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1. Introduction 

The calculation of a ground electrode resistance, using a two layer soil model, has been 

widely presented in literature. Several methods had been used. Formulas for grid in two 

layers soil using the synthetic-asymptote approach have been developed in (Salama et al., 

1995). Berberovic explored the Method of Moments in the calculation of ground resistance, 

using higher order polynomials approximation in the unknown current distribution in 

(Berberovic et al., 2003), and the Galerkin’s Moment Method with a variation was used in 

(Sharma & De Four, 2006). Another theoretical tool commonly used is the Boundary 

Element Method, as in (Colominas et al., 1998, 2002a, 2002b; Adriano et al., 2003). These 

authors transformed the differential equation that governs the physical phenomenon into an 

equivalent boundary integral equation. The Matrix/Integration Method for calculating the 

mutual resistance segment in one and two layered soil was adopted by (Coa, 2006) and an 

optimised method of images for multilayer soils was used in (Ma et al., 1996). Even in the 

study of ionization phenomena, the two layer ground model was used in (Liu et al., 2004). In 

general these works used the theory of images, which implies infinite series for the 

expanded Green function as in (Berberovic et al., 2003). Recently, a work presented the effect 

of low resistance materials filling in a pit surrounding a rod, working with two different soil 

resistivity’s (Al-Arayny et al., 2011). This type of research was also presented in (Zhenghua 

et al., 2011), that even considered the use of electrolytic materials. A Finite Element Method 

(FEM) application to grounding can also be found in (Manikandan et al., 2011) to the 

analysis of wind turbines grounding. In this chapter the FEM is presented in a theoretical 

basis for cylindrical symmetry problems, using a ground rod resistance calculation as an 

example. Comparison with experimental result is also made. 

This chapter presents the Finite Element Method for the calculation of a rod resistance in a 

two layer soil. Theoretical basis of the method are presented. The FEM mesh was tested in 
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homogeneous soil, first a cylindrical approach to IEEE model was considered, in order to 

guarantee that mesh is voltage and energy adapted, and then the whole model was 

discretized. Resistance was calculated using Joule’s law in a FEM energetic approach. The 

zero volt Dirichlet boundary was located within a distance of 3 cm, 15 cm and 7.6 m from 

the ground electrode, to analyze if the resistance relations indicated by IEEE in 

homogeneous soil could be also used in a two layer soil. The simulated results were 

compared with those obtained from Tagg formula. In homogeneous soil the errors are less 

than 1%. In two layer soil, resistance error to Tagg formula decreased from values of 28% 

with zero volt boundary at 3 cm to 22% with zero volt boundary at 15 cm; for the whole 

model discretized the error is near -18%. The results were unsatisfactory, thus the 

percentage resistances at these distances cannot be generalized in a two layer soil. However 

the error between simulated and field measured values is of 4.6%, turning the FEM analysis 

a valuable simulation tool. 

2. Finite element method 

The first order finite elements method using triangular elements may be regarded as two-

dimensional generalizations of piecewise-linear approximation techniques as in reference 

(Sylvester & Ferrari, 1990), widely used in Electrical Engineering. The method allows several 

choices for mesh types and an easy treatment for boundary shapes. 

Several problems in electrical engineering require the solution of Laplace equation in two or 

three dimensions with two kinds of boundary conditions, such as prescribed potential values 

along the referred boundaries, Dirichlet conditions, and vanishing normal derivative along 

the symmetry planes, Neumann condition. As an example, in power system grounding, 

where capacitive and inductive effects are not considered, since industrial frequency is too 

low, the soil potential satisfies Laplace equation. On the other hand grounding systems 

dimensions are much smaller than power line wavelength, so that propagation phenomenon 

is not considered. Laplace equation solution is equivalent, according to the minimum 

potential energy principle, to the following energy (  W u ) functional minimization, that 

stores field energy per unit volume, as in (Sylvester & Ferrari, 1990): 

 
21

( )
2 V

W u u dV   (1) 

where u  i s  the  potential and V  the  volume. 

The integral is evaluated over all the volume defined by the problem boundary. 

2.1. Discretization 

In Fig. 1 the IEEE model for a ground rod is presented. The boundary conditions within a 

distance of 7.6 m from the electrode have zero potential. At surface, normal derivative 

potential is also zero, since there is no current flowing in the air. 



 
The IEEE Model for a Ground Rod in a Two Layer Soil – A FEM Approach 145 

 

Figure 1. IEEE model as in  (IEEE Std 142, 2007) 

Due to isotropy, the problem was discretized in the ‘rz’ plane, since cylindrical coordinates 

were used. To obtain an approximate solution by FEM the problem region is subdivided 

into triangular elements. The solution mesh is presented in Fig. 2, near the rod top end. 

 

Figure 2. Model discretization near rod top end 

2.2. First order triangular elements 

The essence of the method lies in first approximating the potential u within each element in 

a standardized fashion, and thereafter interrelating the potential distribution in the various 

elements so as to constrain the potential to be continuous across interelement boundaries, as 
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in reference (Sylvester & Ferrari, 1990). This standardized fashion is done using a first order 

polynomial for potential within each element, which is the approximate solution to the 

actual one. 

 ( , )u r z a br cz    (2) 

The true potential distribution is thus replaced by a piecewise planar function and within 

each triangle side, potential is obtained by a linear interpolation of node potentials. 

Considering a generic triangular finite element, as shown in Fig. 3, equation (2) must satisfy 

node potentials. Using the equation in the three nodes a system is obtained, allowing the 

constants ‘a’, ‘b’ and ‘c’ to be calculated as functions of node potentials. 

 
1 1 1

2 2 2

3 3 3

U a br cz

U a br cz

U a br cz

  
  
  

 (3) 

where U1, U2 and U3 are node potentials. 

 

Figure 3. Finite element with nodes numbered 

Using Cramer´s rule the referred constants are easily obtained. The formula for ‘a’ is: 
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r z

r z

  (4) 

The denominator is recognized as twice the triangle area (2A) as in reference (Sylvester & 

Ferrari, 1990). It must be pointed that this formula was found by integration so that area 

become negative if the nodes are clockwise numbered. Equation (2) is useful when node 
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potentials are already known. In order to calculate these potentials is useful to represent 

potential within the element as a function of nodes potentials, so equation (2) became: 

 

     
     
     
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1 2 2 1 1 2 2 1 3

2
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r z r z z z r r r z U

                   
 
        

 (5) 

The factors multiplying nodes potentials, after being divided by 2A, are known as shape 

functions, so we can rewrite previous equation using these functions. 

        1 1 2 2 3 3, , , ,u r z r z U r z U r z U      (6) 

Or in a more elegant manner: 

    
3

1

, ,i i
i

u r z U r z


  (7) 

Shape functions have two important properties; 

1. Their value is one in the associated node and zero in the two others. 

2. In any point inside the finite element their sum is one. 

The finite element energy can now be calculated using equation (1). Node potentials, 

although unknown, are constants so the potential gradient is 

  
3

1

,i i
i

u U r z
 


   (8) 

The energy can now be evaluated, using equation (8) and (1). Considering that the integrand 

has nine sums, due to the square of potential gradient, energy functional for a single 

element is: 

  
3 3

1 1

1
.

2
e

i j i jV
i j

W u U U dV 
 

 
     (9) 

Integrating by decomposition: 

  
3 3

1 1

1
. .

2
e

i i j jV
i j

W u U dV U 
 

 
      (10) 

Defining the S variable as: 

 .ij i jV
S dV 

 
     (11) 
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As shape functions are first degrees polynomials, gradients are constants, such as their inner 

product, so the integral is obtained by the calculus of the revolution volume of the finite 

element, which is 2 cr  where cr  is the centroid radius. The S variable became: 

1. For equal index 

 
   2 2

2 3 2 3
11 2
e

c

z z r r
S r

A


  
  (12) 

2. For different index 

 
       2 3 3 1 3 2 1 3

12 2
e

c

z z z z r r r r
S r

A


    
  (13) 

The remaining terms are obtained by index cyclic rotation. The finite element energy is 

finally represented as: 

   1

2
e TW u U SU  (14) 

where S is a 3x3 matrix and U the nodes potential vector. 

2.3. Elements assembly 

The total energy model is the sum of all finite elements energy. Consider the following two 

elements with disjoint nodal numbering: 

 

Figure 4. Disjoint numbering of finite element nodes 

The nodes potential vector is: 

 1 2 3 4 5 6
T
disU U U U U U U

 
  
  

 (15) 
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The disS  matrix is formed by the elementary elements matrices. 

 disS
 

  
 

1

2

S 0

0 S
 (16) 

This matrix is tridiagonal and is called the Dirichlet matrix, as in reference (Sylvester & 

Ferrari, 1990). The energy of the two elements is: 

   1

2
T
dis dis disW u U S U  (17) 

Potentials continuity implies that the values for the same node are equal. So potential at 

node three is equal to potential at node six, in Fig. 4, and so on. It can be defined a global 

nodal numbering for element assembly illustrated in Fig. 5. 

 

Figure 5. Global node numbering 

The potential continuity for corresponding nodes will be guaranteed by a linear 

transformation that relates disjoint nodes numbering with global numbering. In this case it 

would be: 
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     

 (18) 

In all cases would be: 

 dis conjU CU  (19) 

Introducing this relation in equation (15) it can be obtained an energy formulation in 

function of global numbering nodal potentials. 
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   1
.

2
T
conj conjW u U SU  (20) 

with 

 T
disS C S C  (21) 

In order to minimize energy expression  W u , it is necessary to calculate the derivative, in 

equation (21), with respect to potential vector and solve the equation 

 0SU   (22) 

Also, in order to avoid trivial solution 0U   the S matrix should be partitioned in blocks, as 

well as potential vector: 

 0n
n k

k

U
S S

U

   
   

    
 (23) 

Where nU  is a vector of unknown node potentials and kU  is the known potential vector. 

Unknown potential nodes must be the first to be numbered and after the known potentials 

that satisfy boundary conditions. The nS  and KS  dimensions must allow matrix 

multiplication. Final solution for the unknown potential is given by: 

 1
n n K KU S S U   (24) 

This FEM solution is called stored energy approach. 

2.4. Electric field 

Knowing the node potentials, the constants in equation (8) are easy to find as well as the 

electric field strength, which is given by: 

 E b c ji


  


 (25) 

3. IEEE model in homogeneous soil 

The analysis of a ground rod was carried out with first order triangular finite element only in 

the 3 cm near the rod, since 25 % of the rod resistance is within this region as in reference (IEEE 

Std 142, 2007). This avoids the discretization of the IEEE entire model with a zero volt boundary 

condition at 7.6 m away from the rod, being the rod resistance four times the calculated value. 

3.1. The IEEE model for cylindrical region 

In order to test the FEM mesh, it was considered only the cylindrical region in homogeneous 

soil. This problem has a theoretical solution, since it is considered as two cylinders centered 
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in the same axis. The inner cylinder has the rod radius and the outer cylinder has a 3 cm 

radius, which is the zero volt boundary condition. The finite elements are shown in Fig. 6. 

The voltage at any point between the cylindrical surfaces is easily obtained by: 

 0( ) ln
ln

b
b r
a

V
v r   (26) 

with ‘b’ the outer cylinder radius, ‘a’ the inner cylinder radius, and 0V  the potential 

difference applied between the cylindrical surfaces. 

With ‘b’=3 cm, ‘a’=8 mm and a voltage difference of 220 V between the two cylinders, 

equation (27) becomes: 

 0.03( ) 166.4 ln
r

v r   (27) 

where ‘r’ is the distance to common axis. 

The numerical values for voltage were calculated by FEM. For 2 m length cylinders, the 

potential at 1 cm away from the common axis is presented in Fig. 7. 

 

Figure 6. Cylindrical region Discretization 

The potential is almost constant along a parallel line 1 cm away from rod axis, as expected. 

In the first point its potential is 183.2 V and the last has the value of 182.1 V. The potential 

variation with the distance to axis ‘r’ is presented in Table 1. 
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Distance (m) 
Theoretical value 

(Volt) 

Mean value 

(Volt) 

Mean error 

(%) 

Maximum error 

(%) 

0.01 182.9 182.6 -0.2 -0.4 

0.014 126.9 126.6 -0.2 -0.6 

0.021 59.4 59.3 -0.2 -0.2 

Table 1. Potential variation between cylindrical surfaces 

 

Figure 7. Potential along a parallel line 1 cm away from rod axis 

The obtained figures for potential at distances of 1.4 cm and 2.1 cm are similar to Fig. 7. It 

was concluded that this mesh is voltage adapted. For the resistance between the two 

cylinders was used the FEM energetic approach given by (Martins & Antunes, 1997), 

 
2 2

2
JOULE

V

v v
R

P E dV
 


 (28) 

where v  is the voltage between the cylinders,   the conductivity of the material between 

the two cylinders, E  the electric field intensity and V  the revolution volume due to axial 

symmetry, generated by each finite element. The obtained value for the electric resistance 

was 20.8 Ω considering a medium with 200 Ωm for the resistivity. That value should be 

compared with the theoretical value for the resistance between two cylinders given by 

(Purcell, 1998): 
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 ln
2

b
R

L a




  (29) 

with P  the electric resistivity, L  the length, b  the outer surface radius and a  the inner 

cylindrical radius. 

The value given by equation (30) is 21.0 Ω. The simulated value of 20.8 Ω is 1% less, which 

allows the conclusion that the mesh is also adapted in energy. 

3.2. The complete IEEE model 

To achieve the discretization of the entire IEEE model the mesh was altered in the rod 

bottom as shown in Fig. 8. Triangular finite elements have inner angles greater than 5º 

avoiding triangle areas close to zero, allowing stiffness matrix to be well defined. 

 

Figure 8. Bottom rod FEM discretization 

For a rod with these dimensions the Dwight formula (Dwight, 1936) gives a value for 

resistance of 94.0 Ω. According to the standard (IEEE Std 142, 2007), this formula has 13% 

excess, so the corrected theoretical value is 83.2 Ω. The FEM simulated value for resistance, 

with the zero volt boundary at 0.03 m, is 20.8 Ω, representing 25 % of total resistance, so the 

numerical simulated value is four times 20.8 which results in 83.2 Ω. This value is equal to the 

theoretical one. 
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4. IEEE model in a two layer soil 

4.1. Zero volt equipotential at 3 cm 

As in previous examples, it was supposed that the Dirichlet border was 3 cm away from 

the rod axis, accounting for 25% of rod resistance, a supposition that needs validation in 

a two layer soil. The results, for a 2 m length rod, 8 mm radius, buried at ground level, 

with an upper soil layer of 100 Ωm resistivity, and a 500 Ωm resistivity in the lower 

layer, are summarized in Table 2. Theoretical resistance was obtained using Tagg 

formula, as in reference (Tagg, 1964). The results are unacceptable. The assumption that 

25% of resistance in a two layer soil is also in the first 3 cm is probably wrong. 

Changing the values of the layers resistivity for the same rod, the results are presented 

in Table 3. 

The results are acceptable but would be better if they were greater than the theoretical ones, 

as a safe margin. 

 

Upper layer 

thickness (m) 

Theoretical 

resistance (Ω) 

FEM simulated 

value x4 (Ω) 
error (%) 

0.5 134 104 -22.4 

1.0 93.4 69.4 -25.7 

1.5 72.0 52.0 -27.8 

Table 2. Resistance variation for positive voltage reflexion coefficient 

 

Upper layer 

thickness (m) 

Theoretical 

resistance (Ω) 

FEM simulated 

valuex4  (Ω) 
error (%) 

0.5 60 51.9 -13.5 

1.0 77 69.1 -10.3 

1.5 114 103 -9.6 

Table 3. Resistance variation for negative voltage reflexion coefficient 

4.2. Zero volt equipotential at 15 cm 

The zero volt Dirichlet border was moved to 15 cm, where in homogeneous soil remains 

50 % of the rod resistance. The mesh was changed improving the rod bottom 

discretization as shown in Fig. 2. The results in Table 4 were obtained for a 2 m length 

rod, 8 mm radius, buried at ground level, with an upper soil layer of 100 Ωm resistivity, 

and a 500 Ωm resistivity in the lower layer. The analysis of the results shows that the 

errors are quite high. The assumption that the first 15 cm contain 50 % of rod resistance 

seems to be incorrect. Interchanging the values of the layers resistivity, new results were 

obtained, and are shown in Table 5. In this case the errors are acceptable bur not 

conservative. 
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Upper layer 

thickness (m) 

Theoretical 

resistance (Ω) 

FEM simulated 

value x2 (Ω) 
error (%) 

0.6 124 103 -17 

1.2 83.4 67.1 -20 

1.8 63.4 49.6 -22 

Table 4. Resistance variation for positive voltage reflexion coefficient 

 

Upper layer 

thickness (m) 

Theoretical 

resistance (Ω) 

FEM simulated 

value x2 (Ω) 
error (%) 

0.6 62.8 59.0 -6 

1.2 89.1 85.3 -4 

1.8 162 154 -5 

Table 5. Resistance variation for negative voltage reflexion coefficient 

4.3. IEEE entire model discretization 

In the last simulation the IEEE whole model was discretized. The complete solution mesh is 

presented in Fig. 9. 

In order to validate the mesh, it was used the same conductance for all finite elements. It 

was chosen the value of 0.005 S/m. With this value the used rod, 2 m length and 8 mm 

radius, has a resistance, using Dwight formula, of 94 Ω. According to IEEE, this formula has 

a 13% excess to real value that should be of 83 Ω. The computer program developed 

returned a value of 87 Ω, which is 4.4 % higher than IEEE value, making the mesh 

sufficiently accurate. 

The next step was to simulate a two layer soil model, with an upper soil layer of 100 Ωm 

resistivity, and a 500 Ωm resistivity in the lower layer. The results are presented in the 

Table 6. 

 

Upper layer 

thickness (m) 

Theoretical 

resistance (Ω) 

FEM simulated 

value (Ω) 
error (%) 

0.5 134 118 -11.9 

1.0 93.4 81.4 -12.8 

1.5 72.0 62.0 -13.9 

Table 6. Resistance variation for positive voltage reflexion coefficient 

Interchanging the values of resistivity layers, new results were obtained and are shown 

in Table 7. The results are acceptable, unfortunately by default. The last one is 

surprisingly high, but within 20% of theoretical value. It can be concluded than FEM 

meshes can provide useful results, considering the whole IEEE model in discretizing the 

problem. 
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Figure 9. Entire IEEE model discretization 

 

Upper layer 

thickness (m) 

Theoretical 

resistance (Ω) 

FEM simulated 

value (Ω) 
error (%) 

0.5 60 52.6 -12.5 

1.0 77 66.7 -13.4 

1.5 114 93.2 -18.3 

Table 7. Resistance variation for negative voltage reflexion coefficient 

5. Field measurements 

In order to experimentally validate the model, resistivity measurements were done in a 

sandy soil. The obtained values are presented in Table 8. 

 

Distance (m) 0.5 1 2 3 4 5 6 8 

Resistance (Ω) 552 207 41 7 4 2 3 2 

Resistivity (Ωm) 1734 1301 515 132 101 63 113 108 

Table 8. Resistivity variation with depth 

The distance referred in the first row is the distance between test rods in Wenner 

method, as in (Telford et al., 1990). The resistivity curve is presented in Fig. 10. To 

choose a value for top layer resistivity, it was considered only the first resistivity 

measurement, since it wasn’t found an upper asymptote. For bottom layer resistivity it 

�2 0 2 4 6 8

�9

�8

�7

�6

�5

�4

�3

�2

�1

0



 
The IEEE Model for a Ground Rod in a Two Layer Soil – A FEM Approach 157 

was considered the average resistivity value of the last four points values, which are 

almost in a horizontal line. The average value is 94.5 Ωm. The upper layer thickness is 

obtained considering the point where concavity changes. The three first points are 

almost in a straight line, and concavity is detected only after the third point. It was 

considered the point where resistivity curve crosses the 400 Ωm ordinate where 

abscissae seem to be 2.3 m. Using this value in Lancaster-Jones rule one obtains 

(Lancaster-Jones, 1930): 

 
3

2.3
2

h
  (30) 

The upper layer thickness ‘h’ is 1.53 m. This value was rounded to 1.5 m. 

The ground rod was discretized as indicated in Fig. 9. The measured value was 108 Ω and 

the simulated value using FEM is 113 Ω, which is 4.6 % higher. The equipotential lines were 

calculated and presented in Fig. 11. 

Equipotential lines in bottom layer are closer to rod, since this layer has a smaller resistivity. 

 

Figure 10. Resistivity measurements with depth 
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Figure 11. Equipotential lines with depth for a 2 m rod 

6. Conclusions 

In this chapter the Finite Element Method for the calculation of a rod resistance in a two 

layer soil was presented. The developed meshes were tested in homogeneous soil and in a 

cylindrical problem, which has theoretical solutions, and they are well adapted considering 

potential distribution or energy dissipation. 

In homogeneous soil, 25% of rod resistance is in the 3 cm rod closest soil, according with 

IEEE and as validated in this work. 

For an upper layer soil, with resistivity smaller than the resistivity of the lower layer soil, the 

assumption that 25% of rod resistance is in the nearest 3 cm and 50% in the nearest 15 cm is 

wrong and cannot be generalized.  

For an upper layer soil, with resistivity bigger than the resistivity of the lower layer soil, the 

assumption that 25% of rod resistance is in the nearest 3 cm and 50% in the nearest 15 cm is 

acceptable, but the results are not conservative.  

Discretizing the whole IEEE model allowed obtaining results with less than 20% error, but 

these results are not conservative. The whole mesh was tested considering equal resistivity, 

obtaining results similar to the ones gotten from the homogeneous soil simulation. 

The comparison with the field measurement is good, since simulated value for resistance is 

only 4.6% higher. 
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