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Abstract

In this chapter, vibrations of isotropic rectangular plates have been analyzed by applying the
wave propagation approach. The plate problem has been expressed in integral form by
considering the strain and kinetic energies. The Hamilton’s principle has been applied to
transform the integral form into the partial differential equation of second order. The classi-
cal method namely product method has been used to separate independent variables. The
partial differential equation has converted into the ordinary differential equations. The axial
wave numbers are associated with particular boundary conditions. This is an approximate
technique, which is based on eigenvalues of characteristic beam functions. The natural
frequencies of plates are investigated versus modal numbers by varying the length and
width of the plates with simply supported-simply supported (SS-SS), clamped-clamped
(CC-CC), and simply supported-clamped (SS-CC) boundary conditions. The frequencies of
the plates increase by increasing the modal number, and CC-CC frequencies are greater than
the frequencies of other boundary conditions. Computational computer software MATLAB
is engaged to characterize the frequencies. The results are compared with the earlier simula-
tion work in order to test the accuracy and efficiency of the present method.
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1. Introduction

Beams, plates, and shells are three main structural elements. Plates are widely used in various

areas of engineering science like aerodynamics, civil and hydraulic instruments, vessels,

mechanical structures, etc. Dynamical loading is applied on plates when they are involved in
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a physical system. Their dynamical behavior is studied theoretically. Vibration is an important

feature of plates, having a critical role in applied field of engineering, which is investigated by

researchers. A classical study of flexural vibrations of rectangular plates was performed by

Mindlin et al. [1]. Leissa [2] compiled a book on vibration and buckling problems of the

rectangular plates. He derived their natural frequencies. In the present study, vibrations of

rectangular plates are analyzed by applying the wave propagation approach. This is an

approximate technique which is based on eigenvalues of characteristic beam functions. Plates

are structural elements that are frequently subjected to vibration, and controlling the frequency

at which a plate vibrates is very important to structural designers. Free-vibration analyses of

thin rectangular plates that are clamped on all edges have been studied by many researchers in

the past with the aim of calculating its natural frequencies, and they have done using numer-

ical approaches. Plates are important elements in various fields of engineering science and

technology. Their extensive uses are found in aerodynamics, civil structures, hydraulic struc-

tures, containers, ships, instruments, and machine parts. Dynamical loadings are exerted on

plates when they are involved in a physical system.

The theoretical vibration analysis is performed to approximate experimental values to evade

any future complications. Many researchers [3–10] have worked on vibration characteristics of

plates. For several decades, numerous measurements of vibrational properties and the vibra-

tional behavior issues of plates have been studied in addition to different theories [10–12].

Natural frequencies for vibrating rectangular plates are obtained for various boundary condi-

tions. Sakiyama and Huang [13] presented the vibration study of rectangular plates. The

thickness of plates was variable. They based their analysis on the Green function method and

obtained frequency spectra. They obtained some preliminary results for vibrations of plates. A

best theoretical review on plates and shells has been presented by Ventsel and Krauthammer

[14] using Galerkin method to carry out free-vibration analysis of SS-SS plate. Zhang et al. [15]

presented a coupled structural-acoustic analysis for cylindrical shells having fluid inside them.

They applied the wave propagation method for solving shell motion equations.

Werfalli and Karoud [16] conducted a vibration analysis of thin isotropic rectangular plates for

number of end conditions. This study involved determination of their natural frequencies by

applying the Galerkin method. Frequencies were obtained for a number of aspect ratios. They

have discussed the formation of differential equations for plates and their analytical solutions.

Hsu [17] applied a new version of differential quadrature technique to analyze vibrations of

rectangular plates which rested on material foundations of elastic nature and carried any

number of sprung masses. It was inferred that vibration characteristics of these types of plates

can be studied for carrying any number of sprung masses and resting on the elastic founda-

tions. Zhou and Ji [12] studied vibrations of rectangular plates associated with distributions of

springs in uniform and continuous manner in a domain of rectangular nature. The Chebyshev

polynomials in a series were taken to represent trial functions. Comparisons of natural fre-

quencies verified accuracy and extensive applicability of the applied approach. From the

results, it was noted that the natural frequencies and modes were exited in couples.

Mansour et al. [18] gave a theoretical wave propagation method to study vibrations of rectan-

gular Kirchhoff plates. The direct exact solutions were obtained by Xing and Liu [11]. They
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applied method of separation of variables to solutions of the plate eigenvalue equation in exact

shape. This solution procedure met the motion equation in the eigenvalues form and could be

used for any kind of end conditions. Lal et al. [19] presented an analysis and numerical results

for vibration characteristics of hetero-homogeneous rectangular plates with uniform thickness.

The Rayleigh-Ritz technique method was used to solve the plate equation. Characteristic

orthogonal polynomials were used for four conditions of clamped, simply supported, and free

ends with mixed forms. The Gram-Schmidt procedure was used to produce orthogonal poly-

nomials meeting end conditions. Sun et al. [20] used wave propagation approach to analyze

vibrations of thin rotating circular cylinders. Njoku et al. [21] used Taylor series peculiar shape

functions for clamped-clamped isotropic thin rectangular plates and applied Galerkin func-

tional to determine the fundamental frequencies of the vibrating plate.

Recently, the vibrational behaviors of plates have been reported in Refs. [22–26]. However, up

to now, little is known about the vibrational properties of plates and moreover the effects of the

geometrical/material parameters by using extensive wave propagation approach (WPA).

In this chapter, the WPA proposed by Zhang et al. [15] for computing the vibrations is

extended to plates, which is our particular motivation. Increasingly, numerical calculations

have been used to investigate vibrational properties of plates through different models [5, 9,

12, 13, 21]. The method of choice is based on WPA that allows for the study of fundamental

frequencies of plates over various combinations of geometric parameters, and this approach

has become increasingly popular in the numerical solution of engineering applications.

There are many theoretical and numerical techniques that have been used for vibration

problems of plates such as Rayleigh-Ritz [19], differential quadrature method [17],

Galerkin’s technique [16, 21, 27], WPA [15, 28], finite element method [23], and structural

element method (SEM) [29]. Despite of its conceptual simplicity, the continuum models and

Galerkin’s technique are subject to several computational problems which have to be

addressed. The WPA was found to be a very popular tool to compute the vibrational prope-

rties of plates. Recently, the strong formulation of WPA has been applied for investigations

fundamental frequencies of single-walled carbon nanotubes and detailed discussion is given

in our earlier published work [30–32]. The present model based on WPA is, therefore,

another choice of powerful numerical technique, whose results are appropriate in the limit

of acceptable statistical errors than the earlier used Raleigh-Ritz [19] and Galerkin’s tech-

niques [16, 21].

The main objective of the present work is to generalize a modified model based on WPA first

time and is determine how to calculate the frequencies of plates under various boundary

conditions. In our case, the WPA is applied to solve the presented dynamical equations. The

natural frequencies of plates are investigated versus modal numbers by varying the length and

width of the plates with simply supported-simply supported (SS-SS), clamped-clamped

(CC-CC), and simply supported-clamped (SS-CC) boundary conditions. The frequencies of

the plates increase by increasing the modal number and CC-CC frequencies are greater than

the frequencies of other boundary conditions. Computational computer software MATLAB is

engaged to characterize the frequencies. The results are compared with the earlier simulation/

method in order to test the accuracy and efficiency of the present method.
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2. Formulation

Consider Figures 1 and 2 representing a rectangular plate made with length ‘a,’ width ‘b’ and

thickness ‘h’ as geometrical parameters and Young’s modulus E, Poisson’s ratio υ and mass

density r as material parameters. A coordinate system has set at middle reference of the

rectangular plate with ‘x’ and ‘y’ as coordinates along x- and y-axis, respectively, in xy-plane

for the cases of simply supported-simply supported (SS-SS), clamped-clamped: clamped-

clamped boundary conditions as shown in Figures 1 and 2.

Figure 1. SS-SS plate.

Figure 2. CC-CC plate.
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2.1. Governing equation of thin plate model

Consider a rectangular plate whose geometrical dimensions are ‘a’ and ‘b.’ Its thickness is

denoted by h. Then, a, b, and h are called its geometrical parameters. Its material parameters

are E, modulus of elasticity; h, plate thickness; ν, Poisson’s ratio; r, density; Young’s modulus,

E; v, Poisson’s ratio; and r, mass density. Suppose that w (x,y,t) designates the deformation

displacement out of the plane of motion in the transverse direction. The strain energy,U, of this

rectangular plate when it is vibrating, is expressed as:

U ¼
1

2

ð

b

0

ð

a

o

D
∂
2w x; y; tð Þ

∂x2
þ

∂
2w x; y; tð Þ

∂y2

� �2

dxdy (1)

The expression for kinetic energy, T for the rectangular plate is written as:

T ¼
1

2
rh

ð

b

0

ð

a

0

∂
2w x; y; tð Þ

∂t

� �2

dxdy (2)

Here t denotes the time variable, D ¼ Eh3

12 1�ν2ð Þ designates the flexural rigidity, E is Young’s

modulus, r is the density of the plate material, and h is the rectangular plate thickness. The

Lagrangian energy variational functional is formulated by considering the expressions for the

strain and kinetic energies of the vibrating rectangular pate and is written as:

Y

¼ T �U (3)

For deriving, pate governing equation is obtained by applying the Hamiltonian variational

principle [33]. This principle states that during very short interval of time, the change in the

Lagrange functional is minimized. So using this principle to the expression (3), we get the

following:

ð

t2

t1

δ

Y

� �

dt ¼ 0 (4)

Further, it can be written as:

ð

t2

t1

δ T �Uð Þdt ¼ 0 (5)

This process furnishes the governing equation that states the flexural vibration for the rectangular

plates as:
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∂
4w x; y; tð Þ

∂x4
þ 2

∂
4w x; y; tð Þ

∂x2∂y2
þ

∂
4w x; y; tð Þ

∂y4
þ
rh

D

∂
2w x; y; tð Þ

∂t2
¼ 0 (6)

Usually, energy variational methods are applied to investigate the vibration characteristics of

structural elements namely: beams, plates, and shells. These methods consist of the Rayleigh-

Ritz method [19] and the Galerkin method [16, 21]. When a vibrating problem is written in the

integral form, the Rayleigh-Ritz technique is applied. When this problem is in the form of

differential equations, the Galerkin procedure is applied. In both these techniques, axial modal

dependence is assumed by different of mathematical functions which meet the boundary

conditions described on the ends of structural elements. Frequently, beam functions are

exploited for this purpose. These functions are obtained from the solutions of the beam

differential equation for various end conditions.

The differential equation for a vibrating beam is written as:

∂
4w

∂x4
þ α

4 ∂
2w

∂t2
¼ 0 (7)

The general solution of the equation for the wave deformation displacement ω of the beam

vibration can be written as:

w ¼ A1e
kmx þ A2e

�kmx þ A3e
ikmx þ A4e

�ikmx
�

eiωt
�

(8)

where km is the axial wave number whose value depends upon boundary conditions applied at

the beam ends. ω is the natural angular frequency of the beam. In the solution (8), there are four

terms which are functions of the axial variable, x. They represent the negatively decaying evanes-

cent wave, the positively wave, the negatively propagating wave, and the positively propagating

wave. Determination of values of Ai
0

s and the axial wave mode km are associated with edge

conditions. Moreover, they are related to the eigenvalues of characteristic beam functions.

Expression (8) may further be written in the following:

w ¼ B1 cos kmxð Þ þ B2 sin kmxð Þ þ B3coh kmxð Þ þ B4sinh kmxð Þf geiωt (9)

For wave propagation approach, this expression is truncated and is taken as:

w ¼ e�ikmxeiωt (10)

This is illustrated by the example of boundary conditions viz., simple supported—simply

supported. Application of these boundary conditions generates the trigonometric equation:

sin kmdð Þ ¼ 0. Infinite solution of this equation gives kmd ¼ mπ, where m is the number of the

axial standing waves and d is the dimension of the rectangular plate. Hence for a complete

simply supported rectangular plate on four ends, km ¼ mπ

a and kn ¼ nπ
b are used to evaluate

natural frequency of the plate for the vibration parameters, m and n: Here, a and b are the

dimensions, that is, length and width of the rectangular plate.
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2.2. Application of wave propagation approach

Area of determination of solutions of plate equation describing vibration phenomenon has

been remained an attractive interests of mathematicians and engineers for their applied

aspects. A comprehensive material on plate solutions has been compiled by Leissa [2]. The

present era has been said to be the era of computer and its applications. The invention of

computer has made the mathematical computational process very simple, and complicated

expressions are simplified by applying computer software packages like Mathematica, Matlab,

Maple, etc. Various numerical techniques are available to solve the differential equations found

in engineering fields. With new developments in the world of computer science, complicated

problems encountered in the areas of engineering and technology have been solved very easily

and in efficient way. Linear and nonlinear differential equations have solved by the finite

difference method, Rayleigh-Ritz method, the Galerkin method, finite element method, Fou-

rier series method, and boundary element method. Ultimately, there are numerous commer-

cially developed software packages. It is the basic interest of a researcher to apply a method

which implicate less time and labor. This concept leads to develop a new technique which is

more efficient and simple and provides accurate results. It has been seen that in the recent

years, the wave propagation approach has been employed successfully to solve a number of

shell and tube problems [28, 30–32]. Application of this approach reduces the differential

equations in simple algebraic equations. For the present plate problem, this procedure is used

to get the plate eigenvalue equation.

Modal displacement functions. For classical solutions of partial differential equations, method

of separation of variables is employed to split the independent variables. In the governing

differential equation of motion for rectangular plates, three independent variables are involved

viz., two space variables x, y and one time variable, t. For splitting variables, the following

modal displacement function forms are adopted:

w x; y; tð Þ ¼ X xð ÞY yð Þ sinωt (11)

or

w x; y; tð Þ ¼ X xð ÞY yð Þ cosωt (12)

or

w x; y; tð Þ ¼ X xð ÞY yð Þe�iωt (13)

where X xð Þ and Y yð Þ are unknown functions. They are taken from algebraic functions and

assumed to meet boundary conditions. A trigonometric function or an exponential complex

function represents harmonic response. When modal form (7) or (8) or (9) is substituted in the

equation of motion of plates,

∂
4X

∂x4
þ 2

∂
2X

∂x2
∂
2Y

∂y2
þ

∂
4Y

∂y4
¼

rhω2

D
(14)
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For wave propagation approach, the space modal functions X xð Þ and Y yð Þ are supposed to be

the following forms:

X xð Þ ¼ e�ikmx (15)

and

Y yð Þ ¼ e�ikny (16)

where km and kn are axial mode wave numbers, and their values depend on the nature of

boundary conditions specified at the plate four ends.

Making substitutions of expressions (14) and (15) in Eq. (13), we get

∂
4 e�ikmx
� 	

∂x4
þ 2

∂
2 e�ikmx
� 	

∂x2
∂
2 e�ikny
� 	

∂y2
þ

∂4 e�ikn
� 	

∂y4
¼

rhω2

D
(17)

or

k4m þ 2k2mk
2
n þ k4n ¼

rhω2

D
(18)

or

rhω2

D
¼ k4m þ 2k2mk

2
n þ k4n


 �

(19)

or

rhω2

D
¼ k2m þ k2n


 �2
(20)

So the frequency equation for rectangular plates is obtained as:

ω ¼

ffiffiffiffiffi

D

rh

s

k2m þ k2n

 �

(21)

2.3. Boundary conditions

By applying the Hamilton’s principle [33] to the Lagrangian energy variational functional, the

simply supported conditions are described as:

Φm xð Þ ¼
d2Φm xð Þ

dx2
¼ 0

at x = 0, or x = L
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and clamped condition is defined as:

Φm xð Þ ¼
dΦm xð Þ

dx
¼ 0

at x = 0 or x = L

and free condition is stated as:

Φ
2
m xð Þ

dx2
¼

d3Φm xð Þ

dx3
¼ 0

at x = 0 or x = L.

Most of the vibration analysis of rotating functionally graded cylindrical shell with ring

supports has been performed using the simply supported boundary conditions. In this

case, the axial deformation displacement is estimated by the trigonometric functions, that

is:

U xð Þ ¼
dΦm xð Þ

dx
¼ cos mπx=Lð Þ

V xð Þ ¼ W xð Þ ¼ Φm xð Þ ¼ sin mπx=Lð Þ

Differential equations represent a physical problem and involve unknown functions. These

functions are determined by applying some constraints on the boundary of solutions. These

conditions are called boundary conditions. Plate vibration is an initial-boundary value prob-

lem and is transformed into the boundary value problem and four boundary conditions are

described at four ends of a rectangular plate. For a rectangular plate with edges a and b, there

are eight physical boundary conditions:

i. Fully simply supported end conditions

w 0; y; tð Þ ¼ 0,
∂
2w 0; y; tð Þ

∂x2
¼ 0, w a; y; tð Þ ¼ 0,

∂
2w a; y; tð Þ

∂x2
¼ 0 (22)

w x; 0; tð Þ ¼ 0,
∂
2w x; 0; tð Þ

∂y2
¼ 0, w x; b; tð Þ ¼ 0,

∂
2w x; b; tð Þ

∂y2
¼ 0 (23)

ii. Clamped-clamped end condition

w 0; y; tð Þ ¼ 0,
∂w 0; y; tð Þ

∂x
¼ 0, w a; y; tð Þ ¼ 0,

∂w a; y; tð Þ

∂x
¼ 0 (24)

w x; 0; tð Þ ¼ 0,
∂w x; 0; tð Þ

∂y
¼ 0, w x; b; tð Þ ¼ 0,

∂w x; b; tð Þ

∂y
¼ 0 (25)

iii. Two opposite ends simply supported and other two ends clamped
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w 0; y; tð Þ ¼ 0,
∂
2w 0; y; tð Þ

∂x2
¼ 0, w a; y; tð Þ ¼ 0,

∂
2w a; y; tð Þ

∂x2
¼ 0 (26)

w x; 0; tð Þ ¼ 0,
∂w x; 0; tð Þ

∂y
¼ 0, w x; b; tð Þ ¼ 0,

∂w x; b; tð Þ

∂y
¼ 0 (27)

iv. Fully free end conditions

∂
2w 0; y; tð Þ

∂x2
¼ 0,

∂
3w 0; y; tð Þ

∂x3
¼ 0,

∂
2w a; y; tð Þ

∂x2
¼ 0,

∂
3w a; y; tð Þ

∂x3
¼ 0 (28)

∂
2w x; 0; tð Þ

∂y2
¼ 0,

∂
3w x; 0; tð Þ

∂y3
¼ 0,

∂
2w x; b; tð Þ

∂y2
¼ 0,

∂
3w x; b; tð Þ

∂x3
¼ 0 (29)

v. Clamped at two ends and free other two ends

w 0; y; tð Þ ¼ 0,
∂w 0; y; tð Þ

∂x
¼ 0, w a; y; tð Þ ¼ 0,

∂w a; y; tð Þ

∂x
¼ 0 (30)

∂
2w x; 0; tð Þ

∂y2
¼ 0,

∂
3w x; 0; tð Þ

∂y3
¼ 0,

∂
2w x; b; tð Þ

∂y2
¼ 0,

∂
3w x; b; tð Þ

∂y3
¼ 0 (31)

2.4. Frequency equation for various boundary conditions

Using axial wave numbers, various frequency formulas can be formed for a number of bound-

ary conditions.

1. SS-SS

ω ¼
π
2

a2

ffiffiffiffiffi

D

rh

s

m2 þ
n2a2

b2

 �

(32)

2. SS-SS and CC-CC

ω ¼
π
2

a2

ffiffiffiffiffi

D

rh

s

m2 þ
2nþ 1

2

� �2 a2

b2

" #

(33)

3. CC-CC and CC-CC

ω ¼
π
2

4a2

ffiffiffiffiffi

D

rh

s

2mþ 1ð Þ2 þ 2nþ 1ð Þ2
a2

b2

 �

(34)
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4. SS-C and SS-C

ω ¼
π
2

16a2

ffiffiffiffiffi

D

rh

s

4mþ 1ð Þ2 þ 4nþ 1ð Þ2
a2

b2

 �

(35)

3. Results and discussion

According to various support conditions (CC-CC, SS-CC, and SS-SS), the fundamental fre-

quencies (Hz) of the plate have been studied using wave propagation approach. The obtained

results are discussed and compared with earlier theoretical results and simulation methods

using same sets of material and geometrical parameters. In addition to these, as a final case

study, the effect of CC-CC, SS-CC, and SS-SS for two sorts of plates (square and rectangular) is

calculated and investigated. Their material properties, E, ν, and r, for isotropic plate are

2:07788� 1011N=m2, 0.317756, and 8166Kg=m3 [23], and boundary condition is specified in

Ref. [31]. Here, a number of results are presented for vibrating rectangular isotropic plates.

The vibration frequency equation for the plate has been obtained in terms of vibration, geo-

metrical, and material parameters. The wave propagation approach has been applied for

various boundary conditions. For the accuracy and stability of the present method, the find-

ings are in good agreement with the existing results.

Tables 1 and 2 show the comparison of natural frequencies of simply supported square plate

with FEM [23] and SEM [29]. As the number of modes increases, the frequencies also increase.

This comparison shows that present approach is efficient to find the vibration of plates.

In Tables 3–5, the frequencies for a vibrating rectangular plate have been evaluated for modal

parameters (m, n). It is observed that as m is kept fixed, n is allowed to vary, the frequency for

the square plate is increased. Here, behavior of natural frequencies has been shown for a SS-SS,

Frequencies (THz)

Modes Present FEM [23] SEM [30]

(1, 1) 4.845 4.857 4.866

(1, 2) 12.11 12.14 12.16

(2, 2) 19.28 19.43 19.46

(1, 3) 24.19 24.28 24.28

(2, 3) 31.41 31.57 31.6

(4, 1) 41.10 41.26 41.3

(3, 3) 43.61 43.71 43.75

Table 1. Convergence of natural frequencies (Hz) with FEM and SEM of simply supported square plate.
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CC-CC, and SS-CC rectangular plate with regard to geometrical and material parameters. The

frequencies of CC-CC plate are greater than that of SS-CC and SS-SS.

Figures 3 and 4 show the variation of frequencies versus modal wave number. Figure 3 is

drawn for the square plate when we take a = b = 3 m and m = 1, 2, n = 1 � 5 with various

boundary conditions and show the influence of these conditions. As the constraints in the end

conditions are applied more, the frequencies increase. It has been seen that the frequency is

Modal parameter

(m, n)

ɷ f(Hz) Modal parameter

(m, n)

ɷ f(Hz) Modal parameter

(m, n)

ɷ f(Hz)

(1, 1) 152.66 24.2972 (2, 1) 381.66 60.743 (3, 1) 763.32 121.486

(1, 2) 381.65 60.743 (2, 2) 610.656 97.1889 (3, 2) 992.316 157.932

(1, 3) 763.31 121.486 (2, 3) 992.316 157.932 (3, 3) 1374 218.675

(1, 4) 1297.6 206.526 (2, 4) 1526.6 242.972 (3, 4) 1908.3 303.715

(1, 5) 1984.6 315.864 (2, 5) 2213.6 352.31 (3, 5) 2595.3 413.053

Table 3. Variations of natural frequencies (Hz) of simply supported plate with modal parameter (m, n) (a = 1 m, b = 1 m,

E = 2.052 � 1011 N/m2; υ = 0.3, r = 7850 kg/m3).

Modal parameter

(m, n)

ɷ f(Hz) Modal parameter

(m, n)

ɷ f(Hz) Modal parameter

(m, n)

ɷ f(Hz)

(1, 1) 248.079 39.483 (2, 1) 477.075 75.9288 (3, 1) 858.735 136.672

(1, 2) 553.407 88.0774 (2, 2) 782.403 124.523 (3, 2) 1164.1 185.266

(1, 3) 1011.4 160.969 (2, 3) 1240.4 197.415 (3, 3) 1622.1 258.158

(1, 4) 1622.1 258.158 (2, 4) 1851.1 294.604 (3, 4) 2232.7 355.347

(1, 5) 2385.4 379.644 (2, 5) 2614.4 416.089 (3, 5) 2996 476.833

Table 4. Variations of natural frequencies (Hz) of simply supported-clamped plate with modal parameter (m, n) (a = 1 m,

b = 1 m, E = 2.052 � 1011 N/m2; υ = 0.3, r = 7850 kg/m3).

Frequencies (THz)

Modes Present FEM [31] SEM [32]

(1, 1) 55.10 55.13 55.15

(1, 2) 55.52 55.73 55.75

(2, 2) 56.42 56.62 56.67

(1, 3) 65.50 65.52 65.59

(2, 3) 69.68 69.60 69.68

(4, 1) 77.12 77.19 77.30

(3, 3) 83.04 83.18 83.33

Table 2. Convergence of natural frequencies (Hz) with FEM and SEM of clamped square plate.
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almost two times for m = 1 and m = 2 for CC-CC, SS-CC, and SS-SS boundary condition.

Figure 4 is drawn for the square plate when we take a = b = 4 m and m = 3, 4, n = 1 � 5 with

various boundary conditions and show the influence of these conditions. As the constraints in

the end conditions are applied more, the frequencies increase. The frequency gapes for these

boundary conditions at m, n = (1, 2), (2, 1) at a = b = 3, 4 are very close to each other, and as we

proceed the modal number, then the frequency gape is higher.

Figures 5 and 6 show the variation of natural frequencies (Hz) of rectangular plates versus the

vibration modal wave number (m, n) for the boundary conditions on four edges viz., SS-SS, CC-

CC, and SS-CC square plate. Figure 5 is drawn for the rectangular plate when we take a = 3,

b = 2 m. As the constraints in the end conditions are applied more, the frequencies increase. Here,

we fix the value of m = 1 but vary the value of n from 1 � 5. It is observed that frequency

increases by increasing the value of n. It has been seen that the frequency is almost two times

for m = 1 and m = 2 for SS-SS, SS-CC, and CC-CC boundary condition. The frequency curves

are observed closed to each other for modal wave number, (m, n) = (1, 1), (1, 2), (2, 1), (2, 2).

Modal parameter

(m, n)

ɷ f(Hz) Modal parameter

(m, n)

ɷ f(Hz) Modal parameter

(m, n)

ɷ f(Hz)

(1, 1) 343.494 54.6687 (2, 1) 648.822 103.263 (3, 1) 1106.8 176.155

(1, 2) 648.822 103.263 (2, 2) 954.15 151.858 (3, 2) 1412.1 224.749

(1, 3) 1106.8 176.155 (2, 3) 1412.1 224.749 (3, 3) 1870.1 297.641

(1, 4) 1717.5 273.344 (2, 4) 2022.8 321.938 (3, 4) 2480.8 394.83

(1, 5) 2480.8 394.83 (2, 5) 2786.1 443.424 (3, 5) 3244.1 516.316

Table 5. Variations of natural frequencies (Hz) of clamped-clamped plate with modal parameter (m, n) (a = 1 m, b = 1 m,

E = 2.052 � 1011 N/m2; υ = 0.3, r = 7850 kg/m3).

Figure 3. The influence of natural frequencies of a square plate for SS-SS, SS-CC, and CC-CC boundary conditions

(a = 3 m, b = 3 m, E = 2.052 � 1011 N/m2; υ = 0.3, r = 7850 kg/m3).

Effect of Various Edge Conditions on Free-Vibration Characteristics of Isotropic Square and Rectangular Plates
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Figure 6 is drawn for the rectangular plate when we take a = 4, b = 3 m. It can be perceived from

above discussion that the CC-CC boundary conditions have the height frequency curves of

rectangular plates and other boundary condition followed as SS-CC and SS-SS. It is also con-

cluded that the frequency curves with SS-SS boundary condition are the lowest for varying the

modal wave number. For these boundary conditions, on increasing the length a and width b, the

frequencies also increase (m, n). In these figures, it can be seen that the gap between the CC-CC

and SS-CC is greater than that of SS-SS boundary condition. Figures 5 and 6 also show that the

trend of frequency is same for the symmetry of (m, n).

Figure 5. The influence of natural frequencies of a rectangular plate for SS-SS, SS-CC, and CC-CC boundary conditions

(a = 3 m, b = 2 m, E = 2.052 � 1011 N/m2; υ = 0.3, r = 7850 kg/m3).

Figure 4. The influence of natural frequencies of a square plate for SS-SS, SS-CC, and CC-CC boundary conditions

(a = 4 m, b = 4 m, E = 2.052 � 1011 N/m2; υ = 0.3, r = 7850 kg/m3).
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4. Concluding remarks

In this study, vibrations of isotropic square and rectangular plates have been investigated for

modal parameters. Wave propagation approach has been engaged to solve this problem. The

axial deformations along axial variables are approximated by the complex exponential func-

tions. The axial wave numbers are associated with particular boundary conditions. As the

modal wave numbers are enhanced, the frequencies for the plates indefinitely. Moreover, the

influence of the boundary conditions has been studied for by changing the axial wave modes.

Dynamical loadings are exerted on plates when they are involved in a physical system. Their

dynamical behavior is studied theoretically. In the present study, vibrations of square and

rectangular plates are analyzed by applying the wave propagation approach. This is an

approximate technique related to the axial wave modes obtained characteristic beam func-

tions. These axial wave modes represent boundary conditions specified at four ends of a

rectangular plate. Natural frequencies for vibrating square and rectangular plates are obtained

for various boundary conditions. The natural frequencies of plates are investigated versus

modal numbers by varying the length and width of the plates with simply supported- simply

supported (SS-SS), clamped-clamped (CC-CC), and simply supported-clamped (SS-CC)

boundary conditions. The frequencies of the plates increase by increasing the modal number,

and CC-CC frequencies are greater than the frequencies of other boundary conditions. If we

change the nature of material of plate or other physical parameters applied to maintain motion

in radial direction, then a new problem can be formed. These problems can be solved for

different set of boundary conditions. This analysis can be applied to examine the vibrations of

functionally graded material plates.

Figure 6. The influence of natural frequencies of a rectangular plate for SS-SS, SS-CC, and CC-CC boundary conditions

(a = 4 m, b = 3 m, E = 2.052 � 1011 N/m2; υ = 0.3, r = 7850 kg/m3).
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