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Abstract

Comparatively few of the vast number of suggested decision-analytical methods have been
widely spread in actual practice. The majority of those methods call for exact and accurate
numbers as input, which could be one of several reasons for this lack of actual use; people
frequently seem to be unfamiliar with, or reluctant to express those, in a sense, “true” values
required. Many alternative methods to resolve this complication have been suggested over
the years, including procedures for dealing with incomplete information. One way, which
has proliferated for a while, is to introduce so-called surrogate numbers in the form of
ordinal ranking methods for multi-criteria weights. In this chapter, we show how those can
be adapted for use in probability elicitation. Furthermore, when decision-makers possess
more information regarding the relative strengths of probabilities, that is, some form of
cardinality, the input information to ordinal methods is sometimes too restricted. Therefore,
we suggest a testing methodology and analyze the relevance of a set of cardinal ordering
methods in addition to the ordinal ones.

Keywords: decision analysis, probability elicitation, cardinal ranking, rank order,
imprecise probability

1. Introduction

Elicitation of subjective beliefs has been applied in numerous areas, such as game and decision

theory [1, 2], agriculture [3], statistics [4], and various disciplines of economics [5–7], and many

methods have been designed for elicitation purposes [8–10]. It is in these contexts often assumed

that at least experts in the various areas are capable of acting rationally and can provide reliable

information so long as they are eliciting probabilities sensitively. Those assumptions are contrary
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to the fact that even expert estimates may differ significantly from the true probabilities and that

there are still no universally accepted methods of probability elicitation available. The process of

eliciting adequate quantitative information is one of the substantial challenges within decision

analysis [11, 12].

In a classical framework (cf., e.g., [13]), numerical probabilities are assigned to the different

events in tree representations of decision problems. The assignments are made after the set of

parameters, whose values need to be elicited and whom to choose for providing those esti-

mates, have been identified. Domain experts could, for example, be asked to express their

beliefs about the likelihood of a particular event in probabilistic form. Such beliefs cannot be

measured objectively, and neither should they be judged in such a manner. Besides, the success

of an elicitation process depends on how well a representation of the present subjective

opinions can be constructed rather than on some set of objectively true values [14–16].

Methods for eliciting utilities and probabilities have been thoroughly investigated, resulting

in a large number of recommendations and handbooks on the subject. Procedures range

from using direct elicitation, gamble, and lottery techniques, as well as more elaborate

methods to reduce biases, aversions, and a multitude of other causes of errors while

producing as reliable estimates as possible (c.f., e.g., [17–22]). Here, it is generally assumed

that procedures for elicitation should give rise to adequate preference orders, but this

assumption is nevertheless often violated in empirical studies (c.f., e.g., [23–25]). A multi-

tude of methods for ordinal rankings or interval approaches have been suggested to pro-

vide more realistic models. The goal is to be able to utilize the information the decision-

makers can supply without forcing them to express unrealistic, misleading, or meaningless

statements.

To elicit probabilities, methods based on ordinal rankings already constructed for obtaining

weights for multi-criteria decision analysis (MCDA) (see [26–28]) can be adopted. The funda-

mental idea is that ordinal information that stems from importance can be converted to a set of

normalized surrogate numbers, the values of which are consistent with the elicited ordinal

rankings. The actual conversion can be done using a variety of methods, such as rank sum (RS)

and rank reciprocal (RR) [29], and centroid-based methods (ROC) [30]; originally used for

handling criteria weights in MCDA. However, even in MCDA, the use of only ordinal infor-

mation is sometimes perceived as being too vague or imprecise, resulting in a lack of confi-

dence in the alternatives’ final values or a too large class of non-dominated alternatives.

In this chapter, a set of methods that allow for more expressive information as input when

eliciting probabilities, while maintaining the relative correctness and simplicity of ordinal

ranking procedures, is proposed. In the following section, we compare and discuss a set of

significant features, including correctness and relevance, of various extensions to some existing

ranking methods. Following a brief recapitulation and adaptation of some ordinal ranking

methods in the following section, we continue with cardinal ranking methods and discuss a set

of appealing candidates for probability elicitation. Using simulations, we investigate some

properties of the treated methods and conclude with pointing out, according to the results, a

particularly attractive method for eliciting probabilities.
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2. Ordinal ranking methods in MCDA

Different elicitation formalisms by which a decision-maker can express preferences in MCDA

decision situations have been proposed. Such formalisms are sometimes based on scoring

points, as in point allocation (PA) or direct rating (DR) methods. In PA, the decision-maker is

given some number of points, for example, 100, to distribute over a set of criteria or conse-

quences, depending on the type of decision [31]. Hence, for N criteria or consequences, there

are N�1ð Þ degrees of freedom (DoF). Direct rating methods, on the other hand, put no limit on

the number of points to be allocated.1 The decision-maker allocates as many points as desired

and the points are subsequently normalized. Thus, in DR, there areN degrees of freedom forN

criteria. Regardless of elicitation method, the assumption is that all elicitations are made

relative to a distribution held by the decision-maker.2

Surrogate methods are utilized in [26–28] and many others for handling such problems.

Regardless of method, however, a key property must be to retain as much information as

possible in the surrogate numbers, yet accommodating for the various constraints required by

certain types of values.

Stillwell et al. [29] compare a set of different methods for eliciting surrogate numbers from

ordinal rankings alone, based on the idea of maximizing the power to discriminate between

values. Among those are rank sum and rank reciprocal, for which surrogate weights are

derived solely from the rank order of the attributes. Take a simplex Sw generated by

w1>w2>⋯>wN ,
P

wi¼1 and 0 ≤wi.
3 Assign an ordinal number to each item ranked, starting

with the highest ranked item as number 1. Denote the ranking number i among N items to

rank. Then the rank sum (RS) surrogates for all i¼1,…, N are defined by

wRS
i ¼

N þ 1� i
PN

j¼1 N þ 1� j
� �

: (1)

The surrogate numbers produced by the rank reciprocal (RR) method are, as the name implies,

based on the reciprocal of the rank of each item. Let the number 1 corresponds to the highest

ranked item, the number 2 to the second highest ranked item, and so on. Then for the i:th

ranked item, the RR surrogate, given a total of N items, are obtained by

wRR
i ¼

1 i=
PN

j¼1
1 j

� . (2)

1

It could be that the sum is limited in direct rating methods as well but then as a consequence of a uniform limit to the

individual numbers.
2

See, for example, [32, 33] and some others from the same authors on methodological and cognitive aspects of inexactness

in decision-making.
3

Unless stated otherwise, the component vectors of decision problems will be modeled as simplexes, Sx, consisting of

x1 > x2 > ⋯ > xN , where
P

xi ¼ 1 and 0 ≤ xi.
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A decade later, Barron [30] suggested a method based on vertices of the simplex of the feasible

space. The rank order centroid (ROC) weights are the centroid vector components of the

simplex Sw. The weights then become the centroid (mass point) of Sw. The ROC weights for

the ranking number i among N items to rank are given by

wROC
i ¼

1

N

X

N

j¼i

1
j

�

. (3)

However, RS, RR, and ROC perform well only for specific assumptions on decision-maker

behavior. If we assume that the decision-maker stores its preferences in a way similar to a given

point sum, considering normalization, there are (N�1Þ degrees of freedom (DoF) forN items. On

the other hand, if we assume that the decision-maker stores its preferences in a way that puts no

limit to the total number of points (or mass) allocated, and the normalization is made afterward,

then there are N degrees of freedom for N criteria. It remains an open question as to how a

decision-maker perceives the nature of the basis of a particular preference order. Whether the

linear dependence in N�1ð Þ DoF models is accounted for, or if preference values are allocated

with no particular limits in accordance with N DoF models. Surrogate numbers obtained by RR

and ROCmodels agree with a preference structure based on N�1ð Þ degrees of freedom, while the

RSmodel conforms to a preference structure based onN degrees of freedom. Due to this apparent

difference, a model, SR, in which features from both RS and RRwere incorporated, was proposed

by [34]. The SR method is an additive combination of the Sum and the Reciprocal functions as in

wSR
i ¼

1

i þ
Nþ1�i

N
PN

j¼1

1 j= Nþ1�jð Þ
N

: (4)

To exemplify the above, given any probability simplexes such as p
1
; p

2
; p

3

� �

and p0
1
;…; p

6

0
� �

that satisfy the previously laid out assumptions, the various methods would assign to them

numbers as in Tables 1 and 2.

In theory, the choice of elicitation method should preferably be based on the manner in which a

decision-maker constructs a preference order; whether it is based on a N�1ð Þ DoF or N DoF

model, or even a mixed model. However, since we cannot know the ratio of N�1ð Þ DoF to N

DoF employed in the mind of the decision-maker, an elicitation method, to be robust, should

work about equally well regardless. The SR method, assuming the principal features of both

RS and RR, was found to be the method best accommodating for such a need.

Method p
1

p
2

p
3

Rank sum (RS) 0.50 0.33 0.17

Rank reciprocal (RR) 0.55 0.27 0.18

Rank order centroid (ROC) 0.61 0.28 0.11

Sum reciprocal (SR) 0.52 0.30 0.17

Table 1. Probabilities corresponding to the ordinal ranking, p1 > p2 > p3, rounded to two decimal places.
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In the following, the methods for weight elicitation within MCDA presented above will be

augmented with information denoting the relative difference between adjacent items and

modified to meet the requirements of probability elicitation. We adhere to a standard, one-

level decision-tree model, in which each of M alternatives has N consequences. Hence, there

are M times N consequences in total.

3. Cardinal ranking methods

Providing ordinal rankings puts fewer demands on decision-makers; they are, in a sense, effort

saving. Furthermore, there are techniques such as those mentioned earlier for handling ordinal

rankings with some success. For use in probability elicitation, the same ordering is asked of the

decision-maker, but this time in reference to how probable events are as outcomes of a chosen

alternative of action.4 Nevertheless, decision-makers might, in many cases, have more knowl-

edge of the decision situation, even if the information still is not precise. For instance, cardinal

probability relation information may implicitly exist, entailing that the surrogates may not

really reflect what the decision-maker actually means by a particular ranking.

To improve the conformance of an ordinal ranking to the true subjective beliefs of a decision-

maker, information such as the relative differences between adjacent items need to be

accounted for. Given a ranking of some number of consequences, relative differences in prob-

ability comprise such information. Furthermore, methods that allow for such details can also

handle probabilities considered equal, something which purely ordinal methods cannot.

The following notations together with the suggested interpretations are used to exemplify the

proposed methods. The symbols denote the relative strength of the difference in probability

between consequences.5

Method p1
’ p2

’ p3
’ p4

’ p5
’ p6

’

Rank sum (RS) 0.29 0.24 0.19 0.14 0.10 0.05

Rank reciprocal (ROC) 0.41 0.20 0.14 0.10 0.08 0.07

Rank order centroid (ROC) 0.41 0.24 0.16 0.10 0.06 0.03

Sum reciprocal (SR) 0.34 0.22 0.17 0.13 0.09 0.06

Table 2. Probabilities corresponding to the ordinal ranking, p1
0
> p2

0
> p3

0
> p4

0
> p5

0
> p6

0, rounded to two decimal

places.

4

For each choice of action, we assume a decision node to be the root of a standard two-level decision tree with each branch

representing an alternative, which, in turn, is followed by a set of exhaustive and mutually exclusive events. It is the

probabilities of those events that the decision-maker is asked to rank. Such a setup can easily be generalized to decision

trees with multiple levels.
5

Although using verbal interpretations for illustrative purposes, we do not intend to discuss issues related to difference

values and their respective meanings in relation to probabilities. In an actual implementation of the method, we consider

cardinal input obtained from graphical sliders in a software tool.
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>0 “equally probable”

>1 “slightly more probable”

>2 “more probable”

>3 “much more probable”

To derive probabilities for N consequences using cardinal methods, start by ranking the

consequences in order of probability, giving the most probable consequence rank one, and the

least probable consequence rank N. Let sj be the number of difference steps between probabil-

ities pj and pjþ1, denoted by pj>sjpjþ1. Setting sj ¼ 1 is equivalent to pj > pjþ1 as in the ordinal

case. The sum, Q, of all difference steps for N probabilities will then be
PN�1

i¼1 si, and for any

probability pi, i∈ 2;…;Nf g, the position on this scale of difference steps from 1 to Q is defined

by t ið Þ ¼ si�1 þ t i� 1ð Þ, and t 1ð Þ ¼ 1.6

Modifying the above ordinal methods for probability elicitation can now be done without

difficulty. The key is to normalize the values of the cardinal rank positions such that the

higher positions result in the lower probabilities. In the cardinal version of RS (CRS), the proba-

bilities should mirror the differences in cardinal rank positions. Hence, the CRS probabilities are

given by

pCRSi ¼
Qþ 1� t ið Þ

PN
j¼1 Qþ 1� t jð Þð Þ

(5)

where t ið Þ∈ 1;…;Qf g are the cardinal rank positions derived from the cardinal differences

provided by the decision-maker such that t ið Þ ≤ t jð Þ if and only if i < j. The cardinal variation of

rank reciprocal (CRR) is defined in a similar fashion, and the CRR probabilities are obtained by

pCRRi ¼
1=t ið Þ

PN
j¼1 1=t jð Þ

: (6)

with the usual property that a higher probability is assigned to lower ranking numbers. ROC is

generalized in the same way, and the corresponding strength rank order centroid (CRC)

probabilities are obtained as

pCRCi ¼

PQ
j¼t ið Þ 1=j

PQ
k¼1

PQ
j¼t jð Þ 1=j

� � : (7)

Finally, generalizing SR is done in the same way and using the above equation, the corresponding

cardinal SR (CSR) probabilities are obtained as

6

Here, pi ¼ P cið Þ, that is, the probability that consequence i obtains.
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pCSRi ¼

1
t ið Þ þ

Qþ1�t ið Þ
Q

PN
j¼1

1
t jð Þ þ

Qþ1�t jð Þ
Q

� � , (8)

which is a generalization similar to the others. Thus, using the idea of cardinal steps, ordinal

methods are easily transformed to their respective cardinal counterparts. See Table 3 for an

example of probabilities correlated with a certain cardinal ranking.

3.1. Application to a decision problem

To show the merits of cardinal methods for elicitation of both probabilities and values, we

present a decision on the choice of programming language, adapted from [35]. Due to resource

constraints in a current Prolog implementation, the staff considered two options:

A: Rewriting the whole system in C.

B: Trying to find an implementation of Prolog that could handle the system.

After thoroughly discussing the pros and cons of the two options, they arrived at the following

possible scenarios. For option A, the staff concluded that either (c1) a prototype in C would be

ready on time or (c2) a prototype in C would be slightly delayed due to external circumstances.

For option B, (c3) a prototype in Prolog would be ready on time, (c4) a prototype in Prolog

would be slightly delayed due to external circumstances, or (c5) only fractions of a prototype in

Prolog would be ready on time.

Having considered the probabilities and the values of the consequences, the staff arrived at the

following assumptions, where pi represents the probability of ci, and vi represents the value of

ci. For option A, p1 was thought to be at least 0.67, and consequently, p2 would be at most 0.33.

For option B, p5 would lie somewhere between 0.40 and 0.90, hence the sum of p3 and p4 could

range from 0.10 to 0.60.

With regard to value, c3 was the most desirable with c4 being slightly less so. Both c3 and c4
would be clearly better than c1, which in turn was slightly better than c2. By far, c5 would be the

worst consequence.

Applying a cardinal ranking to the above probabilities and values, the staff agreed on the

following:

Cardinal method p1 p2 p3 p4 p5 p6

Rank sum (CRS) 0.29 0.23 0.19 0.13 0.13 0.03

Rank reciprocal (CRR) 0.49 0.16 0.12 0.08 0.08 0.05

Rank order centroid (CRC) 0.45 0.21 0.16 0.09 0.09 0.02

Sum reciprocal (CSR) 0.37 0.20 0.17 0.11 0.11 0.04

Table 3. Probabilities corresponding to the ranking, p1>2p2>1p3>2p4>0p5>3p6, rounded to two decimal places.
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p1>3p2

p5>3p3>0p4

v3>1v4>2v1>1v2>3v5

Using a purely ordinal ranking, one would end up with the following, less precise ordering:

p1 > p2

p5 > p3 > p4 or p5 > p4 > p3

v3 > v4 > v1 > v2 > v5

Computing the values of the rankings about using SR and CSR yielded the results presented in

Tables 4 and 5. Let Em
o be the expected value of option o given elicitation method m, we then

have ESR
A ¼ 0:16 and ESR

B ¼ 0:19, resulting in option B being the preferred alternative, while

ECSR
A ¼ 0:16 and ECSR

B ¼ 0:14 resulting in the contrary.

Possible alternatives in the case of ordinal rankings, such as strict uses of either of the rankings

p5 > p3 > p4 or p5 > p4 > p3, do not affect the preference order of the options. However, a

change from p5>3p3>0p4 to p5>2p3>1p4 when applying the cardinal method would alter the

outcome, indicating the decision problem’s sensitivity to uncertainty, something which is not

reflected when using a purely ordinal ranking of the consequences.

When treating the decision problem in the professional software program DecideIT [36], the

probability values from the original assumptions can be used, resulting in the constraints:

1. p1 ≥ 2=3 and p1 þ p2 ¼ 1

2. 0:4 ≤ p5 ≤ 0:9 and p3 þ p4 þ p5 ¼ 1

which in turn can be entered directly into the program. The values are specified as in the

cardinal case. Eventually, we end up with the decision tree in Figure 1.

Method p1 p2 p3 p4 p5

SR 0.67 0.33 0.24 0.24 0.52

CSR 0.80 0.20 0.17 0.17 0.66

Table 4. The probabilities of the consequences of the options of the decision on a computer programming language.

Method v1 v2 v3 v4 v5

SR 0.18 0.12 0.38 0.25 0.07

CSR 0.17 0.13 0.38 0.26 0.05

Table 5. The values of the consequences of the options of the decision on computer programming language.
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Looking at the expected value graph in Figure 2, we note that although about 50% contraction

is needed, it is arguable so that either the assumptions need to be revised or option A should be

the preferred one. Consequently, a cardinal ranking of the probabilities and the values seem to

resonate better with a more detailed examination in which imprecise numbers are taken into

account than a purely ordinal one.

4. Assessing models for cardinal relations

Given that we have a set of cardinal methods as in the previous section, how can they be

validated? For ordinal relations in MCDA, simulation studies similar to [27, 37–39] and

others have become a kind of de facto standard. The simulations herein are based on the

fundamental idea that a set of genuine, or “true,” probabilities, in fact, exists in the mind of

Figure 1. Modeling the decision problem of choosing a programming language in DecideIT.

Figure 2. The expected value graph generated by DecideIT.
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the decision-maker. No elicitation method is capable of completely mirroring these probabil-

ity values, but in the simulations, the potency of the probability ranking approaches is

judged by comparing the “true” values to those elicited by the methods mentioned earlier.

The modeling caters to the two extremes of decision-makers’ mindsets outlined earlier in the

way the decision problem vectors are randomly generated. Following an N DoF model, a

vector is generated, where the components are kept within [0%, 100%], and subsequently

normalized, that is, a process with N degrees of freedom. Details on this kind of simulation

can be found, for example, in [40]. For an N � 1ð Þ DoF model, the components are generated

such that they sum to 100% already from the outset; that is, using a process of N � 1ð Þ degrees

of freedom. This simulation is based on a homogeneous N-variate Dirichlet distribution gen-

erator. Details on this kind of simulation can be found, for example, in [41].

The “true” probabilities in the minds of decision-makers might, of course, follow a distribution

different from the ones used in this study, and there might eventually be models available to

elicit values following those. Nonetheless, the crucial observation is that the validity and

reliability of the results of the simulations are highly dependent on how the minds of

decision-makers are modeled. Although the difference in the number of degrees of freedom is

only one of several parameters related to cognitive behavior, it still offers a meaningful way of

distinguishing between cognitive models.

4.1. Biases of simulation studies

The results of the simulations are highly dependent on the type of generator used. A generator

corresponding to an N DoF model is referred to as an N-generator. In the same manner, a

generator corresponding to an N � 1ð Þ DoF model is referred to as an N � 1ð Þ-generator. In

applying the N-generator, probabilities elicited by the RS method outperforms those elicited

by other methods. Not because the RS method is superior per se, but because it produces

numbers at regular intervals. Likewise, ROC outperforms the other methods when an N � 1ð Þ-

generator is used for the reason that the values elicited by the ROC method are similarly

skewed toward the lower end of the interval.

In actual fact, it is impossible to determine whether decision-makers, in general (or even some),

elicit values in particular accordance with N � 1ð Þ or N DoF representations of their knowl-

edge. As a group, or as individuals, it is possible that they completely adhere to either one or

that they follow an arbitrary mix of the two. Due to this uncertainty pertaining the cognitive

processes of decision-makers, a rank ordering mechanism, to be robust, must elicit values that

conform to both types of representations reasonably well. Therefore, to find the method that

yields the most robust and efficient assignments, the evaluations in this study employ both

types of generators and combinations of them.

4.2. Comparing the methods

To evaluate the validity of the RS, RR, and ROC methods for multi-criteria weight elicitation,

Barron and Barrett [27] simulated a large set of “true” weights, using an N � 1ð Þ-generator.
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Based on those, they then produced a corresponding set of surrogate weights for each of the

elicitation methods. As shown earlier, the generation procedure does have significant effects

with regard to such a comparison. The set of “true” weights is dependent on how we model

the minds of decision-makers. Barron and Barrett [27] presented a computer simulation

consisting of four main steps, which for probability elicitation is modified as follows:7

4.2.1. Generation procedure

1. For a decision problem with M alternatives, where each alternative can result in one of N

consequences, generate M probability vectors, p1,…,pM, in N dimensions. These vectors

contain the so-called true probabilities. Then, for each elicitation method μ0, produce

vectors p
μ0

1 ,…,p
μ0

M, according to the order of the “true” probabilities.

2. After that, generate an M�N matrix of random numbers vij corresponding to conse-

quence j, of the ith alternative. These are the values of each consequence.

3. Let p
μ

ij be the probability obtained by method μ for consequence j of alternative i (where μ

is either μ0 or “true”). For each method μ and each alternative i, calculate the expected

value E
μ

i ¼
PN

j¼1 p
μ

ijvij. Note the rank order of E
μ

i for each μ, that is, the preference order of

the alternatives for each method.

4. Lastly, determine if method μ resulted in the same most preferred alternative as “true.” If

that is the case, then record a hit.

The abovementioned procedure (a simulation round) is repeated a large number of times, with

the ratio of the number of hits to the total number of simulation rounds used as a measure of

efficacy. In some MCDA studies, two additional measures of efficacy have been reported,

namely the average value loss and the average proportion of the achieved maximum value

range. These measures do not, however, add anything in particular in terms of value due to

their strong correlation with hit ratio.

Using an N–1ð Þ-generator MCDM simulation model over the simplex Sx, ROC outperforms

the other two methods. But a study by Roberts and Goodwin [40] came up with a different

result where RS performed better than ROC with RR in third place, by employing a different

distribution generating function where a fixed number, say 100, is given to the most important

criterion and the others are uniformly generated as U[0,100]. This N-generator is, of course,

different from N–1ð Þ-generators based on a Dirichlet distribution, and thus, their simulation

study instead yields the result that RS outperforms ROC with RR in third place. As we see

later, using surrogate weights for probability elicitation yields similar results.

7

For simplicity in generation procedures but without loss of generality, assume that all alternatives have the same number

of consequences, N.
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4.3. Simulations of the cardinal surrogate numbers

This chapter focuses on the performance of cardinal surrogate weights in probability elicita-

tion. The simulations included 20 different scenarios made up of 3, 6, 9, 12, and 15 alternatives,

and for each of those cases, the number of consequences was set to 3, 6, 9, and 12, respectively.

Each combination was simulated 10 times, and this was then repeated 10,000 times, totaling

2,000,000 decision problems. The probability vectors for the N DoF model was generated using

a standard round-robin random number generator with subsequently normalized numbers,

and the probability vectors for the N � 1 DoF model was generated using an N-variate

Dirichlet distribution. The value vectors were generated on a uniform interval but left

unscaled, analogous to MCDA studies such as [27]. Compared to alternative value distribu-

tions, there was no significant difference in the results.

A subset of the results, using a 50% combination ofN DoF andN � 1 DoFmodels, is presented in

the tables mentioned later. As described earlier, the numbers denote the ratio of the number of

times the most preferred alternative according to method μ0 coincides with the most preferred

alternative obtained from the “true” probabilities to the total number of simulation runs.8

The marginal utility of various levels of cardinal expressibility was evaluated by varying the

levels of maximum cardinal differences in the simulations. The numbers, say j, in the “Sym-

bols” column denotes the maximum >-index, max ið Þ, of the set of >i symbols, such that

max ið Þ ¼ j, for j > 0. The results are obtained from the ordinal counterparts when j ¼ 0. Hence,

j ¼ 1 implies >0; >1f g, j ¼ 2 means >0; >1; >2f g, and so on. The actual results of the methods,

the hit ratios, are given in percentages.9

Albeit there is a clear advantage of introducing the possibility of equivalence (>0) between

probabilities, the results, in general, indicate diminishing returns with an increase of the

maximum >-index, in particular, when the number of possible consequences for each alterna-

tive is high. For example, at nine or more consequences, cardinal probability elicitation with

only >0 and >1 is to prefer for CRC. Also, the cognitive burden on decision-makers tends to

increase with the granularity of the scale. Hence, a maximum >-index of 2 seems to provide

enough expressional power for probability elicitation (Tables 6–12).

Combined DoF Symbols ROC/CRC RS/CRS RR/CRR SR/CSR

Three consequences and three alternatives 0 86.9 86.8 86.7 87.0

1 88.8 87.7 87.9 88.0

2 89.3 90.1 89.4 90.3

3 89.5 91.2 90.2 91.3

Table 6. Comparing the methods using three consequences to each alternative and three alternatives.

8

Two alternative sets of measurements, not shown in this chapter due to the strong correlation with the hit ratio, exist. One

is the number of times to three most preferred alternatives obtained using μ0 as elicitation method agrees with the three

most preferred alternatives according to the “true” probabilities (i.e., the “podium”). A second is the number of times the

overall rank of the alternative-using method μ0 agrees with the overall rank based on the “true” probabilities.
9

The results of the sets of 10 runs yielded a standard deviation of around 0.2–0.3%.
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Combined DoF Symbols ROC/CRC RS/CRS RR/CRR SR/CSR

Three consequences and 15 alternatives 0 70.9 69.2 69.1 69.5

1 73.9 71.2 70.7 71.0

2 74.6 76.1 74.4 76.2

3 74.6 77.7 76.5 78.6

Table 7. Three consequences to each alternative and 15 alternatives.

Combined DoF Symbols ROC/CRC RS/CRS RR/CRR SR/CSR

Six consequences and six alternatives 0 79.4 79.8 78.0 80.8

1 83.5 80.8 81.0 82.4

2 84.0 83.9 80.5 85.4

3 83.8 85.3 79.3 86.4

Table 8. Six consequences to each alternative and six alternatives.

Combined DoF Symbols ROC/CRC RS/CRS RR/CRR SR/CSR

Six consequences and 12 alternatives 0 75.0 73.8 72.3 75.1

1 78.6 75.6 75.3 77.2

2 78.3 78.3 74.1 78.4

3 77.6 79.6 72.9 80.9

Table 9. Six consequences to each alternative and 12 alternatives.

Combined DoF Symbols ROC/CRC RS/CRS RR/CRR SR/CSR

Nine consequences and nine alternatives 0 76.7 76.5 72.2 78.3

1 81.0 77.2 76.8 79.8

2 80.1 78.7 73.3 81.3

3 78.5 79.7 70.2 81.6

Table 10. Nine consequences to each alternative and nine alternatives.

Combined DoF Symbols ROC/CRC RS/CRS RR/CRR SR/CSR

Twelve consequences and six alternatives 0 80.1 80.5 73.2 82.2

1 83.6 79.9 78.3 82.5

2 81.9 81.1 73.3 83.5

3 80.2 81.7 70.0 83.3

Table 11. Twelve consequences to each alternative and six alternatives.
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The results show that cardinal methods markedly outperform the ordinal methods. Among

the cardinal methods, it is CRC and CSR that provide the best outcomes, but the difference

between these lies within this investigation’s margin of error.

5. Summary and conclusion

Elicitation methods available today are often either too cognitively demanding and require too

much time and effort or unable to use the available information. The aim of this study was to

offer decision-makers a set of methods for probability elicitation with a reasonable balance

between simplicity and usability on the one hand and correctness and accuracy on the other

hand. In particular, we strived to reduce the issues of applicability by loosening the require-

ments of precise information, while allowing for more details than what ordinal methods can

handle. Also, the methods should be relatively robust and applicable to a wide range of

decision problems.

By augmenting a set of ordinal elicitation methods, originally developed for weight elicitation

within MCDA, with a notion of a difference between adjacent probabilities, we arrived at a

collection of cardinal probability elicitation methods. The robustness of the methods was

evaluated using a large number of simulated decision problems, where we also accommo-

dated for two different cognitive models, based on the degree of freedom used during the

ranking, including a mix of them. The results of the simulations point toward a significant

improvement of cardinal methods over purely ordinal ones. In particular, due to the introduc-

tion of equality between probabilities. Among the cardinal methods, in particular, CSR and

CRC seem to provide the most robust results. CSR generalizes SR from [42] by also taking the

cardinal differences of the probabilities into account in a more straightforward way than, for

example, [34].

More fine-grained expressions seem to produce diminishing returns when the number of

consequences of each alternative becomes high. For alternatives with 12 consequences or less,

a cardinal method with the set >0; >1; >2f g seems to supply the decision-maker with adequate

options for producing quite reliable probability elicitations. For alternatives with more than 12

consequences, the reduced set >0; >1f g seems to provide a sufficient granularity.

Combined DoF Symbols ROC/CRC RS/CRS RR/CRR SR/CSR

Twelve consequences and 12 alternatives 0 74.8 74.4 67.9 76.3

1 78.5 73.8 72.3 76.8

2 77.0 75.7 67.3 78.2

3 74.8 77.2 62.0 78.7

Table 12. Twelve consequences to each alternative and 12 alternatives.

Decision Making52



In conclusion, cardinal methods rather than ordinal ones should be preferred for eliciting

probabilities when applicable. More specifically, CSR and CRC have been shown to produce

surrogates, which outperform those of their competitors. They keep decision-makers from

having to provide too much detail, something which has turned out to be difficult for

decision-makers in general, while at the same time reducing the risk of neglecting available

information.
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