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Abstract

The facultative anaerobic bacterium Escherichia coli is frequently forced to adapt to chang-

ing environmental conditions. One important determinant for metabolism is the availability

of oxygen allowing a more efficient metabolism. Especially in large scale bioreactors, the

distribution of oxygen is inhomogeneous and individual cells encounter frequent changes.

This might contribute to observed yield losses during process upscaling. Short-term gene

expression data exist of an anaerobic E. coli batch culture shifting to aerobic conditions.

The data reveal temporary upregulation of genes that are less efficient in terms of energy

conservation than the genes predicted by conventional flux balance analyses. In this study,

we provide evidence for a positive correlation between metabolic fluxes and gene expres-

sion. We then hypothesize that the more efficient enzymes are limited by their low expres-

sion, restricting flux through their reactions. We define a demand that triggers expression of

the demanded enzymes that we explicitly include in our model. With these features we pro-

pose a method, demand-directed dynamic flux balance analysis, dddFBA, bringing together

elements of several previously published methods. The introduction of additional flux con-

straints proportional to gene expression provoke a temporary demand for less efficient

enzymes, which is in agreement with the transient upregulation of these genes observed in

the data. In the proposed approach, the applied objective function of growth rate maximiza-

tion together with the introduced constraints triggers expression of metabolically less effi-

cient genes. This finding is one possible explanation for the yield losses observed in large

scale bacterial cultivations where steady oxygen supply cannot be warranted.

Introduction

The model organism Escherichia coli is a facultative anaerobic bacterium, i.e. it is able to grow

in both aerobic and anaerobic environments. To do so, cells need to be able to adapt to changes
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of the growth conditions. This capability is required in both the natural habitat and in biotech-

nological applications where, due to inefficient mixing in large scale bioreactors, oxygen supply

is unsteady [1–3]. Adaptation takes place on the transcriptional level in multiple ways, e.g.

increased expression of genes for aerobic respiration, or decreased expression of less efficient

fermentative genes. Due to the high reduction potential of molecular oxygen, cells are able to

generate more energy from its substrates, e.g. sugars, in aerobic compared to anaerobic metab-

olism. Survival is hampered, however, by the toxic effects of oxygen. Oxygen can get reduced to

form the superoxide anion (O�
2
) and other ROS which provoke oxidative damage to DNA,

RNA, proteins, and lipids (reviewed in [4]).

Adaptation from anaerobic to aerobic metabolism requires extensive adjustments of the

enzyme composition of the cell (more than 20% of the genome being differentially expressed

[5]). In this article we will focus on the adjustment of metabolic enzyme expression. Cells are

constantly competing against each other for resources and so the fastest growing and best

adapted cells will prevail. On the other hand, gene expression is a costly and time-consuming

process so cells need to evolve a way of minimizing the total adjustments required for adapta-

tion [6]. Transient overexpression of enzymes, especially enzymes of the first steps of a path-

way, allows maximal flux through the pathway with concurrent minimal adjustments of

expression [7]. Transition data of transcript expression of a shift from anaerobic to aerobic

conditions in an E. coli culture also indicate transient overexpression of multiple genes [5]. Fur-

thermore, these data suggest expression of metabolically less efficient genes.

Lewis et al. [8] used flux balance analysis (FBA) to classify genes with respect to their essen-

tiality and relative efficiency. In FBA, fluxes of the quasi-steady state metabolism of a culture

are estimated by an optimization procedure [9]. FBA has been successful in predicting pheno-

types of knock-out mutant strains, metabolite exchange rates and growth rates under different

environmental conditions and in different organisms [10–13]. The flux distribution is modeled

assuming a quasi-steady state of internal metabolites that are interconnected via reactions that

are stored in the stoichiometric matrix [11, 12, 14]. The solution space is further constrained

thermodynamically by forcing irreversible fluxes to be positive. Concerning the objective func-

tion of the optimization there are different approaches according to prerequisites and the

addressed problem [13]. A frequently and successfully applied objective function for batch cul-

tivations is maximization of the growth rate with concurrent restriction of substrate uptake

(reviewed in [15]). The result of an FBA is then a growth optimal flux distribution of a quasi-

steady state culture in the exponential growth phase.

In parsimonious FBA (pFBA) [8], this optimization is followed by a minimization of all

fluxes within the solution space of the the growth optimum, to minimize the requirement for

enzyme expression. Using this technique, genes can be classified according to whether it is

essential, required for optimal growth, metabolically less efficient (MLE, i.e. less energy produc-

tion, or more consumption when this gene is used), enzymatically less efficient (ELE, i.e. overall

flux is higher when this gene is used), or whether the gene is not used in any case.

Transient upregulation of MLE genes might arise from limited capacity of the optimal

enzymes. E.g., in the electron transport chain (ETC) the MLE gene ndh (catalyzing the reaction

NADH5, reaction naming according to iJO1366 [14]) is transiently upregulated whereas

expression of the optimal enzyme, encoded by the nuo operon (catalyzing the reaction

NADH16pp), increases only slightly [5]. NADH5 is MLE, because it translocates no protons

across the plasma membrane which could otherwise be used for energy conservation via

ATPase (Fig 1). Similarly, expression of the cyo operon (catalyzing CYTBO3_4pp) increases

after transition, whereas the MLE operon cyd (catalyzing CYTBDpp, Fig 1) is transiently over-

expressed. Temporary overexpression is useful to minimize the required adjustments of gene

expression [7], yet, this was only shown for essential pathways and not for MLE genes. If a
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transiently high flux through an optimal enzyme is beneficial for efficient growth, but the

enzyme capacity is constrained due to underexpression, MLE genes might help overcome this

shortage at the expense of optimal efficiency.

Dynamic FBA (dFBA) is an extension of FBA with the aim of simulating time course experi-

ments [16]. In dFBA with static optimization approach (SOA) the simulation time is divided

into small periods which are assumed to be in quasi-steady state. For every time step, an FBA

problem is solved and the fluxes are integrated over the time period and extracellular concen-

trations are calculated, accordingly. dFBA was originally applied to simulations of diauxic

growth and has been extended, e.g. with regulatory constraints [17–20].

These studies have in common that they are passive in terms of their regulation. A Boolean

regulatory model is superimposed on the reaction network by addition of flux constraints that

are deduced from the environmental state of the cell. Boolean models of gene regulation gener-

ally have the problem that the interplay between the factors is highly complex, therefore it is

hard to identify and model the contribution of individual factors satisfactorily.

Several methods have been published that aim to improve flux predictions based on tran-

scriptomic data. However, in an extensive comparison, none of the methods improved the

overall outcome (determined by deviation from fluxes measured using 13C-labeled substrates)

compared to pFBA which does not incorporate transcriptomic data [21]. This indicates that

for most cases the constraints introduced prevent the FBA from correctly identifying the parsi-

monious optimum which better approximates the true flux distribution than the other meth-

ods. We therefore decided not to use transcription data directly to constrain the metabolic

model (as e.g. in [22–25]), but to simulate mRNA and protein expression explicitly and then

Fig 1. Outline of central aerobic metabolism. Reaction nomenclature according to iJO1366 [14]. Pyr,
pyruvate; ICit, Isocitric acid; α-KG, α-ketoglutaric acid; Suc-CoA, succinyl-coenzyme A; Succ, succinic acid;
Mal, malic acid; OxAc, oxaloacetic acid; UQ, ubiquinone; UQH2, ubiquinol; only redox cofactors are
considered.

doi:10.1371/journal.pone.0158711.g001
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deduce constraints depending on these simulated values. Since flux measurement data are only

available for steady states, they cannot be used as a benchmark here. We therefore investigate

whether the principle behavior of gene expression matches our simulations with the enzymatic

capacity constraints and objective functions suggested.

Results and Discussion

Correlation of transcriptome data with FBA fluxes

To investigate whether gene expression can serve as an indicator for respective flux rates, we

analyzed their correlation. For this, we needed to define thresholds for differential flux rates

and differential gene expression. We applied three thresholds for differential gene expression: a

minimal fold change between the conditions of 1.25, a minimal mean logCPM value of 2, and a

maximum false discovery rate (FDR) corrected P-value of 0.05. In accordance with Zelezniak

et al. [26] for enzymes consisting of multiple subunits, we used the fold change value for the

subunit with the least fold change and for multiple isoenzymes, catalyzing the same reaction,

we used the mean of the isoenzymes’ fold changes. Positive correlations between mRNA and

protein abundances have been shown in several studies, e.g. [26–28], giving rise to a positive

relation of mRNA and maximal enzymatic turnover rate.

To identify reactions with differential flux rates, we first combined fluxes that use the same

set of enzymes (same isoenzymes and subunits, according to gene-protein-reaction associations

[14, 29]) by applying the sum of absolute flux rates. In this way, reactions that differ only in

cofactor usage are lumped together reducing variability of the individual fluxes. We applied two

criteria on the flux sums to identify differential fluxes: The threshold for the minimal difference

between the respective condition and the anaerobic control was set to 0.25 mmol
h�gDCW

. The second cri-

terion for differential flux rate was non-overlapping intervals in flux variability analysis (FVA).

Fig 2 shows the correlation of flux rate and transcriptome difference with a linear regression.

The aerobic steady state expression data correlate well with FBA flux differences with a Spear-

man rank coefficient of 0.51 and a P-value of 0.003. The linear regression exerts a positive

slope, indicating that the relation is also positive. In the following, we want to explore whether

this relation appears between a dynamic FBA simulation and transient expression data, as well.

Method development

As pointed out, to our best knowledge, none of the previously published methods is able to

map fast dynamic gene expression data to dynamically changing fluxes. Short-term data of the

aerobic shift [5] suggest that fluxes through main aerobic pathways, such as the ETC, are ini-

tially constrained by enzyme availability, assuming a correlation between gene expression and

fluxes. In order to model the dynamically changing fluxes, we conceived a demand-directed

dynamic FBA (dddFBA) that integrates a simulation of dynamic gene expression with enzyme

kinetic parameters. The method is based on dFBA with SOA [16], where the fluxes are opti-

mized to present conditions only.

In order to capture gene expression dynamics, balance equations for selected mRNA and

proteins are set up.

d ½mRNAi�

d t
¼ sb;i þ RiðtÞ � sa;i � ðmþ giÞ � ½mRNAi�ðtÞ ð1Þ

This equation incorporates a basal transcription rate, sb,i, reflecting constitutive expression,

an activated transcription rate, sa,i, that is switched on or off depending on the regulatory signal

Ri(t) 2 {0,1}, dilution with the growth rate μ, and a gene specific degradation rate, γi, adopted

from Bernstein et al. [30].

dddFBA for aerobic transition of E. coli
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The value of the regulatory signal determines whether additional transcription is active or

not and is directly responsive to the demand for the respective metabolic flux:

RiðtÞ ¼
0 jiðtÞ < y � biðtÞ

1 jiðtÞ ⩾ y � biðtÞ

(

ð2Þ

The regulatory threshold parameter, θ, which decides whether a demand for the flux is pres-

ent (defined as the proportion of flux ji(t) to flux bound bi(t) that triggers regulation) needs to

be chosen between 0 and 1. We chose the value 0.6 reflecting that most enzymes are more than

half-maximally occupied by their respective substrates (i.e. substrate concentrations are often

slightly higher than KM values, [31]). This choice resulted in good agreement between simula-

tion and measurement of gene expression.

The protein concentration [Pi] is modeled in a second ordinary differential equation (ODE,

Eq 3). Degradation of proteins in E. coli is negligible on this time scale and so only the dilution

term appears in the equation [32].

d ½Pi�

d t
¼ sP;i � ½mRNAi�ðtÞ � m � ½Pi�ðtÞ ð3Þ

sP;i ¼
t

Li

ð4Þ

Fig 2. Correlation of transcriptional fold changes with FBA flux rate differences. The difference between the
sums of absolute FBA fluxes with identical enzyme composition between anaerobic and aerobic conditions is
plotted against the logFC of the associated transcripts. Spearman rank coefficient and P-values are indicated.
Linear regression is shown as black line with 95% confidence bands in red.

doi:10.1371/journal.pone.0158711.g002
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We assume the parameter for the protein synthesis rate, sP,i, to be inversely proportional to

the length of the respective gene, Λi (identified using gene-protein-reaction associations), since

ribosomes have to travel along the distance of the gene with limited velocity to produce a poly-

peptide. The proportionality constant, τ, cannot be derived from literature values, because

mRNA levels are given in the normalized unit RPKM. The value of τmay therefore to be cho-

sen to fit the data. In our case it was taken to be equal to 0.6 bp�mmol

h�RPKM�gDCW
(Eq 4). Finally, the

upper bounds bi(t) for the respective enzyme fluxes result from

biðtÞ ¼ kcat;i � ½Pi�ðtÞ ð5Þ

The required parameters were either estimated from transitional gene expression data

(sb,i, sa,i), or adopted from the literature (γi, kcat,i, Table 1).

The method contains elements successfully applied to other methodologies. FBA with

molecular crowding (FBAwMC [39]) and metabolic modeling with enzyme kinetics

(MOMENT [40]) rely on enzyme turnover numbers and restriction arises from limited space

of the cytosol available for proteins. These models successfully predict growth rates in multi-

ple media compositions. Similarly, FBA with membrane economics (FBA-ME) limits the

available space for membrane-bound proteins and correctly predicts overflow metabolism

[41]. E-FLUX limits upper flux bounds according to enzyme capacity that is directly deduced

from expression data [24]. This method requires multiple training data that scale the maximal

estimated flux to the range of expression data and deduces relative flux bounds from this scal-

ing. Finally, in regulatory FBA (rFBA [17–19]) a Boolean regulatory network determines

whether fluxes are allowed or not. This method describes the successive uptake of different

carbon sources.

Opposed to these methods we explicitly take gene transcription and translation into

account. We do not use measured gene expression values directly to administer bounds to

fluxes. Also, we do not impose a regulatory model to determine gene availability but regarded a

high flux in relation to its respective bound as a measure for demand for the corresponding

enzyme which triggers expression.

Our method takes on the idea from rFBA of switching genes on and off, but we apply this to

transcription instead of enzyme availability, so that continuous flux bounds are obtained. Fur-

thermore, dddFBA does not need a Boolean regulatory model for gene expression, but relies on

the flux demand as the regulatory signal. The size of the protein is a critical parameter deter-

mining the readiness of availability of a protein. We considered this by normalization of the

translation constant τ with the respective gene length. For scaling, enzyme kinetic parameters

are applied which limit only the upper bound. In contrast to FBAwMC, MOMENT, or

FBA-ME, enzyme production is intrinsically limited by defined synthesis and degradation

parameters as well as dilution. Expressed mRNA and protein can be regarded as accumulating

compounds. In this way, dynamic effects, such as transient expression, arise.

Simulation

Simulation of mRNA and protein expression was applied to the reactions and parameters indi-

cated in Table 1. Fig 3 illustrates the short-time upregulation of the MLE reactions CYTBDpp

and NADH5 simulated by dddFBA with maximization of growth rate as the objective function.

Measured gene expression is qualitatively resembled by the simulation. Expression of MLE

genes in the simulation represents a temporary demand for the respective reaction flux.

For FVA, the second optimization of pFBA (minimization of total flux) was omitted and

each flux was minimized and maximized keeping the optimal growth rate constant. Flux vari-

ability is indicated in Fig 3 by shadowing.

dddFBA for aerobic transition of E. coli
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The reaction CYTBDpp (in the following referred to as cyd) is MLE compared to

CYTBO3_4pp (in the following referred to as cyo) as it translocates less protons across the

plasma membrane (Fig 1). However, basal anaerobic expression of cyo is very low despite its

higher aerobic efficiency. The flux through cyo reaches its boundary immediately after aeration

and expression is turned on. As long as the cyo flux is constrained cyd is additionally expressed.

Furthermore, cyd is expressed higher during anaerobic steady state which is probably due to its

higher oxygen affinity enabling it to capture even traces of oxygen [42–44]. When cyo reaches

its final flux value the cyd flux drops to zero and cyd expression decreases, accordingly. The

fluxes of both cyo and cyd are not variable indicating that the given flux distributions represent

the metabolically and enzymatically most efficient solutions.

NADH5 (referred to as ndh) is MLE with respect to NADH16pp (referred to as nuo) which

translocates protons across the plasma membrane (Fig 1). In contrast to the other MLE gene

cyd, ndh is not transcribed anaerobically. The more efficient nuo reaction stays constrained

throughout the simulation. Despite its very low anaerobic expression, ndh is readily available

due to its small size. It consists of a single subunit only, whereas nuo is a bulky complex consist-

ing of 13 different subunits. Flux through ndh is required for an enzymatically efficient solution

throughout the simulation causing an overall efficiency loss.

Variability of ndh is high and ranges from zero to the upper flux bound indicating that

other solutions exist that are metabolically equally efficient. Alternative pathways that reoxidize

NADH are listed in Table 2.

The malate dependent way overlaps with the TCA cycle. MDH transfers electrons from

malate to NAD+ yielding oxaloacetate and NADH. However, as nuo is limited and unable to

efficiently reoxidize all NADH generated, the MLE reaction MDH2 assists. This reaction skips

NADH and directly transfers the electrons from malate to ubiquinone. However, under nuo

constrained conditions, MDH2 becomes enzymatically more efficient as it skips the second

reaction. This explains the relatively high flux through MDH2 compared to MDH and the high

variability of both reactions (Fig 4a and 4b). Expression of both genes,mdh catalyzing MDH

andmqo catalyzing MDH2 increase after oxygenation indicating the demand for both enzymes

(Fig 5a and 5b).

Fluxes through LDH_D and LDH_D2 constitute an ELE alternative pathway for NADH

reoxidation (c.f. Table 2). Variation for these pathways is high and the pFBA solution predicts

a much lower flux usage because of the increased enzyme demand. Still, a slight overexpression

of both corresponding genes could indicate a demand for this functionality (Fig 5c and 5d).

Flux through the succinate dependent pathway is not simulated since both, FRD2 and

SUCDi, operate at their respective minima (Fig 4e and 4f). Expression of the characteristic

Table 1. Parameters for dddFBAmodeling.

reaction gene gene length sb
RPKM

min

� �

sa
RPKM

min

� �

γ [min
-1][30] sP

nmol
min RPKM gDCW

h i

kcat [s
-1] Ref.

CYTBD cydA 1569 116.3 759.1 ± 311.1 0.187 10.16 11.7 [33]

CYTBO cyoB 1992 2.4 610.9 ± 88.9 0.210 8.07 341 [34]

NADH5 ndh 1305 5.9 504.6 ± 106.8 0.210 12.10 15.8 [35]

NADH16 nuoG 2727 25.1 30.0 ± 6.9 10.68 5.95 100 [36]

AKGDH sucA 2802 12.1 143.1 ± 25.1 11.76 4.55 49 [37]

PDH aceE 2664 48.1 2334.0 ± 373.2 7.5 3.79 21.9 [38]

γ and kcat values are adopted from the indicated literature. sb and sP are directly calculated from measurement data and gene lengths, respectively. sa values

are estimated from the measurement data, according to Eq 6. 95% confidence intervals are given.

doi:10.1371/journal.pone.0158711.t001
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protein (encoded by the frd operon, Fig 5e) decreases, substantiating the estimated absence of

this pathway.

Both C-catabolizing reactions AKGDH and PDH are required for aerobic growth (Fig 3).

Their flux is initially constrained resulting in activated transcription which is in good qualita-

tive agreement with the measured data. PDH which forms the connector between glycolysis

and the TCA cycle is released earlier from the upper bound constraint resulting in elevated flux

through the TCA cycle that is still constrained (by AKGDH). This imbalance is resolved by the

Fig 3. Fluxes of balanced genes in dddFBA. Fluxes are depicted as green lines, upper flux bounds as dashed light green lines, flux
variability as shadowed areas and correspond to the left axis; measured mRNA expression as blue dots with standard deviations, and
simulated mRNA expression in light blue correspond to the right axis. 0 min denote the onset of aeration.

doi:10.1371/journal.pone.0158711.g003

dddFBA for aerobic transition of E. coli
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temporary utilization of the glyoxylate shunt reactions ICL and MALS (Fig 4g and 4h). The

glyoxylate shunt omits several energy conserving steps of the TCA and thus can be perceived

as MLE. Transient overexpression of both glyoxylate shunt genes, aceAB (Fig 5g and 5h), sup-

ports the simulation result.

Parameter sensitivity

For the presented method parameter sensitivity was analyzed qualitatively by parameter varia-

tion. Results of variations of the global parameters translation constant τ (Eq 4) and regulatory

threshold θ (Eq 2, S1 Fig) as well as of the enzyme turnover numbers of CYTBO3_4pp and

AKGDH (S2 Fig) are illustrated.

θ is varied between the columns of S1 Fig from 0.1 over 0.6 (the value applied in Figs 3 and

4) to 0.9. The observed fluxes prove to be insensitive towards θ, only the duration of the expres-

sion is influenced θ (e.g. expression of cyo, encoding the CYTBO3_4pp enzyme, ceases earlier

with increasing θ, S1a–S1c Fig). τ is varied between the rows of S1 Fig. As this parameter deter-

mines the height of the upper bound, it influences both, expressions and fluxes. At the interme-

diate θ of 0.6 and a low τ of 0.3 bp�mmol

h�RPKM�gDCW
, flux through the MLE reaction NADH5 is bounded

until it reaches its steady-state value after approximately 35 min (S1b Fig). The initial upper

bounds increase linearly with the translation constant and so do the fluxes through the more

efficient enzymes. At a τ of 0.6 bp�mmol

h�RPKM�gDCW
, NADH5 is only bounded until 8 min, whereas no

demand for this flux exists any more at a τ of 0.9 bp�mmol

h�RPKM�gDCW
(S1e and S1h Fig) since the more

efficient NADH16pp is unrestricted.

Similarly, the turnover numbers of the enzymes influence the respective fluxes. We exem-

plify this by bisection and doubling of the turnover numbers of CYTBO3_4pp and AKGDH

leaving both τ and θ constant at 0.6 (S2 Fig). Again, upper bounds increase linearly with the

turnover number, which subsequently decreases the duration of bounded flux and expression

(c.f. AKGDH in S2a–S2c Fig). The reduced demand also influences related MLE reactions,

such as CYTBDpp whose demand decreases with increasing CYTBO3_4pp turnover (S2b, S2e

and S2h Fig).

Conclusions

Based on the objective function of growth maximization and parsimonious enzyme usage,

which are both reasonable assumptions from an evolutionary point of view, and constraints of

Table 2. Alternative pathways for reoxidation of NADH.

reaction name reaction

malate dependent way

MDH (reverse) malate + NAD+ Ð oxaloacetate + NADH + H+

MDH2 malate + UQ* oxaloacetate + UQH2

lactate dependent way

LDH_D (reverse) lactate + NAD+ Ð pyruvate + NADH + H+

LDH_D2 lactate + UQ* pyruvate + UQH2

succinate dependent way

MDH (reverse) malate + NAD+ Ð oxaloacetate + NADH + H+

MDH3 malate + MQ* oxaloacetate + MQH2

FRD2 fumarate + MQH2 * succinate + MQ

SUCDi succinate + UQ* fumarate + UQH2

doi:10.1371/journal.pone.0158711.t002

dddFBA for aerobic transition of E. coli
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upper flux bounds reflecting gene expression we simulated mRNA expression using an “on

demand” regulatory model to check consistency with measured mRNA. This is in contrast to

other methods that incorporate mRNA expression data directly in flux constraints. The pre-

sented dddFBAmethod introduced is able to qualitatively describe the transient overexpression

of multiple genes observed during a shift experiment from anaerobic to aerobic conditions. Sev-

eral overexpressed genes can be classified as MLE or ELE (according to [8]) and thus are not

detected by conventional FBAmethods. With the introduction of additional constraints arising

from gene expression that is directed by the demand for the respective flux we are able to

Fig 4. Fluxes of unbalanced reactions in dddFBA. The pFBA solution with minimized squared fluxes is given in
black. The shadowed area indicates flux variability.

doi:10.1371/journal.pone.0158711.g004

dddFBA for aerobic transition of E. coli
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correctly describe transient overexpression. Furthermore, it even enables prediction of tempo-

rary fluxes of reactions whose respective enzymes are not explicitly balanced in the model. Qual-

itatively, the emergence of these temporary fluxes is supported by gene expression data.

Yet, the applicability of this method to other problems is limited. Experimental data are

required for parametrization of the model since the estimated transcription rates vary consid-

erably (Table 1).

Still, much can be deduced from this modeling approach: (1), it is reasonable to constrain

reaction fluxes with respect to gene expression, (2), limited transcription rates can be conceived

Fig 5. Expression of unbalanced genes.RPKM values of the indicated genes are given with standard deviation.
1 denotes the aerobic steady-state expression level.

doi:10.1371/journal.pone.0158711.g005

dddFBA for aerobic transition of E. coli
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as being causal to the (temporary) assignment of less efficient enzymes, (3), constraints on sev-

eral key enzymes suffice to predict transient behavior of other reactions, as well, and (4),

modeling regulation of gene expression in an “on demand” fashion in a pFBA framework with

growth optimization results in a realistic gene expression pattern.

A number of simplifications had to be taken to keep the model feasible. We did not account

for posttranscriptional or posttranslational modifications that might restrain enzyme activity.

Metabolic regulation can be another source for impaired enzyme functioning. However, by

applying only a maximal upper bound on the fluxes solutions with inhibitors are still included.

Transcription and translation can be seen as transport processes as polymerases and ribosomes

migrate along the polynucleotides. The ODEs in Eqs 1 and 3 do not account for that. Instead,

translation increases instantaneously with transcription, which is reasonable for E. coli as both

processes occur simultaneously at the same RNAmolecule.

In reality, gene expression is not the only limitation applying when optimizing cellular

enzyme composition. A multitude of constraints are probably effective, including, (1), mem-

brane occupancy by glucose uptake and ETC proteins [41], (2), molecular crowding of cyto-

plasm that limits total amounts of translated proteins [39], (3), cells need to find a reasonable

tradeoff between growth rate and energetic efficiency, also taking the costs of gene expression

into account [6, 45, 46], (4), during a shift of the external conditions, minimal and fast dynamic

adjustment of gene expression are required [7], (5), in a dynamic setting, competition for lim-

ited RNA polymerases, ribosomes, and tRNAs applies [47], and (6), hampered availability of

large protein complexes is also conceivable, e.g. by chaperone efficiency.

These constraints are hard to describe through modeling and even harder to parametrize,

especially in a dynamic setting. However, depending on the specific problem and the objective

of the modeling, not all limitations need to be taken into account, as demonstrated by the good

agreement of the dddFBA simulation with gene expression data.

The data show that MLE enzymes seem to be expressed during the transition from anaero-

bic to aerobic conditions. Here, we present evidence that this might be due to low availability

of the more efficient enzymes. Expression of the MLE enzymes helps to overcome this situation

and to increase growth rate, however, this is at the cost of additional gene expression. In a large

scale bioreactor with frequently-changing oxygen availability, this finding might be part of the

explanation for the observed reductions in growth rate (up to 30%, [48]). Furthermore, as oxy-

gen triggers such a large perturbation, with transiently more than 20% genes of the genome dif-

ferentially expressed [5], these genes are likely to occupy a good portion of the transcription

and translation machinery. These polymerases and ribosomes might then be unavailable for

expression of recombinant proteins (up to 94% loss reported, [48]). In the long run, cells will

need to adapt to the frequently but nonuniformly changing oxygen supply.

Materials and Methods

Data source

We used a dataset of short-time RNA sequencing after an anaerobic to aerobic shift of an E.

coli batch culture available through NCBI’s Gene Expression Omnibus [49] via the GEO Series

accession number GSE71562 [5]. The Bioconductor package edgeR [50] was applied for statis-

tical analysis. Read counts were transformed to counts per million (CPM) taking into account

the different library sizes. Normalization with the respective gene lengths yields reads per kilo-

base per million reads (RPKM), which are used for estimating RNA synthesis parameters. A

negative binomial model was fitted with the count data and the common and tag-wise disper-

sions were estimated. Subsequently, a generalized linear model was fitted to the data and p-val-

ues were calculated. The resulting p-values were corrected for multiple testing using the FDR
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method [51]. Genes with p-values of less than 0.05 and absolute fold change greater than 2

were assumed differentially expressed.

Parameter estimation

From the time course of RPKM values of a gene, synthesis parameters were estimated. This

was accomplished by fitting the parameters basal synthesis rate (sb,i), activated synthesis rate

(sa,i, both in RPKM
min

), and the dead time (Td,i, in min) of the ordinary differential equation (ODE)

Eq 6. Degradation rates (γi) were adopted from the study of Bernstein et al. [30]. The squared

brackets denote the concentration of the respective entity.

d ½mRNAi�

d t
¼ sb;i þYðt � Td;iÞ � sa;i � ðmþ giÞ � ½mRNAi�ðtÞ ð6Þ

YðtÞ ¼
0 t < 0

1 t ⩾ 0

(

ð7Þ

ODE Eq 6 is analogous to ODE Eq 1, only that the regulatory signal is replaced by the Heav-

iside function Θ(t−Td,i). The model (Eqs 6 and 7) incorporates a basal synthesis rate that is

assumed to be always active. An additionally activated synthesis rate supports gene expression

when the Heaviside function (Eq 7) switches from 0 to 1 after a delay of Td,i. Transcribed

mRNAi is actively degraded with a certain γi and diluted with the growth rate μ.

Assuming only basal synthesis for genes that are known to be inactive in an anaerobic envi-

ronment the initial condition of Eq 6 simplifies to (with Θ(0) = 0)

½mRNAi�ð0Þ ¼
sb;i

mþ gi
: ð8Þ

Inserting RPKM values of a steady state anaerobic culture yields the parameters sb,i. The

growth rate μ was assumed to be 0.26 h-1 for anaerobic growth, as measured in preliminary

experiments with the same growth conditions. No reasonable measurements of the growth rate

could be performed within the 10 min time frame of the original experiment.

Parameter estimations for the yet missing sa,i were performed inMathematica (Wolfram,

Oxfordshire, UK) using the function NMinimize and the method SimulatedAnnealing

[52] using the least squares estimator.

Demand-directed dFBA

dddFBA was implemented as described by the Eqs 1 to 5 and integrated in a dynamic pFBA

framework, i.e. in each simulation time step, (1) growth rate is maximized, (2) total fluxes are

minimized, (3) external metabolite concentrations are updated, and (4) new bounds for uptake

reactions, as well as for the balanced reactions are calculated. We used the genome scale model

iJO1366 [14] for flux optimization. We applied this technique to the six enzymes listed in

Table 1 employing the indicated parameters.

In Eq 4, we assume the parameter for the protein synthesis rate, sP,i, to be inversely propor-

tional to the length of the respective gene i, since ribosomes have to migrate along the distance

of the gene with limited velocity to translate the protein. The value of the translation constant

was chosen to be equal to 0.6 bp�mmol

h�RPKM�gDCW
(Eq 4). If a protein is made up of different subunits, the

gene coding the largest subunit will be used, because the longest gene is assumed to require the

longest time for transcription and translation and so is supposed to be rate limiting for the

expression of the holoenzyme. If the enzyme complex is made up of several (n) copies of the
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longest subunit, the gene length for that subunit becomes an apparent gene length with the

interribosomal distance (of 72 bp [53]) added n times. For example, the enzyme AKGDH has a

subunit stoichiometry of [(SucA)12][(SucB)24][(Lpd)2]. sucA is the longest gene of the enzyme

complex with a length of 2802 bp. Since 12 copies of that subunit are required and ribosomes

are on average 72 bp apart from each other the apparent gene length is (2802 + 12 � 72)

bp = 3666 bp.

For FVA, the second optimization step was omitted, instead, each indicated reaction was

maximized and minimized within the growth optimal solution space [54].

Parameter variations were employed to analyze sensitivity of the respective parameters to

fluxes and simulated gene expression. For this, we performed simulations with combinations

of the varying parameters translation constant, θ, kcat(CYTBO3_4pp), and kcat(AKGDH).

Supporting Information

S1 Fig. Variation of global parameters. The translation constant is varied between 0.3 and 0.9

(columns); the threshold for regulation is varied between 0.1 and 0.9 (rows).

(PDF)

S2 Fig. Variation of kcat. The turnover number of CYTBO3_4pp is varied between 170.5 and

682 (columns); the turnover number of AKGDH is varied between 24.5 and 98 (rows).

(PDF)
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