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Foreword

Dear reader,

Our aim with the series Simula SpringerBriefs on Computing is to provide

compact introductions to selected fields of computing. Entering a new field of

research can be quite demanding for graduate students, postdocs, and experienced

researchers alike: the process often involves reading hundreds of papers, and the

methods, results and notation styles used often vary considerably, which makes for

a time-consuming and potentially frustrating experience. The briefs in this series are

meant to ease the process by introducing and explaining important concepts and

theories in a relatively narrow field, and by posing critical questions on the fun-

damentals of that field. A typical brief in this series should be around 100 pages and

should be well suited as material for a research seminar in a well-defined and

limited area of computing.

We have decided to publish all items in this series under the SpringerOpen

framework, as this will allow authors to use the series to publish an initial version

of their manuscript that could subsequently evolve into a full-scale book on a

broader theme. Since the briefs are freely available online, the authors will not

receive any direct income from the sales; however, remuneration is provided for

every completed manuscript. Briefs are written on the basis of an invitation from a

member of the editorial board. Suggestions for possible topics are most welcome

and can be sent to aslak@simula.no.

January 2016 Prof. Aslak Tveito

CEO

Dr. Martin Peters

Executive Editor Mathematics

Springer Heidelberg, Germany
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Preface

As information and communications technology (ICT) becomes increasingly

important to modern societies, there is a growing need to understand how to design

and operate very large ICT systems. How should a huge system be designed and

operated to support both high availability and rapid change? Will some of the

system’s stakeholders be exposed to events with intolerable impact? Is the system

fragilizing a service of importance to millions of users? These are questions that

need answers.

According to conventional wisdom, the opposite of a fragile system is a robust

system. While stressors or perturbations can easily damage fragile systems, robust

systems can withstand a great deal of pressure. This is why we write handle with

care on a box with fragile contents and nothing on a box with robust contents. In

2012, essayist and scholar Nassim N. Taleb published his landmark book

Antifragility: Things That Gain from Disorder, pointing out that the opposite of a

fragile system is really a system that needs stressors to thrive. We would write

please mishandle on a box with anti-fragile contents. Unlike robust systems,

anti-fragile systems learn from events with negative impact how to adjust them-

selves and become stronger in a changing world. An example of an anti-fragile

system is the human immune system, with its ability to adapt and self-repair. While

Taleb’s book discusses many natural and man-made systems that are anti-fragile, it

says nothing about how to design and operate anti-fragile ICT systems.

Anti-fragile ICT Systems

This book you hold in your hands or are reading on a computing device models

large distributed ICT systems as complex adaptive systems to determine funda-

mental properties that make systems anti-fragile to different classes of events with a
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negative impact.1 For example, a system can be anti-fragile to downtime or the

spreading of malicious software or malware. Because there are many types of ICT

systems and because each type can be anti-fragile to many classes of events, we

cannot study all possible anti-fragile ICT systems. Instead, this book examines

different aspects of anti-fragile systems carefully selected to show that the concept

of anti-fragility offers a novel and useful approach to the design and operation of

complex adaptive ICT systems.

The book first discusses rare events with a large negative impact and argues that

it is, at best, very hard to predict all such events in complex adaptive ICT systems.

It explains why it is necessary to limit the impact of these events to gain robustness

and why learning from the remaining events with a small impact is necessary to

achieve anti-fragility. Since loss of trust is an inherent and general threat to any ICT

system, the book also models why it is vital for an organization operating an

anti-fragile ICT system to build and maintain a strong trust relationship with its

customer base. Next, the book discusses four design principles, namely, modularity,

weak links, redundancy, and diversity, and one operational principle, the fail fast

principle. While each principle by itself is well known and does not provide any

new fundamental insight, collectively the five principles outline a novel way to

design and operate anti-fragile ICT systems.

We apply the five principles in studies of how anti-fragile systems can

(i) achieve high availability, (ii) prevent malware epidemics, and (iii) detect

anomalies. Analyses of real ICT systems such as Netflix’s media streaming solu-

tion, Norway’s telecommunication (telecom) infrastructure, electronic government

platforms, banking systems, and Numenta’s anomaly detection software show that

cloud computing is central to achieving all three goals. The book therefore con-

centrates on the design and operation of anti-fragile systems running on cloud

computing platforms.

There are good reasons why the goals (i)–(iii) were selected. We study systems

that are anti-fragile to downtime because prolonged outages constitute a serious

problem in a world where users are increasingly dependent on ICT systems.

Malware of many different types represents another serious problem affecting the

security and well-being of all Internet users. Since “classical” signature-based

malware detection techniques are inadequate, we study novel solutions to cope with

the large negative impact of malware. Finally, to react quickly to local failures

before they have time to spread, it is necessary to detect system anomalies early.

This is a difficult challenge, since complex ICT systems have many interconnected

entities. Consequently, we study a powerful and general learning algorithm to

detect anomalies.

At the time of this writing, there are no general methods or theories on how to

develop or operate anti-fragile ICT systems. The book studies select philosophical

and practical aspects of anti-fragile ICT systems to gain an initial understanding

1The book should be printed in color or read on a device with a color screen because some of the

figures are hard to understand when reproduced in black and white.
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of them. The main message is that we should stop building fragile ICT systems of

national or international importance and start building anti-fragile ICT systems. The

book’s contents are deeply influenced by Taleb’s work on anti-fragile systems that

thrive in a world dominated by large-impact, hard-to-predict, and rare events,

Daniel E. Geer Jr.’s keynote speech at the Source 2008 Conference,2 and Jeff

Hawkins’ still evolving theory on how the brain learns. The individual chapters are

based on my own published research, basic results in complexity and network

science, presentations by Neil Hunt3 and Adrian Cockcroft4 on Netflix’s web-scale

solution, and talks by Subutai Ahmad5 and Scott Purdy6 on Numenta’s technology

for anomaly detection.

Who Should Read This Book

While this introductory book is, first and foremost, written for undergraduate stu-

dents in computer science, the first half should be understandable to any technically

educated individual interested in the design, development, and operation of large

ICT systems. The first half introduces the concept of anti-fragility, describes the

design and operational principles, and outlines how the principles can be applied to

achieve anti-fragility to downtime. The book’s second half is more technical and

assumes that the reader has an elementary understanding of graphs. It describes how

to achieve anti-fragility against malware spreading and how to detect anomalies.

The whole book should be of interest to new graduate students looking for a

research topic.

The book contains few abbreviations and formal definitions, background

knowledge is introduced as needed, and studies of real systems help clarify con-

cepts and insights. Each chapter is short and to the point, enabling reading in one or

two sittings. Key information is repeated to make chapters easier to understand and

the definitions of central abbreviations are repeated in each chapter they are used.

An effort was made to reference easy-to-understand books, papers, reports, and

webpages for readers wanting more background information. While the book

argues that anti-fragile ICT solutions in the cloud should have a microservice

architecture, it is not a textbook on cloud computing and microservices. More

information on cloud computing platforms and how to implement microservices

can be found in the References and on the Web.

2See geer.tinho.net/geer.sourceboston.txt.
3See youtube.com/watch?v=jCanhyFDopQ.
4See youtube.com/watch?v=dekV3Oq7pH8.
5See youtube.com/watch?v=nVCKjZWYavM.
6See youtube.com/watch?v=I5lSEHvngaI.
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Chapter 1

Introduction

Modern societies cannot function without information and communications

technology (ICT) systems. When ICT systems such as electronic government

(e-government) systems, e-payment infrastructures, and mobile phone networks fail,

users can still access alternative systems based on older technologies, but these alter-

natives are rapidly disappearing. E-government services are introduced on the Web

to improve services to citizens and to free up the human resources needed to tackle

the increasing health care requirements of aging populations. Since there will not

be enough government employees to handle a large number of requests over the

phone, on paper, or by personal appointment in the future, it is necessary to deploy

e-government services that remain robust to undesirable incidents over time and that

are available to citizens around the clock.

The robustness and availability of national e-payment infrastructures are also

becoming increasingly important as countries are becoming cashless societies. If a

nationwide e-payment infrastructure goes down in a cash-free society, people will

not be able to pay for necessities. In Scandinavia, this is already more or less the

case, since many people, especially the young, no longer carry cash. While Norwe-

gian banks want to abolish cash altogether to reduce costs, there have been enough

incidents over the last ten years causing unplanned downtime and erroneous account

withdrawals to question whether the current e-payment infrastructure can provide the

very high availability and long-term robustness required by a completely cash-free

society.

Mobile phone networks have nearly replaced fixed-line phone systems in many

countries. It is difficult to find spare parts for the old landline systems and they

are expensive to maintain. Norway’s largest telecom company wants all remaining

fixed-phone subscribers to move to mobile subscription plans so it can dismantle the

landline system altogether. Several large incidents have demonstrated how dependent

the Norwegian population has become on mobile phone networks. When areas on

the west coast of Norway lost power for several days because of a severe storm,

the local inhabitants mainly complained about the mobile phone networks being

down, illustrating that people now expect their mobile phones to work anytime and

anywhere.
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As traditional governmental services, cash-based payment systems, and landline

phone networks are disappearing, there is a growing need for very large ICT systems

with very high availability and sustained robustness to unwanted incidents. How

should such systems be designed and operated to meet the increasing expectations of

users in a rapidly changing world? Is a particular system design fragilizing a service of

importance to millions of users? Will users be exposed to incidents with intolerable

impact? Common mode failure is a particularly important challenge, defined as a

failure in multiple parts of a system due to a single event. How do we prevent single

events from propagating and taking down many parts in the same manner? This

book tries to answer these questions by modeling large ICT systems as complex

adaptive systems.

1.1 Complex Adaptive Systems

The term complex adaptive system denotes a man-made or natural system consisting

of many entities that interact in involved ways. The entities adapt to each other and

the environment to enable the system as a whole to survive events with potentially

large negative impact [1–7]. ICT systems consisting of large networked computer

systems and many stakeholders, including users, operators, and owners, are complex

adaptive systems, as illustrated in Fig. 1.1. The complexity is due primarily to the

numerous interactions between the stakeholders and the computer systems, the large

amounts of communications between the networked subsystems, and the influence of

changing security and privacy policies, as well as threats such as equipment failure,

extreme weather, and sabotage. Collections of software services running on cloud

computing platforms and nationwide infrastructures for mobile telecom constitute

two particularly interesting classes of complex adaptive ICT systems with many

users, mutually dependent entities, and self-regulating behaviors.

To gain an understanding of why governments and companies build complex

adaptive ICT systems, we consider how valuable distributed ICT systems are to their

Fig. 1.1 A complex ICT system’s global behavior is caused by dynamic interactions between the

stakeholders and the networked computer system and by interactions between the network’s many

subsystems. Changes to policies, threats, or subsystems can cause sudden and large changes in

global behavior
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owners. Here, value can be the ability to provide a population with transactional

services on the Web or the revenue from an online social network. Consider a sys-

tem with N users. The number of possible pairs of connections between users is

N (N − 1)/2, giving rise to Metcalfe’s law, stating that the value of a system is pro-

portional to the square of the number of connected users, N 2. Alternatively, there

are 2N
− N − 1 possible sub-groups of users, resulting in Reed’s law, stating that

the value of a system scales exponentially with the number of users, 2N . Both laws

indicate that the value of distributed ICT systems grows very rapidly with the num-

ber of users, making it desirable for governments and companies to build huge ICT

systems of high complexity. In addition, for many networked systems, every new

user makes a system’s services more valuable to the other users.

Complex adaptive systems contain feedback loops, as illustrated in Fig. 1.2. A

feedback loop is a series of interacting processes that together result in a system

adapting to the effect of its previous behavior. Feedback loops are what make complex

systems adaptive. The loops create emergent global patterns or behaviors. Positive

(escalating or compounding) feedback loops propagate and turn local events into

global events, affecting whole systems, while negative (dampening or stabilizing)

feedback loops limit the impact of local events affecting parts of systems. Negative

feedback typically stabilizes a system’s global behavior over a certain operating

range, while positive feedback creates extreme global behavior outside the normal

operating range [1, 3, 4]. Ideally, complex adaptive ICT systems should prevent

positive feedback loops from ever propagating local failures into extreme global

behaviors and causing systemic failures.

The emergent global behaviors of complex adaptive ICT systems are often mod-

eled as stochastic events with given probability distributions. We distinguish between

thin-tailed and thick-tailed distributions (see Chap. 2). If the tails are thin, then out-

liers in the form of extreme global behaviors can be ignored because the thin tails

make the outliers very unlikely. When the distributions have thick tails, the outliers

cannot be ignored because the probability that at least one outlier will occur is sig-

nificant. Many man-made systems, including ICT systems, have positive feedback

loops that cause certain local events to propagate and create extreme global behaviors.

The extreme behaviors, especially unplanned downtime, become more common than

stakeholders can accept. These outliers are modeled by probability distributions with

thick tails. Unfortunately, classical methods for risk analysis based on predictions of

Fig. 1.2 Generic feedback loop: an external or internal action leads to a system reaction. The

reaction then causes the system to change, which initiates another action and the process repeats

http://dx.doi.org/10.1007/978-3-319-30070-2_2
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Fig. 1.3 Birth–death process illustrating malware spreading

future events tend to underestimate or ignore extreme global behaviors in complex

adaptive ICT systems, even though these events may very well dominate the overall

risk to stakeholders.

A vulnerability in a man-made system can be a flaw in the design, a bug in the

implementation, or a mistake in the system’s operation or management. Any complex

man-made system has vulnerabilities. Coincidental errors and malfunctions, as well

as hostile and targeted attacks, exploit vulnerabilities to cause failures leading to

extreme global behavior such as unplanned system downtime. In particular, malicious

software, or malware, can exploit vulnerabilities and cause information leakage.

Figure 1.3 depicts a simple model of an infectious malware epidemic that involves a

positive feedback loop of increased births and a negative loop of increased deaths.

Without deaths, the population size will increase exponentially, that is, negative

feedback is needed to keep the positive feedback under control [1].

The observed fragility of complex ICT systems to prolonged downtime and mal-

ware infections demonstrates the need for better system design, implementation,

operation, and management. The many interactions between the adaptive entities in

the systems create a highly non-linear and time-varying relation between the input

and output that makes it nearly impossible to predict extreme global behavior. Hence,

we need non-predictable techniques to create complex adaptive ICT systems. Taleb’s

work [8–12] suggests that we should develop and operate so-called anti-fragile sys-

tems characterized by two important properties: First, an anti-fragile ICT system fails

early with a small, local impact to break positive feedback loops before they can cre-

ate extreme global behaviors. Second, the prevention of extreme global behaviors

allows stakeholders to learn from small-impact incidents about new vulnerabilities

caused by changes in the system and its environment. The vulnerabilities can then

be mitigated to avoid future extreme behaviors.

This book investigates how to develop and operate anti-fragile ICT systems.

Cloud-based systems are emphasized because cloud computing platforms utilizing

virtualization technologies greatly facilitate the creation and maintenance of anti-

fragility compared to traditional datacenters without virtualization technologies (see

Chap. 5).

http://dx.doi.org/10.1007/978-3-319-30070-2_5
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Fig. 1.4 Toward anti-fragility

1.2 Fragile, Robust, and Anti-fragile Systems

The research literature has long categorized complex adaptive systems as fragile or

robust to incidents with a particular type of impact. Fragile systems are vulnerable

to the impacts of these incidents, while robust systems withstand or absorb them.

Unlike robust systems, anti-fragile systems learn from such incidents how to function

increasingly well in a changing environment [9, 10]. In fact, anti-fragile systems

need incidents to remain well adapted to their environments. Without the ability to

learn from incidents, anti-fragile systems become fragile over time as the systems

themselves and their environments change. The human immune system, with its

ability to adapt and self-repair, is a prime example of a system that is anti-fragile to

many types of impact.

As depicted in Fig. 1.4, the fragility, robustness, and anti-fragility to a particular

type of impact are best viewed as degrees on a spectrum with fragile systems to

the left, robust systems in the middle, and anti-fragile systems to the right. Systems

have to become robust before they can become anti-fragile and no system can be

anti-fragile to all possible types of impact [10]. At present, there is no general tech-

nique to measure fragility, robustness, and anti-fragility. However, this book will

demonstrate that it is not difficult to recognize when a system is fragile, for exam-

ple, to downtime or malware spreading. Furthermore, it will introduce design and

operational principles that move toward anti-fragility in Fig. 1.4.

1.3 Overview of Book

Taleb [10] introduced the concept of anti-fragility to analyze and explain why it is not

enough for large natural or man-made systems to be robust to predictable events with

large impact. In an unpredictable world, systems must be able to handle randomness,

volatility, and unforeseen large-impact events. Learning from incidents is needed to

prevent systems from developing fragilities over time.

So far there are no general methods or theories on how to develop or operate anti-

fragile ICT systems. This book studies select philosophical and practical aspects of

anti-fragile ICT systems to gain an initial understanding of them. The main mes-

sage is that we should stop building fragile ICT systems of national or international

importance and start building anti-fragile ICT systems.

The book is divided into five parts. Part I discusses the concept of anti-fragility,

why the concept is important, and how to achieve anti-fragility in general. Part II
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outlines in some detail how different ICT systems can achieve anti-fragility to down-

time and Part III develops a technique to achieve anti-fragility to malware spreading.

Since we need to detect failures to achieve anti-fragility, Part IV discusses how to

detect anomalies in system behavior. Finally, Part V summarizes the book’s main

insights and suggests potential venues for further work.

The contents of Parts I and II should be easy to understand for most readers, while

an additional effort may be needed to understand the more complicated content of

Parts III and IV. To facilitate understanding, certain chapters repeat central informa-

tion introduced earlier in the book. The following sections provide more detailed

summaries of the five parts.

1.4 Creating and Maintaining Anti-fragility

Part I, including the current chapter, outlines how to create and operate complex adap-

tive ICT systems with anti-fragility to different types of impact, such as unplanned

downtime and malware spreading. Chapter 2 first discusses rare events with a large

negative impact and argues that it is, at best, very hard to predict all such events

in complex systems. Next, it explains why a system must limit the impact of these

events to gain robustness and why learning from the remaining events with a small

impact is necessary to achieve anti-fragility.

While organizations with anti-fragile systems must accept and learn from failures,

they also need to focus on building trust with users to maintain and increase their user

base. Chapter 3 defines a simple agent-based model of how trust changes in a user

population. The model illustrates that trust is fragile to incidents directly affecting

few users and that massive distrust is robust to large efforts to regain trust. Since

it is very hard to predict which events have the potential to create massive distrust,

organizations must have procedures in place to handle the impact of incidents before

distrust starts to spread.

The design of an ICT system is the process of defining its components, interfaces,

data formats, data flow, and data storage that together satisfy specified availabil-

ity, performance, and scalability requirements. Chapter 4 first provides four design

principles that isolate local failures, keeping their impacts small, while supporting

stringent requirements. Second, it introduces one operational principle that enables

stakeholders to quickly learn from natural and induced failures to maintain a level

of anti-fragility as a system and its environment change. While each principle alone

does not provide any new fundamental insight, collectively the five principles outline

a novel way to design and operate anti-fragile ICT systems. In particular, it is possi-

ble to create ICT systems with higher availability than today’s tightly connected and

highly optimized systems with limited redundancy and diversity.

http://dx.doi.org/10.1007/978-3-319-30070-2_2
http://dx.doi.org/10.1007/978-3-319-30070-2_3
http://dx.doi.org/10.1007/978-3-319-30070-2_4
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1.5 Anti-fragility to Downtime

A cloud computing platform enables ubiquitous, convenient, on-demand access to a

shared pool of configurable computing resources such as CPUs, networks, memory,

and databases that can be rapidly provisioned and released with minimal manage-

ment effort or service provider interaction [13, 14]. Virtualization technologies are

used to abstract the resources for applications and end users. The availability of a

cloud-based ICT system is measured by the percentage of time it is accessible to

users. A high availability of 99.99 %, referred to as four nines of availability, corre-

sponds to about 53 min of downtime each year. A complex ICT system is fragile to

downtime if its availability is unacceptably low to some stakeholders, robust if the

availability is acceptable to all stakeholders, and anti-fragile if stakeholders or the

technical system itself learn to maintain an acceptable availability as the system and

its environment change.

Part II discusses how the five design and operational principles from Chap. 4 can

be implemented on cloud computing platforms to create highly available software

solutions and mobile telecom infrastructures. To gain insight, we reason about real

systems using philosophical concepts, objects, figures, and impressions of past inci-

dents. The thinking is based solely on publicly available information and is rooted in

complexity science [15–20], where whole systems cannot be understood by exclu-

sively studying their parts; instead, it is necessary to emphasize interrelationships

and changes to understand the systems’ dynamic global behaviors.

Chapter 5 outlines how Netflix implemented the five principles in their cloud-

based web-scale solution for media streaming. Chapter 6 explains why Norway’s

e-government system has experienced too much downtime and describes how a

new cloud-based system founded on the five principles can achieve anti-fragility to

downtime. The chapter also references the UK e-government system to argue the

need for user-focused and iterative software development to achieve anti-fragility.

Finally, Chap. 7 discusses fragility to downtime in Norwegian telecom systems and

outlines how the five principles applied on cloud computing platforms can make

telecom systems anti-fragile to downtime.

1.6 Anti-fragility to Malware Spreading

Malware is any form of malicious software used to disrupt computer operations,

gather sensitive information, or gain unauthorized access to private computer sys-

tems. Malware appears as executable code, scripts, active content, and other software.

Malware includes computer viruses, worms, trojans, ransomware, spyware, scare-

ware, and other types of malicious programs. Worldwide, trojans, worms, and viruses

continue to dominate among the many malware types.

Malware is a serious threat to anybody using a computer system connected to the

Internet [21, 22]. A networked system is fragile to malware spreading when local

http://dx.doi.org/10.1007/978-3-319-30070-2_4
http://dx.doi.org/10.1007/978-3-319-30070-2_5
http://dx.doi.org/10.1007/978-3-319-30070-2_6
http://dx.doi.org/10.1007/978-3-319-30070-2_7
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outbreaks spread far and robust when new malware outbreaks have very limited

spreading. The system is anti-fragile to malware spreading if it first learns to reduce

the fraction of infected devices, for example, to less than 1 % and then manages to

keep the fraction of infected devices low even as the spreading mechanism of the

malware changes.

Part III develops a novel malware-halting technique that prevents frequent mal-

ware outbreaks from propagating over huge networks of computing devices. Calcula-

tions and simulations using slightly modified epidemiological models from network

science [23] determine the time-averaged fraction of infected devices. Chapter 8 out-

lines how application stores utilizing compilers with so-called diversity engines [24]

can generate enough software diversity to gain robustness to malware spreading by

halting frequent malware outbreaks with a fixed spreading mechanism. It also argues

that diversity slows down persistent targeted attacks.

Chapter 9 studies malware types that spread over networks with an unknown

topology. The malware studied have the ability to reinfect nodes multiple times.

Acquaintance immunization [25] and software diversity are combined to gain robust-

ness to malware reinfections. While reinfections generally help malware stay alive

for a long time, the described halting technique prevents malware outbreaks from

spreading very far before they die out.

Chapter 10 combines cloud computing, time-varying software diversity, immu-

nization, and imperfect malware detection/removal to model and analyze networks

that gain anti-fragility to malware spreading by learning to halt and remove malware

with unknown and time-varying spreading mechanisms. Non-infectious malware

mistakenly downloaded by computer users are viewed as infectious malware with

limited spreading ability.

1.7 Anomaly Detection

To achieve anti-fragility to a particular type of intolerable impact, local failures

must be detected before they can propagate into systemic failures. Humans are often

needed to determine whether a local anomaly is just a benign change or a local failure

with the potential to create a systemic failure. Current ICT systems deploy various

techniques and heuristics to detect anomalies. For example, banks and credit card

companies have a rich set of heuristics to detect fraud [26].

In Part IV, we study a general learning algorithm based on the biology of the brain’s

neocortex. The learning algorithm was developed by Hawkins [27] and implemented

in software by the company Numenta (http://numenta.com). The algorithm is able

to predict the behavior of a wide variety of systems. If a prediction and the actual

behavior differ, then an anomaly is detected. Chapter 11 discusses the biological basis

for the learning algorithm and provides an overview of the algorithm itself.

Numenta’s experiments with different types of streaming data, including metric

data from cloud applications, show that the algorithm detects anomalies that are

http://dx.doi.org/10.1007/978-3-319-30070-2_8
http://dx.doi.org/10.1007/978-3-319-30070-2_9
http://dx.doi.org/10.1007/978-3-319-30070-2_10
http://numenta.com
http://dx.doi.org/10.1007/978-3-319-30070-2_11
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hard for humans to discover. Chapter 12 illustrates how the early detection of subtle

anomalies allows systems or their stakeholders to take early action to prevent local

failures from creating intolerable impact.

1.8 Ongoing Explanatory Work

Part V consists of Chap. 13. It summarizes the book’s main insights and discusses

possible research directions to further increase the understanding of anti-fragile ICT

systems.

Overall, this book is a result of the author’s ongoing long-term effort to under-

stand what Taleb’s [8–12] philosophical investigations and Geer’s [28–33] systems

thinking tell us about the design, implementation, operation, and management of

complex adaptive ICT systems. Both Geer and Taleb look to nature to understand

anti-fragile systems. In nature, sexual reproduction creates many species consisting

of individuals who genetically differ from each other. An infectious disease is very

unlikely to wipe out an entire population, since some individuals are almost certainly

genetically immune. In other words, while each individual is vulnerable to diseases,

the population survives due to a diverse gene pool.

While the author avoids superficial references to biology and Darwin’s theory of

evolution in the book, he agrees with Geer and Taleb that there is much to learn from

nature on how to build complex ICT systems. In particular, Geer has stated several

times that computing devices should have a relatively short life unless they are easy

to upgrade. This observation has strongly influenced the work in Part III, leading to

a novel approach to malware halting.

It is hard to precisely model the global behaviors of complex ICT systems. Rather

than trying to develop sophisticated models to accurately simulate the behaviors of

real systems, this book develops toy models to gain an understanding of them. While

these models cannot predict the global behavior of real systems, they provide expla-

nations of important system properties. The suggested malware-halting technique

in Part III demonstrates that it is possible to create novel approaches and solutions

to difficult problems by developing simple agent-based models of networked ICT

systems and then employing techniques from network science to analyze the models’

properties.

Since many of the ideas presented in this book have yet to be tested in real systems

and since the book by no means covers all aspects of anti-fragile ICT systems,

the author welcomes criticism and debate to shed further light on how to develop

and operate anti-fragile ICT systems. Understanding all aspects of these systems is

an important task for both the research community and the industry—not only for

the author.

http://dx.doi.org/10.1007/978-3-319-30070-2_12
http://dx.doi.org/10.1007/978-3-319-30070-2_13
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Chapter 2

Achieving Anti-fragility

A stakeholder is a person or institution with a legitimate interest in a given information

and communications technology (ICT) system. Examples of stakeholders are users,

owners, operators, regulatory government agencies, system architects, and software

developers. Given a set of stakeholders, a complex adaptive ICT system is fragile

to a particular type of negative impact, for example, downtime, if a possible large

impact is unacceptable to some stakeholders in the set and robust if all possible

impacts are acceptable to all stakeholders. The ICT system is anti-fragile if it learns

(perhaps with help from some stakeholders) to maintain an acceptable impact to all

stakeholders as the system and environment change over time.

This chapter first considers rare failures causing unacceptable impact and argues

that it is very hard to predict all such future events. Second, it argues that it is necessary

to limit the impact of failures to gain robustness and to learn from the remaining small

failures to achieve anti-fragility. Third, the chapter discusses limitations of classical

risk analysis methods before finally introducing an alternative definition of risk in

complex adaptive ICT systems.

2.1 Black and Gray Swans

As stated in Chap. 1, global emergent behaviors of complex adaptive systems are

modeled as stochastic events with given probability distributions. For simplicity, we

assume that the studied behavior of a system is modeled by a continuous random

variable with a distribution given by a probability density function (PDF). Figure 2.1

shows two PDFs, each with a left and right tail. The tails determine the probability of

outliers in the form of extreme global behavior. The left tail defines the probabilities

of outliers with huge negative impact, while the right tail defines the probabilities of

outliers with huge positive impact. We are only concerned with negative impact in

this book.

As illustrated in Fig. 2.1, there are PDFs with thin tails and thick (or fat) tails. If a

PDF has thin tails, then most events occur close to the mean of the PDF. Furthermore,

© The Author(s) 2016
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Fig. 2.1 Two PDFs, one with thin tails and one with thick tails

Fig. 2.2 Probability and negative impact of a single nonrecurrent swan incident versus recurrent

incidents. The swan is an outlier

outliers far from the mean have such low probabilities that they can be ignored

for all practical purposes. This is the case for the thin-tailed bell curve (or normal

distribution). However, if a PDF has thick tails, then the probabilities of the outliers

are too large to be ignored. Observe that a PDF can also have one thick tail and one

thin tail.

Large man-made systems designed in a top-down manner by successively being

broken down into smaller parts tend to have global behaviors whose probabilities

are defined by PDFs with thick left tails. In general, the thick tails are due to posi-

tive feedback loops created by a series of interacting processes that together result in

systems adapting to the effect of their previous behaviors (see Fig. 1.2). Positive feed-

back loops allow for outliers with unacceptable impact [3, 4]. Taleb [9] distinguishes

between two types of outliers with negative impact, namely, black and gray swans.

Figure 2.2 depicts the differences in probability and impact between a nonrecurrent

black or gray swan and so-called normal, recurrent incidents: Both types of swans

are surprising outliers, falsifying previous assumptions about the negative impact of

incidents made by most or all stakeholders of a system.

Assume an arbitrary but fixed set of stakeholders. A black swan is a metaphor for

rare global behavior of a complex adaptive system whose huge negative impact comes

as a total surprise to all stakeholders in the set. This type of extreme emergent behavior

http://dx.doi.org/10.1007/978-3-319-30070-2_1
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is the “unknown unknown,” a rare bombshell event that none of the stakeholders have

considered.

Two important observations can be made about black swans. First, a black swan

cannot be described by any of the stakeholders because the event is completely

unknown to all of them. Second, while a black swan is a total surprise to all the

stakeholders considered, there may be other individuals outside the group of stake-

holders for which the event is not a big surprise. As an example, while the economic

crisis of 2007/2008 came as a huge surprise to most people, a few individuals, includ-

ing Taleb [9], foresaw the crisis, even though they could not say when the crisis would

occur or exactly how serious the consequences would be.

A gray swan is a metaphor for rare global behavior with a large negative impact

that is somewhat predictable but typically overlooked by most of the stakeholders

considered. It is the “known unknown,” a rare event that some know is possible but

no one knows when or whether it will occur. Because a gray swan is not a complete

surprise to all stakeholders, it tends to have less impact than a black swan. However,

its impact is still huge. For simplicity, we often neglect to define a set of stakeholders

when we discuss gray and black swans. However, the reader should assume that

users, owners, software developers, operators, and regulatory government agencies

are always among the stakeholders.

2.2 Examples of Swans

Hindsight bias, or the knew-it-all-along effect, is the natural tendency, after an inci-

dent has occurred, to conclude that the incident was foreseeable, despite there hav-

ing been little or no objective basis for this conclusion. Hindsight bias [6, 9] causes

observers to miscategorize black swans as gray swans after the fact. Moreover, dif-

ferences in understanding, personal involvement, and available information cause

individuals to disagree on whether a large-impact event is a black or gray swan at

all. Consequently, it is hard to make all observers agree on what incidents are gray

and black swans in complex ICT systems, especially when the observers have no

access to the stakeholders. We can, however, give examples of incidents that many,

but perhaps not all, security experts will categorize as swans.

When the computer worm Nimda first appeared on the Internet in September

2001, it spread quickly, causing hundreds of millions of dollars in damages, accord-

ing to press reports. Although the public was familiar with worms at the time, we

characterize Nimda as a black swan because it was the first infectious malware

with multiple attack methods [30]. Nimda’s five attack methods made it extremely

difficult to foresee all of their consequences. The large number of infected com-

puters demonstrates that the attacks surprised computer owners, software vendors,

and information technology departments. While NIMDA caused much damage, it

could have been much worse. The worm occurred only one week after the 9/11

terrorist attacks. According to Geer [30], the backdoor installed by NIMDA could

have been exploited to run denial-of-service attacks on emergency services all over
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the United States, causing public loss of confidence after the nationwide uncertainty

created by the shock of 9/11.

In August 2001, a company providing services to Norwegian banks installed

new disks in a backup system used to mirror the production environment. System

operators inadvertently routed the instruction to format the disks to the production

environment rather than to the backup system. The error rendered production data

inaccessible on about 280 disks, thus halting the production environment. This rare

incident affected 114 banks and roughly 1 million users. It took seven days before

payment card, ATM, Internet banking, and phone banking services were all back to

normal operation. While the total cost to the company is not publicly known, it was

likely very large, since the company had to compensate the banks for their financial

losses. This gray swan occurred because administrators did not pay enough attention

to the established security procedures and thus triggered a single point of failure in

the system.

While we should always try to remove single points of failures from ICT systems,

there exist systems for which a single point of failure is an essential side effect of

the design [30]. The single red phone on the American president’s desk is a good

example. Many red phones would be a far worse solution from a risk management

point of view. When a single point of failure is a design requirement, we need to

deploy defense in depth, which is not a research-grade problem. Hence, we will not

discuss single points of failure in any detail in this book.

2.3 Limiting the Impact of Failures

To understand the challenges of curbing the impact of failures in complex ICT sys-

tems, we study why it is so hard to predict rare events with large negative impacts [9,

34]. Let the term incident denote an event with negative impact. To predict any future

incident, we must describe the incident, estimate its probability, and calculate the

impact. Many incidents causing, for example, unplanned downtime are predictable,

especially incidents due to single points of failure. As an example, ICT systems with-

out redundant data storage or backup power are sure to fail sooner or later. However,

swan incidents exist that are very hard or even impossible to predict.

In fact, it is very hard to accurately predict extreme global behavior in complex

ICT systems [7, 34]. Because the systems have too many dynamic interactions for

humans to even enumerate all the possible scenarios leading to outliers with a huge

negative impact, it is easy for all stakeholders to overlook a future swan, thus making

it black. Furthermore, it is hard to estimate the probabilities of identified gray swans,

because a complex system changes significantly and perhaps abruptly over time and

because a system’s recorded history might not contain a single swan; for example, a

100-year flood is not likely to show up in 10 years of historical data.

Complex systems’ lack of well-defined boundaries makes it hard to build models

to accurately estimate the probabilities of gray swans. Taleb utilizes power laws to

illustrate that small model errors greatly affect rare events’ estimated probabilities
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[11]. Experience with a particular system type helps estimate gray swan probabilities

in a similar new system. However, because the estimation of gray swan probabili-

ties in a large system requires many assumptions, especially when considering the

design of a system that has not yet been implemented, the estimates carry significant

uncertainty. All in all, it is very hard for stakeholders to accurately predict the gray

swans that actually occur. In addition, even if a system owner mitigates all the gray

swans, an unknown black swan can still cause huge damage.

Since the probability of each black and gray swan is both small and unknown,

it is tempting to ignore swans altogether. However, because a complex ICT system

is typically vulnerable to many swans, there is a significant probability that at least

one swan will occur. Thus, no matter the quality of the risk analysis, swans causing

unacceptable impact will occur in complex ICT systems sooner or later; unless the

systems are especially designed and operated to limit the impact of rare, unforesee-

able events [3, 4, 6, 10].

To avoid surprising outliers and help ensure event distributions with thin left tails,

Chap. 4 proposes four design principles to isolate local failures affecting small parts

of systems, thus preventing them from propagating into systemic or global failures

affecting complete systems.

2.4 Learning from Small Failures

In an interesting monograph, Sidney Dekker [17] recounts series of small, rather

insignificant everyday decisions leading to major disasters, including large oil spills

and plane crashes. There are no easily detectable properties of the decisions that signal

major disasters in the future. In fact, given the information available at the time, most

of the decisions are reasonable when studied in isolation. However, over time, the

decisions reduced the diversity and redundancy of the systems and made them steadily

more fragile to disasters. This fragilizing process was mainly driven by pressure to use

fewer resources and to produce results faster. Some stakeholders contributed to the

system fragility by introducing conflicting requirements and regulations, while other

stakeholders encouraged risky behavior to reach certain goals, such as producing

large quantities of oil.

The accident scenarios described by Dekker [17] further demonstrate that broken

parts are not the major reason for disasters in complex adaptive systems. Rather,

it is the stakeholders’ inability to cope with the complexity of a system and its

changing environment. Lack of understanding, insufficient communication between

stakeholders, and pressure to improve a system’s “efficiency” all increase its fragility

to disasters. Dekker shows how stakeholders build and operate systems they do not

fully understand. While stakeholders grasp the functionality of each part, the huge

amount of interactions between the many parts and the changing rules and regulations

governing the operations of the systems make it impossible for stakeholders to prevent

rare catastrophic events.

http://dx.doi.org/10.1007/978-3-319-30070-2_4
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In summary, man-made complex systems in general and complex ICT systems

in particular tend to drift into systemic failure because they become increasingly

fragile due to internal and external changes. The drift occurs slowly, with few or

no obvious indications of increased fragility before a major incident occurs [2, 17,

35]. Since black and gray swans in complex systems limit the stakeholders’ ability

to predict extreme global behavior with a huge negative impact, the stakeholders

must analyze local failures (with limited impact) and introduce countermeasures to

avoid increased fragility due to local failures propagating into global failures. Daniel

Kahneman’s pioneering work [36] and a monograph by Michael T. Nygard [35]

confirm the discussed limits of prediction and the need to learn from local failures.

Since the capacity to detect small failures is crucial to determine vulnerabilities, the

comprehensive monitoring of a system’s behavior is extremely important to achieve

anti-fragility. The goal is not to prevent all failures in an ICT system but to avoid

silent failures and quickly start necessary repairs.

Because systemic failures are most often, but not always, initiated by local failures

that propagate due to positive feedback loops, it is possible to prevent many swans by

detecting local failures and preventing them from propagating. While all swans may

not be absolutely prevented, it is possible to make rare events rarer and reduce their

impact. Chapter 4 proposes an operational principle that induces artificial failures

into a system to quickly detect vulnerabilities with the potential to cause systemic

failures. A team of experts with diverse skill sets should learn from the induced

incidents because a team could respond faster and gain more insights than a single

individual. All team members should have “skin in the game” [10, Chap. 23]: When

the members face the consequences of their actions and suffer failure as well as enjoy

success, they become motivated to learn rapidly and not take unwarranted chances.

A team of software developers has skin in the game when it is responsible for both

the development and operations (DevOps) of its software [37, 38]. Another way of

introducing skin in the game is to let team members use their own software as much

as possible.

The increasingly popular DevOps methodology emphasizes communication, col-

laboration, and integration between software developers and information technology

operations professionals. DevOps is a response to the interdependence of software

development and information technology operations. It facilitates learning from nat-

ural and induced failures and encourages software developers to create robust code

so they do not have to fix problems at three o’clock in the morning.

2.5 An Alternative Justification

We have argued that a complex ICT system exposed to swan incidents must be anti-

fragile to the swans’ impacts to thrive over time. According to Taleb [10], the need for

anti-fragility can be summarized as follows: Let X be a random variable representing

events with some probability distribution (given by a PDF) and let h(X) be another

random variable representing the possible impacts, for example, the financial costs

http://dx.doi.org/10.1007/978-3-319-30070-2_4
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to a stakeholder. In practice, we care about h(X) and not X . While it is often hard to

change the thick-tail distribution of X , it can be much easier to change the distribution

of h(X). Our goal is to ensure that the distribution of h(X) has a thin left tail to avoid

intolerable costly outliers (see Fig. 2.2).

Since a complex adaptive system and its environment change over time, perhaps

abruptly, the distribution of h(X) also changes. The left tail of the changing distrib-

ution of h(X) is unknown because we do not have sufficient data, that is, the history

of the system may not contain any outliers and, even if it did, there is no guarantee

that the future of the system will be anything like its past. Hence, an anti-fragile

system must prevent local failures from propagating into systemic failures and use

local failures to detect and remove vulnerabilities that can lead to systemic failures

in the future.

While the discussed approach leads to a thinning of the left tail of h(X), there is no

absolute guarantee that a swan will not occur in a complex ICT system. Guaranteed

swan-free ICT systems can only be achieved by keeping the systems relatively small

to limit their importance and possible negative impact. It may also be necessary to

isolate systems from each other, for example, systems with particularly sensitive

information should not be connected to the Internet.

2.6 Risk Analyses Ignore Swans

The reader may wonder how classical methods for the risk analysis of ICT systems

rate the impact of swans. The short answer is that they mostly ignore swans altogether.

This unfortunate tendency partly explains why we continue building ICT systems

with tightly interconnected parts, little diversity, and low redundancy that allow local

failures to propagate into systemic failures.

Traditionally, analysts evaluate risk by estimating the probability of a threat

exploiting a vulnerability and by determining the resulting incident’s negative impact.

Analysts often use the values low, medium, and high to approximate the probability

and impact, resulting in the five-level risk matrix in Fig. 2.3. The matrix incorrectly

classifies a gray swan as a medium risk because it has a low probability and high

impact according to the approximations.

As an example, a nationwide outage in a power grid is a medium risk despite the

outage’s ability to inflict damage in the billions of dollars. Since swans, with their

huge impacts, tend to dominate the total risk of complex ICT systems, the use of risk

matrices has lead to a gross underestimation of the total risk associated with many

systems.

The underlying problem is that risk matrices of the type depicted in Fig. 2.3

implicitly assume that the distribution of the impact h(X) has a thin left tail. Since

the probabilities of nonrecurrent outliers or swans are assumed to be so small that

the incidents can be ignored, the risk matrix only represents recurrent incidents with

larger probabilities and smaller impacts than those of swans. However, a complex

adaptive ICT system with many tightly connected parts is very likely to have a h(X)



20 2 Achieving Anti-fragility

Fig. 2.3 The five-level risk matrix underestimates the risk of gray swans

distribution with a thick left tail, making it dangerous to use the risk matrix in Fig. 2.3

because it excludes the possibility of swans.

2.7 Understanding and Reducing Risk

An interesting video exists (https://www.youtube.com/watch?v=MKcZtvwch1w) of

the late Peter L. Bernstein discussing risk. According to Bernstein, we talk about risk

when we do not know what will happen. Risk simply means that more things can

happen than will happen. Since this book focuses on swans incidents, we use a more

specific and narrow definition of risk. Consider a group of one or more stakeholders

with interests in a complex adaptive ICT system. We define the risk associated with

the group of stakeholders as the largest negative impact of all incidents that can

happen to the group during a fixed period. How the impact is actually measured

depends on the system and the interests of the stakeholders. Impact is commonly

measured in terms of financial loss. Note that our definition of risk is not based on

the probability of an incident. Because the definition of risk is tailored to the book’s

focus on intolerable incidents, it may not be the best choice in other settings.

Risk is a consequence of dependence [31]. A part (or system) X depends on

another part (system) Y if a failure in Y negatively affects the functionality of X .

The main sources of risk in an ICT system are the dependencies between its parts

creating positive feedback loops, which again cause local failures to propagate into

global failures. In general, the growing number of dependencies in increasingly

complex systems causes incidents impacting stakeholders to become less frequent,

because the systems become better at handling recurrent incidents over the normal

operating range. However, at the same time, the impacts of nonrecurrent incidents

are increasing due to the positive feedback loops propagating (combinations of) rare

local events outside the normal operating range.

https://www.youtube.com/watch?v=MKcZtvwch1w
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In Taleb’s [9] terminology, while incidents affecting stakeholders are becoming

less frequent, gray and black swans occur more often in ICT systems with tight

internal integration as their complexity grows. Since it is hard to determine all the

dependencies of complex systems, the probability of swans in complex ICT systems

is underestimated, causing intolerable impacts because most stakeholders are not

prepared for swans.

As the risk of recurrent incidents is reduced and the intervals between incidents

grow longer, the assumption that complex ICT systems are “safe” also grows, thus

causing a situation (actually a feedback loop) in which stakeholders create increas-

ingly more complex systems with tightly integrated parts [31]. To counter this devel-

opment and reduce the risks to the stakeholders, it is necessary to create ICT systems

with only tolerable failures. Since the causes of swans are, at best, hard to predict,

it is necessary to limit the impact of incidents, even though we have no a priori

knowledge of their causes.

2.8 Taleb’s Four Quadrants

Following Taleb [11, 12], we create a map to classify the negative impact of different

failures in complex adaptive ICT systems. We again represent the impact of events

in a complex adaptive ICT system by a continuous random variable with a particular

PDF. Furthermore, we discriminate between two types of negative impacts, namely,

local and global impacts. Some systems only permit the local impact of failures,

while other systems allow local failures to propagate and create a global (systemic)

impact. The PDF of the local or global impact has a thin or thick left tail.

The four quadrants of the map in Fig. 2.4 represent the four possible combinations

of local and global impacts and thin and thick tails. The quadrants represent four

classes of complex ICT systems with very different extreme behaviors. The map

shows where classical risk analysis works well and where it is of questionable use

Fig. 2.4 The impact of a failure in a complex adaptive ICT system falls within one of Taleb’s four

quadrants. The fourth quadrant must be avoided because it leads to intolerable systemic failures
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and can lead to the gross underestimation of the risk by ignoring swans in the form

of rare outliers with an intolerable negative impact.

A system in the first quadrant in Fig. 2.4 is very safe. It only experiences local

failures with limited impact because the PDF of the local impact has a thin left tail.

Unfortunately, it seems that today’s complex ICT systems are not in this quadrant.

The second quadrant is also a fairly safe place for a system. Global failures may

occur, but the global impact is tolerable due to the thin left tail of the PDF. Systems

in the third quadrant only experience local failures, but these can have a relatively

large impact because the PDF of the local impact has a thick left tail. Hence, rigorous

risk management is needed.

Systems in the fourth quadrant must be avoided because they are vulnerable to gray

and black swans with an intolerable impact. While the probability of a single swan

is small, ICT systems in the fourth quadrant are usually vulnerable to many swans,

making it inevitable that one will occur sooner or later. As explained in Sects. 2.3 and

2.6, classical risk analysis cannot handle nonrecurrent swans in the fourth quadrant.

We want to develop and operate complex adaptive ICT systems where all failures

are local with limited impact, that is, we want the systems to fall in the first quadrant

in Fig. 2.4. However, since we will not succeed in limiting absolutely all failures

of complex national and international ICT infrastructures, these systems will more

likely end up in the second or third quadrant, which is also acceptable as long as we

avoid swans with an intolerable impact in the fourth quadrant.

2.9 Discussion and Summary

If we consider a complex adaptive ICT system over a period of, say, 20 years, then

normal incidents will occur repeatedly during the period. Hence, these recurrent

incidents should become less and less surprising to the system’s stakeholders. The

same is not true for gray and black swans. Because swans are so rare, they will not

occur multiple times over the considered period. Consequently, swans are, at best,

very hard to predict, since there is little or nothing in the system’s history to signal

their future occurrence. However, since complex ICT systems are vulnerable to many

swans, the probability that at least one swan will occur is too large to be ignored.

Given a set of stakeholders, a complex ICT system is fragile to a particular type

of negative impact if a possible large impact is unacceptable to some stakeholders

in the set and robust if all possible impacts are acceptable to all stakeholders. It is

not enough for complex ICT systems to be robust, because internal and external

changes fragilize complex systems over time, making them increasingly vulnerable

to large-impact events, including swans. Since we cannot hope to predict all negative

events that can significantly impact complex ICT systems, we must build systems that

limit the impact of incidents of unknown origin and learn from events with a small

negative impact how to limit the impact of all incidents. The resulting ICT systems

are anti-fragile when they manage to reduce and maintain acceptable impacts to all

stakeholders.
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Stochastic modeling is much used in many research areas, particularly in modern

financial theory. Financial models are very often based on PDFs with thin tails, lead-

ing to a gross underestimation of the risks associated with the economic processes

being modeled. To better understand the devastating consequences of using the wrong

stochastic models, the reader should consult the books of Pablo Triana [39] and

Benoit Mandelbrot and Richard Hudson [40]. Both argue that standard financial

models have led investors to take on huge hidden risks with ruinous consequences.

Together, Taleb [8–11], Triana, Mandelbrot, and Hudson illustrate the folly of trying

to predict extreme global behavior in complex adaptive systems of global importance.
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Chapter 3

The Need to Build Trust

An organization operating and managing a complex adaptive information and com-

munications technology (ICT) system is said to be anti-fragile when, over time, the

organization is able to protect the user population from serious consequences of sys-

tem failures and simultaneously provide digital services fulfilling the users’ changing

needs [41]. According to Chap. 2, failures are inevitable in a complex ICT system.

Unless a user population has a high level of trust in the system, the population may

abandon the system after a failure. Hence, any anti-fragile organization running a

complex ICT system must maintain a high level of trust over time to keep their users

after inevitable system failures.

To better understand why it is critical for any anti-fragile organization to maintain

user trust, this chapter first defines the concept of trust and then develops a model

of a user population whose individuals influence each others’ levels of trust in an

ICT system, for example, an e-government platform with digital services. The model

demonstrates that a population’s trust decreases rapidly when distrust within small

groups of individuals starts to spread. Further, it illustrates why it is hard to determine

which incidents will lead to widespread distrust and clarifies why it is very difficult

to create pervasive trust when there is much distrust. We find that a population’s trust

is fragile to incidents directly affecting a few individuals while widespread distrust

is robust against concentrated efforts to rebuild trust. Finally, the chapter discusses

approaches to limit the spread of distrust and maintain a high level of trust.

3.1 Defining Trust

Trust can be viewed as a computational construct whose value depends on the context.

The value is likely to change over time. Here, an individual’s trust in an entity is

specified by three concepts: trust, mistrust, and distrust, viewed as mutually exclusive

states representing different degrees of trust. Mistrust represents a general sense of

unease toward an ICT system based on mostly unverified information, while users
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distrust a system because of negative experiences or reliable information from experts

about serious problems with the system. As an example, users distrust an Internet

banking system after suffering financial losses, but they only mistrust the system

after being told about security problems by family, friends, or co-workers.

Since most users do not fully understand how an ICT system operates or why

incidents occur, they will seek advice from others about what to believe about the

system; that is, their levels of trust are influenced by other stakeholders. Mistrust

is a less stable state than distrust. While users with mistrust are likely to develop

distrust when they receive additional negative information about a system or when

they become victims of actual incidents, users harboring distrust are less likely to

move back to a state of mistrust because they have already suffered harm caused by

the system.

An individual who trusts an entity has a positive expectation of the entity’s future

behavior [42, 43]. The individual will cooperate with the entity to reach a certain

goal, even though it is possible that the entity will misbehave and inflict costs or

damage on the individual. The entity gains the individual’s trust over time through

repeated actions benefiting the individual.

An individual harboring mistrust believes the uncertainty is too large to expect

a particular behavior from an entity. A citizen may, for example, believe in the

government’s sincere desire to deliver highly secure services on the Web, but has

little or no confidence in the government’s ability to actually deliver adequate security.

An individual distrusting an entity believes the entity will deliberately act against

him or her in a given situation. A citizen harboring distrust may think that the gov-

ernment intentionally overstates the security of its e-government services or uses

collected personal information to spy on individuals.

While a citizen’s trust in a system can be in one of only three states in this chapter,

the whole population has different degrees of trust, mistrust, and distrust at the same

time, measured by the fractions of individuals in each of the three states. Note that

the three fractions sum to one.

To illustrate a population’s mistrust and distrust of an ICT system, as well as

its owner, we consider a large identity management system that was never fully

implemented. A former UK government under Labour started to deploy a centralized

identity system, called the National Identity Scheme (NIS), to provide biometric

identity cards to all lawful residents aged 16 and over. Roughly £250 million were

spent developing NIS (http://news.bbc.co.uk/2/hi/8707355.stm).

The London School of Economics and Political Science started the Identity Project

to analyze NIS. Project members mistrusted the UK government, accusing it of not

understanding the political, social, and technological risks of establishing a national

ID system with a centralized database containing up to 50 data points per individual

[44].

Over the years, the Identity Project published reports and participated in the

national debate to convince politicians to scrap NIS. The lobby group NO2ID also

opposed the creation of NIS. Their briefing papers imply distrust of the UK gov-

ernment. In particular, NO2ID discussed how NIS could allow the government to

http://news.bbc.co.uk/2/hi/8707355.stm
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manage society by spying on people, severely compromising their privacy and secu-

rity.

The UK Labour government allowed mistrust and distrust to grow by relegating,

ignoring, or attacking independent experts pointing out weaknesses in NIS [44, pp.

81–2], [45]. The predominantly negative press coverage of NIS helped spread mis-

trust and distrust when people started to discuss it. According to a study of UK news-

papers [45], NIS was portrayed as unsafe, lacking accountability, compulsory rather

than based on choice, universal, tough on immigration, and creating an imbalance

between liberty and security. In 2010, the new Conservative coalition government’s

Identity Documents Act abolished the identity cards and ordered the destruction of

all data in the associated National Identity Register.

3.2 Explanatory Trust Model

The following discrete-time model provides an explanation for how trust, mistrust,

and distrust change in a population due to incidents in a complex ICT system. Patches

on a square represent the modeled individuals. The square wraps around at the edges,

that is, the model has a doughnut shape. An individual’s state of trust is represented

by the color of the patch: Trust is green ( ), mistrust is yellow ( ), and distrust is

red ( ), as seen in Fig. 3.1. Each individual has eight neighbors. At each time step,

the state of an individual is updated based on the states of its neighbors.

Since it is not obvious how to update the patches, we study 14 sets of update rules

defined by the columns of Table 3.1. Each set has two rules defining changes from

trust to mistrust and from mistrust to distrust, as well as two rules defining changes

in the opposite directions. The two first (last) rules induce a color change when the

number of green neighbors is no larger (no smaller) than a threshold. To clarify, the

four rules defined by the rightmost column in Table 3.1 are as follows:

(i) A green patch changes to yellow when a maximum of four neighbors are green.

(ii) A yellow patch turns red when a maximum of three neighbors are green.

(iii) A red patch turns yellow when a minimum of seven neighbors are green.

(iv) A yellow patch turns green when a minimum of six neighbors are green.

The two first rules in a set repeatedly reduce a population’s trust as individuals

become increasingly surrounded by individuals with mistrust or distrust. The rules

create an escalating feedback loop producing increasingly more mistrusting and

distrusting individuals when the initial conditions are right. The two last rules create

a dampening feedback loop when the starting conditions are right, but this time to

increase the population’s trust.

All 14 rule sets defined by the columns in Table 3.1 result in the same change

pattern: An individual with trust goes through a period of mistrust before developing

distrust and an individual with distrust develops mistrust before trust. Individuals

who have trusted an entity for a long time are reluctant to mistrust or distrust it.
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Fig. 3.1 Development of mistrust in a 100×100 population of patches. The initial mistrust is 27 %

(yellow patches) at time step t = 0. The following snapshots show the formation and spreading of

distrust (red patches) over time. Rules (i)–(iv) were used. a t = 0, b t = 1, c t = 3, d t = 20,

e t = 40, f t = 60, g t = 80, h t = 100, i t = 165

Distrusting individuals are even more reluctant to ever again trust an entity that

has violated their trust and caused pain or damage. Finally, an individual harboring

mistrust develops distrust when surrounded by much mistrust.
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Table 3.1 Each column defines a set of four update rules

Changes Color-changing thresholds

Maximum number of green neighbors

→ 3 3 3 3 3 3 3 3 4 4 4 4 4 4

→ 1 1 1 1 2 2 2 2 1 1 2 2 3 3

Minimum number of green neighbors

→ 6 6 7 7 6 6 7 7 6 7 6 7 6 7

→ 5 6 5 6 5 6 5 6 6 6 6 6 6 6

The two first entries in a column define the maximum number of green neighbors causing changes

toward distrust, while the two last entries define the minimum number of green neighbors needed

to change away from distrust

3.3 Model Limitations

Since a model is a simplification of a real-world system, it is possible to create many

models emphasizing different aspects of the real system. We have introduced a simple

model of a population’s trust in a system. It is possible to add more functionality

to this model. As an example, we could equip the individuals with a memory of

past incidents. Furthermore, while all individuals react the same way in the current

model, it is possible to use different rules for different individuals. Finally, many

other update rules are possible.

Alternatively, we could define a trust model by a graph where the nodes represent

individuals and the edges connect nodes that influence each other. When the views

of experts and commentators are widely reported by the media, a few nodes have a

very large number of edges to neighboring nodes. While our model does not include

these “super-spreaders”directly, their combined influence is represented by the initial

pattern of mistrust. The more negative the media coverage, the higher the percentage

of initial mistrust.

The trust model is non-predictive, in the sense that it cannot forecast a population’s

trust in a real system. However, it offers an explanation of how the degree of trust

changes in a large community of users.

3.4 Trust Is Fragile

We first study how a high degree of trust can turn into a high degree of distrust.

We concentrate on system incidents reported in the media. While most incidents go

unnoticed by the media, a few incidents are widely reported. Not all reported events

are very serious from a technical point of view, but extensive media coverage can

still create mistrust among a significant fraction of users.
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The explanatory model was implemented in NetLogo [46] and the highlighted

rules (i)–(iv) were used to generate the figures. At the start of a model run, a selectable

percentage of all individuals is yellow (mistrust) and the remaining percentage is

green (trust). The yellow patches are selected at random. Initially there is no distrust.

Figure 3.1 shows snapshots of a model run with an initial mistrust of 27 % in a

population of 10,000 patches. Figure 3.1a depicts many small localized outbreaks of

mistrust at time step t = 0 due to widespread media coverage of an incident. Distrust

starts to occur already at time step t = 1. The distrust forms isolated islands that start

to combine as they become larger. The run ends when the patches’ color patterns no

longer change. At the end of the run in Fig. 3.1i, there is 100 % distrust.

Figure 3.2 plots the final fraction of distrust as a function of the initial fraction of

mistrust. Each column in the plot was averaged over 100 runs with the same initial

fraction of mistrust. As long as the initial density of mistrust is less than 15 %, the

resulting fraction of distrust is less than 1 %, on average. However, around 15 %

of initial mistrust, there is a transition where increasing mistrust rapidly results in

very large fraction of distrust. An initial mistrust of 28 % results in 99 % distrust, on

average. Experiments with the additional 13 leftmost rule sets in Table 3.1 all revealed

similar sharp transitions to massive distrust starting at fairly low percentages (16–

33 %) of initial mistrust. Since it is difficult to determine when these transitions occur

in real systems, it is hard to predict if an incident will lead to massive distrust.

The model indicates (but does not prove) that user trust in a complex ICT sys-

tem is fragile, because an incident affecting a few users can create massive distrust

when extensive media reporting creates enough initial mistrust. The UK Labour

government did not handle the media skillfully. Therefore, extensive negative press

helped create enough distrust to stop NIS. Of course, an incident affecting many

users directly can create enough initial mistrust without any help from the media.

According to the explanatory model, both cases result in pervasive mistrust.

Fig. 3.2 Average fraction of distrust as a function of the initial fraction of mistrust in a population

of 100 × 100 patches. A transition starts around 15 %
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3.5 Distrust Is Robust

Next, we determine when the model moves from a high percentage of distrust to a high

percentage of trust. At the start of a model run, all the patches are red, that is, there

is 100 % distrust. A selectable percentage of the red patches chosen at random then

change to green as the model starts to run. Figure 3.3 plots the resulting percentage

of trust as a function of the initial percentage of green patches, again using the rules

(i)–(iv) detailed earlier. Each column of the plot is averaged over 100 runs. There is a

rapid transition around 80 % initial trust. Below this transition, the model returns to

100 % distrust. The plot demonstrates how hard it is to create widespread trust when

there is massive initial distrust.

Experiments with the 13 additional sets of rules in Table 3.1 also showed similar

sharp transitions at large values (42–80 %) of initial trust. The model again returns to

100 % distrust below these transitions. The model implies that massive distrust in a

complex ICT system is robust to large efforts to create widespread trust. It will take

a sustained effort over a long period to rebuild trust. There is no guarantee that such

an effort will succeed. In fact, it may be close to impossible to rebuild widespread

trust in a system when there is massive distrust among the user population.

A few comments are needed to fully understand both the limitations and impli-

cations of all the reported experiments. While it is unlikely that a large population

has 100 % trust or distrust in a real system, it is not unlikely that the population’s

trust varies sharply, as depicted in Figs. 3.2 and 3.3. However, the experiments do

not prove that such transitions exist, especially since we have only explored one of

many possible trust models and only deployed a tiny fraction of all possible update

rules.

Taken together, the reported experiments suggest that a long-term effort to limit

the formation of mistrust should already be started when a system is first created. The

effort should be intensified immediately after an incident to avoid a state of massive

distrust from which it is very hard to recover. A successful effort to build a good

Fig. 3.3 Average fraction of trust as a function of the initial fraction of trust in a population of

100 × 100 patches. A transition starts around 80 %
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reputation and to reduce incident reporting translates into a smaller percentage of

initial mistrust in the model. As long as the percentage is below the transition point

to massive distrust (see Fig. 3.2), the mistrust will die out rather quickly, returning

the population to a high level of trust.

3.6 Maintaining Trust

Since it is very hard to recover from massive distrust, an anti-fragile organization

has to actively build and maintain its customers’ trust. This section first discusses the

Tylenol crisis in 1982 to illustrate that it is possible to avoid massive loss of trust,

even during very challenging situations. It then discusses specific approaches to build

and maintain a user population’s trust in an ICT system providing digital services,

especially an e-government platform delivering services to an entire nation.

The painkiller Tylenol provided about 15 % of Johnson & Johnson’s corporate

profit during the first three quarters of 1982. Then somebody laced Tylenol capsules

with cyanide and killed seven people in the Chicago area. The company quickly

stopped Tylenol production and issued warnings to hospitals and distributors. It then

recalled about 30 million Tylenol bottles from the market and advertised in the media

to warn people not to use the product. Johnson & Johnson put public safety first, even

though the recall was very expensive. The company got much positive press for their

resolute handling of the crisis. While Johnson & Johnson’s share of the painkiller

market fell from around 35–8 % after the killings, the company reintroduced the

product and rebounded in less than a year.

3.6.1 Prepare Alternative Services

Whether or not an ICT system is implemented in the cloud, there is always a possi-

bility of a rare, catastrophic incident taking down the system and all its services for a

long time. If there are no alternatives to the services offered by an organization, then

a long simultaneous failure of all services is intolerable to the organization, because

mistrust (followed by distrust) will spread among users, resulting in demands for

technical changes and even financial compensation. Consequently, it is a good idea

to have alternative solutions to the most important services to reduce the possibility

of mistrust and distrust spreading in the user population. A government could for

example run its services in a cloud and use another cloud in an emergency. Alter-

native services should run continuously. If services lie dormant much of the time,

there is a significant chance they will not work when needed. For example, it is not

uncommon for emergency power systems to not work because they have not been

tested for a long time.
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According to Geer [31], it is important to retain pre-Internet systems because they

have few external dependencies and avoid common mode failures with Internet-based

systems. The dismantling of old systems and procedures that have worked well for

decades may have serious unintended consequences. National institutions that no

longer accept communication on paper exclude a small but significant percentage

of the population. Furthermore, states relying solely on electronic voting cannot

fall back on traditional paper voting should the electronic voting solutions fail due

to technical problems or targeted attacks. Finally, citizens and first responders in

countries dismantling their fixed-line phone systems cannot communicate when the

mobile phone systems are down. Much of the costs companies and governments save

by eliminating redundant systems may be lost when swan incidents take down their

remaining unique systems. While it makes sense to eliminate a redundant system in

the short run, it can turn out to be a very bad decision in the long run.

3.6.2 Make Digital Services Voluntary

It may be tempting for an organization, especially a government, to “force” individ-

uals to use its digital services. A government can even create a legal obligation to use

e-government services to ensure large resource savings. However, the mandatory use

of digital services is likely to create mistrust or even distrust because users have little

or no control over an organization’s actions. Furthermore, some individuals lack the

computer skills needed to use the services and others have disabilities forcing them

to depend on the help from others. Consequently, it should be possible to opt out of

any service without undue difficulty to avoid mistrust and distrust among individ-

uals. In summary, an obligation to use a system leads to mistrust or even distrust,

while voluntary use ensures that nearly all new users will trust the system because

without trust they will not use it. Since a high fraction of initial trust makes it easier

to maintain the necessary trust over time, voluntary use is better than mandatory use.

3.6.3 Build a Good Track Record

It is counterproductive for an organization to ignore or hide the fact that events with a

negative impact are inevitable in ICT systems of high complexity. It is a particularly

bad policy to rely on spin control after incidents have occurred. An organization

should, instead, gain trust by creating a good track record from the start of a new

service. The dissemination of practical information to users via the Web and the press

is a way to build trust.

An organization must demonstrate competence and quickly fix problems when

a large incident occurs. If the organization has a good track record, then users are

quite forgiving when they are convinced that an incident was caused by a technical

problem [42]. Since the loss of trust can be huge when users suspect malicious
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intent, an organization must clarify its intentions, especially how it will use and

not use personal information, to prevent the rapid deterioration of trust during an

incident.

3.7 Discussion and Summary

To build and maintain an anti-fragile ICT system, it is not enough to use the right

system design and the best information technologies; it is also necessary to create an

organization that learns from mistakes, values openness, and understands the impor-

tance of building and maintaining trust relationships with its customers. If the overall

level of trust is high and a system failure is due to an understandable human error or

a technical glitch, then customers forgive readily, assuming the organization is open

about the cause of the failure and shows competence when rectifying the mistake.

An organization that downplays incidents, stonewalls journalists, attacks indepen-

dent commentators and security experts, and displays arrogance toward its customers

risks creating massive distrust in the user population. This chapter illustrates that the

organization may be unable to recover from such a position, even if it spends large

amounts of resources trying to rebuild trust.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-

Noncommercial 2.5 License (http://creativecommons.org/licenses/by-nc/2.5/) which permits any

noncommercial use, distribution, and reproduction in any medium, provided the original author(s)

and source are credited.

The images or other third party material in this chapter are included in the work’s Creative

Commons license, unless indicated otherwise in the credit line; if such material is not included

in the work’s Creative Commons license and the respective action is not permitted by statutory

regulation, users will need to obtain permission from the license holder to duplicate, adapt or

reproduce the material.

http://creativecommons.org/licenses/by-nc/2.5/


Chapter 4

Principles Ensuring Anti-fragility

While it is impossible to predict all potential swan events that can severely impact

complex information and communications technology (ICT) systems, we know the

general reasons for extreme global behavior: single points of failure such as shared

resources, local failures initiating systemic failures due to chain reactions, scal-

ing effects, and cascading failures between system layers and different systems

[35, Chap. 4]. Because the removal of single points of failure is a well-understood

problem [47], this chapter first introduces four design principles that together iso-

late local failures before they propagate and cause systemic failures. It then presents

one operational principle to quickly remove exploitable vulnerabilities. Finally, the

chapter discusses how a systemic failure can occur in a complex adaptive system even

when no parts fail, as well as the need to build models to understand such extreme

global behavior.

The current chapter defines and illustrates five principles needed to design and

operate anti-fragile ICT systems, while the following chapters discuss how these

principles can be implemented in different types of complex ICT systems. The prin-

ciples are rooted in the analysis in Chap. 2, showing the need to isolate local failures

and use natural and induced failures to learn about vulnerabilities. The reader may

recognize some of the principles as software patterns described in books on software

design [35, 48]. Here, we use the term principle rather than pattern to emphasize

that these ideas or concepts can be found in many research fields, not only software

design [3, 4, 19, 35, 48, 49, 50].

4.1 Modularity

A complex adaptive ICT system with tightly interconnected units tends to exhibit

surprising and undesirable global behavior due to the many non-linear interactions

between the units [5, 6]. A local failure due to an internal error in a unit or abnormal
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Fig. 4.1 Because a system

of tightly interconnected

units facilitates systemic

failures, we need a system of

modules with weak links

(dashed lines) that break

when modules experience

local failures

interactions between several units could cause problems for other units and eventually

take down the whole system. The first step to avoid propagating local failures in

networked computer systems is to modularize the systems at both the hardware and

software levels [1, 3, 4]. Conceptually, we represent the modules of a system by

nodes in a hierarchical system graph (Figure 4.1 illustrates one level of the graph),

where each module is a subgraph of tightly cohesive units.

We use the expressions strong connection and weak connection to describe the

varying levels of dependence between system modules. The terms dependency and

connection are used in much the same way in this book. A module A is strongly

connected with (or strongly dependent on) a module B if A’s functionality is badly

affected when B misbehaves or fails. The module A is weakly connected (or weakly

dependent) if A’s important functionality is preserved when B malfunctions or ter-

minates. When modules are weakly connected, a change to a module should not

necessitate changes to any other module. The modules must have well-defined inter-

faces and these interfaces must be the only way modules can interact with each

other. In particular, the internal state of a module must not be directly accessible to

another module, but only made available via an interaction mechanism that commu-

nicates state information. A communication protocol is an important example of an

interaction mechanism.

The system graphs in Fig. 4.1 illustrate the transition from a system of tightly

interconnected units to a system of weakly connected modules. The units constituting

a module depend on the system level being studied. If we study a complete software

solution consisting of a set of well-defined software services, then a module is a

service and a unit is a collection of subroutines. In a distributed hardware system,

for example, a collection of network routers, a printed circuit board is a unit, while a

module is a collection of boards that constitute a cohesive part of a hardware device.

If we study interconnected systems, then a module is a whole system.

It is important to understand the difference between strong and weak dependencies

in modular systems. Strong dependencies were actually first defined in Sect. 2.7,

although the definition did not explicitly introduce the concept of strength. The

same section stated that the impact of recurrent incidents in a modular system can

be mitigated by introducing additional strong dependencies between the modules.

Unfortunately, we may introduce new positive feedback loops at the same time, thus

http://dx.doi.org/10.1007/978-3-319-30070-2_2
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increasing the probability of extreme global behavior in the form of nonrecurrent

swan incidents. The next section outlines how to avoid swans by limiting the strength

of dependencies in modular systems.

4.2 Weak Links

When the functionality of a module A at some system level depends on the function-

ality of another module B, there is a directed link from A to B in the system graph

to represent this dependency. In Fig. 4.1, each directed link signifies the relation

depends on. Different dependencies have varying strengths [5]. We can measure the

strength of a dependency by determining the damage a misbehaving module causes

in the dependent module.

The next step to prevent local failures from propagating is to ensure that the

incoming links to a misbehaving module break in such a way that there is little

or no damage to the dependent modules. These so-called weak links [49] enhance

robustness to propagating failures by restricting damage to a single module. The

weak links are represented by dashed lines in Fig. 4.1.

A weak link can be compared to a circuit breaker that protects an electrical sys-

tem against excessive current. The circuit breaker is an automatic electrical switch

designed to detect a fault condition and interrupt current flow. Unlike a fuse, which

operates once and then must be replaced, a circuit breaker can be reset to resume

normal operation. We are interested in weak links that can restore themselves after

they break. Chapter 5 studies how to implement weak links with default fallback

responses.

It is necessary to determine the dependencies between modules at different levels

of a system [2]. Modules are weakly connected when they have weak links. If the

hierarchical system graph of weakly connected modules (see Fig. 4.1) is sparse and

of limited size, then the remaining fragility can be analyzed. A dense and large

graph of strong dependencies signals intolerable fragility because it becomes hard

to determine the cause(s) of an incident and, therefore, countermeasures to avoid

similar incidents in the future [4].

4.3 Redundancy

According to Taleb [10], redundancy is an inherent property of anti-fragile systems.

They do not make “efficiency” their primary goal. Since the goal of anti-fragile

systems is to thrive in randomness, the systems contain “inefficiencies” through lay-

ered redundancies. Computer systems enhance their robustness to module failures by

http://dx.doi.org/10.1007/978-3-319-30070-2_5
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Fig. 4.2 Transition from a lean system to a redundant system and then to a system with both

redundancy and diversity

deploying multiple copies of modules at the software and hardware levels. Figure 4.2

illustrates the transition from a lean system to a redundant system. The redundancy

is obtained by introducing extra copies of each module.

Two examples illustrate the redundancy principle. First, when a virtual machine

fails in a cloud-based system, an identical instance is started automatically. Second,

a critically important system should have at least one secondary backup system that

runs in parallel with the primary system to ensure a safe fallback. Leading up to the

next principle, we note that the secondary system should differ from the primary

system to avoid both failing for the same reasons.

4.4 Diversity

A modular system has diversity [50] when it contains differently designed or imple-

mented modules with (nearly) the same functionality. Figure 4.2 depicts the transition

from a redundant system to a system that is both redundant and diverse. Diversity

makes it less likely that many modules will fail at the same time. Only a diverse

system is highly robust to propagating failures; single modules remain fragile. Fail-

ures of fragile modules are warning signals of impending systemic instability. If a

computer system is a “monoculture,” where all computing devices are based on the

same hardware or run the same software [28, 29], then it is highly fragile, because

a local failure can propagate very easily. This is particularly true for infectious mal-

ware that can easily spread to many modules in a large software monoculture. The

use of software diversity to halt malware spreading is discussed in Part III.
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Fig. 4.3 How to use the fail fast principle in an ICT system

4.5 Fail Fast

To create complex adaptive systems that are anti-fragile to classes of negative events,

it is necessary to learn from problems and downright failures in the systems because

it is effectively impossible to predict all future incidents with a large negative impact.

Hence, a system should fail early when the impact is small and stakeholders should

learn from these incidents how to adapt the system to limit the impact of future

incidents.

When the four design principles of modularity, weak links, redundancy, and diver-

sity are used to avoid failure propagation, we can induce local failures (with only a

tiny probability of systemic failure) to detect vulnerabilities early and quickly learn

how to improve the ability to prevent propagating failures. The flow diagram in

Fig. 4.3 illustrates how the fail fast principle can be used in a system. Netflix pio-

neered the depicted technique in its cloud-based subscription service for films and

TV series (http://techblog.netflix.com). Chapter 5 will discuss Netflix’s realizations

of the operational fail fast principle and the four outlined design principles.

4.6 Systemic Failure Without Failed Modules

A local failure can propagate over a system and cause a systemic failure. Although

there is a strong tendency to assume that a local failure is a well-defined event occur-

ring inside a single module, this is not necessarily true for complex adaptive systems.

A well-functioning technical system with normally behaving stakeholders could drift

into a systemic failure in the form of a swan event without any well-defined initial

http://techblog.netflix.com
http://dx.doi.org/10.1007/978-3-319-30070-2_5
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Fig. 4.4 A module in a complex adaptive system viewed as a black box with multiple inputs from

other modules and a single output connected to yet other modules

module failure. Swans are often caused by internal and external changes that affect

the global pattern of interactions between the modules, between the stakeholders,

and between the stakeholders and modules. The changes all seem reasonable when

studied in isolation. It is only the combination of the changes that causes a systemic

failure [18].

To better understand how a systemic failure can occur without any module failure,

we consider a module as a black box with multiple input links and a single output link

(see Fig. 4.4). A module receives inputs from other modules and generates an output

that becomes input to yet other modules. A module is designed to generate particular

output values from combinations of specified input values. If a module receives an

unknown or a partial combination of inputs that it was not designed to handle, it can

produce an extreme output value. When the extreme output becomes input to another

module, it can result in another extreme output. Hence, an unusual combination of

inputs to a module can cause more and more modules to generate extreme outputs,

leading to a systemic failure. This rare and extreme global behavior occurs despite

all modules correctly executing their designed input–output transformations, that is,

there are no module failures per se.

The reader should note that incomplete or extreme input combinations to mod-

ules could occur due to random noise or temporary faults in the communication

links. These transient failures can be hard to recreate and may even be completely

overlooked during an investigation to determine why a system misbehaved. This

is particularly true when multiple transient errors combine to create incomplete or

extreme input combinations.

Since classical risk analysis is based on the notion that a large failure is caused

by a chain of smaller events initiated by a well-defined starting event, the analysis

may not predict the above systemic failure. The classical approach to risk analysis

based on simple, or linear, cause and effect thinking only works satisfactorily when

the system’s parts are weakly connected with limited interaction. Complex adaptive

systems are often strongly connected with a great deal of interaction. To understand

the risks associated with complex systems, analysts must avoid thinking that restricts

failures to simple chains of events, because this approach ignores potential swans

and thus seriously underestimates the total risk taken by stakeholders [18].

The earlier stated principle of weak links is critical to avoid failure propagation

that is not initiated by a local failure in a single module but caused by an unusual

combination of inputs to one or more modules leading to extreme global behavior.

Consider a system monitoring its modules to break the output links, perhaps after
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some delay, when the modules produce extreme output. The modules exist in a

(logical) hierarchy, where each module belongs to a particular level. A given module

may receive inputs from several modules at a lower level. Even if each of the lower-

level modules generates normal output, the combination of values taken as input

to the upper-level module may still cause this module to generate extreme output.

However, since the module is monitored and stopped when it generates extreme

output, a systemic failure is, most likely, avoided.

4.7 The Need for Models

While it is quite easy to understand the descriptions of the five principles, it is hard

to determine how to realize them in complex adaptive ICT systems to achieve anti-

fragility to a particular type of impact. Paraphrasing Yaneer Bar-Yam [51], we argue

that it is necessary to create system models, especially during the design phase, to

ensure anti-fragility.

The beginning of Chap. 1 discussed the complexity of an ICT system consisting

of a large networked computer system and many stakeholders (see Fig. 1.1). The

complexity is due to the numerous interactions between the stakeholders and the

computer system, the large amounts of communications between the networked

subsystems, and the influence of changing security and privacy policies, as well

as threats such as equipment failure, extreme weather, and sabotage. An alternative

to this communication view of complexity is the behavioral complexity obtained

by viewing a complete ICT system as a black box and then studying the minimum

amount of information, measured in bits, needed to describe all possible input-output

relations.

Let us consider an ICT system with Nin input values and Nout output values.

The values can be in the form of vector or scalar values. We need a minimum of

A = log2 Nout bits to represent an output because all the 2A outputs must have

unique descriptions. Similarly, we need I = log2 Nin bits to uniquely label an input.

The labels allow us to order the inputs. Assume that we have an ordered list of 2I

entries, where the first entry contains the output corresponding to the first input, the

second entry contains the output corresponding to the second input, and so on. Since

we need A bits to specify an output, the total number of bits needed to completely

describe all input–output relations is 2I
· A. This expression measures the behavioral

complexity of an ICT system.

The idea of classical software development is to build a system that realizes a

set of well-defined input–output relations. Before the system goes into production, it

must be tested. A complex adaptive ICT system with huge numbers of computational

devices and users has a huge number of possible inputs. If, for example, I = 200

bits, then the complexity is greater than 2200
≈ 1060 bits, which is an enormous

number.

http://dx.doi.org/10.1007/978-3-319-30070-2_1
http://dx.doi.org/10.1007/978-3-319-30070-2_1
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Since it is clearly impossible to exhaustively test all inputs, theory is essential to

understand how to realize the five principles in complex adaptive systems. Models are

especially useful because they characterize global emergent behaviors without having

to test all possible inputs. For systems without adequate models, the limitations of

testing lead to significant uncertainty about the systems’ global behaviors, especially

their fragility to swans. While models help reduce the risk to stakeholders, complex

adaptive systems will always have hidden risks due to their highly non-linear and

time-varying relations between the inputs and outputs [7]. Hence, as first stated in

Sect. 2.5, there is no absolute guarantee that complex ICT systems are swan free.

In Chap. 3, we built a model to understand how a user population’s trust in an

ICT system could change from pervasive trust to massive distrust. Because of the

great behavioral complexity, no effort was made to accurately model all aspects of

the trust relationship between users and system operators. Instead, we developed an

explanatory toy model. Although toy models cannot predict the detailed behavior of

systems, the models can be used to uncover fragility to particular types of impacts.

4.8 Discussion

The four design principles of modularity, weak links, redundancy, and diversity and

the fail fast operational principle are not new, since various descriptions can be

found in different research fields [3, 4, 19, 35, 48, 49, 50]. However, Taleb’s [8, 9,

10] conceptual foundation and the way the principles are melded in Part II outline a

novel strategy to design and operate anti-fragile ICT systems.

The reader may wonder if the five principles are sufficient to ensure anti-fragility

to any given class of impacts. At the time of this writing, in late 2015, the answer to

this question is not fully known. Most likely, the set of principles needed to design

and operate an anti-fragile system depends on the type of system and the class of

impacts considered. In Parts II and III, we argue that the five principles provide anti-

fragility to downtime and malware spreading. More work is required to determine

the need for additional principles. A short discussion of possible additional design

principles can be found in Chap. 13.

Chapter 3 argued that it is important to build trust between the owner and the users

of a system to avoid the formation of massive distrust in the user population after

an incident. It is of course possible to introduce an additional operational principle

highlighting the importance of building and maintaining trust. Since the rest of the

book concentrates on other aspects of anti-fragile systems, it does not contain an

explicit trust principle. However, the building of trust should permeate through all

work done to create and operate anti-fragile systems, because the loss of trust is an

inherent and general threat to all ICT systems that can cause user populations to

abandon systems altogether.

http://dx.doi.org/10.1007/978-3-319-30070-2_2
http://dx.doi.org/10.1007/978-3-319-30070-2_3
http://dx.doi.org/10.1007/978-3-319-30070-2_13
http://dx.doi.org/10.1007/978-3-319-30070-2_3
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What to learn from Part I

Part I modeled large ICT systems as complex adaptive systems and explained

that positive feedback loops cause extreme global behavior with an intolerable

impact. A complex system is fragile, robust, or anti-fragile to a particular class

of negative impacts. It is not enough to create a complex system that is robust

to a type of impact when the system is new. Because a complex system and

its environment change over time, a robust system becomes fragile. While risk

management methods can detect and mitigate many negative events, a complex

system has too many interactions between its units and modules for a risk analyst

to predict all incidents. It is particularly difficult for a group of stakeholders to

predict rare and large-impact incidents called gray swans. Even worse, black

swans may exist that are totally unpredictable to all stakeholders in the group.

It is necessary to build complex ICT systems that fail early when the impacts

are still small and to learn from the remaining small events how to maintain and

improve the systems. Four design principles, namely, modularity, weak links,

redundancy, and diversity, and one operational principle, fail fast, were intro-

duced to provide anti-fragility to different types of impact. The common goal

of the design principles is to prevent inevitable local failures from propagating

into global failures. The goal of the operational principle is to quickly determine

vulnerabilities and remove them before they can cause serious damage. Here,

a vulnerability can be a flaw in the design, a bug in the implementation, or a

mistake in the operation or management of a system.

Because there is no absolute guarantee that a systemic failure will never

occur, an owner or operator of a complex ICT system must build and maintain

a trust relationship with the customers, especially since it can be argued that

trust is fragile and distrust is robust. If a company allows distrust to grow, for

example, by relegating, ignoring, or attacking individuals pointing out system

weaknesses, then the company may not survive a failure, especially when it is

heavily reported in the press.
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Chapter 5

Anti-fragile Cloud Solutions

To better understand how to achieve anti-fragility to downtime, the chapters of

Part II discuss how to realize the four design principles and the one operational prin-

ciple from Chap. 4 in different types of systems. The current chapter focuses on how

to realize the principles in customer-facing web-scale solutions in the cloud. Much

of the discussion is based on design and operational patterns described by Nygard

[35] and Netflix’s realization of these patterns in its cloud-based streaming service.

YouTube videos (http://youtube.com/watch?v=jCanhyFDopQ, https://youtube.com/

watch?v=dekV3Oq7pH8) document that the development teams at Netflix used the

principles described in Chap. 4 to build and operate an anti-fragile system.

5.1 Choice of System Realization

We initially consider the advantage of realizing a web-scale solution in a public cloud

compared to a traditional private datacenter. For simplicity, we consider a generic

cloud infrastructure offering services to manage virtual machines, data storage, net-

working, and monitoring. The generic cloud platform is divided into regions, each

with multiple availability zones. The zones correspond to different datacenters. All

virtual machines run on commodity hardware. Failures happen routinely due to the

infrastructure’s huge number of servers, storage units, and network equipment [13,

14]. While a company or a government can build a private cloud infrastructure, it is

less expensive to use a public cloud, because its cost is divided among many cus-

tomers. The pay-as-you-go pricing model makes a public cloud especially attractive

to startup companies that want to compete with established companies having their

own infrastructures.

The architecture of a system models the major components and the important

relations between them [52]. Figure 5.1a sketches the architecture of a web-scale

solution running in a private datacenter without cloud technologies. This server-side

application is said to be monolithic because it is built as one entity with a single
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(a)

(b)

Fig. 5.1 a Replicated monolithic application running on multiple servers in a private datacenter.

All application copies use the same database. b Identical application functionality realized by self-

contained services running on a cloud platform and storing data in databases replicated over multiple

zones

executable [53, 54]. One or more load balancers (not shown) distribute requests

to replicated executables that run on multiple servers. All application copies use the

same database. Figure 5.1b sketches a service-oriented architecture (SOA) with layers

of self-contained services running on a cloud platform. Together, the services provide

the same functionality as the monolithic application. The services use individual

databases replicated in multiple zones. Each service is scaled individually by running

multiple copies.

The availability of a web-scale solution is measured by the percentage of time

it is accessible to users. A high availability of 99.99 %, referred to as four nines of

availability, corresponds to about 53 min of downtime each year. A solution’s scala-

bility refers to the number of concurrent users who are having a positive experience

and its performance refers to the experience of individual users, often measured

by response time (latency) [14]. A customer-facing web-scale solution must have

high availability to avoid customer dissatisfaction, high scalability to support tens

of millions of customers, and good performance to quickly respond to the real-time

requests of each customer.

Monolithic (non-cloud) solutions with multiple load balancers and many servers

have good scalability up to a point, beyond which scalability becomes exceedingly

difficult. The strongly connected modules in the software layer and the high integra-

tion of subsystems in the hardware layer also ensure low-latency communication.

However, tight integration in both layers leads to propagating failures resulting in

insufficient availability. As we shall see, SOA in the cloud provides an efficient way

to leverage the redundancy and diversity needed to break the strong dependencies

in monolithic solutions. Furthermore, server virtualization on a massive hardware

platform supports almost unlimited (horizontal) scalability and the use of multiple

cloud regions facilitates low-latency service throughout the world.
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5.2 Modularity via Microservices

To achieve anti-fragility to downtime, it is not enough to move a monolithic solution

into a cloud. It is vital to build a cloud-native solution that takes full advantage of the

cloud’s properties [13, 14]. In particular, the choice of application architecture is vital

to achieve a high degree of anti-fragility to downtime. SOA introduces modularity

in the form of well-defined and self-contained services in the software layer. In the

hardware layer, the cloud supports modularity by having many availability zones and

by assigning multiple zones to each region, where the regions cover different parts

of the world.

Netflix’s streaming application is based on a fine-grained SOA with microservices

running in the Amazon Web Services (AWS) cloud. Each of the microservices focuses

on doing one thing well. They are combined to provide the needed functionality. In

early 2014, the Netflix solution had roughly 600 microservices running side by side in

each cloud region. The services are responsible for handling customer-facing requests

via a few edge services. The large geographical spread of AWS’s regions enables

Netflix to offer low-latency, high-throughput media streaming in many countries.

While there is no generally agreed upon definition of microservices, it is possible

to describe common properties [53, 54]. A microservice encapsulates a well-defined

functionality of value in a business context. The functionality fulfills a single pur-

pose. A microservice runs as a separate process with fast startup and shutdown times.

Services can be tested, upgraded, and replaced independently of each other. Finally, a

microservice manages its own data. Together, microservices separate the functional-

ity of a large application into highly independent chunks of code. They communicate

via a standardized set of simple protocols. The services can be written in different

languages and utilize different storage technologies. As we shall see, microservices

enhance fault tolerance, enable an application to scale, and allow a solution to evolve.

5.3 Weak Links via Circuit Breakers

Virtual machines running (micro-) services are modules in the cloud’s software layer.

To stop and start the virtual machines without significantly degrading the user expe-

rience, they need to be autonomous and stateless. Application state must be stored

externally to the machines. If the application state is distributed over many storage

devices, then it is possible to upgrade these hardware devices without halting the

application.

Weak links are implemented using the circuit breaker pattern to ensure that the

services are weakly connected [35]. No service contacts another service directly;

instead, a service is called via a circuit breaker. The circuit breaker quickly detects

when a service develops a problem and open s the circuit (breaks the weak link) to stop

the problem from propagating to other services and to provide calling services with

a default fallback response. The circuit closes after the problem is fixed. Because
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Fig. 5.2 State diagram for a

generic circuit breaker

the circuit breaker fails fast, it controls the failure mode, facilitating the graceful

degradation of a system’s functionality to limit the damage to users. Note that the

circuit breaker prevents any positive feedback loop from escalating a local failure

into a systemic failure.

Figure 5.2 shows a state diagram of a generic circuit breaker. In the normal closed

state, the circuit breaker is closed and a calling service is allowed to connect to the

called service. If there is a failure, the circuit breaker records it. Once the number,

or frequency, of failures reaches a certain threshold, the circuit trips and opens the

circuit. When the circuit is open, all calls are stopped. After a certain time in the

open state, the circuit breaker moves to the half-open state, which allows the next

calling service to connect to the called service. If this trial call succeeds, then the

circuit breaker returns to the normal closed state. However, should the trial fail,

the circuit breaker returns to the open state until another timeout elapses. To learn

more about circuit breakers, the interested reader should study Netflix’s open source

implementation of the pattern (http://github.com/Netflix/Hystrix/wiki).

5.4 Redundancy Provided by the Cloud

The cloud supports redundancy at the virtual machine, zone, and region layers. At the

virtual machine layer, a web-scale solution runs redundant machines with timeout

and failover, as illustrated in Fig. 5.3. Multiple virtual machines run the same (micro-)

service in a single availability zone. Figure 5.3a depicts a service depending on one

of the redundant services. When the contacted redundant service times out, another

is queried. The arrows show the direction of the dependencies. Failure of an instance

is often due to power outage in the hosting rack, a disk failure, or a network partition

that cuts off access. When there is a software bug or network failure, all instances

are affected and a (non-personalized) default response is necessary to contain the

error. Careful analysis is needed to determine the appropriate response. Figure 5.3b

illustrates the timeout with a default fallback response.

At the zone layer, failure in one zone should not affect the operation of other

zones. Multiple zones in a single region provide redundancy, as shown in Fig. 5.4. The

http://github.com/Netflix/Hystrix/wiki
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(a) (b)

Fig. 5.3 a When a service instance times out, another instance is queried. b If all instances fail,

then there is a default response. The arrows show the direction of dependency

Fig. 5.4 Use of multiple

zones to isolate a zone failure

redundancy isolates the consequences of firmware failures, certain serious software

bugs, power failures, and severe network failures that take down a whole zone. A

web-scale solution should use multiple zones in each region. To compensate for a

failed zone, the solution could scale up the remaining zones or introduce a new zone.

Note that the load balancer is a single point of failure in Fig. 5.4.

A whole region could fail due to configuration issues, bugs in the infrastructure

code, bugs in the application code, and failures in the load balancer. A failed region

should not affect other regions. Figure 5.5 depicts two regions, where a server for the

domain name system (DNS) splits the traffic load in two halves. A solution should

switch users to a new region when needed.

While the redundancy of executable code is important, the data replication

obtained by storing the same data on multiple storage devices is critical to achieve
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Fig. 5.5 Use of multiple

regions to isolate a region

failure

high availability. A cloud infrastructure with a highly redundant network and data

storage provides both high availability and extremely high durability, that is, only a

tiny probability of data loss. Netflix goes to great lengths to ensure the availability

and durability of its data. First, Netflix uses an Apache Cassandra database (http://

cassandra.apache.org) that stores data in three zones per region. Cassandra provides

NoSQL persistent data storage with eventual consistency [55]. It also supports asyn-

chronous cross-region replication.

Furthermore, Netflix stores backups in the Amazon Simple Storage Service (S3),

which is designed to provide 99.99 % availability and 99.999999999 % durability of

data objects over a given year, though there is no service-level agreement for dura-

bility. The S3 service redundantly stores data in multiple facilities and on multiple

devices within each facility. An application is first informed about successful stor-

age after the data are stored across all facilities (http://aws.amazon.com/s3/details).

Finally, Netflix copies data in S3 to a storage service run by another cloud provider.

5.5 Diversity Enabled by the Cloud

Two software programs are diverse if they have (nearly) the same functionality but

different designs or implementations, that is, different machine code [24, 56]. We

utilize software diversity to isolate failures by switching between diverse codes,

especially when introducing updated services.

Since a web-scale solution supports users throughout the world, there is no good

time to take down the whole system to upgrade its software. An alternative is to intro-

duce new code by keeping both old and new code running and switch user requests to

the new code. An early version of an updated service is called a canary, referring to a

canary in a coal mine. The stability of a canary cannot be fully evaluated before it is

exposed to a heavy traffic load in a production system. Figure 5.6 illustrates a simple

http://cassandra.apache.org
http://cassandra.apache.org
http://aws.amazon.com/s3/details
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Fig. 5.6 A simple canary push

(a) (b)

Fig. 5.7 a Red–black push. b Fallback to the static version

canary push where a single instance of an updated service is put into production. If

a failure occurs, the system switches back to the old service.

It is possible to extend a simple canary push to include many instances of an

updated service. Figure 5.7a illustrates a so-called red–black push where multiple

instances of an updated service are needed to carry the traffic load. Instances of the

old service are also running to ensure that the system handles peak load if there is a

problem with the new code. Note that the cloud facilitates this process because it is

easy to double the use of resources for a limited period, for example, a 24-h cycle.

Several versions of a service may contain a “time bomb” that only goes off after

a long period. There could be a software bug in both the red and black deployments

in Fig. 5.7a or there could be a problem with the data causing several versions of

the code to fail. As shown in Fig. 5.7b, it is possible to independently author a static

service with simple functionality that delivers a minimal solution when all recent

versions of the code fail.
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5.6 Fail Fast Using Software Tools

To protect and extend companies’ market share, web-scale solutions must support

rapid scaling and innovation. Since the rate, or frequency, of hardware failures

increases as more hardware is added and the rate of software failures increases

as the rate of change grows, frequent hardware and software failures are inevitable

in web-scale solutions. The engineers at Netflix do not wait for failures to happen.

Instead they use a collection of tools, called the Simian Army, to deliberately intro-

duce failures into their production system to quickly learn about vulnerabilities and

then make changes to ensure that the vulnerabilities do not cause systemic failures

(http://techblog.netflix.com/2011/07/netflix-simian-army.html).

The Chaos Monkey tool disables randomly selected virtual machines to make

sure the Netflix solution survives this common type of failure without any customer

impact. Latency Monkey introduces random latencies between services to simulate

network degradation and to ensure that services tolerate latency spikes and other

networking issues. The shutdown of a low-level dependency can lead to a longer

timeout at a higher layer, causing a cascading failure. Because there is no general

answer to this multi-level dependency problem, each case must be carefully studied.

Chaos Gorilla generates zone failures and Chaos Kong generates region failures to

test that the system survives such rare incidents with a huge impact.

Netflix’s preferred approach to failure detection supports Taleb’s [9] well-founded

claim that it is impossible to predict all rare incidents with a huge negative impact

in complex adaptive systems. Instead of trying to predict gray swans, Netflix simply

tests its system on a continuous basis to maintain isolation of local failures as the

system changes, especially to avoid propagating failures causing downtime. Netflix

engineers run the Simian Army tools during the business day to learn about vulner-

abilities in the system and to address any immediate problems. If appropriate, the

engineers build an automatic recovery mechanism to deal with a newly discovered

vulnerability, so that next time a failure occurs no user will notice.

Since silent failures inhibit learning, failures must be detected to prevent a system

from becoming increasingly fragile over time. It is necessary to monitor the system’s

behavior, especially behavioral changes due to system updates. Netflix has built a

telemetry system that monitors many different aspects of the system behavior. As an

example, a tool using telemetry data determines whether a canary is doing well. There

also exist monkeys to monitor the system, such as Security Monkey (http://techblog.

netflix.com/2014/06/announcing-security-monkey-aws-security.html) and Confor-

mity Monkey (http://techblog.netflix.com/2013/05/conformity-monkey-keeping-

your-cloud.html). This extensive monitoring allows Netflix to constantly adjust its

system to keep within the bounds of normal operation.

http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://techblog.netflix.com/2014/06/announcing-security-monkey-aws-security.html
http://techblog.netflix.com/2014/06/announcing-security-monkey-aws-security.html
http://techblog.netflix.com/2013/05/conformity-monkey-keeping-your-cloud.html
http://techblog.netflix.com/2013/05/conformity-monkey-keeping-your-cloud.html
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5.7 Top–Down Design and Bottom–Up Tinkering

Before leaving Netflix, we consider the collective impact of the five principles.

The four design principles essentially prescribe a top–down (reductionist) design

approach breaking a new system down into modules and then adding weak links

between the modules, thus isolating the impact of local failures. Finally, redundancy

and diversity are added to further limit the impact of local failures.

A company C with a system of weakly connected modules that are constantly

monitored and tested according to the fail fast operational principle has a compet-

itive advantage over a company D with a system of strongly connected modules.

Company C can tinker with its system in a bottom–up manner without causing sys-

tem downtime due to the propagation of local failures. At Netflix, many engineering

teams constantly innovate their services without any central coordination of new

releases. The teams introduce new features and product enhancements rapidly and

frequently. It is hard for company D to maintain a similar high rate of innovation

because the many strong dependencies between the modules in their system require

the preparation of large coordinated software releases.

Together, the five principles facilitate local decision making in highly independent

developer teams. These teams need not schedule common software releases as long

as they inform all affected teams about any increased use of computational resources

and changes to programming interfaces.

5.8 Discussion and Summary

Netflix’s web-scale implementation of its media streaming solution with anti-fragility

to downtime is evidence that the cloud facilitates the implementation of the design

principles of modularity, weak links, redundancy, and diversity and the fail fast oper-

ational principle presented in Chap. 4. The generality of the cloud-based realization

presented indicates that other large solutions can benefit from Netflix’s approach. The

next chapters present more systems for which the cloud simplifies the creation of

anti-fragility to downtime. Part III shows that the principles also create anti-fragility

to malware spreading.

Although the cloud represents a golden opportunity to develop and operate anti-

fragile systems, it is not a panacea. A highly competent cloud provider must be

selected, preferably with cloud regions throughout the world. Since a major security

breach is unacceptable, it is particularly important that the cloud platform limit the

consequences of attacks. Finally, any anti-fragile application must be able to handle

a situation in which all datacenters in a region go down at the same time.

It is interesting to observe how the design and operational principles together

enable safe bottom–up tinkering without the central coordination of different

development teams. This advantage can accelerate innovation compared to more

http://dx.doi.org/10.1007/978-3-319-30070-2_4
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traditional software development methods requiring large coordinated software

releases.
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Chapter 6

Toward an Anti-fragile e-Government
System

Design is the process of defining a system’s components, interfaces, data formats, data

flows, and data storage solutions that together satisfy specified availability, perfor-

mance, and scalability requirements. Chapter 4 introduced four design principles—

modularity, weak links, redundancy, and diversity—and a single operational princi-

ple, fail fast, to achieve anti-fragility to a class of incidents. Chapter 5 showed how

Netflix implemented the five principles to implement a media streaming system with

anti-fragility to downtime. To investigate the generality of the five principles, the

following two chapters investigate the design of systems to determine how they can

be redesigned to achieve a degree of anti-fragility to downtime.

Here, we first study the Norwegian electronic government (e-government) system

Altinn as it appeared in 2012 to better understand why it is advantageous to base the

design of anti-fragile web-scale systems on fine-grained service-oriented architec-

tures (SOAs) in public clouds with scalable and distributed data storage. This study is

partly based on two analyses of Altinn commissioned by the Norwegian Ministry of

Trade and Industry [57, 58]. Next, we consider the United Kingdom’s e-government

system to understand the need for user-focused and iterative development to support

both rapid change and high availability. Finally, we discuss whether a nation should

have a single e-government system running many services or multiple independent

and diverse systems running a few services each.

6.1 The Norwegian e-Government System

The Norwegian government has made a large and sustained effort to develop world-

leading e-government services for both citizens and companies [59]. Applications,

invoicing, appointments, and various types of reports are all handled electronically.

These digital services run on the Altinn platform. Sensitive personal information

such as tax data are sent over the Internet to personal computing devices, including

smartphones and tablets.
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Leading Norwegian politicians believe that most citizens prefer the new digital

services to the old paper-based services [60]. The Web will be the primary com-

munication channel between the Norwegian population and the public sector. While

it will still be possible for private citizens to call or visit public sector offices, the

government wants to minimize traditional person-to-person communications to free

up resources needed to bring more and better health care services to Norway’s aging

population [59, 60]. Hence, high availability is increasingly important to Altinn as

more services are added to the platform.

The 2012 version of the platform, denoted Altinn II, is depicted in Fig. 6.1a [57,

58]. A load balancer assigns requests to random servers that run user services. Note

that the load balancer is a single point of failure. As illustrated in Fig. 6.1b, each user

service is built on top of standardized components provided by the Altinn II platform.

Multiple user services utilize the same component. Each component is assigned to

a database. Altinn II allows government entities to develop and test their own user

services. Scaling takes place by adding more servers and databases.

Despite the Altinn organization’s best efforts, the platform’s availability has been

disappointingly low. The platform had to be taken offline for several days in 2011

and 2012 due to excessive network traffic when the Norwegian Tax Administration

published the yearly tax statements. The damage to user trust was particularly note-

worthy in 2012 because of the previous year’s downtime and because many taxpayers

were shown two individuals’ names and national ID (IDentity) numbers when they

tried to view their own tax statements. Due to some unknown failure, the names and

ID numbers were cached and transmitted by the load balancer in Fig. 6.1a. While

it can be argued that an ID number is not sensitive information, the national media

reported extensively on this “crisis” and a later survey showed that the Altinn organi-

zation lost significant trust among its users. The incidents confirm the need to build

and maintain trust, as discussed in Chap. 3.

(a) (b)

Fig. 6.1 a Altinn II architecture. b Layers of components and user services

http://dx.doi.org/10.1007/978-3-319-30070-2_3
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6.2 Redesign Needed

The following analysis explains why the Altinn II platform must be redesigned

to achieve anti-fragility to downtime. First, since each component in Fig. 6.1b is

assigned a particular database, the speed at which a component can read or write data

is limited by the capacity of a single database. As the amount of users and services

increases, more processes will compete for access to each database because of the

fixed component–database assignments [57, 58]. This database bottleneck makes it

increasingly hard to scale the system by running more copies of the software on

additional hardware. After some years, the system must be redesigned to handle

more services and data.

Second, the Altinn II platform periodically runs batch jobs that lock up access

to the databases. There is evidence that as the amount of data increases, the batch

jobs will take longer to complete, further reducing the system’s performance. Finally,

Altinn II violates a fundamental tenet of SOA, namely, that user services should be

independent of each other. Since dependencies exist between different user services,

the failure of one service can negatively affect another. The dependencies also make

it hard to upgrade certain user services without taking down the whole system.

In conclusion, while the design of Altinn II is supposedly based on SOA, the real

design is database-centric with fragility to downtime due to the database bottleneck

and the strong dependencies between software modules. The single load balancer is

also problematic. A redesign based on the design principles of modularity, weak links,

redundancy, and diversity introduced in Chap. 4 is needed to make the system robust

to downtime. The redesign should be carried out by teams experienced in developing,

operating, and maintaining web-scale systems, preferably using the development

and operations (DevOps) methodology [37, 38]. The teams need to choose highly

distributed and scalable data storage solutions to support additional user services

with very high availability requirements.

6.3 Better Testing

It is much more demanding to test a platform that supports many services of national

importance than to test a single enterprise application. The Altinn organization did

not have an adequate test environment and test procedures in 2012 [57, 58]. The

testing was inadequate in all phases of the development process and the ability to

rectify discovered errors was limited. While Altinn was responsible for testing the

components, the service owners were responsible for testing the services built on

top of the components. The testing tools available to the service owners were not

satisfactory. Because of insufficient testing, many bugs were not detected in the code

before it went into production. In addition, due to budgetary constraints, many known

defects in the production code were not rectified [57].

http://dx.doi.org/10.1007/978-3-319-30070-2_4
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DevOps teams creating a new solution must improve testing during development.

To learn from mistakes and achieve anti-fragility to downtime, the teams must also

realize the fail fast operational principle introduced in Chap. 4.

6.4 Availability Requirements

A redesigned Altinn platform must satisfy well-defined availability, performance,

and scalability requirements [57, 58]. Since this part of the book is concerned with

anti-fragility to downtime, we only consider availability requirements. While the

following requirements are obvious consequences of the problems with the Altinn

II platform, they are valid for many types of platforms, including cloud computing

platforms, where stakeholders run their own services:

1. A failure in a (user) service must not affect other services.

2. It must be possible to upgrade a service without system downtime.

3. It must be possible to launch a new service without system downtime.

4. Failure in a component must only affect services that use the component.

5. Good development and testing tools must be available to all developers.

6.5 Fine-Grained SOA in a Public Cloud

Achieving high availability is increasingly difficult the more complex a system

becomes. Therefore, it is necessary to evolve a highly available web-scale solution,

such as an e-government platform with important services, from a smaller, highly

available system. Since no complex software system is perfect when first released,

updates are needed to satisfy the availability requirements. It is both easier and faster

to update the software when it is possible to change selected code modules without

having to prepare a major new software release with all the testing it entails. Not

all changes to a module lead to desired system behavior. Hence, weakly connected

modules, that is, weak links, are essential to limit the negative impact of unintended

behavior. Weak links let developers tinker with modules until the desired behavior

is achieved. Tinkering makes it easier and faster to make the right changes and to

avoid fragility to downtime at the same time.

The above discussion, as well as Netflix’s experience discussed in Chap. 5, demon-

strate that SOA with well-defined and self-contained services is an appropriate archi-

tecture for achieving anti-fragility to downtime. Furthermore, it makes sense to design

microservices with limited functionality because it is hard to create default fallback

responses for large services, each with much functionality [53, 54].

Since it is very expensive to acquire and maintain the computing hardware needed

to support a web-scale solution, virtualization technology should be deployed to

achieve reasonable costs [13]. Operating system-level virtualization supports a highly

http://dx.doi.org/10.1007/978-3-319-30070-2_4
http://dx.doi.org/10.1007/978-3-319-30070-2_5
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scalable system of many independent computing devices, making it possible to

allocate and use idle computing resources more efficiently than in a traditional dat-

acenter without virtualization technology. Rather than building and maintaining a

private cloud, a government should seriously consider using a public cloud because

its total cost is divided among many entities. We conclude the following:

• To achieve anti-fragility to downtime, governments should base e-government plat-

forms and services on a fine-grained SOA in public clouds with highly redundant

and scalable data storage.

6.6 User-Focused and Iterative Development

The external Altinn evaluations [57, 58] indicate a need for more user-focused and

iterative development to adapt services to users’ needs and make the services easier

to use [37, 38]. The ability to quickly modify software is also important to mitigate

problems and achieve anti-fragility to downtime. In the United Kingdom, there is a

unit within the Cabinet Office, called the Government Digital Service (GDS), tasked

with transforming government digital services according to users’ needs (http://gds.

blog.gov.uk). The GDS works with government departments to develop user services,

promotes open source development philosophies, and ensures that services are built

on open standards and application programming interfaces. The reader can find more

information about GDS’s development methodology in the Digital by Default Service

Standard and its accompanying manual (http://gov.uk/service-manual).

The GDS utilizes the DevOps methodology to break down the traditional silos

of development, quality assurance, and operations. The goal is to foster an attitude

of shared ownership and collaboration, resulting in common working practices in

designing and operating a software solution (http://infoq.com/news/2015/03/gds-

uk-gov-devops). GDS has successfully moved the Web presence of all UK govern-

ment departments to gov.uk [61]. This Web platform publishes government infor-

mation and provides access to online services. To build e-government services that

citizens will use, the GDS has found that developers first need to thoroughly under-

stand the users’ needs. Rather than make assumptions, developers must analyze real

data from similar services and interview future users to determine their needs. To

maintain usability, developers need to revisit services and make alterations as users’

needs change over time.

Any service should be designed around the identified users’ needs. According to

the GDS, developers should start small and iterate often. Frequent iterations reduce

the probability of big failures and turn small failures into lessons. It is essential to

release prototype solutions early, test them with real users, and move from alpha to

beta releases while adding features and refinements based on user feedback.

Viewing e-government infrastructures as complex adaptive systems partly explains

the GDS’s success with the DevOps methodology. Since it is very hard to predict the

long-term global behavior of complex systems, iterative and test-driven approaches

http://gds.blog.gov.uk
http://gds.blog.gov.uk
http://gov.uk/service-manual
http://infoq.com/news/2015/03/gds-uk-gov-devops
http://infoq.com/news/2015/03/gds-uk-gov-devops
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are needed to ensure the sufficient availability, scalability, and performance of new

services. Experience with Altinn shows that insufficient testing leads to undetected

errors, causing trust-reducing incidents [57]. Even worse, shortcomings of the under-

lying platform architecture go undetected, making it increasingly difficult and costly

to satisfy the design requirements as the numbers of users and services grow.

6.7 Single Versus Multiple Systems

Should a nation have a single e-government platform running many services or mul-

tiple diverse and independent platforms running a few services each? The following

answer builds on arguments first presented in an earlier paper [34]. In all the cases

discussed, the services access sensitive personal information, including financial and

medical data.

6.7.1 Systems with Strongly Connected Modules

We first consider e-government systems with strongly connected modules. Each

system runs in a traditional datacenter without cloud technologies. We compare a

scenario in which a nation employs a single system providing many services with

a scenario in which the same nation uses multiple diverse systems providing a few

services each. As long as no swan events cause prolonged downtime, the single sys-

tem exploits economies of scale. Additionally, users enjoy a high degree of usability

because the single system lets them authenticate with numerous services using the

same authentication technique. Finally, a common user interface design for all ser-

vices further enhances usability and helps attract many users.

Deploying diverse e-government systems increases the overall burden of sys-

tem management. The user experience suffers because users must relate to multiple

authentication techniques and user interface designs. Consequently, the number of

citizens using the online services can decrease. Therefore, a single system is the

preferred scenario, barring any black or gray swans.

The situation changes radically when a swan occurs that leads to prolonged down-

time. Suddenly, the government is in trouble with millions of citizens, who all want

to know what happened and what the government is going to do about the intolerable

situation. Because no alternative to the single system exists, it can take a long time

before financial and medical information becomes available again. The delay can

cause intolerable problems for all users dependent on the information. Therefore,

in a swan-prone world, multiple diverse e-government systems are significantly less

risky to major stakeholders than a single centralized system, as long as we com-

pare e-government systems with strongly connected modules that run in traditional

datacenters.
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The choice between building a single or multiple e-government systems with

strongly connected modules is essentially the choice between accepting rare,

catastrophic events and more frequent, less serious incidents. A nation should, there-

fore, employ a single strongly connected system only after a thorough and compre-

hensive risk analysis concludes that all major stakeholders can tolerate swans. If a

single system is the solution, the system owner can improve resistance to swans by

removing single points of failure and decreasing susceptibility to cascade failures.

However, it will be very expensive to obtain the system redundancy and diversity

needed to significantly reduce the probability of swans.

While the risk of swans is mitigated by deploying multiple independent and diverse

e-government systems running a few services each, it may also be necessary to

have two systems delivering the same critically important service. The experience of

the Norwegian Food Safety Authority demonstrates the advantage of an alternative

solution when a system goes down. The Authority provides a service on the Altinn

II platform to allow Norwegian fish exporters obtain export licenses. The Authority

produces export licenses for fish worth about 60 billion Norwegian kroner (NOK)

in a year. When Altinn went down for several days in 2012, the Authority used an

alternative service to produce export licenses, thus protecting the Norwegian fishing

industry from large financial losses.

6.7.2 Cloud-Based Systems of Weakly Connected Modules

The main advantage of the cloud is that an application owner can achieve the

redundancy and diversity of multiple independent implementations in traditional

datacenters without actually having to develop and maintain multiple diverse appli-

cations. Large public clouds, such as Google App Engine, Amazon Web Services, and

Microsoft Azure, are highly geographically distributed infrastructures with regions

on different continents, each with multiple zones (datacenters). As demonstrated by

Netflix, a cloud-native solution that takes full advantage of a cloud’s services can

create a single application with very high uptime. Hence, there is much less need

to implement multiple independent and diverse versions of an application when it is

possible to make a cloud-native application.

While a single cloud platform provides the needed uptime for most services,

governmental e-voting services that allow citizens to vote over the Internet during

general elections may be an exception to the rule of using only one cloud platform.

Since there are indications that citizens are particularly sensitive to failures in vot-

ing systems, a government should have an independent voting alternative in case

a cloud-based e-voting service has a major outage. In Norway, citizens in certain

municipalities have been allowed to vote over the Internet for multiple weeks during

elections [7, 43]. The long voting period was selected to reduce the impact of shorter

outages because citizens could easily vote later. Furthermore, any citizen could cast a

paper vote on the traditional election day, invalidating any earlier cast e-vote. Hence,
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e-voting did not replace paper-based voting; it only provides an additional means of

voting.

To conclude, it is necessary to have multiple and diverse e-government platforms

running relatively few services each when each platform solution is strongly con-

nected and run in a traditional datacenter. When a cloud-native solution provides

the e-government services, one solution is enough, unless we are talking about very

critical e-government services such as e-voting for national elections. In this case,

the most critical services need to have independent backup solutions [43, 62]. The

reader should keep in mind that no solution can scale forever; scaling will eventually

introduce fragility to downtime because the inevitable increase in complexity will

introduce unforeseen and fragilizing dependencies [2].

6.8 Discussion and Summary

An information and communications technology (ICT) system’s mean time to repair

(MTTR) is the average time from when a failure occurs until it is repaired and the

mean time between failures (MTBF) is the average time between two consecutive

failures. While operators of traditional monolithic ICT systems typically try to min-

imize the MTTR or maximize the MTBF, this is both difficult and costly because

the strong dependencies between system modules facilitate local failure propagation

leading to expensive systemic failures. There is a need for a better way to build and

operate complex adaptive ICT systems with a degree of anti-fragility to downtime.

The increasing popularity of cloud computing and the DevOps methodology facil-

itate the realization of SOA with microservices that model software applications as

sets of independently deployable and scalable services with well-defined interfaces

[53, 54]. Circuit breakers remove much of the problem of cascading failures and

the use of microservices with limited functionality makes it possible to ensure the

graceful degradation of an application’s functionality. The limited functionality of

each service facilitates the development of automated fallback responses in the case

of local failures. When a local failure affects a service, other services depending on

this malfunctioning service receive a standardized response. This architectural style

also supports the development and management of services by multiple teams using

different programming languages; continuous deployment, enabling rapid innova-

tion; and highly redundant and scalable data storage, making data loss extremely

unlikely.

While traditional monolithic solutions struggle to achieve high availability, the

success of Netflix and other organizations such as Nike and the British newspaper

The Guardian show that SOA with microservices is well suited to ICT infrastructures

requiring high availability. However, it is too early to conclude that this architectural

style is the future of huge enterprise and governmental solutions because serious

weaknesses may first emerge only after solutions have been in production for years.



6.8 Discussion and Summary 65

For now, we conclude that cloud-based solutions with SOA and microservices can

achieve anti-fragility to downtime. At the same time, it seems more difficult and

much more expensive to build monolithic applications outside the cloud with anti-

fragility to downtime.
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Chapter 7

Anti-fragile Cloud-Based Telecom

Systems

While Netflix has demonstrated how to apply the five design and operational prin-

ciples to develop and maintain anti-fragile software applications in the cloud, it is

less clear whether the cloud facilitates the creation of anti-fragile telecom systems,

because nobody has built such a system. Since we need to understand what makes a

system fragile to downtime before we can make it anti-fragile, this chapter initially

studies the properties of Norwegian telecom infrastructures resulting in fragility to

unplanned downtime.

We first introduce three general concepts causing fragility to downtime. Next, we

use the concepts to describe examples of Norwegian telecom systems’ past fragility

to downtime. Then, we create toy models to determine indicators of fragility to future

downtime at different levels of the systems. While the models cannot predict extreme

global behaviors leading to downtime in the systems, they have enough explanatory

power to clarify existing vulnerabilities.

Armed with an understanding of properties that make telecom infrastructures frag-

ile to downtime, we consider how to build and maintain anti-fragile telecom systems

with much of the functionality, but not all, implemented in the cloud. We first discuss

how the four design principles of modularity, weak links, redundancy, and diversity

make telecom infrastructures more robust to downtime, before discussing how the

fail fast operational principle makes the infrastructures anti-fragile to downtime.

As the complexity of a system increases, unintended dependencies occur and new

levels and patterns emerge, changing the global behavior in unpredictable ways [2].

In particular, new dependencies can create positive feedback loops, making extreme

global behavior more likely. Hence, whenever possible, we should remove fragilizing

dependencies between modules rather than add new structures and functionality to

combat fragility to downtime. The chapter’s last part pays special attention to the

removal of strong dependencies.

Since a large effort, far beyond the scope of this book, is needed to ensure highly

anti-fragile infrastructures to all types of negative impacts, this chapter only points the

way toward anti-fragility to downtime. The question of how to use cloud computing in
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telecom systems is an active research area [63, 64]. Because there is no commercially

available cloud-based telecom solution, the current chapter is more speculative than

Chap. 5 analyzing Netflix’s media streaming solution.

7.1 Anti-principles Causing Fragility to Downtime

To guide our search for fragility, we exploit so-called anti-principles describing how

not to design systems. While the existence of black swans make it impossible to pre-

cisely quantify a complex system’s degree of anti-fragility to a class of impacts, we

can easily detect when a system is fragile to a particular class using anti-principles [7,

10, 34]. The following three anti-principles outline how to create fragility to down-

time. The author discusses these anti-principles in an earlier paper [7]. The current

versions are slightly modified to emphasize downtime in telecom infrastructures.

Uniqueness A system is unique when its key services are not provided by another

system. A unique infrastructure with strong dependencies between modules and

little redundancy and diversity—the extreme case being a traditional monoculture

[28, 29]—is particularly fragile to downtime because local failures spread easily

and its many users cannot switch to an alternative infrastructure during an outage.

Connectedness A system is connected when its normal operation depends on the

normal operation of another system. If an infrastructure is connected to another

infrastructure, then the large overall complexity of the infrastructures causes

fragility to downtime.

Closed A system is closed when stakeholders do not share technical and legal infor-

mation. If only a small group of experts have deep knowledge of an infrastructure,

they have a tendency to develop similar mental models for how the infrastructure

works during discussions. This propensity toward groupthink is especially strong

when most group members belong to the same organizational culture. A uni-

form group cut off from external expertise with different perspectives overlooks

possible rare events causing downtime.

Similar to the design and operational principles discussed in Chap. 4, the reader

may recognize some of the anti-principles as anti-patterns described in the literature

on software design. Here, we use the term anti-principle rather than anti-pattern to

emphasize that these general concepts are also valid outside the area of software

design.

7.2 Past Fragility to Downtime

We apply the anti-principles to study past downtime incidents in Norwegian telecom

systems. The major stakeholders did not predict the coincidences that resulted in

the outages. Instead, the outages were analyzed by the stakeholders after the fact.

http://dx.doi.org/10.1007/978-3-319-30070-2_5
http://dx.doi.org/10.1007/978-3-319-30070-2_4
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Since knowing the impact of an incident influences how the incident is assessed,

it is necessary to be careful when stating the results of a study. Humans have a

tendency to concoct explanations for events after they have occurred, making them

seem less surprising and more predictable than they really were. This hindsight bias

misleads stakeholders into simplifying the causes of an accident, highlighting a single

element as the cause and potentially overlooking multiple contributing factors [6, 9,

17, 18, 36].

First, we consider the anti-principle of uniqueness. Mobile phone networks are

essentially unique infrastructures because the users of one network cannot generally

connect to another network when their network experiences problems. If an entire

network goes down, millions of mobile phones become useless as communication

devices. The largest mobile phone network in Norway went down for about 11 h on

June 10, 2011 [65, 66]. The restart of a central node with upgraded software initiated

a signal storm that exceeded the network’s signalling capacity. The outage affected

nearly 3 million customers, or approximately 60 % of all Norwegians. According to

top management, the incident was not supposed to happen because earlier restarts

of the same node had not caused any problems. The management’s surprise and the

rare, highly negative outcome of a common operation qualify the signal storm as a

black swan incident, at least to top management.

On June 17, 2011, parts of the same mobile phone network went down again due

to a new signal storm [67, 68]. According to the Norwegian Post and Telecommuni-

cations Authority (NPTA), both signal storms were caused by insufficiently under-

stood dependencies between central nodes in the network combined with insufficient

capacity to handle the increasing signal traffic from the many new smartphones. The

difficulty in pinpointing the causes of the extreme behavior became evident when,

more than a month later, careful technical analyses of the events finally revealed that

the signal storms were primarily due to a programming error and not insufficient

signal capacity to serve new smartphones [69]. However, the network owner also

discussed the need to change the system design and to increase the signal traffic

capacity.

The network owner’s difficulty in determining the causes of the downtime illus-

trates that the mobile phone network is indeed a complex adaptive system prone

to surprising global behavior. The NPTA publicly stated that the owner needed to

improve the network’s risk management. While better risk management can assess

and mitigate more incidents, perhaps providing longer periods of stable network

operation, large-impact incidents will still occur because the network has too many

dynamic interactions for humans to reliably foresee rare and extreme behavior. The

fundamental problem is not bad risk management but that the four design principles,

especially the principles of modularity and weak links, were not fully adhered to

when the system was created. Hence, a major outage affecting many customers was

bound to happen sooner or later due to the system’s uniqueness.

Second, we consider the anti-principle of connectedness. All mobile phone net-

works in Norway are connected to the national power grid. The normal operation of

each network depends on a nearly continuous supply of electricity. In late Decem-

ber 2011, the networks went down in a large area of Norway when a storm with
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hurricane-force winds damaged many power lines, leaving more than 700 base sta-

tions belonging to the different networks without electrical power [70]. While the base

stations had backup batteries, most lasted a maximum of only four hours. Because

landline phone and fixed Internet access were also disrupted in the same area, most

people were without communication capabilities following the storm. Although both

the power and phone companies worked hard to repair the extensive damage, it took

more than a week to restore services to all customers. The problem in 2011 was

that the telecom systems were too dependent on the power grid, that is, the telecom

system and the power grid were strongly connected systems.

Third, we consider the anti-principle of being closed. The telecom networks’

strong dependence on the nearly continuous delivery of electrical power came as

a surprise to leading Norwegian politicians. Their initial response was to severely

criticize the mobile phone companies. According to the NPTA’s director general, the

people of Norway had come to depend more on the mobile phone systems than the

agency had realized before the storm. The fact that both leading politicians and the

NPTA were surprised indicates that the consequences of the telecom systems’ strong

dependencies on the power grid were not fully understood. It is reasonable to suspect

that this surprise was due to insufficient information sharing between the network

owners and the NPTA, obscuring the fragility to downtime.

The Norwegian Directorate for Civil Protection reports that Norway’s largest

network owner does not provide major stakeholders, including the Directorate itself,

with enough information about changes in the telecom infrastructure [71]. It seems

that the owner makes major changes to its infrastructure without informing important

stakeholders such as the Norwegian Public Roads Administration, the National Air

Navigation service, or the police. Therefore, it has been hard for these institutions to

determine the level of exposure they face by using the telecom infrastructure. More

publicly available information is needed to discuss and understand the real dangers

associated with the use of the telecom infrastructures.

The discussed incidents show that the Norwegian telecom systems were fragile

to downtime in 2011 due to the anti-principles of uniqueness, connectedness, and,

most likely, being closed.

7.3 Indicators of Fragility to Future Downtime

We now turn our attention to properties of telecom infrastructures that indicate

fragility to future outages. First, consider the building blocks of the single generic

telecom infrastructure in Fig. 7.1 [72]. While the model is quite coarse, it is adequate

for our purpose. The model contains one transport network and multiple access

networks [71]. The transport network is the backbone of the telecom infrastructure

and moves data over long distances. The access networks give users access to the

infrastructure. Some of the access networks consist of one or a few base stations,

serving wireless terminals in the vicinity, while others consist of local broadband

networks, connecting, for example, homes and offices.
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Fig. 7.1 Hierarchy of networks and systems in a generic telecom infrastructure

Entities owning and operating a transport network and/or access networks are

called operators. These operators each have a technical information and administra-

tive system consisting of three smaller systems. Together with the transport network,

the three systems constitute the network core. The operations support system (OSS)

in Fig. 7.1 configures and provisions the core network nodes. Factors impacting the

configuration are the number of subscribers, peak hour call rates, the nature of the

services, and geographical preferences. The OSS system also collects network sta-

tistics, monitors alarms, and logs various actions of network nodes. The subscriber

database contains information on all customers and the charging system calculates

the costs chargeable to the customers. Because the subsystems in the network core are

needed to set up and take down all user communications, we arrive at the following

conclusion:

• A unique technical information and administrative system in the network core

indicates fragility to future downtime.

From Sect. 2.7, a system X depends on a system Y if a failure in Y negatively

affects the functionality of X . The details of the dependencies between different tele-

com infrastructures are generally unknown to analysts without close ties to operators,

but the main dependencies between access and transport operators are usually known.

Figure 7.2 depicts publicly known dependencies between Norwegian operators early

in 2014 [72]. The arrows show the direction of these high-level dependencies.

Two systems are interdependent when each is dependent on the other. There

are interdependencies between the three transport operators in Fig. 7.2. Dependent

and interdependent infrastructures allow cascading failures to pass infrastructure

boundaries [6]. Figure 7.2 illustrates that it is important to prevent a failure in a single

infrastructure from spreading to other infrastructures. Furthermore, since most of the

dependency paths in the figure end up in the transport network of the largest operator

http://dx.doi.org/10.1007/978-3-319-30070-2_2


72 7 Anti-fragile Cloud-Based Telecom Systems

Fig. 7.2 Access and transport operators in Norway. The arrows show the dependencies between

the operators. There are interdependencies between the transport operators

(Telenor), fragility to downtime in this transport network is especially serious. If

the transport network has an outage, then the outage will spread to nearly all other

infrastructures. We therefore note the following:

• A unique transport network connecting multiple operators signals fragility to

downtime.

To illustrate the fragility of transport networks, we consider the transport network

of Norway’s largest operator. While the network’s full topology is not publicly known,

it includes “self-healing” rings. Figure 7.3 shows a particularly simple ring with two

transmission paths between network nodes. If there is a break in one line, the other

line may still be available, providing the second is not in close proximity to the first

and also damaged. For best protection against failure, different physical routes are

used for the two lines. All data are transmitted on the working or active line, while

the protection line is on standby. When the active line fails, the two network nodes

affected immediately switch to the protection line.

Even a self-healing ring fails, however. On May 23, 2011, both transmission lines

of a ring in the largest operator’s transmission network failed [73]. Due to roadwork,

one line was temporarily moved aboveground by installing a temporary cable. An

excavator broke this cable by accident. About seven minutes later, a falling tree cut

the other line somewhere else in the country, causing an outage affecting mobile

phone customers in large parts of Norway for about three and a half hours. Air traffic

Fig. 7.3 Conceptual

self-healing ring
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was also affected because a regional flight control center lost its phone connections.

The incident shows that having only two cables transporting the major part of the

telecom traffic between different geographical parts of a country is unsafe, especially

when both cables are aboveground.

7.4 Robust Access Networks

Using the above understanding of fragility to downtime in telecom infrastructures, we

now consider how to make future infrastructures robust to downtime. The expected

seamless integration of Wi-Fi and mobile network technologies and the emerg-

ing Internet of Things will lead to a massive increase in the number of mobile

and stationary devices connecting wirelessly to telecom networks. Many believe

that machine-to-machine communications supporting smart grids, smart homes and

cities, and electronic health will be particularly important. All the new devices and

new data-hungry services will lead to a huge increase in wireless data traffic. Exam-

ples of devices are notebooks, mobile phones, tablets, televisions, kitchen appliances,

smartwatches, 3D glasses, drones, robots, sensors, and actuators, while examples

of services involve high-definition video available anywhere, continuous real-time

interactions between individuals, and medical sensors monitoring people’s health.

To fulfill future communication needs in a power- and frequency-efficient manner,

the deployment of multiple layers of radio coverage is most likely necessary where

traditional macrocell towers provide a blanket of coverage while, under the blanket,

thousands of small cells provide high data rates in areas such as malls, airports,

arenas, public plazas, urban parks, and business districts [63]. Because most devices

will be close to base stations, it is possible to provide high data rates while keeping

the signal power low. The use of small low-power cells enables the increased reuse of

frequencies across cells. Today’s national telecom infrastructure with many access

networks already has thousands of expensive base stations. In fact, the base stations

constitute a large percentage of the total cost of current telecom networks. One

attractive possibility to limit the costs of even more base stations is to move much of

the stations’ functionality to the cloud.

High-speed links between the base stations and the cloud are needed to satisfy the

stringent delay requirements enabling radio signal processing in the cloud. Data from

multiple base stations can be used to alleviate the increased multi-cell interference

due to reduced cell size by dynamically adjusting the radio signaling according to

channel conditions. To further limit processing delays, use of a highly distributed

cloud architecture with local access network clouds is possible, as depicted in Fig. 7.4,

where each access network cloud consists of a cluster of commodity and special-

purpose hardware. Hence, the access networks will become much more intelligent

than they are today.
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Fig. 7.4 Possible architecture of cloud-based telecom infrastructure

Flexibility in how much processing is done in the access network clouds is needed

to support varying types of services and link delays. The upper layers of the base

stations’ radio protocol stack can most easily be moved to the cloud, such as admis-

sion/congestion control and radio resource management algorithms. If low-delay

links are available, then lower-layer functions, for example, parts of the physical and

medium access control layers, can also be moved to the cloud [63, 64].

By moving most of the base stations’ functionality from the cell sites to access

network clouds, a provider no longer needs to build enough processing capacity into

every base station to handle peak traffic conditions [63, 64]. Instead, the provider

can allocate processing resources to the parts of the access networks where they are

most needed at any given time. For example, in the evening hours, the processing

resources can be adjusted according to shifting service demands as phone users move

from a city’s business district and to its suburbs.

When there are low-delay links between the base stations and the clouds, each base

station is reduced to a radio and an antenna array. While today’s access networks

are costly and time-consuming to upgrade, future generations of access networks

would simply be software upgrades in the cloud. Using the four design principles

of modules, weak links, redundancy, and diversity together with the implementation

ideas introduced by Netflix, it is possible to develop cloud-based implementations of

base station functionality that are robust to downtime. Cloud implementations will

isolate local failures to break any positive feedback loops, as discussed in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-30070-2_5
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7.5 Robust Network Core

There are at least three ways to make a network core (see Fig. 7.1) robust to unplanned

downtime. First, telecom operators should realize the functionality of nodes in the

network core in a transport network cloud, as shown in Fig. 7.4. Again, the design

principles of modules, weak links, redundancy, and diversity make it possible to

isolate local failures. Furthermore, cloud implementation allows operators to upgrade

software without taking down and restarting nodes. This advantage is important,

since it takes a long time to restart central nodes in today’s systems. The cloud also

increases the programmability and controllability of the network core because good

development and monitoring tools exist for the cloud. Operators may use a private

cloud to control its hardware layer. To reduce costs, several operators could share a

community cloud infrastructure.

Second, to reduce the chance of a major outage, operators should improve the

redundancy of the transmission paths in their transport networks. A risk analysis

[74] from 2012 of the largest transport network in Norway recommends additional

redundant paths to avoid incidents similar to the outage of May 23, 2011, described

at the end of Sect. 7.3.

Third, to make it harder for local failures to spread, operators could deploy equip-

ment from different vendors to increase the hardware and software diversity of the

nodes in the network core [72]. However, the advantage of added vendor diver-

sity must be weighed against the extra resources needed to operate and maintain a

diverse system. In particular, the use of equipment from different vendors could lead

to compatibility issues.

7.6 Reduced Dependency on the Power Grid

The December storm discussed in the second half of Sect. 7.2 revealed the Norwegian

telecom infrastructures’ strong dependence on the national power grid [70]. Strong

winds damaged many power lines, causing more than 700 base stations to go down

after their backup batteries were quickly depleted. To reduce the dependency on

a nearly continuous supply of electricity, the NPTA required network operators to

improve their backup power solutions to ensure that the 1,000 base stations covering

the most critical areas of Norway have backup power for at least 72 h [70]. All other

base stations were required to have at least six hours of backup power. In addition,

the operators were told to prepare more resources and develop better contingency

plans to enable local crews to quickly repair damaged power lines and base stations.
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7.7 Reduced Dependency on One Infrastructure

In general, a unique complex system should not implement a service of critical

national importance when the impact of a black or gray swan is intolerable [7].

The impact of extreme global behavior is reduced by realizing a critically important

service using two different systems. It is vital that a failure in one system does not

cause a failure in the other. It is not sufficient to deploy two identical systems because

they obviously have common vulnerabilities; the systems must have diverse designs

or implementations. Of course, simultaneously targeted attacks can still bring down

both systems, but diversity is likely to make such attacks costly and difficult to

successfully carry out.

After the 2011 outages discussed earlier, customers wondered why they were not

switched to another network when their home network went down. The simple answer

is that none of the networks had the capacity to service a huge number of additional

users. The network infrastructure needed large and expensive changes to facilitate

such a switch. However, it is economically viable to give a limited group of people

with important responsibilities during a crisis access to several operators’ networks,

either by giving them phones with multiple subscriber identity module (SIM) cards

or by adding functionality to switch the group members between networks.

To further reduce the impact of outages in commercial telecom networks, emer-

gency services in Norway have their own telecom network, called the Norwegian

Public Safety Network. This network covers all populated areas of Norway. While

current commercial networks are based on the same technology (LTE), the emer-

gency network is based on another technology (TETRA), especially developed for

emergency communication. None of its roughly 2,000 base stations have less than

eight hours of backup power and 15 % of the stations have 48 h worth (http://dinkom.

no/en). The emergency network only supports low-speed data communication.

7.8 Anti-fragility to Downtime

While implementations of the four design principles make cloud-based telecom

infrastructures robust to downtime, the operational principle must be implemented

to make the systems anti-fragile to downtime, that is, robustness must be maintained

over time by learning from small incidents.

The stakeholders of telecom infrastructures may balk at the idea of deliberately

introducing failures to quickly detect vulnerabilities. Granted, it may be a bad idea

to induce failures in today’s infrastructures. However, if a telecom infrastructure is

designed and implemented in the cloud according to the four design principles, then

it should be possible to induce local failures without creating a significant danger

of systemic failure causing prolonged downtime. Cloud implementation then makes

it possible to quickly discover vulnerabilities in administrative systems, in nodes in

the network core, and in the base station functionality.

http://dinkom.no/en
http://dinkom.no/en
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When infrastructures are able to confine the impact of local failures, operators can

constantly adjust their systems to keep them within the bounds of normal operations.

The adjustments involve tinkering with selected parts and processes of the systems.

Not all tinkering will have the desired effect, because it is hard to foresee the con-

sequences of changes to complex systems, especially large telecom infrastructures.

To react quickly to unusual behavior, it is necessary to monitor an infrastructure.

It is not enough to just monitor each part of the infrastructure. Because a system’s

complexity first and foremost stems from the many interactions between its parts, a

global view of the system’s behavior is necessary. A system must be monitored at

all times, especially when it experiences problems.

Because failures will occur in complex systems no matter how many resources

are used on high-quality risk analysis, reactive measurements are needed to limit the

impact of surprising incidents. In practice, there is a trade-off between proactive and

reactive measures to reduce downtime. A risk analysis [74] of Norwegian telecom

networks using Internet protocol version 4 (IPv4) suggests that sometimes it is better

to improve operations, maintenance, and the ability to quickly react to problems

than to make specific parts of the incumbent network infrastructure more robust to

downtime. These actions will benefit all Norwegian providers (see Fig. 7.2), while

physical changes will mostly provide local or regional benefits.

7.9 Discussion and Summary

Although we do not have any general method to measure an information and com-

munications technology (ICT) system’s degree of anti-fragility to downtime, it is

possible to determine when a system is fragile to outages. Here, we applied three anti-

principles to determine fragilities to downtime. These anti-principles were selected

because they proved useful during the investigation. While we have only applied the

anti-principles to telecom systems in Norway, it is not hard to apply them to other

types of ICT systems. Experience with anti-principles indicates that many systems

are fragile to downtime. Many more anti-principles exist (http://sourcemaking.com).

Additional work is needed to determine other anti-principles that reveal fragility in

ICT systems.

We should move as much functionality of a telecom infrastructure as possible to

the cloud and apply the five design and operational principles to create anti-fragility

to downtime. A service-oriented architecture (SOA) with microservices is most likely

a good way to achieve anti-fragility in practice. There is no need to use public cloud

infrastructures. A better solution is to use private, specialized clouds with, perhaps,

custom hardware for signal processing, in addition to commodity hardware. The

important point is that the amount of custom hardware can be reduced significantly

compared to today’s telecom systems.

Due the diverse expertise and huge amount of work required, it is outside the

scope of this book to determine and analyze all aspects of telecom systems leading

to fragility to downtime. In particular, we mention the need to study the protocols

http://sourcemaking.com
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of telecom systems. Future systems are likely to use IPv6, which has known vulner-

abilities, including fragility to denial-of-service attacks denying regular customers

access to telecom services. The creation of anti-fragile protocols is an interesting

research topic.

What to learn from Part II

Part II has studied the fragility, robustness, and anti-fragility of Netflix’s media

streaming solution, the Norwegian e-government system Altinn, and Norway’s

telecom infrastructure. The case studies provide strong evidence that careful

application of the five design and operational principles introduced in Chap. 4

can provide anti-fragility to downtime, that is, the principles lead to systems

with less downtime than today’s strongly connected, highly optimized systems

with little ability to handle unforeseen events. Furthermore, the cloud facilitates

the realization of these principles, although the principles are also believed to be

valid for non-cloud systems. While the five principles are easy to understand at

an abstract level, the case studies demonstrate that the challenge is to determine

how to implement the principles in real systems.

Anti-fragile software solutions in the cloud should be based on SOA with

microservices, preferably implemented and operated by development and opera-

tions (DevOps) teams with “skin in the game.” SOA and microservices together

model a software solution as a set of independently deployable and scalable

services with well-defined interfaces. This architecture style supports the devel-

opment and management of services by multiple, largely independent teams

using different programming languages, continuous deployment, and highly

redundant and scalable data storage. The use of microservices with limited func-

tionality makes it possible to ensure the graceful degradation of an application’s

functionality. Each service’s limited functionality facilitates the development of

automated fallback responses in the case of local failures. When a local fail-

ure affects a service, other services depending on this malfunctioning service

receive a standardized response.
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Anti-fragility to Malware



Chapter 8

Robustness to Malware Spreading

While many networked computing systems are vulnerable to self-propagating

malicious software, or malware, large enterprises use automated patching and hard-

ening to make their systems highly immune to malware infections. Still, persis-

tent human attackers compromise enterprise networks utilizing advanced tools,

customized malware, and zero-day exploits that anti-malware technology and patch-

ing cannot detect and mitigate [75, 76]. The three chapters in Part III study how

the diversity and fail fast principles from Chap. 4 can be exploited to achieve anti-

fragility to malware spreading in networked systems. The current chapter investigates

software diversity’s ability to make systems robust to the spreading of infectious mal-

ware and argues that diversity increases the time needed to compromise enterprise

systems, thus increasing the probability of early detection and mitigation. The two

next chapters extend the results in this chapter to achieve anti-fragility to malware

spreading.

8.1 Introduction

We view a computing system as a collection of interconnected computing devices

and consider the devices at the operating system (OS) and application levels. Com-

pilers with “diversity engines” generate the devices’ binary images, producing many

different executable images from a much smaller set of OS and application source

codes [24]. Many techniques to diversify binary images exist [77]. A transforma-

tion can be as simple as adding no-operation instructions (NOPs) to an image. The

insertion of NOPs is always possible and allows us to produce infinitely many binary

variants. Conceptually, a program’s binary images are divided into classes such that

all members of the same class share at least one exploitable vulnerability, while

members of different classes have no common exploitable vulnerabilities. Assuming

that the classes are roughly equally large, the number of classes measures the pro-

gram’s diversity with the convention that a network with only a single type, that is,

a software monoculture, has no diversity [50].
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Using well-established network models from network science [23], we combine

software diversity and computer “immunization” to halt multiple simultaneous out-

breaks of infectious malware with sparse and inhomogeneous spreading patterns,

represented by synthetic and empirical networks. We establish an explanatory epi-

demiological model of variable diversity, determine a general lower bound on the

diversity needed, evaluate the halting technique’s performance for worst-case spread-

ing over sparse and dense homogeneous networks, consider diversity’s ability to slow

down persistent threats, and discuss independent research on software diversity.

This chapter proposes and analyzes a halting technique for malware with known

static spreading mechanisms. The technique assumes that a small percentage of the

nodes can be immunized, that is, made resistant to the malware. In practice, immu-

nization, or hardening, includes the removal of non-essential software programs,

the secure configuration of remaining programs, constant patching, and the use of

firewalls and intrusion prevention systems. The author first presented the halting

technique in [56]. Chapter 10 generalizes the halting technique to malware with

unknown and time-varying spreading mechanisms.

8.2 Explanatory Epidemiological Model

Different malware strains exploit vulnerabilities in OSs and application software

to infect computing devices. An exploitable vulnerability is a mistake in the soft-

ware that enables malware to gain access to a device and its information. Examples

of exploitable vulnerabilities are buffer overflows and malformed URLs (see [24,

78, 79] for more information on vulnerabilities). Infectious malware can spread to

new vulnerable devices via network shares, removable media, Internet protocol (IP)

attacks, email messages, instant messaging, and peer-to-peer networks.

8.2.1 Epidemiological Model

We model the spreading of infectious malware over networked computing devices

by a simple graph (no self-loops or parallel edges) with N nodes of L types, 1 ≤

L ≤ N , as depicted in Fig. 8.1. There are roughly N/L nodes of each type uniformly

distributed over the graph. The node types represent different binary codes at the

OS or application level of the computing devices; that is, nodes of the same type

share an exploitable vulnerability while nodes of different types have no common

exploitable vulnerabilities. The edges represent communications between nodes. A

good measure of the model’s diversity is the number of node types L (see [50] for a

thorough discussion of diversity). Two nodes are neighbors if they share an edge. A

node’s degree k is the number of neighbors and 〈k〉 denotes the nodes’ average degree.

A network is homogeneous when all nodes have degrees k ≈ 〈k〉 and inhomogeneous

when a small fraction of nodes, called hubs, have k ≫ 〈k〉.

http://dx.doi.org/10.1007/978-3-319-30070-2_10
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Fig. 8.1 A network with N = 8 nodes, L = 4 node types of different colors, and average degree

〈k〉 = 2.5. Stars represent the infected seeds. There is S = 1 seed per node type. Only the orange

seed will infect a neighbor

The malware’s different spreading mechanisms determine the topologies of the

spreading networks. Malware utilizing random scanning to target IP addresses spread

over nearly fully connected homogeneous networks, while malware utilizing topo-

logical scanning travel over inhomogeneous networks [80]. Topological scanning

relies on information contained in infected hosts to locate new targets, including

routing tables, email addresses, and Uniform Resource Locators (URLs). The result-

ing virtual spreading networks are different from the physical networks of wired

and wireless communication links. We study multiple malware, or multimalware,

outbreaks because the deployment of several malware types is an obvious strategy to

counter software diversity. All malware types are assumed to have the same spreading

mechanism.

Our discrete-time model contains L types of infectious malware, that is, one

malware type per node type. Each malware type exploits a particular vulnerability

to infect a single node type. Initially, S nodes of each type are infected. These L · S

nodes are called seeds (see Fig. 8.1). The infection probability determines the rate at

which a sick node infects a susceptible neighbor of the same type during a time step.

To study worst-case spreading, we set the infection probability to one to ensure that

all nodes reachable from the seeds are infected. No infected node recovers.

8.2.2 Non-predictive Model

It is hard to estimate the actual spreading of malware in a networked computing

system because it is influenced by many factors, including router policies, the choice

of communication protocols, available bandwidth, traffic loads, firewall rules, anti-

malware signature sets, intrusion detection, the level of software patching, and the

misconfiguration of system parts. Rather than trying to incorporate all these fac-

tors, the epidemiological model displays very fast worst-case spreading where an

infectious node always infects all of its neighbors of the same type. While this model

cannot predict actual spreading in a network, it can explain the usefulness of software

diversity. Because actual malware is likely to spread less, it is reasonable to believe
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that the model’s malware halting translates into malware halting in real systems. This

view is supported by independent research discussed later in the chapter.

8.3 Malware-Halting Technique

The following proposed malware-halting technique immunizes hubs if they exist and

increases the diversity L to limit the fraction of infected nodes:

1. If the spreading network is inhomogeneous, immunize enough large-degree nodes

to create a homogeneous subnet when the immunized nodes and their adjacent

edges are removed.

2. Ensure that the node diversity of the homogeneous subnet is large enough to halt

multiple simultaneous malware outbreaks.

Table 8.1 outlines how to halt multimalware outbreaks on sparse (small 〈k〉) or

dense (large 〈k〉) networks with homogeneous or inhomogeneous topologies. Lim-

ited true diversity (small L) is obtained by deploying instances of different OSs

and applications with similar functionality. Michael Franz [24] argues that much

greater artificial diversity (large L) is available when users download software from

application stores utilizing compiler-generated diversity to produce many classes

of executable binary images. While true diversity is costly because the installation

of different software forces users to learn new functionality, the cost of artificial

diversity is reasonable, since the functionality is not changed.

An example illustrates the halting technique on a sparse and inhomogeneous

network with hubs. Figure 8.2a shows a synthetic network with 300 nodes. The nodes

are circles with areas proportional to their degrees, thus highlighting the hubs. The

spreading network is a software monoculture with one node type (L = 1) [28, 29].

All nodes are red to illustrate that a single seed (S = 1) infects all nodes. Figure 8.2b

shows the same network, but now with randomly distributed orange and yellow node

types (L = 2). Eight white hubs are made immune to two malware types attacking

the nodes. There is little malware spreading in this immunized “polyculture.” For a

particular selection of two seeds of different types, Fig. 8.2b shows that the malware

spreading is reduced from 300 nodes to only three red nodes; that is, the halting

technique decreases the percentage of infected nodes from 100 to 1 %.

The simple illustrative spreading network in Fig. 8.2 has no loops and the hubs

are connected in a small subnetwork. During the following analysis, we consider

networks with loops and make no assumptions about how the hubs are connected.

Table 8.1 Malware halting on spreading networks with different topologies

Malware halting on different network topologies

Sparse and homogeneous Sparse and inhomogeneous Dense and homogeneous

Utilize small true or artificial

diversity

Use hub immunization and

small true or artificial diversity

Deploy large artificial diversity
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Fig. 8.2 a Monoculture

with 300 infected nodes

whose areas are proportional

to their edge degrees. b The

same network as in (a) but

with white immunized hubs

and orange and yellow node

types. Two malware types,

each with a single randomly

selected seed, only manage

to infect one additional node

8.4 Halting Technique Analysis

The epidemiological model represents the spreading phase of multimalware out-

breaks. The following approximate analysis of this phase establishes a lower bound

on the diversity L needed by the halting technique summarized by Table 8.1.

We first clarify why hubs should be immunized in an inhomogeneous spreading

network. When the infection probability is small and the malware spreading origi-

nates from a single randomly selected seed, a strategically placed node in the “core”

of a monoculture contributes more to the spreading than a hub on the network’s

periphery does [81]. However, we study polycultures with a maximum infection

probability equal to one and multiple widespread seeds per node type. Consider a



86 8 Robustness to Malware Spreading

hub with a large degree D on the periphery of a network. Since the S seeds with the

same type as the hub are uniformly distributed over the network, one of the hub’s

neighbors could be a seed. When this seed infects the hub, the hub will again infect

roughly D/L of its neighbors of the same type. We want to prevent this peripheral

hub infection because D tends to be much larger than L and because any of the

D/L infectious nodes can cause extensive malware spreading when the infection

probability is one.

Since different malware spreading mechanisms result in distinct spreading pat-

terns, it is essential to analyze malware outbreaks on spreading networks with arbi-

trary degree distributions. Let the nodes in a network be numbered from one to N

and let node i have degree ki , i = 1, . . . , N . We consider the ensemble of ran-

dom networks with an arbitrary but fixed degree sequence {ki } generated by the

so-called configuration model (see [23, Sect. 13.2] for details). All networks have a

mean degree 〈k〉 = 1/N
∑

i ki and a mean-squared degree 〈k2〉 = 1/N
∑

i k2
i . Any

network has L node types, with (approximately) N/L nodes of each type.

A single-type component is a subset of nodes of the same type such that there is a

path between any pair of nodes in the set and such that it is not possible to add another

node of the same type to the set while preserving this property. The two orange nodes

in Fig. 8.1 constitute the largest single-type component. A single-type component is

a giant component when its size is proportional to N/L . If a single-type component

contains a seed, then all its nodes will be infected.

We study single-type components in a network to limit the overall fraction of

infected nodes. Let this fraction be averaged over many model runs, where each run

has L · S randomly selected seeds. The underlying network topology is the same for

all malware types, since they are assumed to have the same spreading mechanism and

the nodes of different types are uniformly distributed over the network. A particular

malware type only infects a single type of nodes. Hence, malware of different types

infects distinct subsets of nodes. Because each subset has N/L nodes, all subsets

have the same fraction of infected nodes when averaged over many model runs.

Consequently, the average fraction of infected nodes over all types can be analyzed

by considering a monoculture subgraph, defined by all the nodes of an arbitrary but

fixed type and the edges connecting these nodes. All other nodes and their adjacent

edges can be ignored.

To limit the average fraction of infected nodes, we want to choose the diversity L

such that the monoculture subgraph does not have a giant component. This subgraph

has a mean degree 〈k〉/L and a mean-squared degree 〈k2〉/L2 for large N . Because

the subgraph is contained in a random network generated by the configuration model,

the subgraph has a giant component if and only if 〈k2〉/L2 > 2〈k〉/L in the limit

for large N [23, p. 456]. To prevent the formation of a giant component, we need

〈k2〉/L ≤ 2〈k〉 or, equivalently, we choose the diversity L such that

L ≥

⌈

〈k2〉

2〈k〉

⌉

. (8.1)
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The right-hand side of inequality (8.1) is large for inhomogeneous networks

because k2
i is much larger than ki for hubs. However, hub immunization reduces

the lower bound. When the nodes with the largest degrees in the original network

are immunized, we obtain a new network with N ′ < N susceptible nodes and

smaller node degrees d j , j = 1, . . . , N ′. The new network is obtained by ignoring

all immunized hubs and their adjacent edges because they no longer contribute to

malware spreading. This network “pruning” affects the previously discussed mono-

culture subgraph. The new mean-squared degree 〈d2〉 = 1/N ′
∑

j d2
j and mean

degree 〈d〉 = 1/N ′
∑

j d j should be substituted for 〈k2〉 and 〈k〉 in inequality (8.1)

to determine the minimum needed diversity L .

Whether or not hubs in the original network are immunized to obtain a new

network, the S seeds in a monoculture subgraph can spread over at most S components

of this subgraph. These components are small in graphs without a giant component

[23], leading to a small fraction of infected nodes. Inequality (8.1) shows a trade-off

between the required number of node types L and the number of immunized hubs. If

it is possible to generate many node types, then the fraction of immunized hubs can be

reduced, making it possible to halt malware outbreaks on very large inhomogeneous

networks.

8.5 Halting Technique Performance

We have seen that the hubs in a spreading network with inhomogeneous topology

can be immunized to obtain a homogeneous network. If the hubs are not known,

then acquaintance immunization can be used to protect most hubs [25]. Acquain-

tance immunization will be discussed in Chap. 9. Here, we apply the malware-halting

technique to synthetic and empirical spreading networks with homogeneous topolo-

gies. Each network represents the worst-case spreading of S malware outbreaks per

node type. While inequality (8.1) is only strictly valid for random networks in the

limit of large N , the following NetLogo [46] simulations show that the lower bound

determines the needed diversity.

8.5.1 Sparse and Homogeneous Networks

Wireless devices, particularly smartphones, can communicate via short-range wire-

less links such as Wi-Fi and Bluetooth links. In our first epidemiological simulations,

different malware types copy themselves to new devices by opening wireless connec-

tions. Sparse and homogeneous proximity networks represent the spreading patterns.

The NetLogo model generates a proximity network with an average node degree 〈k〉

by first placing N nodes uniformly at random on a square. An edge is then added

between a randomly chosen node and its closest neighbor in Euclidean distance.

http://dx.doi.org/10.1007/978-3-319-30070-2_9
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Table 8.2 The minimum number of node types needed to halt malware outbreaks on homogeneous

proximity networks with 5,000 nodes and an increasing average node degree

Proximity networks

Average node degree 〈k〉 5 6 7 8

Minimum needed node types L 3 4 4 5

Fraction of infected nodes 3.4 % 3.6 % 4.6 % 4.8 %

Each fraction of infected nodes is averaged over 500 networks with uniform random distribution of

node types and seeds

More edges are similarly added until the network has the desired average degree 〈k〉.

Self-loops and multiple edges between nodes are not allowed. Note that although

handheld devices move over time, we only model short-term malware spreading

assuming static networks. Wireless sensor networks stay fixed for long periods.

Table 8.2 lists the lower bounds on the needed diversity L , obtained from inequality

(8.1), for proximity networks with 5,000 nodes and an increasing average degree 〈k〉.

Each fraction of infected nodes is averaged over 500 networks with the same average

degree and uniform distribution of node types, including S = 10 seeds per type. Only

connected networks were evaluated, that is, networks with isolated subgraphs were

ignored. The lower bound on the diversity L was the same for all evaluated networks

with a given average degree.

While the deterministic epidemiological model causes all nodes to become

infected in a monoculture (L = 1), less than 5 % of the nodes became infected in the

diverse proximity networks, according to Table 8.2. Previously published simulation

results and mathematical analyses of other network models confirm that small true

or artificial diversity is sufficient to halt multimalware outbreaks on homogeneous

and sparse networks [82].

We also analyze malware halting on a sparse network where the nodes represent

email addresses and the links represent e-mail exchanges between the addresses. The

network has 1,133 nodes and 5,451 edges. The largest node has degree 71 and the

average degree is 9.62. While the network is slightly inhomogeneous, we forgo the

immunization of large-degree nodes. The lower bound on the diversity is L ≥ 10.

Since the network is small, we assume only S = 1 seed per node type.

Ignoring the fact that email malware needs help from unknowing users to prop-

agate, the simulations determined the fraction of infected nodes averaged over

5,000 random configurations of node types and seeds for increasing diversity

L = 10, 11, . . . , 16. The fraction of infected nodes decreases from 8 to 4 % when

the diversity increases from 10 to 16. The additional decrease in the fraction of

infected nodes is relatively small for diversity above the lower bound in inequality

(8.1). Earlier reported simulation results for other networks [82] show similar mod-

est reductions in the fraction of infected nodes for diversities beyond the minimum

required value.
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8.5.2 Dense and Homogeneous Networks

Consider the case where L types of random scanning malware spread over a complete

network with N nodes of degree k = N − 1. There are L node types and N/L nodes

per type. The types are uniformly distributed over the nodes of the network. Assume

one seed per node type. Each seed has edges to the other N/L − 1 nodes of the same

type. Together, the N/L single-type nodes form a star graph with the seed in the

center. Since the seed will always infect all the peripheral nodes in the star graph, it

does not help to increase the number of node types L as long as there is one seed

per node type. All N nodes will still be infected. The only way to halt multimalware

outbreaks is to use many more nodes types than there are malware types.

If there are M malware types, then M · N/L nodes will be infected. Hence, the

diversity L needs to be proportional to N and the number of malware types M must

be much smaller than N to prevent a large infection. This observation is in accordance

with the diversity bound in inequality (8.1), which is equal to L ≥ (N − 1)/2 for

k = N − 1. More generally, consider an arbitrary path consisting of m edges in a

dense network. The path’s nodes are all of the same type with probability L−m for

m ≤ N/L . We must have diversity L ≈ N to ensure that this probability is very small

even for very short paths. As stated in Table 8.1, large artificial diversity is needed to

halt malware spreading over homogeneous dense networks with many nodes.

Since it is not completely clear how much artificial diversity is obtainable with

compilers utilizing diversification techniques [24], we cannot conclude that the halt-

ing technique is applicable to multimalware outbreaks with dense spreading patterns.

However, Todd Jackson [83] and his colleagues convincingly argue that applica-

tion stores can produce massive-scale software diversity. Furthermore, as we tran-

sition from Internet protocol version 4 (IPv4) to IPv6, topological scanning may

become more popular than random scanning due to the huge number of unused IPv6

addresses.

8.6 Persistent Targeted Attacks

The term advanced persistent threats refers to attackers employing more or less

advanced techniques to first learn about and then compromise selected computer

systems without being detected, at least not for a long time [75, 76]. Examples of

persistent threats are state-sponsored attacks on foreign commercial and governmen-

tal enterprises to steal industrial and military secrets. The attacks are often initiated

by well-timed, socially engineered spear-phishing emails delivering trojans to indi-

viduals with access to sensitive information. Malicious email is leveraged because

most enterprises allow email to enter their networks.

Persistent attackers frequently exploit OS or application vulnerabilities in the

targeted systems. An attacker first develops a payload to exploit one or more vulner-

abilities. Next, an automated tool such as a PDF or Microsoft document delivers the
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payload to a few users of a system. The payload installs a backdoor or provides remote

system access, allowing the attacker to establish a presence inside the trusted system

boundary. Finally, the attacker violates the confidentiality, integrity, or availability

of the system to achieve his or her goals.

We shall see that large software diversity increases the time persistent attackers

need to compromise systems, thus providing defenders with more time to detect the

probing of their system defenses, collect information about the attackers, and deploy

countermeasures to prevent major system breaches. As before, we divide the binary

files implementing the functionality of a particular program into L roughly equally

large classes such that all members of the same class share at least one exploitable

vulnerability, while members of different classes have no common exploitable vul-

nerability. If a user and an attacker download the same program from an application

store [24, 83], then the two downloaded files share an exploitable vulnerability with

probability 1/L . When the diversity L is large, the probability of a common vulner-

ability is small and attackers can no longer reliably analyze their own downloaded

program files to exploit vulnerabilities in users’ program files. (Note that the diversity

L must be large even if the lower bound in inequality (8.1) is small.)

Directed attacks against specific computers running known programs become

more difficult, as long as the attacker has no way of determining which specific binary

is running on what computer. Since it is necessary to create security patches tailored

to the different binary versions of the same program [24, 83], it becomes impossible

for an attacker to reverse-engineer software patches by comparing a particular patch

to the corresponding code on a user’s computer because the patch and code are both

unknown to the attacker.

8.7 Related Work

Miguel Garcia [78] and his colleagues have studied true diversity at the OS level

by considering exploitable OS vulnerabilities published over a period of roughly 15

years. The authors carefully analyzed vulnerabilities in 11 different OSs to determine

how many of these vulnerabilities occur in more than one OS. More than 50 % of the

55 studied OS pairs have at most one remotely exploitable common vulnerability.

The low numbers of shared vulnerabilities for different OS combinations strongly

indicate that true diversity is obtainable with off-the-shelf OSs. The authors also

provide a good overview of related research on software diversity.

Jin Han [79] and his colleagues have shown that true diversity is available at

the application level with off-the-shelf software. The authors analyzed over 6,000

application vulnerabilities published in 2007. About 98.6 % of the studied applica-

tions have substitutes, that is, applications that offer similar functionality, and the

majority of the applications either do not have the same vulnerability or cannot be

compromised with the same exploit code. Nearly half of the applications are offi-

cially supported to run on multiple OSs. Although the different OS distributions of
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the same application are likely to suffer from the same vulnerability, the attack code

is different in most cases.

Work by Konstantinos Kravvaritis [84] and his colleagues supports the need for

more software diversity in real networked systems. The authors reasonably assume

that binary files with the same name are realizations of a single program; that is, the

files may be different at the binary level but their functionality is identical. A client–

server application collected executable program and library files from individuals

who installed the client application on their computers. The client calculated the

MD5 hash of each collected file and sent the hash to the server. Since the hash is

unique for each different input file, the server could determine whether or not binary

files with the same name were identical.

Kravvaritis [84] and his colleagues defined three metrics to measure the diversity

of binary files with the same name. One metric, which estimates the probability of a

successful targeted attack, is given by m/n, where m is the number of instances of the

most frequent binary variant of a program and n is the total number of instances. The

server collected 1,309,834 binary instances of 205,221 files with different names.

For more than half of the files analyzed, the estimated chance of a successful attack

is in excess of 50 %. The values of all three metrics indicate that the diversity of

current software platforms is too low to significantly slow down targeted attacks.

Hence, there is a real need for the large compiler-generated diversity discussed in

this chapter.

Research by Pu Wang [85] and colleagues confirms that the number of giant

components with nodes of the same type determines the extent to which malware of

different types spread over diverse networks. The authors study the calling patterns

of 6.2 million mobile phone subscribers to determine possible spreading patterns of

malware attacking smartphone OSs. When a smartphone OS’s market share is small,

there is no giant component of the call network connecting most phones with this

OS. Although the call network is connected, a subgraph of smartphones sharing the

same OS is fragmented into many small and disjoint components [85]. The lack of

large components on which different types of malware can spread explains the low

observed saturation of malware in real mobile phone networks. Nevertheless, future

malware epidemics are possible because two OS families currently dominate the

smartphone market and more and more people buy smartphones.

Juan Caballero [86] and his colleagues have shown that the judicious use of

true diversity improves the robustness of the Internet routing infrastructure against

software vulnerabilities facilitating denial-of-service attacks, remote execution of

system-level commands without authentication, and unauthorized privileged access.

While the use of different software implementations from different code bases on

different routers increases the network’s overall robustness, it also increases the

complexity and costs of network deployment and management. Artificial diversity,

as suggested by Franz [24], is an interesting alternative to true diversity because the

complexity and costs are much reduced.

Graph coloring is the assignment of colors to the nodes in a graph subject to

a constraint [86]. Not surprisingly, a good coloring algorithm needs fewer colors

to obtain adequate true diversity on a network compared to just distributing colors
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uniformly over the network devices, as done here. Because the best coloring algo-

rithms necessitate central coordination to install the correct software on the different

devices, these algorithms are best suited to slow-changing infrastructures managed

by skilled personnel. Coloring algorithms are less useful when general users man-

age computing devices. The advantage of deploying application stores incorporating

compilers with diversity engines is that adequate diversity is achieved with very little

involvement from device owners.

8.8 Summary

While the Internet’s numerous networks are diverse due to distinct configurations,

firewall rules, anti-malware signature sets, intrusion detection, and router policies,

many networks still have limited internal diversity, making them vulnerable to seri-

ous malware spreading. The multimalware-halting technique presented can halt out-

breaks on these networks.

Advanced persistent threats represent a serious challenge to defenders of net-

worked systems with very sensitive information. Our analysis shows that software

diversity makes it harder to infect computing devices in these systems. Eventually,

large-scale experiments will be needed to determine how to best deploy software

diversity to make systems more robust to malware.
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Chapter 9

Robustness to Malware Reinfections

In Chap. 8, we analyzed a deterministic epidemiological model where an infected

node immediately contaminated all its neighbors of the same type. The spreading

process was completely determined by the spreading network’s topology, the config-

uration of node types, and the selection of initially infected nodes or seeds. Because

no node recovered from an infection, there were no long-term dynamics. The spread-

ing simply stopped when all reachable nodes were infected. Here, we study a sto-

chastic epidemiological model of multimalware outbreaks where arbitrary but fixed

probabilities determine whether nodes are infected. Furthermore, nodes recover from

infections with given probabilities, only to be reinfected later. An incident from 2007,

where the same worm repeatedly infected the internal networks of a Norwegian bank,

illustrates how reinfections can occur in real networks.

The stochastic epidemiological model is first used to determine how to immunize

unknown hubs on diverse inhomogeneous spreading networks. A simple solution

is obtained by generalizing the acquaintance immunization strategy for monocul-

ture networks [25]. Next, the model is analyzed to determine the software diversity

required to halt multimalware spreading in homogeneous spreading networks where

nodes can be infected multiple times by the same malware. The analysis produces

a lower bound on the diversity needed to ensure that, with a high probability, the

malware outbreaks do not spread far but, instead, die out quickly. The lower bound

is obtained by modifying a “classical” result from network science [87]. A reader

unfamiliar with differential equations can skip the development of the bound, since

it is not needed to understand the remaining chapters.

9.1 Malware Attack on a Norwegian Bank

In March 2007, Viking.gt, a worm well known to anti-malware software vendors at

the time, attacked office computers belonging to a large bank in Norway. The worm,

most likely residing on an external game site, entered the bank’s internal networks

via a computer at a branch office and cascaded across roughly 1,000 servers and
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11,000 office PCs in 190 branch offices. This cascade failure occurred because the

anti-malware software running on the bank’s computers did not stop infections, even

though the anti-malware software was updated with an appropriate signature for the

worm. During the attack, branch offices could not assist their customers with many

tasks and some offices closed.

About 200 individuals worked two shifts to remove the worm. Because the

worm disabled the machines’ automatic software update mechanism, the worm had

to be manually removed from each machine. The vendor’s initial upgrade to the

anti-malware software was flawed, allowing infected machines to reinfect cleaned

machines over internal networks. The bank decided to close all connections to the

Internet to protect their internal systems from further external infection. It then took

days to remove the malware from the internal networks.

The next section presents a malware spreading model that allows malware to rein-

fect nodes. This stochastic model is a generalization of the deterministic explanatory

model in Chap. 8.

9.2 Stochastic Epidemiological Model

Let a networked computer system be infected by different types of malware. The

malware’s spreading network is modeled as an undirected graph with M edges and

N nodes of different types. The node types represent machines with distinct software

at the operating system or application layer and the edges represent virtual commu-

nication lines. There is at most one edge between two nodes and no edge connects a

node to itself. If there is an edge between two nodes, then these nodes are neighbors.

The degree k of a node is the number of neighbors. The nodes’ average degree is

〈k〉 = (2M)/N .

As noted in Chap. 8, the topology of the spreading network depends on the soft-

ware layer and the vulnerabilities exploited to spread the malware. We discriminate

between an inhomogeneous network containing a few nodes, the hubs, with a very

large degree k ≫ 〈k〉 and a homogeneous network where all nodes have a degree

k ≈ 〈k〉. Any spreading network has L different node types l = 1, 2, . . . , L for

1 ≤ L ≪ N . Each node type occurs Nl times. A node chosen uniformly at random

is of type l with probability Nl/N for N =
∑

l Nl . When Nl = N/L , the diversity is

equal to the number of node types L with the convention that a monoculture network

with only one type has no diversity [50].

A node of arbitrary type l is either susceptible to an infection or it is infected. If

an infection is removed from the node, then it immediately becomes susceptible to a

new infection. There are L types of malware, where each type of malware infects a

particular software platform, that is, node type. Because there are L nodes types with

L corresponding malware types, the complete spreading network can be viewed as

L disjoint subnet monocultures, each containing a single node type.

http://dx.doi.org/10.1007/978-3-319-30070-2_8
http://dx.doi.org/10.1007/978-3-319-30070-2_8
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Multiple simultaneous malware epidemics are modeled by L susceptible–

infected–susceptible (SIS) models [23, 87] operating on the same network topology

but affecting L disjoint subnet monocultures. Initially, all the nodes are susceptible.

At time step t = 0, the model selects uniformly at random S (≥1) nodes of each type

l and infects them. These L · S initially infected nodes are the seeds. For each time

step t = 1, 2, 3, . . ., any infected node of type l infects any susceptible neighbor of

type l with infection probability pl , 0 < pl ≤ 1. At the same time, any infected node

of type l recovers with recovery probability ql , 0 ≤ ql ≤ 1.

If ql > 0 for some l, then a node can repeat the SIS life cycle many times. The

result is a stochastic model with long-term dynamics, where it is assumed that the

infections and recoveries are updated in a random asynchronous order. When pl = 1

and ql = 0 for all l, the SIS models become L susceptible–infected (SI) models.

The overall spreading model is deterministic in this case, since malware infects

all reachable nodes with 100 % probability. Consequently, the spreading process is

completely determined by the network’s topology, the configuration of node types,

and the selection of seeds. Because no node recovers from an infection, there are

no long-term dynamics. The spreading simply stops when all reachable nodes are

infected. This special case of L deterministic SI models was first presented in Chap. 8

for Nl = N/L .

9.3 How to Immunize Unknown Hubs

While we may not know the degrees of many nodes in inhomogeneous spreading

networks, it is still possible to immunize hubs in advance of malware outbreaks. The

acquaintance immunization strategy [25] provides an elegant solution to the prob-

lem of immunizing unknown hubs in a monoculture (L = 1): Choose a set of nodes

uniformly at random and immunize one arbitrary neighbor per node. While the orig-

inal set of nodes is unlikely to contain the relatively few hubs in an inhomogeneous

network, the randomly selected neighbors are much more likely to be hubs, since

many edges are adjacent to high-degree nodes.

We can generalize acquaintance immunization to diverse networks. Assume that

it is possible to estimate the number of nodes Nl of each type l in a diverse network,

perhaps by estimating the total size of the network and then determining the per-

centages of different node types in a small part of the network. For some fraction

0 < f < 1, choose a set of f · Nl nodes of type l uniformly at random such that each

node has at least one neighbor of the same type, l = 1, 2, . . . , L . Immunize one ran-

domly selected neighbor of type l per node in the set. When the number of immunized

neighbors f · Nl of each type l is large enough, most hubs are immunized [25].

To illustrate acquaintance immunization on diverse spreading networks, we con-

sider an inhomogeneous network with dominant hubs. The network has 10,670 nodes

and 22,002 edges. The largest hub has degree 2,312, which is nearly 11 % of the total

number of edges. The L = 7 node types have different colors and the size of a

node is proportional to its degree; that is, hubs are larger than low-degree nodes.

http://dx.doi.org/10.1007/978-3-319-30070-2_8
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Fig. 9.1 Acquaintance

immunization of a network

with enlarged hubs at the

top. Only immunized nodes

and susceptible hubs are

shown. Note that most hubs

are immunized

A node turns pink when it is immunized. Let the fraction of immunized neighbors be

f = 0.04 (4 %). Figure 9.1 shows only the immunized pink nodes and the remaining

susceptible multicolored hubs after acquaintance immunization. No edges or sus-

ceptible low-degree nodes are shown. Note that most of the 216 enlarged hubs are

immunized. Assume S = 20 seeds per node type for a total of 7 ·20 = 140 seeds. Let

pl = 0.06 and ql = 0.04. When acquaintance immunization is performed in advance,

the fraction of infected nodes goes to zero after only a few hundred time steps.

9.4 Lower Bound on Required Diversity

In this section we determine a lower bound on the node diversity L needed to make it

very likely that new malware outbreaks will die out before they spread to many nodes.

We assume that all hubs are immunized, even though acquaintance immunization

may miss a few. Because the hubs and their adjacent edges do not partake in the

transmission of malware, we model the spreading network after hub immunization

as a random homogeneous network with N nodes, average degree z = 〈k〉, and

Nl = N/L nodes of each type, l = 1, 2, . . . , L . The spreading network has a

fixed but arbitrary (thin-tailed) degree distribution. Note that modeling the remaining

spreading network after hub immunization as a random network is an approximation

chosen because random networks are malleable to analysis [23].

The average fraction of infected nodes of type l, denoted hl , is estimated by

considering the subset of N/L nodes of type l. To estimate hl , we extend an analytical
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technique for random networks viewed as homogeneous monocultures (L = 1) [23,

87]. Each malware outbreak in a network with L > 1 node types operates on a

subgraph with N/L nodes of the same type. On average, a node has z/L neighbors

in the subgraph because the probability that a node is of type l is Nl/N = 1/L .

Let the spreading rate be ρl = (pl z)/(ql L) for ql > 0, l = 1, 2, . . . , L , and view

hl = hl(t) as a continuous-time variable. Representing the expected change in the

fraction of infected nodes as the differential equation

dhl

dt
= pl

z

L
hl(1 − hl) − qlhl

and imposing the stationary condition dhl/dt = 0, we find that the average fraction

of infected nodes saturates at hl = 1 − 1/ρl for ρl > 1. The fraction hl goes to zero

in finite time when ρl < 1. For a fixed infection probability pl , recovery probability

ql , and average degree z, the spreading rate ρl = (pl z)/(ql L) < 1 when the number

of node types L > (pl z)/ql . Consequently, hl goes to zero.

Since we need hl to go to zero for all l, the needed node diversity is lower

bounded by

L > z · max
l

{

pl

ql

}

, (9.1)

where z = 〈k〉 is the average node degree of the remaining spreading network after

hub immunization. The largest spreading rate essentially determines the required

diversity L .

It is possible to estimate the lower bound in inequality (9.1) for real malware

types by estimating the infection probabilities pl and recovery probabilities ql . How-

ever, the inequality is first and foremost important because it shows that multiple

simultaneous malware outbreaks with the ability to reinfect nodes will die out before

they can spread far when the software diversity is large enough, given that hubs are

immunized.

9.5 Discussion and Summary

A combination of acquaintance immunization and node diversity prevents malware

with the ability to reinfect nodes from creating long-lasting epidemics. Through

immunization of most of the hubs and a sufficient increase in node diversity, malware

outbreaks are likely to die out quickly. Hence, acquaintance immunization and node

diversity together provide robustness to malware reinfection.

As first stated in Sect. 8.7, graph coloring algorithms can be used to ensure that no

(or very few) pairs of neighboring nodes have the same color or node type. Coloring

algorithms exploit the topology of static spreading networks to reduce the number of

node types needed to prevent malware propagation, compared to our simple approach

of just randomly assigning node types. Why, then, are we using this simple approach

http://dx.doi.org/10.1007/978-3-319-30070-2_8
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in both the previous and current chapters when it does not minimize the number of

different colors needed to prevent malware spreading? There are two main reasons.

First, while coloring algorithms need central processing to assign node types,

our simple scheme requires no central control. We cannot use algorithms requiring

central control to assign node types because of their limited scalability. Our goal is

a malware-halting technique that scales to millions of nodes. Second, the topologies

of the malware spreading networks are not known and, even if they were, networks

will vary over time, making it necessary to constantly rerun the coloring algorithms

to reassign node types. Hence, we do not let the perfect be the enemy of the good.

Instead of trying to come up with sophisticated solutions to make highly complex

networks more or less immune to malware spreading, we fight complexity with sim-

plicity [88]. The next chapter suggests and analyzes a simple scalable technique

providing anti-fragility to malware with unknown and changing spreading patterns.
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Chapter 10

Anti-fragility to Malware Spreading

To achieve anti-fragility to malware spreading, this chapter applies the fail fast prin-

ciple from Chap. 4 to the robust malware-halting technique developed in the two

previous chapters. According to the fail fast principle, it is necessary to learn from

failures in complex adaptive systems when the impact of the failures are still small.

In the case of infectious malware epidemics, once malware is detected on a node in a

networked system, other nodes infected by the same malware should be healed and

susceptible nodes should be protected from future infections of this malware.

The two previous chapters showed how software diversity and hub immunization

could halt malicious software or malware from spreading. This chapter combines

compiler-generated software diversity [24, 56, 89], hub immunization, and imperfect

malware detection/removal to achieve anti-fragility to the spreading of various types

of malware in networked computing systems. The cloud is used to efficiently combine

these techniques. The suggested malware-halting technique scales to huge networks

because it does not require any tightly coupled interactions or adaptations between

groups of devices. The average fraction of infected nodes is reduced compared to

the examples in Chap. 8. The technique is of practical interest because malware is an

omnipresent and serious security threat [21, 22]. The ideas in this chapter were first

presented in [90].

We again study infectious malware, that is, computer worms with different spread-

ing mechanisms. E-mail malware spreading via address lists and mobile phone mal-

ware propagating over short-range wireless links generate patterns of infected devices

defined by sparse graphs [85], while malware scanning Internet protocol version 4

(IPv4) addresses at random produce dense graphs. We concentrate on sparse spread-

ing networks in this chapter. Rather than trying to accurately model the spreading

of real malware instances, we again analyze worst-case spreading where the first

attempt to infect a susceptible device always succeeds.

Non-infectious malware strains, such as trojans, spyware, adware, and ran-

somware, mistakenly downloaded by computer users are viewed as infectious mal-

ware with limited spreading ability. We measure malware spreading in a networked

computing system by the fraction of infected devices. A system is fragile to malware

when small outbreaks of different malware strains spread to a large fraction of the
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devices. If the malware strains only spread to a small fraction of the devices, then

the system is robust. A system under repeated attacks from malware is anti-fragile

if it first learns to reduce the fraction of infected devices and then manages to keep

the fraction small when the malware’s spreading mechanism changes.

To achieve anti-fragility in practice, it is advantageous to build on existing and

planned automated software mechanisms. We combine compiler-generated diver-

sity, software downloads from application stores, hub immunization, and imperfect

malware detection/removal to achieve anti-fragility to malware spreading. An agent-

based model randomly adds software diversity to a software monoculture to create

a software polyculture with a much reduced fraction of infected devices. The model

demonstrates that periodically removing executable code, including unknown mal-

ware, from devices and installing new diverse code drastically increase robustness

to malware spreading. If imperfect malware detection is added, the model gains a

degree of anti-fragility because it can more quickly remove malware and update

vulnerable code to keep the fraction of infected devices very small, even when the

malware strains have unknown and time-varying spreading.

10.1 System Model

As in the two previous chapters, we study a network of interconnected computing

devices and consider the devices at the operating system (OS) and application levels.

Application stores in the cloud, such as Google Play and iOS App Store, utilize

compilers with “diversity engines” to generate binary images for a huge number of

devices, producing many different executable images from a much smaller set of

OSs and application source codes [24, 89]. As in earlier chapters, we assume that a

program’s many binary images can be divided into classes such that all members of

the same class have a common exploitable vulnerability, while members of different

classes have no common exploitable vulnerabilities.

The number of classes measures the program’s diversity, assuming roughly

equally large classes. Since compiler-driven diversity promises to provide large diver-

sity [24, 77], we forgo any notion of central control over the assignment of software

diversity to computing platforms and make no attempt to minimize the use of diver-

sity. This allows us to study the benefit of software diversity in systems with millions

of devices. Cloud-based compilations of source codes allow application stores to

support large numbers of download requests each day.

A significant fraction of all malware infections is not discovered by traditional

signature-based malware detection because modern malware utilizes time-varying

code obfuscation to avoid detection based on fixed byte patterns [21]. Emerging

cloud-based anti-malware solutions promise to improve automated malware detec-

tion [22, 91, 92]. Servers in the cloud deploy heuristic, behavioral, and signature-

based techniques to detect different types of malware by processing data collected

by clients running on user devices. A cloud solution can also incorporate knowledge
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from other sources, such as malware honeypots, that is, computers capturing mal-

ware.

Despite the protection promised by cloud anti-malware, it is nearly impossible to

keep all computing devices in a networked system free from malware at all times. The

difficulty of detecting encrypted malicious traffic and the successful use of rootkits

to hide malware suggest that automated malware detection will remain imperfect for

the foreseeable future [21]. A more realistic goal is to provide a form of “community

immunity,” where most devices are protected against malware because there is little

opportunity for outbreaks to spread. Whereas community immunity usually entails

the immunization of nearly all entities in a population, we mainly deploy compiler-

generated software diversity to reduce malware spreading. Our goal is not to force

the fraction of infected devices to zero but, rather, to keep it very low over time.

We study consecutive outbreaks of different malware types, called multimalware

outbreaks, because the deployment of multiple malware types is an obvious strategy

to counter software diversity. Devices are assumed to automatically remove exe-

cutable code, including unknown malware, and immediately download new diverse

code from application stores on a semi-regular basis. The introduction of imper-

fect malware detection allows devices to also initiate unscheduled code removal and

updates when infections are detected. In severe but rare cases, trained personnel must

take a device offline to wipe its entire memory before installing the new software. The

following model assumes that the self-repairing and diversity-enhancing approach

removes all malware. Because it is hard to remove advanced malware, especially

rootkits, from real systems, it is possible to adjust how often the model successful

carries out code removals and updates.

10.1.1 Model Description

We model multimalware spreading over networked computing devices by a simple

graph (no self-loops or parallel edges) with N nodes and a maximum of L node types

for L ≪ N . At time step t = 0, 1, . . . , the graph contains D = D(t) of the L node

types, where D(0) = 1. The D active node types represent classes of binary codes at

the OS or application level of the devices’ computing platforms; that is, nodes of the

same type share an exploitable vulnerability while nodes of different types have

no common exploitable vulnerabilities. The edges represent virtual communica-

tion lines. The number of active node types D measures the model’s time-varying

diversity.

Two nodes are neighbors if there is an edge between them. A node’s degree k

is the number of neighbors and 〈k〉 is the average degree over all nodes. All nodes

change type with probability p at each time step to model the automated removal of

executable code (including unknown malware), followed by immediate downloads of

new diverse code from application stores. One of the L possible node types is selected

with probability 1/L , thus changing the initial monoculture into a polyculture with

diversity L .
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Initially, all nodes are susceptible to malware infections. There is one malware

type per node type. All malware types have the same spreading mechanism. Whereas

epidemiological models in the literature tend to model a single malware outbreak, we

model systems with many outbreaks. One malware outbreak occurs with probability

q at each time step. An outbreak initially infects a single susceptible node selected

uniformly at random. A newly sick node infects all its susceptible neighbors of the

same type during the next time step. Infected nodes change type with probability

r at each time step to model the varying degree of imperfect malware detection

followed by immediate malware removal and the installation of new diverse code.

Any infected node becomes susceptible when it changes type.

It is possible to switch off automated malware detection by setting r = 0. We

can also set p = 0 to disable automated software downloads. A small fraction of

nodes can be immunized, that is, made resistant to malware infections. Immunized

nodes do not change type or transmit infections to neighbors. As stated in Chap. 8,

automated immunization or hardening includes the removal of non-essential software

programs, the secure configuration of remaining programs, constant patching, and the

use of firewalls and intrusion prevention systems. Other mitigation techniques, such

as control-flow integrity [93], that induce code overhead and performance penalties

can also be used on selected devices.

10.1.2 Model Limitations

As first observed in Chap. 8, it is hard to predict how malware will spread over a

networked computing system because the propagation depends on the malware’s

spreading mechanism, the network topology, changing traffic loads, routing and fil-

tering policies, the choice of communication protocols, and network failures and

misconfigurations. Rather than trying to generate accurate spreading patterns under

various network conditions, the model displays very fast worst-case malware spread-

ing in which an infectious node immediately infects all its neighbors of the same

type.

Although the model cannot predict spreading in a real networked system, it can

demonstrate the usefulness of combining software diversity and imperfect malware

detection to halt malware spreading. Compared to the model, actual malware is likely

to spread slower, because the first attempt to infect a susceptible computing device

will not always succeed and not all susceptible devices will be infected because

some are unreachable in practice. Hence, it is reasonable to believe that modeled

malware halting translates into halting in real systems.

We only study sparse spreading patterns with an average degree 〈k〉 much lower

than the number of nodes N . Whereas nodes and edges can be deleted during a model

run and new nodes and edges added to simulate changes in the malware’s spreading

mechanism, nodes cannot change position after they have been created.

http://dx.doi.org/10.1007/978-3-319-30070-2_8
http://dx.doi.org/10.1007/978-3-319-30070-2_8
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10.2 Anti-fragility on Static Graphs

A worst-case spreading pattern given by a network with average degree 〈k〉 is homo-

geneous when all nodes have degrees k ≈ 〈k〉. To keep the analysis manageable,

we first study static spreading patterns represented by homogeneous networks and

determine when the system model is anti-fragile to spreading.

Consider a homogeneous network with a single node type at time t = 0, D(0) = 1.

If this monoculture is connected, then it is extremely fragile to malware spreading

since a single sick node will infect all nodes as long as no node changes type. The

model avoids fragile monocultures by allowing nodes to change type. Each time a

node changes type, it selects a particular type with probability 1/L . Consequently,

the number of node types D(t) will grow toward the maximum value L . The phase

where D(t) changes from one to L will be simulated later. Here, we assume that

D(t) = L , where t > t ′ for a small finite time t ′, and study the model after the

fraction of infected nodes starts to fluctuate around a small time-averaged value f .

We need to determine an expression for the time-averaged fraction f of infected

nodes. Let Q denote the set of susceptible nodes that are infected during T time

steps. We first estimate the expected number of infected nodes in Q, denoted E{|Q|}.

During each time step, there is a probability q that a single susceptible node is seeded

with an infection. The probability that no neighboring node has the same type as

this seed is approximately (1 − 1/L)〈k〉. If we choose a large diversity L > 〈k〉

such that this probability is large, then an infection will most likely spread at most

from the seed to the nearest neighbors of the same type. Ignoring further spreading,

each seed infects, on average, 〈k〉/L < 1 of its neighbors. Over T time steps, the

expected number of seeds is T · q and about T · q · 〈k〉/L susceptible neighbors will

be infected, since the average fraction f of infected nodes is small. The expected

number of susceptible nodes becoming infected during the period T is thus estimated

by E{|Q|} ≈ T · q · (1 + 〈k〉/L).

Next, we determine the expected number of infected nodes that become suscepti-

ble during T time steps. All N nodes in a network change type with probability p to

model periodic downloads of diverse software. Let P denote the set of infected nodes

that change type (and become susceptible) due to periodic software downloads. We

need to determine the expected size of P , denoted E{|P|}. The expected number of

type changes over a period T is p · N · T . Since the fraction of infected nodes is f ,

the expected number of infected nodes that change type is E{|P|} = f · p · N · T .

The remaining infected nodes at a time step detect their infections with probabil-

ity r . Let R be the set of infected nodes that change type (and become susceptible) due

to malware detection followed by an immediate software download. We also need to

determine the expected size E{|R|}. The expected number of infected nodes is f ·N ·T

and the expected number of infected nodes changing type is E{|R|} = r · f · N · T .

Over T time steps, the two sets P and R overlap. The total number of unique

nodes changing type and becoming susceptible is given by the union P ∪ R. The

expected size is of this union is E{|P ∪ R|} = E{|P|} + E{|R|} − E{|P ∩ R|} =

p f N T + r f N T − pr f N T = f N T (p + r − pr). The expected number of nodes
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changing type and becoming susceptible must be equal to the expected number of

new infected nodes to maintain a stable time-averaged fraction f of infected nodes.

Hence, the relation E{|P ∪ R|} = E{|Q|} results in the approximation

f ≈
q [1 + 〈k〉/L]

(p + r − pr)N
(10.1)

for homogeneous networks with diversity L > 〈k〉.

Equation (10.1) shows that it is possible to maintain a small fraction f of infected

nodes, even if malware detection is switched off (r = 0), by adjusting the software

download probability p. Note that this property is based on the assumption that

malware is removed during the software update process. Let p and r be small such

that the value of pr is negligible compared to p + r . When malware detection is

switched on (r > 0), the fraction of infected nodes reduces further for a fixed

probability p. Hence, anti-fragile systems using imperfect detection and removal

of new malware further reduce the fraction of infected devices, compared to robust

systems that merely remove old code and download new diverse code periodically.

10.2.1 Simulations of Anti-fragility on Static Networks

To validate Eq. (10.1), we consider smartphones and other handheld computing

devices that communicate via short-range Wi-Fi and Bluetooth links [85]. Infectious

malware types can copy themselves to new devices by opening wireless connec-

tions. Malware can also propagate directly between Wi-Fi access points via wireless

connections [94]. We represent the worst-case spreading patterns by homogeneous

proximity networks. The system model was programmed in NetLogo [46] and gen-

erates a proximity network with average node degree 〈k〉 by first placing N nodes

uniformly at random on a square. An edge is then added between a randomly cho-

sen node and its closest neighbor in Euclidean distance. More edges are similarly

added until the network has the desired average degree. Self-loops and multiple edges

between nodes are not allowed.

Simulations were run on networks with N = 5,000 nodes, L = 20 node types, and

different average degrees 〈k〉. The outbreak probability was q = 10−2, the software

download probability p = 10−5, and the malware detection probability r = 10−3.

Table 10.1 lists the observed average, minimum, and maximum fraction of infected

nodes over 100 runs, where each value was averaged over the last 10,000 time steps

of a run. The table also reports an estimate of the average fraction obtained from

Eq. (10.1). The good agreement between the simulated and calculated values shows

that the expression can provide good estimates of the average fraction of infected

nodes. Other model runs with different parameter values confirm the agreement

between simulated and calculated values.
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Table 10.1 The estimated average fractions of infected nodes in proximity networks with 5,000

nodes and increasing average node degree

Proximity networks

Average degree 5 6 7 8

Estimated frac. 0.25 % 0.26 % 0.27 % 0.28 %

Simulated frac. 0.26 % 0.27 % 0.28 % 0.30 %

(max., min.) (+0.09,−0.08) (+0.08,−0.1) (+0.11,−0.07) (+0.16,−0.11)

The corresponding simulated fractions are averaged over 100 runs, with the largest observed devi-

ations shown in parentheses

10.2.2 Anti-fragility on Large Static Networks

Since there is agreement between the average fractions of infected nodes obtained

from the simulations and from Eq. (10.1), we use the equation to study anti-fragility

to malware spreading on very large homogeneous networks. The required frequency

of software download p and the frequency of malware detection r decrease as the

size of a network grows, because p + r is proportional to 1/N . Hence, anti-fragility

to malware occurs on large model networks for practical download and detection fre-

quencies.

Consider a homogeneous network with 100 million nodes, that is, N = 108, and

average degree 〈k〉 ≪ L . For outbreak frequency q = 10−2 and an average fraction of

infected nodes f = 10−3, we have from Eq. (10.1) that p + r ≈ q/( f N ) = 10−7. If

each time step in the model is one second long, then there is a new malware outbreak

every 100 seconds, on average. The fraction of infected nodes is maintained when

the download frequency is p ≈ 10−7 without malware detection (r = 0), that is, each

device has to download and install new software after about 116 days. If malware

detection is added to our example, then the average fraction of infected devices is

reduced. For r = 10−4 and p = 10−7, we have f ≈ 10−6. The calculations illustrate

that anti-fragility to malware spreading scales to very large homogeneous networks.

10.3 Anti-fragility on Time-Varying Graphs

We now consider a modified system model with an unknown and time-varying worst-

case spreading pattern that remains sparse over time. Even if the spreading mecha-

nism varies, the spreading is mostly limited to the neighbors of the nodes seeded with

infections as long as the spreading pattern remains homogeneous and the diversity

remains much larger than the changing average degree.

We therefore study inhomogeneous spreading patterns containing a small fraction

of nodes, called hubs, with degree kh much larger than the time-varying average

degree. A hub and its kh neighbors form a star graph with the hub at the center. If

all kh + 1 nodes have a uniform distribution of L node types, then there are roughly
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kh/L neighbors of the same type as the hub. A susceptible hub is infected each time

one of the neighbors of the same type is infected. A reinfected hub again infects all

susceptible neighbors of the same type, ensuring a total of kh/L infected neighbors.

Since a hub’s kh neighbors constitute a significant fraction of all nodes in a worst-

case spreading pattern, we may very well have kh ≫ L . This is why hubs are

referred to as super-spreaders, even in software polycultures. Note that malware

does not need to be infectious for a hub to be a super-spreader; for example, a hub

can be a popular website infected by malware that is inadvertently downloaded by

many users accessing the site. While the non-infectious malware does not spread any

further after the downloads, the number of infected devices kh/L is still large.

Similarly, if the hubs’ neighbors tend to have small degrees, most of the spreading

of infectious malware will also be confined to the hubs’ neighbors. Even when a hub

regularly changes type, there will still be roughly kh/L neighbors of the same type as

long as all nodes have a uniform distribution of types. Over time, a hub that changes

type will reinfect many neighbors as long as at least a few neighbors of different

types are infected.

If hubs are connected in a small subnetwork and several hubs have the same type,

then a large fraction of all nodes in a worst-case spreading network is infected very

quickly. Hence, we need to “neutralize” hubs, especially tightly connected hubs, to

make the actual spreading pattern more homogeneous such that, for any susceptible

node of degree k, the expected number of neighbors of the same type is negligible

(k/L ≪ 1).

The following three malware simulations with different spreading patterns show

that hubs can be immunized to gain anti-fragility to multimalware spreading. Rather

than presenting plots averaged over many runs to obtain smooth curves, the figures

plot single runs to better demonstrate how anti-fragile systems would actually behave.

10.3.1 Simulations of Anti-fragility

In the first simulation, the NetLogo model generates a time-varying spreading pattern.

A model run starts with a proximity network with 2,000 nodes, average degree

〈k〉 = 4, maximum degree 10, and diversity D(0) = 1. Initially, malware detection

is turned off (r = 0). The fraction of infected nodes plotted in Fig. 10.1 reduces from

about 91 to 8 % as the model changes from a fragile monoculture to a more robust

polyculture with diversity L = 5. When malware detection is turned on (r = 10−2),

the fraction reduces further to 0.1 %. The plot confirms the advantage of introducing

software diversity and applying imperfect malware detection.

Next, 75 % of the nodes and their adjacent edges are deleted and the network is

regrown using the preferential attachment technique [95], with each new node con-

nected to three existing nodes. The new nodes have a uniform distribution of node

types. This simulated change in spreading mechanism causes the original homoge-

neous spreading pattern to change into an inhomogeneous spreading pattern. The

new spreading pattern has an average degree 〈k〉 = 4.8 and a maximum degree 33.
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Fig. 10.1 The fraction of infected nodes in a changing network with 2,000 nodes, outbreak prob-

ability q = 10−2, download probability p = 10−3, and diversity L = 5. The plot illustrates

the effects of increasing diversity, malware detection, a change in spreading mechanism, and hub

immunization

The fraction of infected nodes increases to roughly 45 % because the diversity L

is not large enough to prevent spreading from the new hubs, even though malware

detection is still on. The sharp increase in the fraction of infected nodes illustrates that

the malware halting is fragile to changes in the spreading pattern when the diversity

is too small.

Finally, the 61 nodes with the largest degrees are immunized. When these hubs and

their adjacent edges are ignored because they no longer contribute to malware spread-

ing, the remaining spreading pattern has average degree 〈k〉 = 3.8 and maximum

degree 14. The fraction of infected nodes reduces to roughly 0.6 %, demonstrating

the need to immunize super-spreaders in real networks to obtain more homogeneous

spreading patterns.

In the second simulation, the NetLogo model starts with an inhomogeneous email

network with 1,133 nodes, average degree 〈k〉 = 9.6, maximum degree 71, and diver-

sity L = 8. The largest hubs are immunized before the model run starts. As shown

in Fig. 10.2, the fraction of infected nodes reduces to roughly 1 % as the monocul-

ture turns into a polyculture. The model then erases 75 % of all nodes as before and

creates an inhomogeneous network with 2,000 nodes. No new nodes are immunized

and their types are uniformly distributed. The new subgraph of susceptible nodes has

average degree 〈k〉 = 4.7 and maximum degree 44. Unlike in the first simulation,

there is no large change in the fraction of infected nodes in Fig. 10.2 because the

diversity, the remaining immunized nodes, and the malware detection probability

(r = 10−2) together prevent significant spreading. The plot shows that the malware

halting can be made robust to changes in the spreading pattern.

In the third simulation, the NetLogo model utilizes a static inhomogeneous spread-

ing pattern with 10,670 nodes, 36 hubs that form a small connected subgraph, and

many nodes with a low degree k ≈ 〈k〉 = 4.1. The hubs’ degrees range from
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Fig. 10.2 The fraction of infected nodes in a time-varying e-mail network with outbreak probability

q = 10−2, download probability p = 10−3, malware detection probability r = 10−2, and diversity

L = 8. Note that there is no visible change in the fraction when the spreading network changes

2,312 down to 102. In a real network, any immunization of hubs is likely to be

imperfect because some infected hubs are not detected or because some hardened

hubs still become infected. The model utilizes acquaintance immunization to simu-

late imperfect cloud-based detection and immunization of infected hubs [25]. This

immunization technique chooses a set of nodes uniformly at random and immunizes

one arbitrary neighbor per node. While the original set of nodes is unlikely to contain

the few hubs in the network, the randomly selected neighbors are much more likely

to be hubs, since many edges are adjacent to high-degree nodes.

Figure 10.3 plots the fraction of infected nodes. The fraction decreases as the

diversity grows to L = 14 but stabilizes around 11 % because the hubs are not

immunized. When acquaintance immunization selects 2 % of the nodes, all but three

Fig. 10.3 The fraction of infected nodes in a static network with 10,670 nodes, outbreak probability

q = 10−1, download probability p = 10−3, malware detection probability r = 10−3, and diversity

L = 14
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of the hubs are immunized. The fraction of infected nodes reduces to about 0.1 %.

Figure 10.3 illustrates that imperfect detection and immunization of hubs reduce the

fraction of infected nodes, even when the spreading pattern contains a subnetwork

of tightly connected hubs.

Additional simulations with varying parameter values confirm the model behav-

ior reported. In particular, simulations using acquaintance immunization confirm

the adequacy of imperfect hub immunization. The additional simulations further

strengthen the claim that compiler-generated software diversity, periodic down-

loads of software from application stores, and imperfect malware detection/removal

together provide a networked computing system with a degree of anti-fragility to

multimalware spreading.

10.4 Discussion

The anti-fragile malware-halting technique scales to large networked systems because

compiler-generated software diversity and malware detection can be implemented

as cloud services. While empirical work is needed to determine the real-world per-

formance of the combined services, it is encouraging that there exist commercial

anti-malware solutions running in the cloud. According to Franz’s research group

[24, 89], it is cost-effective to compile diverse software in the cloud. Furthermore, the

impact of software diversity on the runtime performance is small and it is possible

to securely patch diverse software. Still, challenges remain.

While acquaintance immunization is useful for simulating imperfect detection

and immunization of hubs, the strategy is not the best choice for real networked sys-

tems, because many potential super-spreaders, such as popular websites, are known.

The challenge is to ensure that the owners of potential super-spreaders harden their

systems. Users could be warned to stay away from infected websites, making it nec-

essary for owners to remove the malware and harden the systems to get their users

back. At the time of this writing, Google informs users and webmasters of unsafe

websites (http://google.com/transparencyreport/safebrowsing).

Netflix’s decision to induce failures in their production system to repeatedly

increase robustness to downtime raises the question of whether to use infectious

“goodware” to improve the detection of susceptible devices and speed up the learn-

ing process leading to anti-fragility to malware spreading. While ethical questions

are associated with this approach, it is worth investigating.

Although users today regularly download software from application stores, more

work is needed to create self-repairing (up to a point) devices that remove malware

and install diverse software in a way acceptable to users.

http://google.com/transparencyreport/safebrowsing
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What to learn from Part III

Part III analyzed how to prevent infectious malware from spreading over huge

networks of computing devices. Through a series of analyses, we developed

a malware-halting technique that stops frequent multimalware outbreaks with

an unknown and time-varying spreading mechanism. The technique combines

application stores with compiler-generated software diversity, imperfect mal-

ware detection, and the semi-periodic reinstallation of software on devices. If

compiler-generated software diversity and malware detection are realized in the

cloud, then the malware-halting technique scales to huge networks, because it

does not require any tightly coupled interactions or adaptations between groups

of computing devices.

More efficient malware-halting techniques exist that require less software

diversity to halt malware outbreaks on spreading networks with known and

unchanging topologies. The problem with these techniques is that the topologies

of spreading networks are rarely known in practice. Furthermore, the topologies

change over time as the malware writers change the spreading mechanisms.

Finally, the previously known techniques require a high degree of central con-

trol, limiting the ability to scale to millions of devices. To ensure scaling, we

relinquished central control and made a strategical decision to not let the perfect

be the enemy of the good. Hence, instead of trying to minimize the needed soft-

ware diversity, we focused on creating a simple technique that takes advantage

of existing and proposed technologies to halt frequent multimalware outbreaks

with unknown and changing spreading mechanisms.
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Chapter 11

The HTM Learning Algorithm

According to the fail fast principle in Chap. 4, we need to learn from systems’ abnor-

mal behavior and downright failures to achieve anti-fragility to classes of negative

events. The earlier we can detect problems, the smaller the negative consequences

are and the faster we can start learning how to improve the systems. Since humans are

not good at detecting anomalies, especially in streaming data from large cloud appli-

cations, a form of automatic anomaly detection is needed. There are many ways to

detect anomalies, depending on which complex adaptive system we consider. For

example, Internet banking solutions employ a rich set of heuristics to detect fraud

[26]. This first chapter of Part IV introduces a general learning algorithm based on

Hawkins’s developing theory of how the brain learns, called hierarchical temporal

memory (HTM) [27, 96]. The HTM learning algorithm, or just HTM, is used in the

next chapter to detect anomalies in a system’s behavior. HTM was earlier referred to

as the cortical learning algorithm.

The underlying basis for the HTM learning algorithm is not easy to understand and

the algorithm itself is still being developed. To grasp HTM’s novelty and importance,

the current chapter first discusses the approach to learning taken by traditional artifi-

cial intelligence (AI) research, as well as efforts to “train” artificial neural networks

to realize particular input–output mappings defined by data “training sets.” Second,

the chapter outlines why HTM is an improvement over these earlier approaches.

Finally, it provides a fairly detailed description of the HTM learning algorithm (with

some algorithmic details left out to ease understanding).

While Hawkins’ general theory on how the brain works is very interesting, this

chapter only provides enough information to understand the major steps of the HTM

learning algorithm. The reader wanting to know more about the theory behind HTM

should study Hawkins’ book On Intelligence written with Sandra Blakeslee [27].

More technical information on HTM is given in a white paper [96] by Numenta

(http://numenta.com), which was set up to develop the algorithm for both commer-

cial and scientific use. An open source project, called the Numenta platform for intel-

ligent computing (NuPIC) (http://numenta.org), provides HTM program code and

documentation. YouTube (see also http://numenta.com/learn) has a growing number
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of talks by Hawkins and others at Numenta on different aspects of HTM. Ryan Price

[97] and Michael Galetzka [98] have studied the capabilities and performance of

HTM. This chapter is mainly based on information provided by the above sources.

11.1 The Problem with Classical AI Research

Learning to recognize known patterns and predict future patterns remains a major

challenge for AI, because any autonomous agent needs these abilities to operate suc-

cessfully in a changing environment. Decades of classical AI research, as well as all

the work carried in the 1980s and early 1990s to train artificial neural networks, have

not been able to replicate human learning [99, 100, 101]. The main mistake, according

to Hawkins [27], was not understanding how the human brain learns and, instead,

treating the brain as a computer that could be programmed to produce intelligent

behavior. The goal of classical AI was to develop algorithms that would first match

and then later surpass human intelligence. Unfortunately, the programs developed

were only good at the particular task for which they were designed. The programs

did not have the ability to generalize or to show flexibility in the face of changing

circumstances. Finally, there were significant unsolved problems on how to represent

knowledge in computers.

The author of this book was among the many postdoctoral researchers in the

early 1990s developing algorithms to train simple models of neural networks. After

much work by many scientists, it became evident that, while these trainable neural

network models could learn relatively small problem instances, they did not scale to

handle large instances due to an exponential increase in training time and a limited

ability to generalize to new circumstances. More recent deep learning algorithms for

multilayer neural networks solve larger problem instances and have many interesting

applications [102]. However, as for the earlier learning algorithms, deep learning still

requires custom training in batch mode for specific tasks and does not continuously

learn like the brain.

The limited success of classical AI and neural network research has made many

scientists suspect that the brain does not run a large collection of specialized learn-

ing algorithms. Other scientists still believe that specialized learning algorithms are

needed to achieve a high degree of intelligence. Only future research will show who

is correct.

11.2 An Alternative Approach to Learning

Hawkins [27] believes the best way to understand how the brain learns is to use its

biology as guidance while thinking about learning as an algorithmic problem with a

solution implementable on computers, perhaps in the cloud, or, even better, in silicon.

Not everybody agrees that the brain is an algorithmic machine (or Turing machine)
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[103]. Some scientists and philosophers believe the brain to be a different type of

machine based on quantum effects [104, 105, 106]. Here, we do not discuss whether

the brain is a quantum computer, since HTM learning is purely algorithmic.

Hawkins has based HTM on a 1978 hypothesis by Vernon Mountcastle [107]. It

states that the neocortex uses essentially the same learning algorithm to process the

signals from all of the body’s sensory organs. HTM is a general learning algorithm

and a memory system storing invariant representations of physical structures and

abstract concepts. While a traditional specialized AI learning algorithm must be

programmed in great detail, HTM is self-learning. Furthermore, whereas artificial

neural networks must be trained offline using particular training sets, HTM learns in

real time as the data come in. Finally, unlike artificial neural networks, which require

retraining when the world changes, HTM is able to forget old representations and

learn new representations in real time.

HTM is based on the assumption that the world has structure and is therefore

predictable. The world is not chaotic and not homogeneous but complex. The complex

but structured behavior of the world allows HTM to learn by creating invariant

representations of common patterns reported by the senses. The patterns occur in

sequences, enabling HTM to predict future behavior based on earlier experienced

behavior. Here, a sequence is a set of patterns that generally accompany each other

but not always in a fixed order. The important point is that patterns of a sequence

follow each other in time, although the order may vary. HTM is adaptable, allowing it

to learn changes in the environment. Old memories are removed and new memories

are formed. While HTM models the processing of sensory streams for human vision,

touch, hearing, and language, it can also be exposed to non-human sensory input

streams such as web traffic, data from cloud computing infrastructures, financial

market data, and weather data [96].

11.3 The Brain’s Neocortex

To understand how the HTM learning algorithm works, it is advantageous to first

study its biological basis [27, 96]. HTM is modeled after the structure and operation

of the neocortex, or just cortex, in the brain. The cortex is responsible for learning. It is

a sheet of neural tissue approximately 1,000 cm2 in area and 2.5 mm thick. The cortex

looks like a dinner napkin wrapped around the older areas of the brain. The cortex

contains at least 30 billion nerve cells, or neurons. It consists of six layers formed

by variations in the density of cell bodies, cell types, and cell connections. There are

five layers of cells and one non-cellular layer. During early development, the cortex

divides itself into dozens of functional areas, or regions, based on experience and

needs. The function of a region is determined by the information that flows into it.

Note that a region comprises all six layers of the cortex. In the following, we consider

three important aspects of the neocortex and its neurons.
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11.3.1 Communication

Classical artificial neural networks model the function of a neuron as a weighted

summation of inputs followed by a non-linear operation on the sum. We now know

from neuroscience that cortical neurons carry out much more complex operations. An

important reason why HTM improves on previous attempts to train neural networks

is that HTM utilizes a radically different neuron model, heavily inspired by cortical

neurons. The neurons in the cortex communicate with each other via electrical and

chemical signals. The signals are the basis of memory and learning in the cortex.

As depicted in Fig. 11.1, a typical neuron consists of the cell body, or soma, many

dendrites, and a single axon. The branch-like dendrites receive incoming signals from

other neurons and the axon and its terminal branches transmit outgoing signals to

other neurons. Some axons are coated with myelin, a fatty substance that insulates

the axon and increases the speed of communication. Signals pass between neurons

at connections called synapses. Note from Fig. 11.1 that neurons do not touch. There

is a microscopic gap, denoted the synaptic cleft (see inset), between the axon of one

neuron and the dendrite of another.

The signaling occurs roughly as follows: When neuron A receives a chemical

signal from another neuron, neuron A becomes electrically charged relative to the

surrounding fluid outside its membrane. The electrical charge travels down the axon,

away from A’s soma, until it reaches a synapse. Inside the synapse is a group of

storage sites, denoted vesicles, containing chemicals manufactured by the soma.

When the electrical charge arrives at the synapse, it causes these vesicles to fuse with

the synapse’s cell membrane, spilling molecules, called neurotransmitters, into the

Fig. 11.1 Signal propagating down an axon to the dendrites of the next cells (figure from http://

urbanchildinstitute.org/why-0-3/baby-and-brain)

http://urbanchildinstitute.org/why-0-3/baby-and-brain
http://urbanchildinstitute.org/why-0-3/baby-and-brain
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synaptic cleft. The neurotransmitters move across the synaptic cleft to one of neuron

B’s dendrites, where they bind with receptor sites in the dendrite’s membrane. Neuron

B develops an electrical charge, the charge travels down its axon, and the described

process repeats itself.

While some cortical regions receive input directly from the body’s sensory organs,

other regions receive input only after it has passed through intermediate regions. The

regions are connected via large bundles of axons or fibers. Information flows in

parallel over these fibers at all times. The regions process a continuous stream of

signals that create patterns in space and time inside the neocortex. The cortex does

not experience the world directly; it only has access to patterns coming from the

sensory organs. These patterns all have the same format inside the brain, allowing

the cortex’s different regions to use the same learning algorithm.

11.3.2 Memory

The cortex is not some kind of parallel computer that makes many computations

on input patterns to create output patterns. Instead, the cortex rapidly retrieves out-

puts from its huge memory. All memories in the cortex are stored in the synaptic

connections between neurons. While both the cortex and computers have memories,

there are large differences: The cortex stores sequences of patterns, it recalls patterns

auto-associatively, and it stores invariant patterns in hierarchies.

In more detail, the memory of the cortex automatically stores sequences of pat-

terns. Memory recall almost always follows a path of association. Auto-associativity

simply means that patterns are associated with themselves. An auto-associative mem-

ory can retrieve a complete pattern from a partial or noisy input sequence. This is true

for both spatial and temporal patterns. The cortex is constantly completing patterns

from noisy and partial inputs.

Regions are connected in hierarchies. Regions at a low level of a hierarchy store

simple physical and abstract objects. These objects are combined into larger objects

in higher regions. Simple objects can be a part of many hierarchies. Each region

forms invariant representations of objects. The invariant representations allow the

cortex to recognize faces and physical objects, although the light, viewing angle, and

surroundings change all the time. The higher layers of the cortex combine information

from the lower layers to understand multi-sensory inputs over time, for example, a

film with both sound and moving images.

11.3.3 Predictions

The cortex combines the invariant representations with new inputs to make predic-

tions about everything a human sees, feels, and hears. According to Hawkins [27],

prediction is the primary function of the cortex and the basis for intelligence. We are
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interested in the cortex’s ability to predict, because an anomaly is detected when a

prediction is violated. The reader should know that a great deal of information also

flows downward in the hierarchies of the cortex. While these feedback connections

are crucial to understanding how the brain creates behavior, they do not play an

important role in the current version of HTM and will not be discussed here.

11.4 Overview of HTM

The HTM learning algorithm models how learning occurs in a single layer of the

cortex. Input to the algorithm is a continuous stream of input patterns from some

kind of system. HTM builds sparse, invariant representations of pattern sequences

representing repeated structures in the input stream. The algorithm learns which

patterns are likely to follow each other, thus learning to predict future patterns. When

the HTM receives a novel pattern, it will try to match it to stored patterns. Because

inputs never repeat in exactly the same way, invariance of the stored sequences is

vital to the ability to recognize inputs.

Time plays a crucial role in HTM. Predictions can only be made on the basis of a

sequence of earlier received patterns. Sometimes it is enough to know the previous

pattern most recently received while at other times it is also necessary to know patterns

received earlier. The ability to predict using variable-length sequences of patterns is

due to the variable order memory of HTM. Note that HTM does not understand

the meaning of patterns; it only knows what patterns are likely to follow particular

observed patterns.

11.4.1 Sparse Distributed Representation

HTM generates internal sparse distributed representations (SDRs) of the input pat-

terns. An SDR is given by a binary vector with a fixed number of bits. Different

vector lengths are possible. A vector can contain 2,048 bits, only 2 % of which are

ones, called active bits. The zero bits are the inactive bits. The individual bits in an

SDR have semantic meaning, unlike, for example, the dense eight-bit ASCII code,

where all bit patterns are used and the characters are assigned bit patterns randomly.

In an SDR, two inputs with similar semantic meaning must have similar binary

vector representations, that is, they must have many equal bits when the vectors

are compared position by position. This happens naturally for visually similar black

and white pictures, while the binary representations of natural numbers with nearly

the same values may not have a single bit in common, for example, 7 = 01112 and

8 = 10002. The SDR property is vital to HTM’s ability to learn [27]. It is therefore

often necessary to recode input data to HTM to ensure that vectors sharing active bits

have similar semantic meaning. If the encoded input vectors are dense, then HTM

creates a sparse representation.



11.4 Overview of HTM 119

Ahmad and Hawkins [108] have developed exact bounds on HTM’s level of fault

tolerance and robustness to noise. The bounds show that the use of SDRs makes it

easy to construct HTM systems that are very robust to perturbations.

11.4.2 Proximal Dendrite Segments

HTM arranges artificial cells in 2,048 columns, with 32 cells in each column. Concep-

tually, the columns are arranged in a two-dimensional array, as illustrated in Fig. 11.2.

Note that only a small part of the array is shown. Figure 11.3 illustrates how all the

cells in a column share a single proximal dendrite segment receiving feed-forward

input. Each column has potential connections to a random selection of the bits in an

input vector to HTM. These bits are called the potential bits or the potential pool.

The status of the connections is determined by the synapses in Fig. 11.3.

HTM uses the concept of permanence to change the connectedness of synapses.

Permanence is a scalar value ranging from zero to one. It is assigned to a synapse

to represent the degree of connectedness between the axon and the dendrite. A per-

manence value of zero represents a potential synapse that is not valid and has not

progressed toward becoming a valid synapse. A permanence value above a thresh-

old (typically 0.2) represents a synapse that has just connected but could easily be

unconnected. A high permanence value, for example, 0.9, represents a synapse that is

connected and cannot easily be unconnected. When a synapse’s permanence is above

a threshold, it is connected with weight one. Below the threshold, it is unconnected

with weight zero. Note that there is no individual weighting of synaptic connections

as in classical neural networks. Instead, HTM has the ability to create and remove

these connections. According to Hawkins [27], HTM achieves a higher information

Fig. 11.2 HTM contains columns of cells with active cells shown in gray. When there is no prior

state, all or none of the cells in a column are active
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Fig. 11.3 The cells in a

column share a proximal

dendrite, with synapses

represented by small black

circles. A solid circle

represents a valid synapse

connection with a

permanence value above the

connection threshold and an

empty circle represents a

potential synapse connection

with a permanence value

below the connection

threshold. Feed-forward

input activates a column after

a local inhibition step if

enough valid synapses are

connected to active input bits

storage capacity by forming and removing synaptic connections than changing the

weights of permanent connections.

Each column determines its activation from the input vector by summing the

input bits in positions with permanence larger than the threshold. The sum of the

bits in these positions constitutes the overlap score. The higher the score, that is,

the more active ones, the more overlap between the input and the pattern represented

by the column. Columns with the greatest overlap (strongest activations) inhibit,

or deactivate, columns with weaker activations. The inhibition function achieves a

relatively constant percentage of (about 2 %, or 40) active columns, even when the

number of input bits that are active varies significantly. The result is an SDR of the

input encoded by which columns are active and inactive after inhibition.

11.4.3 Distal Dendrite Segments

In addition to the single proximal dendrite segment, a cell has about 130 distal

dendrite segments, each with roughly 40 synapses. The distal segments receive lateral

input from nearby cells. Figure 11.4 shows the distal dendrites and illustrates the

cell’s states. The set of potential synapses connects to a subset of other cells within a

neighborhood defined by a “learning radius.” A dendrite segment forms connections

to cells that were active together at an earlier time, thus remembering the activation

state of other cells in the neighborhood. If the same cellular activation pattern is

encountered again by one of its segments, that is, the number of active synapses on

any segment is above a threshold, the cell will enter a predictive state indicating that

feed-forward input is expected to result in column activation soon.
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Fig. 11.4 Each distal dendrite segment of a cell has synapse connections to other cells within the

neighborhood. A solid gray circle represents a valid synapse connection to another cell and an

empty circle represents a potential synapse connection. The cell enters a predictive state if at least

one of its dendrite segments is connected to enough active cells. A cell’s binary-valued predictive

state is not propagated. Column activation due to feed-forward input via the proximal dendrite is

shown in black in the bottom left. The binary-valued active state is the feed-forward output of the

cell and is also propagated to other cells via lateral connections depicted in the upper left

A cell is active due to feed-forward input via the proximal dendrite or lateral

connections via the distal dendrite segments. The former is called the active state

and the latter is called the predictive state (see Fig. 11.4). Only the feed-forward

active state is connected to other cells in the region. The predictive state is internal

to the cell and is not propagated. The complete output of HTM is a binary vector

representing the active states of all cells.

11.5 The Three Steps of HTM

At each discrete time instance, HTM carries out three steps on the new input. The

following descriptions of the steps, detailed in the next sections, are taken from [96]:

Step 1 Create an SDR of the input by activating whole columns.

Step 2 Place the input in context by selecting among cells in active columns.

Step 3 Predict future patterns from learned transitions between SDRs.

11.5.1 Make an SDR of the Input

The first step determines the active columns of cells in HTM (see Fig. 11.2). Each

column is connected to a subset of the input bits via the synapses on a proximal den-

drite. Subsets for different columns may overlap but they are not equal. Consequently,
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different input patterns result in different levels of activation of the columns. The

columns with the strongest activation inhibit columns with weaker activation. The

size of the inhibition area around a column is adjustable and can span from very

small to the entire region. The inhibition mechanism ensures a sparse representation

of the input. If only a few input bits change, some columns will receive a few more or

a few less active one inputs, but the set of active columns is not likely to change much.

Therefore, similar input patterns will map to a relatively stable set of active

columns.

HTM learns by forming and unforming connections between cells. Learning

occurs by updating the permanence values of the synapses. Only the active columns

increment the permanence value of synapses connected to active bits and decrement

otherwise. Columns that do not become active for a long period do not learning

anything. To not waste columns, the overlap scores of these columns are “boosted”

to ensure that all columns partake in the learning of patterns.

11.5.2 Represent the Input in Context of Previous Inputs

Cells can be in one of three states. If a cell is active due to feed-forward input, then

it is in the active state. If the cell is active due to lateral connections to other nearby

cells, however, then it is in the predictive state; otherwise it is in the inactive state.

The second step converts the columnar representation of the input into a new

representation that includes the past context. The new representation is formed by

activating a subset of the cells within each column, typically only one cell per column.

The rule used to activate cells is as follows: When a column becomes active, HTM

checks all the cells in the column. If one or more cells in the column are already

in the predictive state, only those cells become active. If no cells in the column are

in the predictive state, then all the cells become active. The rule can be understood

as follows: If an input pattern is expected, then HTM confirms that expectation by

activating only the cells in the predictive state. If the input pattern is unexpected,

then HTM activates all the cells in the column to signal that the input occurred

unexpectedly.

By selecting different active cells in each active column, HTM can represent the

exact same input differently in different contexts. Figure 11.5 illustrates how HTM

can represent the sequence AB as part of two larger sequences CABF and HABG. The

same columns have active cells in both cases but the active cells differ. If there is

no prior state and therefore no context or prediction, all the cells in a column will

become active when the column becomes active. This scenario occurs especially

when HTM first starts processing input (see Fig. 11.2).
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Fig. 11.5 The sequence AB

is part of two larger

sequences. The same active

columns represent AB in

both cases but the active cells

differ because the larger

sequences are different

11.5.3 Make Prediction from Current and Previous Inputs

The third and final step makes a prediction of likely new input. The prediction is

based on the representation formed in the second step, which includes context from

all previous input patterns. When HTM makes a prediction, all cells that are likely to

become active due to future feed-forward input are changed to the predictive state.

Because the representations are sparse, multiple predictions can be made at the same

time instance. Together the cells in the predictive state represent HTM’s prediction(s)

for the next input.

The predictive state of any cell in HTM is determined by its distal segments.

A segment connects to cells via synapses on distal dendrites. If enough of these

cells are active, then the segment becomes active (see Fig. 11.4). A cell switches to

the predictive state when it has at least one active segment. However, a cell that is

already active from the second step does not switch to the predictive state. Learning

occurs by adjusting the permanence values of the synapses on active segments at

every time step. The permanence of a synapse is only updated when a predicted

cell actually becomes active during the next time instance. The permanence of a

synapse connecting to an active cell is increased while the permanence of a synapse

to an inactive cell is decreased. (Note that the full update rules are significantly more

complicated than those presented here. See [96] for a more detailed description of

the rules.)

To apply the HTM learning algorithm to a particular data source, Numenta uses

optimization techniques to choose optional HTM components, select parameter

values, and determine which data fields to include (http://youtube.com/watch?v=

xYPKjKQ4YZ0).

http://youtube.com/watch?v=xYPKjKQ4YZ0
http://youtube.com/watch?v=xYPKjKQ4YZ0
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11.6 Discussion and Summary

Classical AI solutions are task specific and brittle; they can only do one major thing

and they fail too easily. Hawkins [27] and Numenta [96] have developed and imple-

mented a general learning algorithm, the HTM learning algorithm, that overcomes

the weaknesses of the classical solutions [108]. HTM’s general learning rules are to

train on every input; if a pattern is repeated, then reinforce it; and if a pattern is not

repeated, then forget it.

When a new input vector arrives, it leads to a sparse set of active cell columns.

One or more of the cells in each column become active; these cells, in turn, cause

other cells to enter a predictive state through learned lateral connections between

cells in different columns. The cells activated by the lateral connections constitute

a prediction of what is likely to happen next. When the next input vector arrives, it

selects another sparse set of active columns. If a newly active column is unexpected—

meaning that it was not predicted by any cells—it will activate all the cells in the

column. If a newly active column has one or more predicted cells, only those cells

will become active. The output vector contains the feed-forward output of all cells.

While the current HTM realization has hundreds of millions of synapses (300

million using the numbers in this chapter), the brain has trillions of synapses, mak-

ing it clear that the HTM implementation is only simulating a tiny part of the brain.

In the future, it should be possible to connect HTMs together in hierarchies to obtain

more brain-like simulations. At the time of this writing, Hawkins and Numenta are

working to introduce motor control into HTM and refining the functionality accord-

ing to the behavior of the cortex. In the next chapter, we consider how to use HTM

to detect anomalies in cloud-based systems.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-

Noncommercial 2.5 License (http://creativecommons.org/licenses/by-nc/2.5/) which permits any
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Commons license, unless indicated otherwise in the credit line; if such material is not included

in the work’s Creative Commons license and the respective action is not permitted by statutory
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Chapter 12

Anomaly Detection with HTM

We model information and communications technology (ICT) systems as complex

adaptive systems. Since we cannot hope to predict all future incidents in complex

systems, real-time monitoring is needed to detect local failures before they propagate

into global failures with an intolerable impact. In particular, monitoring is required

to determine the consequences of injecting artificial errors into production systems

and to learn how to avoid or limit the impact of future incidents.

In Part II we argued that anti-fragile ICT solutions in the cloud should have a

service-oriented architecture with microservices, preferably created by development

and operations (DevOps) teams. Since microservices depend on much fewer variables

than a complete system, it is possible to monitor and diagnose microservice failures.

However, the ability to monitor these services does not come for free [53]. DevOps

teams need monitoring and logging setups for each type of microservice showing the

up/down status, current throughput and latency, and details on circuit breaker status.

In this chapter, we discuss what an anomaly means and how the hierarchical

temporal memory (HTM) learning algorithm detects anomalies in data streams. The

HTM algorithm can be applied to many different types of data streams. Grok is an

application that Numenta built on top of the Numenta Platform for Intelligent Com-

puting (NuPIC) implementation of HTM (http://numenta.org/nupic.html) to detect

anomalies in metric data provided by the Amazon Web Services (AWS) cloud. Here,

we examine how Grok detects and displays anomalies in AWS streaming data. We

then study how HTM detects rogue human behavior. The chapter is mostly based

on information provided by Numenta [109, 110], including talks by Ahmad (http://

youtube.com/watch?v=nVCKjZWYavM) and Purdy (http://youtube.com/watch?v=

I5lSEHvngaI).

12.1 Anomalies

Complex ICT systems generate much data about their own operations. Cloud solu-

tions are no exception. In fact, cloud providers offer services that allow solution own-

ers to easily access operational data from their own cloud applications. The Internet

© The Author(s) 2016
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of Things will likely lead to a huge increase in sensors generating continuous data

streams about the status of both natural and man-made systems. The many data

streams from current and future systems will make it impossible to analyze all the

data in detail. One interesting alternative is to look for anomalies in the streams to

detect the beginning of failures. There is evidence that it is possible to detect the

beginning of large failures in different types of complex adaptive systems before the

impact becomes intolerable [111, 112].

Anomalies are data patterns that do not conform to expected behavior [113]. A data

stream of patterns can have several types of anomalies. A spatial (static) anomaly

is a single pattern or set of relatively closely spaced patterns in the data stream

that deviates from what is standard, normal, or expected. A temporal anomaly is a

set of surprising transitions between patterns. Note that it is the temporal sequence

that is surprising, not the individual patterns themselves. If the patterns in a stream

are highly random, then it is hard or even impossible to detect spatial and temporal

anomalies. However, it is possible to detect a change in the distribution of the random

data, denoted a distribution anomaly. All three types of anomalies are temporary

anomalies. When a surprising change first appears, then it is an anomaly. If it appears

multiple times, then it is the “new normal” and ceases to be an anomaly.

12.2 HTM Anomaly Score

The Grok application built on top of HTM detects spatial, temporal, and distribu-

tion anomalies. Since HTM is an online continuous learning system, it will detect

temporary anomalies and quickly learn when they are the new normal. HTM works

for both numerical and categorical input data. The two data types can be mixed in

an input stream to HTM because they are both converted to a sparse distributed

representation (SDR).

HTM calculates an anomaly score for each new pattern it receives [109]. If a

received pattern was predicted, then the anomaly score is zero. If the pattern was

not predicted at all, then the score is one. A partially predicted pattern has a score

between zero and one. The actual score depends on the “similarity” between the

actual received pattern and the predicted pattern. The similarity is determined by the

SDR. The larger the overlap between actual and predicted bits in column space, the

smaller the anomaly score.

If none of the cells in a column were predicted, then all the cells are made active.

This process is referred to as bursting. It occurs when there is no context, that is,

when HTM is learning a new transition. At each time instance, the anomaly score

is simply the fraction given by the number of bursting columns divided by the total

number of active columns. In the beginning of the training, the anomaly score will

be high because most patterns will be new. As HTM learns, the anomaly score will

diminish until there is a change in the pattern stream.
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Fig. 12.1 Normal

distribution of anomaly

scores divided into typical

values, somewhat

unexpected values, and

anomalies

12.3 HTM Anomaly Probabilities

There are cases where the anomaly score is all that is needed to detect anomalies,

but there are also cases where the anomaly score produces too many false positives

because the metric data are very noisy. To deal with noise, we compute anomaly

probabilities. The anomaly probability values are calculated relative to historical

metric data rather than being absolute measurements of anomalous behavior. In

other words, the goal is to detect changes in the anomaly score itself.

To determine anomaly probabilities, we consider a window of previous calculated

anomaly scores and compute estimates of the expectation and standard deviation of

the values, assuming normally distributed scores. Figure 12.1 depicts the right half of

a normal distribution of possible score values. When a new anomaly score arrives, we

estimate how likely the value is using the normal distribution based on the window

of previous values. A new value on the x-axis under the central area of the curve in

Fig. 12.1 is a typical value that we should expect to see often. Typical values of the

anomaly score indicate that the system is operating as desired.

To detect anomalies, we look for values associated with the right tail of the com-

puted normal distribution. Values falling in the beginning of the tail in Fig. 12.1 are

somewhat unusual, while values further out in the tail represent anomalous behavior.

Because the distribution of the anomaly scores can change over time, the estimates

of the expectation and standard deviation of the normal distribution are recalculated

as the window slides over the previously received scores.

12.4 Grok the Cloud

The word grok was coined by Robert A. Heinlein in his 1961 science fiction novel

Stranger in a Strange Land. To grok means to understand so thoroughly that the

observer becomes a part of the observed. Numenta has built an application called

Grok on top of the NuPIC implementation of HTM to detect anomalies in metric

data from the AWS cloud. The application utilizes HTM to learn streaming metrics
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Fig. 12.2 While the blue

curve showing CPU

utilization looks normal to

humans, Grok detected an

anomaly (picture from [109])

from virtual machine clusters and to identify anomalies in these metrics. Grok builds

a separate model for each monitored AWS metric. The metric values are combined

with timestamps to allow Grok to learn patterns related to the time of day or the

day of the week. To reduce the number of false positives, Grok calculates anomaly

probabilities.

Figure 12.2 shows a part of the Grok user interface. The blue graph with the black

background shows the CPU utilization of a virtual machine in the AWS cloud. The

corresponding anomaly score is shown directly below. Grok uses color-coded bars

to depict anomaly scores. The color and height of a bar have the same meaning,

making it easier to see anomalies. The three types of anomaly probabilities, typical,

somewhat unusual, and anomalies (see Fig. 12.1), are used to color the bars. Red

represents an anomaly, a highly improbable score with a probability around 0.001 %.

Yellow and green represent progressively more common scores.

The example in Fig. 12.2 illustrates that Grok can detect anomalies that are hard

for a human to see in a raw metric stream. When it is not obvious why Grok flagged

an anomaly, an operator can view the anomaly scores of other AWS metrics to gain

more insight. Since Grok builds an independent model for each monitored metric

stream, a system operator can obtain several independent confirmations that a virtual

machine has unusual behavior.

In the next example, a load balancer distributes requests from many clients over

a set of servers. The load balancer produces a fairly unpredictable or noisy met-

ric stream showing the latency in serving web pages to clients. The blue curve in

Fig. 12.3 represents the metric values fed into Grok, while the green, yellow, and

red bars represent the anomaly scores colored according to the calculated anomaly

probabilities. The example illustrates that Grok can find anomalies in noisy data.

In Chap. 5, we discussed how software engineers induced artificial failures into

Netflix’s media streaming system to discover vulnerabilities early, when their impacts

are small. Early vulnerability detection allows engineers to improve systems and

http://dx.doi.org/10.1007/978-3-319-30070-2_5
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Fig. 12.3 An anomalous

pattern detected within a

noisy metric stream from a

load balancer (picture from

[109])

Fig. 12.4 A process to

detect and mitigate the

impact of induced (and

natural) failures in virtual

machines (VMs)

avoid failures with intolerable impacts. The flow diagram in Fig. 12.4 illustrates how

Grok can be integrated into a process to detect and mitigate the impact of induced

(and natural) failures in applications running in the AWS cloud. How the learn-

ing/mitigation step will be carried out depends on the application being monitored.

Today, this step is carried out by humans. In the future, it may be possible to automate

at least part of the step.

12.5 Rogue Behavior

Numenta has developed an application for rogue behavior detection (RBD) based

on HTM [110]. Using human- and machine-generated data, the RBD application

automatically models an individual’s behavior and identifies irregular actions. This

anomaly detection of irregular human behavior is useful for ICT security, device

access control, and fraud detection.

The RBD application has several attractive properties due to HTM. First, it is not

necessary to divide employees into classes and define what normal behavior is for

each class. Furthermore, there is no need for a separate training period or retraining,

since employee behavior changes over time. The application learns continuously in
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Fig. 12.5 An employee

anomaly (picture from [110])

real time and builds a separate model for each monitored individual, thus achieving

high-precision anomaly detection for all individuals. The same high-quality detection

is generally not possible with class-based monitoring. Finally, real-time anomaly

detection enables quick corrective actions to avoid or at least reduce the negative

consequences of illegal actions.

Figure 12.5 shows part of the user interface for the RBD application. The senior

analyst monitored, Diana Lucero, is part of an experiment to test the application.

She exhibits unusual behavior at 11a.m. Drilling down to see the anomaly scores

for the individual metric streams, we find spikes in both the file activity and CPU

usage. Further investigation finds that the RBD application reacted because the ana-

lyst generated and stored a large .zip file containing intellectual property. The early

detection of this activity made it possible to stop the analyst from transmitting the

file to a third party.

12.6 Detecting the Beginning of Swans

In this book, we have assumed that there is no fundamental difference between

frequent incidents with a tolerable impact and rare incidents with an intolerable

impact, called swans. Most swans simply start out as local incidents that do not stop

but propagate due to positive feedback loops. According to Sect. 2.3, to predict any

future incident, we must describe the event, estimate its probability, and calculate

the impact. In Chap. 2, we argued that humans have limited ability to predict swans.

http://dx.doi.org/10.1007/978-3-319-30070-2_2
http://dx.doi.org/10.1007/978-3-319-30070-2_2
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It is unlikely that a group of stakeholders will predict all potential swans in a complex

adaptive ICT system, even if they use significant resources in classical risk analysis.

At the time of this writing, the detection of catastrophic events in real time is an

active area of research [111, 112]. Because global or emergent failures very often start

out as local failures in complex ICT systems, it is possible to detect the beginning of

a swan in real time, even though we may not immediately understand the underlying

reasons for its occurrence. HTM detects unlikely behavior by observing the fraction

of bursting cell columns. Because HTM can be applied to different data streams, it

can detect the beginning of swans in different types of complex ICT systems. It is still

essential to realize the four design principles in Chap. 4 to avoid positive feedback

loops that quickly propagate local failures into global failures before countermeasures

can be introduced.

12.7 Discussion and Summary

Government agencies regulate many complex adaptive ICT systems of national

importance. Unfortunately, it is very hard for a regulator to gain an adequate under-

standing of a complex ICT system without being closely involved in its design and

daily operation. A regulator can set all kinds of non-functional requirements but

cannot discover system fragilities or request useful improvements from afar. Regu-

lation and compliance really only make sense for relatively simple systems that have

one best method of working [18]. There will always be a significant gap between a

regulator’s understanding of a complex ICT system and the way it really operates.

This gap must be filled by other stakeholders. This is particularly true for complex

ICT systems with microservice architectures.

For a system to achieve anti-fragility to a class of negative events, stakeholders

must monitor the operation of the microservices, especially their outputs, and detect

anomalies. While information technology (IT) departments know how to monitor

monolithic applications with single executables, it is more challenging to monitor

applications of microservices running in clouds and communicating over network

connections. Since a solution may fail even though all its microservices work accord-

ing to their specifications (see Sect. 4.6), it may be necessary to trace the communi-

cation between services to understand why a particular service received input values

for which it was not designed. Furthermore, there are many network connections

where latency could cause intermediate problems. Hence, sophisticated monitoring

of a large number of microservices and their communications is needed to detect

anomalies, determine failures, and create anti-fragile solutions.

A comprehensive comparison of different techniques to detect anomalies in

streaming data is outside the scope of this book. We have only illustrated how HTM

detects anomalies in two domains. However, the performance results of Price [97],

Galetzka [98], and Numenta [109, 110] strongly indicate that HTM is a good choice

for anomaly detection in streaming data. In 2015, Numenta published source code

and test data to compare the performance of anomaly detection algorithms. The initial

http://dx.doi.org/10.1007/978-3-319-30070-2_4
http://dx.doi.org/10.1007/978-3-319-30070-2_4
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results show that the HTM algorithm detects anomalies earlier than other popular

algorithms (http://github.com/Numenta/NAB). If we have good anomaly detectors

connected to a complex adaptive ICT system, then we can detect anomalies before

the whole system breaks down. We have seen that HTM is able to detect changes

before it is obvious to a human that a new problem is brewing.

A reader interested in more information about anomaly detection with HTM, as

well as more examples detecting sudden, slow, and subtle anomalies, should study

Numenta’s two white papers [109, 110]. At the time of this writing, is also possible

to use Grock for IT analytics and Grok for stocks on the Web.

What to learn from Part IV

Part IV introduced a novel learning algorithm based on Hawkins’ HTM theory.

HTM explains how the neocortex learns by modeling and processing data from

the body’s sensory organs. We concentrated on understanding how the HTM

learning algorithm can detect anomalies in complex adaptive ICT systems.

While most anomaly detection techniques are created to determine anomalies

in data stored in databases, HTM finds anomalies in real-time streaming data.

There is no need to store huge amounts of data since HTM builds models rep-

resenting the properties of the data.

The ability to process streaming data makes the HTM learning algorithm

ideal for applications running on cloud platforms since leading cloud providers

offer services that stream metrics about an application’s state. HTM’s ability to

process streaming data from a huge number of sensors also makes the algorithm

perfect for monitoring the Internet of Things. While the current version of HTM

is implemented in software, a hardware implementation is needed to seriously

scale the algorithm’s operation.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-

Noncommercial 2.5 License (http://creativecommons.org/licenses/by-nc/2.5/) which permits any
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Chapter 13

Summary and Future Work

We have come to the end of the book, which has investigated different aspects

of anti-fragile information and communications technology (ICT) systems. Taleb

[10] introduced the concept of anti-fragility to show that it is not enough for large

natural or man-made systems to be robust to predictable events with a large impact.

In an unpredictable world, systems must be able to handle randomness, volatility,

and unforeseen large-impact events. Learning from artificial and real incidents is

necessary to remove vulnerabilities and prevent systems from developing fragilities

over time. This chapter summarizes the book’s main insights into the development

and operation of anti-fragile ICT systems, discusses the design of future systems,

and outlines the need for anti-fragile processes, especially to handle attacks on the

confidentiality, integrity, and availability of ICT systems.

13.1 Achieving Anti-fragility

While many commentators find Taleb’s concept of anti-fragility both interesting and

useful, other commentators believe it is very similar to the well-known concepts of

robustness and resilience. To determine whether Taleb’s work [10] really brings any

new insight into the development and operation of large ICT systems, the author has

investigated different aspects of anti-fragility. The main insights are summarized in

the following.

Stakeholders of complex adaptive ICT systems must embrace hardware and soft-

ware failures because they are inevitable. Local failures should, at worst, result in

degraded performance, not systemic failures such as unplanned system downtime.

The book introduced four design principles—modularity, weak links, redundancy,

and diversity—to isolate the impact of local failures and one operational principle—

the fail fast principle—to quickly detect vulnerabilities by inducing artificial fail-

ures. The collective goal of the five principles presented is to limit the impact of

failures by failing early, isolate the impact of local failures, and learn from small

© The Author(s) 2016
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failures how to maintain the desired performance as a system and its environment

change. Netflix’s pioneering work shows that stakeholders can build and maintain

web-scale applications in the cloud with a degree of anti-fragility to system down-

time. Analyses of telecom infrastructures and electronic government systems confirm

that the cloud facilitates anti-fragility to downtime.

A series of analyses outlined how to gain anti-fragility to the spreading of malware

with unknown and time-varying spreading mechanisms. It was first found that appli-

cation stores utilizing compilers with diversity engines in the cloud could generate

enough software diversity to halt frequent malware outbreaks from spreading over

huge networks of computing devices. Imperfect malware detection/removal was then

added to this simple diversity-enhancing technique to keep the fraction of infected

devices low over time. The resulting halting technique scales to prevent the spreading

of frequent malware outbreaks on networks with millions of devices. While more

work is needed to verify the practicability of the halting technique, the approach

demonstrates that it is advantageous to model huge networked computing systems

as complex adaptive systems and then apply results from network science to analyze

the models’ fragility, robustness, and anti-fragility to different classes of impacts.

If we cannot detect failures in a system, then it becomes impossible to determine

and remove vulnerabilities. Hence, we must be able to monitor a system’s behavior to

ensure anti-fragility to a particular type of impact. We have argued that cloud-based

software solutions should have a service-oriented architecture (SOA) with microser-

vices implemented by virtual machines. While it is hard to monitor and analyze the

internal behavior of applications with strongly connected modules, the simplicity of

weakly connected microservices makes it possible to monitor and understand their

individual behaviors. If the graph defining the dependencies between the microser-

vices is not too large and dense, then it is also possible to analyze the consequences

of the dependencies.

We need a technique to detect anomalies in streaming data because cloud

infrastructures typically stream metric data about the status of virtual machines.

Hawkins’ learning algorithm is an interesting choice for anomaly detection in stream-

ing data. The algorithm is based on a theory of how the brain learns, called hierarchi-

cal temporal memory (HTM). While the HTM learning algorithm may not always

provide the best anomaly detection, it is very flexible and can be applied to many

different metric streams. HTM automatically builds online data models, removing

the need to store huge amounts of data in a database. Since the HTM algorithm is

able to quickly detect anomalies, it facilitates corrective actions in real time. An

application called Grok utilizes the HTM learning algorithm to detect anomalies in

virtual machines running on the Amazon Web Services (AWS) cloud. Grok is able to

detect anomalies that are hard for humans to see in the raw feed of AWS metric data.

The application has also been successfully applied to user-defined metric streams.

In conclusion, many of today’s ICT systems with strongly connected modules

are too fragile to downtime and other large-impact events. While anti-fragile ICT

systems have no absolute guarantee of avoiding the intolerable impact of all possible

swan events, it is practicable to build systems that handle the impact of surprising
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events much better than many current systems. In a world where people are becoming

increasingly dependent on ICT, we need to build anti-fragile systems to avoid rare

but hugely negative events affecting whole populations.

13.2 Future Anti-fragile ICT Systems

Only complex adaptive ICT systems need to be anti-fragile to different classes of

impacts because only complex systems are vulnerable to swans in the form of highly

surprising, global failures with intolerable impact. We have concentrated on how

to create anti-fragile systems in the cloud because its pay-as-you-go pricing model

makes it economically feasible for even startups and other small companies to build

anti-fragile solutions. Further investigation into the anti-fragility of ICT systems

should consider whether additional design and operational principles, as well as

anti-principles, are needed to ensure anti-fragility to different classes of impacts.

A new principle should only be introduced if it is valid for many types of systems.

The introduction of highly overlapping principles should be avoided.

Simplicity is an obvious candidate to become a general design principle for anti-

fragile systems. We have already promoted simplicity by recommending the use

of SOA with microservices. The single purpose of a microservice makes it easy to

understand what each part of a system does. Furthermore, weak links between the

services limits the effect of local failures and makes it easier to understand a system’s

overall behavior. However, more work is needed to understand the full meaning and

impact of simplicity in the context of anti-fragile systems. New architectural patterns

facilitating anti-fragility to classes of incidents would be particularly welcome. We

also need to better understand the effort required to monitor anti-fragile systems.

Another obvious candidate to become a design principle is openness. Indirectly,

we have also promoted openness by considering the anti-principle of closedness.

Openness can undoubtedly reduce the negative impact of coincidental events. The

advantage of openness is less clear when, for example, nation states are attacking

each other’s vital ICT infrastructures. More work is needed to fully understand the

implications of openness in the context of anti-fragile systems of critical national or

international importance.

The study of real systems is necessary to gain more insight into the concept

of anti-fragility. While it is hard for independent scientists to obtain information on

electronic payment systems, studies of such systems are of particular interest because

of their great importance to society. It is particularly interesting to better understand

how fraud detection can be exploited to achieve a degree of anti-fragility to financial

losses.

The HTM theory discussed outlines how a small part of the neocortex learns

sequences and predicts future inputs. While we applied HTM to detect anomalies

in streaming metric data from the cloud, HTM theory has wider applications. The

neocortex itself is an anti-fragile system (or system of systems) because it continu-

ously learns new sequences and forgets old sequences in a way that is highly tolerant



138 13 Summary and Future Work

to noise, damaged cells, and broken connections. Future HTM theory is likely to

provide important insights into the development of anti-fragile machine learning

systems.

13.3 Future Bio-inspired System Designs

While superficial comparisons between complex adaptive ICT systems and biological

systems should be avoided, it is useful to view distributed ICT systems as ecosystems

or communities of autonomous entities interacting with each other and a changing

environment. To encourage the reader to consider bio-inspired system designs in the

future, we argue that ICT systems of simple and weakly connected modules avoid

much of the fragility associated with strongly connected legacy systems based on

old technologies that are hard to maintain and upgrade.

It is impossible to change an ICT system in a controlled manner if we do not

understand its functionality. While a large ICT system has very diverse functionality,

humans can only focus on one task at the time. When the human mind is forced to

focus on multiple difficult tasks simultaneously, it tries to switch between tasks in

rapid succession, making the effort of completing the tasks much more difficult.

In particular, it is hard for software developers to understand the functionality of an

ICT system consisting of many large, complicated software modules. As the original

developers of a software system move to other projects and new developers start to

modify the original code, the initial design is often violated. Many of these design

violations occur unintentionally because the new developers do not fully understand

the original system design and its implementation. Over time, the many changes to

the original code generate more and stronger dependencies between the modules,

resulting in a strongly connected system that is vulnerable to failure propagation

causing systemic failures.

In general, the more tasks an engineer or developer has to consider at the same time

to create some kind of module, the more complicated the module is. The development

of simple modules, each with a single limited responsibility, helps explain why the

class of microservice architectures first discussed in Chap. 5 is becoming increasingly

popular. Since each microservice fulfills a single responsibility, one developer can

understand the functionality of the microservice without undue strain. Furthermore,

the developers in a team creating a microservice solution can concentrate on a single

task at a time, making it more pleasurable to develop the solution.

The class of microservice architectures with weak links is the result of years of

engineering work in building web-scale applications with very high availability, scal-

ability, and performance. A microservice solution mimics nature. The whole system

is constantly evolving, without the limited availability associated with monoliths. In

particular, microservices come and go. Microservice solutions are “living software”

that remove much of the fragility of legacy software because it is easy to remove

old services and create new ones. In fact, developers often write a completely new

http://dx.doi.org/10.1007/978-3-319-30070-2_5
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microservice rather than modify an old service, because the limited functionality

makes it easy to write a service from scratch.

Experience with microservice solutions suggests that building systems with sim-

ple and weakly connected modules can significantly reduce the fragility associated

with legacy systems. The functionality of a system should be divided over many

modules such that a single human can understand what each module does without

undue effort. Weak links, redundancy, and diversity should then be used to limit the

impact of local failures.

13.4 The Need for Anti-fragile Processes

While we have mainly considered how to design and implement anti-fragile ICT sys-

tems, another related approach to anti-fragility is to consider systems and their stake-

holders as adaptive complex processes. This view provides us with a very general

approach to the study of anti-fragility. In fact, a process may very well be anti-fragile

to a particular type of undesirable outcome without any technology involved at all.

Hence, we could study processes in the area of computer science, as well as society

in general, to better understand fragility, robustness, and anti-fragility to particular

impacts.

The international research community in cryptography has long deployed anti-

fragile processes to develop new cryptographic solutions. A universally accepted

cryptographic primitive such as a cipher or a hash function is the result of a competi-

tive process in which some researchers suggest new primitives and other researchers

try to determine if the primitives have exploitable vulnerabilities. After several rounds

of modified suggestions and attacks, a new primitive emerges that is very hard to

compromise because the cryptographers have learned from their own and others’

earlier mistakes. However, even after this long and hard selection process, cryptog-

raphers know that the only way to ensure a primitive’s strength over time is to keep

attacking it on a regular basis. The same is true for cryptographic protocols.

One example of this never-ending anti-fragile process is the many evaluations

of the Transport Layer Security (TLS) protocol, leading to new and more secure

protocol versions. However, the serious Heartbleed Bug incident demonstrated that

large-impact incidents can still occur. While many have evaluated the TLS design

through the years and mitigated vulnerabilities, it is also necessary to carefully

validate the implementations of TLS. The Heartbleed Bug disclosed in April 2014

involved an improper input validation in the OpenSSL cryptography library, a much

used implementation of the TLS protocol. The missing bounds check allowed theft

of the servers’ private keys and users’ session cookies and passwords. While many

large companies used the OpenSSL cryptography library, it seems that none of them

had carefully validated the code. This serious incident demonstrates the danger of

trusting software libraries without evaluating the security of the code. Trust by default

must be replaced by an understood degree of trust.
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To improve the security of complex adaptive ICT systems, it is necessary to

develop anti-fragile processes to maintain a high level of confidentiality, integrity,

and availability. As argued in Chap. 2, risk management processes based on the

prediction of incidents are not enough because the risk of a complex ICT system

may very well be dominated by swans, which are notoriously difficult to predict.

Hence, we need anti-fragile security processes that limit the impact of inevitable

security incidents and learn from these incidents how to create more secure systems.

Everybody with the ability to change the security of an ICT system should have “skin

in the game,” that is, they should share the responsibility for the consequences of a

successful attack, not to be punished but to ensure a subsequent period of learning

and mitigation to improve security and to stop similar attacks in the future.

13.5 Challenge to Readers

The author wrote this book to educate himself and the reader about anti-fragile ICT

systems and to argue that it is both possible and desirable to develop and operate

such systems. Some of the book’s specific proposals will undoubtedly be replaced

by better solutions, while others will hopefully survive. Since our knowledge of anti-

fragile ICT systems is still limited and fragmented, more work is needed to better

understand these systems. Improvements to the outlined solutions are very welcome,

as well as brand new solutions with anti-fragility to different types of impacts. To

model real systems, create anti-fragile processes, and discover ways to improve and

extend the contents of the book, the interested reader will do well to first study the

many surprising perspectives, interesting ideas, and important insights introduced

by Taleb [8–12], Dekker [17, 18], and Geer [28–33].
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