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Abstract

In this chapter, it is demonstrated that when using advanced evolutionary algorithms,
whatever the adopted system model (SOSPD, nonminimum phase, oscillatory or
nonlinear), it is possible to find optimal parameters for PID controllers satisfying simulta-
neously the behavior of the system and a performance index such as absolute integral
error (IAE). The Multidynamics Algorithm for Global Optimization (MAGO) is used to
solve the control problem with PID controllers. MAGO is an evolutionary algorithm
without parameters, with statistical operators, and for the optimization, it does not need
the derivatives, what makes it very effective for complex engineering problems. A selec-
tion of some representative benchmark systems is carried out, and the respectively two-
degree-of-freedom (2DoF) PID controllers are tuned. A power electronic converter is
adopted as a case study and based on its nonlinear dynamical model, a PI controller is
tuned. In all cases, the control problem is formulated as a constrained optimization
problem and solved using MAGO. The results found are outstanding.

Keywords: evolutionary algorithms, PID controller, nonlinear model, MAGO, 2DoF
PID-based controllers, SOSPD model, control benchmark, power electronic converters

1. Introduction

It is well known that most of 90% of the closed-loop implemented strategies are PI or PID

controllers [1]. Since its introduction in 1940, researchers’ interest has been focused on the

development on simplistic but effective tuning rules for PID controllers [2]. For any industrial

plant without resonant characteristics, a SOSPD model can represent the dominant dynamics
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and that a suitable PID tuning can be achieved [3]. Moreover, Åström and Hägglund proposed
a collection of systems models with various difficulties of control that are suitable for testing
PID controllers. Those models illustrate systems with various difficulties of control. Neverthe-
less, SOSPD representation is limited, and a wide range of process dynamics can be found, for
example, process with a non-minimum phase behavior or oscillations. Therefore, PID control
traditional tuning is not well suited for most of the complex problems. The trend remains in
the so-called two degree-of-freedom (2DoF) PID controllers [4]. The 2DoF PID control struc-
ture has two components: one to tune the controller considering the regulatory closed-loop
mode performance and robustness and the second one to improve the servo-control behavior.
2DoF PID tuning could be also based on a system transfer function. A 2DoF PID control
structure is the option to achieve simultaneously a good system performance as both regulator
and servomechanism modes what is a challenge of control requirements for a traditional PID
controller.

Evolutionary algorithms (EA) have been proved to be an effective tool to optimal PID control-
lers tuning [5]. In general, EA is considered as an optimal algorithm that is able to deal with ill-
defined problem domain such as multimodality, discontinuity, time variance, randomness and
noise [6]. MAGO as EA does not work with genetic operators. MAGO operators are inspired in
numerical derivation applying the Nelder-Mead method, the estimation distribution of the
actual population and a statistical quality control technique. Additionally, MAGO has only
two tunable parameters: the population size and the number of generations. These two param-
eters could be removed, but they remain because in real situations they help to understand the
context of the problem. Particularly, MAGO has been successfully tested for the tuning of PID
controllers based on SOSPD models [7]. MAGO has been used in various fields of engineering
[8], LQR tuning [9–11], drivers in tuning PID controllers [12, 13], showing successful solutions
in each case applied.

Despite a lot of works in PID controllers tuning, a general concern remains because real
processes have multiple operational constraints, and some exhibit high nonlinear dynamics
that cannot successfully be captured by transfer functions. This chapter shows that advanced
evolutionary algorithms are suitable to solve the control problem with PID controllers when
the control system is formulated as an optimization problem. The evolutionary algorithm
MAGO is used to solve the control problem with traditional PI and with 2DoF PID controllers.
MAGO is an evolutionary algorithm without parameters; it is based on statistical operators
and does not need the derivatives of the nonlinear optimization problems. Furthermore, this
chapter demonstrates that whatever system model is adopted (SOSPD, non-minimum phase,
oscillatory or nonlinear), it is possible to find optimal parameters for PID controllers satisfying
the system behavior and a performance index such as absolute integral error (IAE). This
chapter is divided into four sections as follows: in Section 2, the general problem statement of
PID controllers tuning is introduced and formulated as an optimization problem. In Section 3,
the (EA) MAGO is presented and the evolutionary design procedure of a PID controller is
established. In Section 4, a selection of some representative benchmark systems from [5] is
carried out, and the respectively 2DoF PID controllers are tuned. In Section 5, a power elec-
tronic converter (DC-DC buck converter) is adopted as a case study, and based on its nonlinear
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dynamical model, a PI controller is tuned by MAGO. PI-MAGO controller performance is

tested, and a comparison is carried out against a PID controller tuned by the pole placement

method. In all cases, the control problem is formulated as a constrained optimization problem

and solved using MAGO.

2. Problem statement

2.1. Control system representation

Consider a single-input single-output (SISO) control system depicted in Figure 1. In this

system, r tð Þ is the set-point, u tð Þ is the controller output signal, d tð Þ is the load-disturbance,

and y tð Þ is the controller process variable.

The system output y tð Þ simultaneously depends on r tð Þ and d tð Þ. Two operation modes should

be taken into account for the controller design, one as a servomechanism and the other as a

regulator. In the first case, the control objective is to track the set-point r tð Þ. In the second case,

the control objective is to reject a change in d tð Þwhile y tð Þ is keeping as close as possible to r tð Þ.

However, it is not always possible to specify distinctly performance criteria for both operation

modes. Furthermore, a trade-off between servo-regulator modes must be specified as in the

traditional PID controller tuning case.

The general form to represent a dynamical system is given by Eqs. (1) and (2), where x is the

system state and _x is the time derivative of the system state; y tð Þ is the system output and

functions g and h are nonlinear and represent the dynamical system evolution.

_x tð Þ ¼ g x; u; dð Þ (1)

y tð Þ ¼ h x; u; dð Þ (2)

Through Taylor linearization, it is possible to obtain a linear representation of Eqs. (1) and (2)

given by Eqs. (3) and (4). Where A∈R
nxn is the system Jacobian, B∈R

nxm is an input matrix,

C∈R
kxn is an output matrix and D∈R

kxm is a direct transmission matrix.

Figure 1. Single-input single-output (SISO) feedback control system.
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_x ¼ Axþ Bu (3)

y ¼ CxþDu (4)

Eqs. (3) and (4) are usually employed in control theory for designing multi-input multi-output

(MIMO) control structures. However, transfer functions are a better approximation for design-

ing SISO control structures. The realization given by Eq. (5) is obtained by applying the

Laplace transform to Eqs. (3) and (4).

G sð Þ ¼ C
adj sI � Að ÞT

det sI � Að Þ

" #

BþD (5)

On the other hand, the control policy of an ideal PID controller is expressed by Eq. (6).

Where, e tð Þ ¼ r tð Þ � y tð Þ, Kp is the proportional gain, Ti is the integral time constant and Td is

the derivative time constant.

u tð Þ ¼ Kp e tð Þ þ
1

Ti

ðt

0

e τð Þdτþ Td
de tð Þ

dt

� �

(6)

PID frequency domain representation is given by Eq. (7).

C sð Þ ¼ Kp 1þ
1

Tis
þ Tds

� �

(7)

The closed-loop transfer function form for the system represented in Figure 1 considering a

PID controller is given by Eq. (8).

Y sð Þ ¼
C sð ÞG sð Þ

1þ C sð ÞG sð Þ
R sð Þ þ

G sð Þ

1þ C sð ÞG sð Þ
D sð Þ (8)

If the system operates in the servomechanism mode, that is when disturbances are not consid-

ered, the output signal can be represented as in Eq. (9).

Ysp sð Þ ¼
C sð ÞG sð Þ

1þ C sð ÞG sð Þ
R sð Þ (9)

If the system operates in the regulation mode, that is when the signal reference is not consid-

ered, the output signal can be represented as in Eq. (10).

Yld sð Þ ¼
G sð Þ

1þ C sð ÞG sð Þ
D sð Þ (10)

From Eqs. (9) and (10), both control objectives cannot be optimally achieved because the

controller parameters simultaneously affect the servo and regulatory operation modes. At

most, a tuning PID controller process can be carried out by establishing a servo-regulatory

trade-off to obtain a closed-loop performance that is not optimum for neither servo nor

regulatory operation modes, but it has an acceptable performance in both cases.
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Controllers of the form given by either Eqs. (6) or (7) are known as one degree of freedom

(1DoF) PID controllers. Two degree of freedom (2DoF) PID controllers are an alternative to

overcome the 1DoF PID controller operation limitations. The control policy for a 2DoF PID

controller is given by Eqs. (11) or (12). Considering the proportional, integral and derivative

error, respectively in Eqs. (13), (14) and (15), where Kp is the proportional gain, Ti is the integral

time constant and Td is the derivative time constant, β and γ are the set-point weights. In

Figure 2, the 2DoF PID controller block diagram is depicted.

u tð Þ ¼ Kp ep tð Þ þ
1

Ti

ðt

0

ei εð Þdεþ Td
ded
dt

� �

(11)

C2DoF sð Þ ¼ Kp ep sð Þ þ
1

Tis
ei sð Þ þ Tded sð Þ

� �

(12)

with

ep sð Þ ¼ βR sð Þ � Y sð Þ (13)

ei sð Þ ¼ R sð Þ � Y sð Þ (14)

ed sð Þ ¼ γR sð Þ � Y sð Þ (15)

The parameter γ is more frequently applied as a derivative mode switch (0 or 1) for R sð Þ. γ is

normally set to zero to avoid an extreme instantaneous change in the controller output when a

set-point step change occurs. In consequence, Eq. (12) can be arranged as in Eq. (16).

C2DoF sð Þ ¼ Kp βþ
1

Tis

� �

R Sð Þ � Kp 1þ
1

Tis
þ Tds

� �

Y sð Þ (16)

A compact form of Eq. (16) consistent with Figure 2 is given by Eq. (17). Where Cr sð Þ, is the set-

point controller transfer function and Cy sð Þ is the feedback controller transfer function.

C2DoF sð Þ ¼ Cr sð ÞR sð Þ � Cy sð ÞY sð Þ (17)

The closed-loop transfer function form for the system represented in Figure 2 considering a

2DoF PID controller is given by Eq. (18). Where Myr sð Þ is the transfer function from the set

Figure 2. 2DoF closed-loop block diagram.
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point to the controlled output (servo-control closed-loop), and Myd sð Þ is the transfer function

from load-disturbance to the controller output (regulatory control closed-loop).

Y sð Þ ¼ Myr sð ÞR sð Þ þMydD sð Þ (18)

With

Myr sð Þ ¼
Cr sð ÞG sð Þ

1þ Cy sð ÞG sð Þ
(19)

Myd ¼
G sð Þ

1þ Cy sð ÞG sð Þ
(20)

From Eqs. (19) and (20), both control objectives can be achieved separately because of the

possibility of tuning two different controllers, one for each operation mode.

2.2. Optimum control problem formulation

The usual criterion for tuning a controller is directly related to the desired closed-loop

system response. Integral performance indexes allow quantifying the closed-loop system

performance due to a unit step load disturbance. Most common employed indexes are

integral of absolute error (IAE) (see Eq. (21)) and integral of absolute control action u tð Þ

(IAU) (see Eq. (22)).

IAE ¼

ð

∞

0

e tð Þj jdt (21)

IAU ¼

ð

∞

0

eu tð Þj jdt (22)

For the PID case, e tð Þ and eu tð Þ, Eqs. (21) and (22), respectively, can be calculated as

e tð Þ ¼ r tð Þ � y t;θð Þ and eu tð Þ ¼ u0 � u t;θð Þ, where u0 is the initial condition θ ¼ Kp Ti Td

� �

.

The load disturbance may enter at many different places, and extreme cases occur when it

enters at the process input or output. However, when a feedback error appears, integral

performance indexes evaluate the controller performance indistinctly, whereas load distur-

bance appears [14]. The abovementioned fact is the main motivation to adopt integral perfor-

mance indexes.

The integrated error for a unit step disturbance at the process input is the inverse of the

controller integral gain, IE ¼ 1=ki. For a unit step output disturbance, it is instead, IE ¼ 1=Kki,

where K is the static gain of the process. When the closed-loop system is well-damped, IE ≈ IAE

are approximately the same [1]. The criteria IE and IAE are widely employed to measure

controllers performance. IAE and IAU performance indexes are initially adopted in this work

because of its interpretability from the PID controller parameters, but other criteria could also

been used.
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The controller tuning process that minimizes an integral performance index can be seen as an

optimization problem where the ultimate goal is to find a controller parameters combination

such that the value of an Integral Performance Index is minimized.

For the 1DoF PID controller, the optimal tuning problem consists of minimizing the objective

function given by Eq. (23), where the minimum is the result of obtaining a suitable combina-

tion of the 1DoF PID parameters θ ¼ Kp Ti Td

� �

.

Minθ JIAE ¼
X

tk f

tk

e tkð Þj j

( )

(23)

Subject to a process model (see Eqs. (1)–(5)), a control action (see Eq. 6) and

Kpmin
≤Kp ≤Kpmax

Timin
≤Ti ≤Timax

Tdmin
≤Td ≤Tdmax

Similarly, for the 2DoF PID controller, the optimal problem consists of minimizing the objec-

tive function given by Eq. (24), where the minimum is the result of obtaining a suitable

combination of the 2DoF PID parameters θ ¼ Kp Ti Td β
� �

.

Minθ JIAEþIAU ¼
X

tk f

tk

e tkð Þj j þ
X

tk f

tk

eu tkð Þj j

( )

(24)

Subject to a process model (see Eqs. (1)–(5)), a control action (see Eq. 11) and

Kpmin
≤Kp ≤Kpmax

Timin
≤Ti ≤Timax

Tdmin
≤Td ≤Tdmax

βmin ≤ β ≤ βmax

3. Tuning of PID controllers using an evolutionary algorithm

From the observation of living beings, we can see that these reproduce, adapt, and evolve in

relation to the environment where they develop. Some of the characteristics acquired during

life may be inheritable by the next generation. The synthetic theory of evolution has been able

to explain these processes and biological variations in detail [15]. This theory bases on genes as

units of inheritance transfer, that is, functional units of basic information for the development

of an organism. The genetic material of an individual is in its genotype. The genotype consists

of an organization of hierarchical structures of genes. The complex information contained in
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the genotype is expressed in the phenotype, that is, the visible characteristics and functionality

of individuals. In the evolutionary process, the occurrence of small variations in the phenotypes,

apparently random and without a clear purpose, is recognized. Such variations which are

usually calledmutations prove their efficacy in the light of the environment and prevail through

the selection of the individual, or otherwise they disappear. The natural needing to produce

offspring motivates the selection of individuals. Because of a severe competition for reproduc-

tion, which only the fittest individuals achieve, it is assumed that the offspring overcome their

parents by inheriting their mixed characteristics. When resources in the environment become

insufficient, only the fittest individuals will have a better chance of survival and reproduce. The

selective pressure on individuals of a species makes them continually improve with respect to

its environment. Evolutionary algorithms (EA) emulate the synthetic theory of evolution.

As natural evolution, an EA begins with an initial set of potential solutions to a specific

problem. This set can be composed at random in a delimited searching space or using infor-

mation of the problem. EA include operators that select and create new individuals. Crossover

operator exchange of genetic material among “parents” to generate new “sons,” and the

mutation operator makes small variations. The new set of possible solutions is evaluated using

a “fitness” function. When evaluating, the fittest are favored, leaving them as new “parents.”

The process is cyclically repeated to find the best solution to the problem in a delimited

searching space.

EA encompass different approaches that transfer the behavior of adaptation and evolution of

species, giving rise to several methods. Among the most popular approaches are genetic

algorithms, genetic programming, evolutionary strategies, and evolutionary programming.

Nowadays, EA are not only based in the biological evolution, rather EA are identified as

algorithms that search iteratively for a solution through a population in evolution. Some of

the main reasons for new optimization heuristics are the need to identify the interrelationships

between the variables used to represent individuals according to the coding applied and the

need to reduce the own parameters of the classical EA. New EA use operators different to the

genetic ones. Some of those algorithms are differential evolution, estimation of distribution

algorithms, and the multidynamics algorithm for global optimization.

Differential evolution at first glance is not based on any natural process. The proportional

difference of two randomly chosen individuals from the population is added to a third indi-

vidual, also randomly chosen. From this differential mutation, a fourth individual appears.

This individual is compared against its parent, the third one. The best of them is selected to the

next generation. The process is repeated until a stop criterion [16].

Estimation of distribution algorithms also bases their search on populations that evolve. The

new population is recreated in each generation from the probability distribution obtained from

the best individuals of the previous generation. The interrelationships between the variables

are expressed explicitly through that distribution. There are no crossing or mutation operators.

The process is repeated until a stop criterion [17].

In MAGO, a differential crossover is applied between the target individual and its mutant coming

from a numerical derivation. A tournament chooses the best of them. The interrelationships
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among the variables are explicit through a distribution of the population in each generation. The

new population is sampled from a set composed of the best individuals until now, the historical

trend and other individuals completely new. Next, this algorithm is explained in detail.

3.1. Multidynamics algorithm for global optimization

EA emulates the mechanisms of natural selection and genetic inheritance inspiring from the

Neo-Darwinian theory of biological evolution. EA have evolved themselves to treat with

artificial evolution processes. MAGO is a good example of this evolution. MAGO does not

work with genetic operators [18]. MAGO starts with a random initial population on a search

space bounded by the problem. To guarantee diversity and increase the exploitation of the

search space, MAGO creates new individuals by means of three different subgroups of

the population simultaneously. Each group has its own dynamics: a normal distribution over

the searching space, a conservation mechanism of the best individual, and a strategy for

maintaining diversity [19]. Because introducing statistics operators, MAGO provides a strong

way to demonstrate the evolution. The mutation based on numerical derivation, generalizes

the searching space where MAGO can acts. MAGO takes advantage of the concept of control

limits [20] to produce individuals on each generation simultaneously from the three different

subgroups. The size of the population is fixed, but the cardinality of each subgroup changes in

each generation according to the first, second and third deviation of the actual population,

respectively. The exploration is performed creating new individuals from these three subpop-

ulations, individuals that are governed by any of their dynamics, the exploration is performed.

For the exploitation, MAGO, looking for the goal, uses a greedy criterion in the first subset.

MAGO is evolutionary in the sense that works with a population of possible solutions ran-

domly distributed throughout the searching space approaching iteratively to the final solution.

MAGO is autonomous in the sense that it regulates its own behavior and does not need human

intervention. Unlike other EA, MAGO has only two parameters: the population size and the

number of generations. These two parameters could be removed, but they remain because in

real situations they help to understand the context of the problem.

In each generation, MAGO divides the population into three subgroups. To know how many

individuals will belong to each subgroup, the actual entire population is observed as having a

normal distribution. The average location, the first, second and third dispersion of the whole

population are calculated to form the three groups. To each subgroup is assigned many

individuals as the cardinality of each different level of standard deviation. Each group has its

own evolution. The cardinality of these subgroups changes autonomously in each generation.

The subgroup named Emerging Dynamics (G1) creates a subpopulation of individuals around

the individual with better characteristics; this group is the evolutionary elite of each genera-

tion, that is, the fittest individuals contributing with their genes to the next generation. The

Crowd Dynamics (G2) creates a group of individuals but around the current population mean,

configuring the historical trend. This dynamic is applied to the largest portion of the popula-

tion, and it is always close to the emerging dynamics, but never close enough to be con-

founded. These two dynamics could be merged within a same territory only until there are
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sufficient and necessary conditions to ensure a full exploration of the searching space, usually

at the end of the evolutionary process. The Accidental Dynamics (G3) is a small group created

by quantum speciation. It is established in isolation from individuals of the other two dynam-

ics generation after generation. This portion of the population is always formed spontaneously

and contains entirely new individuals. MAGO uses the covariance matrix of the population of

each generation to establish a distribution of exploration. With the Accidental Dynamics, the

main diagonal of the covariance matrix is different from zero, ensuring numerical stability of

the evolutionary process. Because in each generation, the population is treated for its division

by a normal distribution for its division according to the first, second, and third deviation, the

subgroups G1, G2, and G3 not interbreed.

Emerging Dynamics: This subset is created with the N1 fittest individuals in each genera-

tion. The N1 fittest individuals within the first standard deviation of the average location of

the current population of individuals move in a line toward the best one of the entire

population, in a kind of mutation that incorporate information from the best of all. The

mutation and selection of individuals who have obtained the best values in their objective

function is based on the simplex search method of numerical derivation [21]. MAGO uses

only two individuals for this mutation, the best one and the trial one. If this movement

generates a better individual, this one passes to the next generation; otherwise, its predeces-

sor passes on with no changes. This method does not require gradient information for the

derivation.

The fittest individuals are ordered from the best one. Test individuals are created bringing

them closer to the best one, following the rule in Eq. (25):

x
jð Þ
T ¼ x

jð Þ
i þ F jð Þ � x

jð Þ
B � x

jð Þ
i

� 	

(25)

where x
jð Þ
B is the best individual of generation j and x

jð Þ
i is the selected fittest individual. F jð Þ is a

matrix that includes information about the covariance of the problem variables, Eq. (26),

including information about the interrelationships of the variables in the actual generation.

The covariance matrix of the current population considers the effect of the evolution, and

Eq. (25) propagates it on new individuals.

F jð Þ ¼
S jð Þ

S jð Þ


















(26)

where S jð Þ is the sample covariance matrix of the individual population in generation j.

Crowd Dynamics: The number of individuals of this subgroup corresponds to the cardinality of

the second deviation of the normal distribution of the actual population. This subgroup has the

role of exploring the searching space in a neighborhood close to the population mean. If the

population mean and dispersion matrix for generation j are x
jð Þ
M and S jð Þ, then the Crowd

Dynamics individuals are created from a uniform distribution on the hyper-rectangle-

LB jð Þ
;UB jð Þ

h i

, see Eqs. (27) and (28). The diagonal of the population dispersion matrix of the

generation j, described by Eq. (29).
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LB jð Þ ¼ x
jð Þ
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diag S jð Þ
� 	

r

(27)

UB jð Þ ¼ x
jð Þ
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diag S jð Þ
� 	

r

(28)

diag S jð Þ
� 	

¼ S
jð Þ
11 S

jð Þ
22 … S jð Þ

m

h iT
(29)

Initially, the neighborhood around the mean may be large, but as evolution proceeds, this

neighborhood is reduced, and the population mean is getting closer to the optimal but follow-

ing on another path.

Accidental Dynamics: This group is a smaller one in relation to its impacts on the population. N3

new individuals are created from a uniform distribution over the whole search space, as in the

initial population. The two dynamics mentioned above concentrate the population around

their local optima. To maintain diversity, MAGO introduces new individuals in each genera-

tion with the accidental dynamic, sampling a uniform distribution throughout the search

space. This dynamic also ensures the numerical stability of the covariance dispersion matrix.

The accidental dynamics always guarantees the diversity and dispersion of the population,

even if the other two groups already have converged. Following, the pseudo code of MAGO is

presented.

MAGO Pseudo Code.

1: j ¼ 0. Initial Generation.

2: Random initial population generation uniformly distributed over the searching space.

3: repeat

4: Evaluate each individual with the objective function.

5: Calculate the population covariance matrix and the first, second and third dispersion.

6: Calculate the cardinalities N1, N2 and N3 of the groups G1, G2 and G3.

7: Select N1 fittest individuals, modify them according to Eq. (25), translate the winners toward the best one and make

them compete. Pass the fittest to the next generation jþ 1.

8: Sample N2 individuals from a uniform distribution in hyper rectangle LB jð Þ
;UB jð Þ

h i

and pass them to generation

jþ 1.

9: Sample N3 individuals from a uniform distribution over the whole search space and pass them to generation jþ 1.

10: j ¼ jþ 1

11: until an ending criterion is satisfied

Cardinalities. For control tables, if the process is outside the control limits, then it is

assumed that the process is out of order. The next step in MAGO is a type of variance

decomposition, inspired by the well-known variance analysis (ANOVA). Consider the

population dispersion matrix of generation j, S jð Þ and its diagonal diag S jð Þ
� 	

. If Pob jð Þ is

the set of possible solutions in generation j, then three groups can be defined as in Eqs

(30), (31), and (32). If N1, N2, and N3 are the cardinalities of the sets G1, G2, and G3, then

the cardinality of the Emerging Dynamics, Crowd Dynamics and Accidental Dynamics are

set, respectively.
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G1 ¼ x∈Pob jð Þ=x
jð Þ
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diag S jð Þ
� 	

r

≤ x ≥ x
jð Þ
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diag S jð Þ
� 	

r
� �

(30)

G2 ¼ x∈Pob jð Þ=x
jð Þ
M � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diag S jð Þ
� 	

r

≤ x ≥ x
jð Þ
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diag S jð Þ
� 	

r
� �

(31)

G3 ¼ x∈Pob jð Þ=x ≤ x
jð Þ
M � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diag S jð Þ
� 	

r

; x ≥ x
jð Þ
M þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diag S jð Þ
� 	

r
� �

(32)

where, XM jð Þ is the mean of the actual population and Pob jð Þ ¼ G1⋃G2⋃G3.

This way of defining the elements of each group is dynamical in nature and autonomous in

MAGO. Cardinalities depend on the dispersion of the whole population in generation j.

3.2. Design of PI/PID controllers via an evolutionary algorithm

A feedback controller is a device that automatically manipulates a predetermined variable to

ensure the balance of the system around an operating point. It compares the actual value of the

controlled variable to its desired value (feedback) obtaining an error signal to calculate the

control action so that it maintains or returns the system to the point of operation [9].

The output, u tð Þ, (control action) is a composite of three effects, Kp, the proportional action, Ti,

the integral time and, Td, the derivative time, which are calculated based on the error. An

optimal PID controller consists of adjusting its parameters Kp, Ti, and Td so that a performance

criterion (error between the actual output of the plant regarding the desired value and/or effort

control) is minimized. MAGO is a real-valued evolutionary algorithm, very efficient and

effective instrument to solve problems in continuous domain. It has been chosen as a tool for

estimating the parameters of a controller that minimizes an integral performance index. The

representation of the evolutionary individual is a vector containing the controller parameters,

as positive values in a continuous domain. See Table 1.

The fitness function for the optimization problem of a 1DoF PID controller is defined in

Eq. (33). The error is calculated for each point of time, tk, throughout the measurement horizon

as the difference between the system output and the reference signal.

J θð Þ ¼ J Kp;Ti;Td

� 

¼ Minθ JIAE ¼
X

tk f

tk

e tkð Þj j

( )

(33)

A complete analysis of the methods of tuning controllers based on SOSPD was made in [23,

24]. Each tuning rule for PID controllers has restrictions on the behavior of the plant, expressed

Kp ∈R Ti ∈R Td ∈R β∈R

Table 1. Structure of the evolutionary individual.
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in the range of validity, and has only been applied to a certain group of processes. In general,

those rules are based on several relationships and/or conditions of the parameters defining the

process model. Most methods for optimal tuning of SOSPD systems require, from experiments

carried out directly on the plant, additional critical system information. Readers are referred to

[25] for a good compilation of the PID tuning rules and [26] for a complete analysis of the

different tuning rules characteristics and features. It is not always possible to perform experi-

ments such as reaction curves and closed-loop tests because the extreme stress and oscillations

may create instability and damage to the system. This scenario shows that a general rule for

tuning PID controllers must be sought. A tuning method that best satisfies the operation

requirements of each problem and ensures optimal values for the controller parameters

according to the 2DoF PID chosen criterion. This situation could be reduced to an optimization

problem consisting of minimizing an objective function. A suitable combination of the three

parameters required by the PID controller will be the result of minimizing a performance

criterion. This is the approach taken in this chapter.

MAGO has shown a great capacity to optimize nonlinear dynamical problems in the continu-

ous domain. Because that, it has been selected for tuning several optimal 2DoF PID controllers.

Next section is concerned to optimal 2DoF PID controllers satisfying an integral performance

index and not requiring additional system information coming from experiments on the plant.

Figure 3. Flowchart of the MAGO algorithm for PI/PID controllers tuning.
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With MAGO, the optimization of 2DoF PID controllers is made in only one stage and

simultaneously for the regulator and servomechanism modes. The flowchart for tuning of

PID controller using MAGO is shown in Figure 3. In this chapter, it is not included a

convergence analysis of the MAGO; however, its convergence has been previously demon-

strated in [18, 19].

4. 2DoF PID controllers tuning on benchmark plants

A 2DoF PID controller attempts simultaneously achieve good closed-loop servo-regulatory

dynamical responses. Most of the recent literature working on 2DoF PID controllers had been

based on both First Order Systems plus Time Delay (FOSPD) and Second Order plus Time

Delay (SOSPD) models with satisfactory results [27–30].

In [22], a set of system models as a benchmark suitable for testing PID controllers was

proposed. FOSPD and SOSPD were included in the benchmark. This set of system models

presents different challenges of control because PID controllers are not well suited for all

of them. From the best of our knowledge, none of the PID controller tuning rules applies

to obtain suitable values for its parameters for all the systems in that benchmark.

In this chapter, nine different system models are taken from the benchmark and 2DoF PID

controllers are designed, one for each system model. The 2DoF PID controller parameters

obtained here are compared with parameters reported in [22] for the same system models.

The 2DoF PID controller-tuning problem is formulated as a constrained optimization

problem based on IAE and IAU performance indexes. Then, MAGO is employed to solve

the optimization problem. Consider the system models given by Eqs. (34)–(42).

Multiple equals poles:

G1 sð Þ ¼
1

sþ 1ð Þ8
(34)

Fourth-order system:

G2 ¼
1

sþ 1ð Þ 0:5sþ 1ð Þ 0:25sþ 1ð Þ 0:125sþ 1ð Þ
(35)

Right half plane zero (non-minimum phase):

G3 ¼
1� 5s

sþ 1ð Þ3
(36)

Time delay and lag: (FOSPD):

G4 ¼
1

0:1sþ 1
e
�s (37)
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Time delay and double lag (SOSPD):

G5 ¼
1

0:1sþ 1ð Þ2
e�s (38)

Fast and slow modes:

G6 ¼
100

sþ 10ð Þ2
1

sþ 1
þ

0:5

sþ 0:05

� �

(39)

Conditionally stable system:

G7 ¼
sþ 6ð Þ2

s sþ 1ð Þ2 sþ 36ð Þ
(40)

Oscillatory system:

G8 ¼
25

sþ 1ð Þ s2 þ sþ 25ð Þ
(41)

Unstable pole:

G9 ¼
1

s2 � 1
(42)

In [22], the control problem was solved as an optimization process where the objective function

was a combination of the IAE and IAU performance indexes. The main features of the proce-

dure used in to solve the control problem were: (1) not only IAE but also IAU are included in

the objective function establishing a kind of trade-off between the system performance and

robustness due to the restriction imposed in the controller action effort through the IAU index.

(2) Four 2DoF PID controller parameters were simultaneously optimized to take the full

advantage of the control structure qualities. Traditionally, the tuning process for a 2DoF PID

controller is carried out in two stages as follows: firstly, values of Kp, Ti, and Td are found such

that closed-loop system achieves some dynamical behavior. Secondly, the value of β is settled

such that the closed-loop dynamical response of the system is improved when the system

operates as servomechanism. These two stages tuning process imply that the closed-loop

system responses are not optimal for any of the system operation modes. (3) The optimization

process simultaneously considers both system operation modes, that is, optimum 2DoF PID

controller parameters were found such that the closed-loop system response is optimal for

both servo and regulatory modes. MATLAB functions fminsearh and fmincon were

employed to solve the optimization problem. Fminsearch function was used to find a set of

initial conditions for the controller parameters. Next, fmincon function was used trying to

find the overall optimal controller parameters. The authors highlight that with this optimiza-

tion strategy exists the possibility that the problem solution is not the global optimum of the

objective function although the closed-loop systems performance was satisfactory in all cases.
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In this chapter, a similar procedure for solving the optimization is adopted to facilitate the

comparison of results. However, MAGO is adopted as optimizer instead of using native

MATLAB functions fminsearh and fmincon. The objective function to be optimized is

given by Eq. (43), where r and s refer to regulation-servo operation modes.

Minθ

X

tk f

tk

e tkð Þj j þ
X

tk f

tk

eu tkð Þj j

 !

s

þ
X

tk f

tk

e tkð Þj j þ
X

tk f

tk

eu tkð Þj j

 !

r

( )

(43)

Subject to G1,2,…,9 (see Eqs. (34)–(42))

U sð Þ ¼ Kp βþ
1

Tis

� �

R Sð Þ � Kp 1þ
1

Tis
þ Tds

� �

Y sð Þ

Kpmin
≤Kp ≤Kpmax

Timin
≤Ti ≤Timax

Tdmin
≤Td ≤Tdmax

βmin ≤ β ≤ βmax

Table 2 summarizes results obtained with MAGO and in [22] for 2DoF PID controller param-

eters. Table 3 summarizes results obtained with MAGO and in [22] for each of the IAE and

IAU performance indexes.

From Table 2, it is seen that parameters obtained with MAGO for 2DoF PID controllers are

different in all cases, although they have similar magnitude scales. This implies that MAGO

found a different minimum for the objective function (see Eq. (43)).

From Table 3, it is seen that MAGO found a better minimum value for the integral perfor-

mance indexes except for the performance index IAUs for G6, G8, and G9 systems. In [22], an

System model Kp T i Td β

[22] MAGO [22] MAGO [22] MAGO [22] MAGO

G1 0.890 0.9544 5.147 5.4354 1.999 1.8095 0.661 0.4453

G2 3.637 3.2947 1.334 1.2791 0.420 0.4270 0.222 0.3096

G3 0.335 0.3515 2.665 2.6949 0.774 0.7941 0.844 0.5355

G4 0.423 0.5278 0.538 0.5765 0.137 0.1557 1.000 0.2593

G5 0.367 0.5013 0.497 0.6117 0.103 0.2380 1.000 0.7687

G6 0.626 1.8491 0.441 0.8014 0.000 0.1580 0.000 0.9654

G7 65 68.4154 1.736 1.2209 0.632 0.3924 0.141 0.0228

G8 0.596 0.6238 0.424 0.3392 0.172 0.1877 1.000 0.4617

G9 40 33.7561 1.430 0.7854 0.297 0.3159 0.231 0.0486

Table 2. 2DoF PID controller parameters.
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Figure 4. Simulation results for 2DoF PID controllers applied to the benchmark. Closed-loop system dynamical response

comparison: 2DoF PID controller tuned with parameters reported in [22] (solid line) and results from MAGO (dashed

line).

System model IAEs IAUs IAEr IAUr Total

[22] MAGO [22] MAGO [22] MAGO [22] MAGO [22] MAGO

G1 8.420 8.9159 2.878 1.9858 5.999 5.8509 7.643 6.8976 24.943 23.6502

G2 1.460 1.3676 1.511 0.6211 0.375 0.4045 1.692 0.6923 5.039 3.0855

G3 8.575 9.0000 1.969 1.1623 16.912 17.0410 9.005 7.8505 36.462 35.0539

G4 1.396 1.5763 1.318 0.4935 1.300 1.3516 2.338 1.4282 6.353 4.8496

G5 1.464 1.5213 1.351 0.3665 1.431 1.3194 2.415 1.3957 6.610 4.6029

G6 1.543 0.7787 1.734 7.8872 1.205 0.4895 2.311 0.5851 6.793 9.7405

G7 1.555 1.2055 1.212 11.187 0.027 0.0180 1.121 0.1752 3.915 12.5855

G8 1.176 1.2154 1.593 0.7958 1.003 0.9138 2.112 1.0807 5.883 4.0057

G9 1.064 0.7669 2.087 16.310 0.036 0.0242 1.173 0.2073 4.360 17.3089

Table 3. 2DoF PID controller IAE and IAU performance indexes.
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additional optimization constraint was imposed for systems G6, G8, and G9 to avoid changes

larger than 10 times the steady-state value of the control action, that is, Δu < uss, where uss is

the steady-state of u. In this chapter, this additional constraint was not included. This con-

straint could be incorporated as follows: Δu ¼ KpβΔr < 10uss.

Figure 4 shows the closed-loop dynamical response for systems given by Eqs. (34)–(42). To test

the 2DoF PID controllers’ performance, a step change in r tð Þ at t ¼ 0 (dotted line) and a step

change in d tð Þ at t ¼ 50 (dash-dot line) were applied. Results by MAGO (dashed line) are

compared with results in [22] (solid line). PID controllers tuned by MAGO perform similar

but faster for G6, G8, and G9 systems.

Figure 5 shows control actions for systems given by Eqs. (34)–(42). In Figure 5, results obtained

by MAGO (dashed line) and in [22] (solid line) are contrasted. From Figure 5, it is seen that the

control action effort is similar for most cases except for G6, G8, and G9 systems, for which an

Figure 5. Simulation results for 2DoF PID controllers applied to the benchmark. Closed-loop dynamical response of the

control action: 2DoF PID controllers tuned with parameters in [22] (solid line) and results from MAGO (dashed line).
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additional optimization constrain was included in [22] to avoid control action changes larger

than 10 times uss.

From Figures 4 and 5, it is seen that MAGO solves the optimization problem satisfactorily

because the control objective is achieved for all systems. For instance, MAGO is not only

suitable to solve the 1DoF PID control problem based on SOSPD [6], but also to solve the

2DoF PID control problem based on a wide range of systems, each one of them with different

dynamical characteristics and challenges from the control point of view.

5. Case study: Evolutionary PI controller tuning for a buck DC-DC

converter based on its nonlinear model

Power electronic converters (PEC) are electronic circuits that are commonly designed to regu-

late the voltage in their output when the input is a nonregulated current or voltage source. A

PEC is highly efficient, highly reliable, negligible maintenance and very small. A PEC is

usually composed of switches (Q IGBT or Mosfets and D diodes). Because switches a PEC is

nonlinear dispositive with an interesting behavior, so a DC-DC buck converter is chosen in this

chapter as a case of study.

DC-DC buck converters are nonlinear systems which analysis and control could be difficult.

Linear techniques based on classical controller have problems related to the stability around

the operation point [31]. Nonlinear controllers can be implemented to improve the stability of

the converter, but such techniques could be complex [32, 33]. Control techniques-based artifi-

cial intelligence simplifies the design and implementation, not requiring the mathematical

model; nonetheless, they are designed based on expert knowledge of the converter [34–36].

Sliding mode control technique has the advantage to reject easily perturbations, but variable

frequency of switching may be handled [37]. There are many articles dealing with control for

the DC-DC buck converter but is still no consensus on the control strategy should be

implemented. This is another reason to choose a DC-DC buck converter as a study case.

DC-DC buck converter, or step-down converter, is a power converter that steps down the

voltage from its supply (input) to its load (output). Figure 5 shows the equivalent circuit of

the DC-DC buck converter. It is composed of an inductor (L), a capacitor (C), a diode (D), and a

switch (Q) (IGBT is considered as the switch for the analysis). The converter is supplied by a

DC input voltage (vg) and feeds in its output (vo) a resistive load (R). Figure 6 also depicts the

reference currents and voltages of the circuit, using passive sign convention. In this chapter, it

is assumed that the converter operates in continuous condition mode (CCM).

The converter has two states per switching cycle (Ts) according to the position of the switch Q

when CCM operation is considered. The on state is when Q is on (closed) and D is inversely

polarized (open), while the off state is when Q (open) is off and D is directly polarized (closed).

Dynamical model and steady-state analysis can be done if Kirchhoff laws are applied, see

Eqs. (44) and (45). Step-by-step DC-DC buck converter dynamical model deduction can be
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found in [38]; where u is the switching function (u ¼ 1 for on-state and u ¼ 0 for off-state). The

nonlinearity is because the product between vg and u.

L
diL
dt

¼ vgu� vc (44)

C
dvc
dt

¼ iL �
vc
R

� 	

(45)

The DC-DC buck converter model given by Eqs. (44) and (45) describes the nonlinear dynam-

ical evolution of the system. From the control point of view, a model given by Eqs. (44) and (45)

is inconvenient, and a linear approximation is preferred. The linear DC-DC buck converter

state-space representation is given by Eqs. (46) and (47). Where d is an input control (duty

cycle) and correspond with uh i ¼ d, d∈ 0; 1½ �, the average value of u. Vg is the average value of

vg (state in its rated value) and D is d in an operation point (D is also defined as the reason

between the on-time and the switching-time D ¼ ton=Ts). Note that vg is chosen as a system

input, and it represents a system disturbance.

iL

_vc

� �

¼
0 �

1

L
1

C
�

1

RC

2

6

4

3

7

5

iL

vc

� �

þ

Vg

L

D

L
0 0

2

4

3

5

d

vg

� �

(46)

iL

vo

� �

¼
1 0

0 1

� �

iL

vc

� �

þ
0 0

0 0

� �

d

vg

� �

(47)

Transfer functions (GiLd, GiLvg , Gvcd and Gvcvg ) can be obtained by applying the realization of

Eq. (5). Transfer functions are shown by Eq. (48).

GiL
d

G iL
vg

GvC
d

GvC
vg

2

4

3

5 ¼

CVgRsþ Vg

RLCs2 þ Lsþ R

RCDsþD

RLCs2 þ Lsþ R

VgR

RLCs2 þ Lsþ R

DR

RLCs2 þ Lsþ R

2

6

6

6

4

3

7

7

7

5

(48)

Figure 6. DC-DC buck converter equivalent circuit schematic.
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Transfer functionGvcd can be used for controlling the output voltage bymeans of the change of d;

similarly, GiLd can be used for controlling the inductor current. Gvcvg and GiLvg can be used to

determine the change on vc and iL when vg is considered as a perturbation. Narrowing this

chapter to controlling vc, Gvcd and Gvcvg are the transfer functions that we are focus on; similarly,

GiLd and GiLvg should also be used for the explanation. Classic control commonly uses Gvcd to

regulate vc; nevertheless, Gvcvg also affects vc and must be taken into account if the implementa-

tion of a robust control strategy is desired. For controlling purposes, vg is a perturbation while d

is the control input that allows the control of the system, both vg and d affect vc (see Figure 7).

From the control point of view, the DC-DC buck converter can operate in two modes, as

regulator and servomechanism. Regulation mode objective is to maintain constant the con-

verter output voltage against any system disturbance. Servomechanism mode objective is to

track an output voltage reference. Both operation modes can be combined at any moment. For

instance, the selected control strategy for the DC-DC buck converter should assure a good

performance for both operation modes. In this chapter, a PI/PID-based control structure fulfills

both DC-DC buck converter control objectives. A DC-DC buck converter is parameterized as

follows: C ¼ 22 μF, L ¼ 0:5 mH, R ¼ 10 Ω, Vg ¼ 12 V , Vo ¼ 6 V, D ¼ 0:5, RL ¼ Rc ¼ 1 Ω.

A rigorous way to tune PI controllers for DC-DC buck converters is through the pole place-

ment method [36]. As PI controller tune requirements, wide accepted specifications are a

bandwidth BW ≥
1
5 f sw, where f sw is the converter switching frequency, and a damping factor

ζ ¼ 1=
ffiffiffi

2
p

. These closed-loop requirements are settled to establish a trade-off between DC-DC

buck closed-loop performance and robustness.

Sisotool is a friendly MATLAB environment to tune PI/PID controller parameters. Figure 8

shows the DC-DC buck converter root locus diagram for the PI and PID controllers. In

Figure 8, points represented as cruces correspond to poles and circles correspond to zeros,

the diagonal line from the origin corresponds to ζ ¼ 1=
ffiffiffi

2
p

. In consequence, shaded area is for

ζ < =
ffiffiffi

2
p

, while non-shaded area is for ζ > 1=
ffiffiffi

2
p

. From Figure 8a, it is possible to observe that

ζ ¼ 1=
ffiffiffi

2
p

cannot be achieved no matter how large the value of the PI controller real zero is.

On the other hand, in Figure 8b, it is possible to observe that ζ ¼ 1=
ffiffiffi

2
p

can be achieved with

a PID controller. Figure 8 shows the DC-DC buck converter closed-loop bode diagram. From

Figure 9, it is possible to observe that BW ¼ 1
5 f sw ¼ 4 kHz. PID parameters are Kp ¼ 0:1624,

Figure 7. DC-DC buck converter open-loop block diagram.
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Ti ¼ 1:7240 e� 3 s½ � and Td ¼ 1:6763 e� 5 s½ �. Furthermore, the tuned PID controller fulfills

the desired closed-loop requirements for the DC-DC buck converter, while a PI controller

cannot be tuned to fulfill the closed-loop requirements for the DC-DC buck converter.

PI rather than PID control structures are preferred in PECs applications because PI-based

control structures significantly reduce the feedback induced noise. In this chapter is proposed

an alternative way to tune PI controllers for DC-DC buck converters in order to overcome the

limitations with the pole placement method. PI controller tuning problem is formulated as a

constrained optimization problem and solved using MAGO as in Eq. (49). θ ¼ Kp Ti

� �

are

the PI controller parameters, α and γ are tuneable weighs establishing a trade-off between IAE

and IAU performance indexes and tsmax
is the maximum allowed closed-loop setting time.

Minθ α
X

tk f

tk

e tkð Þj j

 !

þ γ
X

tk f

tk

eu tkð Þj j

 !( )

(49)

Subject to Buck DC-DC nonlinear dynamical model Eqs. (43) and (45)

Figure 8. DC-DC buck converter root locus: (a) PI controller and (b) PID controller.

Figure 9. DC-DC buck converter closed-loop bode diagram for the PID controller.
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u tð Þ ¼ Kp e tð Þ þ
1

Ti

X

tk f

tk

e tkð Þj j

( )

0 ≤Kp ≤ 5

0 ≤Ti ≤ 1e� 3

α ¼ 1

γ ¼ 0:5

Main features of the formulated optimization problem are: (1) DC-DC buck nonlinear dynam-

ical model is incorporated instead of duty to output voltage transfer function. Using the

nonlinear dynamical model of the DC-DC buck converter, it is possible to solve the optimiza-

tion problem simultaneously considering regulation and servomechanism operation modes.

(2) Objective function includes simultaneously IAE and IAU performance indexes. The inclu-

sion of the IAU gives a kind of closed-loop robustness because it limits the maximum control

action effort avoiding system oscillations and actuator saturations. (3) The optimization pro-

cess is carried out based on the temporal dynamical response of the DC-DC buck converter

operating in closed-loop. For each MAGO iteration, it is necessary to solve the DC-DC buck

converter nonlinear dynamical model in the closed-loop mode. To solve the nonlinear dynam-

ical model in the closed-loop mode, it is necessary to define an experiment such that multiple

set-point changes and disturbances appear through the simulation time. The solution of the

optimization problem is the set of PI controller parameters that minimize both IAE and IAU

indexes for the experiment setup.

The total simulation time for the DC-DC buck converter is 25 min. The experiment setup for

the optimization process is as follows: for the time interval t∈ 0; 5½ � ms, the system is at the

nominal conditions. For t∈ 5; 10ð �ms, the set-point for the output voltage is settled in 8 V. For

t∈ 10; 15ð � ms, the input voltage is settled in 14 V, while the output voltage remains in 8 V.

For t∈ 15; 20ð � ms, output and input voltages are settled in 4 V and 10 V, respectively. For

t∈ 20; 25ð � ms, output and input voltages are returned to their nominal values. Both adjustable

MAGO parameters n and ng were settled in 100. The optimization problem solution using

MAGO is: objective function value equals 0.1066, PI controller parameters values are

Kp ¼ 0:0382 and Ti ¼ 1:5364 e� 4 s½ �.

PSIM is a recognized platform to simulate and validate the control system performance

for PEC. A PSIM simulation is carried out for the DC-DC buck converter to validate

MAGO optimization results. A DC-DC buck converter simulation is implemented on

PSIM including parasitic losses in their passive elements as equivalent series resistances

(ESR). Simulation aims to test the real closed-loop system performance. Therefore, two

DC-DC buck converter closed-loop simulations are carried out as follows: (1) PID control-

ler obtained by the pole placement method is implemented and its performance is tested.

(2) PI controller obtained by MAGO is implemented and its performance is tested. In both

cases, the experiment setup used in MAGO optimization is applied to test PID and PI

controllers’ performance.
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Gvcd and Gvcvg were deduced in this chapter without including losses in the inductor and

capacitor; switching losses which includes the losses in the IGBT and the diode neither were

considered. A comparison between a DC-DC buck converter including resistive losses (PSIM

simulation) and a DC-DC buck converter which does not include them (MATLAB simulation)

are presented in Figure 10. For this purpose, pointed line diagrams correspond to PSIM bode

diagrams (nonlinear model), while continuous line diagrams correspond to MATLAB bode

diagrams of transfer functions Gvcd and Gvcvg (linear model). PSIM simulation corresponds to

the most realistic approximation of the system due to it is the nonlinear representation which

includes the resistive losses. In Figure 10, there is a big difference between MATLAB and PSIM

bode diagrams. This chapter uses the linear model (Eqs. 46 and 47) to implement the control

strategy, while the DC-DC buck converter to be controlled includes the resistive losses.

Figure 11 shows the DC-DC buck converter closed-loop dynamical response for both PI

controller tuned by MAGO (PI-MAGO) and PID controller tuned by the pole placement

method. Figure 10a shows both vg and voRef time trajectories. From Figure 11a, it is seen that

these time trajectories agree with the experiment setup proposed for the optimization problem.

Multiple set-point changes (voRef ) and disturbances (vgÞ are applied to test the closed-loop

dynamical response of the DC-DC buck converter.

Figure 11b shows the dynamical closed-loop response for the DC-DC buck converter output

(voÞ. From Figure 11b, it is seen that the converter control objective is achieved satisfactorily.

DC-DC buck converter in closed-loop mode can simultaneously track the set point and reject

the disturbance. Both faster than 2:5 ms and with an approximated over-shoot of 12 and 2:5%

for the PI and PID controllers, respectively. A remarkable issue is that the converter control

objective is achieved when the PSIM DC-DC buck converter model includes the parasitic

losses in their passive elements. This implies that both controllers are robust to the model

Figure 10. PSIM simulation and nonlinear mathematical model comparison: (a) Gvcd and (b) Gvcvg .
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mismatch. From Figure 11b, it is seen that PID controller performs better than PI controller

does; however, the PI performance, it is also acceptable.

Figure 11c shows the control action (d) dynamical response for both PI and PID controllers.

From Figure 11c, it is seen that d has significant oscillations for PID controller compared with

PI controller. The most probable reason for these oscillations is the induced noise caused by the

time derivative constant (TdÞ in the PID controller. For instance, the PI controller is preferred in

PEC applications because the closed-loop induced noise is smaller than in the PID controller

case, although the PI controller has a poor dynamical performance than PID controller. An

important issue related with d behavior is that never reaches its maximum or minimum value,

implying that for the selected setup the actuator does not saturates.

Figure 11d shows the inductor current (iL) dynamical response for both PI and PID controller.

From Figure 10d, DC-DC buck converter operates in the CCM overall simulation time.

In summary, both PI and PID controllers achieve the DC-DC buck converter control objective.

PID controller performs better than PI controller, but the last one has a smaller induced noise

in d, which is a desired characteristic in PEC applications. In consequence, MAGO solution

improves the solution obtained by the pole placement method, where a PI controller was not

possible to tune because the root locus limitations (see Figure 8).

6. Conclusions

A method of tuning optimal controllers on nonlinear systems through the evolutionary algo-

rithm MAGO has been successfully developed and implemented. The MAGO resolves the

tuning as a constrained nonlinear optimization problem for both 1DoF and 2DoF PI/PID

Figure 11. DC-DC buck converter closed-loop PSIM simulation.
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controllers on several types of plants running on different modes of operation. To ensure the

desired performance of the control loop, everything is reduced to the characterization and

adjusting of the value of a set of tuning parameters whatever the chosen control structure is.

The usual tuning controller procedures involve uncertainty and time to obtain the right

parameters, generally by trial and proof by trained personal depending of the method used.

This chapter showed a way to reduce these challenges. MAGO straightforwardly assesses the

controller’s parameters penalizing the error between the reference value and the output of the

plant and minimizing the IAE and IAU performance criteria.

Traditional PID controller tuning rules are restricted to certain values on the behavior of the

system and are limited to an only one type of operation. Most methods require experiments to

be carried out directly on the plant to get additional necessary system information to apply

them; these activities are not always possible to achieve because the triggering of extreme

stresses and oscillations of the plant which may create instability and damages on the system,

so that, they are not recommended. For benchmark models, the PID controller tuning was

made by the MAGO without additional knowledge of the plant. The evolutionary solution

obtained with the MAGO covers all those restrictions, extends their maximum and minimum

limits, and it does not need additional experimental information from the plants and is suitable

for both servo and regulator operating modes. The results showed that regardless of both the

plant or controller models used, MAGO gets a satisfactory closed-loop system performance in

agreement with the literature reported.

A linear model without losses for the DC-DC buck converter was used to implement the

control strategy while a nonlinear system which includes parasitic losses was simulated as a

most realistic system in PSIM. There was a big difference between the bode diagrams of the

linear model and the nonlinear system; nevertheless, the controllers tuned by MAGO have a

successfully behavior in terms of performance and robustness. MAGO controllers let overcome

the limitations of traditional PI controllers.

The challenge of rely on a single method to assess the controller for different kinds of plants

has been solved applying the evolutionary algorithm MAGO as a tool of optimization. The

MAGO was applied to a set of benchmark plants, represented in both transfer functions and

differential equation systems, with a control loop operating on both servo and regulator

modes. The optimal tuning values of the Kp, Ti and Td parameters for the optimal PID

controller found by the evolutionary method achieved successful results for each of the cases

studied. Noticeable results tuning with the algorithm MAGO were obtained when comparing

the performance of the traditional PID controller performance for the DC-DC buck converter

against the PI-MAGO controller. PI-MAGO controller has a comparable performance with the

PID controller tuned by pole placement method. Moreover, PI-MAGO controller minimized

the induced closed-loop noise.

This chapter showed that, although there would be options in the traditional rules of control-

lers tuning, the use of heuristic algorithms is indeed easy than using the classic methods of

optimal tuning. The evolutionary algorithm MAGO was used as a tool to optimize the con-

troller parameters for optimal 2DoF PID controllers working on benchmark plants and to

optimize the PI controller parameters in a DC-DC buck converter application. Regardless of

PID Control for Industrial Processes68



the operating mode of the controller and the representation type of the plant used, better
results are yielded when optimization is made with the MAGO algorithm than with the
traditional methods for optimal tuning.
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