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Abstract

This review evaluated the effects of nitrogen (N) fertilization and conservation tillage sys-
tems on SOC stocks. N fertilizer additions had significant positive impact on SOC content,
but themagnitude of this effect differed as a result of varying cropping systems: as cropping
intensity increased, measured SOC content between fertilized and control treatment also
increased. Significant differences ofmeasured SOCstockswere detected between no till and
conventional till, as well as reduced till and conventional till. However, no significant
difference was observed between reduced till and no till. The differences of measured SOC
content between no till and conventional till appeared to be significantly associated with
treatment duration. Crop rotation system, soil texture, and mean annual precipitation did
not have significant effects on SOC stocks produced from conventional tillage to no till. The
results of this study confirmed that adoption of N fertilizer additions and conservational
tillage systems can contribute to increased SOC level and thereby have the potential to
mitigate the enhanced greenhouse gas effect. However, the evaluation of net carbondioxide
mitigation potential of these two recommended management practices should be carried
out under a full carbon cycle analysis from carbon input to carbon output.

Keywords: soil organic carbon, nitrogen fertilization, no till, conventional till,
agricultural productivity

1. Introduction

Modern agricultural practices, both agricultural extensification and intensification, have wide-

spread negative environmental impacts such as biodiversity loss, damage to the environment,

and degradation of critical ecosystem services [1]. Global climate change has been considered

as one of the most pressing challenges that humans face in the 21st century [2]. As one of the

major greenhouse gases (GHG), atmospheric CO2 contributes substantially to global climate
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change. Since the industrial revolution, CO2 concentration in the atmosphere has increased

from 280 ppmv (parts per million by volume) to 391 ppmv in 2011 [3]. In Europe, agricultural

land use has been estimated to be the largest biospheric source of carbon emission, with a total

carbon loss of 300 Mt C yr�1 (Mt C = million tons of carbon) [4].

As one of the main options to mitigate global climate change, carbon sequestration can remove

CO2 by transferring CO2 from the atmosphere to the terrestrial biosphere [5, 6]. Terrestrial

ecosystems can sequester CO2 through photosynthesis and store or release carbon in four

fundamental carbon pools (reservoirs with the capacity to store and release carbon) including

aboveground biomass, belowground biomass, soil, and dead organic matter. Soil is the largest

terrestrial carbon pool, which includes two major components: soil organic carbon (SOC) and

soil inorganic carbon (SIC). However, most studies have been focused on SOC because SOC is

the main component in most terrestrial ecosystems, and because SOC is the key factor of soil

fertility and vegetation production [7]. According to the Intergovernmental Panel on Climate

Change (IPCC) report, the terrestrial SOC contains about two times the amount of carbon

stored in the atmosphere and vegetation [2].

Depending on land use and management practices, agricultural soils can act as a potential

sink or source for atmospheric CO2 [8–10]. Land conversions from natural to agricultural

ecosystems can release large amounts of carbon [11]. It has been estimated that 50% of SOC

in the top 20 cm depth of soil and 25–30% in the top 100 cm depth can be released following

30–50 years of land conversion to agriculture [12–14]. Agricultural cultivation of soil by

plowing or other conventional tillage methods can also release CO2 into the atmosphere,

causing the decline of SOC pool [15]. With increasing demand for food and other living

resources, agricultural intensification is generally seen as a necessary step to meet the joint

food and environmental challenges [1]. Therefore, the way in which we design agricultural

management practices has been considered as one of the most important strategies when

trying to combat global climate change [14].

Recommended management practices (RMPs) are suggested as one of the principal ways in

promoting SOC sequestration in agricultural soils [16]. By adopting RMPs, global SOC

sequestration was estimated to vary from 0.4 to 0.8 Pg C yr�1, which accounted for 33–100%

of the total SOC sequestration potential in the world [17]. Some studies have reviewed the

effects of different agricultural management practices on SOC stocks [8, 13, 16, 18–21]. Lal

et al. [16] showed that if land management practice was designed properly, U.S. agricultural

lands can be a major sink for carbon sequestration with the total carbon sequestration

potential of 75–208 MMt C yr�1 (MMt C = million metric tons of carbon). West and Marland

[20] used a full carbon cycle analysis (calculates both carbon input and carbon output) to

compare carbon sequestration, carbon emissions, and net carbon flux associated with various

tillage practices in the United States. VandenBygaart et al. [21] reviewed long-term studies in

Canada to assess the influence of different management practices on SOC stocks. Estimates

and uncertainties of the changes in SOC stock were compiled and utilized to estimate CO2

emissions from agricultural soils around the world.

Among all RMPs, nitrogen (N) fertilization management and conservation tillage systems

are two of the most highly recommended management practices in increasing SOC stocks in

Maize Germplasm – Characterization and Genetic Approaches for Crop Improvement68



the agricultural soils, therefore having the potential to reduce the net CO2 emissions into the

atmosphere [22–25]. The major mechanism of N fertilizer addition in increasing SOC storage

is through increases in crop yield and biomass production. In turn, more crop residues could

be returned to the soil. In fact, the amount of crop residues returned to the soil is positively

related to the amount of carbon sequestered [26–28]. Nonetheless, nitrogen fertilization’s

effect on SOC concentration varies among site-specific management, soil type, and climatic

conditions [29, 30].

By definition, conservation tillage is any system that maintains at least 30% of crop residue

on the soil surface with minimum or no tillage [31, 32]. The impact of various tillage systems

on SOC content has been studied widely in field experiments. Lal et al. [9] reported a SOC

sequestration potential of 24–40 Mt C yr�1 if adopting conservation tillage in the agricultural

soils of the United States. No-till was estimated to emit less CO2 (137 kg C ha�1) than

conventional tillage (168 kg C ha�1), indicating that management practice from conventional

tillage to no-till can enhance carbon sequestration [22]. No till often means more plant

residue on the soil surface and less water and energy exchange between soil surface and the

atmosphere. Hence, no till creates a system that favors SOC accumulation [33]. There are

variations in the amount of carbon sequestration by no till practices due to differences in

practice duration, climate conditions, soil types, crop rotation intensity, and management

factors [32].

Several field studies have reported SOC stock changes as a result of nitrogen fertilization or

conservation tillage management; however, data from such studies only provide site-specific

examples of management impacts [30]. To gain a better understanding of management

impacts on SOC stocks, a meta-analysis that compares and integrates the results from multiple

studies is required [34]. There are several field studies that look at the effect of land manage-

ment practices on SOC stocks since 2000. But there is no recent review after 2000. Therefore, a

synthesis of studies published since 2000 will add new evidence to the effect of land manage-

ment practices on SOC stocks. Furthermore, many of the recent reviews estimating carbon

sequestration potential of cropland management practices have focused on European studies

and little work has been done on the U.S. context. Another limitation in some of the reviews

that examined management effects on SOC content is often based on studies that measure SOC

stocks changes in the surface soil (<30 cm) [25]. For example, Baker et al. [35] criticized that

higher SOC stocks as a result of no-till systems were almost always associated with soil

samples collected above 30 cm. Therefore, a critical review that considers soil depth is very

much needed to help validate no-till effects on SOC accumulation [36]. To my knowledge, such

study is generally lacking.

The objective of this paper is to quantify the effects of N fertilization and conversion of

management practice from conventional tillage (CT) to no till (NT) on soil organic carbon

stocks in the United States. This will be accomplished by compiling available long-term

experimental data from peer-reviewed journals. More specifically, the major goals of this

review are twofold: (1) analyze the effects of N fertilization and tillage systems on SOC stocks,

respectively, and (2) determine the main factors that can affect the response of SOC content to

N fertilization and contrasting tillage systems.
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2. Methods

2.1. Data sources and calculations

I used Google Scholar and Web of Science to search peer-reviewed literature between 2000 and

2014 with the keywords “nitrogen fertilization,” “till or tillage,” “soil organic carbon,” “manage-

ment practices* soil carbon.” Studies on the effect of nitrogen fertilization and tillage systems on

SOC stocks from literature search were filtered to include only studies carried out in the agricul-

tural soils of the conterminous United States. Any study included in the analysis had to meet the

following criteria: (1) experiment set-up in the field had to be clearly stated, including the start

and end dates of the study or duration of the treatment, soil sampling depth, the amount of

nitrogen fertilizer applied in the field over time, tillage system used, etc. (2) SOC stocks per unit

area or SOC concentrations and soil bulk density had to be reported. (3) Changes in SOC stocks

or SOC concentrations and soil bulk density had to be attributed to different nitrogen application

rates or to contrasting tillage systems. (4) No crop residue removal should have occurred over

the study period.

Data from reviewed papers were extracted. For fertilizer and tillage experiments, a control

treatment is contrasted with an alternative treatment. For fertilizer experiments, I compared

unfertilized (control) treatment with fertilized. There were 145 paired comparisons of mea-

sured SOC stocks between fertilized and control treatments. For tillage experiments, there

were a total of 187 paired comparisons with contrasting tillage system: no tillage management

was practiced in 186 paired-experiments, conventional tillage was practiced in 187 paired-

experiments, and reduced till was applied in 38 paired-experiments. The key independent

variable, total nitrogen applied, was calculated by adding up the amount of nitrogen fertilizer

applied each year over the study period. For some studies, nitrogen application was not

applied at a constant rate; then, the total amount of nitrogen fertilizer applied was calculated

by adding up the actual application rate across the duration of experiment. Otherwise, total

nitrogen applied was calculated by multiplying nitrogen fertilizer rate per year with treatment

durations. The response variable, paired log difference of SOC measurement between fertil-

ized and unfertilized/control practices, was calculated using Eq. (1), and was used to eliminate

the differences of means and variances among different studies. In this particular case, if the

response ratio is greater than zero, management practice from fertilized to unfertilized treat-

ment increases SOC stocks.

ln fertilizedð Þ � ln controlð Þ ¼ ln fertilized=controlð Þ (1)

For tillage analysis, three principal tillage systems were considered: conventional tillage (CT),

reduced till (RT), and no till (NT) (in some studies, no till treatment was set up as conservation

tillage). The response variables, paired log difference between no till and conventional till, no till

and reduced till, reduced till and conventional till, were calculated using Eqs. (2)–(4). Here, if the

response ratio, ln (NT/CT), is greater than zero, no till is said to increase SOC stocks compared

with conventional tilled system. Similarly, if response ratios, ln (NT/RT) and ln (RT/CT), are

greater than zero, SOC stocks increase when changing from no till to reduced till, reduced till to

conventional till, respectively.
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ln NTð Þ � ln CTð Þ ¼ ln NT=CTð Þ (2)

ln NTð Þ � ln RTð Þ ¼ ln NT=RTð Þ (3)

ln RTð Þ � ln CTð Þ ¼ ln RT=CTð Þ (4)

Some studies in my dataset only reported SOC concentration and soil bulk density instead of

total SOC stock. In that case, SOC stock was calculated as follows (Eq. (5)):

SOC Mg C ha�1
� �

¼ SOC %ð Þ∗ Soil bulk density Mg=m3
� �

∗

Soil sampling depth cmð Þ (5)

The following were considered environmental and edaphic variables: experimental site, treat-

ment duration (time since practice), crop rotation system, cropping index, soil sampling depth,

soil texture, mean annual temperature (MAT), and mean annual precipitation (MAP). Based

on crop rotation system, a discrete cropping index was calculated by incorporating the number

of crops rotated per year, and the percentage of corn in the cropping system (after Alvarez

[30]). The calculation of cropping index was also based on two assumptions: (1) residue

produced from corn was twice as much as from other crops, and (2) two crops per year

produced twice the amount of residue of one crop per year [24, 30]. Soil texture was catego-

rized into three types: fine, loamy, and coarse. In terms of climatic data, MAT and MAP were

extracted from the reviewed papers. If for any reason, MAT and MAP were not reported or

missing from the study, they were estimated from the following website: http://www.ncdc.

noaa.gov/.

2.2. Statistical analysis

2.2.1. Analysis of nitrogen fertilization and SOC stocks

First, a paired t-test was used to test whether SOC stock with fertilizer is significantly different

from SOC without fertilizer (control). This was done by testing changes in measured SOC

between fertilized and control treatments against zero at a significance level of 0.05. Then,

bivariate and multivariate regression models were developed to investigate the relationship

between paired log difference of measured SOC stocks (ln (fertilized/control)) and total nitro-

gen applied in a context shaped by variables that can moderate the effect of fertilization on

SOC stock. Here, experimental location as random effect was combined with multivariate

regression model because more than one measurement was taken from the same geographic

location. Location as random effect relaxes the assumption that data of different plots with

alternative treatments taken from the same site are independent from each other. Variables

considered in the model include treatment duration, cropping index, soil sampling depth, soil

texture, mean annual temperature, and mean annual precipitation. Finally, paired log differ-

ence of measured SOC stocks between fertilized and control treatment was further analyzed

for the effects of relevant environmental and edaphic variables (e.g., soil texture). Means and

95% confidence intervals (CIs) of paired log difference in measured SOC across the dataset

were reported. If the 95% CIs of paired log difference in measured SOC stocks for a given

variable does not overlap with zero, the response of that variable to fertilizer effect is said to be

significantly different from the control [34].
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2.2.2. Analysis of tillage systems and SOC stocks

Paired t-tests were first conducted to compare the effects of contrasting tillage systems (no

till vs. conventional till, no till vs. reduced till, and reduced till vs. conventional till) on SOC

stocks at a significance level of 0.05. Linear and curvilinear models were tested to see which

model fits better with the dataset. Linear regression model was therefore chosen for this

analysis. I estimated the correlation between treatment duration and paired log difference in

measured SOC produced from fertilizer. Multivariate regression model was also applied to

develop equations that explain the effects of no tillage system on SOC stocks with control

variables that can potentially affect its response. Location as random effect model was also

incorporated in the multivariate regression model with the same process that was applied in

fertilizer experiments. Lastly, the effects of relevant environmental and edaphic variables on

paired log difference of measured SOC between no till and conventional till was further

analyzed with the mean and 95% CIs calculated. All statistical analyses were performed in

the Stata software package (StataCorp. 2013. Stata Statistical Software: Release 13. College

Station, TX: StataCorp LP).

3. Results and discussion

3.1. Analysis of nitrogen fertilization and SOC stocks

A total of 145 paired experiments with varying nitrogen fertilization rates were compiled in the

database for this analysis (Table 1). The database covers 10 states. Of all the 145-paired studies,

the total nitrogen fertilization applied varied from 0.089 to 6.44MgN ha�1. Changes of SOC stock

produced from varying nitrogen fertilization treatments were between �14 and 22 Mg C ha�1,

with an average of 2.32Mg C ha�1. The treatment durations of these experiments were between 2

and 27 years, with an average of 10.8 years. The soil sampling depth spanned a wide range from

7.6 to 120 cm, with an average of 48.4 cm. In terms of weather attributes, the lowest and highest

mean annual temperatures were 7 and 17�C, averaging 11.4�C. The mean annual precipitation

ranged from 357 to 1400 mm at an average of 762.7 mm.

A paired t-test showed that measured SOC under fertilizer treatments was significantly different

(p < 0.001, t = 5.74, degrees of freedom = 144) from measured SOC under control treatments.

Description Mean Std Min Max # of observations

Total nitrogen applied (Mg N ha�1) 0.99 0.89 0.089 6.44 145

ln (fertilized/control) 0.03 0.06 �0.165 0.28 145

Treatment duration (years) 10.8 6.6 2 27 145

Soil sampling depth (cm) 48.4 35.7 7.6 120 145

Mean annual temperature (�C) 11.4 3.4 7 17 145

Mean annual precipitation (mm) 763 300 357 1400 145

Table 1. Summary statistics for the paired data of N fertilizer experiments used in this study.
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Roughly 66% (n = 95) of the total observations showed the positive effect of nitrogen fertilizer on

SOC storage with no crop residue removal, whereas about 32% (n = 47) and 2% (n = 3) showed

negative and no correlation between total nitrogen fertilization and SOC content, respectively.

When total nitrogen fertilization rate is higher than 3.51 Mg ha�1, no SOC depletion occurred

(Figure 1). Total nitrogen applied had a significant positive impact on measured SOC change

between fertilized and control treatment (p < 0.001) (Figure 1). As the application of total

nitrogen fertilizer increased, the paired log differences of measured SOC stocks between fertil-

ized and control treatments increased. Specifically, when total nitrogen fertilizer increased by

1 Mg ha�1, the paired log differences of measured SOC stocks increased by 0.02. Measured SOC

stock increased by 2% relative to control treatment.

The increases in SOC level as a result of N fertilizer addition are attributable to the increases in

net primary productivity and residue-C input [37]. A strong negative correlation between SOC

content and crop residue production was observed under N deficit by Campbell and Zentner

[38, 39]. The significant positive effect of N additions on SOC level detected agrees with a

review by West and Post [22] based on a compiled global database of 67 long-term agricultural

experiments. However, the magnitude of this effect varied from significant increase [40–45] to

only mild increase in the level of SOC [46–49].

In this study, the effect of N additions on measured SOC stocks was, however, moderated by

the relevant environmental and edaphic characteristics, including cropping index, soil sam-

pling depth, soil texture index, mean annual temperature (MAT), and mean annual precipita-

tion (MAP). Here, a multivariate regression model (Eq. (6)) with random effect was developed

to characterize the relationship between paired log differences of measured SOC stocks (ln

(fertilized/control)) and the total nitrogen applied in the experiment (Table 2).

Figure 1. Paired log difference of soil organic carbon between fertilized and control measurement (ln (fertilized/control))

plotted against the total nitrogen applied in experiments with no crop residue removal.
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ln fertilized=controlð Þ ¼ �0:018þ 0:013 Nþ 0:063 Ci � 0:000 Dþ 0:009 SI� 0:003 T� 0:000 P

(6)

(p < 0.01, number of observations = 145, number of locations = 12).

where N is the total nitrogen applied (MgN ha�1), Ci is the cropping index, D is the soil sampling

depth (cm), SI is the soil texture index, T is the mean annual temperature (�C), and P is the mean

annual precipitation (mm).

Cropping system significantly increased paired log difference of measured SOC stocks

between fertilized and control treatment (p < 0.01; Table 2). When cropping index increased

by 1, paired log difference of measured SOC stocks increased by 0.063. Measured SOC stock

under fertilized treatment was 6.5% higher than SOC stock under control treatment. Increases

in cropping index can be achieved by either rotating more crops per year or incorporating corn

as the main component in the cropping system. By rotating more crops per year, net primary

productivity of the cropland increased. Hence, SOC storage increased, therefore contributing

to the absorption of the atmospheric carbon dioxide. Due to a large expansion in ethanol

production in the United States, the market price of corn has experienced significant overall

increases in recent years. Response to high corn prices, farmers increasingly choose to increase

corn acreage at the expense of other crops, such as soybean. Therefore, due to reduced soybean

production, soybean price also increases significantly in recent years. These socioeconomic

Dependent variable ln (fertilized/control)

Total nitrogen applied 0.013**

[2.120]

Cropping index 0.063***

[4.513]

Soil sampling depth �0.000

[�0.348]

Soil texture index 0.009

[0.700]

MAT (mean annual temperature) �0.003

[�1.023]

MAP (mean annual precipitation) �0.000

[�0.950]

Constant �0.018

[�0.571]

Observations 145

Number of location 12

Table 2. This table presents multivariate regression results for relationship between paired log difference of soil organic carbon

between fertilized and control measurement and the total nitrogen applied in experiments with no crop residue removal. The

dependent variable is calculated as follows: ln (fertilized/control) = ln (fertilized) � ln (control). Independent variables are total

nitrogen applied (Mg N ha�1), cropping index, soil sampling depth, soil texture index (1 = fine, 2 = loamy, 3 = coarse), and

climate condition includingMAT (�C) (mean annual temperature) andMAP (mm) (mean annual precipitation). The t-values are

given in brackets. ***, **, and * denote significance at the 0.01, 0.05, and 0.1 level, respectively.
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factors have induced a series of cropping system changes in the Midwest Corn Belt. Hence,

cropping systems in the Midwest Corn Belt include three major types: continuous corn

cropping, continuous soybean cropping, and corn-soybean/soybean-corn rotation.

SOC level under continuous corn is often higher than under corn-soybean/soybean-corn rotation

because corn produces more biomass than soybean does [18, 37]. Measured SOC stocks

increased significantly (p < 0.001, t = 9.41, degrees of freedom = 45) when cropping index equals

2 (Figure 2). More specifically, measured SOC stock with fertilizer increased by 18% compared

with control treatment. One of the possible cropping systemwhen the cropping index equals 2, is

continuous corn cropping. West and Post [22] found that as rotation intensity increased, SOC

sequestration rate increased by 200 � 120 kg C ha�1 yr�1, with an exception of change from

continuous corn to corn-soybean/soybean-corn rotation. However, when cropping index is lower

than 2, the effect of cropping index on changes of measured SOC stocks was not significantly

different among cropping sequences.

There was no significant correlation between soil sampling depth and changes in measured

SOC stocks produced by nitrogen fertilization application (Table 2). SOC stocks significantly

increased among all soil sampling depths measured in 145-paired experiments (Figure 3).

Means and 95% CIs of paired log differences of measured SOC stocks overlapped, which

means that the N effect on SOC stocks did not differ across all sampling depths. Measured

SOC increased profoundly (10%) when soil sampling depth was below 30 cm.

Soil texture includes three categories: fine (=1), loamy (=2), and coarse (=3). Here, the correla-

tion between soil texture index and paired log difference of measured SOC stocks was not

detected (Table 2). This contradicts with Alvarez [30] who observed a significant positive

Figure 2. The effects of cropping index on paired log difference of soil organic carbon between fertilized and control

measurement (95% confidence intervals are shown and numbers of observations are included in parentheses).
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Figure 3. Paired log difference of soil organic carbon between fertilized and control measurement across the soil sampling

depth (95% confidence intervals are shown and numbers of observations are included in parentheses).

Figure 4. The effects of soil texture on paired log difference of soil organic carbon between fertilized and control

measurement (95% confidence intervals are shown and numbers of observations are included in parentheses).
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relationship between soil texture index and changes in SOC stocks. Coarse-textured soils are

often associated with lower soil fertility; therefore, might response stronger to nitrogen fertil-

izer addition if other factors are held constant [30]. The effect of nitrogen fertilizer on SOC

stocks was significant across all soil types in this analysis (Figure 4). In fact, areas with fine-

and coarse-textured soils did not differ significantly in terms of their effects on measured SOC

stocks. On average, soils with loamy texture significantly increased (p < 0.0001, t = 5.71,

degrees of freedom = 48) SOC stocks by 13% than those of fine- (4.6%) and coarse-textured

(6.9%) soils.

In terms of climates, no statistically significant correlation was found between mean annual

temperature and paired log difference of measured SOC, mean annual precipitation and

paired log difference of measured SOC, respectively (Table 2). Previous studies that examined

relationship between climate conditions and N effect have come to mix conclusions. Parton

et al. [50] reported that temperature can negatively affect residue-C transition to SOC stocks.

Therefore, it is expected that the effect of nitrogen fertilization on SOC stocks is greater in

temperate climates compared with tropical climates [30].

Furthermore, I found that areas with temperature < 12�C sequestered significantly more SOC, but

not in areas with temperature ranging from 12 to 15�C (Figure 5). In fact, the highest SOC increase

located in areas with temperature lower than 8�C (+15%). Increase in measured SOC was also

significant in areas with temperature above 15�C. Considering distributions of measured SOC

difference across areas with various mean annual precipitations, N fertilizer had a significant

Figure 5. The effects of mean annual temperature on paired log difference of soil organic carbon between fertilized and

control (95% confidence intervals are shown and numbers of observations are included in parentheses).
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impact on SOC stocks in the higher rainfall (>700 mm) areas, but had no effect on SOC stocks in

lower rainfall (<700 mm) areas (Figure 6).

Even though nitrogen fertilization can result in SOC sequestration, its potential to remove

carbon from the atmosphere is still debatable and requires a comprehensive evaluation of the

whole process from fertilizer manufacture to transportation, and finally to applications in the

fields [22]. The production of N fertilizers involves energy input from fossil fuel combustion,

which in turn leads to carbon emissions back into the atmosphere. There are also post-

production carbon emissions from fertilizer packaging, transportation, and field application

[51]. Average carbon emissions associated with the production and use of N fertilizers were

estimated to be 1.2 Mg C Mg�1 N applied [22, 52]. In conclusion, to evaluate carbon mitigation

potential of N fertilization management, a comprehensive assessment from N manufacture,

delivery, to application is required.

3.2. Analysis of tillage systems and SOC stocks

Three tillage systems were considered in this analysis, which include no till (NT), reduced till

(RT), and conventional till (CT). Overall, studies compiled in this database comprise 187-

paired experiments. Of all 187 paired data, 186 cases (99%) report changes in SOC stocks

between no till and conventional till, 37 cases (20%) measure ∆SOC stocks between no till and

reduced till, and 38 cases (20%) for SOC stocks changes from reduced till to conventional till

(Table 3). The database covers 20 states. Among all 186 paired comparisons, paired log

difference of measured SOC from conventional tillage to no tillage ranged from �0.37 to 0.6,

with an average of 0.089. In other words, changes in measured SOC with no till management

Figure 6. The effects of mean annual precipitation on paired log difference of soil organic carbon between fertilized and

control measurement (95% confidence intervals are shown and numbers of observations are included in parentheses).
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ranged from �31% to +82% compared with conventional tillage system. Paired log difference

of measured SOC from reduced tillage to no tillage varied from �0.21 to 0.57, with a mean of

0.007. This suggests that changes in measured SOC with no till practice can decrease up to 19%

and increase as much as 77% relative to reduced tillage. Paired log difference of measured SOC

content from conventional tillage to reduced tillage ranged from �0.11 to 0.27, averaging

around 0.06. The differences of measured SOC level between reduced till and conventional till

varied from �11% to +31%. Of all 187 paired comparisons, the treatment durations were from

2 to 45 years, with an average of 12.8 years. Soil depth sampled was in a range of 6–150 cm,

with an average of 35.7 cm. Mean annual temperature was from 5.5 to 23.5�C at an average of

13.3�C, and mean annual precipitation ranged from 305 to 1584 mm, averaging 945 mm.

Of all 186 observations that measured changes in SOC storage between no till and conven-

tional till, approximately 71% (n = 133) of the total observations, showed positive values. Of all

37 paired experiments that reported SOC differences between no till and reduced till, more

than half of the total cases (57%; n = 21) showed negative results, with 16 (43%) cases showed

positive values. In contrast, among all 38 studies that reported changes in measured SOC

stocks from conventional till to reduced till, only 2 cases showed negative values, 6 cases were

no change, and the remaining 30 cases (79%) were positive values. Paired t-tests showed

significant differences in measured SOC stocks between no till and conventional till

(p < 0.001, t = 8.06, degrees of freedom = 185), reduced till and conventional till (p < 0.001,

t = 4.83, degrees of freedom = 37), respectively. SOC stocks under no till and reduced till were

on average 9% and 7% greater than those of conventional till. However, paired t-tests showed

no significant differences between no till and reduced till. This could be true or it could be due

to the low number of observations for this measure.

No significant correlation between paired log difference of measured SOC content and dura-

tion time was detected between reduced till and conventional till. However, paired log differ-

ence of measured SOC between no till and reduced till was significantly dependent on time

since management practice (p < 0.001; Figure 7). Again, due to its low number of observations

(n = 37), I won’t further analyze this measure in this study. As expected, the differences of

measured SOC stock between no till and conventional till were also significantly dependent on

length of time since conversion (p < 0.001; Figure 7). The longer the time in no till management,

the greater the amount of SOC stocks compared to conventional tilled fields. More specifically,

Description Mean Std Min Max # of observations

ln (NT/CT) 0.089 0.151 �0.366 0.6 186

ln (NT/RT) 0.007 0.147 �0.213 0.569 37

ln (RT/CT) 0.065 0.083 �0.107 0.272 38

Treatment duration (years) 12.84 10.19 2 45 187

Soil sampling depth (cm) 35.75 27.53 6 150 187

Mean annual temperature (�C) 13.3 4.43 5.5 23.5 187

Mean annual precipitation (mm) 945 324 305 1584 187

Table 3. Summary statistics for the paired data of tillage experiments used in this study.
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Figure 7. Paired log difference of soil organic carbon between contrasting tillage systems plotted against treatment

durations. Here, tillage systems include no-till, conventional till, and reduced till.
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if treatment duration increases by 1 year, SOC stock would increase by 0.4% when changing

from conventional tillage to no tillage system.

Increases in measured SOC stocks occurred in the soil when the duration of no tillage treat-

ment was beyond 5 years (Figure 8). This result is consistent with the findings summarized by

West and Post [22], that there was a delayed response of no till management on SOC stocks

with peak sequestration rates in 5–10 years. Despite the high degree of variations in climate

conditions, soil types, cropping systems, and other associated site characteristics, differences

between conventional till and no till were still significantly (p < 0.05) time-dependent: SOC

stock increased as the time in no-till management increased. A multivariate regression with

random effects model (Eq. (7)) was established to account for the associated environmental

and edaphic characteristics (Table 4).

ln no till=conventional tillð Þ ¼ �0:157þ 0:004 DTþ 0:009 Ci

þ0:0001 Dþ 0:038 SIþ 0:003 Tþ 0:0001 P
(7)

(p < 0.05, number of observations = 186, number of locations = 70).

where DT is the treatment duration time (years), Ci is the cropping index, D is the soil

sampling depth (cm), SI is the soil texture index, T is the mean annual temperature (�C), and

P is the mean annual precipitation (mm).

There was no significant correlation between cropping system and changes in measured SOC

stocks (Table 4). So did soil texture, mean annual temperature, and mean annual precipitation.

Increases in measured SOC stocks occurred significantly when cropping index was greater than

Figure 8. The effects of treatment durations on paired log difference of soil organic carbon measurement between no till

and conventional till (95% confidence intervals are shown and numbers of observations are included in parentheses).
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0.5 (Figure 9). However, paired log differences of measured SOC between no till and conven-

tional till were not significantly different from each other when cropping index was greater than

0.5. On average, SOC content from conventional tillage to no tillage increased by roughly 9%

across all cropping sequences when cropping index was greater than 0.5. All three types of soil

texture (fine, loamy, and coarse) had significant effects on measured SOC change from conven-

tional till to no till (Figure 10). The conversion from conventional tillage to no tillage system had

no effect on changes of measured SOC stocks in the lower rainfall (<900 mm) areas, but signifi-

cantly increased measured SOC stocks in higher rainfall areas (>900 mm) (Figure 11).

There was no significant association between soil sampling depth and paired log difference of

measured SOC stocks (Table 4). However, the distribution of paired log difference of mea-

sured SOC across all soil sampling depths showed significant (p < 0.001) increases in SOC

content in the surface soil (<50 cm) and above 90 cm. In particular, increases in measured SOC

stocks were greater (+34%) in the upper 30 cm of the soil profile relative to 30–50 cm of the soil

profile. This result is consistent with previous studies.

Considering the distribution of paired log difference of measured SOC content across areas

with different mean annual temperatures, there was no significant change in measured SOC

level between no till and conventional till in areas with low temperature (<8�C). Areas

with temperature above 8�C can significantly increase measured SOC stocks when applying

no tillage system (Figure 12).

Dependent variable ln (no till/conventional till)

Duration time 0.004**

[2.431]

Cropping index 0.009

[1.140]

Soil sampling depth 0.0001

[0.228]

Soil texture index 0.038

[1.316]

MAT (mean annual temperature) 0.003

[0.703]

MAP (mean annual precipitation) 0.0001

[0.877]

Constant �0.157*

[�1.850]

Observations 186

Number of location 70

Table 4. This table presents multivariate regression results for relationship between paired log difference of soil organic

carbon measurement from conventional till to no till and treatment duration. The dependent variable is calculated as

follows: ln (no till/conventional till) = ln (no till) � ln (conventional till). Independent variables are treatment duration,

cropping index, soil sampling depth, soil texture index (1 = fine, 2 = loamy, 3 = coarse), and climate condition including

MAT (�C) (mean annual temperature) and MAP (mm) (mean annual precipitation). The t-values are given in brackets. ***,

**, and * denote significance at the 0.01, 0.05, and 0.1 level, respectively.
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Management practice from conventional tillage to conservation tillage is found to increase SOC

levels; however, this is not always effective, especially in fine-textured and poorly drained soils

and cold weather conditions [53–56]. Moreover, it is possible that no till or conservation till could

Figure 9. The effects of cropping index on paired log difference of soil organic carbon measurement between no till and

conventional till (95% confidence intervals are shown and numbers of observations are included in parentheses).

Figure 10. The effects of soil texture on paired log difference of soil organic carbon measurement between no till and

conventional till (95% confidence intervals are shown and numbers of observations are included in parentheses).
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contribute to N2O emissions, another GHG with even stronger climate warming potential [57–

59]. The estimated N2O emissions as a result of no till management are varied and inconsistent:

some reported positive impacts, whereas some reported negative or no measurable impacts on

Figure 11. The effects of mean annual precipitation on paired log difference of soil organic carbon measurement between no

till and conventional till (95% confidence intervals are shown and numbers of observations are included in parentheses).

Figure 12. The effects of mean annual temperature on paired log difference of soil organic carbon measurement between no

till and conventional till (95% confidence intervals are shown and numbers of observations are included in parentheses).
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N2O emissions [60]. The N2O emissions may counterbalance all or some of the increased SOC

content in terms of GHGmitigation potential in agriculture [61]. Therefore, to assess the capabil-

ity of conservation tillage systems in mitigating global climate change, a systematic evaluation of

all GHG emissions should be considered. Nonetheless, conservation tillage systems are a viable

option that can sequester CO2 from the atmosphere.

4. Conclusion

This review quantitatively evaluated the impacts of nitrogen fertilization management and

conservation tillage systems on SOC stocks in the agricultural soils of the United States. The

results presented here showed that N fertilizer additions had significant positive impact on

SOC content, but the magnitude of this effect varied. In fact, the effect of N fertilization

treatment on SOC stocks was moderated by cropping rotation system. As the cropping inten-

sity increased, measured SOC content under fertilized treatment also increased. Soil texture

and climate conditions, including mean annual temperature and mean annual precipitation,

did not have significant impacts on differences of measured SOC stocks between fertilized and

control treatments.

Significant differences in SOC stocks were found between no till and conventional till, as

well as between no till and reduced till. However, SOC stocks between no till and reduced

till were not significantly different. Differences of SOC content due to management changes

from conventional tillage to no till system were significantly larger when treatment dura-

tion was longer. This study also showed a delayed response of SOC level to no till man-

agement with increases in measured SOC occurring beyond 5 years. Crop rotation system,

soil texture, mean annual temperature, and mean annual precipitation did not have signif-

icant effects on SOC stocks. To summarize, paired log differences of measured SOC content

from conventional tillage to conservation tillage were only significantly dependent on time

since management.

To help combat global climate change, it is of great importance to identify changes in land

management practices that can promote carbon sequestration and mitigate the enhanced

greenhouse gas effect. The study recorded the responses of SOC stocks to changes in manage-

ment practices and confirmed that adoption of N fertilizer additions and conservation tillage

systems can contribute to increased SOC stocks in the agricultural soils of the United States.

However, the evaluation of net carbon dioxide mitigation potential of these two recommended

management practices should be carried out using a full carbon and greenhouse gas account-

ing method, which comprehensively considers both carbon input and carbon output to the

agricultural systems. To conclude, agricultural soils can act as an important carbon sink to

offset atmospheric CO2 emissions when management practices are designed appropriately, as

well as with proper incentives and technological advancements. Confidence intervals for

estimates of carbon sequestration rates in this study can be incorporated in policy and carbon

cycle modeling analysis to provide more accurate estimates of C sequestration potential at

regional and global scales.

Impacts of Nitrogen Fertilization and Conservation Tillage on the Agricultural Soils of the United States:…
http://dx.doi.org/10.5772/intechopen.70550

85



Author details

Meimei Lin

Address all correspondence to: meimei.lin@armstrong.edu

Department of Geology and Geography, Georgia Southern University, GA, USA

References

[1] Foley JA, DeFries RS, Asner G, Barford CC, Bonan G, Carpenter SR, Chapin F, Coe M,

Daily G, Gibbs HK, Helkowski J, Holloway T, Howard E, Kucharik CJ, Monfreda C,

Patz J, Prentice IC, Ramankutty N, Snyder PK. Global consequences of land use. Sci-

ence. 2005;309:570-574

[2] IPCC. Intergovernmental Panel on Climate Change, Land Use, Land-Use Change, and

Forestry. Cambridge: Cambridge University Press; 2000

[3] IPCC. Mitigation of Climate Change of Working Groups III to the fifth assessment Report

of the Intergovernmental Panel on Climate Change. In: Climate Change 2013. Cam-

bridge, UK: Cambridge University Press; 2013

[4] Janssens IA, Freibauer A, Ciais P, Smith P, Nabuurs GJ, Folberth G, Schlamadinger B, Hutjes

RWA, Ceulemans R, Schulze ED, Valentini R, Dolman H. Europe's terrestrial biosphere

absorbs 7–12% of European anthropogenic CO2 emissions. Science. 2003;300:1538-1542

[5] IPCC. In: I. f. G. E. S. (IGES), editor. Intergovernmental Panel on Climate Change Guide-

lines for National Greenhouse Gas Inventories. Hayama, Japan; 2006

[6] Stern N. The Economics of Climate Change: The Stern Review. Cambridge and New

York: Cambridge University Press; 2007

[7] Wang Y, Li Y, Ye X, Chu Y, Wang X. Profile storage of organic/inorganic carbon in soil:

From forest to desert. Science of the Total Environment. 2010;408:1925-1931

[8] Guo LB, Gifford RM. Soil carbon stocks and land use change: A meta analysis. Global

Change Biology. 2002;8:345-360

[9] Lal R, Follett RF, Kimble JM. Achieving soil carbon sequestration in the United States: A

challenge to policy makers. Soil Science. 2003;168:827-845

[10] Lal R. Challenges and opportunities in soil organic matter research. European Journal of

Soil Science. 2009;60:158-169

[11] Lal R, Kimble JM, Follet RF, Cole CV. The Potential of U.S. Cropland to Sequester Carbon

and Mitigate the Greenhouse Effect. Chelsea, MI: Ann Arbor Press; 1998

[12] Davidson EA, Ackerman IL. Changes in soil carbon inventories following cultivation of

previously untilled soils. Biogeochemistry. 1993;20:161-193

Maize Germplasm – Characterization and Genetic Approaches for Crop Improvement86



[13] Post WM, Kwon KC. Soil carbon sequestration and land-use change: Processes and

potential. Global Change Biology. 2000;6:317-327

[14] Tan Z, Lal R. Carbon sequestration potential estimates with changes in land use and tillage

practice in Ohio, USA. Agriculture, Ecosystems and Environment. 2005;111:140-152

[15] ReicoskyDC. Tillage-induced CO2 emission from soil. Nutrient Cycling in Agroecosystems.

1997;49:273-285

[16] Lal R, Follett RF, Kimble J. Managing U.S. cropland to sequester carbon is soil. Journal of

Soil and Water Conservation. 1999;53:374-381

[17] Lal R. Offsetting China's CO2 emissions by soil carbon sequestration. Climatic Change.

2004;65:263-275

[18] Lal R, Kimble J. Conservation tillage for carbon sequestration. Nutrient Cycling in

Agroecosystems. 1997;49:243-253

[19] Murty D, Kirschbaum MUF, McMurtrie RE, McGilvray H. Does conversion of forest to

agricultural land change soil carbon and nitrogen? A review of the literature. Global

Change Biology. 2002;8:105-123

[20] West TO, Marland G. A synthesis of carbon sequestration, carbon emissions, and net

carbon flux in agriculture: Comparing tillage practices in the United States. Agriculture,

Ecosystems and Environment. 2002;91:217-232

[21] VandenBygaart AJ, Gregorich EG, Angers DA. Influence of agricultural management on

soil organic carbon: A compendium and assessment of Canadian studies. Canadian Journal

of Soil Science. 2003;83:363-380

[22] West TO, Post WM. Soil organic carbon sequestration rates by tillage and crop rotation: A

global data analysis. Soil Science Society of America Journal. 2002;66:1930-1946

[23] Smith P. Carbon sequestration in croplands: The potential in Europe and the global

context. European Journal of Agronomy. 2004;20:229-236

[24] Lal R. Soil carbon sequestration impacts on global climate change and food security.

Science. 2004;304:1623-1627

[25] Luo ZK, Wang E, Sun OJ. Soil carbon change and its responses to agricultural practices in

Australian agro-ecosystems: A review and synthesis. Geoderma. 2010;155:211-223

[26] Rasmussen PE, Allmarans RR, Rhode CR, Roager NC Jr. Crop residue influences on soil

carbon and nitrogen in a wheat-fallow system. Soil Science Society of America Journal.

1980;44:596-600

[27] Halvorson AD, Reule CA, Follett RF. Nitrogen fertilization effects on soil carbon nitrogen

in dryland cropping system. Soil Science Society of America Journal. 1999;63:912-917

[28] Halvorson AD, Peterson GA, Reule CA. Tillage systems and crop rotation effects on

dryland crop yields and soil carbon in the Central Great Plains. Agronomy Journal.

2002;94:1429-1436

Impacts of Nitrogen Fertilization and Conservation Tillage on the Agricultural Soils of the United States:…
http://dx.doi.org/10.5772/intechopen.70550

87



[29] Glendining MJ, Powlson DS. The effect of long-term application of inorganic nitrogen

fertilizer on soil organic nitrogen. In: Wilson WS, editor. Advances in Soil Organic Matter

Research: The Impact on Agriculture and the Environment. Cambridge: Royal Society of

Chemistry; 1991. p. 328-338

[30] Alvarez R. A review of nitrogen fertilizer and conservation tillage effects on soil organic

carbon storage. Soil Use and Management. 2005;21:38-52

[31] Unger PW,McCalla TM. Conservation tillage systems. Advances inAgronomy. 1980;33:1-58

[32] Jarecki MK, Lal R. Crop management for soil carbon sequestration. Critical Reviews in

Plant Sciences. 2003;22:471-502

[33] Franzluebbers AJ, Hons FM, Zuberer DA. Tillage and crop effects on seasonal dynamics of

soil CO2 evolution, water content, temperature, and bulk density. Applied Soil Ecology.

1995;2:95-109

[34] Luo YQ, Hui DF, Zhang DQ. Elevated CO2 stimulates net accumulations of carbon and

nitrogen in land ecosystems: A meta-analysis. Ecology. 2006;87:53-63

[35] Baker JM, Ochsner TE, Venterea RT, Griffis TJ. Tillage and soil carbon sequestration—

What do we really know? Agriculture, Ecosystems and Environment. 2007;118:1-5

[36] Blanco-Canqui H, Lal R. No-tillage and soil-profile carbon sequestration: An on-farm

assessment. Soil Science Society of America Journal. 2008;72:693-701

[37] Paustian K, Parton WJ, Persson J. Modeling soil organic matter in organic-amended and

nitrogen-fertilized long-term plots. Soil Science Society of America Journal. 1992;56:

476-488

[38] Campbell CA, Zentner RP. Soil organic matter as influenced by crop rotations and

fertilization. Soil Science Society of America Journal. 1993;57:1034-1040

[39] Alexander RB, Smith RA, Schwarz GE, Boyer EW, Nolan JV, Brakebill JW. Differences in

phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi river basin.

Environmental Science and Technology. 2008;42:822-830

[40] Clapp CE, Allmaras RR, Layese MF, Linden DR, Dowdy RH. Soil organic carbon and 13C

abundance as related to tillage, crop residue, and nitrogen fertilization under continuous

corn management in Minnesota. Soil and Tillage Research. 2000;55:127-132

[41] Jagadamma S, Lal R, Hoeft RG, Nafziger ED, Adee EA. Nitrogen fertilization and

cropping system effects on soil organic carbon and total N pools under chisel-plow tillage

in Illinois. Soil and Tillage Research. 2007;95:348-356

[42] Machado S, Rhinhart K, Petrie S. Long-term cropping system effects on carbon seques-

tration in eastern Oregon. Journal of Environmental Quality. 2006;35:1548-1553

[43] Sainju UM, Stevens WB, Caesar-Tonthat T. Soil carbon and crop yields affected by irriga-

tion, tillage, crop rotation, and nitrogen fertilization. Soil Science Society of America Jour-

nal. 2014;78:936-948

Maize Germplasm – Characterization and Genetic Approaches for Crop Improvement88



[44] Russell AE, Laird DA, Parkin TB, Mallarino AP. Impact of nitrogen fertilization and

cropping system on carbon sequestration in midwestern mollisols. Soil Science Society

of America Journal. 2005;69:413-422

[45] Alexandratos N. World food and agriculture: outlook for the medium and longer term.

Proceedings of the National Academy of Sciences of the USA. 1999;96:5908-5914

[46] Liebig MA, Varvel GE, Doran JW, Wienhold BJ. Crop sequence and nitrogen fertilization

effects on soil properties in the Western Corn Belt. Soil Science Society of America

Journal. 2002;66:596-601

[47] PresleyDR, SindelarAJ, BuckleyME,MengelDB. Long-termnitrogen and tillage effects on soil

physical properties under continuous grain Sorghum.Agronomy Journal. 2012;104:749-755

[48] Sainju UM, Singh BP, Whitehead WF, Wang S. Carbon supply and storage in tilled and

non-tilled soils as influenced by cover crops and nitrogen fertilization. Journal of Envi-

ronmental Quality. 2006;35:1507-1517

[49] Varvel GE. Soil organic carbon changes in diversified rotations of the Western Corn Belt.

Soil Science Society of America Journal. 2006;70:426-433

[50] Parton WJ, Scurlock JMO, Ojima DS, Gillmanov TG, Scholes RJ, Schimel DS, Kirchner T,

Menault JC, Seastelt T, Garcı’a Moya E, Kamnalrut A, Kinyamario JL. Observations and

modeling of biomass and soil organic matter dynamics for the grassland biome world-

wide. Global Biochemical Cycles. 1993;7:785-809

[51] Mudahar MS, Hignett TP. Energy requirements, technology, and resources in the fertilizer

sector. In: Helsel ZR, editor. Energy inWorld Agriculture. New York: Elsevier; 1987. p. 25-61

[52] Cole CV, Flach K, Lee J, Sauerbeck D, Stewart B. Agricultural sources and sinks of carbon.

Water, Air, and Soil Pollution. 1993;70:111-122

[53] Jarecki MK, Lal R. Soil organic carbon sequestration rates in two long-term no-till exper-

iments in Ohio. Soil Science. 2005;170:280-291

[54] Campbell CA, McConley BG, Zentner RP, Selles F, Curtin D. Tillage and crop rotation

effects on soil organic C and N in a coarsetextured Typic Haploboroll in southwestern

Saskatchewan. Soil and Tillage Research. 1996;37:3-14

[55] Angers DA, Bolinder MA, Carter MR, Gregorich EG, Drur CF, Liang BC, Voroney RP,

Simard RR, Donald RG, Beyaert RP, Martel J. Impact of tillage practices on carbon and

nitrogen storage in cool, humid soils of eastern Canada. Soil and Tillage Research.

1997;41:191-201

[56] Yang XM, Wander MM. Tillage effects on soil organic carbon distribution in a silt loam

soil in Illinois. Soil and Tillage Research. 1999;52:1-9

[57] Cassman KG, Dobermann A,Walters DT, YangH. Meeting cereal demandwhile protecting

natural resources and improving environmental quality. Annual Review of Environment

and Resources. 2003;28:315-358

Impacts of Nitrogen Fertilization and Conservation Tillage on the Agricultural Soils of the United States:…
http://dx.doi.org/10.5772/intechopen.70550

89



[58] Smith KA, Conen F. Impacts of land management on fluxes of trace greenhouse gases.

Soil Use and Management. 2004;20:255-263

[59] Li C, Frolking S, Butterbach-Bahl K. Carbon sequestration in arable soils is likely to

increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Cli-

matic Change. 2005;72:321-338

[60] Marland G, Fruit K, Sedjo R. Accounting for sequestered carbon: The question of perma-

nence. Environmental Science and Policy. 2001;4:259-268

[61] Schlesinger WH. Carbon sequestration in soils. Science. 1999;284:2095

Maize Germplasm – Characterization and Genetic Approaches for Crop Improvement90


	Chapter 6
Impacts of Nitrogen Fertilization and Conservation Tillage on the Agricultural Soils of the United States: A Review

