roger Mead. “A Simplex Method for Function Minimiza-

tion”. In: The Computer Journal 7.4, 1965.

[NPM13] P. Neto, J. N. Pires, and A. P. Moreira. “3-D Position Estimation from Inertial

Sensing: Minimizing the Error from the Process of Double Integration of Ac-

celerations”. In: Conference of the IEEE Industrial Electronics Society (IECON).

2013.

[Neu51] John von Neumann. “Various Techniques Used in Connection With Random Dig-

its”. In: National Bureau of Standards, 1951. Summary by G. E. Forsythe.

[NS80] Martin Newell and Carlo Sequin. “The Inside Story on Self-Intersecting Poly-

gons”. In: Lambda 1.2, 1980.

[New67] Isaac Newton. “Methodus fluxionum et serierum infinitarum, 1671”. In: The

method of fluxions and infinite series, 1967.

[Ngu+16] Phong Nguyen et al. “User-Friendly Heading Estimation for Arbitrary Smart-

phone Orientations”. In: International Conference on Indoor Positioning and In-

door Navigation (IPIN). 2016.

[Nie83] Heinrich Niemann. Klassifikation von Mustern. Springer, 1983.

[Nis+09] T. Nishida et al. “Dynamic State Estimation Using Particle Filter and Adaptive

Vector Quantizer”. In: IEEE International Symposium on Computational Intelli-

gence in Robotics and Automation (CIRA). 2009.

[NOA] NOAA/NCEI/CIRES. World Magnetic Model 2019.

https://www.ngdc.noaa.gov/geomag/WMM/. Accessed: 2020-01-04.

[Nuc+04] A. Nuchter et al. “6D SLAM with an Application in Autonomous Mine Mapping”.

In: IEEE International Conference on Robotics and Automation (ICRA). Vol. 2.

2004.

[NRP16] Henri Nurminen, Matti Raitoharju, and Robert Piche. “An efficient indoor posi-

tioning particle filter using a floor-plan based proposal distribution”. In: Interna-

tional Conference on Information Fusion (FUSION). 2016.

[OAS76] National Oceanic, National Aeronautics Atmospheric Administration, and United

States Air Force Space Administration. U.S. Standard Atmosphere. 1976.

https://www.ngdc.noaa.gov/geomag/WMM/

320 BIBLIOGRAPHY

[Och+14] M. Ochiai et al. “A study on indoor position estimation based on fingerprinting us-

ing GPS signals”. In: International Conference on Indoor Positioning and Indoor

Navigation (IPIN). 2014.

[Oga11] Clement Ogaja. Applied GPS for Engineers and Project Managers. American So-

ciety of Civil Engineers, 2011.

[OCV12] U. Olgun, C. Chen, and J. L. Volakis. “Efficient Ambient WiFi Energy Harvesting

Technology and its Applications”. In: IEEE International Symposium on Anten-

nas and Propagation. 2012.

[Ols+16] F. Olsson et al. “Accelerometer calibration using sensor fusion with a gyroscope”.

In: IEEE Statistical Signal Processing Workshop (SSP). 2016.

[Ope] OpenStreetMap. Indoor Mapping.

https://wiki.openstreetmap.org/wiki/Indoor Mapping. Accessed: 2020-01-04.

[Pac+95] Scott Pace et al. The Global Positioning System : Assessing National Policies.

RAND, 1995.

[Pal+11] Ravishankar Palaniappan et al. “Autonomous RF Surveying Robot for Indoor Lo-

calization and Tracking”. In: International Conference on Indoor Positioning and

Indoor Navigation (IPIN). 2011.

[PHU09] Ambili T. Parameswaran, Mohammad I. Husain, and Shambhu Upadhyaya. “Is

RSSI a Reliable Parameter in Sensor Localization Algorithms: An Experimental

Study”. In: Field Failure Data Analysis Workshop (F2DA). 2009.

[PHP17] S. Y. Park, S. J. Heo, and C. G. Park. “Accelerometer-based Smartphone Step

Detection Using Machine Learning Technique”. In: International Electrical En-

gineering Congress (iEECON). 2017.

[Par+06] D. L. Partin et al. “Temperature Stable Hall Effect Sensors”. In: IEEE Sensors

Journal 6.1, 2006.

[Par62] Emanuel Parzen. “On Estimation of a Probability Density Function and Mode”.

In: The Annals of Mathematical Statistics 33.3, 1962.

[PW09] Anindya Paul and Eric Wan. “RSSI-Based Indoor Localization and Tracking Us-

ing Sigma-Point Kalman Smoothers”. In: Selected Topics in Signal Processing 3,

2009.

[Pea95] Karl Pearson. “Contributions to the Mathematical Theory of Evolution II. Skew

Variation in Homogeneous Material”. In: Philosophical Transactions of the Royal

Society of London 186, 1895.

https://wiki.openstreetmap.org/wiki/Indoor_Mapping

BIBLIOGRAPHY 321

[Pen55] R. Penrose. “A generalized inverse for matrices”. In: Mathematical Proceedings

of the Cambridge Philosophical Society 51.3, 1955.

[PPG05] J. M. Dias Pereira, O. Postolache, and P. Silva Girao. “Adaptive Self-Calibration

Algorithm for Smart Sensors Linearization”. In: IEEE Instrumentationand Mea-

surement Technology Conference Proceedings. Vol. 1. 2005.

[Pit32] Henri Pitot. “Description d’une Machine pour mesurer la vitesse des Eaux

courantes, et le sillage des Vaisseaux”. In: Histoire de l’Académie royale des sci-

ences, 1732.

[PC94] D. S. Polydorou and C. N. Capsalis. “A new path loss prediction statistical model

for indoor wireless communications”. In: International Journal of Infrared and

Millimeter Waves 15.1, 1994.

[Pop+07] D. R. Popovic et al. “Three-Axis Teslameter With Integrated Hall Probe”. In:

IEEE Transactions on Instrumentation and Measurement 56.4, 2007.

[Pow62] Michael J. D. Powell. “An iterative method for finding stationary values of a func-

tion of several variables”. In: The Computer Journal 5.2, 1962.

[Rac07] Steve Rackley. Wireless Networking Technology: From Principles to Successful

Implementation. Elsevier, Newnes, 2007.

[Raj+96] A. Rajkumar et al. “Predicting RF coverage in large environments using ray-beam

tracing and partitioning tree represented geometry”. In: Wireless Networks 2.2,

1996.

[Rap02] Theodore S. Rappaport. Wireless Communications: Principles and Practice. Pren-

tice Hall PTR, 2002.

[Rec73] Ingo Rechenberg. Evolutionsstrategie; Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. Frommann-Holzboog, 1973.

[RHG13] Rüdiger Reinhardt, Armin Hoffmann, and Tobias Gerlach. Nichtlineare Opti-

mierung: Theorie, Numerik und Experimente. Springer, 2013.

[Ric+00] Elodie Richalot et al. “Electromagnetic Propagation into Reinforced-Concrete

Walls”. In: Microwave Theory and Techniques 48.3, 2000.

[RRF02] Robert Riener, Marco Rabuffetti, and Carlo Frigo. “Stair ascent and descent at

different inclinations”. In: Gait & Posture 15.1, 2002.

[RM00] Roerdink and Meijster. “The Watershed Transform: Definitions, Algorithms and

Parallelization Strategies”. In: Fundamenta Informatica (FUNDINF) 41, 2000.

322 BIBLIOGRAPHY

[Roo+02] Teemu Roos et al. “A Probabilistic Approach to WLAN User Location Estima-

tion”. In: International Journal of Wireless Information Networks 9.3, 2002.

[Ror93] C Rorabaugh. Digital Filter Designer’s Handbook : Featuring C Routines. New

York: McGraw-Hill, 1993.

[Ros56] Murray Rosenblatt. “Remarks on Some Non-Parametric Estimates of a Density

Function”. In: The Annals of Mathematical Statistics 27, 1956.

[RC01] Yong Rui and Yunqiang Chen. “Better Proposal Distributions: Object Tracking

Using Unscented Particle Filter”. In: IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition (CVPR). Vol. 2. 2001.

[Sär13] Simo Särkkä. Bayesian Filtering and Smoothing. Cambridge University Press,

2013.

[Sau+11] Nicolas Saunier et al. “Estimation of Frequency and Length of Pedestrian Stride

in Urban Environments with Video Sensors”. In: Transportation Research Record

2264.1, 2011.

[Sch17] Harald Scheid. Elemente der Geometrie. Springer, 2017.

[Sch+12] S. Schmitt et al. “A Reference System for Indoor Localization Testbeds”. In:

International Conference on Indoor Positioning and Indoor Navigation (IPIN).

2012.

[SBW12] Felix Scholkmann, Jens Boss, and Martin Wolf. “An Efficient Algorithm for Au-

tomatic Peak Detection in Noisy Periodic and Quasi-Periodic Signals”. In: Algo-

rithms 5.4, 2012.

[Sch77] Hans-Paul Schwefel. Numerische Optimierung von Computor-Modellen mittels

der Evolutionsstrategie. Birkhäuser, 1977.

[SR92] Scott Y. Seidel and Theodore S. Rappaport. “914 MHz Path Loss Prediction Mod-

els for Indoor Wireless Communications in Multifloored Buildings”. In: IEEE

Transactions on Antennas and Propagation 40.2, 1992.

[Sen+12] Souvik Sen et al. “You are facing the Mona Lisa: spot localization using PHY

layer information”. In: International Conference on Mobile Systems, Applica-

tions, and Services. ACM, 2012.

[Ser28] J. H. Service. “Radio Acoustic Position Finding in Hydrography”. In: Journal of

the A.I.E.E. 47.9, 1928.

[Sey05] John S. Seybold. Introduction to RF Propagation. Wiley-Interscience, 2005.

BIBLIOGRAPHY 323

[SJP13] Jiten Shah, G.J. Joshi, and Purnima Parida. “Behavioral Characteristics of Pedes-

trian Flow on Stairway at Railway Station”. In: Procedia - Social and Behavioral

Sciences 104, 2013.

[SA11] A. Shahzada and K. Askar. “Dynamic Vehicle Navigation: An A* Algorithm

Based Approach Using Traffic and Road Information”. In: IEEE International

Conference on Computer Applications and Industrial Electronics (ICCAIE). 2011.

[SCI13] W Shane Grant, Randolph C. Voorhies, and Laurent Itti. “Finding Planes in Li-

DAR Point Clouds for Real-Time Registration”. In: International Conference on

Intelligent Robots and Systems (IEEE/RSJ). 2013.

[She+09] A. Sheinker et al. “Magnetic Anomaly Detection Using a Three-Axis Magne-

tometer”. In: IEEE Transactions on Magnetics 45.1, 2009.

[SS09] Hideaki Shimazaki and Shigeru Shinomoto. “Kernel bandwidth optimization in

spike rate estimation”. In: Computational Neuroscience 29, 2009.

[Shi03] Peter Shirley. Realistic Ray Tracing. 2nd ed. AK Peters, 2003.

[Shu+15] Y. Shu et al. “Magicol: Indoor Localization Using Pervasive Magnetic Field and

Opportunistic WiFi Sensing”. In: IEEE Journal on Selected Areas in Communi-

cations 33.7, 2015.

[Sie04] Roland Siegwart. Introduction to Autonomous Mobile Robots. MIT Press, 2004.

[Sil86] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman

and Hall, 1986.

[SSM62] Gerald L. Smith, Stanley F. Schmidt, and Leonard A. McGee. Application of sta-

tistical filter theory to the optimal estimation of position and velocity on board a

circumlunar vehicle. Tech. rep. National Aeronautics and Space Administration,

1962.

[SGM14] I. M. Smith, D.V. Griffiths, and L. Margetts. Programming the Finite Element

Method. Wiley, 2014.

[Smi11] Julius Smith. Spectral Audio Signal Processing. W3K, 2011.

[Smi99] Steven W. Smith. The Scientist and Engineer’s Guide to Digital Signal Process-

ing. 2nd ed. California Technical Publishing, 1999.

[SD16] C. Soaz and K. Diepold. “Step Detection and Parameterization for Gait Assess-

ment Using a Single Waist-Worn Accelerometer”. In: IEEE Transactions on Bio-

medical Engineering 63.5, 2016.

324 BIBLIOGRAPHY

[SB13] D. Sonowal and M. Bhuyan. “Linearizing Thermistor Characteristics by Piece-

wise Linear Interpolation in Real Time FPGA”. In: International Conference on

Advances in Computing, Communications and Informatics (ICACCI). 2013.

[SMV15] R. Soorat, K. Madhuri, and A. Vudayagiri. “Hardware Random number Generator

for cryptography”. In: arXiv e-prints, 2015.

[ST14] Sara Stančin and Sašo Tomažič. “Time- and Computation-Efficient Calibration of

MEMS 3D Accelerometers and Gyroscopes”. In: Sensors 14.8, 2014.

[Stu15] Roland Stull. Practical Meteorology - An Algebra-based Survey of Atmospheric

Science. University of British Columbia, 2015.

[SND99] S. Sukkarieh, E. M. Nebot, and H. F. Durrant-Whyte. “A High Integrity IMU/GPS

Navigation Loop for Autonomous Land Vehicle Applications”. In: IEEE Trans-

actions on Robotics and Automation 15.3, 1999.

[TY09] Tomoji Takasu and Akio Yasuda. “Development of the low-cost RTK-GPS re-

ceiver with an open source program package RTKLIB”. In: International Sympo-

sium on GPS/GNSS, Jan. 2009.

[TG91] Yordphol Tanaboriboon and Jocelyn Guyano. “Analysis of Pedestrian Movements

in Bangkok”. In: Transportation Research Record 1294, 1991.

[TT08] Barry N. Taylor and Ambler Thompson, eds. The International System of Units

(SI). National Institute of Standards and Technology, 2008.

[Tay15] Brook Taylor. Methodus incrementorum directa et inversa. Londini, 1715.

[Thr03] Sebastian Thrun. “Learning Occupancy Grid Maps With Forward Sensor Mod-

els”. In: Autonomous Robots 15, 2003.

[TBF05] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. The

MIT Press, 2005.

[Tia+02] Jing Tian et al. “Graph-Based Mobility Model for Mobile Ad Hoc Network Sim-

ulation”. In: Annual Simulation Symposium. 2002.

[Tia+15] Qinglin Tian et al. “A Hybrid Indoor Localization and Navigation System with

Map Matching for Pedestrians Using Smartphones”. In: Sensors 15.12, 2015.

[Tim82] John Timbs. Wonderful Inventions: From the Mariner’s Compass to the Electric

Telegraph Cable. G. Routledge and Sons, 1882.

[Tit11] Peter Tittmann. Graphentheorie : Eine anwendungsorientierte Einführung.

Hanser, 2011.

BIBLIOGRAPHY 325

[Tor+17] Joaquı́n Torres-Sospedra et al. “The Smartphone-Based Offline Indoor Location

Competition at IPIN 2016: Analysis and Future Work”. In: Sensors 17.3, 2017.

[Tor44] Evangelista Torricelli. Opera geometrica. Typis Amatoris Massæ & Laurentij de

Landis, 1644.

[TS12] K. Tumkur and S. Subbiah. “Modeling Human Walking for Step Detection and

Stride Determination by 3-Axis Accelerometer Readings in Pedometer”. In: Inter-

national Conference on Computational Intelligence, Modelling and Simulation.

2012.

[UN94] Naonori Ueda and Ryohei Nakano. “A new competitive learning approach based

on an equidistortion principle for designing optimal vector quantizers”. In: Neural

Networks 7.8, 1994.

[VF13] A. A. Vasilakis and I. Fudos. “Depth-Fighting Aware Methods for Multifragment

Rendering”. In: IEEE Transactions on Visualization and Computer Graphics 19.6,

2013.

[Vat92] Bala R. Vatti. “A Generic Solution to Polygon Clipping”. In: Commun. ACM 35.7,

1992.

[VDIa] VDI/VDE/DGQ/DKD 2622. Kalibrieren von Messmitteln für elektrische Größen.

[VDIb] VDI/VDE/DGQ/DKD 2622 Blatt 2. Kalibrieren von Messmitteln für elektrische

Größen - Methoden zur Ermittlung der Messunsicherheit.

[Vin17] John Vince. Mathematics for Computer Graphics. Springer, 2017.

[VS91] Lee Vincent and Pierre Soille. “Watersheds in Digital Spaces: An Efficient Algo-

rithm Based on Immersion Simulations”. In: IEEE PAMI 13.6, 1991.

[Vin75] T. Vincenty. “Direct and Inverse Solutions of Geodesics on the Ellipsoid with

application of nested equations”. In: Survey Review 23.176, 1975.

[Vor08] Georges Voronoi. “Nouvelles applications des paramètres continus à la théorie

des formes quadratiques”. In: Journal für die reine und angewandte Mathematik

134, 1908.

[WGN15] A. Wahdan, J. Georgy, and A. Noureldin. “Three-Dimensional Magnetometer

Calibration With Small Space Coverage for Pedestrians”. In: IEEE Sensors Jour-

nal 15.1, 2015.

[Wan11] C. C. L. Wang. “Approximate Boolean Operations on Large Polyhedral Solids

with Partial Mesh Reconstruction”. In: IEEE Transactions on Visualization and

Computer Graphics 17.6, 2011.

326 BIBLIOGRAPHY

[Wan+11a] Fasheng Wang et al. “Particle Filter with Hybrid Proposal Distribution for Non-

linear State Estimation”. In: Journal of Computers 6, 2011.

[Wan+11b] Jie Wang et al. “Differential radio map-based robust indoor localization”. In:

EURASIP Journal on Wireless Communications and Networking, 2011.

[Wes50] G. P. De Westfelt. “Motor Design for a High-Speed Electrically-Driven Gyro-

scope”. In: Electrical Engineering 69.5, 1950.

[WT06] Arthur Williams and Fred Taylor. Electronic Filter Design Handbook. McGraw-

Hill, 2006.

[Wil02] Robert Wilson. Propagation Losses Through Common Building Materials 2.4

GHz vs 5 GHz. 2002.

[Wit19] Alexandra Witze. “Earth’s magnetic field is acting up”. In: Nature 565, 2019.

[WH08] Oliver Woodman and Robert Harle. “Pedestrian Localisation for Indoor Envi-

ronments”. In: International Conference on Ubiquitous Computing (UbiComp).

2008.

[Wu10] H. Wu. “Survey on three-dimensional spatial data models in GIS”. In: Conference

on Environmental Science and Information Application Technology. Vol. 2. 2010.

[XYH09] Wang Xiaoling, Zhao Yan, and Wang Hong. “Non-conduct Steering Sensor for

Electric Power Steering”. In: International Conference on Information and Au-

tomation. 2009.

[Xu+13] C. Xu et al. “SCPL: Indoor Device-Free Multi-Subject Counting and Localiza-

tion Using Radio Signal Strength”. In: International Conference on Information

Processing in Sensor Networks (IPSN). 2013.

[Yan06] W. Yanbing. “3D GIS Spatial Modeling for City Surface and Subsurface Inte-

gration”. In: IEEE International Symposium on Geoscience and Remote Sensing.

2006.

[YWL12] Zheng Yang, Chenshu Wu, and Yunhao Liu. “Locating in Fingerprint Space:

Wireless Indoor Localization with Little Human Intervention”. In: International

Conference on Mobile Computing and Networking. 2012.

[Ye+14] H. Ye et al. “B-Loc: Scalable Floor Localization Using Barometer on Smart-

phone”. In: International Conference on Mobile Ad Hoc and Sensor Systems.

2014.

[YN01] S. You and U. Neumann. “Fusion of Vision and Gyro Tracking for Robust Aug-

mented Reality Registration”. In: IEEE Virtual Reality. 2001.

BIBLIOGRAPHY 327

[YAS03] Moustafa A. Youssef, Ashok Agrawala, and A. Udaya Shankar. “WLAN Loca-

tion Determination via Clustering and Probability Distributions”. In: IEEE Inter-

national Conference on Pervasive Computing and Communications. 2003.

[YAA05] Moustafa Youssef, Mohamed Abdallah, and Ashok Agrawala. Multivariate Anal-

ysis for Probabilistic WLAN Location Determination Systems. 2005.

[YA05] Moustafa Youssef and Ashok Agrawala. “The Horus WLAN Location Determi-

nation System”. In: International Conference on Mobile Systems, Applications,

and Services (MobiSys). 2005.

[YMA07] Moustafa Youssef, Matthew Mah, and Ashok Agrawala. “Challenges: Device-

free Passive Localization for Wireless Environments”. In: Annual International

Conference on Mobile Computing and Networking (MobiCom). 2007.

[Yu+19] Yue Yu et al. “A Robust Dead Reckoning Algorithm Based on Wi-Fi FTM and

Multiple Sensors”. In: Remote Sensing 11.5, 2019.

[Zha+18a] J. Zhang et al. “A Complex User Activity Recognition Algorithm based on Con-

volutional Neural Networks”. In: Ubiquitous Positioning, Indoor Navigation and

Location-Based Services (UPINLBS). 2018.

[Zha+18b] S. Zhang et al. “Indoor 2.5D Positioning of WiFi Based on SVM”. In: Ubiquitous

Positioning, Indoor Navigation and Location-Based Services (UPINLBS). 2018.

[Zha+15] Yizhong Zhang et al. “Online Structure Analysis for Real-Time Indoor Scene

Reconstruction”. In: ACM Trans. Graph. 34.5, 2015.

[ZY15] Z. Zhang and G. Yang. “Micromagnetometer Calibration for Accurate Orientation

Estimation”. In: IEEE Transactions on Biomedical Engineering 62.2, 2015.

[Zha+11] Zengbin Zhang et al. “I Am the Antenna: Accurate Outdoor AP Location using

Smartphones”. In: International Conference on Mobile Computing and Network-

ing. 2011.

[Zho+15] B. Zhou et al. “Activity Sequence-Based Indoor Pedestrian Localization Using

Smartphones”. In: IEEE Transactions on Human-Machine Systems 45.5, 2015.

[Zho+12] Pengfei Zhou et al. “IODetector: A Generic Service for Indoor Outdoor Detec-

tion”. In: ACM Conference on Embedded Network Sensor Systems (SenSys). 2012.

328 BIBLIOGRAPHY

Appendix

A.1 Tilt Compensation Example

The following example describes the tilt compensation process, based on the complementary

filter, introduced in section 2.4.2. The smartphone is assumed to be held upfront in landscape

mode, at an angle of 30° (see figure 2.5). Readings from the accelerometer are assumed as

a[0] = (0.10, 4.90, 8.40)T .

According to (2.46), the corresponding quaternion Qa[0] is

α = cos−1

(
(0.10, 4.90, 8.40)T

‖(0.10, 4.90, 8.40)T‖ • (0, 0, 1)
T

)
≈ cos−1 (0.8637) ≈ 30.26° ,

u = (0.10, 4.90, 8.40)T × (0, 0, 1)T = (4.90,−0.10, 0.00)T ,

Qa[0] ≈
(
30.26°,

(4.90,−0.10, 0.00)T
‖(4.90,−0.10, 0.00)T‖

)

≈
(
30.26°, (1.00,−0.02, 0.00)T

)

≈
(
cos(15.13°) + sin(15.13°)(1.00i− 0.02j + 0.00k)

)

≈ (0.965 + 0.261i− 0.005j + 0.000k) .

For visualization, this quaternion is used to initialize the complementary filter (2.49), and thus

Q̂[0] = Qa[0] . The pedestrian now increases the tilt angle, rotating with ≈ 10 °/s around the

device’s x-axis. Assuming a sample rate of 2Hz, new (noisy) accelerometer and (more robust)

gyroscope readings are observed after 500ms, denoting the change of the device’s pose

a[1] = (0.98, 5.89, 7.85)T , ω′

[1] = (0.17, 0.01, 0.02)T , ∆t = 500ms .

The new quaternion for the accelerometer is thus as follows

Qa[1] ≈
(
37.26°, (0.99,−0.16, 0.00)T

)
≈ (0.948 + 0.315i− 0.052j + 0.000k) .

329

330 BIBLIOGRAPHY

According to (2.47), the quaternion for the gyroscope’s turn-rate is given by

Qω
′

[1] ≈
(
4.91°, (0.99, 0.06, 0.12)T

)

≈
(
cos(2.46°) + sin(2.46°)(0.99i + 0.06j + 0.12k)

)

≈ (0.999 + 0.042i + 0.002j + 0.005k) .

All quaternions can now be fused by the complementary filter (2.49). For the presented exam-

ple, a mixing rate of κ = 0.9 is used

Q̂[1] ≈ 0.9
(
Qω

′

[1]Q̂[0]

)
+ 0.1Qa[1]

≈ 0.9
(
(0.999 + 0.042i + 0.002j + 0.005k) (0.965 + 0.261i− 0.005j + 0.000k)

)
+ 0.1Qa[1]

≈ 0.9
(
(0.953 + 0.302i− 0.004j + 0.006k)

)
+ 0.1 (0.948 + 0.315i− 0.052j + 0.000k)

≈ (0.858 + 0.272i− 0.004j + 0.005k) + (0.095 + 0.032i− 0.005j + 0.000k)

≈ (0.953 + 0.303i− 0.009j + 0.005k)

≈
(
35.35°, (1.00,−0.03, 0.02)T

)
.

As can be seen, the gyroscope corrected the noisy observation from the accelerometer, and the

estimated angle is close to the actual 35° (30° + 10 °/s · 500ms). The complementary filter’s

quaternion Q̂[1] is then converted into the tilt compensation matrix [Die06]

R−1 ≈

1.00 −0.02 −0.01
0.00 0.82 −0.58
0.02 0.58 0.82

 .

If the pedestrian now turns with ≈ 35 °/s while holding the smartphone in the aforementioned

pose, the gyroscope readings are approximately

ω′ = (0.02, 0.36, 0.50)T ,

where the 35 °/s are divided into y and z. When transformed byR−1, this yields

R−1ω′ ≈ (0.01, 0.01, 0.62)T ≈ (0.43°, 0.29°, 35.32°)T ,

where solely the z-axis contains the pedestrian’s turn rate.

A.2. STEP-DETECTION FILTERS 331

A.2 Step-Detection Filters

IIR parameters and FIR kernels used for the filters applied to the accelerometer’s magnitude,

before performing step-detection (see section 2.4.1).

a0 a1 a2 b0 b1 b2

IIR low-pass 1.0000 −1.7347 0.7660 0.0078 0.0156 0.0078
IIR band-pass 1.0000 −1.9047 0.9198 0.0401 0.0000 −0.0401
IIR HLL-pass (low) 1.0000 −1.7347 0.7660 0.0078 0.0156 0.0078
IIR HLL-pass (high) 1.0000 −1.9112 0.9150 0.9565 −1.9131 0.9565

Table A.1: IIR filter parameters for step-detection (see (2.25) and table 6.3)

k = (0.0012, 0.0019, 0.0034, 0.0060, 0.0101, 0.0157, 0.0229, 0.0313,
0.0406, 0.0501, 0.0592, 0.0673, 0.0735, 0.0775, 0.0789, 0.0775,
0.0735, 0.0673, 0.0592, 0.0501, 0.0406, 0.0313, 0.0229, 0.0157,
0.0101, 0.0060, 0.0034, 0.0019, 0.0012)

Table A.2: FIR low-pass kernel for step-detection (see table 6.3)

k = (0.0000, 0.0000, 0.0000, 0.0001, 0.0002, 0.0003, 0.0005, 0.0007,
0.0010, 0.0014, 0.0018, 0.0022, 0.0028, 0.0033, 0.0039, 0.0045,
0.0050, 0.0054, 0.0057, 0.0057, 0.0056, 0.0052, 0.0044, 0.0033,
0.0019, 0.0000, −0.0022, −0.0048, −0.0078, −0.0110, −0.0144, −0.0179,
−0.0215, −0.0250, −0.0283, −0.0314, −0.0340, −0.0361, −0.0376, −0.0384,
−0.0385, −0.0377, −0.0362, −0.0338, −0.0307, −0.0268, −0.0223, −0.0172,
−0.0117, −0.0059, −0.0000, 0.0059, 0.0117, 0.0172, 0.0223, 0.0268,
0.0307, 0.0338, 0.0362, 0.0377, 0.0385, 0.0384, 0.0376, 0.0361,
0.0340, 0.0314, 0.0283, 0.0250, 0.0215, 0.0179, 0.0144, 0.0110,
0.0078, 0.0048, 0.0022, 0.0000, −0.0019, −0.0033, −0.0044, −0.0052,
−0.0056, −0.0057, −0.0057, −0.0054, −0.0050, −0.0045, −0.0039, −0.0033,
−0.0028, −0.0022, −0.0018, −0.0014, −0.0010, −0.0007, −0.0005, −0.0003,
−0.0002, −0.0001, −0.0000, −0.0000, −0.0000)

Table A.3: FIR band-pass kernel for step-detection (see table 6.3)

332 BIBLIOGRAPHY

A.3 Additionally Used Maps

Overview on maps that were used additionally (see table 6.15 and 6.16), besides the three

buildings introduced in section 6.1. The two maps from figure A.1 and A.2 were modeled

for attending the IPIN 2016 Indoor Localization Competition, and belong to the University

of Alcalá de Henares. The one from figure A.3 was modeled for an upcoming experimental

deployment within the Hutmuseum in Lindenberg.

20m

Figure A.1: UAH – Building of the University of Alcalá de Henares, first floor.

A.3. ADDITIONALLY USED MAPS 333

10m

Figure A.2: CAR – Building of the University of Alcalá de Henares.

Figure A.3: Museum 3 – Hutmuseum in Lindenberg.

334 BIBLIOGRAPHY

A.4 Final System Results

Excerpt of all results stemming from the final system, listing one instance for every conducted

walk (see section 6.1). The images on the left depict the buildings, with their floors stretched

for increased visibility, the estimated paths shown in blue, and the corresponding ground truth

in black. The plots on the right denote the 3D error between estimation and ground truth, and

its behavior over time. The additionally added horizontal gray line denotes the average error

throughout the walk.

Museum 1

0m

5m

10m

15m

60 s 120 s 180 s 240 s 300 s 360 s 420 s

Figure A.4: Estimation result for walk B1, when using the final system.

0m

5m

10m

15m

20 s 40 s 60 s 80 s 100 s

Figure A.5: Estimation result for walk B2, when using the final system.

0m

5m

10m

15m

60 s 120 s 180 s 240 s 300 s

Figure A.6: Estimation result for walk B3, when using the final system.

A.4. FINAL SYSTEM RESULTS 335

SHL

0m

5m

10m

15m

30 s 60 s 90 s 120 s 150 s 180 s

Figure A.7: Estimation result for walk A1, when using the final system.

0m

5m

10m

15m

20 s 40 s 60 s 80 s 100 s 120 s 140 s

Figure A.8: Estimation result for walk A2, when using the final system.

0m

5m

10m

15m

15 s 30 s 45 s 60 s 75 s 90 s

Figure A.9: Estimation result for walk A3, when using the final system.

0m

5m

10m

15m

40 s 80 s 120 s 160 s

Figure A.10: Estimation result for walk A4, when using the final system.

0m

5m

10m

15m

15 s 30 s 45 s 60 s 75 s 90 s

Figure A.11: Estimation result for walk A5, when using the final system.

336 BIBLIOGRAPHY

Museum 2

0m

5m

10m

15m

20 s 40 s 60 s 80 s 100 s 120 s

Figure A.12: Estimation result for walk C1, when using the final system.

0m

5m

10m

15m

60 s 120 s 180 s 240 s 300 s

Figure A.13: Estimation result for walk C2, when using the final system.

0m

5m

10m

15m

120 s 240 s 360 s 480 s 600 s 720 s

Figure A.14: Estimation result for walk C3, when using the final system.

0m

5m

10m

15m

90 s 180 s 270 s 360 s 450 s 540 s

Figure A.15: Estimation result for walk C4, when using the final system.

Index

A*, 115, 117, 139, 151

accelerometer, 4, 27, 198, 217, 221, 331

activity, 12, 58–60, 201, 217

adjacency matrix, 127

angular velocity, 39, 43, 227, 228

antenna gain, 95

barometer, 4, 5, 53, 118, 198, 216

atmospheric pressure, 53, 238

barycentric, 146, 211, 212, 264

Bayes filter, 164, 166, 195

Bayes’ rule, 75, 159, 162

Bluetooth

beacon, 94, 207, 216

Low Energy, 216, 217

body frame, 43

bootstrap filter, 179

Box-Muller transform, 183

calibration, 16, 29, 232, 233, 237

central limit theorem, 19, 176

compass, 38, 230

declination, 38, 47, 48, 235

eCompass, 28, 104, 201, 221

geographic north, 38, 47–49

geomagnetic north, 47, 48, 230

hard iron, 51, 52, 232

inclination, 48, 49

magnetic north pole, 232

magnetic south pole, 48

soft iron, 51, 232

compensated summation, 59, 243

complementary filter, 42–44, 101, 155, 221

CONDENSATION algorithm, 179

dead reckoning, 4, 27, 221

pedestrian dead reckoning, 27, 221

decision tree, 59, 243

Delaunay, 142, 144

Dijkstra, 115, 117, 151

distribution

covariance, 60, 107, 167, 241

cumulative distribution function, 181,

247

exponential distribution, 35, 181, 206

gamma distribution, 36

mixture distribution, 37, 166, 201

multimodal, 76, 81, 175, 195, 251

multivariate, 107, 166, 255

normal distribution, 19, 106, 161, 199,

241

standard deviation, 77, 221

uniform distribution, 19, 25, 178,

265–267

unimodal, 166, 174, 187

variance, 29, 160, 179, 187

337

338 INDEX

von Mises distribution, 46, 110, 130

Euler angle rates, 43

Euler angles, 43, 44

filtering

Butterworth, 222

convolution, 19, 165, 222

FIR, 32, 222

IIR, 32, 155, 222

Linkwitz-Riley, 42

fingerprint, 50, 178, 210, 245

Fourier transform, 34, 167

funnel algorithm, 152–154

Gimbal lock, 43

GPS, 1, 15, 102, 194, 221

ground truth, 97, 206, 215, 334

gyrocompass, 38, 39, 47

gyroscope, 4, 18, 156, 198, 199, 216

Hall effect, 17, 48

histogram, 82–84, 86, 176, 184, 210

IMMPF, 206, 208, 287

importance sampling, 180

IMU, 27, 198, 221

inertial frame, 43

inverse transform sampling, 181, 185

Jacobian matrix, 174

Kalman filter, 166, 167, 195, 251

extended Kalman filter, 173, 195

Kalman gain, 169

kernel density estimation, 82, 105, 176, 200

bandwidth, 82–84

Gaussian kernel, 83

Kullback-Leibler divergence, 206, 255

latitude, 23, 24, 49

law of total probability, 108, 163, 274

linear system, 168, 172

localization

fine timing measurement, 98, 209

lateration, 21, 195

multilateration, 21

TDOA, 21, 22, 98

time of flight, 98

TOA, 98

log-distance, 72, 88, 245

extended log-distance model, 72, 210,

245, 246

log-distance model, 68, 70, 210, 245

log-normal shadowing model, 68

longitude, 23, 24

lookup

k-d tree, 114, 122

octree, 114, 122

MAC address, 74, 75, 96, 97

magnetometer, 4, 5, 17, 198, 208, 216, 217

Markov property, 163, 201

Monte Carlo, 175–177, 179, 182

Naive Bayes, 61

navigation grid, 124, 183, 191, 256

navigation mesh, 144, 145, 183, 195, 256

NFC, 55

numerical optimization, 12, 76, 239

converge, 91, 94

convex, 22, 51, 88–91

downhill simplex, 22, 51

genetic algorithm, 91

gradient descent, 22, 51

Moore–Penrose inverse, 23, 170

Nelder-Mead, 22

INDEX 339

Newton’s method, 22

overfitting, 87, 90, 94, 97, 216, 250

simulated annealing, 91

target function, 87, 88, 91, 93, 97, 253

occupancy grid, 113, 119, 121–123

partial derivative, 174

particle filter, 4, 177, 178, 195, 215

path loss, 64, 65, 90

path loss exponent, 68

PCA, 41

quantization noise, 19

quaternion, 43, 44

radio signals

absorption, 65, 66, 71

attenuation, 65, 70, 246

diffraction, 65, 66, 71, 252

free space attenuation, 90, 245, 252

free space loss, 65, 66

multipath, 68

multipath propagation, 66, 81

reflection, 65, 66, 71, 248

refraction, 65, 66, 71, 248

scattering, 65, 66, 68

shadowing, 65, 66, 71, 205

random walk, 132, 183, 201, 256

RANSAC, 52

ray tracing, 72, 114, 192

reference measurement, 12, 56, 212, 218

rejection sampling, 182, 183, 186, 187

resampling, 185, 196, 251

RFID, 55

root mean square error, 87–92, 247, 250

rotation axis, 44, 227, 228

rotation matrix, 40, 41, 44

RSSI, 62, 207, 248

sensor fusion, 13, 42, 45, 238

signal strength, 4, 62, 203, 217

prediction model, 12, 67, 205, 244

step-detection, 4, 11, 30, 196, 216

SVM, 31, 61

Taylor series, 174

tilt compensation, 49, 59, 224, 226

transmission power, 64, 74, 90, 94

turn-detection, 4, 28, 30, 104, 196, 216

turn-rate, 37, 228

virtual access point, 96

Voronoi, 141–144

zero mean, 19, 110, 155

340 INDEX

Lebenslauf

03/1986 Geboren in Werneck

09/1992 – 07/1996 Volksschule Am Wehrbusch, Grafenrheinfeld

09/1996 – 12/2004 Alexander-von-Humboldt-Gymnasium, Schweinfurt

Abschluss: Mittlerer Schulabschluss

09/2005 – 07/2007 Friedrich-Fischer-Schule, Schweinfurt

Abschluss: Fachabitur

09/2007 – 05/2008 Zivildienst im

Jugendhilfezentrum Maria Schutz, Grafenrheinfeld

10/2008 – 03/2012 Bachelor Studium Informatik an der

Fachhochschule Würzburg-Schweinfurt

Abschluss: Bachelor of Engineering

03/2012 – 02/2014 Master Studium Informationssysteme an der

Hochschule für angewandte Wissenschaften Würzburg-Schweinfurt

Abschluss: Master of Science

02/2014 – 03/2020 Wissenschaftlicher Mitarbeiter an der

Hochschule für angewandte Wissenschaften Würzburg-Schweinfurt

Aufgabenschwerpunkt: Softwareentwicklung, Forschung und Lehre

Logos Verlag Berlin ISBN 978-3-8325-5232-9

ISSN 2701-9446

Technical innovation results in an enormous amount of data and information

that can be used for the description and analysis of individual humans andwho-

le populations. In this context, methods combining different sensor modalities

using suitable models are investigated to advance the understanding of the

human physical and mental state. This book series is dedicated to this broad

field of research.

During the last century, navigation systems have become ubiquitous and guide

drivers, cyclists, and pedestrians towards their desired destinations. While

operating worldwide, they rely on line-of-sight conditions towards satellites

and are thus limited to outdoor areas. However, finding a gate within an

airport, a ward within a hospital, or a university’s auditorium also represent

navigation problems. To provide navigation within such indoor environments,

new approaches are required.

This thesis examines pedestrian 3D indoor localization and navigation using

commodity smartphones: A desirable target platform, always at hand and

equipped with a multitude of sensors. The IMU (accelerometer, gyroscope,

magnetometer) and barometer allow for pedestrian dead reckoning, that is,

estimating relative location changes. Absolute whereabouts can be determined

via Wi-Fi, an infrastructure present within most public buildings, or by using

Bluetooth Low Energy Beacons as inexpensive supplement. The building’s

3D floorplan not only enables navigation, but also increases accuracy by

preventing impossible movements, and serves as a visual reference for the

pedestrian. All aforementioned information is fused by recursive density

estimation based on a particle filter.

The conducted experiments cover both, theoretical backgrounds and real-world

use-cases. All discussed approaches utilize the infrastructure found within

most public buildings, are easy to set up, and maintain. Overall, this thesis

results in an indoor localization and navigation system that can be easily

deployed, without requiring any special hardware components.

	1 Introduction
	1.1 Navigation within Buildings
	1.2 Research Objective
	1.3 State of the Art
	1.4 Scientific Contribution
	1.5 Structure

	2 Probabilistic Sensor Models
	2.1 Sensor Errors
	2.2 Probabilistic Problem Formulation
	2.3 Global Positioning System
	2.4 Inertial Measurement Unit
	2.4.1 Step-Detection
	2.4.2 Turn-Detection
	2.4.3 eCompass

	2.5 Barometer
	2.6 Activity-Detection
	2.7 Wi-Fi and Bluetooth Beacons
	2.7.1 Signal-Strength and Propagation
	2.7.2 Signal-Strength Prediction Models
	2.7.3 Probabilistic Location Estimation
	2.7.4 Location Estimation Using Lateration
	2.7.5 Location Estimation Using Fingerprints
	2.7.6 Location Estimation Using Propagation Models
	2.7.7 Error Compensation

	2.8 Summary

	3 Probabilistic Movement Models
	3.1 Probabilistic Problem Formulation
	3.2 Simple Models without Floorplan Information
	3.3 Simple Models with 2D Floorplan
	3.4 Overview on Spatial Models for Indoor Floorplans
	3.5 Regular Spatial Models for 3D Movement Prediction
	3.5.1 Generation Based on an Existing Floorplan
	3.5.2 Random Walks on Graphs
	3.5.3 Navigation
	3.5.4 Continuous Results

	3.6 Irregular Spatial Models for 3D Movement Prediction
	3.6.1 3D Navigation Meshes
	3.6.2 Movement Prediction
	3.6.3 Navigation

	3.7 Summary

	4 Recursive Density Estimation
	4.1 Probabilistic Information Fusion
	4.2 Bayes Filter
	4.3 Kalman Filter
	4.4 Extended Kalman Filter
	4.5 Particle Filter
	4.5.1 Random Sampling
	4.5.2 Resampling
	4.5.3 Estimation

	4.6 Summary

	5 Indoor Navigation
	5.1 Complex Indoor Maps
	5.2 Fusing All Components
	5.2.1 Update Frequency
	5.2.2 Including Observations
	5.2.3 Handling Impossible Movements
	5.2.4 Detecting and Handling Deadlocks

	5.3 Real-World Considerations
	5.3.1 Sensitive Locations
	5.3.2 Data Acquisition

	5.4 Performance Considerations
	5.4.1 Precomputed Model Predictions
	5.4.2 Code Optimization

	5.5 Summary

	6 Experiments
	6.1 Testbeds and Data Acquisition
	6.2 Evaluation of Sensor Components
	6.2.1 Sensor Overview
	6.2.2 Step Detection
	6.2.3 Relative and Absolute Heading Estimation
	6.2.4 Pedestrian Dead Reckoning
	6.2.5 Altitude Estimation
	6.2.6 Activity Detection
	6.2.7 Wi-Fi Location Estimation

	6.3 Evaluation of Movement Models
	6.3.1 Spatial Floorplan Representation
	6.3.2 Navigation
	6.3.3 Floorplan-Based Probabilistic Pedestrian Dead Reckoning
	6.3.4 Limitations

	6.4 Evaluation of the Overall System
	6.5 Summary

	7 Summary
	8 Future Work
	List of Figures
	List of Tables
	List of Symbols
	Bibliography
	Appendix
	A.1 Tilt Compensation Example
	A.2 Step-Detection Filters
	A.3 Additionally Used Maps
	A.4 Final System Results

