
Chapter 0

The Speedup of Discrete Event Simulations

by Utilizing CPU Caching

Wennai Wang and Yi Yang

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/50397

1. Introduction

Discrete event simulation (DES) has been widely used for both theoretical and application

researches in various fields. The low-cost numerical experiments by DES can be carried out

repeatedly to investigate the collective behavior or dynamics of a complex system which

usually consists of a huge number of elements or is too expensive to be established realistically

[3]. As for engineering applications, new algorithms, measures, or even standards, often

require a great deal of DES experiments before actual deploying, especially in the field of

communication networks. However, the feasibility of DES method relies not only on the

correctness of computational model of the target system but also the spend in the time of

computation. An experiment that costs over days of computer computation will limit the

application area of DES considerably.

For a DES system designed for communication network simulation, which is implemented by

the event-driven method, computation tasks waiting for processing are usually represented by

their corresponding events. These events need to be maintained in-sequence by a systematic

scheduler. The causality that a scheduler must preserve is usually guaranteed by sorting and

dispatching according to the time of event. An event is to be suspended unless its time value

is smaller than or equal to the present time. When a great number of tasks or events are in

pending, the cost of event scheduling becomes the top contributor to the computational time.

For a large scale communication network simulation, for example, scheduling can consume

over 40% of the total computational time [12]. To accelerate scheduling, several practical

algorithms have been proposed and adopted for some widely used simulators such as NS2

[9] and OMNet++ [14]. These algorithms can be categorized, according to the data structure

used, into linear list, partitioning list, heap and tree. Among them, the partitioning list has

attracted much attention.

The partitioning list algorithm proposed by R. Brown is called Calendar Queue (CQ) [4],

where a data structure, named bucket, is used to partition events into a sequence of sub-lists.

©2012Wang and Yang, licensee InTech. This is an open access chapter distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Chapter 2

2 Will-be-set-by-IN-TECH

CQ can reduce the time for event searching and decrease the complexity down to O(1). Since

then, some improved algorithms, such as Dynamic CQ (DCQ) [1], SNOOPy CQ [13], and

sluggish CQ [15], have been proposed in order to improve the adaptability of CQ to the

event distribution in the time domain. However, the way of event enqueue and dequeue

remains unchanged. For these algorithms, the complexity of O(1) is only valid for bucket

searching and it doesn’t take into account event locating within a bucket. In addition, the

overhead for bucket managing inevitably results in some negative effects on the performance

of computation. K. Chung, J. Sang and V. Rego compared some earlier-day scheduling

algorithms and found that, for a token-ring network simulation, both CQ and DCQ are no

better than those based on heap or tree structure [6].

In the past decades, researchers have put their interesting into parallel and distributed

approaches [7] to speedup simulation by a cluster of computers or processors. Parallel and

distributed event scheduling need to cope with challenges such as time synchronization and

task balance and remain a gap to extensive adoption. An alternative way to speedup DES

simulation, we think, is to exploit the potentials offered by the modern processors. As an

instance of attempts, recently H. Park and P.A. Fishwick proposed a graphics processing units

(GPU) based algorithm which shows 10-fold speedup [11]. However, until now the caching

mechanism of processor has not been considered in existing event scheduling algorithms.

Herein we provide a cache aware algorithm and verify its improvement on the performance

by extending the conventional NS2.

The motivation to utilize caching of processor or CPU is straightforward. Both

cache based method and cache aware method have been applied successfully in some

heavy data-retrieving algorithms, including IP routing table lookup [5] and Radix tree

implementation [2], where a huge amount of data are frequently accessed. This situation

happens for a large scale DES as well, and CPU caching is benefit to speed up event

scheduling.

The chapter is organized as follows. Section 2 gives a analysis of event driven mechanism

of the NS2 simulator, an estimation on the number of event of the typical application, and

a description of the conventional CQ algorithm. A cache aware algorithm is presented

in Section 3, followed by a complexity analysis on enqueue and dequeue operations. In

section 4, experiments to verify CPU cache awareness are provided, aiming at the evaluation

of performance and its relationship with the size of event queue. Section 5 summarizes the

chapter.

2. NS2 and Calendar Queue algorithm

For the typical event-driven DES system, simulation events waiting for processing are

buffered in a queue and sorted according to their simulation time or timestamp. A simple

and natural choice is to introduce a linear list to manage the queue of event. The number

and distribution of events in the time domain hence dominate the performance of queue

management. Such performance depends on not only simulation complexity, but also the

implementation of a simulator. In order to make the issue tractable, the following analyses are

developed on the widely used network simulator NS2 [9].

48 Discrete Event Simulations – Development and Applications

The Speedup of Discrete Event Simulations by Utilizing CPU Caching 3

Scheduler

1

1

ListScheduler

NsObject

Simulator

Application

Queue TTLChecker Agent

Process

LinkDelay

CalendarScheduler

TclObjectHandler

Classifier Connector

Figure 1. The hierarchical structure of main classes of NS2 in UML schema

2.1. Event handling mechanism

Aiming at network simulating at packet level, NS2 has been developed as a platform
consisting of a comprehensive network elements by the object-oriented programming
method. Four classes of fundamental objects, named Node, Link, Agent, and Application,
are modeled for packets transporting, generating and terminating. While, functionalities such
as configuration helping, routes computing, experiment managing and so on, are put into a
global container class and named after Simulator.

Unlike Agent and Application, both Node and Link are compound classes which consist
of some other elemental objects. For example, a simplest Node contains two routing objects,
one for addressing/routing at network layer and the other for multiplexing/demultiplexing
at transport layer, both derived from the same parent class Classifier. The physical
link is modeled by Link which consists in series of three objects: Queue, LinkDelay,
and TTLChecker. The elemental classes including Agent, Queue, LinkDelay, and
TTLChecker are all derived from the parent class Connector. Together with Classifier,
Connector is derived from NsObject and Handler in turn, as depicted in Fig.1.

In the class NsObject, two abstract functions named recv() and send() are defined for
simulating packet receiving and sending, respectively. The class Handler encapsulates a
function named handle() for specific event handling. These functions are overridden in
the derived classes for different purposes. For instance, the implementation of recv() in
Classifier, ie. Classifier::recv(), is to forward the received packet to the next
object predefined by Simulator according to routing logics. Details of the implementation
mechanism of NS2 can be referred to [10].

During network simulating, a packet handling causes usually one or more elemental objects
to change their state. In most cases, the change results in at least one new event which relates
to another function Handler::handle() of the next specified object. This event-driven
invocation is managed systematically by a global sole object of Scheduler, which is
instantiated and kept by another global object of Simulator. The derived classes based on

49The Speedup of Discrete Event Simulations by Utilizing CPU Caching

4 Will-be-set-by-IN-TECH

Figure 2. The configuration node and link of NS2 and typical events written in italic

the Scheduler include ListScheduler, which implements the linear list algorithm, and
CalendarScheduler, which implements CQ and DCQ.

The event generation and consumption can be illustrated by tracing a packet transportation
along a simulation link. As it can be imaged, the end of packet transferring at a output port
of node will trigger a next serving event which will be sent back to the output queue, i.e.
Queue, in the future time of simulation. While time delay due to propagation through the
LinkDelay will create a packet arriving event which will be forwarded the input interface,
i.e. TTLChecker, of the next node later. These two kinds of events lead to invocations of the
class Queue and TTLChecker are buffered into the event queue of Scheduler, as showed
in Fig.2.

Packet generating is controlled by the object Application, which has been developed and
divided into two types which represent the stochastic generator and application simulator,
respectively. The former creates an event that will trigger packet generating of Application
recursively. The latter generates packet according to the mechanism of the simulated
application. The following discussion will focus on the former for simplicity.

2.2. Population of standing events

As mentioned above, there are 3 types of events in NS2, including packet generating, timer
and “at-event”. Packet is used to model packet’s transmission, timer to build protocol
state-machine and packet’s generator, and “at-event”to control computation. Application
and its derivations are designed to generate a flow of packets, where one or more timer(s)
is/are used to trigger the generation in a recursive manner. Queue and LinkDelay are
designed for packet forwarding and transmitting through a link connecting a pair of neighbor
nodes, respectively. Two timers are generated when a LinkDelay handles a received packet,
one for triggering packet receiving at the next node later on, the other for calling Queue
back when the LinkDelay is available for transmitting next packet buffered in the Queue.
Hopping of a packet along a link, hence, induce two consequential events.

Let hk denotes the number of hops or links over an end-to-end path indexed by k. The
number, represented by gk, of packets are generated by the corresponding Application
during One Way Delay (OWD) of the path. The total number of Application’s instances, n,
is assumed as the same as the number of paths. Then, in the context of NS2, one packet-typed
event induces 2hk timer-typed events if the packet does not drop during forwarding and

50 Discrete Event Simulations – Development and Applications

The Speedup of Discrete Event Simulations by Utilizing CPU Caching 5

transmitting. Therefore, the number N of pending events is as follows,

N =
n

∑
k=1

gk × (2hk + 1), (1)

where, k ∈ [1..n], is also the index of Applications of n concurrent traffic flows. For a
network with 100 nodes and a full mesh typed traffic pattern, n equals 9900.

For a typical traffic with bandwidth demand 1 Mbps and packet size 1000 bytes, the packet
generation rate r is 125 packet/s. Assuming the propagation delay along each link is fixed as
2 ms and each path consists of 6 hops in average, we have hk = 6 and OWD is greater than 12
ms. Then,

gk = r ×OWD = 125(packet/s) × 12(ms) = 1.5. (2)

It is easy to figure out that the number of events is approximately,

N = 9900 × 1.5 × 13 ≈ 2 × 105. (3)

Here, for simplicity, we neglect the effects of packet transmitting and queuing at an output
port. As one knows, transmitting delay is inverse proportion to the bandwidth of output link,
and it contributes an increment to OWD. Queuing can bring about packet drops and introduce
a decrement to gk during network congestion. However, as it is the result of overloading,
network congestion implies much more pending events. Therefore, the above estimated N
can be seen taken roughly as the low bound for event scheduling.

If N events are buffered in single one linear list, the average times of memory accessing for
sorted insertion is about N/2 (105). Such heavy volume of accessing can lead to much too
high time overhead. For networks with burst pattern traffics and higher traffic demands, the
speed of event scheduling becomes a critical factor for fast simulation.

2.3. The Calendar Queue scheduling

The default event scheduler of NS2 is based on Calendar Queue (CQ) algorithm, which works
similar to a desktop calendar [4]. In CQ, a bucket is used to stand for the day of year and
store a sub-list of events. Events happening on the same day, despite the deference of year, are
stored in the same bucket as shown in Fig.3.

For simplicity, 5 events, E0 to E4, are illustrated in Fig.3, whose timestamps are defined as 0,
1, 1, 3 and 16 in second. Given that the depth or size of bucket, TB, is 2 seconds in time and
one year consists of 3 buckets, the length of year, Ty, is 6 seconds. Therefore, events E0 to E2

are located in bucket B(0), E3 in B(1), and E4 in B(2) of the third year.

The bucket location or index is determined by the following arithmetic computation,

nB = ⌊(te mod Ty)/TB⌋, (4)

where, te is the timestamp of an event. E0, E1 and E2 are inserted in the bucket B(0) since
computations according to Eq.(4) result in the same value 0. Again, the computation of the
time, 16, of E4 gives a value 2, indexing the bucket B(2).

The computation of Eq.(4) is independent on the number of events in the queue, the
complexity is therefore of O(1) [4]. However, event enqueue in a single bucket works as the

51The Speedup of Discrete Event Simulations by Utilizing CPU Caching

6 Will-be-set-by-IN-TECH

Figure 3. The structural relationship between event and bucket in CQ

same way as a linear list. In the case as showed in Fig.3, the insertion of E2 will require
two extra steps of comparing. The final complexity is dominated by the sorted insertion in
the bucket unless the number of bucket is greater than the total number of events and the
distribution of event in time is uniform.

Actually, bucket plays as a container and its size determines events partitioning. The fixed
structure of bucket becomes an obstacle for performance improvement. It has been shown that
a skewed nonuniform distribution of events in the time domain can degrade the performance
of CQ [12]. Since then, several improved scheduling algorithms [1, 13, 15] have been proposed
to solve the problem of adaptability to the distribution.

In addition to the structure of bucket, there are two issues that CQ and the related improved
algorithms can not cope with readily. One is concurrent events insertion and the other is the
earliest event fetching. The former can be seen from the insertion of E2 after E1 as shown in
Fig.3. Although they have equal timestamp, logically E2 occurs later than E1 and one more
comparison is needed to insert E2. If the number of concurrent events is huge, say 9900 as
cited in Eq.(3), a large number of comparisons are needed. The latter can be illustrated via
E4’s fetching. After E3 departing, a CQ scheduler will carry out 6 times of bucket access
across two years, then reach E4. This is more complex than a linear list, in which the earliest
event is always located at the head.

As is seen, CQ and the related improved algorithms do not take the modern structure of
processor into considerations, especially high speed CPU caches. It has been demonstrated
that a cache aware algorithm can speedup greatly an application that involves heavy
data-retrieving [2, 5]. In the following section, we provide a fast cache aware scheduling
algorithm to accelerate the simulation of large scale communication networks.

3. The cache aware scheduling

3.1. Data structure for event partitioning

Similar to CQ, the algorithm with cache awareness belongs to the category of partitioning
list. Two lists work in a correlated manner, one for DES events and named event queue (Qe),
and the other for indexing the sub-list of DES events and named digest queue (Qd). Qe is
organized the same as a linear list, while Qd is implemented in an array structure acts as a

52 Discrete Event Simulations – Development and Applications

The Speedup of Discrete Event Simulations by Utilizing CPU Caching 7

Figure 4. Event digests and their relationship with DES events

ring-typed buffer. The element of Qd, called digest, is used to index the tail of a sub-list of Qe,
as depicted in Fig.4.

A digest Dj contains a time delimiter tm and an event pointer ptr to the corresponding DES
event of a sub-list. In Fig.2, D0 is the digest of the sub-list (E0, E1), and Dj is the digest of the
sub-list (Ei, ..., Ek−1). The time delimiter of digest is defined as follows,

tm = ⌊g × ts⌋ (5)

where the coefficient g is used to control the size of sub-list, and ts is the timestamp of the
corresponding event. If g = 1, in unit of timestamp, a sub-list consists of only those events
with the same timestamp. For g > 1, events happen within g interval are indexed by a digest
pointing to the latest of them. In effect, the configurable coefficient g is analog to bucket size of
CQ. The difference is that two successive digests need not have their tm contiguous. In other
words, Dj+1 → tm - Dj → tm is allowed to be greater than 1×g. This makes our sub-list more
adaptive to event distribution in the time domain.

The value of ptr of a digest is the address of corresponding DES event. The function of this
address is two-fold, one for heading of the next sub-list, the other for tailing of the current
sub-list. The reason why the ptr points to the tail of a sublist is to avoid repeating comparisons
for concurrent events with the same time-stamp. This situation happens more frequently in
case simulation parameters, ex. bandwidth or link delay, are configured with the same value.

3.2. Enqueue and dequeue operations

As described in Algorithm 1, inserting a new DES event, or ENQUEUE, is a little more
complex operation than a linear list. There are 6 significant steps in ENQUEUE operation,
including,

• to calculate the time maker, x, of the new DES event, according to Eq.(4);

• to find the target sub-list by comparing x with each digest of Qe;

• to sort and insert the new event into the sub-list by InsertList();

• to replace the digest if the new event is inserted at the tail, otherwise;

• to update the digest if digest queue is full, otherwise;

• to create a digest and insert it into digest ring buffer by InsertDigQueue().

53The Speedup of Discrete Event Simulations by Utilizing CPU Caching

8 Will-be-set-by-IN-TECH

Algorithm 1: ENQUEUE operation over a non-empty digest queue

input : A new event new, a DES event list headed by H, and a digest ring headed by h
and tailed by t.

output: Updated event list and digest ring.

x ←− ⌊g × new → ts⌋;
list ←− H;
for j ←− h to t do /*To find the target sub-list*/

if D[j] → tm > x then
break;

end

end
if j != h then

j ←− j − 1;
list ←− D[j] → ptr;

end
InsertList (list, new);
if D[j] → tm == x then /*To check the time maker of the digest*/

if list → ts <= new → ts then /*To replace the end of sub-list*/
(D[j] → ptr) ←− new;
return;

end

else if t + 1 ==h then /*To update the digest*/
(D[j] → ptr) ←− new;
(D[j] → tm) ←− x;

else /*To create a digest and insert it at (j+1)-th of the digest ring */
InsertDigQueue (new, x, j + 1);

end

Since an array structure is used for the digest queue, the conventional ring-buffer access
method can be adopted to implement InsertDigQueue(). The function InsertList()
is, however, the same as that for a linear list.

The event departure or DEQUEUE operation is simply as a linear list, as shown in Algorithm
2. The function FetchList() is to fetch the head of DES event list, and the following block
of codes to update the variable h is to remove the first of digest queue. The extra processing
on the head is used to keep the correctness of digesting.

Algorithm 2: DEQUEUE operation when digest queue is not empty

input : An event queue Qe, and a digest ring headed by h.
output: The earliest event evt.

evt ←− FetchList(Qe);

if D[h] → ptr == evt then
h ←− h + 1;

end

54 Discrete Event Simulations – Development and Applications

The Speedup of Discrete Event Simulations by Utilizing CPU Caching 9

3.3. Cache awareness and computational complexity

The difference between a cache aware algorithm and CQ is the way to partition events into
sub-lists. For the cache aware algorithm, an array of digest is designed to index sub-lists
and works as a ring buffer. In the ENQUEUE operation, both sub-list searching and digest
inserting (InsertDigQueue()) execute at first over the array.

Generally speaking, a fixed array of data is with great possibility allocated by the memory
management of an OS to be continuously distributed in the memory space. This locality is
feasible for fast accessing by a processor with caches. Caches are fast memories in which a
block of data around the request are loaded from the main memory. The caching operation is
benefit to the future requests if they locate in the loaded block. The ratio, β, of access latency of
main memory to cache, is usually greater than 10. Therefore, an optimum data structure and
its accessing can be designed to utilize the benefit. Two types of approach have been used in
designing, one is to access cache directly by instructions based on the hardware structure, the
other is to design a deliberate data structure and access them as locally as possible. The former
promises better performance but less applicable for different hardware structures, while the
latter is cache awareness and has a better compatibility for general purposes.

Buckets of CQ/DCQ embedded in NS2 are allocated by an array and can assure locality. But
this locality can not make use of the benefit of caching, because the bucket determination for
event searching is computed directly and has no relationship with buckets’ allocation.

For the cache aware algorithm, the target sub-list is searched via the digest queue Qd. If whole
of Qd can be loaded into caches, the searching can speed up β times. Therefore, the complexity
of sub-list searching is equivalent to O(m

2β). For an average distribution of event in time, the

size of each sub-list bing n
m , the complexity of InsertList() is then O(n

2m). This leads to
the complexity of O(m

2β) + O(n
2m) for an ENQUEUE operation. The optimum condition is as

follows,
m =

√

βn. (6)

Consequently, the lowest complexity of ENQUEUE is O(
√

n
β), twice as that of CQ configured

with m =
√

βn buckets. However, for the case of a sub-list consists of concurrent events with
the same timestamp, the cache aware algorithm has an advantage over CQ since that the tail
of sub-list is indexed. Sublist searching of the algorithm is of O(1) while that of CQ goes up of

O(
√

n
β).

As for DEQUEUE operation, the cache aware algorithm is equivalent to remove the head of
a list. The complexity is O(1) and it is independent on the distribution of event in time. As a
conclusion, the algorithm is better than CQ.

4. Implementation and performance evaluations

4.1. Description of implementation

The cache aware algorithm has been implemented within an extended class
CacheScheduler which is derived from the existing ListScheduler. Two functions,
insert() and deque(), are overridden, and some helper functions appended.
Modifications are based on the NS with version 2.33 and should be compatible with

55The Speedup of Discrete Event Simulations by Utilizing CPU Caching

10 Will-be-set-by-IN-TECH

the most of other versions because no change is required except a config modification for
Simulator is required to select CacheScheduler rather than CalendarScheduler in
default.

Two fixed array are defined in the class CacheScheduler, one named key_ with type of
unsigned int for digest’s time, the other named event_ with type of Event * for digest’s
pointer. Two variable members, head_ and tail_, are defined to index the ring-typed buffer.
The coefficient g in Eq.(5) is represented by the third variable member pricision_, and the
size of digest by the last size_.

The overridden function deque() is defined in c++ as following,

01 Event* CacheScheduler::deque() {
02 Event *e = queue_;
03 if (e)} {
04 queue_ = e->next_;
05 if (event_[head_] == e) {
06 event_[head_] = 0;
07 key_[head_] = 0;
08 head_ = ++head_ % size_;
09 }
10 }
11 return (e);
12 }

where, the variable member queue_ points to the head of DES event list. The condition
(event_[head_] == e) is for checking whether it should remove the head of digest queue
or not. The c++ codes of the function insert() is showed as following,

01 Event* CacheScheduler::insert(Event *e) {
02 Event **p;
03 unsigned int idx, key;
04 double t = e->time_;
05
06 key = t * pricision_;
07 idx = findDigest(t, key, p);
08
09 for(;* p != 0; p = &(*p)->next_)
10 if (t < (*p)->time_) break;
11
12 e->next_ = *p;
13 *p = e;
14
15 insertDigest(t, key, idx, *p);
16 }

where, the functions findDigest() and insertDigest()operate over the array key_ and
event_. The function findDigest() results the pointer p of sublist of DES event after

56 Discrete Event Simulations – Development and Applications

The Speedup of Discrete Event Simulations by Utilizing CPU Caching 11

which the new should be inserted, and the index idx of the sublist in the digest queue. The
c++ codes of findDigest() is defined as,

01 unsigned int CacheScheduler::findDigest(double t, \\
02 unsigned int key, Event **& p) {
03 unsigned int idx = head_;
04
05 for (; idx != tail_; idx++, idx %= size_)
06 if (key_[idx] >= key) break;
07
08 if (idx == head_) { // is it at head
09 p = &queue_;
10 return idx;
11 }
12
13 if (idx == tail_ || event_[idx]->time_ > t) {
14 // go to the tail of previous sub-list
15 idx = idx + size_ - 1;
16 idx %= size_;
17 }
18
19 p = (Event**)event_[idx];
20 return idx;
21 }

Codes in the above from Line 05 to 06 are to find out the sublist that the event timestamped
with key should be contained. Codes from Line 08 to 10 are to handle the special case of
the first sublist, and codes from Line 13 to 17 are introduced to compensate tail pointing
mechanism used in sublist digesting, considering that the head of a sublist is equivalent to
the tail of its previous one.

The insertion function insertDigest() is little more complex as listed in the following,

01 void CacheScheduler::insertDigest(double t, unsigned int key, \\
02 unsigned int idx, Event *e) {
03 unsigned int tmp = (tail_+1) % size_; // target of tail moving
04
05 if (tmp == head_) { // buffer is full
06 ...
07 } else if (head_ == tail_) { // buffer is empty
08 ...
09 } else if (key_[idx] == key) { // replace only
10 if (event_[idx]->time_ <= t)
11 event_[idx] = e;
12 } else if (!e->next_) { // append at tail
13 key_[tail_] = key;
14 event_[tail_] = e;

57The Speedup of Discrete Event Simulations by Utilizing CPU Caching

12 Will-be-set-by-IN-TECH

15 tail_ = tmp;
16 } else { // in the middle
17 idx = ++idx % size_;
18 if (key_[idx] > key) { // insert a new element
19 if (tail_ > idx) { // right moving
20 for (tmp = tail_; tmp > idx; tmp--) {
21 key_[tmp] = key_[tmp-1];
22 event_[tmp] = event_[tmp-1];
23 }
24 tail_ = ++tail_ % size_;
25 } else { // left moving
26 head_ --;
27 idx --;
28 for (tmp = head_; tmp < idx; tmp++) {
29 key_[tmp] = key_[tmp+1];
30 event_[tmp] = event_[tmp+1];
31 }
32 }
33 } // end of moving
34 key_[tmp] = key;
35 event_[tmp] = e;
36 }
37 }

There are 5 conditional branches in the function insertDigest(), the 1st (omitted at Line
06) and 2nd (omitted at Line 08) handle the buffer of digest with full and empty, respectively.
The 3rd case is that the new digest has the same digest time as an existing one, os replacing
is required. The 4th is identified in order to avoid the complex operations as defined in
the 5th case. The last case involves element movings over an array and can lead to much
more memory accesses. Such processing is, however, executing on a memory area that can
be allocated continually or locally. The time overhead of insertDigest() can be hence
reduced by the benefit of CPU caching, as discussed in the section 3.

The variables precision_ and size_ dominate the dynamics of cache aware scheduling.
The bigger the precision_ is, the longer the sub-list of DES event tends to be. The optimal
value depends on the population of standing events and distribution in the time domain.
However, size_ can be determined according to the size of CPU caches.

4.2. Experiment environment and results

For simplicity in performance evaluation, simulation experiments are carried out over a
random network with 100 nodes, each node connects to 6 others being selected randomly.
Simulation configurations are coded in a Tools Command Language (TCL) script. Every link
of the network is configured with fixed bandwidth 155 Mbps and fixed propagation delay
2 ms. A Constant Bit Rate (CBR) generator with demand bandwidth 10 Mbps and packet
size 1000 bytes is assigned for each traffic flow and kept active during simulation time from
0.01 to 2.0 seconds. The number of flows varies from 99, i.e. one node is chosen to generate
packets to the rest, to 9900, i.e. a full mesh-typed flow pattern is arranged. Before putting into

58 Discrete Event Simulations – Development and Applications

The Speedup of Discrete Event Simulations by Utilizing CPU Caching 13

computations, the simulated network is examined and replaced by a regenerated topology
until it is fully connected. In order to make the experiment more generalized, the simulated
network topology is built randomly. The number of network nodes and the pattern of traffics
are adjustable.

Figure 5. Computational time and speedup factor over CQ VS traffics (in unit of 99 flows)

Num. of List Calendar Cache Speedup
traffic flows (ms) (ms) (ms) factor

1×99 2,273 1,517 1,086 1.40
10×99 238,797 19,245 14,455 1.33

20×99 2,523,570 203,784 34,991 5.82

30×99 6,916,930 1,144,140 63,792 17.94
40×99 11,862,000 621,804 99,360 6.26

50×99 17,934,800 1,692,130 140,996 12.00

60×99 26,835,100 1,159,060 192,093 6.03
70×99 38,388,600 3,712,680 257,185 14.44

80×99 48,637,600 2,880,920 330,402 8.72

90×99 - 10,459,600 410,934 25.45
100×99 - 18,573,400 501,229 37.06

Table 1. Computational times of three scheduling algorithms and speedups of the proposed (Cache) to
CQ

Table 1 and Fig.5 show the computational time spending for simulations T versus the number

of traffic flows, for CQ (Calendar), the cache aware (Cache) and the linear list (List) schedulers.

Experiments are carried out on a personal computer with a Intel(R) Pentium(R) 4 typed CPU

with 2.93 GHz in frequency and 1024 kB in cache size. The computational time is evaluated

by invoking TCL predefined command clock at 0.0 and 2.0 seconds in the simulation time.

It can be seen from Fig.5 that the cache aware algorithm is always faster than CQ and the

maximum speedup factor reaches 37.

59The Speedup of Discrete Event Simulations by Utilizing CPU Caching

14 Will-be-set-by-IN-TECH

Fig.6 shows the computational time varying with the size of digest queue, for the case

configured with a cache aware scheduler and 30 sources, i.e. 99 × 30 = 2970 flows. Since a

ring-buffer management is used in the cache aware algorithm, the actual capacity of the queue

is one smaller than its literal size. The condition with the queue sized 1 means to disable the
digest queue, and the cache aware algorithm is degraded and equivalent to the linear list. The

condition with the queue sized 2 allows only one digest which always points to the tail of DES

event list. Experiment results on the size of digest queue are also listed in Tab.2.

size 1 2 3 4 8 16 32 64
T(ms) 4,052,043 4,131,210 1,929,621 281,398 64,113 63,186 64,140 63,109

Table 2. Computational time (T) varies with the size of digest queue

From Fig.6 and Tab.2, it can be concluded that a cache aware algorithm makes use of the

benefit of CPU caches when the size of digest queue is greater than 16. It is can be seen also

that the speedup efficiency relies on the size of cache-line rather than the size and topology of

the simulated network. The detailed analysis is given in the next section.

Figure 6. Computation time VS digest queue size

4.3. Effectiveness of CPU caching

The result of the experiment indicates that the cache aware algorithm can speedup DES event

scheduling for large scale networks. Continuously allocated digest queue in memory is benefit

to fully use the feature of caching. Meanwhile, the digest queue acts as a classifier to partition

DES event list into sub-lists with a shorter length, and hence reduce the searching time of

ENQUEUE operations.

The digest in the cache aware algorithm is managed by two variables, key_ and Event_,

each 4 bytes in length. Hence, a digest queue with size 16 occupies 128 bytes in the main

memory. This is exactly equivalent to 128-byte sized L2 cache line of the processor [8] used

in experiments. The dropping approaching the size 16 shown in Fig.6 coincides with the

CPU L2 caching capability. Therefore, the algorithm is cache-line awareness for the CPU chip

employed in our experiments. This means that computation time reduction remains nearly

constant when the size of digest queue increases over that of cache line, i.e., 8 elements or 64

bytes, roughly 10 as showed in experiments. In this condition, missing in single a cache line

causes a regular main memory access so that the contribution of CPU caching is saturated.

60 Discrete Event Simulations – Development and Applications

The Speedup of Discrete Event Simulations by Utilizing CPU Caching 15

The algorithm provided in this chapter is not the best that can fully utilize the capability of

CPU resources since that the design of digest queue and operations have no knowledge of

CPU’s microstructure. However, a further improvement that depends on the specific CPU

products will bring a serious issue in compatibility. The trade-off between performance and
compatibility needs extensive investigations and relates to the application field of discrete

event simulations.

5. Conclusion

Discrete event simulation method has been employed in various research fields for exploring

a complex or large system numerically. The applicability of this kind of simulation method

relies in large on the computation speed. In this chapter, fast event scheduling approaches

for simulations of large scale networks is discussed. The typical simulation procedures

are described according to NS2 platform, followed by a brief analysis of the conventional

Calendar Queue algorithm. Based on the list partitioning method, a digest queue on the fixed

array structure is introduced to partition and index the sub-list of DES events. The double-list

structure can utilize the benefit of caching mechanism of modern CPU chips.

Details of enqueue and dequeue algorithm are given and the complexity analysis is presented.

Also, developments based on the open-source NS2 software are showed for the algorithm
implementation. In order to verify the benefit of cache awareness to speedup simulation, we

report computational experiments over an on-shelf personal computer. It is shown that the

performance of a cache aware algorithm is considerably better than the conventional Calendar

Queue. Experiment results show that the cache aware algorithm makes simulation faster

by up to a factor of 37. The improvement in computation efficiency is applicable for any

ordinary network topology and traffic pattern since the randomized topologies and patterns

are employed in our experiments.

For simplicity, the algorithm’s design and implementation are focused on the network

simulation with all traffics assumed over UDP/IP protocol stacks. As for the simulation

involves in TCP connection, events used for protocol machine controlling, such as those for

time-out processing, bring numbers of canceling operations into event scheduling. The event

cancelation in the queue based on the ring-typed buffer should result in more computational

complex than that of convectional algorithms. A better solution, we think, is to put these

"at-events" being significant for the local network node into a separate object from the global

event scheduler. This separation is not only benefit in speedup to the scheduler but also to

parallel enabler.

On the other hand, the advancement of multi-core architecture of CPU deserves to be verified

whether the proposed algorithm can utilize caches of multi-core chip as well. Moreover, it’s

valuable to study multi-core technology to achieve parallel speedup in the meantime.

Author details

Wennai Wang and Yi Yang

Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University

of Posts and Telecommunications, China

61The Speedup of Discrete Event Simulations by Utilizing CPU Caching

16 Will-be-set-by-IN-TECH

6. References

[1] Ahn, J. & Seunghyun, O. [1999]. Dynamic calendar queue, Annual Simulation Symposium,
pp. 20–25.

[2] Askitis, N. & Sinha, R. [2007]. Hat-trie: a cache-conscious trie-based data structure
for strings, Proc. of the thirtieth Australasian conference on Computer science - Volume 62,
Australian Computer Society, Inc., Darlinghurst, Australia, pp. 97–105.

[3] Banks, J. [1999]. Introduction to simulation, Proceedings of the 31st conference on Winter
simulation: Simulation—a bridge to the future - Volume 1, WSC ’99, ACM, New York, NY,
USA, pp. 7–13.
URL: http://doi.acm.org/10.1145/324138.324142

[4] Brown, R. [1988]. Calendar queues: A fast O(1) priority queue implementation for the
simulation event set problem, Communications of the ACM 31(10): 1220–1227.

[5] Chiueh, T. & Pradhan, P. [1999]. High performance ip routing table lookup using cpu
caching, INFOCOM, pp. 1421–1428.

[6] Chung, K., Sang, J. & Rego, V. [1993]. A performance comparison of event calendar
algorithms: an empirical approach, Softw. Pract. Exper. 23: 1107–1138.

[7] Fujimoto, R. [1999]. Parallel and distributed simulation., Winter Simulation Conference’99,
pp. 122–131.

[8] Hinton, G., Sager, D., Upton, M., Boggs, D., Carmean, D., Kyker, A. & Roussel, P. [2001].
The microarchitecture of the pentium 4 processor, Intel Technology Journal 5(1): 1–13.

[9] Issariyakul, T. & Hossain, E. [2008]. Introduction to Network Simulator NS2, 1 edn, Springer
Publishing Company, Incorporated.

[10] Fall, K. & Varadhan, K. [2009]. The ns manual.
URL: http://www.isi.edu/nsnam/ns/ns-documentation.html

[11] Park, H. & Fishwick, P. A. [2011]. An analysis of queuing network simulation using
gpu-based hardware acceleration, ACM Trans. Model. Comput. Simul. 21(18): 1–22.

[12] Siangsukone, T., Aswakul, C. & Wuttisittikulkij, L. [2003]. Study of optimised bucket
widths in calendar queue for discrete event simulator, Proc. of Thailand’s Electrical
Engineering Conference (EECON-26), Phetchaburi, pp. 6–7.

[13] Tan, K. L. & Thng, L. [2000]. Snoopy calendar queue, Winter Simulation Conference,
pp. 487–495.

[14] Varga, A. & Hornig, R. [2008]. An overview of the omnet++ simulation environment,
Simutools ’08: Proceedings of the 1st international conference on Simulation tools and techniques
for communications, networks and systems & workshops, ICST, Brussels, Belgium, pp. 1–10.

[15] Yan, G. & Eidenbenz, S. [2006]. Sluggish calendar queues for network simulation, Proc.
of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS’06), Monterey, CA, USA, pp. 127–136.

62 Discrete Event Simulations – Development and Applications

