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Abstract

Horizontal gene transfer plays important roles in the evolution of S. aureus, and indeed, 
a variety of virulence factors and antibiotic resistance genes are embedded in a series of 
mobile genetic elements. In this chapter, we review the mechanisms of horizontal gene 
transfer, including recent findings on the natural genetic competence. Then, we consider 
the transfer of two important antibiotic resistance genes: the methicillin resistance gene, 
mecA (in Staphylococcal Cassette Chromosome) and the linezolid resistance gene, cfr (in 
plasmid). In either case, distinct mechanisms driving the gene dissemination support the 
prominent evolutionary ability of this important human pathogen.

Keywords: Transduction, Conjugation, Transformation, staphylococcal cassette 
chromosome (SCC), cfr

1. Introduction

Staphylococcus aureus is an opportunistic pathogen responsible for diverse infectious diseases 

ranging from food poisoning and superficial skin abscesses to more serious infections such 
as pneumonia, meningitis, osteomyelitis, septicemia, endocarditis and toxic shock syndrome. 
The resistance to a wide variety of antibiotics [1, 2] is a global concern in clinical settings, and 
methicillin‐resistant strains (MRSA), the most common cause of nosocomial infections, are 
now spreading into the community [3]. The emergence and dissemination of further resis‐

tant strains such as vancomycin‐resistant S. aureus (VRSA) [4] and linezolid‐resistant S. aureus 

(LRSA) [5, 6] are anticipated. Major parts of staphylococcal virulence and antibiotics resis‐

tance are acquired characteristics, evidenced by many of the toxin and antibiotic resistance 

genes embedded in mobile genetic elements such as transposons, bacteriophages, insertion 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



sequences, pathogenicity islands and the staphylococcal cassette chromosome (SCC) [7, 8]. In 

this chapter, we review the current understanding about horizontal gene transfer (HGT) in 
S. aureus including the recently discovered natural transformation. We also discuss how two 

important mobile genetic elements (SCC and cfr plasmid) would be transferred from cell to 
cell.

2. Horizontal gene transfer mechanisms

2.1. Phage‐related mechanisms

Phage‐mediated horizontal gene transfer is the major driving force for S. aureus evolution 

and is well reviewed elsewhere [9]. The experimental protocols for the phage transduction 
are also established [10]. Staphylococcal phages can also serve as a helper phage to transfer 

Staphylococcus aureus pathogenicity islands (SaPIs) [11]. SaPI carries toxin genes including 

the toxic shock syndrome toxin 1 and superantigens. In addition to the conventional trans‐

duction by staphylococcal phages, atypical giant phage in environment is also capable of 

transduction [12].

In 1970s, a transformation‐like phenomenon (now termed “pseudo‐competence” or “pseudo‐
transformation”) was described [13]. A series of studies have confirmed that it is a HGT mech‐

anism that requires the presence of a staphylococcal phage [14]. The “competence‐conferring 
factor” was most likely the phage tail that has lytic activity. In some old bacteriology books, 
pseudo‐competence is regarded as competence, but the first report on genuine natural genetic 
competence was published on 2012 [15]. Pseudo‐competence was demonstrated to be distinct 

from natural competence: the important competence genes encoded in the comG and comE 

operons were dispensable for pseudo‐competence [15].

2.2. Conjugation

Bacterial conjugation has been studied in Gram‐negative and Gram‐positive species. Although 
broad‐host‐range plasmids able to replicate in both groups exist, the differences in terms of 
membrane and peptidoglycan cell wall require different conjugation systems on the basis of 
cell‐to‐cell recognition and contact.

Most of the conjugative staphylococcal plasmids studied belong to the incQ family. One of 
the better known staphylococcal conjugative plasmid is pGO1 [16], considered as the pro‐

totype of this type of plasmids. All the conjugative genes are located on a 14.5 kb region, 
and the minimal machinery necessary for conjugation includes the oriT, a nickase pro‐

tein (nes) and the tra operon. This plasmid shows high similarities, in terms of genetic 
organization of the tra operon, with other Gram‐positive conjugative plasmids such as 
the staphylococcal pSK41 plasmid [17], the lactococcal pMRC01 [18] and the enterococcal 

pRE25 [19].

Staphylococcal plasmids related to the pGO1/pSK41 family share an important homology 
regarding the organization of conjugative genes and, in addition, present an identical IncQ‐type  
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relaxase and a nickase gene (nes) responsible for the generation of the nick at the oriT [17]. 

The plasmids belonging to this family are self‐conjugative, and they are able to mobilize 
small non‐conjugative coresident plasmids. They are also associated with gentamicin 
(and other aminoglycosides) resistance and can be related to resistance to penicillin, tri‐
methoprim, bleomycin, tetracycline, macrolides, lincosamide, streptogramin B and anti‐

septics [20]. These plasmids have contributed to the evolution of staphylococcal species in 
antibiotic‐enriched environments, and recently, they have been reported to be related to 

resistance against the most important antimicrobials used in MRSA treatment: linezolid and 

vancomycin.

2.3. Natural transformation

Natural transformation requires the uptake of environmental DNA by the action of a set of 
DNA‐uptake proteins that are expressed in the bacterial membrane. Once DNA is incorpo‐

rated into the cytoplasm, it can be used as a source of nutrients, as a template to repair dam‐

aged genetic material or to enhance bacterial fitness by generating diversity or introducing 
novel traits [21].

To undergo transformation, bacteria need to develop a specific physiological state called 
genetic competence. Competence is achieved through the regulated expression of the genes 

encoding the DNA uptake machinery [22]. In general, Gram‐positive DNA uptake machinery 
is formed by a pseudopilus (ComG proteins) that brings extracellular DNA to the cytoplasmic 
transport machinery, a DNA‐binding protein (the receptor ComEA) and a channel (ComEC). 
Only a single strand enters the cytosol, while the complementary strand is degraded by an 
endonuclease [23].

S. aureus had been regarded as a non‐transformable species until natural transformation was 

demonstrated in 2012 [15]. Natural transformation can transfer long DNA fragments that are 
too large to be transferred by bacteriophages (transduction) [22]. Indeed, the long staphylo‐

coccal cassette chromosome mec (SCCmec) type II element was successfully transferred by 
transformation [15], leading to the idea that the exchange of large DNA regions between dis‐

tinct S. aureus clonal complexes may be also due to the natural transformation [24].

The regulation of competence development is a species‐specific process. In S. aureus, the main 

competence regulator is the alternative sigma factor H (SigH). SigH activates the transcrip‐

tion of the competence machinery genes (comG and comE operons) that are essential for the 
development of natural transformation [15, 25]. In addition, the transcription factor ComK 

enhances the expression of the SigH regulon [26]. SigH is expressed in a minor population by 

two distinct mechanisms. The sigH gene can be rearranged by a “short‐junction duplication,” 
or be post‐transcriptionally regulated through an inverted repeat (IR) sequence at the 5’‐UTR 
of sigH mRNA. The IR is thought to hinder the ribosome‐binding site to suppress the SigH 
expression, but the activation mechanism is not clarified yet.

Competence development is a species‐specific process that requires particular environmental 
conditions. These conditions include nutrient access, starvation, altered growth conditions 
and cell density [22]. Natural transformation in S. aureus is detectable under specific conditions  
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when cells are grown in the chemically defined CS2 medium [15]. Under these growth con‐

ditions, wild‐type strains (N315 and its derivative) show low transformation frequencies  
(<10‐11), partly attributed to the subpopulation limited SigH expression. Overexpression of 
SigH increases the transformation frequencies up to ∼10‐9 when purified plasmid DNA is 
used as donor and to ∼10‐7 if living S. aureus COL cells carrying pT181 are used. Moreover, 
there seems to be more preferable growth conditions that facilitate transformation (Ohniwa et 
al., in preparation). So far, we achieved c.a. 10‐6 level frequency in the unmodified N315 deriv‐

ative strains, as well as in a part of the clinical isolates, which will be published elsewhere.

Even in SigH‐expressing cells, the transformation frequencies change depending on the 

growth conditions, suggesting that there are additional levels of regulations for an effi‐

cient transformation. Importantly, antimicrobial agents also affect the transformation 
efficiencies in the SigH‐expressing cells [27]. Table 1 summarizes the effect of the antibiot‐
ics in S. aureus and other species. Table 1 also includes the SOS response, because it is a 
complementary response in some bacteria: antibiotics that induce SOS response, such as 
fluoroquinolone or mitomycin C, induce competence in species lacking the SOS system 
[28–30] but suppress competence in species harboring the SOS system [31]. Although SOS 
response in S. aureus is limited and its accessories are simple, it does exist [32, 33]. The 
treatment with mitomycin C suppresses transformation in S. aureus. However, ciprofloxa‐

cin (fluoroquinolone) has no effect. This might indicate that the interplay between natural 
transformation and SOS response cannot be simplified. S. aureus response to β‐lactam anti‐
biotics is also linked to SOS response [34–36]. Fosfomycin and vancomycin increase natural 

transformation in SigH‐expressing cells, but the detailed response mechanism involved 

is not known. Whether these inducing effects can be observed in the unmodified strains 
needs to be tested in a future study.

S. aureus (+ SigH cells) S. thermophilus S. p* L. p* H. p*

TF** SOS TF** SOS TF** TF** TF**

Fosfomycin + [27]

Vancomycin +[27] No effect [28]

Oxacillin ‐ [27] Yes [34, 35]

Cefazolin ‐ [27]

Ampicillin Yes [36] No effect [28] No effect [29] No effect 
[30]

Quinolones Ciprofloxacin No effect [27] Yes [32] [37] + [30]

Norfloxacin ‐ [31] Yes [31] + [28] + [29]

Mitomycin C ‐ [27] Yes [37] [38] ‐ [31] Yes [31] + [28]

*S. p, L. p, H. p lack SOS system [29, 33].

**TF: transformation and/or competence gene expression.
S. p: Streptococcus pneumoniae, L. p: Legionella pneumophila, H. p: Helicobacter pylori.

Table 1. Effects of antibiotics on transformation and SOS response.
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3. Dissemination of antibiotic resistance determinants

Since Fleming's discovery of penicillin and its application to treatment, S. aureus has experi‐

enced a variety of antibiotics in clinical settings. Penicillin‐resistant S. aureus was described 

before the introduction of penicillin to the market in 1943. It carried a β‐lactamase gene in a 
plasmid. Methicillin was developed as a β‐lactam derivative that cannot be degraded by β‐lac‐

tamase, but methicillin‐resistant S. aureus (MRSA) was described soon after its introduction. 
The methicillin resistance gene is in a mobile genetic element designated staphylococcal cas‐

sette chromosome (SCC). Vancomycin is one of the effective resources for MRSA treatment, 
though vancomycin‐resistant S. aureus (VRSA) has already been reported [39]. Linezolid is 

another promising anti‐MRSA drug, but the dissemination of linezolid resistance is also antic‐

ipated. The antibiotic resistance genes and a series of reports on their transfer mechanisms 
are summarized in Table 2. Here, we focus on the dissemination mechanisms of SCC and 

linezolid resistance.

3.1. Dissemination of SCC

β‐lactams were the first line of antibiotics against S. aureus infections. However, resistance 

has rapidly emerged. The first methicillin‐resistant S. aureus (MRSA) strain was identified 
in 1961, only one year after the clinical introduction of methicillin [76]. Methicillin is a semi‐

synthetic penicillin that resists the action of β‐lactamases. It was introduced as a first choice 
treatment against infections caused by penicillin‐resistant S. aureus. The methicillin resistance 
gene (mecA) encodes an alternative penicillin‐binding protein (PBP2a) that has low affinity for 
all β‐lactams. PBP2a can maintain the cell wall synthesis, while all the other PBPs are inhibited 
by β‐lactams [77].

The mecA gene is carried in a variable mobile element called staphylococcal cassette chromo‐

some mec (SCCmec). SCCmec is integrated in a unique orientation into a specific chromosomal 
attachment site (attBSCC) [78]. The basic structure of the SCCmec element consists of a cassette 
chromosome recombinase (ccr) and a mec complex. The mec complex contains the mecA gene 

and its regulatory genes (not always present) [79]. The cassette is classified according to a 
combination of both complexes [80]. The International Working Group on the Staphylococcal 
Cassette Chromosome elements reports 11 types of SCCmec (http://www.sccmec.org/Pages/
SCC_TypesEN.html). SCCmec varies in size (from 20 to 67 kb), and it can carry other elements 
such as resistance genes, insertion elements, plasmids or transposons. SCCmec elements have 

only been found in staphylococci with the exception of Macrococcus caseolyticus [43]. This spe‐

cies is closely related to the staphylococci, and it was part of the Staphylococcus genus until 

1998 when it was reclassified [81].

MRSA strains appeared in the hospital environment and spread rapidly causing serious clin‐

ical problems and several hospital outbreaks. The first MRSA strain was identified in the 
United Kingdom in 1961, and it carried the type I SCCmec. Types II and III were identified 
in the early 1980s in Japan and New Zealand, respectively. These types of SCCmec were all 

identified in the hospital environment; they are the largest types and can carry additional 
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Type Antibiotic Gene Location Origin Reported/probable 
HGT mechanism

Refs.

β‐lactams Penicillin blaZ Plasmid 

(transposon)
S. 

haemolyticus?

Conjugation
Pseudo‐

transformation

[40–42]

Methicillin mecA Chromosome 

(SCCmec)
CoNS Transduction

Conjugation
Transformation

[15, 

43–49]

Glycopeptides Vancomycin vanA Plasmid 

(transposon)
Enterococcus 

spp.

Conjugation [50, 51]

Aminoglycosides Gentamicin

Kanamycin

Tobramycin

aacA–aphD Plasmid 

(transposon)
Bacillus spp.? Conjugation

Transduction
[52]

Antifolates Trimethoprim dfrA Plasmid 

(transposon)
Bacillus spp.? Conjugation [53, 54]

dfrG Chromosome (IS) E. faecium? – [55]

dfrK Plasmid

Chromosome 

(transposon)

? Conjugation
‐

[56–58]

Macrolide 

Lincosamide 

Streptogramin B

ermB Plasmid 

(transposon)
Streptococci Conjugation

Transduction
[59–61]

ermC Plasmid CoNS Transduction [60, 62]

ermA Chromosome 

(transposon)
CoNS Conjugation [60, 62, 

63]

Tetracyclines Tetracycline tetK tetL Plasmid Streptococci 

Enterococci

Conjugation [64, 65]

tetM Chromosome 

(transposon)
Streptococci 

E. faecalis

Conjugation [61, 64]

Chloramphenicol Chloramphenicol cat Plasmid S. epidermidis Conjugation
Transduction

[8, 66, 

67]

Oxazolidinones Lynezolid cfr Plasmid CoNS? Conjugation
Transduction

[6]

Streptogramins Dalfopristin vgaA, vgaB, 
vatA, vatB, 
vatC

Plasmid ? Conjugation [68, 69]

Fusidanes Fusidic acid fusB Chromosome 

(SaPI)
Plasmid

CoNS Transduction [11, 70]

fusC Chromosome 

(SCC)
CoNS – [7

–75]

Phosphonic acids Fosfomycin fosB Chromosome 

(SaPI)
? Transduction [11]

Table 2. Antibiotics resistance genes.
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resistance elements; strains that carry them are usually multi‐resistant [78, 82]. During the 
1990s, community‐associated MRSA strains were identified, and during the early 2000s, the 
SCCmec type IV and V were described in USA and Australia, respectively. These types are 
smaller elements that rarely carry extra resistance elements, and they are described as com‐

munity‐associated SCCmec types [83, 84]. Types I to V are the main and widely distributed 
elements; since their description, new variants have been reported (SCCmec VI–XI).

The origin of the SCCmec element is not clear, but evidence indicates that it comes from coag‐

ulase negative staphylococci (CoNS). Ancestral forms have been identified in S. sciuri, S. fleu-

retti, S. xylosus, S. hominis and M. caseolyticus [43–45]. The source of the mec and ccr complex is 

unknown, but they may have assembled into SCCmec in CoNS where they were modified and 
then transferred to S. aureus [46]. The primary source of SCCmec for S. aureus seems to be S. 

epidermidis. SCCmec type IV shares high homology between both species [85]; S. haemolyticus 

and S. hominis appear to be reservoirs for specific classes of mec complex and ccr genes [86, 87].

The transfer mechanism of SCCmec is not well defined. Successful transfer via transduction, 
conjugation and natural transformation has been reported. Although transduction of small 
SCCmec elements (type IV, I and V) has been described [47, 48], it is unlikely that this is the 
predominant method. Many of the SCCmec are too big (up to ∼60 kb) to be encapsulated 
by a phage. Conjugation is an alternative mechanism. Ray et al. demonstrated the transfer 
of a 30.8 kb element (modified from SCCmec II) via conjugation, the spontaneous excision 
from the conjugative plasmid and the insertion into the recipient chromosome of S. aureus 

and S. epidermidis [49]. However, these authors induced the transfer by overproducing ccrAB. 
Natural transformation can also explain the transfer of large SCCmec types. We have success‐

fully transferred the SCCmec II [15]. However, the interspecies transfer by natural transforma‐

tion has not been tested.

3.2. Dissemination of cfr

The cfr gene was identified in 2000; it was described as a new chloramphenicol/florfenicol 
resistance element located on the pSCFS1 plasmid [88]. This plasmid was the first multi‐resis‐

tance plasmid found in a Staphylococcus sciuri (isolate from the nasal swab of a calf) and was 
associated with resistance to chloramphenicol, florfenicol, spectinomycin and MLSB (macro‐

lide, lincosamide and streptogramin B) antibiotics. The cfr gene was associated with the tn558 

transposon, closely related to the tn554 associated with erythromycin resistance [89].

The cfr gene was not associated with clinical cases until 2007, when it was demonstrated that 

this gene was responsible for the elevated MIC to linezolid in one clinical MRSA strain iso‐

lated in Medellin (Colombia) [90]. Linezolid is a synthetic inhibitor of protein synthesis. Its 

activity against Gram‐positive bacteria (including MRSA and Enterococcus sp., even in the 

case of reduced vancomycin susceptibility) made this antibiotic an essential tool in the treat‐
ment of resistant pathogens [91].

Up to 2007, the only known mechanism for linezolid resistance known in staphylococci was 
the spontaneous mutations in ribosomal proteins [92]. This non‐transmissible mechanism 
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was associated with the previous intensive use of linezolid. The association of a potential 
transmissible mechanism of resistance to this antibiotic represented a global concern due to 

the scarce alternatives for the infections caused by these pathogens and also, due to the poten‐

tial spreading of this resistance mechanism to the pathogenic bacterial pool.

When the first cfr‐positive clinical isolate was detected, sequencing analysis showed the 

absence of any mutation previously associated with linezolid resistance. The strains showed 
an unexpected post‐transcriptional modification at A2503 in the 23S rRNA. The mechanism 
underlying the resistance conferred by cfr is related to the modification of the antibiotic target 
site on the 23S ribosomal RNA [90]. Thus, cfr is a methyltransferase that causes a reduced 
ribose methylation at C2498 and the addition of an extra methylation at A2503.

In 2008, the first outbreak of linezolid‐resistant MRSA strain was reported in Spain [93]. The 
outbreak took place in the intensive care unit (ICU) of a public hospital and lasted 3 months. 
A total of 15 patients infected or colonized with linezolid‐resistant MRSA were detected. In 

this case, some isolates showed identical PFGE profiles, showing the clonal dissemination 
of the same linezolid‐resistant strain, but other cfr‐positive strains showed a different PFGE 
profile. As cfr prevalence was extremely low, the existence of a horizontal gene transfer event 

was strongly suggested, and specially, the potential existence of some undetected reservoir, 

capable of spreading the cfr gene among the pathogenic staphylococcal pool, was hypoth‐

esized. The association of a potentially transmissible mechanism of resistance to this antibi‐
otic represented a global concern due to the scarce treatment alternatives and the potential 

spreading to the pathogenic bacterial pool.

In 2008, the presence of plasmid‐borne cfr in two strains isolated in Ohio hospitals was 
described [94]. In this case, two staphylococci, one MRSA and one S. epidermidis, with linezolid 

MICs of 8 and 256 mg/L, respectively, were isolated from two different patients. Sequence 
analysis found two different plasmids on the basis of the cfr insertion context. The S. epidermi-

dis insertion couldn't be determined, but the plasmid harbored by the S. aureus strain showed 

a pSCFS3‐like genetic environment [95]. In this genetic context, the Tn558 transposon was 
truncated by the tandem insertion of istAS‐istBS, potentially related to cfr gene mobilization. 

Since 2008 several studies detected the presence of this gene in livestock‐associated strains 
belonging to different bacterial species such as Proteus vulgaris, Enterococcus spp., Macrococcus 

caseolyticus or Jeotgalicoccus pinnipedialis [96–98]. These findings showed the spread of these 
resistance traits among livestock‐associated bacteria known as reservoir for clinical‐associ‐
ated strains.

In 2010, during the analysis of a collection of Panton‐Valentine leukocidin (PVL)‐positive 
MRSA isolates from Ireland, one cfr‐positive strain was detected [99]. This strain harbored 
a ca. 40 kbp plasmid with cfr associated with the Tn558 transposon. However, this gene was 
located in a genetic context not previously described. In this plasmid, named pSCFS7, cfr 

gene was found inserted in the tnpB gene reading frame. In this case, this gene was trun‐

cated by the insertion of the terminal region of istBS. The detection of the pSCFS7 plasmid 
was especially relevant; on one hand, the cfr‐positive MRSA strain belonged to the USA 
300 genotype (ST8‐MRSA‐IVa), which is predominant among community‐acquired MRSA  
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(CA‐MRSA) in the United States [100]. And on the other hand, pSCFS7 plasmid demon‐

strated the capability to be transferred by conjugation to other S. aureus strains. Thus, this 
was the first report of a conjugative plasmid on S. aureus strain belonging to genotypes with 

clinical relevance.

Linezolid susceptibility among clinically significant isolates is monitored by different surveil‐
lance programs, such as Zyvox Annual Appraisal of Potency and Spectrum (ZAAPS) and the 
USA Linezolid Experience and Accurate Determination of Resistance (LEADER). According 
to the results obtained by these programs, linezolid resistance was 0.05% for S. aureus and 

1.4% for CoNS between 2002 and 2010 [101, 102]. CoNS, not considered as true pathogens, 

show higher levels of resistance and could act as cfr reservoir for the S. aureus pool. In fact, the 

high incidence of unique clones (40%) among cfr‐positive MRSA suggested that the transmis‐

sion of the cfr gene by HGT could be a common phenomenon [5].

The impact of the transmission of cfr among potential reservoirs was determined in Spain 

after the cfr‐positive MRSA outbreak in the same hospital [103]. In this study, 100 linezolid‐

resistant S. epidermidis strains obtained between 2008 and 2011 were analyzed. Authors 

did not recover cfr‐positive MRSA strains, but they detected this gene in the 58% of the 

linezolid‐resistant S. epidermidis isolates, again suggesting the potential role of CoNS as 

linezolid resistance reservoirs. In 2012, two geographically independent staphylococci har‐

boring conjugative cfr‐associated plasmids were detected in Spain. One of them was located 
on a MRSA belonging to ST125 genotype, prevalent among hospital‐associated strains (HA‐
MRSA). This plasmid, named pERGB, showed a new genetic environment of cfr insertion, 

associated with the istAS‐istBS tandem but not with the TN558 transposon [104]. In addi‐

tion, it also showed the ability to be transferred by conjugation to the ATCC 29213 S. aureus 

strain.

The second cfr‐associated vector detected in Spain was found on a ST22 S. epidermidis strain 

[105]. In this case, cfr was inserted on a genetic environment identical to the pSCFS7 vector 

and the plasmid also showed an in vitro conjugative transmission. This was the first report 
of pSCFS7‐like plasmids in Spain associated with clinical staphylococci, followed by the 
finding of two more strains harboring similar vectors in 2014 [106]. Two staphylococcal 
strains (one Staphylococcus haemolyticus and one S. aureus) obtained from two clinical cases 
of septic shock were identified in the same hospital in Spain. Both strains harbored similar 
ca.40 kb conjugative pSCFS7‐like vectors. Although plasmid restriction analysis profiles 
showed small differences between both strains, the emergence of unrelated cfr‐positive S. 

aureus and CoNS and the presence of this gene in similar pSCFS7‐like plasmids in Spain 
[105, 106] suggest the potential spread of these vectors among the staphylococcal pool in Spain.

While the observed situation suggested the spread of pSCFS7 among the staphylococci in 

Spain, in the USA, the situation regarding the prevalence of cfr vectors was different. In 
addition to the pSCFS3‐like vector described in 2008 [94], cfr‐positive strains carrying these 

plasmids were found in 2013 [107]. The study comprised 19 S. epidermidis and 2 S. aureus line‐

zolid‐resistant strains. Among the studied strains, one S. aureus strain did not share a similar 

plasmid profile. Plasmid sequence analysis demonstrated the existence of identical 39.3 kb 
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pSCFS3‐like plasmids in one S. epidermidis and S. aureus isolates [6]. As pSCFS3 plasmids were 

considered as non‐conjugative vectors [94], this indirect demonstration of plasmid transmis‐

sion questioned the nature of the HGT involved in the spread of these plasmids. In addi‐
tion, an unexpected result was obtained analyzing the sequence of two cfr plasmids obtained 

in staphylococcal clinical isolates from German hospitals [108]. In this study, 6 cfr‐positive 

strains were identified among 36 linezolid‐resistant S. epidermidis isolated between January 

2012 and April 2013. Sequence analysis showed the existence of pSCFS6 and pSCFS7‐like 
plasmids. The pSCFS6‐like plasmid showed substantial homology to pGO1 plasmid, mean‐

while the pSCFS7, as well as pSCFS3‐like plasmids, showed the most significant homology to 
pSK73 plasmid [107]. The presence of pSCFS7‐like plasmids in clinical isolates from Germany 
may suggest the potential spread of these plasmids among European hospitals. Nevertheless, 

although pSCFS6 harbored the pGO1 tra and nes conjugative machinery, none of these genes 
were located in the pSCFS7 sequence, suggesting potential mobilization events of cfr environ‐

ment onto different plasmids backbones [108].

Although conjugation alone was the recognized transmission mechanism for the cfr gene, the 

presence of identical putative non‐conjugative pSCFS3 plasmids in different staphylococcal 
species suggested the existence of other HTG mechanisms involved in the spreading of line‐

zolid resistance [107]. Our group answered this question demonstrating an alternative mecha‐

nism for cfr spread based on phage transduction among MRSA [6]. By using a S. aureus N315 

derivate strain harboring a pSCFS7‐like vector obtained by conjugation from one clinical S. 

epidermidis strain, we transferred this gene to other MRSA strains by conjugation as well as 
transduction. In addition, this transmission allowed transductant MRSA cfr‐positive strains 

to retain the conjugative capability, suggesting the complete transmission of this vector, or at 
least all the necessary genes to allow conjugative transmission.

4. Conclusion

The prominent evolutionary ability of Staphylococcus aureus partly relies on the gene trans‐

fer mechanisms ranging from the conventional phage transduction and conjugation to the 
unique staphylococcal mechanisms such as SaPI‐helper phage. Recently found staphylococ‐

cal natural transformation further explains the ability to transfer larger genetic elements. The 
surveillance for antibiotics resistance (especially for the last resort antibiotics such as linezolid 

and vancomycin) is critical, and the test of emerging resistant pathogens in terms of their abil‐
ity to use these distinct gene dissemination pathways might help to control the evolution of 

this important human pathogen.
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