
Chapter 2

Fresh-Cut Fruit and Vegetables: Emerging Eco-friendly
Techniques for Sanitation and Preserving Safety

Francisco Artés-Hernández,
Ginés Benito Martínez-Hernández, Encarna Aguayo,
Perla A. Gómez and Francisco Artés

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69476

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Francisco Artés-Hernández, Ginés Benito 
Martínez-Hernández, Encarna Aguayo, 
Perla A. Gómez and Francisco Artés

Additional information is available at the end of the chapter

Abstract

The current high demand of minimally processed or fresh-cut fruit and vegetables results 
from the consumer’s desire for healthy, convenient, fresh, and ready-to-eat plant food-
derived commodities. Fresh-cut fruits and vegetables are usually packaged under active- 
or passive-modified atmosphere packaging, while its shelf life must be under refrigerated 
conditions. The most important goal to preserve quality and safety focuses on releasing 
the microbial spoilage flora, since every unit operation involved will influence the final 
load. Sanitation in the washing step is the only unit operation able to reduce microbial 
load throughout the production chain. Chlorine is widely used as an efficient sanitation 
agent, but some disadvantages force to find eco-friendly emerging alternatives. It is nec-
essary to deal with aspects related to sustainability because it could positively contribute 
to the net carbon balance besides reducing its use. Several innovative techniques seem 
to reach that target. However, industrial changes for replacing conventional techniques 
request a fine knowledge of the benefits and restrictions as well as a practical outlook. 
This chapter reviews the principles of emerging eco-friendly techniques for preserving 
quality and safety of fresh-cut products in order to meet the expected market’s demand.
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1. Introduction

The benefits of fruit and vegetables consumption on human health are well known, being 
linked with prevention of a grand array of diseases such as degenerative disorders, cancer, 
and cardiovascular, among others [1]. Consequently, their intake has been promoted among 
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consumers by nutritionists, researchers, and even at a governmental level (i.e., campaigns 

like five-a-day, etc.). However, the actual consumer’s demand of new food was elaborated by 
the industry with the following characteristics: freshness, healthiness, and easy- or ready-
to-eat. Particularly, minimally processed or fresh-cut (FC) fruit and vegetables connect well 
within such consumer needs. The main advantage of FC plant foods is that they have nearly 
the same properties as the whole intact product, but they do not need much elaboration time 
and are with a uniform and consistent quality [2]. NaOCl has been widely used in the FC 
industry as a strong sanitizing agent due to its powerful oxidizing properties [3]. Among 

the main NaOCl advantages are high effectiveness, comparatively inexpensive, and that they 
may be implemented in any size operations [4]. Nevertheless, NaOCl may produce unhealthy 

by-products in processed water (chloramines, chloroform, haloacetic acids, or other trihalo-

methanes) that have been reported to present carcinogenic or mutagenic effects, with proven 
toxicity to liver and kidneys [3]. Therefore, NaOCl use in the FC industry has been forbidden 

in some European countries [5].

This chapter summarizes the principles and development of eco-friendly techniques for pre-

serving safety of FC products in order to meet the expected market’s demand.

2. Antimicrobial washing solutions

2.1. Peroxyacetic acid

Peroxyacetic acid (PAA), or peracetic acid, is a colorless organic peroxide that is a mixture of 

acetic acid and hydrogen peroxide. It is an eco-friendly sanitizer whose breakdown products 
are acetic acid, O

2
, CO

2
, and water. PAA is approved by the European Union as a disinfectant 

for drinking water and food areas and as an in-can preservative [6]. PAA is also permitted by 
the U.S. Food and Drug Administration as an additive for food [7]. The surface-cleaning con-

centrations range from 85 to 300 ppm, although 50 ppm has been reported to be enough [8]. 

PAA is mainly used in fruit and vegetable processing due to tolerance to several factors such as 

temperature, pH (1–8), hardness, and soil contamination. A recommended combination of 11% 

hydrogen peroxide (H
2
O

2
) and 15% PAA, at 80 ppm, was proposed for the disinfection of plant 

surfaces [4]. Escherichia coli O157:H7 and Salmonella spp. reductions of 2–3 log CFU g−1 were 
reported in apples and melons treated with 70 ppm of PAA [9, 10]. Similarly, E. coli O157:H7, 
Salmonella spp., and Listeria monocytogenes inoculated on FC carrot shreds were reduced after 
PAA washing at 40 ppm for 2 min [11]. Mesophilic and psychrotrophic loads of FC Galia melon 

were reduced by 1 and 2 log CFU g−1, respectively, using PAA (68 ppm) [12]. The nutritional 

and sensory quality of FC iceberg lettuce was not affected by PAA (120 ppm), while natural 
microflora was reduced by approximately 1 log CFU g−1 [13]. A similar Salmonella typhimurium 

reduction was achieved after the PAA treatment (40 ppm) in inoculated lettuce [14]. A PAA 

treatment of 80 ppm was more effective than 106 ppm of NaOCl to reduce E. coli O157:H7 
and Salmonella enterica Montevideo on mung bean sprouts [15]. E. coli and Salmonella enteritidis 

reductions of 2–3 log CFU g−1 were achieved in the kailan-hybrid broccoli with 100 ppm of PAA 
being more effective than 100 ppm of NaOCl [16].
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2.2. Chlorine dioxide

Chlorine dioxide (ClO
2
) is a yellowish-green stable dissolved gas that has been used for the 

last decades for water treatment as a potential alternative to NaOCl. ClO
2
 has higher effec-

tiveness over a broad range of pH, higher water solubility (10 times higher than NaOCl), 
higher oxidant capacity, lower reactivity with organic matter, and higher effectiveness at low 
concentrations than NaOCl [17]. Nevertheless, ClO

2
 is a very unstable substance and is highly 

explosive as a concentrated gas when concentrations ≥10% are reached in air. Hence, ClO
2
 

must be generated on-site by two different procedures: reacting an acid with sodium chlorite 
or the reaction of sodium chlorite with chlorine gas then being obtained in either aqueous or 
gaseous forms, respectively [18]. The ClO

2
 is classified as a non-carcinogenic product since it 

does not ionize to produce weak acids (as occurred for chlorine and bromine) or to form car-

cinogenic by-products like trihalomethanes [19]. Gaseous ClO
2
 treatment (100 ppm) of several 

fresh products (tomatoes, lettuce, cantaloupe, alfalfa sprouts, oranges, apples, and strawber-

ries) did not leave any chemical residues on them [20]. ClO
2
 is approved in the USA for usage 

in washing whole fresh fruits and vegetables and shelled beans and pears with intact cuticles 
at maximum levels of 5 ppm and 1 ppm for peeled potatoes [19].

ClO
2
 is considered as a strong microbicide at low levels such as 0.1 ppm, achieving also a 

rapid removal of biofilms which avoid bacterial re-growth [21]. The bactericidal effect of 
ClO

2
 is explained by the interruption of several cellular processes (proteins production and 

changes in the cell structure) when organic substances in bacterial cells react with ClO
2
. On 

viruses, ClO
2
 reacts with peptone to prevent the protein formation being more effective than 

chlorine or ozone [21]. Inoculated pathogens like Salmonella spp., E. coli O157:H7, and L. mono-
cytogenes were reduced on cabbage, carrot, lettuce, strawberry, and melon with ClO

2
 concen-

trations of 4–5 ppm [22–26]. ClO
2
 treatment at 100 ppm of FC cucumber, lettuce, carrot, apple, 

tomato, and guava reduced total bacterial and coliform counts up to 3.5–4.0 log CFU g−1 being 

more effective than the same NaOCl concentration [27]. A ClO
2
 treatment of 3 ppm substan-

tially prevented E. coli O157:H7 cross-contamination but was not effective for the inoculated 
Salmonella in FC Red Chard [28]. The effectiveness of ClO

2
 treatment of tomato processing 

water under a range of water quality and temperature was studied, which showed that an 
increase in temperature and ClO

2
 concentration reduced the contact time achieving a 6-log 

reduction of S. enterica within 2 min of contact time [29]. Acidified sodium chlorite (100–500 
ppm) at low-moderate doses showed an initial antimicrobial efficacy on natural microflora 
and E. coli of FC tatsoi baby leaves as effective as that of 100 ppm NaOCl [30].

2.3. Hydrogen peroxide

Hydrogen peroxide (H
2
O

2
) is a strong oxidizer able to generate other cytotoxic-oxidizing spe-

cies, like hydroxyl radicals, with strong bactericide (including spores) effect [31]. H
2
O

2
 is an eco-

friendly disinfectant since it is rapidly decomposed into water and oxygen in the presence of 
catalase. Likewise, it is colorless and non-corrosive. H

2
O

2
 is allowed for use in food processing 

and packaging but not as a sanitizing agent for fresh produce by the FDA [5]. However, high 
H

2
O

2
  concentrations are needed to achieve good santising effects in FC  products. However, such 

high concentrations may lead to browning being necessary thge use of  anti-browning agents 
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like sodium erythorbate [32]. Accordingly, 2–3 × 104 ppm H
2
O

2
 were needed to reduce E. coli 

O157:H7 by 1.6 log CFU g−1 in baby spinach [33]. L. monocytogenes reductions of 2.0–3.5 log CFU 
cm−2 were reported in melon surfaces after 5 × 104 ppm H

2
O

2
 treatment [34]. Effectiveness of H

2
O

2
 

treatment (3%) on inoculated E. coli O157:H7, Salmonella, and L. monocytogenes in whole canta-

loupe rind surfaces was enhanced when applied at 80℃ for 300 s [35]. H
2
O

2
 has been also found 

to extend the shelf life and reducing native microbial and pathogen populations in whole grapes, 
prunes, apples, oranges, mushrooms, melons, tomatoes, red bell peppers and lettuce, and in FC 
cucumber, zucchini, bell peppers, and melons [5, 36]. Nevertheless, the cross-contamination may 

not be avoided with H
2
O

2
, since it may still occur in the product washing water and its break-

down is rapid with low disinfection kinetics [37].

2.4. Weak organic acids

Weak organic acids have been widely used as preservatives for the prevention of several quality 
degradation processes such as enzymatic and nonenzymatic browning, texture deterioration, 
and microbial spoilage. Contrary to NaOCl, weak organic acids do not produce toxic or carci-
nogenic compounds when they interact with organic molecules [38]. Therefore, several weak 
organic acids are considered as GRAS (Generally Recognized as Safe) by the FDA and European 
Commission being well accepted by consumers. The antimicrobial effect of weak organic acids 
is related to the cytoplasm acidification, osmotic stress, disruption of proton motive force, and 
synthesis inhibition of macromolecules [39]. Weak organic acids are more effective for bacteria 
than for yeasts and molds because of the low pH (2.1–2.7) of the applied solutions. Citric, acetic, 
lactic, and ascorbic acids are the most common acids applied in the food industry.

Citric acid, contrary to other acids, acts as a chelating agent of metallic ions of the medium, avoid-

ing microbial growth [40, 41]. Citric acid treatment (0.52 mM) maintained microbial safety and 

visual quality of FC “Amarillo” melon during a shelf life of 10 days at 5℃ [42]. A solution of 0.1 M 

citric and 0.5 M ascorbic acid achieved the same effectivity as 100 ppm NaOCl to control micro-

bial growth and maintain quality of green celery crescents [43]. Citric and lactic acid dippings of 

0.5–1 × 104 ppm achieved comparable E. coli reductions of 1.9–2.3 log CFU g−1 to 100 ppm NaOCl 

in inoculated FC lettuce without significant efficacy enhancement from incrementing dipping 
times from 2 to 5 min [44]. Likewise, acetic and citric acid dippings of 0.5–1×104 ppm achieved 

similar L. monocytogenes reductions of 0.8–1.0 log CFU g−1 to 100 ppm NaOCl in inoculated FC let-

tuce [44]. However, acetic acid and ascorbic acid dippings of 0.5–1×104 ppm achieved lower E. coli 
reductions than 100 ppm NaOCl in inoculated FC lettuce [44]. The effectiveness of citric, acetic, 
lactic, malic, and propionic acid dippings (1×104 ppm) for inoculated E. coli O157:H7, L. mono-
cytogenes, and S. typhimurium onto fresh lettuce was studied with reductions of 1.9–2.9, 1.1–1.7, 
1.9–2.5, 2.3–3.0, and 0.9–1.5 log CFU g−1, respectively [45].

2.5. Calcium, sodium, and potassium-derived salts

Several salts are recognized as GRAS being a low-cost material for the food industry with 
high acceptance by the consumers, since it is not toxic. Calcium is used to retain the firmness 
of plant commodities by interaction with pectin to form calcium pectate maintaining then 
the cell wall structure. FC lettuce treated with 15 × 103 ppm calcium lactate showed higher 
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crispness than samples treated with 120 ppm NaOCl after 1 day at 4℃ [46]. Latter authors 
hypothesized that such finding could be owed to the activation of texture-related enzymes, 
like PME, by the calcium absorption in the lettuce, or an increase in diffusive processes by 
temperature, including the calcium. Similar results were obtained by 15 × 103 ppm calcium 

lactate treatment at 50℃ of sliced FC carrots to maintain the cortex turgor of plant cells and 

reduce the lignification degree in cut surfaces [47]. However, the calcium lactate antimicro-

bial properties have been scarcely studied. FC lettuce and carrots treated with 3 × 104 ppm 

calcium lactate showed similar microbial loads than 120 ppm NaOCl after 10 days at 4℃ [48]. 

Similarly, 3 × 104 ppm calcium lactate treatment at 60℃ of FC melon induced 1–2 log CFU g−1 

lower bacterial and yeasts and mold loads after 8 days at 5℃, while texture of such melon 
pieces was better maintained than samples washed with water at the same temperature [49]. 

Latter authors also found that other calcium salt treatments (calcium chloride and calcium 
propionate) maintained lower microbial loads in the FC melon samples after 8 days at 5℃. 

Calcium pre-treatments may also help to prevent enzymatic browning reactions during high-
pressure processing (HPP) of peaches if the penetration of Ca2+ reaches the target area, which 
is the tonoplast or vacuolar membrane as observed in peaches [50].

Sodium bicarbonate, sodium carbonate, sodium silicate, potassium bicarbonate, potassium 

carbonate, and potassium sorbate have been studied [51]. Among them, sodium carbonate 

and sodium bicarbonate (at 3% w/v) reduced up to 100% disease (Penicillium sp.) on inoc-

ulated fresh clementines and oranges [51]. Calcium carbonate maintained lower microbial 
loads in the FC melon samples after 8 days at 5℃ [49]. However, little is known about the 
mode of action of these salts, although other possible mechanisms, apart from the high salt 

pH, like the induction of host defence responses might be involved [52].

2.6. Electrolyzed oxidizing water

Electrolyzed oxidizing water (EOW) is formed in an electrolysis chamber by the electrodialy-

sis of a NaCl solution between an anode and a cathode [53]. Acidic EOW (pH 2.5–3.5; oxida-

tion-reduction potential (ORP) 1000–1200 mV) is produced in the anode and alkaline EOW 

(pH 10–11.5; ORP −800 to −900 mV) is produced in the cathode. HCl, HOCl, Cl
2
, OCl−, and 

O
2
 are formed in the anode, while the cathode produces hydroxyl ions, which can react with 

Na ions generating NaOH. EOW contains free chlorine as the main microbial inactivation 

agent showing higher microbicidal effect against pathogens and spoilage microorganisms 
than NaOCl [16, 54, 55]. EOW is considered as an eco-friendly technology that presents the 

following advantages over other sanitizing methods: easy-to-find and cheap materials (NaCl 
and water), simple and on-site production, and low operational expenses and trihalometh-

anes formation. Additionally, some cell electrodes, like boron-doped diamond electrodes, are 

able to oxidize organic matter, reducing then the environmental footprint of wastewater from 
fresh produce industry [56]. Nevertheless, EOW has a short shelf life, in some cases, being 

necessary to be produced on-site and recommended in a ventilated area due to the Cl
2
 and H

2
 

production [5]. EOW has been approved at maximum concentration of 200 ppm by the FDA 
[57]. Neutral EOW (pH 7; ORP 700 mV) can be produced by the mixture of acidic and alkaline 

EOW [58]. The additional advantages from using neutral EOW are that it does not affect sur-

face color, general appearance, or pH of FC vegetables [54].
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EOW has been used in several works as an excellent disinfestation method of food equipment 
surfaces and tools reaching up to 9 log CFU cm−2 reductions for several pathogen biofilms like 
L. monocytogenes, E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus [59–61].

The EOW (15–50 ppm free chlorine) was early studied on FC carrots, spinach, bell pepper, 
potato, and cucumber being considered as an effective disinfectant able to reduce microbial 
loads by 0.6–2.6 log units without product discoloration [54]. Neutral EOW (100 ppm free Cl; 

pH 7) achieved 0.5, 1.3, and >2.1 log mesophilic, psychrophilic, and yeast and mold reduc-

tions, respectively, in FC kailan-hybrid broccoli, showing similar microbial loads and good 
sensory quality to NaOCl-treated (100 ppm) samples after 19 days at 5℃ [62]. Neutral EOW 

also showed similar microbial effectiveness to NaOCl to reduce natural microflora of FC 
lettuce with no impact on its physical and sensory quality [63–65]. Acidic and neutral EOW 

treatments at 70 and 100 ppm free Cl were studied on two broccoli varieties showing neu-

tral EOW (100 ppm) the best microbial reductions after shelf life comparing to NaOCl (100 

ppm) [58]. Furthermore, EOW-treated samples showed higher (up to 30%) total phenolic 
content and more stabilized myrosinase activity (the enzyme responsible for the formation 

of the bioactive isothiocyanates (ITC) in broccoli) than NaOCl-treated samples after shelf life 
[58]. Microbial reductions of 1–2 log units were observed in FC mizuna baby leaves treated 
with acidic EOW (40–100 ppm free Cl) and neutral EOW (40–100 ppm free Cl), with similar 
microbial effectiveness to NaOCl 100 ppm, showing neutral EOW better bacteriostatic effects 
than acidic EOW in some cases [66]. The sensory quality, physical structure, and health-pro-

moting compounds of EOW-treated FC mizuna baby leaves were not significantly affected 
[66]. Neutral EOW (100 ppm free Cl) treatment reduced counts of inoculated E. coli and 

S. enteritidis in FC kailan-hybrid broccoli by approximately 2.6 log CFU g−1. Nevertheless, 

the effectiveness of the last treatment was not increased when it was combined with ultra-

violet (UV)–C (7.5 kJ m−2) treatment. Similarly, neutral EOW treatment (306 ppm free Cl) of 

romaine lettuce reduced inoculated E. coli O157:H7, S. typhimurium, and L. monocytogenes 

loads by 2.0 log CFU g−1 [67]. E. coli O157:H7 grew slower in FC lettuce treated with NEW 
(50 ppm free Cl) during storage at 13–16℃, while no microbial growth was observed if the 
product was stored at ≤8℃ [68].

The use of different organic and inorganic salts has been studied to increase electrolysis effi-

cacy and avoid the corrosive effects of NaCl on equipment. Particularly, electrolyzed sodium 
bicarbonate allowed to control postharvest citrus rots as a result of direct inhibition and the 
induction of fruit resistance-response mechanisms showing normal electrolyzed water a less 
marked effect [69].

2.7. Ozone

Ozone (O
3
) is a colorless gas with a pungent odor having an oxidizing potential (+2.07 V) 1.5 

times higher than that of chlorine, which oxidizes the cell components of the microbial cell 
wall [70]. Ozone half-life is very short, from seconds to hours depending on temperature and 

water quality [71]. Thus, O
3
 is commercially generated on-site by submitting oxygen, or air, 

to ultraviolet radiation (285 nm) or through an electrical charge leading to the cleavage of 

oxygen molecules to form ozone [5, 72].
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Ozone solubility is 12 times lower than that of NaOCl. Nevertheless, ozone concentrations as 
low as 1–5 ppm are enough to reach good antimicrobial reductions. Nevertheless, higher O

3
 

concentrations are needed when it is applied as a gas treatment since its penetration into the 
cells, to achieve the disinfection effect, is affected by the humidity of the air [40, 73]. The O

3
 

effectiveness may be increased at lower pH (more stable) and temperature (higher residual 
ozone concentrations), higher relative humidity of the storage room (increasing its solubility 

on the moisture present on produce surfaces), and purity of the water (ozone is consumed by 
the matrix components reducing its efficacy) [74]. Ozone is spontaneously decomposed to the 

non-toxic O
2
 when applied. Accordingly, O

3
 has been approved as a GRAS product by the 

FDA to be used in the food industry [75]. However, O
3
 can cause irritation to eyes and throat 

(at concentration higher than 0.2 ppm) of plant operators, is highly corrosive to the equip-

ment, and the physicochemical properties of treated produce may be altered [5].

An ozonated water treatment at 0.4 ppm for 3 min has been recommended to maintain micro-

biological quality and firmness of tomato slices while it did not affect the physicochemical 
quality and organic acid contents [76]. The levels of Salmonella spp. inoculated in melons 

were reduced between 4.2 and 4.8 log CFU/rind-disk (12 cm2) after a gaseous ozone treatment 

(10,000 ppm for 30 min under vacuum system) [77]. Counts of inoculated E. coli O157:H7 
in spinach leaves were also decreased under a novel gaseous system capable of generating 
O

3
 inside the sealed package at various geometries [78]. Respiration rate and browning of 

FC celery were reduced, while sensory quality was well maintained using ozonated water at 
0.18 ppm for 5 min [79]. Ozonated water at 1 ppm reduced both enzyme activity and enzy-

matic browning of shredded lettuce [80]. Nevertheless, the latter enzyme inactivation showed 
a negative effect, as the reduction in activity of the texture-related pectin methyl esterase was 
correlated with a lower crispiness. FC rocket treated with ozonated water at 5 ppm for 10 min 
showed better sensory scores and microbial quality (psychrophilic and yeast and molds) than 
untreated samples after 12 days at 5℃, while total chlorophylls and carotenoids contents were 
unchanged [81]. Mesophilic, psychrotrophic, and yeast counts of FC tomato slices treated with 
ozonated water (3.8 ppm for 3 min) showed 1.9, 1.6, and 0.7 lower log units, respectively, than 
untreated samples after 10 days at 5℃ [82]. The enzymatic antioxidant system of FC green 

peppers treated with gaseous ozone (6.42 mg cm−3 for 15 min) was induced during storage at 
5℃, while polyphenol oxidase activity was reduced. A synergistic effect was even observed 
when the latter ozone treatment was combined with modified atmospheric packaging (3% O

2
, 

4% CO
2
,
 
and 93% N

2
) of green peppers [83].

Nevertheless, O
3
 seems to be not always highly effective. In that sense, low (<0.5 log units) inhib-

itory effect on mesophilic, psychrophilic, enterobacteria, molds, and LAB loads of FC “Galia” 
melon washed with ozonated water (0.4 ppm, up to 5 min) was observed after 10 days at 5℃, reg-

istering even higher yeast and molds compared to untreated samples [84]. However, FC ‘Galia’ 

melon washed for just 1 min with 80 ppm PAA showed the lowest microbial loads after 10 days 

at 5℃. However, the latter PAA antimocrobial effect was reduced when it was combined with 
ozonated water treatment. On the other side, FC “Galia” melon samples treated with ozonated 
water reduced respiration rates, while sugar contents and vitamin C were better maintained 
[84]. Shredded “Iceberg” lettuce treated with ozonated water (1 ppm, 120 s) showed lower sen-

sory and microbiological quality than samples treated with NaOCl (200 ppm, 120 s) [85].
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2.8. Essential oils

High antimicrobial properties have been studied with several plant essential oils (EOs) [86]. 

Generally, EOs possessing the strongest antibacterial properties are those that contain pheno-

lic compounds such as carvacrol, eugenol, and thymol [87, 88]. In general, the mechanism of 
action of EOs against microorganisms involves the interaction of phenolic compounds with 
the proteins (porins) in the cytoplasmic membrane that can precipitate and lead to ions leak-

age of and other cell contents causing cell lysis [89]. Carvacrol solutions have shown good 
antimicrobial effects in different FC fruit and vegetables like lettuce, kiwifruit, apples, and 
melons treated with carvacrol-containing washing solutions [90–92]. Thymol (from thyme 

and oregano) and eugenol (from clove, Syzygium spp.) have also shown high antimicrobial 
and antioxidant effects on MAP-stored table grapes [93].

The EOs concentrations should be increased when tested in vivo in order to reach the same 

effectiveness than that observed in vitro. However, such high EOs concentrations may lead to 

EOs-related off-flavors transmission to the product. Furthermore, the lipophilic nature of EOs 
difficult their solution in the water-based washing solutions [86]. Therefore, the reduction of 

the EOs particle size (<100 nm) has been proposed as an alternative to improve EO antimicro-

bial efficiency through two important targets: (i) the possibility of enhancing physicochemical 
properties and stability; and (ii) the ability of improving biological activity of lipophilic com-

pounds by increasing the surface area per unit of mass [94]. The antimicrobial and physical 

properties of different EOs (lemongrass, clove, tea tree, thyme, geranium, marjoram, palma-

rosa, rosewood, sage, or mint) have been reported to be enhanced when they were processed 
to nanoemulsions [94]. Such nanotechnology has been recently applied in FC carrots using 

nanoencapsulated carvacrol particles’ incorporation in a washing solution, which reduced 
the characteristic off-flavors and EOs oxidation while keeping good microbial quality of the 
product during shelf life [95]. Furthermore, EOs may be included as antimicrobial agents in 

packaging films as reported of FC vegetables as proposed in a study using a carvacrol–poly-

lactic acid film to inhibit E. coli ATCC 8739, Fusarium oxysporum, Geotrichum candidum, and 

Phytophthora spp. [96].

2.9. Isothiocyanates

Isothiocyanates (ITC) are sulfur compounds that can be formed in the Brassica vegetables 

after hydrolysis of glucosinolates by plant myrosinase. Antimicrobial activity of ITC has been 
reported for a wide range of foodborne microorganisms [97, 98]. The antimicrobial mechanism 

of ITC is not still clear, although it is hypothesized to be owed to the electrophilic nature of the 
central carbon atom located in the N=C=S group [99]. Among them, allyl-isothiocyanate has 

also shown high antimicrobial activity being listed as a GRAS [100]. FC lettuce treated with a 
washing solution of 75 ppm of benzyl-isothiocyanate (5 min) achieved a complete removal of 
total bacteria and inoculated Salmonella in the wash water, which proved to persist such anti-
microbial effects in the processed water up to 48 h [101]. However, the low solubility of ITC 
highly limits its application as a sanitizing water treatment in the FR industry. Accordingly, 
integration of ITC in edible coatings of FC produce has been proposed with a longer antimi-
crobial effect due to slower release from the coating [96].
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3. Biological-based methods

3.1. Bacteriocins

Bacteriocins are toxins of protein nature that are synthetized by bacteria to inhibit the microbial 
growth of similar or closely related bacterial strains. The solubility of bacteriocins may increase 
at lower pH, facilitating diffusion of bacteriocin molecules [102]. Nisin is a food-grade bacteriocin 

produced by Lactococcus lactis that is widely used in the food industry. The antimicrobial activ-

ity of this bacteriocin is owed to its action on the cell membrane forming pores leading to the 
microbial cell death [103]. Nisin is principally effective against Gram-positive bacteria, while it is 
not active against Gram-negative bacteria due to their outer membrane [104]. However, the nisin 
efficacy may be increased also due to Gram-negative bacteria using chelating agents (e.g., ethyl-
ene diaminotetracetic acid [EDTA]), acids, or osmotic shock, with the outer membrane destabi-
lized before the nisin application [103]. Attending to natural microflora, a mesophilic reduction of 
approximately 2 log CFU g−1 was reached in FC “Galia” melon after a nisin (0.250 g L−1) treatment 

combined with EDTA (0.100 g L−1) and citric acid (2.0 g L−1) [105]. Nisin and other bacteriocins 

(pediocin, coagulin, plantaricin C, and lacticin 481) were also tested in FC lettuce inoculated with 
L. monocytogenes, inducing nisin and coagulin a reduction of pathogen viability by 1.2–1.6 log 

units [106]. The inclusion of nisin (IU mL−1) in a pectin coating applied on FC “Rojo Brillante” per-

simmon completely inhibited the growth of mesophilic bacteria and inoculated E. coli, S. enter-
itidis, and L. monocytogenes [107]. Nisin treatment (0.03% for 10 min) controlled microbial growth 
and maintained quality of Chinese yam during storage at 4℃ [108]. Bacteriocin RUC9 produced 
by L. lactis reduced by 2.7 log units, the L. monocytogenes loads inoculated in FC lettuce, while 
nisin only achieved a pathogen reduction of 1.9 log units [109].

3.2. Biological control

The use of biological preservation (strains of Enterobacteriaceae, lactic acid bacteria, yeasts, and 

molds) has also been studied in several products like lettuce, apples, peaches, and strawberries 
[110–113]. Recently, the application of the strain CPA-7 of Pseudomonas graminis, isolated from 

apples, could reduce the foodborne pathogens on FC apples, peaches, and melon [114, 115]. 

Such antimicrobial effects of these antagonists may be explained by the triggered activity of 
defence-related enzymes [116].

3.3. Bacteriophages

Bacteriophages are viruses that infect and replicate in a bacteria causing their lysis and death [117]. 

Bacteriophages were earlier studied on FC fruit like apples and melons [118]. S. typhimurium and 

S. enteritidis inoculated in lettuce were highly reduced by 3.9 and 2.2 log units, respectively, using 
different lytic bacteriophages treatments for 60 min at room temperature [119]. Nevertheless, 

bacteriophages treatments should be optimized due to the impractical application in the FC 

industry. Accordingly, integration of bacteriophages in edible coatings of FC produce has been 

proposed as an effective antimicrobial coating in tomatoes, with such phages being stable up to 
1 week at 4℃ [120].
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4. Physical-based treatments

4.1. Mild heat treatments

The use of mild heat treatments is a promising sanitizing technique for the FC industry, which 
may extend the FC product shelf life through microbial destruction and partial enzymatic 

inactivation. However, the treatment temperature and exposure time should be carefully 
selected for each product due to possible undesirable changes of sensory and nutritional qual-

ity. Fruit and vegetables treated by heat treatments within the range 40–60℃ for 1–5 min, 

depending of the commodity, are still considered as a fresh product as it is defined [17, 121].

Hot water and vapor treatments have been studied in several fresh-cut commodities like 
pomegranate arils [122, 123], kiwifruit [124], lemons [125], peaches [126], apples [127], sun-

choke [128], lettuce [46, 129, 130], rocket [131], spinach [132, 133], celery [134], eggplants [135], 

and onions [136]. PPO activity of fresh-cut pomegranate arils was 1.3-fold reduced by a hot 
water treatment at 55℃ for 30 s, while total anthocyanins contents were similar to those of 
untreated samples after 7 days at 5℃ [137].

Short vapor treatments, usually up to 15 s, usually steam jet-injection systems, have been also 
used as an alternative to hot water treatments due to less impact on sensory quality of the FC 
product. Accordingly, vapor treatment (95℃; 7–10 s) kept better quality of FC pomegranate 
arils [138] compared to the hot water (55℃; 30 s) treatment [139] during storage at 5℃, increas-

ing the shelf life from 7 to 18 days. Furthermore, vapor heat treatments reduced up to 2-fold 

the total antioxidant capacity losses observed in fresh-cut pomegranate arils sanitized by con-

ventional NaOCl treatment during shelf life [138]. Steam jet-injection treatment of fresh-cut 
lettuce for 10 s reduced respiration rate, partially inactivated browning-related enzymes and 
kept the mesophilic load as low as with a conventional NaOCl treatment [46]. Nevertheless, 

further research is needed to optimize the exposure conditions for FC commodities.

Heat treatments by microwave (750 W for 45–60 s) have been recently proposed to reduce 
natural microflora of FC carrots, which also prevented whitening and surface drying of sam-

ples during storage up to 7 days at 5℃ [140]. The increased microbial growth due to plant cell 
disruption after the heat treatment may be controlled with the use of combined storage under 
modified atmosphere packaging.

4.2. UV radiation

Ultraviolet (UV) light is an electromagnetic radiation divided in four groups: UV-A, UV-B, 
UV-C, and vacuum UV [141]. UV-C radiation (λ = 190–280 nm) is a promising sanitizing 

technology for FC products, which offers several advantages: it does not leave any residue, 
no legal restrictions, easy to use, and it does not require extensive safety equipment to be 

implemented [142, 143]. UV-C is a non-ionizing radiation, which means it is an electro-

magnetic radiation that does not carry enough energy/quanta to ionize atoms or molecules 
and is represented mainly by visible light, UV rays, microwaves, and infrared. UV-C radia-

tion in the range 250–260 nm is lethal to most microorganisms, including bacteria, viruses, 
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 protozoa, mycelial fungi, yeasts, and algae, showing the maxima germicidal effective-

ness at 254 nm [144]. UV-C germicidal effect is based on the ability of this radiation to 
alter microbial DNA through dimer formation [142]. If the damage goes unrepaired, the 
accumulation of DNA photoproducts can be lethal to cells through the blockage of DNA 
replication and RNA transcription, which ultimately result in reproductive cell death. 
Nevertheless, it has been also stated that UV-C may lead to the conversion of bacteria in 
the viable but non-cultivable state as a strategy of protection against the UV-C germicidal 
effect (to economize on energy, induction of repair mechanisms, inhibit the generation 
of mutant bacteria, etc.) [145]. UV-C is a superficial sanitizing treatment with low pen-

etration in the plant tissue as observed in carrot tissue where a transmittance below 20% 
was observed in a 0.1-mm layer of the carrot epidermis [146]. Accordingly, a UV-C treat-
ment of 0.4 kJ m−2 applied to iceberg lettuce internally inoculated (using vacuum system) 
with Salmonella Montevideo P2 did not achieve significant pathogen reduction, while the 
same UV-C dose achieved a 2-log CFU g−1 reduction on the surface-inoculated lettuce 
[147]. UV-C effectiveness appears to be dependent on the treatment temperature, distance 
between sample and lamp, direction of lamp, UV intensity, and exposure time [148, 149]. 

Cell permeability may be changed with UV-C, depending on the tissue and UV dose, lead-

ing to increase of electrolytes, amino acids, and carbohydrates leakage, which can enhance 
the microbial growth [150]. Accordingly, the crucial point is to apply an appropriate UV-C 
dose that achieves the maximum microbial reduction without damaging the product.

The UV dose (D; usually expressed in kJ m−2) is directly proportional to the product of 

UV intensity (I; usually expressed in W m−2) and exposure time (t) according to the equa-

tion: D = I × t. The three pathogens regulated for FC products (according to the European 

Regulation [151]), E. coli, Salmonella spp., and L. monocytogenes, were inoculated in the 
kailan-hybrid broccoli, and the inactivation rates with UV-C doses up to 15 kJ m−2 were 
modeled [149]. The inactivation curves showed a pronounced tailing effect achieving a 
UV-C dose of 2.5 kJ m−2 E. coli, S. enteritidis, and L. monocytogenes reductions of 1.22, 2.61, 

and 0.72 log cycles, respectively. Hence, S. enteritidis was the most sensitive microorgan-

ism, while L. monocytogenes was the most resistant. Doses higher than 2.5 kJ m−2 led to 

further additional inactivation in the inoculated kailan-hybrid broccoli, although the most 

important inactivating effect was achieved in the range 0–2.5 kJ m−2 as similarly found in 

other FC products [149, 152].

The UV-C effectiveness on natural microflora has also been studied in several FC fruit and 
vegetables. UV-C treatments (0.49, 4.9, and 9.8 kJ m−2) of FC zucchini slices reduced microbial 

activity and deterioration during subsequent storage at 5 or 10℃ [153]. Mesophilic loads of FC 

pomegranate arils were reduced by approximately 1 log units after 4.5 kJ m−2, while yeasts were 
reduced >1.8 log units [139]. Similarly, UV-C radiation doses (4.5–9 kJ m−2) of the kalian-hybrid 

broccoli reduced mesophilic loads by approximately 1.2 log units while enterobacteria and psy-

chrophilic were unaffected [62, 154]. However, combination of UV-C with NEW in kalian-hybrid 
broccoli or with hot water (55℃ for 30 s) in FC pomegranate arils did not achieve further micro-

bial inactivations [62, 139]. FC tomatoes treated with a UV-C dose of 4 kJ m−2 and stored for 21 

days at 12℃ under MAP (5 kPa O
2
 +1 kPa CO

2
) retarded ripening and maintained better firmness 
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and sensory attributes than UV-C treated samples stored under air conditions [155]. The range 

of 0–2.5 kJ m−2 UV-C dose achieved the most important mesophilic reductions in treated date 
palm [156]. The UV-C sanitizing effect has been studied in a wide FC products such as tomato 
[157], strawberry [158], watermelon [159], potatoes [160], and lettuce [161], among others.

Increases in bioactive compounds of several fruit and vegetables after UV treatments have 
been reported. Such enhancements of health-promoting compounds have been reported to 

be a consequence of the free radicals generated during irradiation that might act as stress sig-

nals and trigger stress responses leading to the observed bioactives increments [162]. Broccoli 
exposed to several UV-C doses (1.5–15 kJ m−2) registered increases in its polyphenols content 

(up to 25%) after 19 days at 5℃ [154]. FC tomatoes UV-C treated (0.97 kJ m−2) showed higher 
total phenolic content than other samples treated with hot water (40℃, 30 min), ultrasounds 

(45 kHz; power of 80%; 30 min), or its combination, after 30 days at 10℃ [157]. The lycopene 

content of watermelon was preserved with a UV-C dose of 2.8 kJ m−2, although a lower dose 
of 1.6 kJ m−2 did not show the same benefit [159]. However, immediate bioactive increments 
after UV-C have been observed in several FC fruit and vegetables, being probably attributed 
to an enhanced compound extraction due to plant cell disruption as a consequence of the 

UV radiation. Therefore, phenolic compounds and flavonoid contents of FC mangoes were 
increased after UV-C doses of 2.46 and 4.93 kJ m−2 [163]. Hydroxycinnamoyl acid deriva-

tives of FC broccoli were also increased by 4.5–4.8-fold after UV-C treatments (4.5–9.0 kJ m−2) 

[154]. Total phenol and flavonoid contents of banana and guava were enhanced after UV-C 
treatment [164]. FC carrot treated with UV-C (9 kJ m−2) showed higher chlorogenic content 
on total antioxidant capacity than untreated samples on processing day [146]. Then, besides 

the interest of UV-C radiation as a microbial safety method, this non-ionizing radiation may 
also be used as a tool to enhance or better preserve the health-promoting compounds of plant 
products during shelf life [165].

Application of UV-B radiation (280–320 nm) has also been proposed as a friendly and cheap 
nonmolecular tool to enhance the phenolic compounds in carrots and other horticultural 

crops during postharvest life [166–168]. FC carrot shreds treated with a UV-B dose of 1.5 kJ m−2 

showed 23% higher total phenolic content (mainly chlorogenic acid) than untreated samples 
after 72 h at 15℃ [169]. UV-A has also been reported to induce biosynthesis of anthocyanins 
in cherries [170], although its effects has not been widely reported, and further research must 
be conducted.

Low-light conditions during storage have been recently proposed as an innovative and eco-
friendly postharvest technique to highly prolong the shelf life of FC products. Accordingly, the 

shelf life of FC lettuce (butterhead and iceberg) was highly extended when it was stored under 
low-light conditions (≈5 μmol m−2 s−1 PAR; using either fluorescent or LED light) compared 
to samples stored under dark conditions [171]. Thus, lighting delayed cut-edge browning, 
reduced ascorbic acid degradation while carbohydrates levels were highly increased, although 
light samples did not show net photosynthesis according to photosynthetic activity measure-

ments. Latter authors hypothesized that the observed prolonged shelf life in lit samples could 
be due to the higher levels of sugar and ascorbate that may act as antioxidants, may maintain 

membrane integrity, and may supply enough respiratory substrate to prevent ATP depletion.
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4.3. Pulsed light

Pulsed light (PL) is a preservation technology that involves the use of intense short duration 

(1 μs–0.1 s) pulses of polychromatic light from UV to near infrared (100–1100 nm) emitted by 
an inert gas (e.g., xenon) lamp [172]. The microbicidal action of PL has been attributed to dif-
ferent mechanisms: photochemical, photothermal, and photophysical [173]. Several studies 

have shown the effects of PL treatments on inoculated microorganisms, native microflora, 
and quality aspects of FC spinach, lettuce, cabbage, carrot, mushrooms, avocado, and water-

melon [174–179]. Microbial reductions up to 2.2 log units have been reported in different 
products such as lettuce, celery, spinach, bean sprouts, white cabbage, and green bell pepper, 
with the different antimicrobial effectiveness in different produce dependent on the location 
of microorganisms as well as the presence of protective substances present in the product 
[179, 180]. Further investigation may cover the reported microbial photoreactivation after PL 

treatments [181–184] and the PL efficiency due to shadow effects that is one of the main indus-

trial limitations of PL technology.

4.4. Pulsed electric fields

Pulsed electric fields (PEFs) are based on the application of DC voltages for very short periods 
of time, usually μs, to the food material which is placed between two electrodes. PEF equip-

ment consists of a treatment chamber, pulse generator, control system, data acquisition, and 

material-handling equipment [185]. PEF has been successfully applied for microbial inacti-

vation in liquid food systems, although its application in plant tissues is limited due to the 

PEF-related plant cell disruption processes known as membrane breakdown, membrane per-

meabilization, or electroporation of the membrane [186]. Accordingly, PEF treatment (wave 
bipolar pulses at 2 kV cm−1 electric field strength, 1 μs pulse width, and 100 pulses s−1) applied 

to blueberries (immersed in a saline fluid for PEF transmission) for just 2 min achieved 1 and 
2 log unit reductions of inoculated E. coli and L. innocua, respectively [187]. Latter authors 
reported no PEF effects on color and appearance of blueberries, and the nutritional quality 
even enhanced, although PEF caused fruit softening. However, high electric field strength 
(333 V cm−1) applied on a single pulse has been reported to not alter structure-related proper-

ties of FC onions, while such undesirable effects were observed using several pulses (n ≥ 10) 
[185]. Accordingly, PEF is a promising technology to be used in FC produce, although the 

tissue changes as a function of the electrical field strength, and the number of pulses for each 
plant produce must be further investigated.

4.5. Cold plasma

Plasma is generated when an inert gas is in contact with electricity and is being considered 
as the fourth state of matter. Plasma is composed by charged particles, excited molecules, 
reactive species, and UV photons which induce microbial inactivation [188]. Plasma is gener-

ally classified as cold (non-thermal) and thermal plasma. Thermal plasma generation requires 
temperature and high pressure with heavy electrons. Cold plasma is generated at tempera-

tures of 30–60℃ under atmospheric or vacuum requiring low energy [189]. Among the main 
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advantages of cold plasma are lower cost operating temperature and water consumption, 
together with timely production of the acting agents and lack of residues during production 
when compared to thermal and chemical treatments [190–192]. Cold plasma can be generated 

using either of the following devices: resistive barrier discharge, dielectric barrier discharge, 
corona discharge, radio frequency discharge, glow discharge, and atmospheric pressure 
plasma jet [193]. Plasma jet may be considered as the fastest plasma generation method to 
achieve microbial inactivation (4.3 ± 6.5 min) [194]. The most widely used gas in the published 
research has been air, followed by pure Ar, mixtures of He/O

2
 and Ar/O

2
, and pure N

2
 [194]. 

The plasma inactivation capacity depends on several factors like the type of technology used 

to generate the plasma, the voltage, the feed gas, the treatment time, the species, the direct or 

indirect exposure and the concentration of the tested microorganisms, and the structural char-

acteristics of the produce [192]. Cold plasma has a high potential to be used in the industry 

for fruit and vegetables according to studies of the last few years as recently reviewed [194]. 

Generally, plasma treatments are able to achieve microbial reductions of 2.7 ± 1.4 log units, 

ranging from 1.5 ± 1.0 log units for bacilli and spores to 3.3 ± 1.6 Log for Listeria spp., with 
treatment times of 22.2 ± 7.5 min for bacilli and spores and 3.5 ± 3.8 min for E. coli spp. [194]. 

Cold plasma has been also reported to highly (42–89%) reduce enzymatic browning of FC 
apples and potatoes [195, 196]. Nevertheless, the bactericidal mechanisms of cold plasma are 

still unclear being dependent on lots of factors related to processing parameters, environmen-

tal elements, and microbial properties [197].

4.6. Ultrasounds

Ultrasounds (US) are sound waves with amplitude higher than the upper audible limit of 
human threshold (above 20 kHz) that generate cavitation bubbles [198]. The antimicrobial 

properties derived from US is based on the combination of mechanical (responsible for the 
disinfection action leading to detachment) and chemical energy (responsible for the free radi-

cals formation leading to destruction), produced from the collapse of latter generated bubbles, 
which increase the cell membranes permeability [40]. Consequently, DNA modifications of 
microbial cells are formed due to formed hot spots (due to collapse), with high temperatures 
and pressure, and released free radicals [199]. The US treatment should always ensure that 
US pressure levels (70 dB at 20 kHz or 100 dB at ≥25 kHz) are not surpassed according to UK 
Health Protection Agency recommendations [200]. The effectiveness of microbial inactivation 
achieved with US is influenced by microbial cell shape (high resistance of coccus), size (big-

ger cells are less resistant), Gram type (negative are less resistant), and cellular metabolism 

(anaerobes are less resistant) [201]. Among treatment parameters, US effectiveness is influ-

enced by fluid temperature (optimum at 60℃ which may be reduced to 20℃ to avoid losses of 

produce sensory quality without highly affecting microbial US inactivation), water hardness, 
and dissolved gases content [202]. US treatment (40 kHz, 50 W) for 5 min of strawberries 
initially reduced natural mesophilic microflora by approximately 1 log unit [203]. However, 
latter authors showed that such initial antimicrobial effect was lost after 5 days at 8℃ since 

similar reduction logs (regarding unwashed samples) to sterile water-washed (5 min) samples 
were achieved. On the other hand, such antimicrobial effects were maintained up to 9 days at 
8℃ when US treatment was combined with PAA (40 ppm) even showing a synergistic effect 
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on mesophiles and the highest initial reductions on inoculated S. enterica subsp. Enterica, with 
sensory, physicochemical, and nutritional quality highly maintained [203]. No statistical dif-

ferences among the effects of different frequencies (25, 32, and 70 kHz; 10 min) on achieved 
log reductions (1.5 log) were observed in FC lettuce inoculated with S. typhimurium [202]. 

Inoculated E. coli, S. enteritidis, and L. innocua loads of FC lettuce were reduced by 2.3, 5.7, and 
1.9 log units with a US treatment for 30 min at 37 kHz without high color changes, although 
sensory quality was not studied in a parallel experiment with non-inoculated samples [204]. 

However, the produce matrix is highly important for US effectiveness since lower pathogen 
inactivations were observed in different products [204, 205].

4.7. High-pressure processing

High-pressure processing (HPP) uses elevated pressures, with or without the addition of 
heat, also called high-hydrostatic pressure processing since water is the most used pressure-
transmitting fluid [206]. HPP is a promising eco-friendly sanitation treatment that may have 

a potential application in the FC industry. HPP may reach very high microbial inactivations 

as reviewed [207] while maintaining, or even enhancing, sensory properties of food products 
like aroma and taste. However, although the texture of tissues of firm FC products with low 
amounts of entrapped air remains unaffected, HPP may induce some alterations like water-
soaked appearance of the product [208]. Furthermore, HPP may either enhance (leading 

to enzymatic browning reactions due to loss of membrane permeability and sub-cellular 
compartmentalization) or inhibit the activity of enzymes related to cell wall degradation 
in FC products [209]. HPP treatment (200–400 MPa, 3 min, 25℃) of FC persimmon induced 

changes in physicochemical quality (electrolyte leakage, texture, total soluble solids, pH, 

and color), which were a function of the amount of applied pressure compromising the 
consumer acceptance of the product [210]. However, latter authors reported that HPP may 
improve carotenoid extractability and tannin polymerization of FC persimmon, which could 
enhance its functionality and eliminate astringency, respectively. Plant cell membranes of 

FC peaches have been tried to be stabilized prior to HPP treatment (200 MPa for 10 min; 

23–28℃) through penetration of Ca2+ into the plasma membrane using calcium chloride 

or calcium lactate soaking treatments (1–2% w/v for 5 min). Nevertheless, latter authors 
reported that loss of cell integrity due to HPP was not avoided with the calcium soakings 
probably due to a low Ca2+ penetration into the tonoplast membrane being recommended 

for future research a higher calcium concentration and/or improved Ca2+ impregnation (e.g., 

using vacuum infusion). Higher pressure levels (585 MPa) were more effective to inactivate 
enzymes and to preserve color of FC peaches than longer times being optimized a HPP 

treatment of 585 MPa for 1 min [211]. Nevertheless, due to the known baroresistance of 
some enzymes, like polyphenol oxidase (PPO), browning reactions may not be completely 
avoided during FC product shelf life, although MAP could limit such enzymatic activities 

due to low oxygen levels.

High-pressure carbon dioxide (HPCD) treatment has been proposed as another antimicro-

bial method being applied in FC carrots at 12 MPa (40℃) for 15 min and leading to complete 

inactivation of natural microflora being maintained after 28 days at 4℃ together with the 
enzymatic stability [212]. HPCD treatment (12 MPa; 40℃; 20 min) of inoculated FC coconut 
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also achieved S. typhimurium reductions of 4 log units, which was even enhanced to 8 log units 
when HPCD was combined with a high-power ultrasound treatment (10 W delivered every 
2 min of treatment) [213].

5. Packaging under non-conventional gas mixtures

Modified atmosphere packaging (MAP) is a postharvest preservation technique based on the 
packaging of a perishable product within an atmosphere that has been modified compared 
with air conditions. There are two types of MAP: active or passive. Active MAP consists in the 
replacement on the initial present gases by a desired mixture. Passive MAP is progressively 

generated as a result of respiration of the product and gas transfer through the film, which 
has a selected permeability to gases, until the desired gas equilibrium atmosphere is reached.

The use of superatmospheric O
2
 concentrations (>75 kPa O

2
) during modified atmosphere stor-

age (HO—high oxygen conditions) reduces aerobic and anaerobic microbial growth, prevents 
anaerobic fermentation, avoids non-desirable flavor changes, and inhibits enzymatic brown-

ing. The microbial toxicity to HO may be explained due to the unfavorable effects on the oxi-
dation-reduction potential of the system, the oxidation of enzymes having sulfhydryl groups 
or disulfide bridges, and the accumulation of toxic reactive O

2
 species [214]. HO-controlled 

atmosphere (75 kPa O
2
 balanced with N

2
) inhibited the mesophilic count of FC lettuce during 

storage for 10 days at 7℃ [215, 216]. Chinese bayberries, strawberries, and blueberries stored 
under HO-controlled atmospheres (60–100 O

2
 kPa balanced with N

2
) inhibited decay during 

storage at 5℃ and subsequent 2 days at 20℃, while chemical parameters and surface color 
were only slightly affected compared to samples stored under air conditions [217].

High CO
2 

levels (maximum limits depending on the produce due to generation of related 

off-flavors) have also shown antimicrobial effects which are even stronger at low tempera-

ture because of enhanced CO
2
 solubility. Accordingly, controlled atmosphere with 15 kPa 

CO
2 
+ 5 kPa O

2
 (balanced with N

2
) showed similar inhibitory effect to high O

2
 on mesophilic 

growth of FC lettuce than samples stored at 0 kPa CO
2 
+ 75 kPa O

2
 (balanced with N

2
) [216]. 

Interestingly, a combined high O
2
/CO

2
 effect may be obtained using active HO MAP. The 

latter beneficial gas conditions are a result of the produce respiratory activity that generates 
antimicrobial CO

2
 levels, while O

2
 is inevitably reduced due to a combined effect of respira-

tion and film diffusivity processes. Hence, the addition of CO
2
 is unnecessary when high 

O
2
 atmospheres are injected during active HO MAP. Accordingly, kailan-hybrid broccoli 

stored under high O
2
/CO

2
 (initial O

2
/CO

2
 of 70/0.02 kPa changing to 50/30 after 19 days at 5℃) 

showed  2.8 log units lower natural microflora load safter 19 days at 5℃ compared to samples 

stored under passive MAP conditions (1.5–3.0 kPa O
2
 + 16–21 kPa CO

2
) [62]. Similarly, active 

HO MAP of inoculated kailan-hybrid broccoli showed 1.4 and 2.3 lower E. coli and S. enteriti-
dis log units, respectively, after 19 days at 5℃ regarding samples stored at passive MAP con-

ditions [16]. However, such beneficial effect of HO was not observed when FC kailan-hybrid 
broccoli was stored at 10℃. Yeast and mold growth in FC pomegranate arils packaged under 
active MAP (initial O

2
/CO

2
 of 70/0.02 kPa changing to 20/5.5 kPa after 14 days at 5℃) was 
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highly inhibited (up to 1.2 log units inhibition) during storage for 14 days at 5℃ [139]. Such 

beneficial high O
2
/CO

2
 effects on microbial growth of FC produce packaged under active HO 

MAP have also been observed in other studies [218, 219].

Enzymatic browning of FC produce has been shown to be reduced under HO atmospheres. 
Accordingly, active HO MAP (80 kPa O

2 
+ 20 kPa CO

2
) delayed browning of FC lettuce during 

storage for 10 days at 5℃ [220]. Active HO MAP (initial O
2
/CO

2
 of 80/0 kPa, balanced with N

2
) 

of FC pomegranate arils reduced enzymatic browning related to PPO [123, 137], while formed 
off-odors were highly controlled with active high CO

2 
MAP (20 kPa CO

2
 balanced with N

2
)

 

[139]. Active HO MAP of FC celeriac, mushrooms, and chicory endives (initial O
2
/CO

2
 of 95/0 

kPa, balanced with N
2
, changing to 10–20/10–50 after 7 days at 4℃) were more effective to 

control enzymatic browning than low O
2
 atmospheres [221]. It is hypothesized that high O

2
 

may cause substrate inhibition of PPO or high contents of colorless quinones formed cause 

feedback PPO inhibition. High O
2
 levels kept the initial color and firmness of fresh-cut melon 

retarding anaerobic fermentation better than low O
2
 atmospheres [222]. Pre-treatment of 

whole “Spartan” apple with 100 kPa O
2
 (up to 19 days at 1℃) before cutting decreased surface 

browning, flesh softening, and off-flavor in FC apple slices [223]. Such inhibition of enzymatic 

browning was related to retention of cellular integrity while in low O
2
 pre-treatment (1 kPa 

O
2
, balanced with N

2
) would have another inhibitory browning mechanism on apple slices. 

Furthermore, the 100 kPa O
2
 pre-treatment before slicing apples can reduce the dependence 

on antioxidant additives to inhibit slices browning. Sensory quality of produce stored under 
high O

2
 atmospheres has been shown to be better than low O

2
 atmospheres due to fermenta-

tion processes [218].

High O
2
 levels are also considered as postharvest abiotic stresses able to increase PAL activ-

ity and consequently phenolic biosynthesis as observed in carrot shreds stored under high 

O
2
-controlled atmosphere (80 kPa O

2
 balanced with N

2
) [146]. Furthermore, high O

2
 and CO

2
 

levels may be tolerated by FC carrots maintaining their fresh characteristics and reducing 

microbial growth [224]. Such abiotic stress may be used as a tool to increase the health-pro-

moting compounds of plant material to subsequently obtain functional beverages after cor-

respondent thermal or non-thermal treatments to ensure microbial quality and safety [225].

The use of MAP under mixtures of non-conventional gases such as Ar, He, Xe, or N
2
O has 

been proposed to maintain the quality of FC produce extending its shelf life. The latter gases 
may be chemically inert, but they have some physiological and/or antimicrobial properties, 
even though it does not seem to be through modification of enzyme activity [226]. Ar, He, or 

N
2
 atmospheres mixed with low O

2
 showed different diffusive properties, since Ar and He 

are monoatomic and smaller in size than N
2
 [227]. Treatment of asparagus spears for 24 h at 

4℃ under an atmosphere of Ar and Xe at 2:9 (v:v) reduced RR and bract opening leading to a 
subsequent shelf life of 12 days at 4℃ showing better quality than those samples treated with 
an atmosphere of 5 kPa O

2 
+ 5 kPa CO

2
 [228]. Microbial quality and some bioactive compounds 

were highly preserved in FC red chard baby leaves stored under active He MAP (100%) during 
8 days at 5℃ [229]. N

2
O has a direct effect on cell metabolism achieving shelf life extension of FC 

produce. It may be explained since N
2
O has 77% solubility in fruit cell, while its absorption in 

tissues is completely reversible [230]. FC spinach leaves stored under active N
2
O MAP (100%) 
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showed low microbial growth after 8 days at 5℃, with chlorophylls and phenolics being well 
preserved [231]. Different N

2
O and N

2
 combinations (including always 3% O

2
) were used as 

active MAP for FC lettuce and wild rocket during storage up to 12 days at 5℃, suggesting such 

results that N
2
O does not improve the produce quality compared to N

2 
[232]. Lower microbial 

loads have also been observed in FC watercress and arugula leaves at the end of cold storage 
when active MAP containing N

2
, Ar, He, Xe, or N

2
O were used [233, 234].

6. Future research needs and conclusions

FC plant produce is greatly vulnerable to microbial spoilage, and cultivar selection is probably 

the most important factor in FC overall quality and shelf life. With the intention of better inhi-
bition of microbial spoilage, and subsequently decrease in decay and safety problems, genetic 

cultivar selection should turn to retard ripening and senescence, low ethylene production 
and/or sensitivity, and enhanced firmness, well adapted to minimal processing and increased 
antioxidant systems. While chlorine is widely used by the FC industry to ensure safety, new 
eco-friendly techniques/technologies are needed to replace the latter chemical treatment due 
to the production of carcinogenic compounds. Several eco-friendly strategies such as ozone, 

UV-C light, natural antimicrobial substances, GRAS chemical, and biological compounds can 
decrease microbial loads of FC products and extend their shelf life. Other advanced tech-

niques such as pulsed electric fields, ultrasounds, and high-pressure processing, among oth-

ers, are promising sanitizing strategies for the FC industry due to high microbicidal rates. 

However, the treatment parameters of latter technologies to be applied in FC products need 
further research to be optimized for each specific commodity. Furthermore, the potential 
and limits of these innovative eco-friendly techniques must be well defined and included 
in the regulations. In that way, modeling tools to predict microbial inactivation and product 
shelf life are very useful, principally to optimize production and distribution. Application 

of nanotechnology to FC products is also a promising future in order to produce products 

with extended shelf life and excellent quality meeting always the food safety. Nevertheless, 
regulations related to nanoparticles’ inclusion in food products need to be better defined by 
institutions. The combination of well-designed integrated production, handling, processing, 
and distribution chains for FC produces is crucial for achieving the high quality and safety 

demanded by consumers.
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