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Abstract

In this chapter we investigate the distributed estimation of linear-invariant systems with
network-induced delays and packet dropouts. The methodology is based on local
Luenberger-like observers combined with consensus strategies. Only neighbors are
allowed to communicate, and the random network-induced delays are modeled as
Markov chains. Then, the sufficient and necessary conditions for the stochastic stability
of the observation error system are established. Furthermore, the design problem is
solved via an iterative linear matrix inequality approach. Simulation examples illustrate
the effectiveness of the proposed method.

1. Introduction

The convergence of sensing, computing, and communication in low cost, low power devices is

enabling a revolution in the way we interact with the physical world. The technological

advances in wireless communication make possible the integration of many devices allowing

flexible, robust, and easily configurable systems of wireless sensor networks (WSNs). This

chapter is devoted to the estimation problem in such networks.

Since sensor networks are usually large-scale systems, centralization is difficult and costly due

to large communication costs. Therefore, one must employ distributed or decentralized esti-

mation techniques. Conventional decentralized estimation schemes involve all-to-all commu-

nication [1]. Distributed schemes seem to fit better. In this class of schemes, the system is

divided into several smaller subsystems, each governed by a different agent, which may or

may not share information with the rest. There exists a vast literature that study the distributed

estimation for sensor networks in which the dynamics induced by the communication network

(time-varying delays and data losses mainly) are taken into account [2–10]. Millan et al. [6]
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have studied the distributed state estimation problem for a class of linear time-invariant

systems over sensor networks subject to network-induced delays, which are assumed to have

taken values in ½0, τM�.

One of the constraints is the network-induced time delays, which can degrade the performance

or even cause instability. Various methodologies have been proposed for modeling and stability

analysis for network systems in the presence of network-induced time delays and packet drop-

outs. The Markov chain can be effectively used to model the network-induced time delays in

sensor networks. In Ref. [11], the time delays of the networked control systems are modeled by

using the Markov chains, and further an output feedback controller design method is proposed.

The rest of the chapter is organized as follows. In Section 2, we analyze the available delay

information and formulate the observer design problem. In Section 3, the sufficient and neces-

sary conditions to guarantee the stochastic stability are presented first and the equivalent LMI

conditions with constraints are derived. Simulation examples are given to illustrate the effec-

tiveness of the proposed method in Section 4.

Notation: Consider a network with p sensors. Let υ ¼ f1, 2,⋯, pg be an index set of p sensor

nodes, ε⊂υ · υ be the link set of paired sensor nodes. Then the directed graph G ¼ ðυ, εÞ

represents the sensing topology. The link ði, jÞ implies that the node i receives information from

node j. The cardinality of ε is equal to l. Define q ¼ gði, jÞ as the link index. Ni ¼ fj∈υjði, jÞ∈εg

denotes the subset of nodes that communicating to node i.

2. Problem formulation

Assume a sensor network intended to collectively estimate the state of a linear plant in a

distributed way. Every observer computes a local estimation of the plant's states based on local

measurements and the information received from neighboring nodes. Observers periodically

collect some outputs of the plant and broadcast some information of their own estimation. The

information is transmitted through the network, so network-induced time delays and drop-

outs may occur.

In this work, the system to be observed is assumed to be an autonomous linear time-invariant

plant given by the following equations:

xðkþ 1Þ ¼ AxðkÞ (1)

yiðkÞ ¼ CixðkÞ ∀i ¼ 1, 2,⋯, p, (2)

where xðkÞ∈Rn is the state of the plant, yiðkÞ∈R
mi is the system's outputs and p is the number of

the observers. Assume ðA,CÞ is observable, where C ¼ ½C1,⋯,Cp�.

Besides the system's output yiðkÞ, observer i receives some estimated outputs ŷijðkÞ ¼ Cijx̂j

from each neighbor j∈Νi. The matrix Cij is assumed to be known for both nodes. Define Ci as

a matrix stacking the matrix Cj and the matrices Cij for all j∈Νi. It is assumed that ðA,CiÞ is

observable ∀i.
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2.1. Delays modeled by Markov chains

The communication links between neighbors may be affected by delays and/or packet drop-

outs. The equivalent delay τijðkÞ∈N (or τqðkÞ, with q ¼ gði, jÞ∈f1,⋯, lg) represents the time

difference between the current time instant k and the instant when the last packet sent by j

was received at node i. The delay includes the effect of sampling, communication delay, and

packet dropouts. The number of consecutive packet dropouts and network-induced delays are

assumed to be bounded, so τijðkÞ is also bounded.

The Markov chain is a discrete-time stochastic process with Markov property. One way to

model the delays is to use the finite state Markov chain as in Refs. [7–9]. The main advantages

of the Markov model are that the dependencies between delays are taken into account since in

real networks the current time delays are usually related to the previous delays [8]. In this note,

τijðkÞ (∀i, j∈Ni) are modeled as l different Markov chains that take values in W ¼ f0, 1,⋯, τMg.

And their transition probability matrices are Λq ¼ ½λqrs�, q ¼ 1, 2,⋯, l. That means τijðkÞ jump

from mode r to s with the probability λqrs:

λqrs ¼ Pr
�

τqðkþ 1Þ ¼ sjτqðkÞ ¼ r
�

, q ¼ 1, 2,⋯, l; (3)

where λqrs ≥ 0 and ∑
τM

s¼0
λqrs ¼ 1 for all r, s ∈ W .

Remark 1: In the real network, the network-induced delays are difficult to measure. Using the

stochastic process to model the delays is more practical. For sensor networks, the communica-

tion link between different pairs of nodes is also different, so the data may experience different

time delays. It is more reasonable to model the delays by different Markov chains.

2.2. Observation error system

The structure of the observers described in the following is inspired by that given in Ref. [6].

To estimate the state of the plant, every node is assumed to run an estimator of the plant's

state as:

x̂iðkþ 1Þ ¼ Ax̂iðkÞ þMi

�

ŷiðkÞ−yiðkÞ
�

þ ∑
j∈Ni

Nij

�

Cijx̂j

�

k−τijðkÞ
�

−Cijx̂i

�

k−τijðkÞ
�� (4)

ŷiðkÞ ¼ Cix̂iðkÞ, ∀i ¼ 1, 2,⋯, p, (5)

The observers’dynamics are based on both local Luenberger-like observers weighted with Mi

matrices, and consensus with weighting matrices Nij, which takes into account the information

received from the neighboring nodes.

The observation error of observer i is defined as eiðkÞ ¼ x̂iðkÞ−xðkÞ. From Eqs. (1)–(5), the

dynamics of the observation errors can be written as:
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eiðkþ 1Þ ¼ ðAþMiCiÞeiðkÞ− ∑
j∈Ni

NijCij ·

ei

�

k−τijðkÞ
�

þ ∑
j∈Ni

NijCijej

�

k−τijðkÞ
� (6)

Define eðkÞ ¼ ½ eT1 ðkÞ eT2 ðkÞ ⋯ eTp ðkÞ �
T , XðkÞ ¼ ½ eTðkÞ eTðk−1Þ ⋯ eTðk−τMÞ �

T , then we

have the observation error system:

Xðkþ 1Þ ¼
�

Ψ ðΜÞ þΦ
�

Ν, τ1ðkÞ,⋯, τlðkÞ
��

XðkÞ (7)

where

Ψ ðΜÞ ¼

ϕðΜÞ 0 ⋯ 0 0

I 0 ⋯ 0 0

0 I ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ I 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

Φ
�

Ν, τ1ðkÞ,⋯, τlðkÞ
�

¼

φ
�

Ν, τ1ðkÞ,⋯, τlðkÞ
�

0

⋮

0

2

6
6
6
6
4

3

7
7
7
7
5

,

φðΜÞ ¼

AþM1C1 0 0 0

0 AþM2C2 0 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ AþMpCp

2

6
6
6
4

3

7
7
7
5

φ
�

Ν, τ1ðkÞ,⋯, τlðkÞ
�

¼ φ1

�

Ν, τ1ðkÞ
�

þ⋯þ φl

�

Ν, τlðkÞ
�

,

φq

�

Ν, τqðkÞ
�

¼ ½ 0 ⋯ 0 Πq 0 ⋯ 0 �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

the

�

1þτqðkÞ

�

−th element is Πq

, q ¼ 1, 2,⋯, l:

(8)

Πq are block matrices in correspondence with each of the links q communicating the observer i

with j, in which the only blocks different from zero are −NijCij and NijCij in the ði, iÞ and ði, jÞ

positions, respectively. M ¼ fMi, i∈υg, N ¼ fNij, i∈υ, j∈Nig are observer matrices to be

designed.

Remark 2: The observation error system (Eq. (7)) depends on the delays τ1ðkÞ,⋯, τlðkÞ. This

makes the analysis and design more challenging. The objective of this note is to design the

observers to guarantee the stochastic stability of Eq. (7).

Definition 1 [7]: The system in Eq. (7) is stochastically stable if for every finite X0 ¼ Xð0Þ, initial

mode τ1ð0Þ,⋯,
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τlð0Þ∈W , there exists a finite Ζ > 0 such that the following holds:

Ε

�

∑
∞

k¼0
‖XðkÞ‖

2
�

�

�X0 ,τ1ð0Þ,⋯,τlð0Þ

�

< X0
T
ΖX0 (9)

3. Observers’ design

In this section, we first derive the sufficient and necessary conditions to guarantee the stochas-

tic stability of system (Eq. (7)) with Definition 1. For ease of presentation, when the system's

delays are

τ1ðkÞ ¼ r1, ::: , τlðkÞ ¼ rlðr1, ::: rl ∈ WÞ, (10)

we denote Φ
�

Ν, τ1ðkÞ,⋯, τlðkÞ
�

as ΦðΝ, r1,⋯, rlÞ.

Theorem 1: Under the observer (Eqs. (4) and (5)), the observation error system (Eq. (7)) is

stochastically stable if and only if there exists symmetric Pðr1, r2,⋯, rlÞ > 0 such that the

following matrix inequality:

Lðr1, r2,⋯, rlÞ ¼ ∑
τM

s1¼0
∑
τM

s2¼0
⋯ ∑

τM

sl¼0
λ1r1s1λ1r2s2⋯λ1rlsl

· ½Ψ ðΜÞ þΦðΝ, r1, r2 ,⋯, rlÞ�
TPðs1, s2,⋯, slÞ

· ½Ψ ðΜÞ þΦðΝ, r1, r2,⋯, rlÞ�−Pðr1, r2,⋯, rlÞ < 0

(11)

holds for all r1, r2,⋯, rl∈W .

Proof: Sufficiency: For the system Eq. (7), construct the Lyapunov function

V
�

XðkÞ, k
�

¼ XðkÞTP
�

τ1ðkÞ, τ2ðkÞ,⋯, τlðkÞ
�

XðkÞ (12)

Calculating the difference of V
�

XðkÞ, k
�

along system Eq. (7) and taking the mathematical

expectation, we have

Ε

n

Δ

�

V
�

XðkÞ, k
��o

¼ Ε

n

V
�

Xðkþ 1Þ, kþ 1
�

−V
�

XðkÞ, k
�o

¼ Ε

n

Xðkþ 1ÞTP
�

τ1ðkþ 1Þ,⋯, τlðkþ 1Þ
�

Xðkþ 1Þ:jXk,τ1ðkÞ¼r1 ,⋯,τlðkÞ¼r

o

−XðkÞTP
�

τ1ðkÞ,⋯, τlðkÞ
�

XðkÞ

(13)

Define τ1ðkþ 1Þ ¼ s1,⋯, τlðkþ 1Þ ¼ sl. To evaluate the first term in Eq. (13), we need to apply

the probability transition matrices for τ1ðkÞ ! τ1ðkþ 1Þ,⋯, τlðkÞ !

τlðkþ 1Þ, those are Λq,q ¼ 1, 2,⋯, l.
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Then, Eq. (13) can be evaluated as

Ε
n

Δ
�

V
�

XðkÞ, k
��o

¼ XðkÞT
n

∑
τM

s1¼0
∑
τM

s2¼0
⋯ ∑

τM

sl¼0
λ1r1s1λ1r2s2⋯λ1rlsl

· ½Ψ ðΜÞ þΦðΝ, r1 , r2,⋯, rlÞ�
TPðs1, s2,⋯, slÞ

· ½Ψ ðΜÞ þΦðΝ, r1, r2,⋯, rlÞ�−Pðr1, r2,⋯, rlÞ
o

·XðkÞ (14)

Thus, if Lðr1, r2,⋯, rlÞ < 0, then

Ε
n

Δ
�

V
�

XðkÞ, k
��o

¼ XðkÞTLðr1, r2,⋯, rlÞXðkÞ

≤−λmin

�

−Lðr1, r2,⋯, rlÞ
�

XðkÞTXðkÞ

≤−β‖XðkÞ‖
2

(15)

where β ¼ inf
n

λmin

�

−Lðr1, r2,⋯, rlÞ
�o

> 0. From Eq. (15), we can see that for any T≥1

Ε
n

V
�

XðT þ 1Þ,T þ 1
�o

−Ε
n

VðX0, 0Þ
o

≤−βΕ

�

∑
T

t¼0
‖XðtÞ‖

2
� (16)

Then we have

Ε

�

∑
T

t¼0
‖XðtÞ‖

2
�

≤
1

β

�

ΕfVðX0, 0Þg−Ε
n

V
�

XðT þ 1Þ,T þ 1
�o�

≤
1

β
ΕfVðX0, 0Þg

¼
1

β
Xð0ÞTP

�

τ1ð0Þ,⋯, τlð0Þ
�

Xð0Þ

(17)

According to Definition 1, the observation error system Eq. (7) is stochastically stable.

10 Necessity: For necessity, we need to show that if the system Eq. (7) is stochastically stable, then

there exists symmetric Pðr1,⋯, rlÞ > 0 such that Eq. (11) holds. It suffices to prove that for any

12 bounded Q
�

τ1ðkÞ,⋯, τlðkÞ
�

> 0, there exists a set of P
�

τ1ðkÞ,⋯, τlðkÞ
�

such that

∑
τM

s1¼0
∑
τM

s2¼0
⋯ ∑

τM

sl¼0
λ1r1s1λ1r2s2⋯λ1rlsl

· ½Ψ ðΜÞ þΦðΝ, r1, r2,⋯, rlÞ�
TPðs1, s2,⋯, slÞ

· ½Ψ ðΜÞ þΦðΝ, r1, r2,⋯, rlÞ�−Pðr1, r2,⋯, rlÞ
¼ −Qðr1, r2,⋯, rlÞ

(18)

13 Define
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XðtÞT~P
�

T−t, τ1ðtÞ,⋯, τlðtÞ
�

XðtÞ

¼ Ε

�

∑
T

k¼t

XðkÞTQ
�

τ1ðkÞ,⋯, τlðkÞ
�

XðkÞjXt ,τ1ðtÞ,⋯,τlðtÞ

�

(19)

Assuming that XðkÞ≠0, since Q
�

τ1ðkÞ,⋯, τlðkÞ
�

> 0, as T increases, XðtÞT~P
�

T−t, τ1ðtÞ,⋯, τlðtÞ
�

XðtÞ is monotonically increasing, or else it increases monotonically until Ε
n

XðkÞTQ
�

τ1ðkÞ,⋯,

τlðkÞ
�

XðkÞjXt,τ1ðtÞ,⋯,τlðtÞ

o

¼ 0 for all k ≥ k1 ≥ t. From Eq. (9), XðtÞT~P
�

T−t, τ1ðtÞ,⋯, τlðtÞ
�

XðtÞ is

bounded. Furthermore, its limit exists

XðtÞTPðr1,⋯, rlÞXðtÞ

¼ lim
T!∞

XðtÞT~P
�

T−t, τ1ðtÞ ¼ r1,⋯, τlðtÞ ¼ rl

�

XðtÞ

¼ lim
T!∞

Ε

�

∑
T

k¼t

XðkÞTQ
�

τ1ðkÞ,⋯, τlðkÞ
�

XðkÞjXt,τ1ðtÞ,⋯,τlðtÞ

�

(20)

Since it is valid for any XðtÞ, we have

Pðr1,⋯, rlÞ ¼ lim
T!∞

~P
�

T−t, τ1ðtÞ ¼ r1,⋯, τlðtÞ ¼ rl

�

: (21)

10 From Eq. (20), we obtain Pðr1,⋯, rlÞ > 0 since Q
�

τ1ðkÞ,⋯, τlðkÞ
�

> 0. Consider

Ε

n

XðtÞT~P
�

T−t, τ1ðtÞ,⋯, τlðtÞ
�

XðtÞ−Xðtþ 1ÞT

· ~P
�

T−t−1, τ1ðtþ 1Þ,⋯, τlðtþ 1Þ
�

Xðtþ 1Þ

1212
jXt ,τ1ðtÞ¼r1,⋯,τlðtÞ¼rl

o

1414
¼ XðtÞTQðr1,⋯, rlÞXðtÞ: (22)

1616 The second term in Eq. (22) equals to

Ε

n

Xðtþ 1ÞT~P
�

T−t−1, τ1ðtþ 1Þ, τ2ðtþ 1Þ,⋯, τlðtþ 1Þ
�

·Xðtþ 1ÞjXt,τ1ðtÞ¼r1 ,τ2ðtÞ¼r2,⋯,τlðtÞ¼rlg

1818 ¼ XðtÞT
�

∑
τM

s1¼0
∑
τM

s2¼0
⋯ ∑

τM

sl¼0
λ1r1s1λ1r2s2⋯λ1rlsl

2020

· ½Ψ ðΜÞ þΦðΝ, r1, r2 ,⋯, rlÞ�
T~PðT−t−1, s1,⋯, slÞ

2222 · ½Ψ ðΜÞ þΦðΝ, r1, r2,⋯, rlÞ�

�

XðtÞ (23)

2424 Substituting Eq. (23) into Eq. (22) gives rise to
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XðtÞT
n

~P
�

T−t, τ1ðtÞ,⋯, τlðtÞ
�

− ∑
τM

s1¼0
∑
τM

s2¼0
⋯ ∑

τM

sl¼0
λ1r1s1λ1r2s2⋯λ1rlsl

· ½Ψ ðΜÞ þΦðΝ, r1, r2,⋯, rlÞ�
T~PðT−t−1, s1,⋯, slÞ

· ½Ψ ðΜÞ þΦðΝ, r1, r2,⋯, rlÞ�
o

XðtÞ

¼ XðtÞTQðr1, r2,⋯, rlÞXðtÞ (24)

Letting T ! ∞ and noticing Eq. (21), it is shown that Eq. (11) holds. This completes the proof.

As it is clearly seen from Eq. (11) that the matrix inequality to be solved in order to design the

observers is nonlinear. To handle this, Proposition 1 gives the equivalent LMI conditions with

nonconvex constraints. It can be solved by several existing iterative LMI algorithms. Product

reduction algorithm in Ref. [10] is employed to solve the following conditions.

Proposition 1: There exist observers Eqs. (4) and (5) such that the observation error system

Eq. (7) is stochastically stable if and only if there exists matrices ϕðΜÞ, φ1ðΝ, r1Þ,

φ2ðΝ, r2Þ,⋯,φlðΝ, rlÞ, and symmetric matrices Χðs1, s2,⋯, slÞ > 0, Pðr1, r2,⋯, rlÞ > 0, satisfying
�

−Pðr1, r2,⋯, rlÞ Vðr1, r2,⋯, rlÞ
T

Vðr1, r2,⋯, rlÞ −Χðr1, r2,⋯, rlÞ

	

< 0 (25)

Χðs1, s2,⋯, slÞPðs1, s2,⋯, slÞ ¼ I (26)

for all r1,⋯, rl∈W , with

Vðr1,⋯, rlÞ ¼ ½V0ðr1,⋯, rlÞ
T

⋯ VτMðr1,⋯, rlÞ
T �T

Vs1ðr1,⋯, rlÞ ¼ ½Vs1,0ðr1,⋯, rlÞ
T

⋯ Vs1,τMðr1,⋯, rlÞ
T �T

Vs1s2ðr1,⋯, rlÞ ¼ ½Vs1s2,0ðr1,⋯, rlÞ
T

⋯ Vs1s2,τMðr1,⋯, rlÞ
T �T

⋮

Vs1⋯sl−1ðr1,⋯, rlÞ ¼

ðλ1r1s1⋯λlrl0Þ
1
2½Ψ ðΜÞ þΦðΝ, r1,⋯, rlÞ�

ðλ1r1s1⋯λlrl1Þ
1
2½Ψ ðΜÞ þΦðΝ, r1,⋯, rlÞ�

⋮

ðλ1r1s1⋯λlrlτMÞ
1
2½Ψ ðΜÞ þΦðΝ, r1,⋯, rlÞ�

2

6

6

6

4

3

7

7

7

5

Χðr1,⋯, rlÞ ¼ diag



Χ0ðr1,⋯, rlÞ,⋯,ΧτMðr1,⋯, rlÞg
Χs1ðr1,⋯, rlÞ ¼ diagfΧs1 , 0ðr1,⋯, rlÞ,⋯,Χs1, τMðr1,⋯, rlÞg

⋮

Χs1⋯sl−1 ðr1,⋯, rlÞ ¼ diagfΧðs1,⋯, slÞ,⋯,Χðs1,⋯, slÞg:

(27)

Proof: As we know Χðs1,⋯, slÞ > 0, we have Χðr1,⋯, rlÞ > 0 by the construction of it. By

applying the Schur complement, Eq. (25) is equivalent to

−Pðr1,⋯, rlÞ þ Vðr1,⋯, rlÞ
TΧ−1ðr1,⋯, rlÞVðr1,⋯, rlÞ < 0 (28)

Since Χðs1,⋯, slÞ ¼ Pðs1,⋯, slÞ
−1, we can derive Eq. (11).
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4. Numerical example

Consider a plant whose dynamics is given by:

xðkþ 1Þ ¼

�

0:99 0
0 1:01

	

xðkÞ: (29)

.Assume the network has two nodes, with two links, one is from node 1 to node 2, and the other

is from node 2 to node 1. The matrices are given as follows:

C1 ¼ ½ 1 0 �, C2 ¼ ½ 1 1 �,
C12 ¼ C2, C21 ¼ C1,

(30)

The random delays are assumed to be τqðkÞ∈f0, 1gðq ¼ 1, 2Þ, and their transition probability

matrices are given by

Λ1 ¼

�

0:4 0:6
0:5 0:5

	

, Λ2 ¼

�

0:3 0:7
0:4 0:6

	

: (31)

.Figure 1 shows part of the simulation run of the delay τ2ðkÞ governed by its transition

probability matrix Λ2.

By using Proposition 1, we design the observers with the following matrices:

M1 ¼

�

−0:9900

0:0673

	

, M2 ¼

�

−0:4620

−0:5387

	

,

N12 ¼

�

0:0071

0:3865

	

, N21 ¼

�

0:1320

−0:1347

	 (32)

The initial values of the plant and the observers are xð0Þ ¼ ½ 2 0:5 �T , x̂1ð0Þ ¼ x̂2ð0Þ ¼ ½ 0 0 �T

and x̂1ð−1Þ ¼ x̂2ð−1Þ ¼ ½ 0 0 �T . Figure 2 represents the evolution of the plant's states (solid lines)

Figure 1. The random delays τ2ðkÞ.
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and the estimated states (dashed lines) for observer 2. It is observed that the estimation of the

observers converge to the plant's state.

5. Conclusion

This chapter addresses the problem of distributed estimation considering random network-

induced delays and packet dropouts. The delays are modeled by Markov chains. The

observers are based on local Luenberger-like observers and consensus terms to weight the

information received from neighboring nodes. Then the resulting observation error system is a

special discrete-time jump linear system. The sufficient and necessary conditions for the sto-

chastic stability of the observation error system are derived in the form of a set of LMIs with

nonconvex constraints. Simulation examples verify its effectiveness.
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