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Abstract

Antibodies are glycoprotein structures with immune activity. They are able to identify
or induce a neutralizing immune response when they identify foreign bodies such as
bacteria, viruses, or tumor cells. Immunoglobulins are produced and secreted by B
lymphocytes in response to the presence of antigens. The first monoclonal antibodies
(mAbs) have emerged from a survey of hybridomas, and nowadays mAbs are produced
mostly from cultivations of these cells. Additionally, there are studies and patents using
a  range  of  cells  and  microorganisms  engineered  for  the  production  of  mAbs  at
commercial  scale.  For  some  years,  new  methodologies  have  advanced  with  new
production processes, allowing scale-up production and market introduction. Large-
scale production has revolutionized the market for monoclonal antibodies by boosting
its  production  and  becoming  a  more  practical  method  of  production.  Production
techniques have only had a sizable breakthrough due to molecular techniques. Various
systems of production are used, including animal cells, microorganisms, plants, and
mammary glands. All of these require the technological development of production
process such as a stirrer, a wave bioreactor, and roller bottles.
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1. Introduction

Monoclonal antibodies (mAbs) have been widely used as a way to successfully achieve a broad
range of extracellular targets with high specificity [1]. mAbs have various applications in
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diagnosis and therapy for several diseases such as cancers, autoimmune diseases, sexually
transmitted infections (STIs), and others [2, 3]. In recent years, the use of mAbs has been
expanded due to significant advances in design. The effect of decreasing immunogenicity in
humans, improvement in their bioavailability, optimizing the affinity and antigen-binding
specificity, and other advances in protein engineering are improving therapeutic mAb profiles
(Figure 1) [2].

Figure 1. Schematic overview of a monoclonal antibody, showing their heavy and variable chain.

With the advent of genetic engineering, it has been possible to develop new methods to obtain
monoclonal antibodies, both for improvement with regard to these humanized antibodies and
for production models [4–6]. Advances in molecular and cell biology for the development of
more efficient antibodies have allowed advances in diagnostic and therapeutic areas. Such
advances have triggered improvements in production processes, allowing for the reduction of
production costs and thus leading to an increase in the popularization of treatments with
mAbs. All process improvements provide a consistent and reproducible production of large
quantities of mAbs at a moderate cost [4–6].

Large-scale production has revolutionized the market for monoclonal antibodies by boosting
its production, making this a more practical method of production. Production techniques
have only had a sizable breakthrough due to molecular techniques [1, 7].

In general, a process of commercial production of mAb begins with the generation of an mAb
by immunizing an animal or by molecular biology methods involving the identification and
optimization of the coding DNA sequence and the construction and identification of a stable
high-producing clone. Improvements in cultivation are similar to those applied in other
bioproducts that rely on culturing microorganisms or cells, requiring the development of a
well-designed culturing process comprising the full range of control and associated operations
that will support technical evaluations [1, 8].

mAbs production processes in wave or single-use bioreactor (SUBs) are characterized by
flexibility and low operating costs when compared to the production processes in fixed
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stainless steel vats. The development of bioprocesses involving these production platforms can
reap greater acceptance by the industry [9–11].

Drugs based on mAbs have been controlled by regulatory agencies around the world.
Therefore, it is necessary to elaborate regulatory protocols accompanying the increase in
production and the nuances of the characteristics of this class of drugs [10, 11].

The proposed chapter covers the fundamental aspects of monoclonal antibody production
methods, with emphasis on methodologies using immobilized cells, wave bioreactor systems,
SUBs, and finally the roller bottles technique. Such techniques have been described in the most
recent literature, both for murine monoclonal antibody production and for production of
antibodies from modified microorganisms.

2. mAbs production techniques

2.1. Hybridoma and phage display

Milstein and Köhler described the first technique developed for stable monoclonal antibody
production in 1975. This technique consists of creating a hybridoma, a stable hybrid cell capable
of producing a single type of antibody against a specific epitope present in an antigen.
Hybridoma construction was initially produced from murine models. The technique consists
of removing a pool of activated B lymphocytes from an immunized animal spleen and
combining them with immortalized myeloma cells unable to produce the enzyme hypoxan-
thine-guanine-phosphoribosyltransferase (HGPRT), an important enzyme present in the
salvage pathway, one of the pathways responsible for nucleotide production [1]. To select
hybridoma cells, the pool of cells resulting from the fusion (a mix of hybridoma cells and non-
fused B lymphocytes and myeloma cells) are cultivated in a selective medium containing
aminopterin, which inhibits the nucleotide de novo synthesis. Myeloma cells lack the salvage
pathway for nucleotide production. When they are exposed to aminopterin present in selective
medium, the de novo synthesis is also blocked, and as a result, myeloma cells are no longer
viable since all major pathways for nucleotide production are blocked. In contrast, non-fused,
activated B lymphocytes can survive as their salvage pathway works perfectly and they can
continue nucleotide production even if the de novo pathway is blocked by aminopterin.
However, these cells are not immortalized and can replicate only a limited number of times
after which they eventually die. With this in mind, only cells capable of replicating indefinitely
and synthesizing nucleotides through the salvage pathway can survive through selection
conditions, and these cells are the hybridomas.

In spite of the fact that the primary recombinant mAbs were delivered utilizing this innovation
—including the first medication approved by the Food and Drug Administration (FDA) for
therapeutic proposes (Table 1)—the great contribution of this technology was mostly to
elucidate immune response mechanisms and control in vitro antibody production. Therefore,
mAb hybridoma production from murine sources exhibits a genuine downside in human
therapeutics (Figure 1).
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Drug name Active ingredient Description Target Therapeutic

category

approval

(FDA)

ACTEMRA® Tocilizumab Humanized IgG1κ IL-6 receptor Immunological 2010

ADCETRIS® Brentuximab

vedotin

Chimeric IgG1 CD30 Cancer 2011

ARZERRA® Ofatumumab Human IgG1κ CD20 Cancer 2009

AVASTIN® Bevacizumab Humanized IgG1 VEGF Cancer 2004

BENLYSTA® Belimumab Human IgG1λ BLyS Immunological 2011

BEXXAR Tositumomab;

iodine I 131

tositumomab

IgG2αλ, I131 CD20 Cancer 2003

BLINCYTO Blinatumomab BiTE antibody-

scFvs 

CD19/CD3 Cancer 2014

CAMPATH

(LEMTRADA™)

Alemtuzumab Humanized

IgG1κ  

CD52 Immunological 2001

CEA-SCAN Arcitumomab Murine IgG1 Fab’ CEA Diagnosys 1996

CIMZIA® Certolizumab

pegol 

Humanized Fab’,

PEG

TNFα Immunological 2008

COSENTYX® Secukinumab Human IgG1κ IL-17A Immunological 2015

CYRAMZA Ramucirumab Human IgG1 VEGRF-2 Cancer 2014

DARZALEX Daratumumab Human IgG1κ CD38 Cancer 2015

HERCEPTIN® Trastuzumab humanized IgG1κ HER2 Cancer 1998

EMPLICITI™ Elotuzumab Humanized IgG1 SLAMF7 Cancer 2015

ENTYVIO Vedolizumab Humanized IgG1 α4β7 Integrin Immunological 2014

ERBITUX® Cetuximab Chimeric IgG1 EGFR Cancer 2004

GAZYVA® Obinutuzumab Humanized IgG1 CD20 Cancer 2013

HUMIRA Adalimumab Human IgG1 TNF Immunological 2002

ILARIS Canakinumab Human IgG1κ uman-IL-1β Immunological/

anti-inflammatory

2009

KADCYLA® Ado-trastuzumab

emtansine

Humanized IgG1;

DM1

HER2 Cancer 2013

KEYTRUDA® Pembrolizumab Humanized IgG4κ PD-1 Cancer 2014

LEMTRADA™ Alemtuzumab Humanized IgG1κ CD52 Immunological 2001

LUCENTIS Ranibizumab Humanized IgG1κ VEGF-A Ophthalmic 2006

Muromomab Orthoclone Murine IgG2α CD3 Immunological 1992

Mylotarg® Gemtuzumab

ozogamicin

Humanized IgG4κ,

calicheamicin

CD33 Cancer 2000
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Drug name Active ingredient Description Target Therapeutic

category

approval

(FDA)

MYOSCINT® Imciromab

Penlelale

Murine IgG2/4κ

Fab’;DTPA

Heavy chain of

human myosin

Detection of

myocardial injury

1996

NUCALA® Mepolizumab Humanized IgG1κ IL-5 Immunological 2015

OPDIVO Nivolumab Human IgG4κ PD-1 Cancer 2014

PERJETA® Pertuzumab Humanized IgG HER2/neu receptor Cancer 2012

PORTRAZZA Necitumumab Human IgGκ EGFR Cancer 2015

PRALUENT™ Alirocumab Human IgG1 PCSK9 Lipid-lowering 2015

PRAXBIND® Idarucizumab Humanized IgG1

Fab

Dabigatran

(anticoagulant)

Hemostasis 2015

XGEVA® Denosumab Human IgG2 RANKL Bone disorders 2010

ProstaScint® Capromab

pendetide

Murine IgG1κ,

GYK-DTPA-HCl

PSMA Cancer 1996

RAPTIVA® Efalizumab Humanized IgG1κ CD11a Immunological 2003

RAXIBACUMAB Raxibacumab Human IgG1λ PA of B. Anthracis

toxin

Anti-toxin 2012

REMICADE® Infliximab Chimeric IgG1κ TNFα Immunological 1998

ReoPro® Abciximab Chimeric IgG1κ Fab GPIIb/IIIa Hemostasis 1993

REPATHA Evolocumab Human IgG2 PCSK9 Lipid-lowering 2015

RITUXAN® Rituximab Chimeric IgG1κ CD20 Cancer 1997

SIMPONI Golimumab Human IgG1κ TNFα Immunological 2009

SIMULECT® Basiliximab Chimeric IgG1κ IL-2 receptor Immunological 1998

SOLIRIS® Eculizumab Humanized

IgG2/4κ 

C5 Hemostasis 2007

STELARA® Ustekinumab Human IgG1κ IL-12 and IL 23 Immunological 2009

SYLVANT Siltuximab Chimeric IgG IL-6 Immunological 2014

SYNAGIS® Palivizumab Humanized IgG1κ RSV F Antiviral 1998

NeutroSpec™ FanolesomaB;

technetium Tc 99m

Murine IgM 3-fucosyl-N-

acetyllactosamine

Diagnosys 2004

TYSABRI Natalizumab Humanized IgG4κ α4β1/α4β7 integrins Immunological 2004

UNITUXIN™ Dinutuximab Chimeric IgG1κ Glycolipid GD2 Cancer 2015

VECTIBIX® Panitumumab Human IgG2κ EGFR Cancer 2006

VERLUMA™ Nofetumomab Murine IgG2b Fab Glycoprotein antigen

expressed in a variety

of cancers

Diagnosys 1996
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Drug name Active ingredient Description Target Therapeutic

category

approval

(FDA)

XGEVA Denosumab Human IgG2 RANKL Cancer 2010

XOLAIR® Omalizumab Humanized IgG1κ Human IgE Immunological 2003

YERVOY® Ipilimumab Human IgG1κ CTLA-4 Cancer 2011

ZENAPAX® Daclizumab Humanized IgG1 IL-2 receptor Immunological 1997

ZEVALIN® Ibritumomab

tiuxetan

murine IgG1κ,

Yttrium-90

CD20 Cancer 2002

Table 1. Monoclonal antibody-based therapeutic drugs approved by FDA (Food and Drug Administration) until 2015.

After a few infusions, murine antibody molecules trigger the human anti-mouse antibody
(HAMA) response of the human immune system [1, 12]. To work around this issue, new
methodologies have been developed to deliver antibodies similar to human molecules, so the
technology evolved to less immunogenic chimeric antibodies (constant regions of human
antibodies linked to the variable region of the murine source), creating a new set of therapeutic
possibilities (Figure 1). Subsequently, the need for an even less immunogenic alternative
boosted the production of humanized antibodies (only the region that interacts with the
antigen epitope is from mouse origin) (Figure 1). Even fully human antibodies (Figure 1) can
be produced from genetically modified mice [13].

A great improvement in mAb production has come with the development of phage display
libraries. This methodology helps to investigate interactions between molecules (protein-
protein, protein-peptide, and protein-DNA) and consists, basically, in cloning Fab-region-
coding genes amplified from B lymphocytes into bacteriophage plasmid vectors. Then the
bacterium can be transformed with these vectors, going on to express the heterologous genes
from a viral capsid. This capsid contains viral proteins and proteins encoded by the Fab
sequence received by that specific cell. Once the library is complete, the affinity between
proteins produced from different Fab regions can be tested against the antigen of interest and
the cell transformed with the plasmid that contains those genes can be readily sequenced. The
advantages of this methodology are the following: the same library has the potential to
generate a great number of new antibodies, it is an in vitro process, so it does not require animal
immunizations steps, and because of that, toxic antigens can be tested. Also, a greater variety
of antigens can be tested, and antibody molecules can be rapidly obtained [13].

2.2. Culture production factors

2.2.1. Cell lines

One of the most critical steps in developing an mAb production system is to choose the cell
line. The cells must be stable and secrete the desired protein with the correct conformation at
high levels. Based on these requirements, the mammalian cell is the most commonly chosen
expression system for mAb production. The main advantage of a mammalian expression
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system is that the cellular machinery is adapted for the production, processing, and secretion
of highly complex molecules. The great majority of commercial mAbs are produced in Chinese
hamster ovary (CHO) and NS0 cells, originating from plasmacytoma cells that were modified
until IgG generation in nonsecreting B cells. Genetic modifications in CHO cells have generated
cell lines capable of producing a high quantity of humanized mAbs. These cell lines were able
to secrete up to 100 pg/cell/day [14]. Other modifications led to a high production of a chimeric
mAb, ranging from 80 to 110 pg/cell/day [15]. NS0 modifications also have been made, leading
to higher mAb production rates, ranging from 20 to 50 pg/cell/day [16]. In smaller quantities,
hybridoma cell lines are also used in industrial mAb production. Some hybridoma strains are
reported to have a production rate up to 80 pg/cell/day [16]. In spite of this, different mam-
malian cell lines and even more peculiar expression systems such as genetically modified plant
cells, genetically modified insect cells, and genetically modified microorganism cells have also
been used in mAb production and have gained space in the biopharmaceutical industry [1, 8]

Microorganisms modified by genetic engineering techniques have attracted much focus in
industry, because these cells are simpler to handle and to modify when compared to animal
cells. Other advantages of production methods using genetically modified microorganisms are
that these cells have well-defined expression systems, and the production methodology is
reproducible and easy to validate. Modified yeast cells, such as Pichia pastoris have a great
potential for usage since these cells are known to achieve high secretion levels of heterologous
proteins. Yeast cultivation systems for mAb production are easier scale-up and are cheaper
when compared to mammalian cell cultivation systems. They can be cultivated in regular
stirred tank bioreactors, in batch, or in feed-batch modes of operation. Generally, microorgan-
isms do not have physicochemical and biological characteristics for the appropriate expression
and posttranslational processing of mAbs [4].

Modified plants have also gained attention since plants are easy to cultivate and propagate.
Other cultivation advantages such as cheap medium, low maintenance cost, and high pro-
duction yields make plant production a cheaper alternative when compared to mammalian
cell cultures [17]. However, there are some limitations—different glycosylation patterns and
post-translational processing can also make plant cell utilization difficult [17].

2.2.2. Culture medium

Cultivation media for mammalian cells must have a complex content of ingredients ranging
from amino acids to trace elements. To supply the cellular demand of these nutrients, the
culture medium uses serum in its composition, however, due to the emergence of diseases
caused by defective prions, such as bovine spongiform encephalitis (BSE), there is a great
incentive to remove any animal component of culture media composition, especially if the
medium is used for industrial production of biopharmaceuticals products. This has led to the
emergence of media free from any animal components, including well-defined media for CHO
and NS0, the two most utilized cell types in mAb production. The development of a proper
medium can be time consuming and very expensive. However, many companies prefer to
develop their own production media to maintain the composition between production lots as
well as develop an appropriate medium composition for the specific cell type that will be used
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and to achieve greater control over production. Added to this, the development of downstream
processes that meet the requirement for high-purity products and tests to validate the final
product quality raises the overall production cost of a drug based on monoclonal antibodies [1].

Despite the complexity of developing a culture medium, much progress has been made in this
area, allowing for greater cell growth and increasing cell conservation time in suitable
conditions for the growth and production of molecules of interest [8].

2.2.3. Culture conditions

Growing conditions can directly influence the cell growth and production levels of molecules
of interest. Usually, mammalian cell culture conditions for mAb production are very well
defined: 37 °C, pH 7.15, and dissolved O2 (OD) levels at 30–60%. CO2 level is monitored to
mimic the physiological standard between 31 and 54 mmHg. However, changes in cellular
conditions have shown great potential to change cellular metabolism toward cellular growth
or molecule production and this can be used to increase mAb production. Bioprocesses can be
designed to occur in two phases. First, cell growth is optimized to reach a certain cell density.
Once this density is reached, the second phase begins and the bioreactor conditions are shifted
so the cells continue to grow just at a maintenance rate and directing the metabolism toward
monoclonal antibody production. Some CHO cell strains and hybridoma cells are sensitive to
changes in temperature and pH. When subjected to temperature and pH values lower than
those normally used, values between 30 and 35 °C and 6.7–7.0, respectively, cell growth
metabolism is reduced and specific production increases. The growth metabolism reduction
also contributes to lower production of some metabolic compounds which are toxic for cell
cultures, allowing increased cell viability, which spend more time producing molecules of
interest. A good way to monitor the growth stage of a cell culture for controlling changes in
cultivation is watching the DO and pCO2 levels, which can also be adjusted to maximize the
production of proteins such as mAbs [1].

2.2.4. Production platforms

The cell culture for mAb production can follow three different types of processes. The simplest
of them is batch production, which consists of a closed system where a bioreactor is sterilized
and prepared with a medium containing all the nutrients needed for cellular growth and
product manufacturing and then, cells are inoculated. There is no feeding system with fresh
medium or withdrawal of spent medium. As the process runs, nutrient concentration decreases
and waste metabolites are produced, lowering cell viability. In spite of being a simple process,
batch is not the most suitable type of production platform for mammalian cell cultures, as the
environment inside the reactor quickly becomes unfavorable for cell growth and, at the same
time, waste product concentration increases. Cultivation factors such as initial nutrient
concentration and waste metabolite production directly determine the maximum concentra-
tion that cells can reach in a bath culture. Generally, this type of cultivation reaches a maximum
density of 1–2 × 106 cells/mL, and then the cell viability drops rapidly [1]. The production
process lasts for 4–7 days, when productivity reaches certain concentration of interest [1].
Supernatant is collected and the product is recovered by downstream processes. The time that
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each batch takes to finish also depends on the production kinetics. If the production is growth
dependent (production occurs concomitantly with cellular growth), batch processes can be
stopped as soon as cells reach the stationary phase. But if the product is not associated with
growth (production only starts when the growth rate decreases), the culture needs to be carried
for a longer period of time since production only starts at stationary phase.

In contrast to batch, a second type of production process utilized is continuous fermentation.
There are two types of continuous production: chemostat cultures and perfusion cultures.
Concerning chemostat cultures, fresh medium is added to the bioreactor and fermented
medium is removed along with cells at a constant flow rate so that the culture volume remains
unchanged. The flow rate (dilution rate) controls cellular growth and when these two variables
are equal, the bioreactor reaches equilibrium—cell concentration, nutrient concentration, and
product concentration are held constant. In this context, the culture can be kept in equilibrium
for several months reaching a cell density of 10–30 × 106 cells/mL [1]. To avoid viable cell loss
along with the constant outflow of the by-products of cell metabolism, many manufacturing
plants have developed a cell-recycling system and thus, the perfusion culture method was
developed where cells are kept inside the bioreactor. The disadvantages of continuous
fermentation are the use of a large amount of expensive culture media and the difficulty in
recovering the product, which comes out fairly diluted. These two disadvantages are conse-
quences of the constant medium flow rate. To work around the product dilution problem, some
production manufacturing plants have ultrafiltration systems which retain the product inside
the bioreactor [18]. Another obstacle of this type of process is that the establishment of culture
conditions for a stable industrial production plant can take months. For this to occur, the strain
used must be very stable and have its physiological aspects clearly elucidated, such as growth
rate, productivity, and response to certain stress conditions. It is not uncommon to hear that
numerous attempts are made before the settlement of a stable production plant is achieved,
but, once settled, this production process can bring many advantages, since it can be operated
in smaller-volume bioreactors, and therefore have greater production flexibility.

The third type of process for producing monoclonal antibodies is by far the most utilized at
industrial scale, which is fed-batch process. In this process, the cell density reaches 8–12 × 106

cells/mL, and cell viability in the bioreactor is enhanced by controlled nutrient addition at
specified intervals [1]. The production process can take 12–20 days [1]. Usually, the same
medium used in the initial culture is also used for feeding, but in a more concentrated version.
The feeding solution composition can be designed to supply the cells based on their metabolic
state at different culture phases by analyzing and identifying the spent medium nutrients that
are being more consumed. Furthermore, the medium used in feeding can be modified to
promote cell growth or to stimulate molecule production, since different components may
modify the behavior of cells, changing the metabolism for different purposes. The feed solution
can also be designed to minimize the production of waste metabolites that cause cell stress
when in excess. However, their production is not completely avoidable as they eventually
reach harmful concentrations. It is relatively easy to scale up and operate this system. More
summarized data about the advantages and disadvantages of each process for mAb production
can be seen in Table 2.
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Production

platform 

Batch  Feed-batch  Perfusion culture 

Advantages • Simple to scale-up

• Control by production

lot 

• Simple to scale-up

• Control by production lot

• Production facility is simple

• Process is easy to perform

and to validate

• Higher volumetric production

• Cells are maintained in a relatively

optimal biochemical environment

• Culture reaches high cell density

• Higher volumetric production

Disadvantages • Difficult to define initial

concentration of nutrients

• Accumulation of

waste metabolites

• Degradation of more

sensitive products 

• Accumulation of waste

metabolites 

• Degradation of more sensitive

products

• Lack of homogeneity in the

continuous reactor vessel

• Challenges regarding long-term

operability and maintenance

• High cost and long times required

for process development

experiments

• Genetic instability of cells

Adapted from [1, 21] (colocar referencias).

Table 2. Comparison between different operation modes that can be used for mAbs production.

A lot of effort has been made to increase cell longevity in batch and feed-batch modes of
operation. It is expected that the longer the cells are maintained viable, the greater the
antibodies’ production will be. So, in order to maintain cell viability, some culture parameters
can be optimized, such as culture media, feed solution, and mAb secretion rates and by-
product production. To improve mAb titers in the batch platform, the start medium can be
supplemented with glucose and amino acids, increasing mAb production up to eightfold when
compared with regular media [9, 26]. Improvements for the fed-batch platform can be achieved
by adjustments in feed solution, as mentioned before. Feed solutions containing glucose and
aminoacids/glutamine have been reported to increase mAb titers from two to fourfold,
reaching production of up to 2 g/L, when compared with the batch production platform [19].

The optimization of the antibody secretion rate can be achieved by high-density cell cultivation.
On a fed-batch platform, a high cell cultivation culture can reach an mAb productivity rate of
0.94 g/L/day and a final titration of 17 g/L, while a continuous culture performed at high density
conditions can reach final titration and productivity rates of 0.8 and 1.6 g/L/day, respectively
[20]. Optimizing mAb secretion highly depends on the cell line chosen for production. Each
cell strain can be influenced by the manufacturing conditions and respond differently to
increasing or decreasing mAb production and secretion [19]. The accumulation of toxic by-
products is a great bottleneck in manufacturing processes since they can inhibit cell growth
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and then directly affect mAb production. Although a few strategies to minimize this by-
product accumulation have shown to be promising, some are not applicable for a large-scale
production. Optimizing medium composition and feed solutions with substrates that reduce
toxic compound production is the most common strategy used at industrial scales of produc-
tion [19].

Although most mAbs are produced by fed-batch process, there are tendencies indicating that
in the future many bioprocesses will be operated in continuous platforms, especially for the
production of biopharmaceuticals. On these platforms, the production system will be coupled
to upstream and downstream processes [21]. However, for this to actually happen, a great
improvement in technological development still needs to be achieved.

2.3. Production systems

The use of monoclonal antibodies as therapeutic drugs requires a large-scale production that
far exceeds that of laboratory production (Figure 2). Various production systems have been
developed and have evolved, while new alternatives are emerging. The production of mAbs
at commercial scale can be performed with adherent cells or suspension cells, although the
latter is by far the most used and is better established with more efficient production methods
available for cells cultivation. Thus, scale-up using suspension cells is easier. Another advant-
age of the suspension production system is that a bioreactor with a large area for cell adhesion
is not necessary since the cultivation of adherent cell productivity is directly linked to the
bioreactor’s area [22].

Figure 2. Work volumes used for industrial production of some commercial monoclonal antibodies [27, 28].

Some cultivation issues and worries have arisen regarding the production scale increase,
maintenance of product quality, contamination control, demand for oxygen supply, and
control over DO and CO2 removal, among others. Regarding suspension cell cultures, aeration
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is in part dependent on the agitation of the culture inside the bioreactor, which can lead to cell
shear stress. To work around cultivation problems, major advances have been made in the
process itself by developing better culture control and conditions, as well as the improvement
and development of new bioreactors [7, 23].

2.3.1. Production systems for cells in suspension cultures

The different types of bioreactors commonly used for mAb production in submerged mam-
malian cells are stainless steel stirred tank bioreactors (STR), air-lift reactors, and disposable
bioreactors. More details on each of these bioreactors are discussed below.

2.3.2. Stainless steel stirred tank bioreactors

Stainless steel stirred tank bioreactors are the most consolidated type of bioreactor used for
industrial mAb production and consist of baffle-stirred tanks linked to rotor systems
(Figure 3). It is a consolidated system, and there is a lot of knowledge and experience sur-
rounding this technology, acquired by its vast industrial use beyond production using
mammalian cells.

The cultivation in this bioreactor allows for wide flexibility of working volumes, ranging from
1.0 to 25.0 L [1], since this system is easily scalable to larger volumes due to its high control
over production conditions and extensive handling knowledge. The mechanisms and cleaning
and sterilization protocols are well defined. Additionally, cultivation parameters for this
system, such as gas transfer coefficient, agitation, aeration, temperature maintenance, pH, and

Figure 3. Schematic representation of a stainless steel stirred tank bioreactor. Showing the main components in a cell
cultivation.
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others are well controlled and regulated when compared to other production systems. Another
advantage of the STR is that it can be used for cultivation of various cell types and in addition,
the products obtained from the cultivation in this type of bioreactor are easily approved for
therapeutic use, as regulatory terms are well defined for this type of production [11].

However, the biggest disadvantage for the use of STR is the stress caused by shear. It can cause
cell lysis and lead to loss in mAb productivity.

2.3.3. Air-lift reactors

Air-lift reactors are also broadly used for the industrial production of mAbs. The reactor
consists of tanks with a bubble column inside, and air is injected into the column base
(Figure 4). The air flows through the column’s length to the top of the bioreactor as degassed
culture medium flows in the opposite direction to the reactor bottom. This creates a constant
gentle mixing of the medium as well as proper culture aeration, annulling part of the shear
stress caused by other stirring systems. Other advantages of this operation system are that it
is easier to scale-up, contamination problems are more unlikely to occur, and the equipment
is simpler. In spite of these advantages, this system is less utilized than STR reactors because

Figure 4. Schematic representation of an air-lift bioreactor. Showing the main components in a cultivation process.
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the working volume ranges only from 2.0 to 5.0 L [1] and the air-lift reactor handling is not so
well elucidated [11].

2.3.4. Disposable bioreactors

The first single-use bioreactors emerged in the late 1990s with the launch of a wave reactor
system. After that, disposable stirred tank bioreactors were developed [11].

This method brought many advantages for mAb manufacturing. At the end of the process, the
bioreactor is discarded and replaced by a new clean and sterile one. This eradicates cross
contamination between batches and decreases the time consumed with the equipment
preparation between batches. When all the advantages of this process are taken in account, the
savings made regarding production and investment capital are highly significant when
compared with other process methods. The great disadvantage of this production system is
the small work volume supported, ranging from 50 to 2000 L [1].

The wave system consists of a sterile plastic bag (CellBag™) lying on a rocking platform
(Figure 5). The bag is half filled with cultivation medium and half filled with a gas mix of
interest. The platform motion creates an undulation movement in the culture, ensuring
efficient aeration and culture mixing without causing shear damage [10, 11, 13]. The other
available systems combine the convenience of a disposable system with the well-known stirred
tank system and they are HyClone S.U.B®, Millipore® (CellReady™), or Xcellerex® (XDR™).

Figure 5. Schematic representation of a disposable wave bioreactor. Showing the main components in a cell cultivation
process.

The main features of SUBs are related to their technical characteristics similar to those of
stainless steel bioreactors, that is, aeration rate, agitation, reactor geometry, and ease of
monitoring internal conditions, a process similar to stainless steel bioreactors [9].

SUBs are being widely used to replace many processes for the production of bioproducts. SUBs
may be a cheaper and more efficient alternative from an industrial point of view, and its
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principle can easily replace any bioprocess to adapt the method to the platform of interest to
be replaced, such as large tanks and stainless steel or the motion rocking platforms [9, 24].

SUBs have been used in bioprocesses for monoclonal antibody production involving several
expression systems, including mammalian cells, microorganisms, plants, mammary glands,
etc. Animal cell culture technology is one of the oldest techniques for the production of mAbs.

There is also the production of bottles known as roller bottles, consisting of mammalian cells
growing in nutritional and physical conditions controlled in bottles which remain in rotational
movement.

2.3.5. Roller bottles

Roller bottles are a rotary motion system for growing cells and for the production of some
bioproducts. It has been an alternative to other monoclonal antibody production systems
(Figure 6). Roller bottles provide conditions that favor the transfer of oxygen and temperature
control without aeration, agitation propellers, or circulation pumps. The bottle is mounted on
a turntable which gives homogeneity of growth and aeration of the culture medium [11, 25, 28].

Figure 6. Schematic representation of roller bottles bioreactor and a rack with the rotational motion system in a cultiva-
tion for mAb production.

For the production of monoclonal antibodies at commercial scale, the roller bottle technique
can be adapted to racks containing tens of bottle in a production line. The advantages of this
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technique is the high growth potential linked to ease of handling and monitoring of certain
conditions such as temperature and rotation. However, the scale of view requires a large
physical footprint, which can make the process less economical [11, 25].

3. Conclusions and perspectives

Actually, the trade of monoclonal antibodies makes up half of marketed biopharmaceuticals,
reaching $ 75 billion. For some years, new development methodologies of antibodies have
advanced with new production processes, allowing scale-up production and market intro-
duction, and demands for high-quality biologics will continue to increase in the coming
decades. Generally, processes are similar to those applied in the scheduling for other bioprod-
ucts/biosimilars that rely on culturing microorganisms or cells, requiring the development of
a well-designed culturing process comprising the full range of control and associated opera-
tions that will support technical evaluations.

In combination with increasing pressure from regulatory agencies for enhanced quality and
lower process costs from the health care systems, we are facing an important challenge. It will
be necessary to make changes in plant design aiming for highly flexible multi-purpose facilities
for small production volumes.
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