

Measurement of modulation power using porcine lung tissue

S. Qamhiyeh¹, C. Bäumer², S. Kutscher¹, S. Levegrün¹, S. Günzerodt¹, H. Kranke¹, G. Olbrich¹, B. Timmermann², M. Stuschke¹ ¹Klinik für Strahlentherapie, Universitätskliniken Essen ²West German Proton therapy Center Essen (WPE), Universitätskliniken Essen

Introduction

The modulation power (P-mod) quantifies the degradation of Bragg-peaks due to submillimeter structures in target materials. However, such structures are not visible in clinical CTs. In this work, we present our measurement of P-mod in porcine lungs and for several proton beam energies.

Materials and methods

A phantom out of RW3 and Plexiglas[®] with a trachea connector was used to fix the lungs. Radiopaque markers were placed on the lung surfaces and evaluated using repeated CT scans.

The phantom was scanned using a Philips BigBore CT (Philips, the Netherlands) at the start of the experiment and at its end. Furthermore, the measurements were simulated retrospectively (see **Fig.1**) using the CT images of the phantom and the Monte-Carlo dose engine of the RayStation planning system (Raysearch Labs, Stockholm, Sweden)..

The CTs were registered using deformable registration and 3D displacement vectors were calculated (see **Fig.2**).

Proton depth dose measurements of pristine Braggpeaks with different energies and at different locations in the lungs were carried out using the "Giraffe" multi-layer ionization chamber (IBA Dosimetry GmbH, Schwarzenbruck). The measurement were performed under image guidance (see **Fig. 4 & 4**).

The degradation of Bragg-peaks was calculated by convolving the simulated peaks with a Gaussian function until the degradation in measured Braggpeaks was reached. Afterwards, the additional broadening (assumed to be due to submillimeter structures) was analyzed and P-mod was calculated (see **Eq.1**.).

Fig.1: Simulation of measurement using the Raysearch treatment planning system and CT of lung phantom . CT images of the phantom in sagittal, transversal, and coronary section are displayed. The simulation was performed for several positions and energy in the lung sample.

Fig.2: Results of 3D displacement map of deformable registration between CTs pre and post Proton measurements (4hrs). The maximum displacement vector was 0.42 cm.

$$t = D. \rho_{mean}$$

$$P_{mod} \equiv \frac{\sigma^2}{t} = d \left(\rho_{mat} - \rho_{mean} \right)$$

Eq.1 The degraded Bragg-Peak can be described by convolution of initial peak with a normal distribution. The mean water equivalent thickness of the material (t) is the mean density of material (ρ_{mean}) divided by thickness of sample (D). The modulation power (P_{mod}) is related to the density difference between material composites and size of pores (d) [1].

Fig.3: Image guidance was performed using the clinical Patient Positioning Verification System (PPVS). Portal Xrays were used to align the phantom relative to predefined isocenter which is marked on the phantom.

Fig.4: The DRRs from planning are compared to isocenter position using the PPVS. seen below.

Results and conclusion

P-mod quantifies the degradation of Bragg-peaks due to submillimeter structures in target materials. The P-mod (Eq.1). An example of the measured, simulated, and convoluted peaks is shown in **Fig.5.** to evaluate the accuracy of the analysis, the position of measured peaks is compared to the position of simulated then convoluted peaks. The average shift in position was -0.1±1.0 mm.

The measured P-mod values are $98\pm39 \ \mu m$ which are relatively smaller than the values reported in literature [1] . In **Fig.6**, the data is grouped per Energy of incident protons.

The main advantage of this setup is the ability to use CT data which in-turn allows distinguishing between macro- and micro- structures in the lung system.

Fig.5: Depth-dose curve measured using the Giraffe (IBA Dosimetry GmbH, Schwarzenbruck) and 170 MeV protons. Measurements were compared to TPS simulated depth dose curves at the point of the measurements.

Fig.6: The Modulation power in the peak position of the pristine Bragg-Peak. The data is grouped per energy as several positions were measured. Average value is 98 ± 39 µm

References

Ringbæk, T.P. et al, Phys. Med. Biol. 2017; 62(7): 2892–2909.
 Titt, U et al, Med Phys. 2015; 42(11):6425-32.