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Abstract

The current topics related to the morphology and tribology of TiAlN monolayer, TiAlN/
SiNx, TiAlN/CNx and TiAlN/CNx�CNx nanoscale multilayer coatings and refer to our
recent results on the evaluation of surface morphology, and nanoscale mechanical and
tribological properties of coatings deposited on cemented carbide cutting tools and silicon
wafer substrates by reactive magnetron sputtering deposition. The surface morphology
and microstructure of the coatings were evaluated with an atomic force microscope in
dynamic friction mode together with transmission electron microscope imaging. The
tribological properties of the coatings were evaluated by pin-on-disc friction testing in
dry air, and high-frequency linear-oscillation friction testing under various lubrication
conditions. The tribological properties of the multilayer TiAlCrSiN and TiAlSiN coatings
were compared with those of a single layer TiAlN coating to evaluate their possible
applications to the surfaces of cutting tools. The machining performances of single layer
TiAlN, multilayer TiAlSiN, and TiAlCrSiN coated drills were investigated in drilling of
carbon steel.

Keywords: surface morphology, tribological property, nanoscale multilayer, atomic force
microscope, cutting tools

1. Introduction

Currently, thin hard physical vapor deposition (PVD) coatings are widely used to improve the

tribological performance of forming tools, cutting tools, and machine elements [1]. In these

applications, the surface morphology and tribology of the coated part are the most important

factors influencing the tool and equipment performance [2]. Cutting tools might be used in
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harsh machining environments without lubrication or under water-lubricated conditions. Tri-

bological applications of thin films to cutting tools have considerably extended tool life and

enabled the realization of dry machining and high-speed machining of hardened materials [3,

4]. Films of diamond-like carbon (DLC) and transition-metal and carbon nitrides (CNx), such

as titanium aluminum nitride (TiAlN) and CNx are the most widely used coatings for tribo-

logical applications, such as for forming and cutting tools. Thus, it is desirable to improve the

tribological properties of these films to enhance their performance in tool applications [5].

In this chapter, topics related to evaluation of the surface morphology and tribological proper-

ties of thin films are reviewed. Our recent results on the morphology and tribological proper-

ties of TiAlN monolayer, and TiAlN/SiNx and TiAlN/CNx multilayer coatings deposited on

cemented carbide cutting tools and silicon wafer substrates by reactive magnetron sputtering

deposition are referred in [4, 6, 7]. First, nanoscale TiAlN/SiNx multilayer films were deposited

to improve the hardness of TiAlN; we found that the mechanical properties of the multilayer

film were considerably improved compared with those of the monolayer film [4]. The intro-

duction of a SiNx layer led to the formation of hard coatings owing to suppression of the

TiAlN grain growth, grain refinement, and a decrease in surface roughness. A decrease in the

grain diameter and associated decrease in surface roughness likely led to improved mechani-

cal and tribological properties of the coatings [4]. However, the wear performance of the

TiAlN/SiNx coating under ambient or high-temperature conditions showed negligible improve-

ment because of its high friction coefficient. Second, CNx is an important tribological material

and CNx thin films feature attractive properties such as improved hardness and elasticity and a

lower friction coefficient [8, 9]. CNx thin films are currently being extensively studied for their

potential tribological applications owing to their favorable mechanical and tribological proper-

ties [10]. These materials have already found applications as protective overcoatings for hard

discs and read/write heads [11, 12]; furthermore, such materials are of interest in the field of

nanotechnology owing to their high wear resistance and low friction properties [11, 12]. It has

been found that amorphous CNx films exhibit good wear resistance with a low coefficient of

friction (COF) in the range of 0.07–0.3, which is dependent on the N/C ratio and the fraction of

the sp3-bonded carbon in the film [8, 9]. Therefore, attention has been paid for combining low

COF CNx and hard nitrides together by forming composites or multilayer coatings to achieve

the desired mechanical and tribological properties, for example, TiN:CNx composite films [13,

14], and CNx:TiN multilayer coatings [15, 16].

Several studies have indicated that multilayer coatings can exhibit high hardness and fracture

resistance with low compressive stress through control of the parameters of the layered

structure [5, 17]. The tribological behavior of carbon-based thin films is also strongly influenced

by their chemical composition, polycrystalline structure, and surface morphology [18]. However,

there remain uncertainties regarding the effects of the deposition of (Ti,Al)N, TiAlN/SiNx,

TiAlN/CNx, and CNx coatings on the surface morphology, microstructure, and tribological

properties of these coatings. The potential for low friction coefficients and high resistance to

abrasive wear are important characteristics for high-speed and hard material cutting applica-

tions. In investigations that have aimed to increase the wear resistance and tribological proper-

ties of TiAlSiN coatings for wet cutting applications, improved tribological properties have been

achieved through the incorporation of chromium (5–10 at%) into PVD TiAlSiN coatings [19–22].
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The wet (water soluble fluid) machining performance of single layer TiAlN, and multilayer

TiAlSiN and TiAlCrSiN coatings were assessed when drilling into a carbon steel workpiece

(S50C, 50-53HRC). The objective of the present study was to assess the performance of 6-mm

diameter WC–Co drills (OSG Corporation, Japan). The critical wear regions of the drills were

examined metallographically with the use of a scanning electron microscope (SEM) to identify

wear mechanisms acting at the cutting edges of the single layer TiAlN and multilayer TiAlCrSiN

coated drills.

This chapter is focused on the influence of morphology on the tribological properties of TiAlN,

TiAlN/SiNx, and TiAlN/CNx multilayer coatings with and without a CNx top layer deposited

on Si(100) and cemented carbide tool steel (WC) substrates. We also compare the performance

of the multilayer coatings with that of a TiAlN monolayer with and without a CNx top layer.

To study the friction behavior of these films, in relation to their various structures and surface

morphologies resulting from the deposition parameters, we measured the microstructure and

surface morphology of the films by transmission electron microscope (TEM) and SEM imaging

together with atomic force microscope (AFM) measurements. Vickers hardness, pin-on-disc

friction, and high-frequency linear-oscillation (SRV) friction testing were also used to study the

tribological properties and wear resistance of such coatings. Furthermore, we compared the

tribological properties of the multilayer TiAlCrSiN and TiAlSiN coatings with those of a single

layer TiAlN coating to evaluate their possible application to surfaces of cutting tools. The

machining performance of the single layer TiAlN, multilayer TiAlSiN, and TiAlCrSiN coated

drills were investigated in the drilling of carbon steel (S50C, hardness 50HRC).

2. Experimental methods

2.1. Sample preparation

Figure 1 shows a schematic illustration of the multi-target DC reactive magnetron sputtering

equipment used in this experiment. The equipment consisted of four independent target

holders and DC power was applied to both the target holders and the substrate holder. As

shown in Figure 2, in this study we prepared: a TiAlN monolayer (TiAlN), a TiAlN/SiNx

multilayer, and a TiAlN monolayer with a CNx top layer (TiAlN+CNx), a TiAlN/CNx multi-

layer with a top TiAlN layer (TiAlN/CNx+TiAlN), and a TiAlN/CNx multilayer with a CNx

top layer (TiAlN/CNx+CNx) [4, 6, 7]. All coatings were prepared on polished Si wafers and

cemented carbide tools by DC magnetron sputtering from TiAl alloy (50/50 at%, 99.99%

purity), carbon (99.99% purity), and Si (99.99% purity) targets. Alternating deposition of TiAlN

and SiNx or CNx layers was applied to realize the TiAlN/SiNx and TiAlN/CNx multilayer

coatings [4, 7]. Full details of the deposition process have been previously reported [7]. The

coating process consisted of three steps such as heating, cleaning by ion bombardment, and

multi-nanolayer coating. The system base pressure was maintained at approximately

3.5 � 10�3 Torr to produce enough Ar ions for ion bombardment cleaning of the substrate [4];

the substrate was heated at a power of 7000 W for 30 min prior to deposition and the substrate

temperature was maintained at ~420�C for the deposition. During the ion bombardment
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cleaning process, Ar ions were directed at the substrate with a substrate bias of �500 V. Subse-

quently, the multi-component multi-nanolayer films were coated with a gas mixture of Ar (220

ml) and N2 (160 ml). On the basis of preliminary experiments, the optimal deposition parameters

were determined andmultilayer coatings were fabricated. To compare the frictional properties of

the monolayer and multilayer coatings, the total film thickness of the TiAlN, or TiAlN/CNx

layers was set to be 3 μm. The CNx top layer was approximately 0.5 μm. For multilayer coatings,

the layer period was set to be approximately 7 nm and the thickness of the TiAlN layer was

approximately 6 nm [4, 7].

Figure 1. Schematic of DC sputtering equipment.

Figure 2. Samples of mono- and multilayer coatings.
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2.2. Morphology and microstructure observations

The microstructures of the coatings were evaluated by TEM and SEM cross-sectional imaging.

AFM was used to observe the surface of the TiAlN, SiNx, TiAlN/SiNx, TiAlN+CNx, TiAlN/

CNx+TiAlN, and TiAlN/CNx+CNx coatings [4, 7]. The morphological characteristics of the

coatings were measured with the use of AFM in dynamic friction mode (DFM) with a carbon

nanotube tip having a radius of approximately 44 nm. The AFM system (Digital Instruments

Nanoscope III, Hysitron Inc.) was used. Calculations were performed within the scanning

probe image processor (SPIP) software, which is a standard program for processing AFM data

at the nanoscale. The grain diameter and surface roughness of the coatings were determined

by scanning an area 3 � 3 μmwith the AFM. To investigate the effects of grain diameter on the

surface morphology and the boundaries between the grains, simulations were performed to

calculate the mean grain diameter and surface roughness of the scanning area. The coating

surfaces were characterized with the use of the roughness analysis module; the values for

surface roughness, average roughness (calculated by Sa: distance between peaks), and peak-

peak roughness (calculated by Sy: height difference between the highest and lowest peaks in

the image), were obtained by analyzing the images and cross-sectional profiles and measuring

the mean grain diameter parameters.

2.3. Mechanical and tribological properties evaluation

Mechanical properties, including hardness and adhesion strength were measured by Vickers

hardness and scratch testing (CSM Instruments SA). The load used for hardness measurements

was 0.025 N. A scratch tester was used to apply an increasing load with a spherical diamond

indenter having a radius of approximately 0.2 mm. The critical load Lc, determined by acoustic

emission (AE) observations of the scratch, was used as a quantitative measurement. Full details

of the methods used in the hardness and scratch tests have been previously reported [4].

The tribological properties were evaluated from pin-on-disc friction and SRV testing methods.

The pin-on-disc wear test was performed at an air humidity of 50 � 10% and a temperature of

Figure 3. Swing type friction tester (SRV).
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25 � 3�C with the use of a pin-on-disc tribometer with a counterpart composed of SUS304

steel, placed horizontally on a turntable. The wear test was performed at a load of 0.5 N and a

linear speed of 100 mm/s for a total sliding time of 600 s (corresponding to a sliding distance of

60 m). The frictional coefficients were calculated by measuring the frictional force from the

wear scar area. In the SRV tests, the two test specimens, namely balls and discs, were installed

in the test chamber and pressed together. As shown in Figure 3, the upper specimen was

oscillated over the lower specimen at pre-programmed frequency, stroke, load, and tempera-

ture settings. In this study, the test was conducted with the use of an AISI440C ball indenter

(SUS440C, 6.0 mm diameter) without lubricant under a 10 N load, with the use of a 500-μm

stroke, a 50-Hz frequency, and 30,000 revolutions at room temperature and atmospheric

pressure (30–45% humidity). The wear profiles of the coatings were measured by the SRV test.

3. Result and discussion

3.1. Microstructure and morphology

SEM micrographs of the film fracture cross-sections are shown in Figure 4 for the TiAlN

monolayer with a thickness of approximately 3 μm and the TiAlN/SiNx and TiAlN/CNx

multilayer coatings with a total thickness of approximately 3.6 μm [7]. TiAlN has a columnar

morphology, as shown in Figure 4a. The introduction of SiNx into the coating system changed

the fracture morphology of TiAlN from a columnar microstructure to a fine-grained structure

Figure 4. Cross-sectional image of TiAlN monolayer, and TiAlN/SiNx and TiAlN/CNx multilayer coatings.
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of TiAlN/SiNx, as shown in Figure 4b. This effect could be attributed to growth of the primary

nuclei on the top layer (Figure 4b). This result indicates that growth of crystals was blocked

periodically by the development of the surface covering layer, which covered the whole

surface of the crystals and suppressed grain growth [4, 7, 23]. Figure 4c shows a SEM image

of a fracture cross-section of a TiAlN/CNx coating. The TiAlN/CNx also showed a fine-grained

structure owing to the introduction of CNx into the coating system [7].

Figure 5 shows TEM images of the microstructure of a TiAlN/SiNx multilayer film. The TiAlN/

SiNx was formed by alternation of the TiAlN and SiNx layers at a rotation speed of 3 revolu-

tion per minute (rpm) [4]. A nanolayered structure composed of sequentially alternating TiAlN

and SiNx layers was confirmed [4]. High resolution TEM images of the TiAlN/SiNx nanolayer

cross-section exhibited a bilayer period of 6–8 nm and nanometer-sized grains. The white

arrows in the figure indicate the film growth direction. The film morphology showed a dense

columnar structure.

Figure 6 shows a TEM image of the microstructure of a TiAlN/CNx+CNx multilayer film. As

shown in area I (Figure 6a, marked by an arrow), the bright dots indicate the presence of a

CNx top layer phase with a uniform amorphous structure. In areas II and III of Figure 6a

(indicated by arrows), micro-diffraction patterns featured both individual spots and continu-

ous rings that corresponded to the superposition of individual diffraction patterns of TiAlN

and CNx [7]. Figure 6b shows that the film morphology was fine-grained and that the growth

directions of the TiAlN and CNx layers alternated, as indicated by the dark and bright layers,

respectively. Figure 6c shows that the TiAlN nanolayers in the TiAlN/CNx coating were

approximately 5-nm thick and separated by a matrix of amorphous carbon [4]. This result

suggests that the TiAlN/CNx multilayer had a modulated structure with a periodicity of

approximately 7 nm, indicating that the nanolayered structure was composed of sequentially

alternating TiAlN/CNx, owing to the rotation speed of 3 rpm [4, 7, 23, 24].

Figure 5. Cross-sectional TEM images of TiAlN/SiN coating, observed at scale of (a) 500 nm and (b) 7 nm.
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The surface morphology and roughness of the films were observed by AFM in DFM and

analyzed by collecting three-dimensional surface profile data. The mean grain diameters of

the samples were determined by averaging three or more results obtained from a 3 � 3 μm

area. As shown in Figure 7, the average grain diameters for the TiAlN (Figure 7a) and TiAlN/

SiNx (Figure 7b) films were 342 and 274 nm, respectively. In Figure 7, we compared the TiAlN

and TiAlN/SiNx films, to show that the average grain diameter of TiAlN/SiNx was smaller

than that of TiAlN. Hence, the introduction of the SiNx layer contributed to a decrease in the

grain diameter [4]. The roughness of the TiAlN and TiAlN/SiNx films was determined by

measuring the grain diameter and surface peak-peak height (Sy) with the AFM, where Sy is

defined as the height difference between the highest and lowest peaks in the topology [4]. The

Figure 6. Cross-sectional TEM images of the TiAlN/CNx + CNx coating observed at scales of (a) 1000 nm, (b) 50 nm, and

(c) 5 nm.

Figure 7. Surface topography map and cross-sectional image profiles of the TiAlN (a) and TiAlN/SiNx (b) films.
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DFM measurement showed that the TiAlN coating had a Sy value of 211 nm. The Sy value for

the TiAlN/SiNx was approximately 180 nm. Thus, the Sy of the TiAlN/SiNx coating decreased

together with the grain diameter.

As shown in Figure 8, the average grain diameters for TiAlN + CNx (Figure 8a), TIAlN/

CNx + TiAlN (Figure 8b), and TiAlN/CNx + CNx (Figure 8c) films were 168, 175, and

161 nm, respectively [7]. The Sy values for the TiAlN + CNx, TIAlN/CNx + TiAlN, and TiAlN/

CNx + CNx films were 31.8, 46.9, and 28.2 nm, respectively. The mean grain diameters and Sy

value (roughness) of the multilayer TiAlN/CNx + TiAlN and TiAlN/CNx + CNx films were

smaller than that of the TiAlN film owing to the introduction of the CNx layer [7]. As a result,

the average grain diameters of the TiAlN and TiAlN/CNx film decreased owing to the depo-

sition of the CNx top layer. The TiAlN and TiAlN/CNx films consisted of an arrangement of

globular grains with fine spaces and intervals, which became filled by CNx during the

Figure 8. Surface topography map and cross-sectional image profiles of the TiAlN + CNx (a), TiAlN/CNx + TiAlN top (b)

and TiAlN/CNx + CNx top films (c).
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deposition of CNx as the top layer. Bonds formed between the CNx and TiAlN (or TiAlN/CNx)

led to an increase in the area of boundaries [4, 7]. The morphology was related to the thickness

and morphology of the top coating. The CNx top layer had a considerable effect on the surface

morphology and roughness, changing the real contact area and the friction and wear behavior.

Generally, the surface roughness decreased as the grain size decreased. This trend was accom-

panied by an improvement in the density of the morphology with a marked transition from a

columnar to a fine-grained morphology [25].

The introduction of SiNx or CNx onto the TiAlN monolayer and the apparent decrease in the

grain size could have contributed to the small increase of the hardness for the multilayer

TiAlN/SiNx and TiAlN/CNx. The first factor that we considered was the structure parameter.

When SiNx or CNx was introduced onto the TiAlN, there was a decrease in the grain size, an

increase in the compressive stress level, and an improvement in the coating density accompa-

nying the transition from a columnar to fine-grained morphology. All these factors are known

to contribute to hardening of materials [25].

Factors such as residual stress, morphology, phase composition, and grain size are usually

taken into account as hardening mechanisms and were considered here; however, we did not

identify any major changes between the ternary and binary films that could explain the

observed trend in hardness. We believed that the decrease in grain diameter might have

resulted in a decrease in surface roughness, which led to the improved mechanical and

tribological properties of the films [4, 7].

3.2. Evaluation of mechanical properties

The results from the characterization of the TiAlN, TiAlN/SiNx, TiAlN + CNx, TiAlN/

CNx + TiAlN, and TiAlN/CNx + CNx films are summarized in Table 1 [4, 7]. The hardness

measured for TiAlN was 2590 HV. The hardness values of the multilayer TiAlN/SiNx, TiAlN/

CNx + TiAlN, and TiAlN/CNx + CNx films were higher than those of the monolayer TiAlN

and TiAlN + CNx films. The increase in hardness could be attributed to the introduction of a

large number of TiAlN/SiNx and TiAlN/CNx interfaces in the cases of the TiAlN/SiNx and

TiAlN/CNx films, respectively [4, 7]. The high hardness of the multilayer coatings is related to

the role of interfaces as effective obstacles to lattice dislocation slip, which is the dominant

deformation mechanism in microscale composite coatings. Owing to these interfacial and

nanoscale effects, conventional lattice dislocation slip was prevented in the nanostructure

Table 1. Vickers microhardness, critical load, grain size and roughness (Sy) of monolayer and multilayer films.
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coatings [4, 26, 27]. Scratch tests were conducted on the coatings and the results are shown in

Table 1. The multilayer TiAlN/SiNx, TiAlN/CNx + TiAlN, and TiAlN/CNx + CNx films

showed higher critical load values than the monolayer TiAlN and TiAlN + CNx films. These

results suggest that the improved adhesion strength might be attributed to the interfaces of the

multilayer preventing extension of fractures and the multilayer structure improving the wear

resistance of the coating [4].

3.3. Evaluation of tribological properties

All the mono- and multilayer systems were investigated by a reciprocating SRV friction test

under dry conditions, and with water and polyalphaolefin (PAO) as a lubricating film to

characterize the coating frictional properties. PAO (WO-20) made by Nissan is a lubricating

oil for engines and commercially available. Since PAO has characteristics such as low pour

point, high viscosity index, evaporation characteristics, low traction, etc., it was used as a

lubricant film in this study. The Si wafer substrates (test discs) were coated with the monolayer

and multilayer systems and tested with an AISI440C ball indenter, (SUS440C, diameter:

6.0 mm). This test provided information about the cycle number dependence of the friction

coefficient, and the wear behavior of the coated substrate and of its tribological counterpart.

The wear volume was deduced from the wear depth created at the counterpart and was used

to quantify the counterpart wear. Optical microscopy and energy dispersive X-ray spectros-

copy were used to examine the wear of the coated substrate.

3.3.1. Frictional and wear properties under dry conditions

Figure 9 shows the variation of the coefficient of friction as a function of the number of sliding

cycles for the investigated mono- and multilayer systems under dry conditions at room tem-

perature. The coefficient of friction was taken as the average of four tests. Although the SiNx,

TiAlNx, and TiAlN/SiNx coatings showed similar friction coefficients (1.11, 0.93, and 0.99,

respectively) in frictional contact with a steel counterpart (Figure 9a-c), the abrasive wear of

the SiNx and TiAlN coating was greater than that of the TiAlN/SiNx coating. Investigations of

the wear after testing were performed with an optical microscope. Corresponding optical

photomicrographs and cross-sectional images of the wear marks formed on the coatings are

shown in Figure 10, comparing the monolayer SiNx, TiAlN, and multilayer TiAlN/SiNx films.

The average cross-sectional areas of the wear tracks were measured at three or more locations

after 30,000 revolutions. For the dry conditions, the wear depth of SiNx was over 29.5 μm

(Figure 10a) and that of the TiAlN was approximately 13.6 μm (Figure 10b). The TiAlN/SiNx

film had a wear depth of 9.9 μm (Figure 10c) and showed better wear resistance than that of

the SiNx and TiAlN films. Although the TiAlN film showed lower friction coefficients than

that of the TiAlN/SiNx film (Figure 9a–c), the abrasive wear of the TiAlN film was greater than

that of the TiAlN/SiNx film. The wear resistance of the TiAlN/SiNx film was enhanced owing

to its nanolayer microstructure and small grain size compared with that of the TiAlN film. We

believe that the decrease of the grain diameter might have caused a decrease of the surface

roughness, which led to the improved tribological properties of the coating. Conversely, as

shown in Figure 9c-f, the monolayer TiAlN + CNx film showed a lower friction coefficient
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(approximately 0.71, as shown in Figure 9e) followed by 0.93 for the monolayer TiAlN

(Figure 9b), 0.99 for the TiAlN/SiNx (Figure 9c), and 1.03 for TiAlN/CNx + TiAlN (Figure 9d)

films. Thus, the TiAlN film with the CNx top layer had the second lowest friction coefficient of

approximately 0.71. Notably, the TiAlN/CNx films with the CNx top layer had considerably

lower friction coefficients than the other coatings. Furthermore, the lowest friction coefficient

(approximately 0.62), which also showed a tendency to further decrease, was observed for the

Figure 10. Wear profiles of the SiNx (a), TiAlN (b) and TiAlN/SiNx (c) coatings after SRV testing under dry conditions.

Figure 9. Friction coefficient vs. number of sliding cycles for the SRV friction test under dry conditions for: (a) SiNx, (b)

TiAlN, (c) TiAlN/SiN, (d) TiAlN/CNx + TiAlN, (e) TiAlN + CNx, and (f) TiAlN/CNx + CNx coatings.
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multilayer TiAlN/CNx + CNx film, as shown in Figure 9f. Corresponding optical photomicro-

graphs and cross-sectional images of the wear marks formed on the films are shown in

Figures 11 and 12. The size of wear scar was calculated from the cross-sectional area of the

central portion of the wear mark. The average cross-sectional areas of the wear tracks were

obtained at three or more locations after 30,000 revolutions, and the size of wear scar of the

Figure 11. Wear profiles of (a) TiAlN, (b) TiAlN + CNx, (c) TiAlN/CNx + TiAlN, and (d) TiAlN/CNx + CNx coatings after

SRV testing under dry conditions.

Figure 12. Cross-sectional images of wear created by SRV testing under dry conditions on (a) TiAlN, (b) TiAlN + CNx, (c)

TiAlN/CNx + TiAlN, and (d) TiAlN/CNx + CNx coatings.
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films were recorded after testing. The size of wear scar of the TiAlN films was greater than

5645 μm2 (Figures 11a and 12a), while that of the TiAlN/CNx + TiAlN film size was approxi-

mately 5347 μm2 (Figures 11c and 12c). However, the sizes of wear scar of the TiAlN + CNx

and the TiAlN/CNx + CNx films were 1169 and 331 μm2, as shown in Figures 11b and d and

12b and d, respectively. The TiAlN/CNx + TiAlN film showed better wear resistance than the

TiAlN film. The improvement in wear resistance can be attributed to the introduction of a large

number of TiAlN/CNx interfaces and refinement of the multilayer microstructure. The friction

coefficient and size of wear scar of the TiAlN + CNx and TiAlN/CNx + CNx films were small,

such that the wear resistance values were clearly improved by the deposition of the CNx top

layer because the CNx film has both wear resistance and lubricating properties [8–10].

3.3.2. Frictional and wear properties under water lubrication

The friction coefficients of the coatings were measured in the sliding system with the use of

water as a lubricant. As shown in Figure 13, the friction coefficients of the SiNx, TiAlN, TiAlN/

SiNx, TiAlN/CNx + TiAlN, TiAlN + CNx, and TiAlN/CNx + CNx films were 0.54, 0.46, 0.52,

0.45, 0.23, and 0.22 (Figure 13a-f, respectively). For the monolayer SiNx and TiAlN, and

multilayer TiAlN/SiNx, as shown in Figure 14, although a large wear track (approximately

28.1 μm deep) was observed for the monolayer SiNx (Figure 14a), no apparent wear tracks

were observed for the TiAlN (Figure 14b) and TiAlN/SiNx (Figure 14c) films under water

lubrication. This result indicates that the wear resistance of the TiAlN and TiAlN/SiNx films

was improved by water lubrication [4, 7].

For the TiAlN, TiAlN/CNx + TiAlN, TiAlN + CNx, and TiAlN/CNx + CNx samples, optical

photographs and cross-sectional images of the wear tracks formed on the coatings are shown in

Figures 15 and 16. The wear of the films was evaluated from the size of wear scar, as described

earlier. We observed that the mean sizes of wear scar were 301, 296, 203, and 184 μm2 for the

TiAlN, TiAlN/CNx + TiAlN, TiAlN + CNx, and TiAlN/CNx + CNx films, respectively. Although

Figure 13. Friction coefficients of the coatings determined by SRV testing under water lubrication.
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the TiAlN and TiAlN/CNx + TiAlN films showed similar friction coefficients, the size of wear

scar of the TiAlN film is larger than that of TiAlN/CNx + TiAlN, indicating that the wear

resistance of the TiAlN/CNx + TiAlN film was improved by the multilayered structure. How-

ever, the wear resistance and friction coefficients of the TiAlN + CNx and TiAlN/CNx + CNx

films were considerably improved owing to the deposition of CNx [7], which has both wear

resistance and lubricating properties [8–10]. This result is consistent with the reduced surface

roughness and grain diameters of the films. Notably, the lowest friction and wear depths under

the water lubrication conditions were obtained for the coatings with the CNx top layer, indicat-

ing that the wear resistance of the CNx layer is higher in humid air. Specifically, the lowest

friction coefficients were 0.23 and 0.22 for the TiAlN + CNx and TiAlN/CNx + CNx coatings,

Figure 14. Wear profiles of the SiNx, TiAlN, and TiAlN/SiNx coatings after SRV testing under water lubrication.

Figure 15. Wear profiles of (a) TiAlN, (b) TiAlN/CNx + TiAlN, (c) TiAlN + CNx, and (d) TiAlN/CNx + CNx coatings after

SRV testing under water lubrication.
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values which were, respectively, 49 and 51% of the friction coefficient for the coatings without the

CNx layer [7].

3.3.3. Frictional and wear properties under PAO lubrication

Figure 17 shows the variation of the coefficient of friction measured from SRV testing under

PAO lubrication. The mean values of the friction coefficients for SiNx, TiAlN, TiAlN/SiNx,

TiAlN/CNx + TiAlN, TiAlN + CNx, and TiAlN/CNx + CNx coatings were 0.18, 0.16, 0.19, 0.15,

0.15, and 0.14 (Figure 17a-f, respectively). Although the differences among the friction coeffi-

cients of the coatings was small, the TiAlN and TiAlN/CNx + TiAlN films with the CNx top

layer had lower friction coefficients than those without the CNx top layer. The wear tracks

formed on the coatings were observed by laser microscopy. Optical photographs and cross-

sectional images of the wear tracks are shown in Figure 18. The size of wear scar was markedly

reduced for all coatings measured by SRV testing under PAO lubrication compared with those

under dry and water conditions. The sizes of wear scar were 73.0, 24.0, 14.7, and 14.3 μm2 for

the TiAlN, TiAlN + CNx, TiAlN/CNx + TiAlN, and TiAlN/CNx + CNx films. The PAO

lubricant reduced the size of wear scar for the coatings with and without the CNx top layer.

For the multilayer TiAlN/CNx + TiAlN, the size of wear scar of the TiAlN/CNx + TiAlN film

was lower and similar to that of the TiAlN/CNx + CNx film when PAO was introduced as a

Figure 16. Cross-sectional images of wear created by SRV testing under water lubrication on the (a) TiAlN, (b) TiAlN/

CNx + TiAlN, (c) TiAlN + CNx, and (d) TiAlN/CNx + CNx coatings.

Lubrication - Tribology, Lubricants and Additives92



Figure 17. Average friction coefficients for monolayer and multilayer films under dry conditions and water and PAO

lubrication.

Figure 18. Images and cross-sectional of wear created by SRV testing under PAO lubrication on (a) TiAlN, (b) TiAlN/

CNx + TiAlN, (c) TiAlN + CNx, and (d) TiAlN/CNx + CNx coatings.
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lubricant. This result suggests that under these lubricant conditions a beneficial tribolayer

forms on the wear surface, which provides a low coefficient of friction.

The friction coefficients of the films, as determined by SRV friction testing, are summarized in

Figure 19 for dry, water, and PAO conditions. The coatings with the CNx top layer showed a

lower friction coefficient under dry and water conditions than the coatings without the CNx

top layer. However, all the coatings showed low friction coefficients owing to the introduction

of water or PAO lubricants. This result suggests that lubricants such as water and PAO can

improve the tribological properties in terms of friction and wear control in, for example,

cutting applications.

3.4. Performance of single layer and multilayer coatings in drilling

Single layer TiAlN, and nanoscale multilayer TiAlSiN and TiAlCrSiN coatings were prepared

on cemented carbide pins and WC–Co drills by reactive magnetron sputtering deposition. The

deposition conditions are detailed in previous reports [4, 7]. The tribological characteristics of

the films were investigated with the use of a pin-on-disc friction test. The pin-on-disc wear test

was performed at an air humidity of 50 � 10% and a temperature of 25 � 3�C with a pin-on-

disc tribometer featuring a counterpart composed of cemented carbide [4]. The wear test was

performed at a load of 2 N and a linear speed of 150 mm/s for a total sliding time of 900 s

(corresponding to a sliding distance of 135 m). Figure 20 compares the friction coefficients of

the TiAlN, TiAlSiN, and TiAlCrSiN films. The TiAlCrSiN (Figure 20c) showed a stable and

low friction coefficient in the range of 0.35–0.42; the values for TiAlN and TiAlSiN were 0.53

and 0.54, respectively (Figure 20a and b). The stable frictional properties of the TiAlCrSiN film

were attributed to the nanolayer microstructure. The wear tracks formed on the films were

Figure 19. Average friction coefficients for monolayer and multilayer films under dry conditions and water and PAO

lubrication.
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observed by laser microscopy. Figure 21 shows the profile and cross-section images of the

wear tracks. The sizes of wear scar of the TiAlN (Figure 21a) and TiAlSiN (Figure 21b)

coatings were 1.6 � 105 and 7.9 � 104 μm2. The multilayer TiAlCrSiN coating (Figure 21c)

showed a lower size of wear scar (approximately 3.6 � 104 μm2) compared with that of the

single layer TiAlN and multilayer layer TiAlSiN coatings. The wear resistance of the multilayer

TiAlCrSiN coating was further improved by incorporation Cr into the TiAlSiN coating.

Friction properties and wear resistance to abrasive wear and oxidation are important charac-

teristics for high-speed and cutting application. The lifetimes of the monolayer TiAlN, and

multilayer TiAlSiN and TiAlCrSiN coated 6-mm diameter WC–Co drills (OSG Corporation,

Japan) in wet (water soluble fluid) drilling of carbon steel (S50C, 50-53HRC) are shown in

Figure 20. Friction coefficients of the coatings by pin-on-disc testing under dry conditions.

Figure 21. Wear tracks and cross-sectional images of the coatings subjected to pin-on-disc test under dry conditions.
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Figure 22. Outer corner wear of 6-mm diameter WC–co drills as a function of the number of holes drilled. Cutting speed:

100 m/min (5304 rpm), feed rate: 0.18 mm/rev. Workpiece: Carbon steel (S50C). Cutting fluid: Water soluble agent. Hole

depth 30 mm (5�diameter).

Figure 23. SEM images of the outer corner of worn areas of (a) TiAlN, (b) multilayer TiAlSiN, and (c) multilayer

TiAlCrSiN coated 6 mm diameter WC–co drills after 1000-hole drilling test.
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Figure 22. The performances of the multilayer TiAlSiN and TiAlCrSiN coatings were com-

pared with that of the single layer TiAlN coating, which was used as reference. The drilling

tests were performed on a drill-milling machine NH4000 (DMG MORI, Japan) at a cutting

speed of 100 m/min (5304 rpm), feed rate of 0.18 mm/rev (955 mm/min), hole depth of 30 mm

(5�diameter), and allowance of 0.2 mm. The lifetime of drills with the multilayer TiAlCrSiN

coating was 2.01 times as long as that of the tools coated with single layer TiAlN and the

multilayer TiAlSiN coatings. To investigate the differences observed in the performance of the

coatings, the morphology of the outer corner flank was examined by SEM imaging. The wear

patterns observed are shown in Figure 23. After drilling 1000 holes, the single layer TiAlN and

multilayer TiAlSiN coatings showed considerable wear at the outer corner and margin of the

drill bit (Figure 23a and b). Conversely, the multilayer TiAlCrSiN coated drill showed negligi-

ble wear at the outer corner and margin (Figure 23c). The superior drilling performance of the

multilayer TiAlCrSiN coating compared with those of the single layer TiAlN and TiAlSiN

coatings can be attributed to more favorable mechanical (high hardness) and tribological (low

friction) properties, and wear resistance. The performance was likely enhanced by the incor-

poration of Cr into the multilayer TiAlSiN coating [19–22]. The low friction coefficient suggests

that the decreased friction between the tool and chip in machining and a reduced tendency to

stick and pick up material from the counterpart material, led to the extended service life of the

cutting tool.

4. Conclusion

TiAlN monolayer, TiAlN/SiNx, TiAlN/CNx, TiAlSiN, and TiAlCrSiN multilayer coatings were

deposited on WC–Co carbide tools and silicon wafer substrates by reactive magnetron

sputtering. We show that the multilayer structure affects the surface morphology, microstruc-

ture, mechanical, and tribological properties.

1. The introduction of a SiNx or a CNx layer leads to the formation of hard coatings owing to

suppression of the TiAlN grain growth, grain refinement, and a decrease of the surface

roughness. The morphology of the coating changed from a columnar structure to a fine-

grained structure when SiNx and CNx layers were formed.

2. The wear characteristics of the TiAlN/SiNx, TiAlN/CNx, TiAlSiN, and TiAlCrSiN multi-

layer coatings described in this study were improved compared with those of the TiAlN

single layer coating. Furthermore, the tribological properties of the TiAlN and TiAlN/CNx

coatings were improved owing to the deposition of CNx as the topmost layer, and the

friction coefficients and size of wear scar of the coatings was decreased.

3. The wear of the TiAlN/SiNx, TiAlN + CNx, and TiAlN/CNx + CNx coatings in sliding

systems was considerably reduced with the use of water as a lubricant by approximately

two orders of magnitude compared with the performance under dry conditions. The wear

of the coating was considerably reduced for all coatings in SRV testing under PAO lubri-

cation conditions compared with the results obtained under dry and water conditions.

Surface Morphology and Tribological Properties of Nanoscale (Ti, Al, Si, C)N Multilayer Coatings Deposited by…
http://dx.doi.org/10.5772/intechopen.73141

97



4. The tribological properties of the multilayer TiAlCrSiN-base coatings make these coatings

effective at resisting wear and improved the cutting tool performance under wet condi-

tions. The multilayer TiAlCrSiN coated drills outperformed the single layer TiAlN and

multilayer TiAlSiN coated drills, which might be attributed to the multilayered structure

of the TiAlCrSiN coating and to the improved tribological properties of the multilayer

TiAlCrSiN coating owing to the incorporation Cr. The influence of the latter on cutting tool

performance of the TiAlCrSiN coatings requires further investigation and will form part of

our ongoing research into PVD coatings for dry machining in the automobile and aero-

space industries.

Acknowledgements

This research was performed with the help of the graduate students at Nippon Institute of

Technology.

Author details

Mei Wang1* and Shojiro Miyake2

*Address all correspondence to: mwang@osg.co.jp

1 Coating Research and Development, OSG Coating Service Co., Ltd. Aichi, Japan

2 Department of Innovative System Engineering, Nippon Institute of Technology, Saitama,

Japan

References

[1] Hongmark S, Jacobson S, Larsson M. Design and evaluation of tribological coatings.

Wear. 2000;246:20-33 https://doi.org/10.1016/S0043-1648(00)00505-6

[2] Miyake S. Tribology of carbon nitride and boron nitride nanoperiod multilayer film and

its application to nanoscale processing. Thin Solid Films. 2005;493:160-169 https://doi.org/

10.1016/j.tsf.2005.07.284

[3] Miyake S, Kaneko R. Microtribological properties and potential applications of hard, lubri-

cating coatings. Thin Solid Films. 1992;212:256-261 https://doi.org/10.1016/0040-6090(92)

90530-O

[4] Sakurai M, Toihara T, WangM, KurusakaW,Miyake S. Surface morphology andmechanical

properties of nanoscale TiAlN/SiNx multilayer coating deposited by reactive magnetron

Lubrication - Tribology, Lubricants and Additives98



sputtering. Surface and Coating Technology. 2008;203:171-179 https://doi.org/10.1016/j.

surfcoat.2008.08.060

[5] Nose M, Kawabata T, Khamseh S, Matsuda K, Fujii K, Ikeno S, Chiou WA. Microstructure

and properties of TiAlN/a-C nanocomposite coatings prepared by reactive sputtering.

Materials Transactions. 2010;51(2):282-287 http://doi.org/10.2320/matertrans.MC200913

[6] Kurosaka W, Shindo T, Wang M, Miyake S. Deposition and tribological properties of

TiAlN/SiNx multilayer coatings. Journal of the Japan Society for precision engineering.

2012;78–10:905-911(in Japanese). http://doi.org/10.2493/jjspe.78.905

[7] Wang M, Toihara T, Sakurai M, Kurosaka W, Miyake S. Surface morphology and tribo-

logical properties of dc sputtered nanoscale multilayered TiAlN/CNx coatings. Tribology

International. 2014;73:36-46 https://doi.org/10.1016/j.triboint.2014.01.008

[8] Miyake S, Watanabe S, Miyazawa H, Murakawa M, Miyamoto T, Kaneko R. Modification

of nanometer scale wear of nitrogen-containing carbon films due to ion implantation.

Nuclear Instruments and Methods in Physics Research. 1997;B 122:643-649. https://doi.

org/10.1016/S0168-583X(96)00924-X

[9] Miyake S, Watanabe S, Miyazawa H, Murakawa M. Improved microscratch hardness of

ion-plated carbon film by nitrogen inclusion evaluated by atomic force microscope.

Applied Physics Letters. 1994;65(25):3206-3208 http://dx.doi.org/10.1063/1.112414

[10] Miyake S, Saito T, Wang M, Watanabe S. Tribological properties of extremely thin protec-

tive carbon nitride films deposited on magnetic discs by complex treatment. Journal of

Engineering Tribology Part – J, Proceedings of the Institution of Mechanical Engineers.

2006;220(7):587-595. DOI: https://doi.org/10.1243/13506501JET124

[11] Wang M, Miyake S, Saito T. Nanoindentation and nanowear of extremely thin protective

layers of C-N and B-C-N. Tribology International. 2005;38(6–7):657-664 https://doi.org/

10.1016/j.triboint.2005.03.001

[12] Miyake S, Hashizume T, Kurosaka W, Sakurai M, Wang M. Deposition and tribology of

carbon and boron nitride nanoperiod multilayer solid lubricating films. Surface and Coat-

ing Technology. 2007;202(4–7):1023-1028 https://doi.org/10.1016/j.surfcoat.2007.07.079

[13] Liu CS, Zheng ZY, DW W, Ye MS, Gao P, Peng YG, Fan XJ. Sliding friction and wear

properties of CNx /TiN composite films. Tribology International. 2004;37(9):721-725

https://doi.org/10.1016/j.triboint.2004.03.001

[14] Zheng XH, Tu JP, Song RG. Microstructure and tribological performance of CN(x)–TiN(x)

composite films prepared by pulsed laser. Material Design. 2010;31:1716-1719. https://doi.

org/10.1016/j.matdes.2009.01.043

[15] Wang TS, DL Y, Tian YJ, Xiao FR, He JL, Li DC, WangWK, Li L. Cubic-C3N4 nanoparticles

synthesized in CNx/TiNx multilayer films. Chemical Physics Letters. 2001;334(1–3):7-11

https://doi.org/10.1016/S0009-2614(00)01251-3

Surface Morphology and Tribological Properties of Nanoscale (Ti, Al, Si, C)N Multilayer Coatings Deposited by…
http://dx.doi.org/10.5772/intechopen.73141

99



[16] Liu ZJ, Vyas A, YH L, Shen YG. Structural properties of sputter-deposited CNx/TiN

multilayer films. Thin Solid Films. 2005;479:31-37 https://doi.org/10.1016/j.tsf.2004.11.106

[17] Cao M, Li DJ, Deng XY, Sun X. Synthesis of nanoscale CNx/TiAlN multilayered coatings

by ion-beam-assisted deposition. Journal of Vacuum Science and Technology. 2008;A 26–

5:1314-1318. http://dx.doi.org/10.1116/1.2956627

[18] Riedo E, Chevrier J, Comin F, Brune H. Nanotribology of carbon based thin films: The

influence of film structure and surface morphology. Surface Science. 2001;477:25-34

https://doi.org/10.1016/S0039-6028(01)00701-4

[19] Derflinger VH, Schutze A, Ante M. Mechanical and structure properties of various

alloyed TiAlN-based hard coatings. Surface and Coatings Technology. 2006;200:4693-

4700 https://doi.org/10.1016/j.surfcoat.2005.02.065

[20] Kao CM, Lee JW, Chen HW, Chan YC, Duh JG, Chen SP. Microstructures and mechanical

properties evaluation of TiAlN/CrSiN multilayered thin films with different bilayer

periods. Surface Coatings and Tehnology. 2010;205:1438-1443 https://doi.org/10.1016/j.

surfcoat.2010.07.107

[21] Donohue LA, Smith IJ, Munz W-D, Petrov I, Greene JE. Microstructure and oxidation-

resistance of Ti1-x-y-zAlxCryYzN layers grown by combined steered-arc/unbalance-

magnetron-sputter deposition. Surface and Coating Technology. 1997;94-95:226-231

[22] Simth IJ, Munz W-D, Donohue LA, Petrov I, Greene JE. Improved Ti1-xAlxN PVD

coatings for dry high speed cutting operations. Surface Coatings and Technology.

1998;14-1:37-41. http://dx.doi.org/10.1179/sur.1998.14.1.37

[23] Watanabe S, Noshiro J, Miyake S. Tribological characteristics of WS2/MoS2 solid lubricat-

ing multilayer films. Surface and Coating Technology. 2004;183:347-351 https://doi.org/

10.1016/j.surfcoat.2003.09.063

[24] Thornton JA, Hoffman DW. Stress-related effects in thin films. Thin Solid Films. 1989;171:5-

31 https://doi.org/10.1016/0040-6090(89)90030-8

[25] Nanostructured Coatings, Edited by, Part of the Nanostructure Science and Technology

book series (NST). New York, NY: Springer. Print ISBN 978-0-387-25642-9. pp. 253-270

https://doi.org/10.1007/978-0-387-48756-4

[26] Veprek S, Reiprich S. A concept for the design of novel superhard coatings. Thin Solid

Films. 1995;268:64-71 https://doi.org/10.1016/0040-6090(95)06695-0

[27] Niederhofer A, Bolom T, Nesladek P, Moto K, Eggs C, Patil DS, Veprek S. The role of

percolation threshold for the control of the hardness and thermal stability of super- and

ultrahard nanocomposites. Surface and Coating Technology. 2001;183:146-147 https://doi.

org/10.1016/S0257-8972(01)01469-4

Lubrication - Tribology, Lubricants and Additives100


	Chapter 5
Surface Morphology and Tribological Properties of Nanoscale (Ti, Al, Si, C)N Multilayer Coatings Deposited by Reactive Magnetron Sputtering

