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Abstract

In order to develop and implement the laws piloting for an aircraft, flights validation
will be necessary. This could in fact be done, in a first step, by using flight simulators. In
this work, we choose the predator virtual model flying in MicrosoftTM flight simulator
(MSFS) and we propose the procedure of controlling its attitude. We send the adaptive
integral high-order sliding mode (AIHOSM) inputs piloting control. This work is a real-
time virtual simulation. For the AIHOSM controller, we propose the gain adaptation for
reduction of chattering phenomena and possibility to control the aircraft presented by
the uncertain nonlinear systems in which the uncertainties have unknown bounds. This
technique is more robust and simpler to implement than the quaternion one and only
needs the information about the sliding mode surface.

Keywords: adaptive integral high-order sliding mode controller, Microsoft flight
simulatorr, UAV predator, real-time virtual simulation

1. Introduction

In reality, all physical systems are affected by uncertainties due to modeling errors, parametric

variation, and external disturbances. Controlling of dynamical systems in the presence of

uncertainties is extremely difficult as the controller's performances degrade and the system

may even be led to instability. As such, active researches are continuing to develop controllers

that can work successfully in spite of uncertainties. Robust control techniques such as

nonlinear adaptive control, model predictive control, backstepping and sliding mode control

[1, 2, 3, 4, 5, 11, 19, 20, 32, 34] have been evolved to deal with uncertainties.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The classical Sliding Mode Control (SMC) leads, generally, to the appearing of an undesirable

chattering phenomenon [2, 3, 9, 10, 13, 14, 15] to solve this problem we propose an approach

using the Adaptive Integral High Order Sliding Mode Controller (AIHOSMC). This technique

ensures a good tradeoff between error and robustness against noise and especially a good

accuracy for a certain frequency range, regardless of the gain setting of the algorithm. This

technique is based on estimating the successive derivatives of the sliding mode surface and

transmitting them to the control block, all by using an aircraft in virtual simulated environ-

ments [24, 25]. It is real-time virtual simulation, which is close to the real-world situation.

The piloting technique proposed in this work is more robust and simpler to implement than

the quaternion one. It only requires information about the sliding mode surface.

2. Problem statement

Through a methodology based on the confrontation of the real and the simulated worlds, the

main objective of this chapter is to develop an autopilot based on a robust controller to

maintain the desired trajectory (Figure 1).

Figure 1. Real trajectory.
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To achieve this objective, we use the flight simulator FS2004 as a simulated world environment

coupled to a hardware and a software development platform. This simulator is developed by

Microsoft, with several simulated aircraft included in its airplane library. We choose the

Predator MQ-1 (Figure 2). It is considered as a reconnaissance and an intelligent system.

In this work, the main goal is to maintain the desired aircraft's trajectory; and to do so, we

propose the following approach:

• description and analysis of the aircraft system model;

• implementation of a real-time interface between the flight simulator FS2004 and the

module real-time Windows target of Simulink/Matlab;

• development and implementation of the piloting law based on adaptive integral sliding

mode for the design of the autopilot controller;

• flight tests.

3. Characteristics of the predator

The MQ-1 predator is an American unmanned aerial vehicle (UAV) that can serve in the

reconnaissance or attack role. Predator has been in the United States Air Force (USAF) service

since 1995 and has seen combat in numerous theatres.

Airwrench tool gives access to flight dynamic characteristics (http://www.mudpond.org/

AirWrench_main.htm). This tool allows creating and tuning flight dynamics files description

of simulated planes models. This software uses aerodynamics formulas and equations

described on the Mudpond Flight Dynamics Workbook. It calculates aerodynamic coefficients

based on the physical characteristics and performance of the aircraft (Table 1).

Figure 2. The predator MQ-1 flying in FS-2004.
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4. Implementation of a real-time interface between Microsoft flight

simulator and the module “real-time windows target” of Simulink/Matlab

We communicate with FS2004 by using a dynamic link library called FSUIPC.dll (Flight

Simulator Universal Inter-Process Communication). This library created by Peter Dowson

and is downloadable from his website [36] (www.schiratti.com/dowson.html). It allows external

applications to read and write in and from Microsoft flight simulator (MSFS) by the means of

an IPC (interprocess communication) using a buffer of 64 Ko. The documentation given with

FSUIPC explains the organization of this buffer [8, 17, 18].

To read or write a variable using the FSUIPC, we need to know its offset address, its format,

and the necessary conversions. For example, the bank angle (ϕ) is read as a signed long S32 at

the offset 0x057C. Table 2 shows the parameters used in our simulation.

To deal with the design of an autopilot controller, we propose an environment framework

based on a software in the loop (SIL) methodology (see Figure 3) and we use Microsoft flight

simulator (MSFS-2004) as a plane simulation environment [24, 25].

This work is a real-time virtual simulation, we read or/and write the desired parameters from

and to MSFS-2004 through the computer memory by using the FSUIPC library.

Dimensions Moments of inertia

Length: 11.88 m Pitch: 1800.0

Wingspan: 14.84 m Roll: 3700.00

Wing surface area: 11.43 m2 Yaw: 1800.00

Wing root chord: 1.55 m Cross: 0.00

Aspect ratio: 19.28

Taper ratio: 0.10

Table 1. FS2004 aircraft-simulated characteristics PREADAR MQ-1.

Offset Name Var. type Size (octet) Usage

057C Bank angle (ϕ) S32 4 Degree

578 Elevation angle (θ) S32 4 Degree

580 Head angle (ψ) U32 4 Degree

02BC Speed IAS (V) S32 4 Knot*128

0BB2 Elevator deflection (δe) S16 2 -16383 to +16383

0BB6 Aileron deflection (δa) S16 2 -16383 to +16383

0BBA Rudder deflection (δr) S16 2 -16383 to +16383

088C Thrust control (δx) S16 2 -16383 to +16383

Table 2. Flight parameters in the buffer FSUIPC.
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5. System modeling

The model describing the system is presented by [12, 25, 26]

_x ¼ f ðxÞ þ gðxÞ:U (1)

with is the aircraft state vector in the body frame:

x ¼ ½ u v w p q r ϕ θ ψ �T

¼ ½ x1 : : : : : : : x9 �
T

(2)

U ¼ ½ δt δe δa δr �
T is the control vector and δt, δe, δa and δr denoting thrust control,

elevator deflection, aileron deflection, and rudder deflection, respectively.

We propose the following output vector:

y ¼ ½φ θ ψ �T (3)

The nonlinear functions f(x) and g(x) are given by [16, 23, 25]:

f ðxÞ ¼ ½ f 1ðxÞ : : f 9ðxÞ �
T (4)

where,

Figure 3. Software-in-the-loop architecture.
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f 1ðxÞ ¼ x2x6 � x3x5 þ Cx2x5 þ Cx4 þ Cx5αþ Cx1 _α � g sin x8

f 2ðxÞ ¼ x3x5 � x2x4 þ Cy2x4 þ Cy3x6 þ Cy6βþ Cy1
_β þ Cy7 þ g sin x9 sin x8

f 3ðxÞ ¼ x1x5 � x1x2 þ Cz2x5 þ Cz5αþ Cz1 _α þ Cz4 þ g cos x9 cos x8

f 4ðxÞ ¼ �
Izz
Δ

½�Ixzx4x5 þ ðIyy � IzzÞx6x5 þ Cl2x4 þ Cl3x6�

�
Ixz
Δ

½�Ixzx6x5 þ ðIyy � IxxÞx4x5 � Cn2x4 þ Cn3x6�

�
1

Δ
½IzzðCl5βþ Cl1

_β þ Cl7Þ � IxzðCn6βþ Cn1
_βÞ � Cn7�

f 5ðxÞ ¼ �
1

Iyy
ðIzz � IxxÞx4x6 þ Ixzðx

2
6 � x24Þ þ Cm2x5 þ Cm5αþ Cm1 _α þ Cm4

f 6ðxÞ ¼ �
Ixz
Δ

½Ixzx4x5 � IxzðIyy � IzzÞx6x5 þ Cl2x4 þ Cl3x6�

�
Ixx
Δ

½�Ixzx6x5 þ ðIyy � IxxÞx4x5 � Cl2x4 þ Cl3x6�

�
1

Δ
½�IxzðCl5βþ Cl1

_β þ Cl7Þ þ IxxðCl5βþ Cl1
_βÞ � Cn7�

f 7ðxÞ ¼ x4 þ x5 sin x7 tan x8 þ x6 cos x7 tan x8

f 8ðxÞ ¼ x5 cos x7 � x6 sin x7

f 9ðxÞ ¼
x5 cos x7 þ x6 sin x7

cos x8

gðxÞ ¼

Fprop cosαm

m
Cx3 0 0

0 0 Cy4 Cy5

Fprop sinαm

m
Cz3 0 0

0 0 a1 a2

0 Cm3 0 0

0 0 a3 a4

0 0 0 0

0 0 0 0

0 0 0 0
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(5)

where Δ ¼ I2xz � IxxIzz,a1 ¼ � ðIzzCl4�IxzCn4Þ
Δ

,a2 ¼ � ðIzzCl6�IxzCn5Þ
Δ

,, a4 ¼ � ðIzzCn5�IxzCl6Þ
Δ

.

The coefficients Cx1, ::::::::,Cn5 are defined in Table 3 [21, 22, 25, 26].

Recent Developments in Sliding Mode Control Theory and Applications92



6. Integral sliding mode controller problem formulation

Consider the following nonlinear uncertain system [31]

_x ¼ f ðxÞ þ gðxÞ:U

y ¼ Sðx, tÞ
(6)

Sðx, tÞ is a sliding variable. f and g are uncertain smooth vector fields and are differentiable.

The uncertainties in f ðxÞ and gðxÞ are caused by the parameter variations, the nonmodeled

dynamics, or the external disturbances.

Assumption 1 [31]: The relative degree r of system (6) is constant and known, and the

associated zero dynamics are stable.

The rth-order sliding mode is defined through the following definition.

Definition 1 [6, 7, 8, 31]: Consider the nonlinear system (6) and the sliding variable S. Assume

that the time derivatives S, _S, :::::, Sðr�1Þ are continuous functions. The manifold defined as

Σ
r ¼ fxjSðx, tÞ ¼ _Sðx, tÞ ¼ ::::: ¼ Sðr�1Þ ¼ 0g (7)

is called “rth-order sliding mode set,” which is nonempty and is locally an integral set in the

Fillipov sens [30]. The motion Σ
r on is called “rth-order sliding mode” with respect to the

sliding variable S.

Definition 2 [6–8, 31, 32]: Consider the nonlinear system (6) and the sliding variable S. Assume

that the time derivatives S, _S, :::::, Sðr�1Þ are continuous functions. The manifold defined as

Σ
r
� ¼ fxjjSj ≤μ0τ

r�1, j _Sj ≤μ1τ
r�1, :::::, jSðr�1Þj ≤μrg (8)

Cx1 ¼
QSCx _α

m Cx2 ¼
QScCxq

mV Cx3 ¼
QSCxδe

m Cx4 ¼
QSCx0

m

Cx5 ¼
QSCxα

m Cy1 ¼
QSbCy _β

2mV
Cy2 ¼

QSbCyp

2mV Cy3 ¼
QSbCyr

2mV

Cy4 ¼
QSCyδa

m Cy5 ¼
QSCyδr

m Cy6 ¼
QSCyβ

m Cy7 ¼
QSCy0

m

Cz1 ¼
QScCz _α

mV Cz2 ¼
QScCzq

mV
Cz3 ¼

QSCzδe

m Cz4 ¼
QSCz0

m

Cz5 ¼
QSCzα

m Cl1 ¼
QSc2Cl _β

2V
Cl2 ¼

QSb2Clp

2V
Cl3 ¼

QSb2Clr

2V

Cl4 ¼ QSbClδa Cl5 ¼ QSbClβ Cl6 ¼ QSbClδr Cl7 ¼ QSbCl0

Cm1 ¼
QSc2Cm _α

2V Cm2 ¼
QSc2Cmq

V
Cm3 ¼

QScCmδe

Iyy
Cm4 ¼ QScCm0

Cm5 ¼ QScCmα Cn1 ¼
QSb2Cm _β

2V
Cn2 ¼

QSb2Cnp

2V
Cn3 ¼

QSb2Cnr

2V

Cn4 ¼ QSbCnδa Cn5 ¼ QSbCnδr Cn6 ¼ QSbCnβ Cn7 ¼ QSbCn0

Table 3. Expression of the modified aerodynamic coefficients.
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With μi ≥ 0 (0 ≤ i ≤ r� 1), is named “real rth-order sliding mode set,” which is nonempty and is

locally an integral set in the Fillipov sens [30]. The motion on Σ
r is called “real rth-order sliding

mode”with respect to the sliding variable S. Given the form of system (6), the rth-order sliding

mode control (SMC) approach allows the finite time stabilization to zero of the sliding variable

S and its (r-1) first time derivatives by defining a suitable discontinuous control function. The

rth time derivative of S satisfies the equation [6–8]:

SðrÞ ¼ aðx, tÞ þ bðx, tÞU (9)

With b ¼ LgL
r�1
f S and a ¼ LrfS

Assumption 2 [31, 32]: Solutions of Eq. (9) with discontinuous right-hand side are defined in

the sense of Fillipov [30].

Assumption 3 [31, 32]: Functions aðt, xÞ and bðt, xÞ are smooth and uncertain but bounded

functions; furthermore, they can be partitioned into a well-known nominal part (respectively,

aðt, xÞ and bðt, xÞ is an uncertain bounded one, respectively, aðt, xÞ and Δbðt, xÞ.

aðt, xÞ ¼ aðt, xÞ þ Δaðt, xÞ

bðt, xÞ ¼ bðt, xÞ þ Δbðt, xÞ
(10)

Functions aðt, xÞ and aðt, xÞ are such that a≻ 0 and a≻ 0 there is an upper bound constant ξ and

a priori known constant 0≺γ ≤ 1 such that the uncertain functions satisfy the following

inequalities [33]:

Δbðt, xÞ

bðt, xÞ

�

�

�

�

�

�

�

�

�

�

≤ 1� γ, jΔaðt, xÞj ≤ ξ (11)

The rth-order sliding mode controller (SMC) of Eq. (6) with respect to the sliding variable S is

equivalent to the finite time stabilization of

_zi ¼ zi�1

_zi ¼ aðt, xÞ þ bðt, xÞ
(12)

With 1 ≤ i ≤ r� 1 and z ¼ ½ z1 z2 ::: ::: zr �
T ¼ ½ S _S ::: :::: Sðr�1Þ �T

Consider the following state feedback control

U ¼
1

bðx, tÞ

�

� aðt, xÞ þ σ
�

(13)

with σ the auxiliary control input. Note that this state feedback control linearizes (by an input-

output point of view) the nominal system, i.e., system (12) with no uncertainties.

Applying Eq. (13) to system (10), one gets
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_zi ¼ zi�1

_zi ¼ Δaðt, xÞ �
Δbðt, xÞ

bðt, xÞ
aðt, xÞ þ 1þ

Δbðt, xÞ

bðt, xÞ

 !

σ
(14)

The control objective is now the following: how to define a discontinuous control law ensuring

the stabilization of the previous system, in a finite time and in spite of the uncertainties?

6.1. Control design

We proposed two high-order sliding mode controllers based on integral sliding mode concept

[27]: the first requires knowledge of the uncertainties bounds, whereas, for the second one, no

knowledge of the bounds is required. This latter feature is due to an adaptation law for the

control gain.

6.1.1. Finite time stabilization of an integrators’ chain system

The following theorem proposes a continuous finite time stabilizing feedback controller for a

chain of integrators, by giving an explicit construction involving a small parameter. One gets

an asymptotically stable closed-loop system; the system is homogeneous of negative degree

with respect to a suitable dilation, which implies the finite time stability. Consider the system

(12) with no uncertainty (Δaðt, xÞ ¼ 0 and Δbðt, xÞ ¼ 0).

_zi ¼ zi�1

_zr ¼ σ
(15)

Theorem 1 [28]

Let k1, :::, kr≻0 be such that the polynomial λr þ krλ
r�1 þ ::: þ k2λþ k1 is Hurwitz. There exists

ε∈ �0, 1½ such that, for every α∈ �1� ε, 1½, the origin is a globally finite time stable equilibrium

point for system (15) under the feedback

σ ¼ k1signðz1Þjz1j
α1 �…� krsignðzrÞjzrj

αr (16)

With α1, ::::,αr�1 satisfy αi�1 ¼
αiαiþ1

2αiþ1�αi

For i ¼ 2, :::, r with αr ¼ α and αrþ1 ¼ 1.

6.1.2. Robust finite time controller design based on integral sliding mode [31, 32]

Consider the following function, named “integral sliding variable,” defined as (t0 being the

initial time)

SðzðtÞÞ ¼ zrðtÞ � zrðt0Þ �

ð

t

t0

σnomðτÞdτ (17)

with the term σnom defined by Eq. (16) in Theorem 1. Note that, Sðzðt0ÞÞ ¼ 0: then the system is

evolving on the sliding manifold early from the initial time.
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This latter feature is a key point of the integral sliding mode controller; in fact, the definition of

the integral sliding variable allows to ensure that a sliding mode has been established early

from the initial time, thanks to the finite time convergence property of σnom. Then, it is

necessary to force the system to evolve on the integral sliding surface S ¼ 0 in spite of the

uncertainties and perturbations: it will be the role of the discontinuous part of the controller. In

fact, the term σnom appearing in S can be viewed as a desired trajectory generator. By suppos-

ing that, ∀t ≥ t0, S ¼ 0, one has

_S ¼ _zr � σnom ¼ 0 ! _zr ¼ σnom (18)

From the previous inequality, it is clear that, if the control σ guarantees that S ¼ 0, ∀t ≥ t0 and

given the features of σnom, system (15) is stabilized at the origin in a finite time.

Then, in order to stabilize system (15), the following control law is defined

σ ¼ σnom � KsignðSÞ (19)

This controller has two parts:

• The first one σnom, called “ideal control”, is continuous and stabilizes the system (15) at the

origin in absence of uncertainties. This controller is also used in order to generate the

system's ideal trajectories;

• The second one �KsignðSÞ provides the complete compensation of uncertainties and

perturbations and ensures that control objectives are reached, where the gain is satisfying

K≻
ð1� γÞðjσnomj þ jψj þ ξþ ηÞ

γ
(20)

Theorem 2: [29, 33] Consider the nonlinear system (6) and assume that assumptions 1–3 are

fulfilled. Then, if the gain

K fulfills the condition (20), the control law

U ¼ b�1ðx, tÞ
�

� aðx, tÞ þ σnom � KsignðSÞ
�

(21)

ensures the establishment of a rth-order sliding mode versus the sliding variable S, i.e., the

trajectories of system (6) converge to zero in finite time.

7. Application of the adaptive integral- high-order-sliding -mode

controller for piloting

The relative degrees are rϕ ¼ rθ ¼ rψ ¼ 0.

The input control U is defined by σϕ,θ,ψ ¼ ½ δe δa δr �
T.
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We propose the integral sliding variable as follows:

Sϕ,θ,ψðzðtÞÞ ¼ z1,φ,θ,ψðtÞ � ydðt0Þ �

ð

t

t0

σnomðτÞdτ (22)

where yd ¼ ½ϕd θd ψd �
T is the desired vector and z1,ϕ,θ,ψ ¼ ½ϕ θ ψ �T is the output vec-

tor of integrators’ chain.

In Theorem 1, we choose ε ¼ 0:7, so we can take α ¼ 0:5.

The integrators’ chain is defined by

_z1 ¼ z2
_z2 ¼ �λ̂1ϕ,θ,ψjz1ϕ,θ,ψj

1
3signðz1ϕ,θ,ψÞ � λ̂2ϕ,θ,ψjz2ϕ,θ,ψj

1
2signðz2ϕ,θ,ψÞ

(23)

where, σnom ¼ �λ̂1ϕ,θ,ψjz1ϕ,θ,ψj
1
3signðz1ϕ,θ,ψÞ � λ̂2ϕ,θ,ψjz2ϕ,θ,ψj

1
2signðz2ϕ,θ,ψÞ.

The control input can be chosen as

σϕ,θ,ψ ¼ �λ̂1ϕ,θ,ψjz1ϕ,θ,ψj
1
3signðz1ϕ,θ,ψÞ � λ̂2ϕ,θ,ψjz2ϕ,θ,ψj

1
2signðz2ϕ,θ,ψÞ

� λ̂3ϕ,θ,ψ

ð

t

0

signðz2ϕ,θ,ψÞdt� K1ϕ,θ,ψz2ϕ,θ,ψ
(24)

where K1ϕ,θ,ψ ≻ 0.

The reduction of the noise is assumed by the presence of the linear term (Kiz2i, where i ¼ ϕ,θ,ψ)

in the equation of each output i in the algorithm. This linear term can be expressed as the law of

the control, which allows the reduction of the chattering effect. The addition of this continuous

term smoothes the output noise due to a low gain values. If the chosen values of these gains

become very low, the convergence of the algorithm becomes slow. Therefore, the choice of the

convergence gains remains difficult and is based on a compromise between reducing the noise

and having a short algorithm's convergence time. It should also be noted that in the presence of

noise, it is necessary to impose small initial values for the dynamic gains in order to reduce the

effect of the discontinuous control. Moreover, the presence of integral term (

ðt

0

signðz2ϕ,θ,ψÞdt) in

the expressions of the dynamic gains provides the smoothing of the estimated derivatives.

The dynamic adaptation of the gains
_̂
λi, i∈ f0, 1, 2g is given by

_̂
λ1ϕ,θ,ψ ¼ jz1ϕ,θ,ψj

2
3signðz1,ϕ,θ,ψÞz1,ϕ,θ,ψ

_̂
λ2ϕ,θ,ψ ¼ jz2ϕ,θ,ψj

1
2signðz2,ϕ,θ,ψÞz2,ϕ,θ,ψ

_̂
λ3ϕ,θ,ψ ¼ z2ϕ,θ,ψ

ð

t

0

signðz2,ϕ,θ,ψÞdt

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(25)
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The application of this piloting technique in FS2004 is shown in Figure 2. λ, μ and h are

latitude, longitude and altitude of aircraft, respectively.

The input signals at the upper and lower saturation values of the control laws are used to

respect the actuators bounds. Scaled functions are added to take into account the actuators

resolutions.

The adaptive integral high-order sliding mode technique is used to recover the desired signal.

Several flight tests were realized to demonstrate the effectiveness of the combined controller/

integrators’ chain.

7.1. Simulation results

We run the flight simulator FS2004 and the interface with the module real-time windows target

of Simulink/Matlab.

In a first step, we used aircraft predator, the aircraft taking off was done using the keyboard.

Then, we run our software to transmit the control inputs based on the adaptive integral higher-

order sliding mode to the autopilot controller in order to maintain the desired trajectory.

The desired signal injected and the output integrators’ chain are shown in Figure 4. We notice

the outputs of the integrators’ chain z1, j where j ¼ ϕ,θ,ψ follows the references ϕd, θd and ψd

perfectly. The surface sliding mode Sϕ,θ,ψ is small (see Figure 5).

Figure 4. Application of the adaptive integral high order sliding mode controller in FS2004.
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Figure 6 shows the error between the output integrators’ chain z1ϕ and ϕ
d0. The signal z1ϕ

follows ϕ
d
.

The input signals at the upper and the lower saturation values of the aileron, rudder, and

elevator deflections are used to respect the virtual Joystick (PPjoy) bounds. Upper limit: 62767,

lower limit: 1.

Airwrench gives the following data:

• Aileron parameters: Aileron area 1.70 m2, aileron up angle limit 20.0�, aileron down angle

limit 15.0�.

• Elevator parameters: Elevator area 1.54 m2, elevator up angle limit 25.00�, elevator down

angle limit 20.00�.

• Rudder parameters: Rudder area 0.62 m2, Rudder angle limit 24.00�.

Figure 6. Surface sliding mode Sφ.

Figure 5. Reference and output integrators.
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The aileron, elevator, and rudder deflections are shown in Figures 7–9. We notice the absence

of the chattering phenomenon.

The evolution parameters λ̂1, λ̂2, and λ̂3 are shown in Figure 10.

The flight tests demonstrate the robustness of the adaptive integral high-order sliding mode. It

makes it possible to ensure a better derivation of the desired input signal in real time, and this

is to ensure a good accuracy of tracking the desired trajectory.

Figure 7. Ailler control.

Figure 8. Rudder control.
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8. Conclusion

In this chapter, a procedure of the communication with an aircraft model in a simulated

environment and the implementation of the real-time interface between the Microsoft flight

simulator and the module “real-time windows target” of Simulink/Matlab has been presented.

After that, an adaptive integral sliding mode for an aircraft autopilot has been presented. Our

approach uses the environment simulator (FS2004) to reduce the design process complexity.

For the piloting part, we have interested the gain adaptation for the reduction of chattering

phenomena and possibility to control the aircraft presented by the uncertain nonlinear systems

Figure 10. Dynamic parameters evolution λ̂1, λ̂2, and λ̂3.

Figure 9. Elevator control.
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in which the uncertainties have unknown bounds. This technique is more robust and simpler

to implement than the quaternion one and only needs the information about the sliding mode

surface.

The flight tests demonstrate the robustness of an adaptive integral sliding mode. The former

ensures a better derivation of the desired input signal in real time, and this ensures a good

accuracy in terms of tracking for a desired reference.
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