Estimation of carbon fluxes from course woody debris (CWD) in Pinus Koraiensis stands in the Russian Far East

Ivanov A.V.¹, Braun M.^{2*}, Zamolodchikov D.G.³, Loshakov S.Y.¹, Kosinov D.E.¹

¹Primorskaya State Academy of Agriculture, Ussuriisk, Russian Federation

²University of Natural Resources and Life Sciences, Vienna, Austria, *martin.braun@boku.ac.at

³Center for Forest Ecology and Productivity of the Russian Academy of Sciences (CEPF RAS), Moscow,

Russian Federation

Effects of the typhoon Lionrock in the south of the Russian Far East

Sikhote-Alin Nature Reserve: The total windthrow area was 40,000 ha (out of 400,000 ha), i.e. 10%

2. Determination of **CWD** stocks on sample sites by species and decomposition stage

3. Determination of

Estimation of total carbon emissions from CWD per ha

Analysis of deadwood and carbon stocks as well as the surface area of CWD according to species, decomposition stage, fragment size

Повернхость валежа (м2/га)	504.036153506535	
Число	20	
пересечении	10- 10-	Финиш
	Число пересечений	Число пересечений

CWD density by species and decomposition stage

Continuous air temperature logging (3 years)

4

2

0

NՉ	species composition	stock, m3/ha	SA,m2/ra		Age	Stock CWD, m3/ha			
	Secondo	ry forest							
1	4К2ЛП1П1КЛ1БЖ+Г+Ил+Бх+Яс+Тр+ЧМА	273	26.8	0.8	110	15			
2	6П2Д1К1ЛП+Бж,Г,Кл,Кол,Я,Бх,Тр	506	42.4	0.96	83	34			
3	6П2К1Бж1КЛ+Лп+Г+Я+ББ	466	37.1	0.84	102	26			
4	4Д3Лп2П1Яс+Кл+П+Бч+Мпл+Бб+Ил+Ябл+ Маак	333	33.7	0.86	118	59			
5	3Лп2Д2Яс1К1П1Бб+Кл+Ил+Бч+Ма+Мпл+Б ж+Кпн+Кл.М+Ор	324	34.0	0.9	102	14			
6	ЗЛп2Кл2Д1П1Кол1Гр+К+Бр+Маа+КлЛ+Бп +Яс+Ил+Бж+Мпл	207	23.1	0.6	105	17			
7	3П2К2ЛП1Бж1Кл1Г+Я+Ил+Тр+Чр+Мел+Ор	283	29.1	0.8	110	10			
8	ЗП2К2Бж1Лп1Кл1Г+Ор,Д,Ил,Кол,Ма,Я,Бх, Тр	312	32.0	0.85	80	13			
9	ЗК2П2Ил2Кл1Гр+Лп+Тр+Бж+Маак+Ор	105	10.3	0.34	94				
í	Resort forest								
1	9К1Лип+П,Е,Кл,Бб,Яс,Ос	680	56	1.06		119			
2	8К1Лип1Кл+П,Е,Бб	460	42.5	0.77		104			
3	6К1Бж1Кл1Лп1Т+П,Е,Ия,Бх,Ор,Че	434	41.2	0.75		49			
4	5К1Е1Кл1Лип1Я1Ил+П,Д,Маа,Бх	282	28.3	0.64		43			
5	ЗЕ2К12ЛпП1Кл1Яс1Бх+Бб,Д	245	26.1	0.61		88			

NՉ	Carbon CWD (t C/ha)	Stock SWD m³/ha	Surface area CWD (m²/ha)	Flux C in atmosphert, t/(ha*year)
1	9.1	118.8	1313.7	0.59
2	11.8	104.1	1031.9	0.34
3	3.8	49.8	649.6	0.30
4	14.5	43.4	649.1	0.28
5	8.5	88.0	952.6	0.50
1	2.9	25.6	591.5	0.24
2	6.9	34.3	462.7	0.21
3	7.5	13.1	367.0	0.23
4	14.5	10.3	244.0	0.13
5	10.3	15.2	128.5	0.06
6	4.9	59.2	771.3	0.41
8	1.6	14.8	414.0	0.21
9	11.7	17.6	446.8	0.29

