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Major oil spills can attract the attention of the public and the media. In past years, this attention
had created a global awareness of the risks of oil spills and the damage they do to the environment.
In recent years, major spill incidents have been fewer in number; still, the public is aware of very major
spills, but generally is unaware that spills are a daily fact of life.

Oil is a necessity in our industrial society and a major element of our lifestyle. Most of the energy
used in much of the developed world is for transportation which runs on oil and petroleum products.
According to trends in energy usage, this is not likely to decrease much in the future. Industry uses
oil and petroleum derivatives to manufacture such vital products as plastics, fertilizers, and chemical
feedstocks, which will still be required in the future. In fact, the production and consumption of oil
and petroleum products is increasing worldwide, and the risk of oil pollution is increasing accordingly.
The movement of petroleum from oil fields to the consumer involves as many as 10 to 15 transfers
between many different modes of transportation, including tankers, pipelines, railcars, and tank trucks.
Oil is stored at transfer points and at terminals and refineries along the route. Accidents can happen
during any of these transportation steps or storage times. Fortunately, in the past few years, the actual
number of spills has decreased, but oil spills will still continue to form part of our industrial fabric.

Obviously, an important part of protecting the environment is ensuring that there are as few
spills as possible. Both government and industry are working to reduce the risk of oil spills, with
the introduction of strict new legislation and stringent operating codes. Industry has invoked new
operating and maintenance procedures to reduce accidents that lead to spills. Intensive training
programs have been developed to reduce the potential for human error.

Oil spills necessitate a multiplicity of talents to deal with them and a multiplicity of disciplines to
study and research them. This special edition provides a glimpse into these multiple facets of oil spills.
Topics include oil spill modeling, risk analysis and preparation for oil spills. We hope that this special
edition will be helpful and enlightening to those in the ever-changing and advancing field of oil spills.

Conflicts of Interest: The author declares no conflict of interest.

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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Abstract: Oil droplet transport under a non-breaking deep water wave field is investigated
herein using Computational Fluid dynamics (CFD). The Reynolds-averaged Navier–Stokes (RANS)
equations were solved to simulate regular waves in the absence of wind stress, and the resulting
water velocities agreed with Stokes theory for waves. The RANS velocity field was then used to
predict the transport of buoyant particles representing oil droplets under the effect of non-locally
generated turbulence. The RANS eddy viscosity exhibited an increase with depth until reaching
a maximum at approximately a wave height below the mean water level. This was followed by a
gradual decrease with depth. The impact of the turbulence was modeled using the local value of eddy
diffusivity in a random walk framework with the added effects of the gradient of eddy diffusivity.
The vertical gradient of eddy viscosity increased the residence time of droplets in the water column
region of high diffusivity; neglecting the gradient of eddy diffusivity resulted in a deviation of the oil
plume centroid by more than a half a wave height after 10 wave periods.

Keywords: RANS; non-breaking ocean waves; random walk method; Lagrangian particle dispersion;
oil spill model

1. Introduction

Waves play an important role in the transport and fate of oil spills [1,2]. Waves at sea are
accompanied by breakers of various magnitudes due to the interaction of various waves and the
presence of wind. These breakers result in shear stress that breaks the oil slick into droplets [3] that
get injected into the water column. The subsequent motion of waves, even regular waves, results in
further downward spreading of the small oil droplets [4]. The “rule of thumb” [5] is that droplets
smaller than 100 µm remain below the surface whereas those larger than 100 µm return to the water
surface. Waves combined with wind generate Langmuir turbulence characterized by Langmuir cells
which also play a significant role in the vertical and horizontal distribution of oil slicks [6].

Extensive studies have been conducted for predicting tracer transport, and relations between
tracer properties, fluid motion, and the spatial distribution of bubbles, solute or droplets were sought
and developed [7–9]. In [10] the direct effect of waves on transport were addressed using an Eulerian
formulation. Boufadel and co-workers [4,11,12] assumed second order waves and used a Lagrangian

J. Mar. Sci. Eng. 2018, 6, 7; doi:10.3390/jmse6010007 www.mdpi.com/journal/jmse2
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formulation to investigate the effects of regular and irregular waves on dispersed oil and explained,
among other, the comet shape of spills based on the droplet sizes and the Stokes drift; as the large
droplets stay closer to the surface, they get entrained forward by the Stokes drift, which is maximum
at the surface. The smaller droplets, thus, trail behind, giving the appearance of a comet. The velocity
field above the mean water level was obtained by using either Taylor expansion from the surface [4,11]
or Wheeler stretching [12]. The impact of turbulence was assessed using an empirical eddy viscosity
expression from [13].

The aforementioned studies treated the droplets as passive tracers with a term that accounts for
buoyancy and another term to account for turbulent diffusion through a random walk. However,
a whole category of studies focused on the dynamics at the droplet scale, and solved the equation of
motion for each droplet accounting for inertia and added mass. For example, it was demonstrated that,
under certain conditions (related to the droplet Stokes number, defined below) inertia and added mass
play an important role in moving droplets [14]. It was further noted the presence of a vertical Stokes
drift due to droplet’s inertial effects [15]. Bakhoday-Paskyabi expanded on these works to consider
various types of waves (regular, conidial, and solitary), in which theoretical arguments were given
for the need to include the added mass for the conditions considered [16]. These studies relied on the
irrotational theory of waves, and neglected the impact of turbulence on droplet transport.

In a study of flow in a tidal channel, the authors argues that the gradient of eddy diffusivity needs
to be explicitly accounted for when evaluating the transport of particles in the water column [17].
In that study, the eddy diffusivity corresponded to a wind and tidal driven flow characterized by
surface and bottom boundary layers. It was shown that by ignoring the gradient of diffusivity, particles
accumulate in the areas of lower diffusivity. Thus, there is a need to account for the gradient of eddy
diffusivity [18–21], which is the work pursued herein in conducting random walk simulations.

We focus on the particular problem of oil droplets spreading under non-breaking deep-water waves
with turbulence advected into the domain by the waves and assess the effect of turbulence-engendered
diffusion on the transport of the droplets. The turbulence may be considered nonlocal, generated
elsewhere perhaps by the action of winds, and transported by the Stokes drift to a zone where the
winds have desisted. The combined effect of the non-breaking waves and the turbulence on the droplet
motions is of focus here.

In the present RANS (Reynolds-averaged Navier-Stokes) simulation, the turbulence is injected at
the left boundary of the domain and is advected into the domain by the motion of the surface waves.
The present simulation configuration is considered as an idealization of turbulence generated over
a finite horizontal span in the open ocean and advected to an adjacent region where the turbulence
source is no longer present. For example, in the upper ocean, Langmuir turbulence [22] associated with
Langmuir circulations occurs over a limited horizontal span where winds and waves are sufficiently
aligned allowing for the generation of the turbulence. The turbulence may then be transported by
the waves beyond (outside) of the region of production where the wind-driven shear and waves are
misaligned and thus where the source of the turbulence is no longer present.

Our chosen numerical framework to simulate the movement of water waves and evolution
of the turbulence consists of the RANS equations with turbulence closure provided by the
RNG (Re-Normalisation Group) k-ε model. We used for this purpose the commercial software
Fluent 15.0 [23]. The free surface was modeled using the Volume of Fluid (VOF) module within Fluent.
In terms of capturing the hydrodynamics [24–26] (especially due to turbulence), the RANS approach
may be viewed as a compromise between the potential flow theory solutions [27] and the highly
resolved Large Eddy Simulation (LES) [28] approach.

The motion induced by the regular waves studied is taken as two-dimensional, thus the present
simulations are two-dimensional spanning horizontal (along wave) and vertical directions (see
Figure 1). Turbulence is three-dimensional and thus its resolution would require a three-dimensional
simulation approach such as a large eddy simulation or direct numerical simulation. In the current
approach based on Reynolds-averaging, the motion induced by the waves is resolved while the
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turbulence is not simulated (resolved), but rather modeled through the k-ε turbulence model. In this
approach, the turbulence intensity (i.e., the turbulence kinetic energy (TKE)), the TKE dissipation
rate and the ultimate eddy viscosity and eddy diffusivity are predicted through the governing k-ε
turbulence model transport equations subject to the resolved two-dimensional flow field induced by the
waves. Thus, the k-ε model equations can be taken as two-dimensional given that the flow field forcing
these equations (e.g., through turbulence production by mean flow shear) is also two-dimensional.
The turbulence being modeled can be alternatively considered as an ensemble-average prediction,
averaged over the third dimension not resolved by the simulation.

The generated waves for the investigation were regular waves with a period of T = 1.0 s and a
wave height H = 0.15 m in a domain whose water depth is 1.2 m (see Figure 1). This ensured deep-wave
conditions as it is larger than half of the wave length which is ~1.56 m.

 

Figure 1. Details of multi-phase wave simulation. The areas colored in red represent cells with water
phase (i.e., αw = 1 in Equation (7a)) and areas colored in blue represent cells with air phase (i.e., αw = 0).

2. Materials and Methods

2.1. Governing Equations: Eulerian RANS Framework

For an unsteady, viscous incompressible, two dimensional flow, the Reynolds-averaged governing
equations are

∂uj

∂xj
= 0 (1)

ρ

(

∂uj

∂t
+ uj

∂ui

∂xj

)

= − ∂p

∂xi
+

∂

∂xi

[

(µ + µt)
∂uj

∂xj

]

(2)

ρ

(

∂K

∂t
+ uj

∂K

∂xj

)

=
∂

∂xj

[

αk(µ + µt)
∂K

∂xj

]

+ Pk − ρε (3)

ρ

(

∂ε

∂t
+ uj

∂ε

∂xj

)

=
∂

∂xj
[αε(µ + µt)

∂ε

∂xj
] + C1ε

ε

K
PK − C2ε p

ε2

K
− Rε (4)

where Equations (1) and (2) represent the conservation of mass and conservation of momentum in two
spatial directions, respectively. Equations (3) and (4) represent the turbulence k-ε model consisting of a
transport equation for turbulent kinetic energy K (TKE) (Equation (3)) and a transport equation for
TKE dissipation rate ε (Equation (4)) [29]. In the equations above, i = 1, 2 with index 1 corresponding
to horizontal and 2 to vertical directions, respectively. A repeated index indicates summation over the
index. Here, t is time, ui is the Reynolds-averaged fluid velocity vector, p is the Reynolds-averaged
pressure, ρ is constant density of the fluid, µ is dynamic viscosity, Pk is TKE production rate by mean
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velocity shear, αk and αε are the inverse Prandtl numbers for K and ε, respectively, C1ε = 1.42 and
C2ε = 1.68 are model constants, and µt is eddy viscosity. Note that the eddy viscosity tensor is taken to
be diagonal with equal diagonal entries, thus we consider an isotropic eddy diffusivity. The k-ε model
isotropic eddy viscosity is given by:

µt = ρCµ
K2

ε
(5)

with Cµ = 0.0845. The eddy viscosity in Equation (5) is described as isotropic in the sense that at
a fixed point in space, the same value of the eddy viscosity is used for the vertical and horizontal
RANS momentum equations. However, the eddy viscosity is spatially dependent thereby possessing a
non-zero spatial gradient.

The last term on right hand side of Equation (4) is specific to the RNG k-ε model [30] and is given as:

Rε =
Cµ pη3(1 − η/η0)

1 + βη3
ε2

K
(6)

with η ≡ SK/ε and η0 = 4.38 and β = 0.012 being model constants. Note that S = (2SijSji)
1/2 with

Sij =
1
2

(

∂ui
∂xj

+
∂uj

∂xi

)

.

The fluid is composed of two phases, air and water. While both phases share the same governing
equations (described above), the density, dynamic viscosity, and eddy viscosity vary depending on the
phase in the local cell. The density and dynamic viscosity are calculated with the following equations:

ρ = αW ρW + (1 − αW)ρα (7a)

µ = αwµw + (1 − αw)µα (7b)

where αw is a scalar value representing volume fraction of water with value of 1 corresponding to a
full water cell and 0 corresponding to an air cell. A transport equation for αw is solved to track the
interface during the simulation.

2.2. Governing Equations: Lagrangian Particle Dispersion Framework

By assuming that oil particle dynamics have no feed-back effect on the dynamics of the carrier
water phase (i.e., passive tracers), we treat oil as a discrete phase being dispersed by the flow.
The response of each particle to the advection and diffusion induced by the turbulent flow field
is studied using the random walk method. The method consists of time integration of the Lagrangian
velocity equation for individual particles. To track a particle located at the position x(n) and at the
starting time t(n), the location at the time t(n) + Δt is found by the following stochastic equation [12,31]:

x
(n+1)
i = xn

i + u
(n)
i Δt + δi,2wbΔt +

∂Di

∂xi
Δt + R

√

2DiΔt (8)

The second term on the right hand side of Equation (8) represents the advection induced by the
carrier velocity field. In the third term on the right hand side of Equation (8), wb is the particle upward
rising velocity induced by buoyancy and given by [32,33] as

wb =

√

4g|ρd − ρ|Dd

3CDρ
(9)

where g is gravitational acceleration, Dd is oil particle diameter, ρd is oil particle density and CD

is a particle drag coefficient. The fourth term is the gradient of the eddy diffusivity which for a
depth-dependent eddy viscosity, as will be the case here, serves to induce a vertical velocity or vertical
transport in the direction of increasing diffusivity. The last term is a stochastic model representing the
fluctuating turbulent field constructed from the RANS simulation data, where R is a random number
with Gaussian distribution. Using the Boussinesq hypothesis and assuming that the eddy diffusivity is
isotropic [29,34,35], the eddy diffusion coefficient is

D = ν + νt ≈ νt = Cµ
K2

ε
(10)
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where ν = µ/ρ is the kinematic viscosity of the fluid. Note that for a high Reynolds number flow,
the eddy viscosity is orders of magnitude larger than the dynamic viscosity and hence the latter can
be neglected.

The particle tracking Equation (8) does not include inertial effects, which is a shortcoming
considering the studies [14,15]. However, a criterion for deviation from the sound theories of these
works is through the Stokes number defined as St = τρ/τc where τc is the time scale of the turbulence
which may be taken as K/ε and thus around 1.0 s in this work. The term τp is the particle inertial
(or Stokes) response time, defined as τp = βD2/18ν, where β is the particle density-to-water ratio, D is
particle diameter, and ν is water kinematic viscosity. As the oil density is taken herein as 866 kg/m3,
and considering the largest droplet sizes herein, which is 1000 microns, the term τρ is around 0.05s.
This gives a Stokes number St <0.05, which is a relatively small value (note that St = 0 for neutrally
buoyant particles) indicating that inertial effects can be neglected.

In the present investigation, we build on our earlier work [4,11,12] through the usage of
depth-dependent eddy diffusivity, but we calculate it using the k-ε closure model for turbulence.
We believe this is more realistic than imposing a generic value. Thus, neither water motion nor
the eddy diffusivity are imposed in the interior of the domain, and they are directly calculated by
the simulation.

2.3. Problem Setup

2.3.1. Wave Formulation

The waves simulated here are non-breaking deep water waves. The setup is depicted in Figure 1
with wavelength λ being the horizontal distance between the crests (or troughs), wave height H is
the vertical distance between the crest and trough of the wave, and the wave period is T. The wave
number is defined as k = 2π/λ and the angular frequency is given by σ = 2π/T. For deep water
waves, the wavelength is linked to the frequency using the dispersion relation [27] as

σ =
√

kg (11)

where g is gravitational acceleration. The analytical solution for velocities using the first order linear
wave theory is given as

ui(x1, x2, t) = δ1,i(
kgH
2σ

cosh kx2

cosh kh cos(kx1 − σt) + 3H2σk
16

cosh 2kx2

sinh4(kh)
cos 2(kx1 − σt))

+δ2,i(
kgH
2σ

sinhkx2
cosh kx cos(kx1 − σt) + 3H2σk

16
sinh2kx2

sinh4(kh)
sin 2(kx1 − σt))

(12)

where h is the mean water depth.
The water density was taken as 998.2 kg/m3, air density as 1.225 kg/m3, water dynamic viscosity

as 1.003 × 10−3 kg/m3, air dynamic viscosity as 1.7894 × 10−5 kg/m3, and oil density as 866 kg/m3,
representing Alaskan North Slope oil [36].

2.3.2. Flow Simulation

The domain of simulation consists of a rectangular box of 20 m × 3 m in the x1 (horizontal) and x2

(vertical) directions, respectively (see Figure 2). A mesh comprising 835,229 nodes and 834,239 mixed
quadrilateral cells was used for the simulation. The grid resolution has been chosen to properly resolve
the motion induced by the wave field as predicted by linear wave theory. Given the sensitivity of the
VOF method to coarse meshes near the interface area, the mesh was refined significantly near the
free surface.

The refinement was performed within a rectangular region. The size of the rectangular region
was 8 m × 0.3 m in the x1 and x2 directions, respectively, with the middle of the region corresponding
to the mean water level. Within this rectangular region the mesh size varied from 0.001 m and 0.005 m.
Outside of this region the mesh size varied from 0.005 m and 0.01 m.
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A second-order upwind scheme within Fluent was used to discretize the equations in space. Time
discretization consisted of the SIMPLE method given its good stability and convergence attributes [23].
The resulting time integration was implicit and second order. A time step of 0.0005 s was used.
The time step was particularly small, given the CFL number restrictions, and was chosen to capture
the unsteadiness of the flow field due to the forcing conditions resulting from the wave train [37].

 

Figure 2. Details of the problem domain (top) and mesh refinement near the surface (bottom).
The darker blue represents areas with more refined mesh.

The solution started from rest. At the left edge of the rectangular domain in Figure 2, a Dirichlet
velocity boundary condition was imposed using the first order velocity terms in Equation (12). TKE
and TKE dissipation values were prescribed at the left boundary. Note that this boundary condition
represents turbulence generated elsewhere being advected into the computational domain by the
Stokes drift of the waves. The right and bottom sides of the domain were modeled as solid walls with
standard wall models being imposed. At the top edge, a pressure outlet boundary condition was
applied. The mesh downstream of the domain was left coarse to dissipate the wave energy before
reaching the end wall at x1 = 20 m.

2.3.3. Particle Tracking

The Lagrangian particle tracking approach taken in our study is to predict the position of
the particles via Equation (8). After simulating the hydrodynamics of water through solution of
the Reynolds-averaged governing equations for the hydrodynamics of the flow underneath the
regular waves, the results were imported to our in-house particle tracking code NEMO3D [38–41].
The imported results included velocity components, eddy viscosity, and the water volume fraction
αw. The NEMO3D code is capable of constructing a triangular unstructured mesh over any set of
points and using linear interpolation to calculate the in-between values of the variables. The particle
search algorithm locates the particle and links it to the corresponding triangular element in which the
particle has traveled to. Moreover, the transient input data are updated at each tracking time step.
Using an unstructured linear mesh provided the capability of constructing the spatial gradients of
eddy diffusivity.

Particle tracking was performed for two groups of particles. The first group of 500 had a diameter
of 100 micron, while the second group of 500 had a diameter of 1000 micron. The tracking was
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performed over a 10-wave period duration after the flow had become fully developed. Particles
were released at two depths. The first particle group was uniformly distributed in the spatial span of
x1 ∈ [2.5, 3] m and fixed elevation of x2 = 1.1 m. The second particle group shared the same horizontal
distribution as the first group while its elevation was at x2 = 0.8 m. Here and in what follows, particles
in the first group shall be referred to as “near surface particles” while particles in the second group
shall be referred to as “deep particles”.

3. Results

3.1. Numerical Simulation Validation

The simulation was started from rest and was continued until the resolved flow was fully
developed. Once a fully developed flow was attained, the simulation was continued for another
10 wave periods and the outputted data over this time span was used to perform particle tracking.
Figure 3 shows instantaneous snapshots of the contours of horizontal and vertical water velocity
components. Figure 4 shows a comparison of the time series of velocity components with the analytical
solution from the second order linear wave theory (Equation (12)) at the point x1 = 2.7 m, x2 = 1.1 m
corresponding to a location where particle tracking was performed. Figure 5 shows a comparison of
depth profiles of the horizontal and vertical components of the velocity with the analytical solution
from second order wave theory (Equation (12)) at x1 = 2.7 m at two different times corresponding
to the crest and trough of a wave. Overall, a very good agreement is noted between the numerical
and analytical solutions and in particular Figures 3 and 4 demonstrate that no significant spatial and
temporal damping in the numerical solution existed.

Figure 3. Instantaneous contours of vertical (top) and horizontal (bottom) velocities after the flow is
fully developed. Horizontal velocity is positive to the right and vertical velocity is positive upward.
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Figure 4. Comparison of the numerical solution with the analytical solution in terms of time series of
horizontal (a) and vertical (b) velocities at the point corresponding to x1 = 2.7 m and x2 = 1.1 m during
10 periods of the wave for the fully developed flow.

Figure 5. Comparison of horizontal (a) and vertical (b) velocities between numerical (solid line) and
analytical solutions at x1 = 2.7 m at two different times corresponding to the crest and trough of a wave.
In the left panel, the left curves are under the trough while the right curves are under the crest. In the
right panel, the left curves occurred under the crest while the right curves occurred under the trough.

3.2. Vertical Profiles of Turbulent Quantities

Figure 6 shows vertical profiles of TKE K, TKE dissipation ε, and eddy diffusivity, D, underneath
the crest and trough of the waves. The values are close to 0 at the free surface and grow sharply to their
maxima within one wave height of the MWL. After reaching the maximum, each value decreased to
almost zero at an elevation approximately equal to 0.7 m. At this elevation, the vertical and horizontal
velocity components, shown in Figure 5, also drop sharply to near 0 at lower elevations. The sharp
decrease of TKE and ε is associated with a decrease in the velocity (shear) itself. The profile of eddy
diffusivity is similar to what was observed in field studies [17,42].
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Figure 6. Vertical variation of turbulent kinetic energy (m2 s−2) (a), turbulence kinetic energy (TKE)
dissipation rate (m2 s−3) (b), and eddy diffusivity (m2 s−1) (c) underneath a crest (x1 = 1.56 m) and a
trough (x1 = 2.34 m) of the wave.

The sharp vertical gradient of eddy diffusivity near the free surface observed in Figure 6 is
expected to provide an important contribution to the vertical mass transport in that region, as the
gradient of eddy diffusivity acts as advection in the random walk method (Equation (8)). The maximum
value of D was attained underneath the wave crest and the smallest value at the same elevation was
under the trough. This implies that mass transport due to turbulent diffusion is higher underneath
the crest. Moreover, there is also a horizontal gradient of eddy viscosity which acts as a horizontal
advective velocity, ultimately affecting the Stokes drift velocity. However, such a transport is negligible
in comparison to the Stokes drift.

3.3. Particle Trajectories

Figure 7 presents instantaneous positions of 100 and 1000 µm particles released near the water
surface. This experiment was conducted with 500 particles of each diameter, but only 50 of each
diameter are shown in Figure 7 for clarity. Particle tracking was performed with Equation (8) with
inputs derived from the previously described flow field underneath the surface wave. As can be seen,
particles of 1000 µm diameter tend to drift forward faster than the 100 µm diameter particles. This
causes the comet shape of oil plumes described in previous studies [11,12]. The 100 micron diameter
particle tended to submerge and disperse deep in the water column while the particles of 1000 µm
diameter remained close to the surface, thereby experiencing a greater Stokes drift.

Ensemble-averaged particle trajectories were analyzed to understand the combined effect of
advective velocities, diffusion, and buoyancy. Results were obtained by tracking 500 individual
droplets and calculating the plume trajectory by averaging the trajectories over all of the particles.
The number of particles was chosen sufficiently large so as to ensure that the result is not affected by
the number of particles.

Figures 8 and 9 present the averaged plume trajectory for particles released near the water surface
at the elevation x2 = 1.1 m and for particles released at x2 = 0.8 m, respectively. As can be observed,
the particle motion orbits are not closed paths for both sets of particles of 100 and 1000 micron diameters.
This results in a net forward motion of mass which is the well-known Stokes drift [27], and it probably
factors in the Lagrangian drift [12]. We also conducted particle tracking for neutrally buoyant particles
(i.e., we made the diameter equal to 0). The averaged trajectories in this case were nearly identical to
those of 100-micron particles in Figures 8 and 9 and hence the results are not presented.
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Figure 7. Particle positions at different times. Particles of diameter 1000 µm are represented with green
points and the red points represent particles of diameter equal to 100 µm. Each group has 50 particles
that are tracked during 10 wave periods. Starting point of all particles was at x2 = 1.10 m.

Figure 8. Ensemble averaged plume trajectory (over 500 particles of each size) of particles of diameter
100 and 1000 µm. The particles were released at x1 ∈ [2.5, 3] m, x2 = 1.10 m. The dotted line through
the plume trajectory was obtained by window averaging over each trajectory loop corresponding to
the wave period.
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Figure 9. Ensemble averaged plume trajectory of particles of diameters 100 and 1000 µm (500 particles
were used to obtain the averages). The particles were released at x1 ∈ [2.5, 3] m, x2 = 0.8 m.
Dotted line through the plume trajectory was obtained by window averaging over each trajectory loop
corresponding to the wave period.

3.4. Effect of Turbulent Diffusion

Considering Figure 8, a gradual downward shift of the 1000 µm and 100 µm near surface
particles is observed as particles drift with the flow. This is due to the combined effect of the wave
kinematics, buoyancy and turbulence. More specifically, particles diffuse from high concentration to
low concentration, and initially there are more oil droplets on the surface. In addition, the boundary
(the free surface) prevents diffusion upward of the water surface, and thus the net diffusion of particles
is downward. In particular, imagine particles at the mean water level (MWL), the trough brings all of
them down (as they cannot stay above the water surface), but the crest brings only some of them up
(approximately 50 percent based on randomness), and thus the net motion is downward.

The larger downward shift of the near surface 100 µm particle plume trajectory observed when
compared to that of the 1000 µm particles is consistent with the field observations of [5], who noted
that due to the lesser buoyancy of smaller droplets, turbulence disperses these smaller droplets further
down into the water column. Looking at Figures 6 and 8, the 100 µm particles submerge despite being
in regions of positive vertical gradient of diffusivity, as the downward motion induced by the wave
kinematics and turbulent dispersion is able to overcome the upward motion induced by buoyancy
and the positive vertical gradient of diffusivity. Thus, the vertical gradient of diffusivity does not stop
the downward migration of particles, but only slows it down as the particle pass through the high
diffusivity region.

Figure 9 shows the trajectory of 1000 µm particles released at the elevation x2 = 0.80 m. It is
apparent that the movement is dominated by buoyancy, which is due to the large buoyancy of the
droplets. Particles initially travel upward until reaching an equilibrium depth modulated by the action
of the wave motion and the turbulence by the end of the simulation. The trajectory tends to be more
horizontal at x2 ≈ 1.05 m corresponding to the region of highest diffusivity, which is consistent with
the slowing down of 100 µm droplets as they travel downward. It is also consistent with the results
mentioned earlier [17].

In order to better highlight the effect of gradient of eddy diffusivity, Figure 10 presents the
ensemble averaged trajectory of near surface 100 and 1000 µm particles with and without inclusion
of the gradient of the eddy diffusivity in the particle tracking Equation (8). It can be observed that

12



J. Mar. Sci. Eng. 2018, 6, 7

inclusion of the gradient of diffusivity causes particles to move towards the region of high eddy
diffusivity values, which is in agreement with [17]. For example, 1000 µm particles remained close
to the surface when the eddy diffusivity gradient is excluded from the particle tracking equation.
When the gradient of diffusion is included, the 1000 µm particles submerge to the region of greatest
diffusivity at about x2 = 1.1 m (see Figure 6c). Overall, neglecting the gradient of eddy diffusivity
causes a deviation of particle trajectories elevations by more than half a wave height after 10 wave
periods, which is a non-trivial amount.

In Figure 10, the 100 µm particles continuously descend in the water column. However, the rate
of descent is not as pronounced when the gradient of diffusion is included in the particle tracking
equation. This further confirms that the eddy diffusivity gradient tends to keep these particles closer
to the region of greater eddy diffusivity at about x2 = 1.1 m.

 

Figure 10. Ensemble averaged plume trajectory (over 500 particles of each size) of particles of diameter
100 and 1000 µm. Release location was at x1 ∈ [2.5, 3] m, x2 = 1.1 m. Dotted line through the
plume trajectory was obtained by window averaging over each trajectory loop corresponding to the
wave period.

3.5. Stokes Drift Calculations

Using the averaged particle trajectories in Figure 10, we calculated the Stokes drift velocities of
ensemble data. We used for this purpose neutrally buoyant particles. Figure 11 shows the average
speed of 500 near surface particles, when no turbulence effect was included (i.e., by setting the eddy
diffusivity and its gradients equal to 0). Due to the proximity of particles to the free surface, the plume
exhibited a weak oscillation around the starting elevation of x2 = 1.1 m. The calculated Stokes drift
was 0.072 m s−1 while the theoretical value [27] was 0.075 m s−1. The fact that the two values are close
suggests that the RANS simulation is capturing, at least, second-order accurate kinematics.

Us =
H2k

4
σe(2kx2) (13)

The calculated values of averaged Stokes drift velocity with turbulence effect for near surface
100 µm particles with and without gradient of diffusivity were 0.065 m s−1 and 0.062 m s−1, respectively.
The smaller Stokes velocity compared to the case without turbulence effect is because turbulence
(i.e., randomness) results in a net downward movement of the plume (discussed earlier), where the
Stokes velocity is smaller. The gradient of eddy diffusivity in this case appears to have only a slight
impact on the Stokes drift, increasing the velocity by 5% (from 0.062 to 0.065 m s−1). The greater Stokes
drift induced by the gradient of eddy diffusivity is consistent with the fact that the plume remains
closer to the surface when the gradient is included (Figure 10).
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Figure 11. Ensemble averaged plume trajectory (over 500 neutrally buoyant particles of each size) for
the case with no turbulence effect and thus with pure advection. Release location was at x1 ∈ [2.5, 3] m,
x2 = 1.10 m.

Note that in Figure 11 the orbital motion of the 1000 µm particles is larger. This is due to the fact
that greater buoyancy of the 1000 µm particles pushes these particles closer to the surface thereby
exposing them to greater Stokes drift.

4. Discussion

Transport of oil droplets due to non-breaking wave and buoyancy effects was investigated.
The present study focused on smaller spatial and temporal scales compared to our previous
works [4,11,12] which were hundreds of meters and on the order of hours. We considered the transport
of oil droplets due to wave motion, buoyancy, and non-local turbulence, and we found that other
forces, such as inertia are negligible for the scenarios that we considered. A key issue explored here
was the effect of inclusion of the gradient of eddy viscosity (i.e., diffusivity) in random walk particle
dispersion, and it was observed that the gradient of eddy viscosity tends to advect particles from low
diffusivity regions to high diffusivity regions. This is in agreement with the earlier work of [17] for
wind and tidal boundary layers.

The vertical profile of eddy diffusivity shows that it increases rapidly from zero at the free
surface to maximum value at a depth below the mean water level comparable to the wave height
(elevation x2 ≈ 1.1 m, see Figure 6). The resulting steep negative vertical gradient above x2 = 1.1 m
induces a downward advective velocity in the random walk method Equation (8). Also, the positive
vertical gradient below x2 ≈ 1.1 m causes an upward advective velocity. Therefore, accounting for
the turbulent diffusivity slows down the predominantly downward movement of neutral (and low)
buoyancy droplets (or particles).

It is likely that the gradient of eddy viscosity is commonly neglected in numerical works due
to the uncertainty in estimating it. But excluding the gradient causes a systematic bias in the results,
and thus, might not be justified in all situations. To provide more insight on the origin of the gradient
of the diffusion coefficient in Equation (8) we expand the diffusion term in the following diffusion
equation (used also by [17]):

∂C

∂t
= − ∂

∂xj
(D

∂C

∂xj
) = − ∂D

∂xj

∂C

∂xj
− D

∂2C

∂x2
j

(14)
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where C is the Reynolds-averaged tracer concentration (e.g., oil with C being oil mass per unit volume
of water). The first term on the right hand side of Equation (14) is of advective form with the horizontal
and vertical derivatives of eddy diffusivity acting as horizontal and vertical advective velocities,
respectively. This is particularly important because as it was seen in the results section, there are sharp
vertical eddy diffusivity gradients near the surface. The importance of the gradient of eddy viscosity
for Eulerian approaches of the form in Equation (14) has been observed in RANS modeling of wind
and wave forced oceanic turbulent boundary layers [17]. We believe it is important to consider it in
Lagrangian approaches, as done herein.

Unsurprisingly, buoyancy was found to play an important role in oil droplet movement.
For submerged particles, buoyancy causes upward transport of particles as seen in Figure 9. A weak
upward buoyancy force allows for wave motion and the turbulence to submerge the 100 µm particles
deeper than the 1000 µm particles which is in agreement with field observations [5]. These overall
effects of buoyancy were observed to be modulated or tempered by the gradient of the eddy diffusivity
tending to move the particle closer to the region of higher diffusivity.

5. Conclusions

In this manuscript the effect of non-breaking wave motion on oil droplet transport was evaluated.
Numerical simulations were conducted using the RANS equations with regular waves of period 1.0 s
and height 0.10 m. The current work is an extension of the earlier work of [11] in which Lagrangian
tracking of oil particles was performed under regular surface waves in order to understand the
combined effects of waves, turbulent diffusion, and buoyancy on the transport of oil droplets at
sea. Turbulent diffusion was represented via a random walk model similar to that implemented for
the current work, but with constant eddy diffusivity. In the present work, we have extended the
study in [11] to spatially dependent eddy diffusivity as calculated by the k-ε closure for turbulence.
Unlike in the case of [11] which imposed wave-induced motion via second order wave theory, in the
present work the waves and thus the wave induced velocity are directly resolved by the simulation.
Furthermore, we have investigated the role of the gradient of the eddy diffusivity acting as an advective
component in the random walk model driving vertical transport towards the zone in the water column
characterized by high diffusivity. The latter behavior has been observed for the first time under the
action of waves in the present study. This behavior induced by the gradient of eddy diffusivity has also
been observed/explained by [17] in simulations of vertical distributions of particles in a water column
subject to wind and tidal forcing and moderate stratification; orbital motions induced by surface waves
were not considered in the work of [17].

We found that the resulting RANS velocities underneath the regular waves closely compare to
the velocity values obtained based on the second order theory (Stokes theory), giving credence to the
numerical results. The turbulence advected into the computational by the waves was characterized by
an eddy viscosity (taken equal to eddy diffusivity) increasing sharply from the surface until reaching a
maximum value at depth comparable to double the wave height and then decreasing gradually with
depth. We used the RANS velocities and the diffusivity to track the movement of oil droplets of size
100 µm and 1000 µm in a Lagrangian framework using the random walk method.

It was found that when the particles are released at the water surface, the 100 µm droplets
migrated downward in the water column while the 1000 µm droplets remained close to the water
surface, which can be explained based on the buoyancy. We showed that including the diffusivity
gradient would increase the rate of descent of particles in the water column until reaching the zone of
maximum diffusivity. Conversely, large buoyancy (1000 µm) droplets below the maximum value of
diffusivity would migrate faster upward to reach the zone of high diffusivity.

In the future we will explore the effect of turbophoresis [17]. Turbophoresis drives particles away
from regions of large turbulent kinetic energy, thus away from regions of high eddy diffusivity, in
contrast to the effect of the gradient of eddy diffusivity investigated here.
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Abstract: In the United States (U.S.), oil exploration and production remain critical economic engines
for local, state, and federal economies. Recently, the U.S. Department of the Interior expressed
interest in expanding offshore oil production by making available lease areas in the U.S. Gulf of
Mexico, the U.S. West Coast and East Coast, as well as offshore Alaska. With the promise of aiding in
energy independence, these new lease areas could help solidify the U.S. as one of the world’s largest
oil-producing countries, while at the same time bolstering the local and regional energy job sectors.
Of all the newly proposed lease areas, the Gulf Coast of Florida is particularly contentious. Opponents
of drilling in the area cite the sensitive ecosystems and the local and state tourism economy that
depends heavily on the numerous beaches lining Florida’s coast. In this analysis, we use a data-driven
spatial analytic approach combined with advanced oil spill modeling to determine the potential
impact of oil exploration off of Florida’s Gulf Coast given a loss-of-control event. It is determined
that plume behavior varies drastically depending on the location of the spill but that overall impacts
are comparable across all spill scenario sites, highlighting the necessity of contingency-type analyses.
Implications for spill response are also discussed.

Keywords: oil spill; impact modeling; simulation; contingency planning

1. Introduction

The Gulf of Mexico (GOM) is home to several large and rich oil reservoirs. As a result, for many
decades, the GOM has been a primary production site for U.S. oil. Recent reports show that almost
all of the offshore oil production in the United States takes place in the GOM (~97%) and accounts
for about 17% of the total oil and gas produced in the United States [1]. The oil-based energy sector
associated with the GOM also employs thousands of people in the U.S. As of January 2016, the two
largest offshore-oil-producing states, Texas and Louisiana, had roughly 260,000 and 44,000 workers
employed in the oil-based energy sector, respectively [2].

The importance of oil to the communities along the GOM cannot be overstated and it continues to
grow. In a 2015 report by the Bureau of Ocean Energy Management (BOEM), oil reserves in the GOM
were estimated to be upwards of 3.67 billion barrels, with contingent reserves estimated to be about
3.29 billion barrels [3]. Given the already large economic footprint of the oil industry in the GOM region,
combined with future production potential, the continued exploration and development of oil reserves
in the GOM is cited as one of the most important pathways to establishing U.S. energy independence [4].
In short, oil exploration, extraction, and production are critically important to the U.S. economy,
but there are risks. Oil extraction can, and does, exact a significant toll on the environment—disrupting
complex ecosystems and the overall environmental vitality of the region [5,6].

Consider, for example, one of the most catastrophic environmental disasters in recent history.
The 2010 Deepwater Horizon blowout, which ultimately released between 4.5 and 4.9 million barrels of
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oil into the GOM waters over a four-month period [7], devastated coastal environments and economies.
Estimates of economic loss to the entire region range from $8.7 billion [8] to upwards of $37 billion [9].
In Florida alone, recent estimates suggest that 4.1 million recreational trips were cancelled as a direct
result of the spill, totaling an estimated loss of $2.04 billion [10]. Since the 2010 blowout of the
Deepwater Horizon there have been a handful of disruptive accidents and events that have taken place
in the GOM. The underwater infrastructure of the Shell Brutus platform failed in May 2016, eventually
releasing 2100 barrels of oil into the offshore environment [11]. More recently, the 1 October 2017
pipeline rupture 40 miles south of Venice, Louisiana, resulted in the release of 9350 barrels of oil into
the water column [12]. Neither spill made landfall but they serve as stark reminders of the risks and
potential consequences of oil production in the offshore environment.

Recent efforts by the U.S. federal government and its administration to develop and solidify
energy independence have resulted in proposals to open vast swaths of U.S. coastal waters to offshore
oil exploration and production [13]. The proposed areas include the Atlantic seaboard, coastal Alaska,
the Eastern GOM planning area, and much of the U.S. west coast (ibid.). Quickly following this
announcement, Florida governor Rick Scott negotiated with the administration to exempt the Florida
coast from offshore oil production, citing the potential harm to the region’s tourism industry, worth
60 billion dollars per year [14]. More importantly, the coastal waters of Florida have been off limits to
drilling for many years as a result of the GOM Energy Security Act of 2007 [15]. In fact, most of the
Eastern GOM Planning Area was placed under a drilling moratorium until 2022, with recent calls to
make the moratorium permanent [16]. Regardless of the final decision concerning Florida’s waters,
it is important to revisit and reevaluate the potential outcomes associated with oil extraction efforts in
the region, especially given recent interest in possibly allowing drilling to take place.

To be sure, while the number of oil spill impact assessments has increased dramatically since
the Deepwater Horizon catastrophe [17], none have quantified or directly addressed the potential
outcomes of a disaster in the Eastern GOM Planning Area. This is not to say that site-specific research
is nonexistent. On the contrary, there is a growing body of research concerning site-specific impact and
risk quantification in Europe [18–21], coastal Asia [22,23], and some parts of the United States [24,25].
However, the major substantive foci of these studies are on methodological development. With recent
proposals to open the GOM Eastern Planning Area to oil exploration and production, the purpose of
this paper is to develop a broad understanding of the risks and impacts associated with drilling in
the Eastern GOM. We apply the core methodological procedures found across many oil spill risk and
impact methodologies (e.g., [17]) to the Eastern GOM. This process of tracking the final fate of oil, from
blowout locations to the shoreline, will provide some insight into the behavior of oil spills in the area
along with their potential impacts to the state of Florida and beyond.

2. Background

On 4 January 2018, the United States Secretary of the Interior, Ryan Zinke, announced plans to
open almost all of the U.S. Outer Continental Shelf (OCS) area to oil exploration and production to
support U.S. energy independence [13]. Although portions of U.S. coastal waters, such as those found
in California and Alaska, have historically functioned as areas of active oil production, many others,
including the Atlantic Seaboard and the Eastern GOM, have not. Thus, it was not surprising to see
that all Pacific and Atlantic states, with the exception of Maine, formally voiced objections to offshore
oil extraction activities [26]. Thus far, only Florida has been granted an exception (ibid.).

Many of the calls to remove Florida (and other states) from consideration for offshore oil drilling
cite the potential impact that an oil spill may have on the environment and tourism. Tourism is
the largest economic driver in the state of Florida, and much of it depends on a pristine coastal
environment [27]. Specifically, tourism generates about 23% of the state’s sales tax revenue and
employs over one million individuals [28]. Threats to the tourism industry in Florida, whether
real or perceived, can have a dramatic impact on the state economy as the perception that a beach
might be oiled can alter the vacation plans of individuals who fear a health risk or a contaminated
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shoreline [29,30]. This was exactly the case following the Deepwater Horizon. Although the majority
of the oil from the Deepwater Horizon made landfall on the shorelines of Louisiana, Mississippi,
and Alabama [31], Florida experienced significant economic losses from cancelled recreation trips due
to the perception that the beaches and ocean in/around Florida were oiled [10].

Clearly, the economic loss from just the perception of an oiled coastline can be significant for
any community, state, or region with an economy rooted in coastal tourism. However, the concern
regarding drilling off the Florida coast also comes from the potential for actual damage caused by
physical oiling of the ecosystems and allied coastal assets. For some perspective on this issue, one only
needs to reexamine the consequences of the Deepwater Horizon spill. Consider the nature of the
spill, which formed a large, deep sea and surface oil plume, along with massive amounts of sinking
oil [32,33], all of which contributed to a significant loss of the nearshore and deep-sea benthic fauna
in the GOM region [34–36]. Furthermore, related studies found evidence of harm to shallow water
coral communities [37], some coastal fish species [38], seabirds [39,40], sea turtles [41], and possibly
(but not fully confirmed) marine mammals [42,43]. From an economic perspective, it was estimated
that the closure of fishable waters cost local economies several billion dollars [8,44]. Add to that the
environmental impacts [45] and harm to the tourism industry [10] and economic costs could easily be
in the tens of billions.

2.1. Implications for Florida

Florida is situated in a unique geographical position in relation to ocean currents. Recent work
suggests that Florida’s western shelf is isolated from cross-shelf “squeezelines” or current velocity fields
that tend to attract nearby particle trajectories [46]. In other words, the western coastline of Florida
may not be particularly susceptible to oiling. The construction of Lagrangian coherent structures (LCS)
from twelve-year-long ocean surface circulation data confirms the absence of squeezelines from the
shore to about the 50 m isobath off Florida’s west shelf [46] making the 50 m isobath an important
boundary. From the shore to the 50 m isobath one can expect very little ocean current activity, meaning
that oil within this area is likely to stagnate or move very slowly. From the 50 m isobath and beyond,
oil is much more likely to be pulled and transported by the squeezelines which can rapidly increase
the plume extent. Important to keep in mind is that the distance between Florida’s western shoreline
and the 50 m isobath displays significant geographic variation. For portions of the Florida Panhandle,
it is only 20 miles offshore. In other locales, including the areas west of Tampa, it is found over
100 miles off the coast. In short, oil within the area encompassed by the 50 m isobath will remain
fairly stagnant, possibly making response and cleanup operations for a spill more effective. This
recent work on squeezelines, however, is based on a 12 year average [46]. Averages often mask natural
variations in currents, wind speeds, and direction. Thus, a closer look into these natural variations
may reveal scenarios where spills can generate significant impacts to the Florida coast regardless of
spill origination.

It is also important to acknowledge that the evaporation of oil, and the rate at which evaporation
occurs, is partly dependent on movement of oil. If oil remains stagnant, the natural degradation rates
are slowed [47]. As a result, the stagnation of oil over a particular area may result in an increased
amount of deposition. As oil mixes with the sea water during emulsification, some amount will sink,
coating the benthic communities below. At the same time, portions of the petroleum derivatives remain
closer to the surface, affecting species that call this part of the water column, home. This overall oiling
process was clearly evident following the Deepwater Horizon spill [36,48].

Given the complex web of interaction between oil, sensitive ecosystems, weathering processes,
and the environment, as well as the sensitive facilities and economic compositions of proximal
communities, it is critically important to have a strong sense of what could happen in the event of a
spill off of Florida’s Gulf coast before decisions are made on drilling. This is true, not just for Florida,
but for any state on the Atlantic or Pacific coasts of the U.S. That said, Florida offers a particularly
interesting case because of the location of the 50 m isobath, prevailing currents, and associated weather
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patterns. Again, Florida may be protected from oil spill intrusions further offshore, reducing the
potential for harm. If so, oil production could bring additional jobs and revenue to the state, as well as
royalties to the Federal Government. On the other hand, a catastrophic spill could also result in billions
of dollars in damage to the state, depressing tourism and causing severe harm to local ecosystems.

2.2. Oil Spill Impact Modeling

One way to evaluate the potential outcomes of a spill is through the use of contingency analysis,
where hypothetical spills and their impacts are modeled. This type of “what if” modeling generates
valuable geospatial intelligence, helping to both visually and quantitatively depict how oil spills may
behave during a catastrophic event at a particular time and in a specific place. More importantly,
the ability to explore the implications of such spills on the environment can help first responders
prepare tactical intervention efforts [49] and help communities to develop strategies to reduce their
vulnerabilities to extreme spill events [24].

As mentioned previously, in the years following the Deepwater Horizon oil spill there was
a significant increase in the amount of work being done in the oil spill risk and impact modeling
area [17]. There are three major families of analysis: (1) vulnerability analysis, (2) risk analysis,
and (3) normative impact modeling. Vulnerability analysis primarily focuses on characterizing the
susceptibility of shorelines to damage following an oiling event. Major vulnerability studies include
environmental sensitivity index mapping and development [50–52], industry-specific vulnerability
metrics [17], or creating composite vulnerability scores based on economic, social, and environmental
assets [21,53]. Risk analysis is primarily concerned with estimating the probability that an oil spill
will impact a specific geographic area [17]. This can be done with an ensemble-type approach, using
hundreds of oil spill simulations to determine probability [54,55], or risk can be inferred based on
historical accounts of oil spills in a particular area [56]. Although these approaches often yield similar
results, simulation approaches are growing in popularity due to their higher levels of accuracy and the
robustness of the associated modeling techniques.

Lastly, the use of normative impact modeling represents a hybrid approach, combining the best
of both vulnerability and risk analysis [17]. For example, Azevedo and colleagues [57] determined
risk via oil transport and shoreline exposure which is combined with a vulnerability metric based
on biologic and physical indicators related to their sensitivity to oil. The combination of these two
metrics into a spatially explicit normalized impact index is used to characterize different segments
of coastline. Olita et al. [18] and Canu et al. [20] perform similar analyses that result in a normalized
index of total impact for a number of coastal environments. In short, the way in which these two
important metrics are combined varies from study to study, but their combination helps account for
the probability of occurrence, the degree of oiling, and how susceptible to damage the surrounding
communities (social and environmental) are to the effects of oil [24].

3. Study Area, Methods, and Data

The GOM is divided into three drilling districts: the Western, Central, and Eastern Planning
Areas. As of 1 January 2018, there were 2795 active leases in the GOM with 815 of those actively
producing [58]. Only 37 leases are active in the Eastern GOM—none of which are currently producing
oil. The Eastern Planning Area is home to 13 complete protraction areas, and 6 partial areas. Across the
GOM, oil production depth varies between active platforms, with 1937 in water depths from 0 to 200 m,
20 active in water depths of 201–400 m, 10 active in water depths from 401 to 800, 9 active in depths of
801–1000 m, and 32 active in water depths greater than 1000 m. Since 2015, seven new platforms have
been installed, three of which are in water depths greater than 1000 m, indicating that oil exploration
remains active in the GOM region.

For the purposes of this research, a handful of locations were identified in the GOM, proximal
to Florida, to simulate potential oil spills. Using the protraction diagram provided by the Bureau
of Ocean Energy Management [59], ten locations were selected, ensuring geographic diversity and
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variety in offshore environmental conditions (Figure 1). Because the Florida shelf is so large (in terms
of its extension into the GOM), seven of the selected spill locations fall within the area between the
coastline and the 50 m isobath. Recall that this is the area without the presence of “squeezelines” and
theoretically an area where very little particle movement will take place. The other four locations are
in deeper waters and further from the Florida shoreline. It is important to acknowledge that locations
off the Florida shelf tend to intersect the GOM loop current [60] for at least part of the year.

Figure 1. Study area and the set of locations used for spill simulation. Scenario names are derived from
the name of the protraction block in which they occur.

3.1. Ambient Data and Spill Model

The spill model used for this research is the Blowout and Spill Occurrence Model
(BLOSOM) [24,61,62], which is combined with the 2017 Navy Coastal Ocean Model (NCOM) American
Seas (AmSeas) data to model the blowout and subsequent oil transport [63]. The NCOM AmSeas
ocean model has a temporal resolution of 3 h and a spatial resolution of 3.3 km. The NCOM comes
in the NetCDF data format with 40 different depth levels [64]. For each level, information on water
salinity, temperature, velocity, and direction are available. At the highest (shallowest) layer, ambient
information includes the surface atmospheric pressure, surface roughness, surface temperature,
and wind stress in the x and y directions.

BLOSOM is a four dimensional spill modeling suite designed for simulating offshore spills in
deepwater and ultra-deepwater environments. Most of the equations and associated functions within
BLOSOM are designed for high-pressure environments; however, with slight modification, BLOSOM
has the ability to handle the simulation of offshore surface spills as well. BLOSOM comprises several
individual models that, in conjunction, make up the integrated modeling suite. It begins with the
Jet/Plume model and progresses through the conversion model which handles the oil as it is converted
from behaving under jet-like influences to buoyant forces. From there the transport model simulates
the long-term final fate of the oil within the water column and on the ocean surface. While these
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three models are operating, there are several other models handling the physics of the oil and ocean
environment. These include the crude oil model, the gas/hydrates model, the weathering model,
and the hydrodynamic handler. The individual models as well as BLOSOM as a whole are described
in more detail in [62] and the model itself can be found at https://edx.netl.doe.gov/blosom/.

3.2. Spill Locations

The timing of simulated blowouts was carefully modeled to try and ensure that the velocity and
direction vectors would favor conditions where oil would move quickly toward the Florida coast.
With a temporal resolution of three hours, each modeled day consists of eight individual current files
beginning with hour 0 and ending with hour 21 (on a 24 h time scale). The northward and eastward
velocity values were averaged over each day and then over each month. These calculations yielded
two sets of 12 raster files (one file for each month in the year)—one set for the northward direction
and another set for the eastward direction. We then created a 25 mile buffer around each blowout
location and, using the two sets of monthly current files, calculated the average direction and velocity
values of the ocean currents within the buffer (Table 1). Based on velocity strength and directions
trending toward the shore, two months were selected (June and July) as the worst possible time to
have a spill in the eastern GOM region. However, there is a caveat to the selection of current direction.
For the blowout locations in the southern portion of the study area, it must be acknowledged that a
large southward velocity means strong loop current activity. This increases the potential for oil-related
problems in the Florida Keys, Cuba, and the Atlantic Coast and was taken into account when choosing
which months to simulate the spills. The locations and starting months for each spill, as well as the
ambient environmental conditions, are detailed in Table 1.

Table 1. Geographic location, depth, and the average monthly current speed within a 25 mile radius
around the spill location. Negative numbers represent current directions opposite to the direction
noted in the column headers. For example, negative numbers for the June and July average current
velocity north would mean the dominant current direction is south.

Spill Scenario Latitude Longitude Depth (m)

June Average
Current
Velocity

(North, m/s)

July Average
Current
Velocity

(North, m/s)

June Average
Current
Velocity

(East, m/s)

July Average
Current
Velocity

(East, m/s)

Eastern Locations

Gainesville 29.12 N −83.79 W 62.33 0.037 −0.013 −0.021 0.02
Tarpon Springs 28.43 N −83.32 W 62.43 0.049 −0.001 −0.015 −0.0009
St. Petersburg 27.39 N −83.26 W 111.54 0.092 −0.001 −0.03 0.001

Charlotte
Harbor

26.44 N −82.93 W 121.39 0.088 0.008 −0.017 −0.007

Pulley Ridge 25.43 N −82.36 W 91.86 0.047 0.011 −0.017 −0.016

Western Locations

Apalachicola 29.21 N −85.10 W 104.98 0.033 −0.024 −0.05 0.059
Florida Middle

Ground
28.32 N −85.2 W 600.39 0.015 −0.004 −0.014 −0.002

The Elbow 27.36 N −84.97 W 1417.32 −0.049 −0.058 0.049 0.113
Vernon Basin 26.45 N −85.00 W 10833.33 0.039 −0.186 −0.062 0.1
Howell Hook 25.46 N −84.76 W 5754.59 −0.22 −0.764 0.494 0.208

3.3. Spill Scenarios

All spill scenarios were structured equally. For the purposes of this analysis, we are more
interested in the final fate of the oil, rather than the many nuances and variations associated with spill
locations.1 Spill duration and discharge rate were 10 days and 500 barrels per day, respectively. These

1 We readily acknowledge that spill locations and their local environmental conditions are important factors to consider, but
these details will be explored in future research efforts.
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are relatively modest spill settings and do not reflect a catastrophic blowout such as the Deepwater
Horizon. However, there is enough oil released into the environment for it to be a concern. The resulting
plume is tracked for a total of 60 days, providing ample time to characterize the behavior and transport
of the plume in the water column. Additional settings for BLOSOM reflect widely accepted standards
in spill modeling. Horizontal diffusion was modeled as a random walk, with a Smagorinsky coefficient
of 0.15 [46]. Default models for spreading [65], emulsion [66], mass transfer [67], and evaporation [68]
were also selected to improve repeatability.

3.4. Impact Calculation

As detailed previously, the Deepwater Horizon event triggered a substantial resurgence in the
development and testing of methods to quantify actual and potential impact [57,69]. This process
is necessarily data driven, relying on the incorporation of data sets to represent the vulnerability
of coastal communities which can be distinguished by sector (biologic, economic, social) and then
grouped together for a composite vulnerability measure (Table A1). More data yields a richer analysis
and provides the ability to better express the local spatial and temporal aspects of vulnerability [17].

For the purposes of this research, a 2 km × 2 km impact grid [24] was generated for the study
area. This grid helps to aggregate and represent the environmental and socio-economic assets in
the region, as well as their exposure to the effects of oil along the coast. Specifically, for each of the
individual grid cells in the impact grid, the number of assets present across both the environmental
and socio-economic sectors was calculated and used to inform the total vulnerability measure for
each cell. If more assets are present within a grid cell, that area is more susceptible to harm from oil.
No weighting scheme was used, although scalars could be easily implemented.

Overall impacts were determined on a cell-by-cell basis reflecting the amount of oil within a
grid cell and the vulnerability of the cell (and its assets) for each of the spill scenarios. Impacts for
the coastal environment and the water column were calculated separately and a derived final impact
score for each scenario (based on the combined coastal and water column) was generated. A simple
standardization process was also used to keep the impact values comparable across all scenarios. We
scaled the amount of oil within the grid cells along the coast to range between 0 and 1, with 0 being
no oil present and 1 being the highest amount of oil that accumulated within one grid cell during

all scenarios for that area (Oilmod). Basically, the oil modifier for the coastal areas was based on the
maximum amount of oil that had beached within one grid cell.2

The open water modifier was derived in a slightly different manner. In this case, the total amount
of oil that passed through each grid cell over the course of the simulation period was tracked. Then,
similar to the coastal oil modifier, the maximum amount of oil that had passed through any one grid
cell was used to create the range of oil modifier values. After generating the oil modifier for each grid
cell, the modifier value was multiplied by the vulnerability score for each grid cell:

Grid cell impact (Gcell) = Oilmod × Vulnerability (1)

where Oilmod is the modifier scaled to the amount of oil within an individual grid cell and Vulnerability
is the number of assets present within the boundaries of an individual grid cell.

Finally, overall impact for each scenario was determined by the sum total of the impact values for
all grid cells in the water column (Equation (2)) and coastal areas (Equation (3)), with values scaled to
range between 0 and 10. To account for the oil remaining within the water column, an additional value
was added to the water column impact score reflecting the amount of oil that could potentially cause
impacts at a later time (Equation (4)). This value was derived in a manner similar to the oil modifier

2 Although this modifier improves comparability between scenarios, it also unintentionally obfuscates the overall impacts of
oil in coastal locations. Any amount of oil that comes into contact with the shoreline is a problem.
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where the total amount of oil to pass through a grid cell (OWoil) was divided by the maximum amount
of oil (Max OWoil) that passed through any one grid cell for all spill scenarios. The value was then
transformed to range from 0 to 5.

Total Open Water Impact
(

OWimp

)

= ∑ Gcell1 + Gcell2, . . . ,+Gcelln (2)

Total Coastal Impact
(

Cimp

)

= ∑ Gcell1 + Gcell2, . . . ,+Gcelln (3)

Oil Remaining Impact (ORimp) =
OWoil

Max OWoil
(4)

Total Scenario Impact = (OWimp + ORimp) + Cimp (5)

4. Results

Upon simulating the spills at each of the locations outlined in Figure 1, the results suggest stark
spatial and temporal differences in spill behavior between the eastern and western locations. In an
effort to decompose and explain these differences in behavior, the following subsections are framed
geographically, where the spills for the eastern and western blocks are detailed separately. Finally,
we detail how the behavior of these spills translates into overall impact for coastal and offshore Florida.

4.1. Spill Behavior—Eastern Locations

The model results show that spills beginning in the eastern locations were generally smaller in
spatial extent than their western counterparts, with the exception of Gainesville, a clear outlier. At the
end of the 60 day simulation period, the Gainesville spill has the largest spatial extent at 3272 square
miles, followed by Tarpon Springs (616 sq. mi.), Charlotte Harbor (634), St. Petersburg (447 sq. mi.),
and Pulley Ridge (304 sq. mi.) (Figure 2). Again, the lack of movement and geographic spread of
these spills was somewhat expected given the minimal number of squeezelines in this area and lower
east–west current velocity. In fact, for all locations except Gainesville, the plume remains relatively
compact and moves slowly, in a northerly direction (Figure 3). In terms of plume dynamics, the lack of
ocean current activity on the Florida shelf prevents the stretching and deformation of the plume as one
typically sees further off shore (detailed in Section 4.2). At the end of the 60-day simulation, plumes
are roughly 20 miles or more from the shore regardless of where the spill originated and none of the oil
has reached the shores of Florida. However, as displayed in Figure 3, the plumes are on a northward
trajectory toward the Florida panhandle.

Figure 2. Plume extent as a function of time for the eastern locations.
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Although much larger in geographic extent, the Gainesville spill scenario remains fairly compact
until Day 39 when it begins to rapidly expand (Figure 2). It is at this time that a portion of the
plume breaches the 50 m isobath boundary which is followed by stretching and pulling of the plume
further from shore. Again, there are very few squeezelines of high particle attraction within the
region from 0 to 50 m depth but once that line is passed, the plume rapidly expands. By Day 60, the
plume begins its entry into the loop current and will eventually be transported into the Atlantic Ocean
(Figure 3a). More importantly, because of the lack of east–west current activity on the Florida shelf,
none of the oil from the Gainesville scenario makes landfall by the 60 day mark.

Figure 3. Eastern scenarios plume extent and shape over the course of the 60 day simulation period.
(a) (top left) depicts the plume from the Gainesville scenario. (b) (top right) depicts the plume from
Charlotte Harbor. (c) (middle left) depicts the Tarpon Springs plume. (d) (middle right) depicts the
Pulley Ridge plume and (e) (bottom left) depicts the St. Petersburg plume. The plume is represented
by the number of days that new oil particles moved through a specific location.
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4.2. Spill Behavior—Western Locations

As expected, spills beginning in the western locations and outside of the 50 m isobath are
significantly more dynamic than their eastern counterparts. For all western locations, at least some of
the oil reaches the loop current and is transported south, past the Florida Keys and into the Atlantic
Ocean. Even the northernmost western spill location, Apalachicola, had particles making the turn and
heading into the Atlantic Ocean by the end of the 60-day simulation period. Interestingly, the origin
of the Apalachicola scenario falls inside the 50 m isobath. From Figure 4 one can see that the plume
behavior of Apalachicola is similar to the Gainesville scenario. The plume was relatively modest in
extent until it breached the 50 m isobath on Day 29. After that, the plume grows rapidly in extent and
also impacts the northern Florida shore by Day 30.

Figure 4. Plume extent as a function of time for the western locations.

The remaining western spill locations all experience strong and extremely rapid movement of
oil as it is pulled by the loop current. As Figure 4 illustrates, the western spills tended to be much
larger in geographic extent when compared with the eastern spills.3 The Elbow was largest in extent at
10,963 square miles followed by Florida Middle Ground with a final-day extent of 10,815 square miles.
Howell Hook had the next-largest extent at 6196 square miles followed by Vernon Basin (5144 sq. mi.)
and Apalachicola (4583 sq. mi.). It is also important to acknowledge that some of these spills may be
smaller in geographic extent than one might expect. This is due in part to data limitations, but it is
also a function of the strength of the loop current. Once the plume enters the loop current, it is pulled
and stretched and accelerates into a quickly moving (yet thin) train of oil that follows the loop current
path. To be sure, spills beginning in the western locations are highly dynamic, never stagnating in
a single geographic location for more than a day (Figure 5). As soon as these spills enter the water
column, they begin to move rapidly. Thus, getting a handle on the plume in both time and space is
difficult—making tactical interdiction efforts (e.g., application of dispersants or allocation of response
equipment) more difficult.

Consider, for example, the speed at which plumes begin to be influenced by the loop current
(Figure A1). In the case of Howell Hook, by the time the oil reaches the surface, it is already being
pulled south (Day 2). The Vernon Basin spill exhibits a similar temporal profile, being pulled south
by Day 3. The Elbow spill takes somewhat longer to connect with the loop current, but by Day 15,
a clear southern trajectory begins to take shape. The Florida Middle Ground location serves as a small

3 It is likely that the spills would be much larger if the simulated scenarios were not restricted to the boundary of the current
files used for analysis.

27



J. Mar. Sci. Eng. 2018, 6, 30

exception. Its northern location means that it is not directly in line with the loop current. Although the
spill stagnates for a number of days, it is eventually pulled south by the loop current on Day 32.

Similar to the spills emanating in eastern locations, the Gulf Coast of Florida is largely spared
from oiling with spills that emanate from the western locations. In fact, a large majority of the oil never
makes landfall when beginning from a western locale. Instead, the remaining oil is left swirling in the
Gulf or launched into the Atlantic Ocean. The minimal amount of oil that does make landfall is largely
concentrated on the shores of the Florida Keys, Cuba, and the Bahamas.

Figure 5. Western scenario oil plume extent and behavior over the 60-day simulation period. Plumes
originating from the western locations were more dynamic and larger in extent, wrapping around
Florida and out into the Atlantic Ocean. (a) (top left) depicts the 60 day plume from Apalachicola.
(b) (top right) depicts the 60-day plume of Vernon Basin. (c) (middle left) depicts the 60-day plume
from Florida Middle Ground. (d) (middle right) depicts the plume of Howell Hook and (e) (bottom left)
depicts the plume of The Elbow. The plume is represented by the number of days that new oil particles
moved through a specific location.
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4.3. Impacts—Eastern Locations

On-shore impacts resulting from spills at the eastern locations were negligible. By the end of the
60 day simulation period, none of the plumes had reached the shoreline. As a result, the majority of
impacts for the eastern locations are representative of the potential threat that the plume poses to the
shore in the future. Figure 3 displays the propensity for plumes from eastern spill locations to move
north, heading toward the Florida Panhandle, which could be a problem. However, given the plume
behavior exhibited in the Gainesville scenario, it is questionable whether these plumes will ever hit the
shore. Instead, they may turn and make their way further into the GOM. That being said, the potential
remains for this oil to threaten the coastal environment because a significant amount of oil still remains
in the water column (Table 2).

Table 2. Total oil and number of assets impacted from each of the spill scenarios and the total amount
of oil not beached following 60 days of simulation. Values denoted here are used in the calculation of
total scaled impacts.

Spill Scenario
Total Coastal Oil

(Gallons)
Total Coastal

Assets Impacted

Total Oil in Open
Water Remaining

(Gallons)

Total Open Water
Assets Impacted

Eastern Scenarios

Gainesville 0 0 90,932.89 23,307
Tarpon Springs 0 0 84,304.82 11,277
St. Petersburg 0 0 88,429.15 12,407

Charlotte Harbor 0 0 87,356.18 14,687
Pulley Ridge 0 0 84,439.23 9056

Western Scenarios

Vernon Basin 7243 1752 23,073.15 49,498
Howell Hook 10,953.14 0 26,873.38 12,517

Florida Middle
Ground

252.31 307 78,702.33 51,676

Apalachicola 190.92 142 85,861.80 32,123
The Elbow 5234.70 1878 51,711.00 67,948

In rank order, the eastern scenarios with the largest impact were St. Petersburg followed closely by
Tarpon Springs, Charlotte Harbor, Pulley Ridge, and Gainesville (Table 3). Gainesville is an interesting
case. It has the highest amount of oil left within the environment and the highest number of assets
impacted (Table 2), yet it does not have the highest total water column impact. Since the impacts depend
on the degree (i.e., intensity) of oiling, the geographically dispersed nature of the spill means that
the total impact ends up being the smallest. Functionally, this is the core idea behind the application
of dispersants to a plume. The dispersant makes the oil droplets smaller, encourages their spread,
and reduces the potential for geographically intense oiling. Smaller droplets and a more dispersed
plume also enhances natural oil degradation due to weathering and other processes. In sum, however,
the eastern spill scenarios leave large quantities of oil in a fairly small area. Without some type of
tactical response effort for cleaning up the oil it will continue to mix with water and sediment and
eventually sink, coating the benthic communities below.

4.4. Impacts—Western Locations

Similar to the eastern locations, a substantial (but in general smaller) amount of oil remains
within the water column at the end of the 60-day simulation period for western spills (Table 2). With
the exception of Apalachicola, the majority of the oil is transported out around the southern coast
of Florida and on into the Atlantic Ocean (Figure 5). This trajectory sets up the Florida Keys for
experiencing the highest rates of oiling and subsequent impact. Although the oiling extents of the
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western scenarios are far greater than those of the eastern scenarios, the total open water impacts are
much smaller (Table 3). Accelerated spill movements and dispersed plumes create a situation where
the majority of oil does not collect in a single, open water location. Of course, with impacts being
directly related to the degree of oiling, total impacts for western spill scenarios in open water were
much smaller in comparison with those for the eastern spills.

A key differentiating factor between the outcomes of eastern and western spills is the potential

for coastal impacts. Because of the behavior and strength of the GOM loop current, the Florida Keys,
Florida’s Atlantic shoreline, Bahamas, and Cuba are all at risk of coastal oiling, but this is dependent
on the spill location. That said, regardless of the initial starting location, a substantial amount of oil
makes its way into the Atlantic Ocean.4 It is likely that the impacts reported for western locations
are conservative and the effects of oiling would accrue if the analysis was extended both spatially
and temporally.

Table 3. Total scaled impacts for each impact area of the spill scenarios. Overall impacts are denoted
in the last column and are the sum total of coastal impacts, water column impacts, and remaining
oil impacts.

Spill Scenario
Total Open

Water Impact
Scaled Open
Water Impact

Total
Coastal
Impact

Coastal
Impact
Scaled

Remaining
Water Column

Oil Impact

Overall
Impact

Eastern Locations

Gainesville 680.72 8.05 0 0 5.00 13.05
Tarpon Springs 807.56 9.47 0 0 4.61 14.08
St. Petersburg 855.4 10.00 0 0 4.85 14.85

Charlotte Harbor 767.27 9.02 0 0 4.79 13.81
Pulley Ridge 704.98 8.33 0 0 4.62 12.94

Western Locations

Vernon Basin 164.63 2.31 143.51 10.00 1.00 13.31
Howell Hook 47.159 1.00 0 1.00 1.22 3.22

Florida Middle Ground 398.012 4.91 0.15 1.01 4.28 10.20
Apalachicola 737.57 8.69 2.23 1.14 4.70 14.53

The Elbow 303.36 3.85 92.63 6.81 2.69 13.35

4.5. Overall Impacts

Area-specific impacts varied greatly between the eastern and western locations. Due to the
absence of oil beaching during the eastern scenarios, total impact came from residual oil remaining
after the 60-day simulation period and the intersection of open-water assets with the oil plume as it
moved north. Because the open water impact was relative to the largest amount of oil occurring within
one grid cell, the western spill scenarios with their highly dynamic and rapidly moving plumes had
much smaller open water impacts when compared with the eastern locations (Table 3). However, all
western spills but Howell Hook had coastal impacts, increasing their overall impact scores (Figure 6).
The takeaway here is that no matter where a spill begins, and regardless of the dynamics of the plume,
the overall impacts of most spills are similar. In fact, the most detrimental spill is St. Petersburg which
has no coastal impacts and has the second-smallest extent (Table 3). The resulting high concentration
of oil over sensitive offshore environments makes it the most impactful of all scenarios modeled here.
Following St. Petersburg is Apalachicola, with the second-highest total impact, and then Tarpon
Springs, at 14.53 and 14.08, respectively.

Howell Hook is an outlier. It has few immediate impacts to the open water, no coastal impacts,
and negligible effects from oil remaining in the water column. It is important to remember that
Howell Hook reflects a western spill scenario, but is the most southerly location in the group. As a

4 Again, data restrictions and project scope limit our ability to gain a comprehensive picture of what that means in terms of
final impacts.
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result, the oil is immediately caught in the loop current. The residence time of the plume in any one
location within the study area is approximately 10 h, and because of its rapid movement, the plume is
widely dispersed. This helps explain the minimal impact of the oil in open water. However, this rapid
movement also moves the oil beyond our study area and into the Atlantic Ocean, where data are sparse.
So although the effects of the loop current pull the oil plume far enough south that coastal Florida is
spared from oiling, it is important to reiterate that these results could be conservative, although we
cannot say for certain.

Figure 6. Spatial distribution of the impacts from the scenarios that had a coastal impact. (a) (top left)
indicates the coastal impact from Apalachicola. (b) (top right) indicates coastal impacts from The
Elbow. (c) (bottom left) indicates coastal impacts from Florida Middle Ground and (d) (bottom right)
indicates the coastal impacts from Vernon Basin. With the exception of Apalachicola where the coastal
impacts occurred on the Florida Panhandle, the majority of impacts were seen along the Florida Keys
and Atlantic Coast of Florida.

5. Discussion and Conclusion

The current U.S. government administration has showed considerable interest in leveraging
offshore oil resources as a means to support efforts towards energy independence. This paper
provided site-specific contingency analyses or “what if” scenarios for evaluating the potential effects
of drilling-related oil spills near coastal Florida. These types of analyses are critical for providing
stakeholders with the geospatial intelligence necessary for evaluating the potential spatiotemporal
impacts of spills for a region. In particular, when spill simulations are combined with data-driven,
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quantitative spatial analysis, the magnitude of impacts caused by a spill can also be obtained. This
information can be used to identify locations for oil production that may pose less risk for development
and operation, especially if a loss-of-control event was to occur.

As detailed previously, many of these newly opened lease areas are dense with ecosystems,
environments, and economic clusters that are highly vulnerable to the effects of oiling. This analysis
has taken these factors into account and provides a glimpse into what the potential implications of
offshore oil exploration and production may be if a spill was to occur near the Florida Gulf Coast.
There are several key findings concerning plume behavior and impacts worth further discussion.

When it comes to plume behavior, there were several substantial differences in plume evolution
over time. For eastern locations, closer to the shoreline, plumes largely moved as a single, cohesive
unit. This is meaningful for two reasons. First, the compact shape and slow movement of the plume
will make tactical response and cleanup efforts less complex. The thickness of the plume on top of the
water column lends itself well to in situ burning while dispersant applications could be concentrated
over a relatively small area. Also, where response efficiency is concerned, plume behavior of this
type is a benefit because it allows responders time to coordinate the myriad resources required to
combat the spill. Second, the results of this paper confirm the absence of squeezelines within the 50 m
isobath and highlight the dearth of cross-shelf current activity. This translates into plumes that remain
offshore, keeping the Gulf Coast of Florida oil-free. This same outcome was also true for the western
spill locations—with the Gulf Coast of Florida spared from oiling.

The western spill locations, however, yielded plumes with a more dynamic and unique suite of
behaviors. The most obvious differences manifested in the geographic extents of the spills. Regardless
of where the western spills originated, the oil plumes were eventually pulled into the loop current,
undergoing a rapid increase in extent. Response efforts for these spills would need to occur quickly
(i.e., a day or two), before the plume reaches the loop current. If, however, the plume reaches the loop
current, response teams would be stretched from the GOM to the Atlantic Ocean. Regardless of the
tactical precision associated with a response for this type of spill, the associated interdiction efforts
would be daunting. The inevitable (vast) extent of a plume reaching the loop current also means
that cleanup efforts would become an international affair, involving the United States, Cuba, and the
Bahamas—drastically increasing the complexities of coordination.

Regarding the overall impacts of the simulated spills, there were some small surprises. Coastal
impacts were negligible, but impacts in the open water have the potential to be severe, especially for
eastern spill scenarios. As noted in the results section, impact is necessarily a function of degree of
oiling. The more oil in any given area, the more likely (and severe) the damage will be. Plumes from
the eastern scenarios were highly concentrated off the coast of Florida, meaning that assets in that area
were likely exposed to a significant amount of oiling. More importantly, the simulations suggest that
a large amount of oil remains present after 60 days, and will continue to impact assets as time goes
on. On the contrary, although the western scenarios displayed the largest spill extents, the oil was
dispersed such that the impacts to both coastal locations and the water column were smaller. Again,
the geographic spread of these spills can be attributed to the GOM loop current. Relatedly, it is also
important to acknowledge the “blind spots” associated with these simulations. The results reported
here are conservative, at best, and because of data limitations cannot accurately reflect what happens
to the oil once it reaches the Atlantic Ocean. Significantly more work is required to develop a fully
comprehensive understanding of spill impacts on coastal ecosystems, especially when the plumes
interact with the GOM loop current.

Perhaps the most surprising (but important) finding of this analysis concerns the derived impact
scores for the oil spills. Given the differences in spill location and extent, as well as coastal and water
column impacts for each scenario, the overall impact results were remarkably similar. Spills proximal
to the Florida coast will have significant impacts to the water column, as well as local benthic and coral
communities which are particularly sensitive to oil exposure. Given Florida’s reliance on tourism and
related activities, any decay in coastal water quality will likely have an impact on this sector. Further,
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it is important to mention the thriving pelagic zones in/around coastal Florida, which underpin
a significant portion of the U.S. seafood industry. If oiled, the economic impacts would be severe
and far-reaching.

One final consideration worth noting concerns the aesthetic implications [70] of offshore oil
operations for coastal states, including Florida. Both California and Florida have strongly resisted
efforts to renew offshore drilling operations, arguing that environmental, tourism, and aesthetic values
would be negatively impacted [71]. Given the importance of tourism to many coastal states, this is a
legitimate concern worth acknowledging.

To conclude, this paper addresses one of the core issues associated with opening up lease areas in
the eastern GOM for oil exploration and drilling, focusing on the potential impacts of oil spill events
for coastal Florida. Catastrophic spills are rare, but smaller spills are frequent enough that both their
immediate and long-term additive effects represent real concerns to proximal coastal communities
and their associated economies. Oiling has a detrimental effect on ecosystems, the environment,
and all industries tied to these natural resources. Any consideration to reopen protected waters to
oil production must be informed by rigorous, empirically driven scientific research to evaluate the
potential impacts of these plans, prior to implementation. Simply put, there are too many jobs and too
many communities reliant on sensitive ecosystem services and natural capital to make an uninformed
decision [72].
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Appendix A

Table A1. Data sets used to determine the vulnerability of each of the grid cells in the analysis. Data
was marked as present or absent within a grid cell and summed to determine the vulnerability of the
grid cells.

Data Set Sector

Beach Access

Recreation/Tourism

Marinas
Boat Ramps

Drinking Water Intake
Parks
Piers

Essential Fish Habitat

Migratory Pelagic

Ecologic/Environment

Red Drum
Reef Fish

Spiny Lobster
Albacore Tuna

Sharpnose Shark
Big Eye Tuna

Blacknose Shark
Blacktip Shark

Tiger Shark
White Marlin
Yellowfin Tuna
Bluefin Tuna
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Table A1. Cont.

Data Set Sector

Coral Reef/Hardbottom Habitat
Artificial Reef Locations
Critical Wildlife Areas

Sea Turtle Nesting Beaches
Wildlife Refuge
Oyster Habitat

Environmental Sensitivity Index
Marine Protected Areas

Recreational/Tourism Businesses
Seafood Processing Plant

Socio-Economic

Airports
Coastal Roads

Refineries
Liquefied Natural Gas facilities

Platforms
Pipelines

Wells

Figure A1. The day in which the oil particles begin to be pulled into the loop current for four out of the
five western scenarios.
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Abstract: The Department of Energy’s (DOE’s) National Energy Technology Laboratory’s (NETL’s)
Blowout and Spill Occurrence Model (BLOSOM), and the National Oceanic and Atmospheric
Administration’s (NOAA’s) General NOAA Operational Modeling Environment (GNOME) are
compared. Increasingly complex simulations are used to assess similarities and differences between
the two models’ components. The simulations presented here are forced by ocean currents from
a Finite Volume Community Ocean Model (FVCOM) implementation that has excellent skill in
representing tidal motion, and with observed wind data that compensates for a coarse vertical
ocean model resolution. The comprehensive comparison between GNOME and BLOSOM presented
here, should aid modelers in interpreting their results. Beyond many similarities, aspects where
both models are distinct are highlighted. Some suggestions for improvement are included, e.g.,
the inclusion of temporal interpolation of the forcing fields (BLOSOM) or the inclusion of a deflection
angle option when parameterizing wind-driven processes (GNOME). Overall, GNOME and BLOSOM
perform similarly, and are found to be complementary oil spill models. This paper also sheds
light on what drove the historical Point Wells spill, and serves the additional purpose of being a
learning resource for those interested in oil spill modeling. The increasingly complex approach
used for the comparison is also used, in parallel, to illustrate the approach an oil spill modeler
would typically follow when trying to hindcast or forecast an oil spill, including detailed technical
information on basic aspects, like choosing a computational time step. We discuss our successful
hindcast of the 2003 Point Wells oil spill that, to our knowledge, had remained unexplained. The oil
spill models’ solutions are compared to the historical Point Wells’ oil trajectory, in time and space,
as determined from overflight information. Our hindcast broadly replicates the correct locations
at the correct times, using accurate tide and wind forcing. While the choice of wind coefficient we
use is unconventional, a simplified analytic model supported by observations, suggests that it is
justified under this study’s circumstances. We highlight some of the key oceanographic findings
as they may relate to other oil spills, and to the regional oceanography of the Salish Sea, including
recommendations for future studies.

Keywords: oil spill model; ocean trajectory; GNOME; BLOSOM; Salish Sea; Point Wells; Foss Barge;
hindcast; windage; model comparison
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1. Introduction

1.1. Oil Spill Models

The Department of Energy’s National Energy Technology Laboratory (NETL) created BLOSOM,
a comprehensive modeling suite that follows the fate and transport of both subsurface oil blowouts and
surface spills. The National Oceanic and Atmospheric Administration’s (NOAA’s) Office of Response
and Restoration’s (OR&R) Emergency Response Division built GNOME to predict the potential
trajectory of offshore pollutants at the sea surface. BLOSOM and GNOME have been utilized by
government and industry to simulate the fate of hydrocarbon after release events. This study compares
how the models handle a sea-surface spill. A comparison comprising many of the well-known models,
and focused on a blowout and the use of subsea dispersants, can be found in Socolofsky et al. [1].

Both models use ocean currents, typically from ocean models, and wind, from atmospheric
models or weather stations, to force the movement of oil at the sea surface. BLOSOM and the latest
version of GNOME are also able to simulate a fully three-dimensional spill or blowout over time.
Dispersion due to processes not captured through integrating ocean currents and wind, is simulated
with a stochastic component, typically a random walk.

Although evaporation can be significant over short time periods when the crude is light, simulated
trajectories are not affected by evaporation or any other type of weathering. The primary focus of this
study was placed on model trajectories rather than weathering.

1.2. Blowout and Spill Occurrence Model

With the Deepwater Horizon incident, the need for an open source model capable of simulating
the fate and transport of oil, from source to sink, throughout the water column became apparent.
BLOSOM was designed to fulfill this need.

BLOSOM is an integrated, 4-dimensional model that enables users to simulate the fate, transport,
and degradation of both subsurface oil blowouts as well as surface spills. Originally designed to
handle deepwater blowouts, such as Deepwater Horizon, BLOSOM is the first to be designed as an
open source 4-D hydrocarbon fate and transport model. BLOSOM offers users a flexible modeling
suite written in Java [2] and rewritten in C++; this comparison was completed using the C++ version.
Built to aid in the prediction, prevention, and preparation with both subsurface blowouts and surface
spills, the C++ version of BLOSOM is available both as an online tool, and as a desktop tool [3].
In addition, the full source code of BLOSOM is available to the public. BLOSOM has the capability
of implementing multiphase hydrocarbon releases from the seafloor. Applying buoyant jet plume
dynamics to the release, BLOSOM tracks the location and characteristics of both the plume and each
oil parcel throughout the water column.

Since initial development and internal release in 2012, both the jet/plume component, as well as
overall outputs of BLOSOM, have been internally and externally evaluated, as explained in a technical
report [2]. The jet plume component of BLOSOM has been evaluated against field experiments, which
were conducted in the North Sea [4,5]. In addition, BLOSOM participated in a model comparison study
where outputs from multiple blowout models predicted the effect of subsea dispersant application on
subsurface plumes, which was sponsored by the American Petroleum Institute (API) and co-sponsored
by the BP/Gulf of Mexico Research Initiative [1]. BLOSOM results were also evaluated by comparing
simulation outputs to historical spill overflight data. For example, results from a BLOSOM simulation,
using hydrodynamic data for conditions during the Deepwater Horizon, were compared to spill extent
data provided by NOAA’s Experimental Marine Pollution Surveillance Report (EMPSR) [2].

An online version of BLOSOM is privately available, along with other NETL tools, through a
common operating platform hosted by NETL. The common operating platform is set for public release
in the future, but accessibility can currently be granted by requesting the use of BLOSOM through NETL.

As of 2018, BLOSOM integrates the ADIOS oil library [6], also known as NOAA’s OilLibrary
(https://github.com/NOAA-ORR-ERD/OilLibrary).
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1.3. General NOAA Operational Modeling Environment

GNOME is the modeling tool developed and used by the NOAA Office of Response and
Restoration’s (OR&R) Emergency Response Division to predict the possible trajectory a pollutant
might follow in, or on, a body of water. The first version of GNOME was released on 16 March
1999 as a replacement to the On-Scene Spill Model (OSSM) that had been used by the NOAA
Emergency Response Division since 1979 [7]. For nearly 20 years, GNOME has been used by emergency
responders on behalf of industry, government, and organizations to track oil spills, chemical spills,
marine debris, and more. Designed to be a multipurpose trajectory model used by both experts
and the public, GNOME has different modes that allow either greater control or a more simplified
interface, respectively. Catering to ease of use, there is a suite of location files that provide generalized
information about the tides, currents, and shorelines in the region it covers, allowing the user to quickly
run example scenarios in a region [8]. During an oil spill, NOAA simulates the trajectory with the best
available information and then corrects the trajectory from overhead flight observations at different
intervals throughout the spill, guiding clean-up efforts and preventative measures.

At a fundamental level, GNOME uses winds, currents, and diffusion to move particles and
generate a predicted trajectory, or “best guess”. Uncertainty can be specified for each input, creating
a “minimum regret” solution, representing other possibilities where the spill might go [9]. GNOME
also predicts rudimentary weathering, where the spilled oil undergoes chemical and physical changes,
though NOAA provides another tool called Automated Data Inquiry for Oil Spills (ADIOS) that
has better evaporation and oil fate estimates from an extensive oil library. It should also be noted
that NOAA is currently developing the next generation of GNOME, adding features such as a web
interface for location files, three-dimensional plus time deep-water blowout capabilities, integration
with ADIOS weathering, and enhanced output interaction with GIS. The latest version of GNOME is a
full suite of modeling tools (https://response.restoration.noaa.gov/oil-and-chemical-spills/oil-spills/
response-tools/gnome-suite-oil-spill-modeling.html). Before this suite, the rest of the tools used to
be available separately from GNOME. A release of GNOME called PyGNOME is also available at
https://github.com/NOAA-ORR-ERD/PyGnome. This version includes improvements in several
algorithms including interpolation and integration. There is also a web configuration (WebGNOME)
available at http://gnome.orr.noaa.gov/.

During the model comparison, GNOME version 1.3.9 was used (the most recent officially released
version), and run in diagnostic mode to maximize control over inputs. Currents and boundary
information were imported from a hydrodynamic model, rather than by loading a location file.

1.4. Foss Barge—Point Wells Oil Spill

The Foss Barge—Point Wells Spill was the basis of a comparison between two offshore spill
trajectory models: BLOSOM and GNOME.

At 00:05 on 30 December 2003, heavy marine fuel oil #6 (IFO 380) spilled into the Puget Sound as
it was pumped onto Foss tank barge 248-P2, from a Chevron/Texaco loading terminal at the Point
Wells Asphalt facility near Richmond Beach in Shoreline, Washington. Based on gauge readings, 5712
gallons of fuel were accidentally released by overtopping; around 1075 gallons were recovered from
the deck, and an estimated 4600–4800 gallons (about 110–114 bbl) spilled into the Puget Sound [10,11].
A timeline of oil spill movement is provided in Figure 1. A map showing the area of interest in the
Salish Sea is provided in Figure 2, and the approximate spill path, including the points of interest
mentioned in Figure 1 and in this section, are depicted in Figure 3.

Initially, oil drifted approximately 6 miles south along the eastern shore of Puget Sound, then
began moving northwest towards the western shore. By 09:00, oil was observed within a mile from
Port Madison, and was observed entering Port Madison 3 h later [10]. By the afternoon of 30 December,
some of the oil slick beached between Point Jefferson and Indianola, and beaching increased by the
morning of 31 December [10]. The oiled shoreline extended approximately 1.5 miles; an initial shoreline
oiling survey estimated 3.5 acres were covered. An assessment by the United States Coast Guard
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(USCG), characterized over 68% of these 3.5 acres as heavily oiled. The heavily oiled shoreline included
the upper and middle intertidal zone of the Doe-Kag-Wats marsh. No evidence was found of oiling on
the eastern Puget Sound shoreline [11].

Figure 1. Approximate timeline of events, as recorded in ENTRIX 2005.

 

Figure 2. Maps showing the study area in the Salish Sea and surrounding areas.
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Figure 3. Project area map showing the approximate location and path of the oil surface slick, based on
data recorded by ENTRIX, Inc., [10]; see area of interest in Figure 2.

According to the timeline presented in a report prepared by ENTRIX, Inc., [10] for the Natural
Resource Damage Trustees, response to the spill began within an hour through the National Response
Corporation (NRC) (Figure 1). By 02:00, the USCG and Washington Department of Ecology (WDOE)
were in route, and by 06:00, some sensitive shoreline areas were boomed, and a Unified Command
was created at the source location by the USCG, WDOE, and the responsible party, the Foss Maritime
Company. By 09:00, overflight information was collected by the WDOE and Washington Department
of Fish and Wildlife (WDFW). As shown in Figure 4, overflight information prepared by NOAA,
and collected by NOAA and WDFW, illustrate some of the temporal variability through snapshots
of the visible surface slicks, from 11:00 on 30 December 2003 to 10:55 on 31 December 2003. Overall
response efforts included booming, cleanup, overflight data collection, and trajectory predictions.
Reported agencies and corporations involved in these efforts include NRC, USCG, WDOE, WDFW,
the Suquamish Tribe, Kitsap County, NOAA, United States Department of the Interior and Fish and
Wildlife Service, Washington Department of Natural Resources, and the Foss Maritime Company.
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Figure 4. A schematic of the observed oil path (top left), and a time series of digitized maps from
National Oceanic and Atmospheric Administration’s (NOAA’s) overflight observation records.

2. Data and Methods

2.1. Ambient Forcing for Oil Spill Models—The Hydrodynamic Model

One of the most challenging aspects of oil spill modeling is accurately simulating ocean currents.
In 2011, the Pacific Northwest National Laboratory developed a hydrodynamic model of Puget Sound
known as the Salish Sea Model. This model has been used as a tool for coastal estuarine research,
nearshore restoration planning [12], water-quality management [13], and assessment of climate change
effects [14,15]. The Salish Sea Model is one of the most detailed hydrodynamic models for the region,
carefully calibrated for circulation and tidal exchange to primarily address water quality concerns, and
thus, is a reasonable choice for oil spill modeling.

The Salish Sea Model was developed using the Finite Volume Community Ocean Model (FVCOM)
framework [16]. The unstructured finite volume model grid extends to the west through the Strait of
Juan de Fuca, to the north through Georgia Strait, thus covering all areas of the Puget Sound (Figure 5).
Grid cells vary in size between 250 m within inlets and bays, to 3.5 km in the Juan de Fuca Strait.
In the vertical, the model uses 10 terrain-following layers (11 sigma levels) with higher density near the
surface, and the top layer is about 3.2% of the local depth. Bathymetry is obtained from the University
of Washington’s Digital Elevation Model (DEM) [17] and the Department of Fisheries and Oceans
Canada. The model bathymetry is typically smoothed for water quality simulations to prevent pressure
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gradient errors in a sigma-stretched coordinate system [18]. However, for applications such as oil spill
transport, the model was operated without smoothing to account for the effects of shallow depths
along complex shoreline. Open boundary conditions at the Strait of Juan de Fuca and Georgia Strait are
forced by 15 min XTide stations, a harmonic tide predictor based on NOAA’s National Oceanic Service
algorithms [19]. There are additional water inputs throughout the domain including: (a) 19 major rivers
with flows determined by USGS gages, (b) estimated runoff from 45 watersheds, and (c) wastewater
discharge from 99 industrial outfalls. The Weather Research and Forecasting (WRF) Model on a 12 km
grid [20] was used for meteorological forcing. It should be noted that wind from WRF was only used
for the hydrodynamic model, while local wind measurements were used to force the oil spill models.
The wind with which the ocean model was forced was not used to drive trajectories, as the oil spill
happened in a relatively small area (oil beached about 8 km away from where the spill originated)
relative to the atmospheric model resolution. Also, wind observations are likely to be an accurate
representation of the wind acting on the sea surface during the spill, as we show below.

 

Figure 5. Extent of coverage for the Salish Sea Model.

The Salish Sea Model was run for the entire year of 2003, plus an additional 5 days in 2004, though
only a few days near the end of December were used in the oil spill modeling. Figure 6 shows an
evaluation of the model outputs between 29 December 2003 and 3 January 2004, compared to an XTide
station located at Port Jefferson (47.745 N, 122.4767 W), near the oil trajectory. Table 1 shows the error
statistics associated with the same five days; error statistics are deemed to be within an acceptable range.

Results from the model simulation were written at hourly intervals in NetCDF files that included
information, such as sea-surface height, water velocity, salinity, and temperature at locations across the
grid and at different depths. GNOME and BLOSOM each required a subset of the information; both
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used the sea-surface velocity, and while BLOSOM used an elevation raster to determine the coastline,
GNOME used the ocean model boundary as the coastline.

GNOME has a readily available toolkit with scripts to convert outputs from a variety of
hydrodynamic models into a NetCDF file directly compatible with GNOME. The script mapped
variables, determined the grid boundary based on grid connectivity information, and removed excess
information, such as water velocity at depths, since in this application, GNOME is only being used
for surface trajectories. Meanwhile, BLOSOM was capable of directly reading Salish Sea Model
outputs because BLOSOM developers included an option for the relevant variables directly within the
model code.

Figure 6. Comparison of sea-surface height between the model and a local XTide Station.

Table 1. Error statistics for sea-surface height during the evaluation period of 29 December 2003 to
3 January 2004.

Mean Absolute Error
(MAE, m)

Root Mean Square Error
(RMSE, m)

Relative Error
(RE, %)

Correlation Coefficient
(R)

0.2138 0.2711 6.3 0.977

2.2. Additional Ambient Forcing for Oil Spill Models

Oil spill models use ocean currents to force the trajectories of oil parcels. However, ocean models
do not perfectly simulate all of the physical processes that may be responsible for transporting oil,
and it is possible that missing processes may need to be included through parametrizations [21].
As mentioned above, we used an FVCOM ocean model implementation to simulate the Salish Sea
that has typically been used for water quality, circulation, and habitat restoration purposes. While
some work was performed to optimize the ocean model to drive surface trajectories in this study,
additional optimization could include improving the vertical grid resolution, using higher-resolution
wind forcing (if available), and, possibly, transitioning to smaller grid sizing at the area of the spill.
It was deemed that deficiencies in the vertical resolution resulted in an underestimation of the wind
forcing; consequently, wind data was used to parametrize the effects of both windage and turbulent
transfer of momentum, as a linear combination. Observational and theoretical justifications for this
approach are described and discussed below. Additional forcing in the form of a stochastic model was
used to simulate diffusion.
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2.3. Wind Data

NOAA has a wind station at West Point (NOAA NDBC-WPOW1) about 8 miles south of where
the Point Wells oil spill originated (47.662 N, 122.436 W); wind data from this source for 30 and
31 December 2003 (Figure 7) was used. A concern with this data source was that the wind coming from
the east would be underrepresented due to land elevating quickly next to the coast, thus potentially
causing a shading effect. A different wind source on the opposite side of the channel (Kingston wind
station at 47.7940 N, 122.4940 W) was therefore used to evaluate the wind from the NOAA station.
At Kingston station, wind coming from north and south is underestimated due to the presence of land,
however, we were able to confirm that the wind having an east-to-west component was consistent
across the channel (Figure 8). The trajectory driven exclusively by 6% of the NOAA NDBC-WPOW1
wind strongly suggests the importance of wind forcing in replicating the oil’s trajectory (Figure 9,
compare to schematic trajectory in Figure 4). The locations for wind stations are also shown in Figure 9.

Additional wind data from the Loyal Heights weather station (47.690 N, 122.383 W; not shown)
were tested but were not found to help explain the observed trajectory; Loyal Heights station is about
100 m above sea level, and is therefore unlikely to be representative of the wind forcing at the ocean
surface (wind-stress force over the ocean is usually computed from wind at either 2 m or 10 m above
the sea surface). We did not use this wind data in our comparison.

 

Figure 7. Hourly wind data from NOAA’s WPOW1 station starting midnight 30 December 2003. Wind
direction follows the oceanographic convention, i.e., the direction is towards where the wind blows.

 

Figure 8. Comparison of wind data from NOAA (NDBD-WPOW1, black vectors) and Kingston (blue
vectors) wind stations. The locations of these two stations can be seen in Figure 9.
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2.4. Diffusion

To parameterize spreading of oil due to turbulent diffusion, GNOME uses a random walk with
a constant diffusion coefficient. BLOSOM offers other options regarding both the diffusion scheme
and the diffusion coefficient (e.g., using a diffusion coefficient read from the ocean model solution or
computed through a Smagorisnky scheme, or options under development like a random flight scheme)
as detailed in Duran [21]. To make the simulations directly comparable, a random walk with constant
diffusion coefficient was also used for BLOSOM. Turbulent diffusion parameterized through a random
walk is expected to cause oil parcels to spread around the trajectory computed without turbulent
diffusion, and affect how oil beaches along the coastline. Different values for the diffusion coefficient
were tested to identify when the simulated spread resembled the observed spread, as described below.

 

Figure 9. Trajectory (orange, red circles mark locations at hourly marks) initiated at the same time
and location as the oil spill, resulting from forcing exclusively with 6% of the wind from the NOAA
wind station. Also shown are the locations of NOAA (NDBC-WPOW1) and Kingston wind stations
(white circles with black cross) and the approximate locations of oil at different times, as observed from
overflights (white squares; see Figure 4).

3. Results

3.1. Exploring Differences in the Oil Spill Models through Simulations

We use diverse simulations to compare GNOME and BLOSOM. Gradually increasing in
complexity, these simulations are designed to isolate and compare different aspects of the models,
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or the oil spill we wish to hindcast. Thus, each difference among the models is illustrated through a
test. Using, as a starting point, the wind information described in the “Wind Data” subsection above,
tests three through nine illustrate the Foss barge - Point Wells (from now on, Point Wells) hindcast.

3.2. Initial Conditions and Technical Details

Information on the Point Wells Spill detailed in the reports by ENTRIX, Inc., [10] and The
Foss-Pt.Wells Natural Resource Trustees [11] was used to create a baseline for the comparison. Most
tests use an instantaneous release of oil except where noted, and the duration of each simulation was
set to 30 h, starting on 30 December 2003 at 00:05. Two spill locations were used: the one closer to
shore accurately represents the location of the spill, another location further offshore was used for a
sensitivity test.

Throughout our tests, we used a fixed computational time step of 6 min, and sensitivity tests
(Appendix A.1) showed this value to be a good compromise between satisfying the numerical
requirement known as Courant–Friedrichs–Lewy (CFL) condition (explained in Appendix A.1) and
computational efficiency. Oil parcels’ positions are plotted approximately every 15 min, to allow a clear
visualization of the trajectories, and to make the trajectories from both models directly comparable.
Baseline parameters used in the simulations are listed in Table 2.

Table 2. Baseline simulation parameters.

Actual initial location (x) 122.399274 W
Actual initial location (y) 47.780472 N
Offshore test location (x) 122.40899 W
Offshore test location (y) 47.782 N
Amount of oil released 4637 gallons

Release start date and time 30 December 2003; 00:05
Simulation duration 30 h (unless otherwise noted)

Release period 0 min (instantaneous, unless otherwise noted)
Currents Salish sea hydrodynamic model (unless otherwise noted)

Wind West Point NOAA station (unless otherwise noted)
Number of particles for simulation 1 (unless otherwise noted)

Diffusion None (unless otherwise noted)
Computational time step 6 min

Trajectory points plotted every 15 min

3.2.1. Test 1: Coordinate System

The first couple of simulations are idealized test cases that allow for a direct comparison between
the model’s handling of advection due to ocean currents and wind, in the most simplified way possible.

BLOSOM uses, for its computations, an equidistant spatial reference system with units of meters;
for this study, the Universal Transverse Mercator (UTM) Zone 10 North with the datum World Geodetic
System 1984 was used. GNOME computes oil parcel trajectories using longitude and latitude directly,
with an internal conversion factor that varies as a function of latitude, which makes their computations
compatible with the metric system. Thus, BLOSOM assumes a tangent plane approximation, while
GNOME computes advection on a sphere. These different approaches result in some divergence in the
trajectories that can be assessed by computing a trajectory while keeping the ocean current velocity
constant in space and time.

Our first test therefore consists of advecting a single oil parcel with a constant ocean sea-surface
velocity set to (−0.03, −0.1) m/s and no wind (Table 3). The constant velocity was chosen so that it
would result in a trajectory comparable in length to the Point Wells oil spill trajectory, but without
beaching. The difference in advection algorithms resulted in a trajectory separation of 76 m over 30 h
(Figure 10).
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Table 3. Parameters for test 1, ocean currents integration.

Parameters for Test 1, Ocean Currents Integration

Currents Spatially constant and steady currents = (−0.03, −0.1) m/s
Wind source None
Start location Actual initial location

Wind advection coefficient None

 

Figure 10. Comparison of advection algorithms using constant ocean currents; test 1.

3.2.2. Test 2: Wind Handling

The purpose of the second test (Table 4) was to test the advection due to wind. This test was
kept comparable to the first one by requiring that the wind advective velocity were equal to the ocean
advective velocity used in test 1. The wind was therefore set to (−0.5, −1.667) m/s and the wind
advection coefficient set to 6% of the wind velocity. To be directly comparable with GNOME, BLOSOM
did not use deflection due to the effect of earth’s rotation on the wind’s transfer of momentum to
the ocean’s surface (this deflection is explained in test 3 below). Since GNOME handles wind inputs
with limited precision (a characteristic motivated by the inherent uncertainty in atmospheric models),
the resulting separation for this test was greater than in the previous test, reaching about 95 m over a
30 h simulation (Figure 11). The separation due to wind was about 26% greater than the difference due
to ocean currents, over the same period.
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Table 4. Parameters for test 2, wind integration.

Parameters for Test 2, Wind Integration

Currents None
Wind Spatially constant and steady wind = (−0.5, −1.666666666667) m/s

Start location Actual initial location
Wind advection coefficient 6%

Deflection None

 

Figure 11. Comparison using constant wind, trajectories diverge with the separation between them is
plotted in the bottom left inset; test 2.

3.2.3. Test 3: Wind Advection Scheme

Both models integrate the ocean currents using an Euler integration scheme, therefore, advection
due to ocean currents should not result in any differences beyond those found in test 1. However,
how BLOSOM and GNOME process wind data includes an additional distinction that could result in
trajectory differences beyond those found in test 2. The turbulent transfer of momentum from wind
into the ocean results in trajectories that are not aligned with the wind’s direction, but are deflected
to the right of the wind direction (in the northern hemisphere)—this is caused by Earth’s rotation
(Coriolis effect). BLOSOM simulates this deflection, while GNOME assumes that wind advection
is in the same direction as wind. This aspect of GNOME’s design is a consequence of the inherent
uncertainty of numerically simulated wind, and how that may apply to emergency response scenarios.
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This test aims to qualitatively understand the difference in wind advection schemes by computing,
with each model, a trajectory for an oil parcel originating from the same location, advected by the
ocean currents from the hydrodynamic model, and wind data from NOAA WPOW1 station (Table 5).
The wind advection coefficient was set to 6%.

Table 5. Parameters for test 3, wind deflection part 1.

Parameters for Test 3, Wind Deflection Part 1

Start location Actual initial location
Wind advection coefficient 6%

Deflection for GNOME Default (none)
Temporal interpolation for BLOSOM Default (none)

BLOSOM’s trajectory illustrates the deflection to the right of GNOME’s trajectory, including a
difference on the beaching location (Figure 12).

 

Figure 12. GNOME and BLOSOM trajectories diverge due to including, or not, the effect of earth’s
rotation on wind forcing; test 3, part 1.

To confirm if the totality of the trajectory difference was only due to the wind deflection,
an additional test (Table 6) was then designed. Wind data was manipulated to produce a wind
time series that GNOME could read, and that would include the same deflection that BLOSOM
computes internally. We were able to confirm that most, but not all, of the difference found in Figure 12
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was due to the deflection, yet a small difference remained (Figure 13); this difference is explored in
test 4.

Table 6. Parameters for test 3, wind deflection part 2.

Parameters for Test 3, Wind Deflection Part 2

Start location Actual initial location
Wind advection coefficient 6%

Deflection for GNOME Deflection added manually
Temporal interpolation for BLOSOM Default (none)

 

Figure 13. The same two plots shown in Figure 12 are shown along with an additional trajectory by
GNOME, that now includes deflection due to earth’s rotation; rotation was included directly to the
wind data, forcing GNOME to replicate the deflection computed internally by BLOSOM. GNOME’s
trajectory with deflection agrees well with BLOSOM’s trajectory, however, some difference remains;
test 3 part 2.

3.2.4. Test 4: Temporal Interpolation

An additional distinction between BLOSOM and GNOME is that the latter includes temporal
interpolation of the forcing fields by default. By adding temporal interpolation to BLOSOM as a beta
feature, we were able to assess if the difference in trajectories that remained in the previous test could
be explained. The parameters used for this test can be found in Table 7.

With both models using temporal interpolation, trajectories were now close enough (Figure 14)
to where the remaining difference could be explained by the different approaches used to compute
trajectories, as illustrated in the first two tests.
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Table 7. Parameters for test 4, temporal interpolation.

Parameters for Test 4, Temporal Interpolation

Start location Actual initial location
Wind advection coefficient 6%

Deflection for GNOME Deflection added manually
Temporal interpolation for BLOSOM Temporal interpolation included

Figure 14. The trajectories for GNOME and BLOSOM, both with deflection included, as seen in
Figure 13, are compared to the same BLOSOM trajectory, but now including temporal interpolation;
test 4. The trajectory from GNOME with added deflection, and the trajectory from BLOSOM with
added interpolation, now resemble each other closely.

3.2.5. Test 5: Differences in Beaching

Once the above differences were clarified, we turned out attention to other potential sources of
discrepancy, including how the coastline and beaching are treated.

For this test, we explore how the models respond, with their default options, to ocean currents
and a more typical wind coefficient value of 3%, thus further clarifying the role of wind as a driver for
this oil spill. The parameters used for this test can be found in Table 8.

GNOME includes a refloating algorithm that empirically describes the adhesiveness of the oil to
the shoreline; a “half-life” parameter can be set by the user, representing the number of hours over
which half of the oil on a given shoreline can be removed by an offshore wind, diffusive transport, or
from a sea level that is equal, or higher than when the oil originally beached [9]. Samaras et al. [22]
present half-life values for different beach types. We use a half-life value of 24 h for GNOME
simulations, which is representative of a sand or a gravel beach. While a marsh would typically
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have a much larger refloat half-life, the Doe-Kag-Wats marsh is mostly protected by a part-sand and
part-gravel beach, with a small opening into the marsh. BLOSOM does not include a refloat option.

Table 8. Parameters for test 5, differences in beaching.

Parameters for Test 5, Differences in Beaching

Start Location Actual initial location
Wind Advection Coefficient 3%

Deflection for GNOME None
Temporal interpolation for BLOSOM None

In this simulation, BLOSOM’s trajectory beaches in about an hour and a half, and about 200 m
northeast of the initial location. GNOME also beached at a similar location, but in about half an hour.
GNOME creates a rasterized shoreline map from loaded current data for the purposes of tracking
the oil beaching. This generated shoreline has a finite resolution across the entire grid, so GNOME
provides an option to restrict the model domain, thus creating finer resolution of the shoreline in
the area of interest, however, the beaching still occurs slightly offshore from the FVCOM boundary
due to this approximation (Figure 15a). Before the beaching, there was some divergence between
the BLOSOM and GNOME trajectories (Figure 15b); this separation is somewhat higher than those
detected in tests 1 and 2 (Figures 10 and 11), probably due to differences described in tests 3 and 4.

Due to the refloating algorithm, GNOME’s oil parcel continued its trajectory about 18 h after
beaching (at 18:53), subsequently moving north (Figure 15c), remaining within about 5 km of the
spill’s origin.

 
(a) 

Figure 15. Cont.
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(b) 

(c) 

Figure 15. (a) Trajectories showing beaching differences, parameters for these simulations can be found
in Table 8; test 5. (b) Distance between GNOME’s and BLOSOM’s trajectories as a function of time
during the first two hours of the simulation for test 5, trajectories are plotted in (a). (c) GNOME’s
trajectory after refloating at 18:53 is shown; test 5.

3.2.6. Test 6: Sensitivity to Initial Position

As seen in the previous test, the simulated trajectories do not cross the channel with a 3% wind
coefficient. An additional experiment exploring cross-channel transport was conducted, with no wind.
Trajectories were initiated at both the actual initial location, and at an initial location that is about 730
m offshore, and 165 m north. This test was run on default values (i.e., BLOSOM does not include
temporal interpolation); parameters used for these simulations are shown in Table 9.
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Table 9. Parameters to test 6, sensitivity to initial location.

Parameters to Test 6, Sensitivity to Initial Location

Wind None
Start location Nearshore vs. offshore location

Temporal interpolation for BLOSOM None

When initiated offshore from the actual spill location, trajectories without wind forcing do cross
the channel (Figure 16A). This is because an eddy just offshore from the coast, induced a relatively
strong cross-channel component. Starting at about 18:00 on 30 December, the models begin diverging
markedly. GNOME’s trajectory does a south–north oscillation, while BLOSOM’s trajectory goes on to
beach at the correct location at 06:00 on 31 December, about 14 h later than the time when the actual
beaching began. GNOME’s trajectory has not beached by the end of the simulation.

Figure 16. (A) Trajectories cross the channel without wind, as they are entrained by eddy-induced
cross-channel transport when initiated offshore from the location of the oil spill; test 6. (B) Zoomed in
view of the simulations that were initiated at the correct oil spill location.

By contrast, when using no wind but with both model’s trajectories initiated at the correct location,
oil moves northward up the coast, then southward slightly offshore, then again northward but closer
to the shore, oscillating with the tides (Figure 16B). In this case, beaching for each model happens at
locations about 700 m away.
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3.2.7. Test 7: Number of Particles While Using Turbulent Diffusion

Two parameters were tested through some diffusion tests: the diffusion coefficient itself and
the number of particles. Greater values of the diffusion coefficient cause greater spread, while the
number of particles may also influence the amount of spreading. Using a fixed diffusion coefficient of
10,000 cm2/s, we first test 30 oil particles (Figure 17) against 1000 particles (Figure 18); parameters
for these simulations are listed in Table 10. We consider some of the implications of the number of
particles that we use by presenting Oil Holding Capacity calculations in Appendix A.2.

This test suggests that thirty particles is a good approximation if we judge by the simulated spread
at the beaching locations, which approximately matches the observed spread of beached oil, between
Point Jefferson and Indianola (marked as observed trajectory in plots). BLOSOM’s along-path spread
is similar whether using 30 or 1000 particles. However, because GNOME’s trajectory samples currents
outside of the observed trajectory, there is spurious spreading, especially with 1000 particles. The
greater the number of particles, the greater the possibility that trajectories sample a greater variety of
ocean currents as they are diffused by the random walk displacements. GNOME’s simulation beaches
at additional locations when the number of particles is higher, also, some trajectories cross the channel
further north.

 

Figure 17. Simulation including diffusion with thirty particles; test 7.
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Figure 18. Simulation including diffusion with a thousand particles; test 7.

Table 10. Parameters for testing number of particles.

Parameters for Testing Number of Particles

Start location Actual initial location
Wind advection coefficient 6%

Deflection for GNOME Default (none)
Temporal interpolation for BLOSOM Default (none)

Number of particles 30 vs. 1000 particles
Diffusion coefficient 10,000 cm2/s

As mentioned above, GNOME includes a rebeaching option, where particles that have beached
can still move back into the ocean and continue their trajectory. This refloating ability explains the
northward movement of particles from the GNOME simulation.

3.2.8. Test 8: Release Period

Once it was established that thirty particles would result in approximately the desired spread
due to diffusion, we next tested if the period of release would make a difference. So far, all tests
have used an instantaneous release, with oil released at 00:05. Here, we compare an instantaneous
release to a release lasting 15 min, which is the estimated actual duration of the overflow (Table 11).
The instantaneous release of the thirty-particle simulation (Figure 17) is very similar to a 15 min release
(Figure 19) when using BLOSOM. GNOME’s trajectories remained roughly the same as well, however,
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spreading increases with the 15 min release after crossing the channel (Figure 19); this difference can
again be attributed to the random walk algorithm.

Table 11. Parameters for release period test.

Parameters for Release Period Test

Start location Actual initial location
Wind advection coefficient 6%

Deflection for GNOME Default (none)
Temporal interpolation for BLOSOM Default (none)

Number of particles 30 particles
Release period 0 min vs. 15 min

Diffusion 10,000 cm2/s

 

Figure 19. Thirty-particle simulation with diffusion, released over a 15 min period; test 8.

3.2.9. Test 9: Diffusion Coefficient

So far, our tests with diffusion have used a constant diffusion coefficient of 10,000 cm2/s; here, we
test simulations with a coefficient of 100,000 cm2/s (Table 12). With the higher value, spreading along
the BLOSOM trajectory seems to better match the width of the mid-channel observed trajectory, even
if a few oil parcels diverge from the observed path (Figure 20). Likewise, the width of the oil in the
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GNOME simulation seems closer to the observed path while crossing the channel, however beaching
happens further north with the larger coefficient.

Table 12. Parameters for diffusion coefficient test.

Parameters for Diffusion Coefficient Test

Start location Actual initial location
Wind advection coefficient 6%

Deflection for GNOME Default (none)
Temporal interpolation for BLOSOM Default (none)

Number of particles 30 particles
Release period 15 min

Diffusion 10,000 vs. 100,000 cm2/s

 

Figure 20. Comparison of diffusion coefficients; test 9.

4. Discussion

We first discuss the hindcast of the Point Wells oil spill, including some discussion of the regional
oceanography as it may apply to other oil spills. We then discuss the differences between GNOME
and BLOSOM.
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4.1. Hindcasting the Historical Foss Point Well Spill

Further physical information will be needed to confirm our findings, however, we are able to
make some compelling suggestions regarding what drove the Point Wells oil spill, insight that, to our
knowledge, had so far remained elusive.

The trajectories are mainly forced with an accurate representation of the tides (which is a major
driver of ocean currents in our region; Figure 6), as well as observed measurements of the wind velocity
(Figures 7 and 8). A quick inspection of the wind speeds during the spill, immediately suggest that
wind was a major driver for the Point Wells spill: Meier and Höglund [23] (pp. 101–129) show that the
advection of oil at the very surface tends to be dominated by wind whenever wind speeds reach or
exceed about 4 m/s. Indeed, the trajectory of a parcel initiated at the location and time of the spill, and
forced with only wind, is quite suggestive of the actual path (Figure 9).

Under these circumstances, the advection of oil at the surface is often successfully modeled as a
linear combination of ocean currents at the surface, and a velocity derived from wind, often called
wind drift or windage. A wind drift velocity is typically calculated as a coefficient of 3%, multiplying
the wind velocity. However, there are two points to be made regarding this general statement:

(1) Main components of ocean currents at the surface typically include a geostrophic component;
in our case, this is likely well represented by the tidal motion from our FVCOM model, and a
wind-driven component that is independent of the wind drift mentioned above. The wind-driven
current is given by some representation of the turbulent transfer of momentum from wind to the ocean’s
surface. The solution to this problem is an ocean current that spirals while decaying exponentially
with depth; it is, therefore, very sensitive to its vertical dependence.

(2) Determining a correct wind drift coefficient is not trivial, the difficulties arise from a wide
variety of ambient and dynamical considerations, some of which are discussed in Duran [21]. However,
that is not the end of the list. As an additional example: naturally occurring surfactant has been shown
to increase the wind speed drift velocity by 25% [24]. If we consider a typical wind drift coefficient
of 0.03, then, under the influence of surfactant, the wind drift speed, computed from the wind speed
U, becomes 0.03U(1 + 0.25) = 0.0375U. This illustrates naturally occurring phenomena, that would be
very difficult to detect without in situ measurements, and that would increase the effective wind drift
coefficient from 3 to almost 4%. This is as far as windage is concerned, however, additional processes,
such as Stokes drift, Coriolis–Stokes force, and Langmuir circulation, are often parameterized directly
from the wind velocity as well, and using a similar parameterization (e.g., Weisberg et al. [25], and
references therein).

In Appendix A.3, we show that the model we use has coarse vertical resolution, and therefore,
underestimates the wind-driven component of the sea-surface velocity by about a factor of four. We
show this using a simplified analytical model, which is in good agreement with very high-resolution
observations of vertical shear in ocean surface currents [26]. To compensate, a wind-driven velocity
is directly parameterized from the wind, in the same way that a wind-drift velocity would be
parameterized (see e.g., the surface velocity in Figure A1). As mentioned above, the FVCOM model
used in this study does an excellent job of simulating tides (Figure 5), however, for Lagrangian
transport applications we can recommend a higher resolution near the surface to better resolve the
turbulent transfer of momentum near the surface. This is because solutions for the turbulent transfer
of momentum, from wind to the ocean, decay exponentially with depth, and are therefore sensitive
to a coarse vertical resolution. Near the sea surface, the vertical resolution for ocean models used to
simulate Lagrangian transport should be maximized, and is typically on the order of tens of centimeters
(e.g., [27–29]), in marked contrast with the 4 to 6 m resolution of the uppermost layer of the model
used for this study (except very near the coast, where the vertical resolution is higher). Indeed,
even high vertical ocean model resolutions will need further parameterizations at times, since ocean
models to not typically represent processes such as wind drift or Stokes drift. A natural follow up
study towards calibrating this model for sea-surface trajectories could compare our results with an
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FVCOM implementation that uses a higher vertical-resolution, while continuing to simulate tides with
a high skill.

In our study, a relatively high wind coefficient of 6%, in conjunction with the tide-driven
ocean currents, cause the simulated trajectory to match the observed trajectory in time and space
(Figure 14). We do not find the high value for the wind coefficient surprising, because we are almost
surely parameterizing at least two processes, the underestimated wind-driven current and windage.
The former parameterization is remediating a coarse vertical resolution, while the latter is not typically
included in ocean models, yet, is often a main driver when wind speed exceeds 4 m/s. It is also possible
that additional wind-related processes (e.g., Stokes drift, Coriolis–Stokes force and/or Langmuir
circulation) were at play. All of these processes can be parameterized with the same or a similar
parameterization, a coefficient multiplying the wind velocity with a slight deflection to the right of
the wind direction. Thus, the 6% coefficient likely represents at least two, perhaps more processes.
Future studies should include detailed information, or at least a parameterization, of the processes
related to surface waves, so as to gain insight to their role during this spill. We note that although
Stokes drift is related to surface gravity waves, it can be effectively parameterized as a percentage of
the local wind [30].

The inclusion of an angle of deflection for the parameterization of wind-driven processes was
consequential in the hindcast of this oil spill. In this case, the angle computed internally by the default
BLOSOM algorithm [21] did well. However, as discussed in Duran [21], the actual value of deflection
does vary according to a number of conditions, making it difficult to simulate accurately. It is therefore
recommended to have an option that allows the oil spill modeler to select an angle manually. Such an
approach would allow the user to select an angle that matches observations, similar to the approach
with the diffusion coefficient where the user selects a value to match the spread observed through
overflights, satellite images or boat reports [9]. An example of an oil spill where wind drift was also
very important, but where no deflection angle was appropriate, is given in Nakata et al. [31]. The value
of 3.5% for the windage coefficient that they used, is consistent with our discussion, since their ocean
upper layer was only 2 m deep, compared to the upper layer of the model we used, which is two to
three times thicker (4–6 m).

When including deflection due to earth’s rotation, tides, and a wind advection coefficient of 6%
of the wind speed, the simulated trajectory does a good job of replicating the trajectory observed
with overflights. The trajectory tends to hit the correct locations at the right times, although a bit too
north during the first six hours of the simulation, and a few hours late after the first twelve hours (see
BLOSOM’s trajectory in Figure 12). Thus, BLOSOM’s trajectory matches the observed path both in time
and space, as can be seen by comparing to the timelines in Figures 1 and 9. The agreement strongly
suggests that wind and tides were the major drivers during the 2003 Point Wells spill. This is because
we are using observed winds (Figure 8), and because the tidal component of the ocean currents is
almost perfectly simulated with the FVCOM model we use (Figure 6). Indeed, the trajectory forced only
with 6% of the wind (Figure 9), is highly suggestive. Additionally, diffusion representing unresolved
small-scale processes, helped match the observed spreading along that trajectory (Figures 19 and 20).
It thus seems persuasive that winds, tides, and small-scale processes were the physical drivers during
the 2003 Point Wells spill.

In the test where trajectories were initiated offshore from where the oil spill occurred and with no
wind (Figure 16A), the cross-shore transport was due to eddies that spin off when the tidal currents
interact with promontories (not shown). Thus, we have found two processes that may cause cross-shelf
channel in our study region: cross-channel wind and eddies.

4.2. Integration Geometry

We now discuss the differences between GNOME and BLOSOM, as illustrated by the different tests
we did, Table 13 includes a summary relating test numbers and the aspects being tested. The procedure
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an oil spill modeler would typically pursue for a hindcast or forecast is summarized in an infographic
(Figure 21).

Table 13. Relation between test number, user-defined parameters, and model aspects being tested.

Test Parameters Being Tested Relevant Model Aspects Being Tested

1 N/A Integration geometry
2 N/A Integration geometry and wind handling
3 Wind advection coefficient Effect of earth’s rotation
4 N/A Interpolation of wind forcing
5 Wind advection coefficient Differences in beaching algorithms
6 Sensitivity to initial position and wind advection coefficient N/A
7 Number of particles Turbulent diffusion: number particles
8 Release period N/A
9 Diffusion coefficient Turbulent diffusion: diffusion coefficient

Figure 21. Diagram summarizing steps, as used in this study, for hindcasting an oil spill.

Differences were found between trajectories computed by GNOME and BLOSOM due to the
geometry over which the trajectories are integrated. BLOSOM uses a tangent plane approximation
while GNOME integrates over a sphere. The differences were small, at about 30 to 40 m in the first
six hours, and 60 to 80 m during the first day. We note that integrating wind as the only forcing
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mechanism (test 2), produced a somewhat higher difference than integrating only the ocean currents
(test 1; compare Figures 10 and 11). The differences from tests one and two should be considered
additive when the trajectory is forced by both ocean currents and wind forcing, as is often the case.
As mentioned above, ocean currents are often unstable, consequently it possible that single trajectories
may separate considerably over time due to these small initial differences. However, bulk calculations
of trajectories (which is the typical approach during oil spill modeling) should give similar results.

The tangent plane approximation used by BLOSOM can be formally justified as an asymptotic
expansion in terms of the length scale of interest, divided by the Earth radius, times the tangent of the
latitude [32,33]. For the latitudes spanning the conterminous United States, about 25 to 49 to degrees
North, the tangent plane approximation is appropriate for lengths of about one thousand kilometers or
less. The Gulf of Mexico is approximately 1000 km in the zonal direction, and approximately 1000 km
in the meridional direction, and therefore, BLOSOM is adequate for modeling a spill that encompasses
the entire Gulf of Mexico. However, off Alaska’s coasts, about 60 to 72 degrees North, the tangent
plane approximation is adequate for distances up to about 500 km. Thus, due caution is needed when
using BLOSOM for large spills in, say, Alaska, northern Europe or the Arctic.

4.3. Including the Effect of Earth’s Rotation

The inclusion (BLOSOM) or not (GNOME) of the deflection caused by earth’s rotation when
computing the component of oceanic trajectories forced by wind (wind-forcing parameterization)
is found to be consequential for this hindcast (test 3). The inclusion of earth’s rotation, nudges
the simulated trajectory to stay within the observed trajectory envelop for longer, and, importantly,
it causes the oil parcel to beach at the correct location (Figure 12).

GNOME does not include the effect of earth’s rotation because developers considered that, in the
context of a quick response scenario, the uncertainty inherent to forecast winds would overcome
the precision afforded by including this effect. However, because the wind used in our hindcasts
comes from field measurements (Figures 7 and 8), the uncertainty due to forecasts is not an issue.
In general, whenever the wind velocity is accurate, the inclusion of the deflection angle might result in
an improvement to the simulation, this is because it approximates the physics of different wind-forced
drivers that are missing in ocean models (e.g., [21]).

4.4. Interpolation of Wind Forcing

As a follow up to test 3, we used test 4 to understand the remaining difference between GNOME
and BLOSOM trajectories, after including earth’s rotation into both models (Figure 13). Thus, as in test
3, the same deflection that BLOSOM computed internally, was added into the wind data that GNOME
used to force the trajectory, but additionally, in test 4, temporal interpolation of the forcing fields was
added to BLOSOM. This was done to match GNOME, that includes temporal interpolation by default.
This test revealed (Figure 14) that temporal interpolation explains an additional part of the difference
between trajectories seen in Figure 13. We attribute the small difference remaining after the inclusion
of temporal interpolation to the integration geometry as described in tests one and two.

Sensitivity to temporal interpolation when computing trajectories in the ocean is known, and has
been discussed (e.g., [34]); it is especially important for coarse temporal resolutions. Future releases of
BLOSOM will include temporal interpolation of the forcing fields.

Regarding spatial interpolation, the effect on currents from an ocean model with reasonable
spatial resolution would likely be overcome by the use of a random walk scheme (turbulent diffusion)
and would, therefore, only add to the computational cost without a benefit. Thus, both the GNOME
and BLOSOM developer team currently do not prioritize using a spatial interpolation scheme beyond
nearest neighbor. A study on the performance of integration and interpolation pairs for marine
transport applications is ongoing, and will be reported elsewhere [35].
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4.5. Differences in Beaching Algorithms

Test 5 was designed to understand differences in beaching algorithms. GNOME includes a refloat
option based on an empirical parameter (half-life) that describes the adhesiveness of the oil to the
shoreline. This half-life parameter is the number of hours in which half the oil on a given shoreline is
expected to be removed with offshore wind or turbulent diffusion [9]. The spill described by Nakata et
al. [31] is an example where the refloating of oil was important.

Based on results from test 4, and to make the trajectories directly comparable, wind deflection
was introduced manually to the wind data for GNOME, thus, both models include wind deflection;
likewise, BLOSOM uses temporal interpolation. We note that an additional difference between the
models that affects beaching, is that GNOME uses the ocean model boundary as the coastline while
BLOSOM uses an elevation raster provided by the user. In this test, the wind advection coefficient is
reduced from 6% to a more typical value of 3%, therefore, this test also helps illustrate what a modeler
would see, when using a typical value for the wind advection coefficient (Figure 15a). The trajectories
diverge probably due to an initial perturbation caused by the additive effect of the different integration
geometries detailed in tests one and two, that is amplified by the ocean currents (Figure 15b); however,
both models end up beaching at similar locations (Figure 15a). A more in-depth discussion on coastline
treatment for oil spill model beaching can be found in Samaras et al. [22]. It is important to note that
neither GNOME nor BLOSOM are designed to simulate beaching with the level of detail that can
be found in other pioneering studies. GNOME, in particular, is intended as a quick response tool,
consequently, the beaching location is only approximated (Figure 15a). In Appendix A.2, we show that
the number of particles we use for the diffusion tests (30 and 1000) are reasonable regarding the type,
and dimension, of beach that was impacted. Calculations with 30 particles suggests that, if a detailed
beaching study were desired, a greater number of particles might be needed. However, we also
note that trajectories, especially GNOME’s, may deteriorate considerably as the number of particles
increases, as noted below (Section 4.7). Thus, there is a trade-off to be made. For our purposes (a study
that is primarily focused on the oil’s trajectory), 30 particles gives good results, while maintaining
reasonable oil holding capacity (OHC) values (Appendix A.2).

After about eighteen hours, GNOME’s trajectory initiates again after refloating, to then move
north (Figure 15c). In a real-life situation, both GNOME’s and BLOSOM’s simulation would be rejected,
since they do not replicate the observed path, suggesting that the mechanisms forcing these trajectories
are inadequate.

During a response scenario, the refloating of oil can be modeled alternatively by re-initializing an
oil spill simulation once a need has been detected (for example, through overflights). Thus, BLOSOM
does not contemplate, at present, the inclusion of a refloating option in future releases.

4.6. Sensitivity to Initial Position

In test 6, we explore initializing the trajectories offshore from the actual incident locations, about
730 m offshore and 165 m north. These trajectories do cross the channel even without any wind,
a marked difference from the trajectories using the correct initial position (Figure 16A).

To put this initial location offset into context, ocean models in the Gulf of Mexico are often
3 to 4 km resolution, with the higher-resolution models having resolutions of about 1 km. Thus,
the correct and the offset initial locations, could have been within the same ocean model grid point
of a high-resolution model of the Gulf of Mexico. However, the Salish Sea has much smaller spatial
scales, and therefore requires a much finer ocean model. Thus, the distance between the actual and
offset locations of the spill, spans about 4 ocean model grid cells. This is an example of the sensitivity
to the initial location, a result of ocean currents varying considerably across the channel. As mentioned
above, ocean currents are often unstable, and amplify exponentially any small, initial difference in the
initial position [36,37]

BLOSOM and GNOME differ in their final positions when the trajectories are initiated at the
offshore location. This illustrates how small differences in oceanic trajectories can cause a large
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difference in the end result. This is because ocean currents are chaotic at length scales that are often
smaller than the distance traveled by most trajectories of interest, which implies that small differences
at any time during the trajectory can be exponentially amplified, causing distinct differences even
within a few hours (see e.g., [36] or [37]). This test does not include any wind forcing, thus, the small
differences (that eventually resulted in larger differences) can be attributed to the distinct geometries
used in the ocean current integration, as illustrated in test 1. Exponential separation of trajectories is
generally not relevant in bulk trajectory computations, especially when using a random component to
simulate small-scale processes.

The trajectories initiated offshore do not coincide with the observed trajectory envelope
(Figure 16A). Since a trajectory can only be judged to be accurate if it visits the correct spatial locations
at the correct times, BLOSOM’s trajectory, in this test, is an example of getting the correct result
(i.e., correct beaching location, although about 14 h late) for the wrong reasons (i.e., by initiating the
trajectory offshore from the actual initial location).

In this test, we also run a simulation in which the trajectories are initialized at the correct location
but, in contrast with test 5, without wind forcing (Figure 16B). In this case, the trajectories are not
forced towards the coast as fast as in test 5, instead, they oscillate with the tides, approximately parallel
to the coastline to then beach not far from where the spill originated. This confirms that no wind, or
typical values of wind forcing, are inadequate to force this oil spill, given the ocean model used in this
study, as discussed above.

4.7. Turbulent Diffusion: Number of Particles

Tests one through six suggest what physical processes drove the Point Wells oil spill trajectory,
namely, ocean currents plus 6% of wind, as illustrated in test three. Having identified appropriate
ambient forcing, the next step a modeler would typically pursue, would be to add turbulent diffusion
in an attempt to match the spread of pollutants, ideally along an observed trajectory envelope. In this
test, BLOSOM does not use temporal interpolation and GNOME does not include wind deflection;
these features were only added, respectively, in previous tests to understand the model’s differences.
However, having illustrated such differences, and because these features, respectively, are not currently
available in the oil spill models, the simulations that follow will use default configurations.

In BLOSOM and GNOME simulations, the spread due to diffusion is controlled mainly by the
diffusion coefficient, which both models allow the user to select. However, the spread is also affected
by the number of particles used. If there are not enough particles, then the random walk algorithm
will not represent the correct solution to the diffusion equation.

In test 7, a fixed diffusion coefficient of 10,000 cm2/s and 30 particles are selected. The turbulent
spreading causes oil parcels to cover more of the area that was observed to be covered, providing an
accurate estimate of the beaching, thus nudging the simulations towards greater realism (Figure 17).
We note that the higher the number of particles, the greater the amounts of oil refloating in GNOME’s
simulation, causing spurious northward transport.

To assess the effect of the number of particles, this experiment is repeated while using 1000
particles (Figure 18). In this test, GNOME’s trajectories diverge even further from the observed
path, and the spread becomes less realistic, suggesting that 1000 particles is not an improvement.
BLOSOM, however, does reach a desirable spread, suggesting that with 1000 particles, there is a
modest improvement; note the width of BLOSOM’s beaching approximately matching the observed
width in Figure 18.

These results highlight the importance of simulating the diffusion-free trajectory as accurately
as possible.

4.8. Release Period

All simulations, so far, used instantaneous releases at 00:05, therefore, the effect of releasing
oil over a period of 15 min, an estimate of the duration of the actual spill, is assessed in test 8. No
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notable difference is found with this test, suggesting that an instantaneous release is adequate for
simulation purposes.

4.9. Turbulent Diffusion: Diffusion Coefficient

In test 9, the diffusion coefficient is tested by using different values, while keeping the number of
particles at 30. A coefficient of 100,000 cm2/s causes the spread to be closer to the width of the observed
path envelope (Figure 20), suggesting an improvement relative to a diffusion coefficient of 10,000 cm2/s
and 30 particles (Figure 17), but it is not necessarily an improvement relative to BLOSOM’s simulation
with a coefficient of 10,000 cm2/s and 1000 particles (Figure 18). Since a smaller turbulent diffusion
coefficient is preferable (if the same results can be obtained by increasing the number of particles),
the conclusion is that a coefficient of about 10,000 cm2/s and 1000 particles is the preferred setting
for BLOSOM. Some fine-tuning is likely possible by testing numbers of particles between 10 and 100
thousand, but was not pursued.

Regarding GNOME’s trajectories for both values of diffusion coefficients, the more significant
factor continues to be that the trajectory does not match the observed path, due to not including the
effect of earth’s rotation when forcing with wind, as identified in test three. More trajectories diverge
when using the 100,000 cm2/s coefficient; these differences are inherent to the random walk algorithm
and are therefore expected. Therefore, beyond the differences found in test 3 and test 7 (rebeaching of
oil), this test does not find any further noteworthy differences between GNOME and BLOSOM.

This test finalizes the simulations that a modeler would need to understand what simulation
parameters best replicate the Point Wells oil spill. Consequently, all relevant differences between
GNOME and BLOSOM have been illustrated.

5. Conclusions

While not a rigorous proof, it is very compelling that the simulation, initiated at the correct
location and time, forced with accurate wind observations and accurate simulated tides, replicates the
observed trajectory. The simulated trajectory broadly reaches the correct locations at the correct times,
through the duration of the spill, to finally beach at the correct location and time (beaching started
around 14:30 and continued through the afternoon and night of 30 December, up to the morning of
31 December). Since it is highly unlikely that such a combination of events would happen by chance,
we conclude that our hindcasts make a compelling case for what forced the Point Wells oil spill, despite
the fact that it is unusual for oil spill modelers to use a wind coefficient as high as 6%. This conclusion
is supported by observational studies, and a simplified analytic model. The analytic model was used to
quantify the effect of the coarse ocean model vertical resolution on the surface velocity (Appendix A.3),
and it agrees well with very high-resolution observations recently reported by [26].

Deflection for the full 6% of the wind speed coefficient was shown to be important; this is in
agreement with multiple studies (e.g., references in [21]) that have found that deflection may be part
of each of the physical processes that are parameterized from wind.

To the best of our knowledge, this paper is the first to build a compelling case for what drove
the historical Point Wells spill. The drivers for particle motion were tidal currents (including their
interaction with promontories), wind, and small-scale processes represented by diffusion.

A dedicated study will be needed to fully understand the physics driving the Point Wells spill. In
this regard, we can recommend future studies to include the effect of waves, because Stokes drift is
known to be an important driver at the sea surface [27,38]. Stokes drift can be parameterized directly
from wind, despite it being due to surface waves [30]. Thus, the inclusion of waves should provide
further insight into the nature of the wind forcing that we have found to be important. Likewise, ocean
simulations with a higher vertical resolution, that continue to accurately replicate tides, should also be
helpful. We note the strong wind (5–10 m/s) blowing consistently towards the impacted beach, during
the period of time over which beaching was observed. There was also very strong wind (>10 m/s)
during the first 6 h of the spill (Figure 7).

68



J. Mar. Sci. Eng. 2018, 6, 104

The Point Wells spill was difficult to forecast during response activities [39], presumably due to
inadequate forcing. It is plausible that forcing was inadequate because of the strong dependence on
wind. Understanding the drivers behind the Point Wells spill will allow oil spill modelers to be better
prepared for future forecasts or hindcasts.

While initially developed for different purposes, GNOME and BLOSOM are similar models that
are complementary in nature. For the particular hindcast used for this study, BLOSOM gives better
results due to the inclusion of an internally computed deflection angle for the parameterization of
wind-forced advection. However, we do not suggest that this implies that BLOSOM is a superior
model. That this particular hindcast depends so heavily on a wind-driven parameterization, and that
the wind we used comes from representative observations, may or may not be representative of other
spills. Additionally, wind deflection could be included in a GNOME simulation by modifying the data,
if so desired.

We are able to make two main recommendations for future releases: (1) that BLOSOM include
temporal interpolation of the forcing fields, and (2) that GNOME include an option to allow for an
angle of deflection when using wind-forced parameterizations.
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Appendix A

Appendix A.1 Computational Time Step

GNOME and BLOSOM simulate and output the oil’s location and characteristics given ambient
conditions (e.g., ocean currents, wind, temperature etc.). How often the output is written and how
often the output is visualized do not affect the models’ solutions, although they affect how well the
user is able to understand the solution; these time intervals depend on the user’s needs and discretion.

The computational time step, however, is a quantity that the models use internally to compute the
oil’s trajectory as it evolves under ocean currents and wind forcing. Choosing a time step that
is too big could result in spurious trajectories [34]; the criteria for “too big” is the well-known
Courant–Friedrichs–Lewy (CFL) condition. Special care is needed when using ocean models for
enclosed seas, because they often have a small grid size near the coast; this is especially true with
unstructured grids (e.g., the FVCOM implementation that we use). For our purpose, the CFL condition
C is a dimensionless ratio that compares the distance |u|Δt traveled by an oil parcel moving under a
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velocity u over one computational time step Δt to the size of the spatial grid Δx (cf. [40] (pp. 171–175)).
Thus, the CFL condition is defined as

C =
|u| Δt

Δx
. (1)

We say that the CFL condition is satisfied whenever C < 1. If the CFL condition is not satisfied,
then an oil parcel could overshoot through one or more grid cells without taking into consideration
the velocity of those grid cells. Thus, the trajectory could artificially ignore valid information, resulting
in a scrambled sampling of the true velocity field and, consequently, in spurious trajectories.

In numerical analysis’ terminology, satisfying the CFL condition guarantees that the finite-
difference scheme used to solve a differential equation has a numerical domain of dependence,
on initial or boundary conditions, which includes the differential equation’s domain of dependence,
on initial or boundary conditions (e.g., [41] (pp. 98–100)).

From the CFL condition, we can derive an upper bound for acceptable computational time steps.
This upper bound can be computed using the maximum velocity and a minimum grid size in the model

Δt <
Δxmin

|umax|
. (2)

The information needed for this upper bound is readily available from the ambient data used by
any oil spill model.

It is in BLOSOM’s development plan to compute this time step upper bound when initializing a
simulation to inform the user of any possible violations of the CFL condition or, alternatively, of an
inefficiently small time step. When familiarizing oneself with a new ocean model, it is convenient to
run a few tests to determine the ideal time step; it should satisfy the CFL condition but also, it should
not be smaller than necessary since this can easily result in run-times that are too long to be practical.

For these simulations, an estimate of the time step Δt was computed using a distance of 200 m
and a velocity of 0.5 m/s (mean velocity + 1.5 standard deviations) in Δt < Δxmin

umax
= 200

0.5 ≈ 6.7 min..
Thus, we obtain an a priori estimate of what the time step should be, this estimate can be confirmed

running some simulations. The first test will be our benchmark, it uses a time step of one minute (such
a small time step ensures convergence), and is shown in Figure A1.

Next a 6 min time step was used (Figure A2), the trajectories are identical to those with a time
step of one minute, thus confirming our a priori estimate.

However, with a computational time step of 18 min, BLOSOM’s trajectory started to deteriorate
(Figure A3). Notice that GNOME and BLOSOM’s trajectories differ due to advection algorithms (test
3 above) and, therefore, their sensitivity to the computational time step will be different. Any small
differences can and will be amplified due to unstable currents.

With a 36 min computational time step, the trajectory is completely spurious (Figure A4), to the
point that trajectories end well into land. This experiment was not repeated with GNOME, however,
similarly bad results are expected as this spurious behavior is a property of the numerical method, and
both models use the same method. The difference in the advection algorithm should be small compared
to the error induced by such a large computational time step. Also, when the time step is very large,
the diffusion does not cause much spreading, this is because the random increment is added every time
step, consequently, there is insufficient random spread when the number of time steps is small.

In summary, with a large time step, the trajectory is sampling an inaccurate velocity field (by
overshooting valid information); additionally, the random walk is not converging to the solution of
the diffusion equation. These tests confirm that the time step estimate of less than 6.7 min was a good
choice (because the trajectory using 6 min time step is very similar to the trajectory using a 1 min time
step, confirming convergence).
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Figure A1. GNOME and BLOSOM simulations using a 1 min time step. This simulation includes 6%
wind, ocean currents and some diffusion.

Figure A2. Same as plot A1 but both models using a 6 min time step.
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Figure A3. Same as Figure A1, with both models using a computational time step of 18 min.

Figure A4. Same as Figure A1 but with a 36 min computational time step for BLOSOM.
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Appendix A.2 Computations Related to the Number of Parcels in Our Simulations

In this section, we use data for the historical spill, such as impacted area and beach length, and
volume of oil, to determine if our selections for number of parcels are reasonable.

Three and a half acres were impacted, or about 14,164 m2. Roughly 2/3 of the total impacted
area was heavily impacted. Half of the heavily impacted area was a gravel beach, and the other half a
sand beach, roughly 4721 m2 each half, for a total heavily impacted area of 9442 m2. The maximum
estimated amount of oil was 4800 gallons or about 18.2 m3.

We can compute an upper bound for the oil holding capacity (OHC), by assigning all the oil at
once, to the area that was heavily impacted: 18.2 m3/9442 m2 = 0.0019 m3/m2. This is just below the
mean, and about an order of magnitude smaller than the maximum volume of oil per area reported
for OHC in [22] (their Table 2). Thus, data from this spill is consistent with data collected and
published elsewhere.

If we divide the total volume 18.2 m3 by 30, the number of oil parcels used in some of our
simulations, we get that each parcel would have a volume of about 0.061 m3. For the 1000 parcel
simulation, each parcel would represent about 0.0182 m3 of oil. Using the upper bound for volume
of oil per meter squared, computed above from Point Wells spill data, this means each parcel would
impact, at least, an area of 0.061/0.0019 = 32.1 m2. This is the minimum area that each parcel would
need to impact. When using a thousand parcels, each parcel would need to impact at least about
9.6 m2.

The length of the beach that was impacted was reported to be 2400 m (1.5 miles); considering the
impacted area, this means the stretch of impacted beach was, in average, almost 6 m wide. Considering
the minimum impacted area computed above for the 30 parcel scenario, this implies a reasonable
stretch of beach of about 5 m, which is about 6 m wide. For the 1000 parcel scenario, each parcel would
need to impact a stretch of beach of about 1.6 m by 6 m wide, which is also reasonable. Thus, we can
conclude that our number of particles are not unreasonable, as far as the OHC is concerned.

In terms of the impacted area, we know a beach stretch of 2400 m was impacted, and if we divide
this by 30 oil parcels, each parcel must stretch about 80 m long, which is also not an unreasonable
quantity, and if we divide it by 1000 oil parcels, each parcel would need to stretch for about 2.4 m along
the beach.

With the 30 parcel scenario, we arrived at a stretch of beach 5 m long when considering OHC,
and a stretch of beach of about 80 m long when considering the length of the beach. This discrepancy
suggests that, while neither of the values are unreasonable, it is likely, however, that if our goal was to
model the beaching in more detail, a higher number of oil parcels would likely be desirable.

We emphasize that, with the level of detail that we are modeling, we are only looking for
the trajectories to end at the correct beach. We do not suggest, or explore, anything regarding the
distribution of oil on the beach. The computations in this appendix are merely to show that the number
of particles we use are not unreasonable, given the data we know.

Appendix A.3 Parameterizing Missing Wind-Forced Physics

In this appendix, we explain the rationale behind using 6% of the wind speed.
The ocean model solution we used has a relatively coarse resolution in the vertical, using only

ten terrain-following levels. The shallowest velocity in this FVCOM implementation is a velocity
depth averaged over the upper 4–6 m (depending on the bathymetry, as the vertical coordinate
is terrain-following). Such a vertically averaged Ekman velocity is considerably smaller than the
Ekman velocity at the sea surface. To show this, we used a simplified model for the wind-driven
velocity from [42] (pp. 22–24) using a constant wind forcing of (u, v) = (5, 5) meters/second, which
is representative of the wind during the Point Wells spill. We use the solution of this model to
depth-average the wind-driven ocean current velocity over the upper 6m, and we find that the
magnitude is about one fourth of that at the magnitude at the surface (Figure A5). We therefore
conclude that in our region of interest, the ocean model Ekman sea-surface circulation is likely
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underestimated by a factor of about 4. A typical wind coefficient for parameterizing the turbulent
transfer of wind momentum is 3% of the wind speed, a value that can be derived approximately, from
first principles (e.g., [43,44] (pp. 150–156)).

 

Figure A5. (Left Panel) The wind-driven velocity computed from a slip-velocity approach as specified
in Csanady [42] (pp. 22–24) (blue arrows) as a function of depth (meters, vertical axis) when forced
with a constant wind (u, v) = (5, 5) meters/second. Assuming a 6m deep surface cell, an approximation
to the FVCOM’s sea-surface velocity (in red) is computed by averaging the velocity vectors in blue.
(Right Panel) Hodograph for the ocean current velocity solution (meters/second) that is plotted in
the left panel. Results remain qualitatively similar when using other wind speeds that are likewise
comparable to the wind speeds observed during the Point Wells 2003 spill.

However, wind does not only cause an Ekman circulation. An additional forcing from wind
that moves oil parcels at the sea surface and is not usually included in ocean models is windage.
Indeed, windage is known to dominate over ocean currents when wind speed exceeds 4–5 m/s [23]
(pp. 101–129). Common values for windage range from 1–4% of the wind speed [9]. In our simulations,
we found that adding 6% of the wind to the ocean currents reproduced the historical trajectory
relatively well. While 6% is within bounds of what has been observed and suggested in the literature
for parameterizations of wind-related processes (cf. references in [21]), it is rather large for most
applications. We suggest that while windage was a necessary addition, part of the 6% we used was
needed to make up for the coarse resolution of the FVCOM implementation, as explained above.
Thus, the 6% percent we use is meant as a linear combination (e.g., [45] (pp. 109–110)) of at least two
independent physical processes: windage and turbulent transfer of momentum from the wind to the
surface of the ocean (i.e., Ekman drift). We note that there are other processes that could be at play, and
would be parameterized in the same way, thus similarly (and additionally) contributing as a linear
combination of forcing mechanisms—please refer to the discussion above. This would further support
the use of a large coefficient.

The analytical model we used above, to show that the ocean model vertical resolution is too
coarse, is supported by recent, very high-resolution observations focusing on the upper meters of
the ocean. In their study, Laxague et al. [26] confirm that “the current magnitude averaged over the
upper 1 cm of the ocean is shown to be nearly four times the average over the upper 10 m, even for
mild forcing”. This constitutes a reasonably good agreement with the simplified theoretical model we
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use, which includes a law-of-the-wall velocity for the first centimeter as described in Csanady [42]
(pp. 22–24).

Averaging over the upper 10 m (as in the observations by Laxague et al. [26]), our simplified,
theoretical model predicts that the velocity over the first centimeter would be 5 times greater than
the average over the upper ten meters, which compares reasonably well to the almost 4-times greater
velocity found by Laxague et al. [26] in the upper two centimeters.

Further research will be needed to isolate the physical mechanisms driving the Point Wells oil spill.
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Abstract: The M/V Marathassa oil spill occurred on 8 April 2015 in the English Bay. In the present
study, the trajectory and the transport mechanism of the spilled oil have been studied by using the
three-dimensional and particle-based Oil Spill Contingency and Response (OSCAR) model forced
by the Finite-Volume Community Ocean Model (FVCOM). FVCOM provided the hydrodynamic
variables used by the oil spill model of OSCAR. The results showed that the fraction of the oil on the
water surface and on the shoreline, as well as the amount of oil recovered were affected by the time of
the initial release, the overall duration of the discharge, wind and recovery actions. The hindcast study
of the M/V Marathassa oil spill showed that the likely starting time for the discharge was between
14:00 and 15:00, on 8 April 2015. The release may have lasted for a relatively long time (assumed
to be 22 h in this study). The results of modeling in this study were found reasonably acceptable
allowing for further application in risk assessment studies in the English Bay and Vancouver Harbour.
The trajectory of the spill was mainly controlled by the tidal currents, which were strongly sensitive
to the local coastline and topography of First Narrows and that in the central harbour. The model
results also suggested that a high-resolution model, which was able to resolve abrupt changes in the
coastlines and topography, was necessary to simulate the oil spill in the harbour.

Keywords: oil spill model; FVCOM; OSCAR; M/V Marathassa oil spill; the English Bay;
Vancouver Harbour

1. Introduction

Canada has the world’s largest reserves of oil sands, which are deposits of bitumen in sand
or porous rock [1]. The bitumen extracted from oil sands can be upgraded into various petroleum
fuels (such as gasoline, diesel and aviation fuel) via proper hydro-treating processes. Due to the
increasing bitumen and heavy oil production in Canada, the Trans Mountain Expansion Project
(TMEP) was proposed to increase the capacity of bitumen and heavy oil transportation via pipeline
from the province of Alberta, which has the majority of oil sands in Canada, to the west coastal
province, British Columbia (BC). TMEP intends to triple the pipeline transportation capacity, which
will consequently increase the oil tanker traffic by seven times on the BC coast, as well [2].

The biggest import and export port on the BC coast, Port of Metro Vancouver (PMV), consists
of 34 anchorages (20 in the English Bay, 8 in Vancouver Harbour, 4 in the Indian Arm, 1 in Robert
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Bank, and 1 in Sand Heads), as shown in Figure 1. In 2017, PMV handled about 142 million tonnes of
cargo, which is 5% more than the previous year (2016) [3]. This busy and growing vessel traffic in PMV
increases the potential risk of oil spill. The Canadian Coast Guard (CCG) receives about 600 pollution
reports on the BC coast every year, nearly 40 of which occur in the PMV [4]. For instance, a small oil
spill took place in the English Bay (one of the PMV anchorages) on 8 April 2015, which resulted in at
least 2800 L of oil released from the cargo vessel, M/V Marathassa [4].

Figure 1. Anchorages’ position at the Port of Metro Vancouver (PMV). Modified based on [5].

The oil spill was first reported by the public at 16:48 Pacific Time on 8 April 2015 [6]. It was
suspected that IFO-380 (Intermediate Fuel Oil 380) was spilled from the MV Marathassa vessel, which
anchored at the location of latitude: 49◦17.5167′ N, longitude: 123◦11.2333′ W (Anchorage #12) [7].
During this spill event, several aerial overflights, including the National Aerial Surveillance Program
(NASP) flights provided by Transport Canada, were conducted to estimate the pollutant on the
water surface and shoreline as shown in Table S1. At 12:20 on 9 April, it was estimated that about
2800 L of spilled oil remained on the water surface [4]. This estimate did not include any weathered
and previously recovered fuel oil [4]. It was estimated that the Western Canada Marine Response
Corporation (WCMRC) recovered 1400 L of spilled oil by using three vessels with skimmer equipment
(Table S2) [4]. However, the type and efficiency of the skimmers were not clearly recorded. Later on,
the Shoreline Cleanup Assessment Technique (SCAT) teams surveyed over 85 km of shoreline between
9 April and 23 April 2015 and determined that the most contaminated shoreline was the west side
of Stanley Park, North Vancouver, and West Vancouver [7]. On 14 April 2015, the City of Vancouver
provided the spilled oil distribution map shown in Figure 2, which clearly showed the observed spilled
oil on the water surface and the contamination on the shoreline [8]. Unfortunately, the specific cause of
this spill was not clear, and the exact volume of spilled oil was unknown.

To understand the fate/trajectory of spilled oil in the marine environment, oil spill models may be
used. Examples of this type of model includes: the SPILLCALC by Tetra Tech [9], the GNOME (General
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NOAA Operational Modeling Environment) model by NOAA (National Oceanic and Atmospheric
Administration) [10], the OSCAR model by SINTEF (Stiftelsen for INdustriell of TEknisk Forskning ved

NTH—Foundation for Industrial and Technical Research) [11], the OILMAP and SIMAP models by
RPS-ASA (Applied Science Associates, Inc.) [12,13], the MOHID water model by MARETEC (Marine
and Environmental Technology Research Center) [14] and the MIKE Oil Spill model by DHI (Dansk
Hydraulisk Institut) [15]. For application to the TMEP, several organizations and consulting companies
have simulated the potential risk of the oil spill in the Burrard Inlet, which geographically includes the
English Bay, Vancouver Harbour, as well as in the Salish Sea (the mouth of Burrard Inlet opens onto
the Salish Sea) by using various oil spill models. For example, the SPILLCALC model was used to
simulate the possible trajectory of spilled diluted bitumen (dilbit) in 2013 [16]; the GNOME model
was used to simulate the potential dilbit spill trajectory in 2015 [17]. However, these previously used
models were limited by the following aspects: the stochastic model in SPILLCALC was 2D, which only
tracked the surface transport of oil and did not provide the probability of water column contamination,
and the study using the GNOME model simulated the trajectory of oil based on rough wind conditions
and currents’ information, but not the fate/weathering processes.

Oil spill modeling typically incorporates the modeling of hydrodynamic forcing. H3D is a 3D
hydrodynamic model that has been used in several studies of the oil spill in the Salish Sea and Burrard
Inlet [16,18,19]. However, the resolution of this H3D model was relatively low in the study area, with a
1 km × 1 km horizontal grid space. In order to get a more accurate hydrodynamic forcing for the Salish
Sea, the NEMO (Nucleus for European Modeling of the Ocean) model has been applied. The horizontal
grid space of the NEMO model was almost uniform from 440 m × 440 m to 500 m × 500 m in the
Salish Sea [20]. Unfortunately, this model was unable to simulate currents in the English Bay and
Vancouver Harbour. Therefore, a high-resolution hydrodynamic model was needed for the modeling
of the oil spill in the English Bay and Vancouver Harbour.

Figure 2. The M/V Marathassa oil spill situation map (map provided by the City of Vancouver, BC).
This map shows the observed spilled oil trajectory on the water surface and the contamination on the
shoreline in the English Bay and Vancouver Harbour from 8 April 2015 to 10 April 2015 [8]. Areas with
oil sheen are numbered as 1–10, and contaminated shoreline areas are labeled as A–P.
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This study aims to validate a three-dimensional (3D) and high-resolution hydrodynamic model
(the Finite-Volume Community Ocean Model (FVCOM)) as the first step. Then, the validated FVCOM
output was incorporated into a 3D oil spill model (the Oil Spill Contingency and Response model
(OSCAR)) to model the oil spill in the English Bay. Forty numerical simulations were carried out
to test this coupled oil spill model based on historical information from the MV Marathassa oil
spill. Specifically, the mass balance and trajectory of MV Marathassa spilled oil were simulated
by varying different factors, including the oil start of release time, discharge duration, wind forcing
and recovery action.

2. Materials and Methods

2.1. Hydrodynamic Forcing: FVCOM

2.1.1. FVCOM Description

The hydrodynamic forcing used for this study was generated using the Finite-Volume Community
Ocean Model (FVCOM). It is a 3D, finite-volume and unstructured grid ocean model, which was first
developed by Chen et al. [21] and further upgraded by joint efforts from researchers at the University
of Massachusetts, Dartmouth and Woods Hole Oceanography Institution [22–25]. FVCOM allows the
use of different resolutions to fit complex coastline and topography by using the triangle mesh system.
The model used in the present study was based on the model set up by Wu et al. [26]. The model was
capable of achieving relatively high resolution in the region of interest (English Bay and Vancouver
Harbour in this case), as shown in Figure 3. For instance, the horizontal grid spacing is about 10 m in
Vancouver Harbour and about 2 m around the bridge bases in the Second Narrows. The vertical grid
has twenty-one sigma levels that were stretched gradually, in order to gain higher resolution in the
surface and bottom layers. More detailed information of the model can be found in Wu et al. [26].

Figure 3. Finite-Volume Community Ocean Model’s (FVCOM) horizontal grid in the English Bay and
Vancouver Harbour. The horizontal grid space is 10 m in Vancouver Harbour and about 2 m around
the bridge bases in the Second Narrows.

2.1.2. FVCOM Validation

The overall validation of the model has been done in Wu et al. [26] using tidal gauge water
elevations and the ship-mounted Acoustic Doppler Current Profiler (ADCP) current data. Here,
we further evaluate the model using surface drifter data, which were obtained from two Surface
Current Tracker drifters (SCT). SCT is comprised mainly of wood for the structural support and
cellulose sponge for floatation [27]. Four aluminum fins are mounted below the sponge to increase
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the surface area, and a zinc weight is installed at the very bottom of the unit to act as ballast [27].
There is also a thin aluminum disk installed above the cellulose sponge to facilitate labeling of the SCT
with drifter ID and contact information [27]. SCT is a low-cost, low-impact, easily deployable drifter,
tracks the surface currents and reports its location and timestamp [27]. Two SCT, named SCT1 and
SCT2, were released in Vancouver Harbour (SCT1: 49◦17.8812′ N, 122◦57.6414′ W; SCT2: 49◦17.8788′

N, 122◦57.6432′ W) at 15:11 on 8 November 2015. The drifter’s locations and velocities were recorded
every 2–6 min. It is notable that a time step of five minutes was applied during simulations.

The modeled trajectory was compared with the observed drifters’ trajectory. In addition,
the prediction ability of FVCOM was statistically assessed by computing the following measures
as shown in Equations (1)–(4) [28,29]: the Root-Mean-Square-Error (RMSE):

RMSE =
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N ∑
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and the quantitative agreement between model and observations:
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where X is the variable being compared with a time mean X. The subscripts “mod” and “obs” represent
the model results and observations, respectively.

After validating FVCOM, it was run for 10 days (from 5 to 15 April 2015) with a time step of 1 s
and saved every 1 h to generate the hydrodynamic forcing, which did not include the waves, because
the study period was reported as “very calm”, the surveillance photo showed no signs of breaking
waves (white caps) and the non-breaking wave would also be very low due to low wind. The wave
height used in the OSCAR model was computed from winds.

2.2. Oil Spill Model: OSCAR

The OSCAR model was used to simulate the mass balance and trajectories of the oil spill, based
on the MV Marathassa oil spill’s observation data in the English Bay. This is a 3D particle-based
model, which is designed based on SINTEF’s experimental field and laboratory data to support oil
spill contingency and response decision making. The general structure of the OSCAR model is similar
to most oil spill models as shown in Figure 4. The OSCAR model is capable of calculating the oil
contamination on the sea surface and shorelines, in the water column and sediment, along with
several oil weathering processes. Various oil weathering processes can be simulated by using the
OSCAR model, including spreading, drifting, natural dispersion, chemical dispersion, evaporation,
stranding, dissolution, adsorption, settling, emulsification and biodegradation of spilled oil. Overall,
the OSCAR model has broad applications in oil spill modeling and has been validated in many related
studies [30–33].
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Figure 4. Schematic overview of a general oil spill model. Modified based on [30].

2.3. Wind Forcing: HRDPS Model

The present study used the wind forcing from the High-Resolution Deterministic Prediction
System (HRDPS), which has been employed for weather prediction on the West Coast of Canada [34].
HRDPS is a set of the nested and Limited-Area Models (LAM) with forecast grids from the
non-hydrostatic version of the Global Environmental Multiscale (GEM) model. This GEM has a
2.5-km horizontal grid spacing. The example of wind speed and direction at 16:00 on 8 April 2015 is
shown in Figure 5. The dominant wind directions are south, southwest and southeast with speeds
below 7 m/s near the release point from 5–12 April 2015, as shown in Figure 6.

Figure 5. Wind speed and direction from the High-Resolution Deterministic Prediction System (HRDPS)
(12 April 2015, 16:00). The area in the red square is the studied area.
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Figure 6. Speed, direction and frequencies of the wind near the oil released site (from 5–12 April 2015).

2.4. Hindcast Study of the M/V Marathassa Oil Spill

2.4.1. Identification of Spilled Oil

PMV collected the polluted samples and identified that the spilled oil had an API gravity degree
of 13 and a density of 978–979 kg/m3 (979 kg/m3 at 15 ◦C). The oil chemical compositions were
tested as well, and the results showed that the spilled oil contained about 96–99% of bunker fuel.
Further testing on oil physiochemical properties illustrated that the spilled oil had comparable physical
and chemical properties as IFO-380 [4].

IFO-380 is typically classified as a heavy fuel oil with an API gravity of 10–17.1 degrees (density
of 950–1000 kg/m3) [7,35]. It has a relatively high viscosity (maximum viscosity of 380 cSt [36–38])
and behaves as a semi-solid product at ambient temperature, which leads to a low rate of dispersion
and evaporation [7,35]. The detailed chemical composition of IFO-380 was adapted from OSCAR’s oil
database as shown in Table S3.

2.4.2. Potentially Influential Factors

As reported, the oil probably began to spill between 11:00 and 16:48 on 8 April 2015, but the
exact start time of the release is still unknown. Five possible starting times (12:00, 13:00, 14:00, 15:00
and 16:00) were explored in this study. Although the wind forcing can be obtained via the HRDPS
model as illustrated in Section 2.3, the wind speed was reported as quite low (<2.6 m/s) during
8–11 April 2015 [7]. It is therefore interesting to study the spilled oil fate and trajectory without taking
the influence of the wind into consideration. Because of the lack of information on the duration of oil
release and the lack of documentation on the details of recovery actions, the duration of discharge and
recovery actions was included in the model study as two additional factors. The discharge duration
was assumed as 2 h (a case of a relative instantaneous release) and 22 h (a case of slow release over a
long period of time). The case with or without recovery actions was studied to investigate the impact
on the fate and trajectory of the spilled oil. It is notable that the assumptions of oil recovery actions
were made based on the CCG’s report, as shown in Table S4 [4] and the Western Canada Marine
Response Corporation’s (WCMARC) website. A summary of the above-mentioned factors that might
influence the fate and trajectory of spilled oil is presented in Table 1, and detailed setup information
for each simulation is shown in Table S5.
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Table 1. The studied factors and their corresponding settings.

Factor Setting

Starting-releasing time 12:00 13:00 14:00 15:00 16:00
Wind forcing With Without

Discharge duration 2 h 22 h
Recovery action Yes No

2.4.3. Deterministic Approach

The oil spill modeling can use both deterministic and stochastic approaches. A deterministic
approach is used to simulate the fate and behaviour of oil from a single model run. This approach is
helpful when studying a known historical oil spill event. A stochastic approach, on the other hand,
is used to analyze the probability of oil contamination in the area of concern by overlaying a great
number (tens to thousands) of individual deterministic simulations.

In this study, a deterministic approach was employed to study the mass balance and trajectories
of the oil spill occurring on 8 April 2015. For each simulation, the oil was assumed to be released
at Anchorage #12 (latitude: 49◦17.5167′ N, longitude: 123◦11.2333′ W) in the English Bay and then
tracked for 3 days. A track duration of 3 days was used, because only a trace amount of spilled oil
(5.9 L) remained on the water surface after 3 days, as reported by Transport Canada [4]. A time step
of 20 min was selected to run the model. Since the hydrodynamic forcing was hourly, the use of a
20-min time step based on interpolation of current data helps to simulate a relatively smooth particle
trajectory with less computation requirement compared with smaller steps (such as 1 min). The mass
balances and trajectories for each individual simulation were saved every 1 h and represented by using
5000 particles. The chosen number of particles would affect the simulation to some extent. The use
of 5000 is based on the preliminary test using 1000, 5000 and 10,000 particles. While the use of 1000
can produce a trajectory similar to that of 10,000, the use of a large number retains more details of the
concentration field. Using 5000 can provide better details with less computational demand. This was
also discussed in Reed and Hetland [39].

2.5. Statistical Analysis on Mass Balance

A full factorial design that incorporates the studied factors and their corresponding settings
(Table 1) was generated by using Minitab software (version 18.1), resulting in 5 × 2 × 2 × 2 = 40
combinations in total. The mass balance (%) of oil calculated for the water surface, shoreline, water
column, atmosphere, biodegradation and recovery was selected as the studied response. Analysis
Of Variance (ANOVA) was carried out to evaluate the influence statistically of the studied factors on
the mass balance. A p-value < 0.05 indicates that a certain factor has a significant influence on the
mass balance. The normal distribution and constant variance on the error terms were assured during
analysis, as well.

3. Results

3.1. FVCOM Validation

In order to validate the FVCOM, the simulated trajectory and velocities (U-velocity and V-velocity)
from the model were compared with the observational data from the SCT drifters (SCT1 and SCT2).
The simulated and observed trajectory are plotted in Figures 7 and 8 for SCT1 and SCT2, respectively.
It can be noticed that both SCT1 and SCT2 moved from east to west (Central Harbour to Second Narrow
to Vancouver Harbour), and the modeled trajectory was comparable to the observed trajectories for
both SCT1 and SCT2.
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Figure 7. Trajectory comparison between Surface Current Tracker 1 (SCT1) drifter data and FVCOM
data. The trajectory starts at the star.

Figure 8. Trajectory comparison between SCT2 drifter data and FVCOM data. The trajectory starts at
the star.

To quantify the prediction ability of FVCOM for velocities, statistical analysis, including the
RMSE, relative average error (E), correlation coefficient (R) and skill, was carried out as presented
in Table 2. Both RMSE and E for FVCOM were satisfactorily low (less than 0.16 m/s and 77%,
respectively) indicating that only a slight difference existed between modeled and observed velocities.
The correlation between the modeled and observed velocities was represented by R values, and their
significance levels were indicated by p-values. As shown in Table 2, all p-values were lower than
0.05, which again demonstrated the satisfied correlation between modeled and observed velocities.
The skill values were all greater than 0.51, which further verified the agreement between modeled and
observed velocities.

The time series velocities from simulations and observations for SCT1 and SCT2 are plotted in
Figures 9 and 10, respectively. In general, the simulated velocities matched well with that of observed
data, even though some data were not recorded for unknown reasons. Overall, FVCOM was validated
by using data from observed drifters, including trajectory and velocities in this study.
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Table 2. Results of statistical analysis between model simulations and observations.

Statistical Measures
SCT1 SCT2

U-Velocity V-Velocity U-Velocity V-Velocity

Root-Mean-Squared-Error (RMSE) (m/s) 0.149 0.056 0.158 0.052
Relative average error (E) (%) 48.65 76.38 73.42 68.44

Correlation coefficient (R) 0.618 0.256 0.310 0.383
p-value for R 0.000 0.001 0.003 0.000

Skill 0.719 0.514 0.577 0.551

3.2. Impacts of Studied Factors on Oil Mass Balance and Trajectory

After validating FVCOM for hydrodynamic forcing, it was incorporated into the OSCAR model to
study the mass balance and trajectory of the oil spilled from the M/V Marathassa. Four potential factors
mentioned in Section 2.4.2 might influence the spilled oil mass balance, including the release start
time, oil discharge duration, wind forcing and recovery actions. The raw data on their influence on the
mass balance of oil (e.g., water surface, shoreline, water column, sediments, atmosphere, biodegraded
and recovered) are presented in Table S6. Since the mass balance for the water column, sediments,
atmosphere and biodegraded were all less than 3% due to the very weak wind/waves, only the oil
components at the water surface, on the shoreline and the oil recovered were statistically analyzed in
this study. Analysis of Variance (ANOVA) was carried out, and the p-values for the influence of studied
factors on the oil mass balance are presented in Table 3. The detailed mass balance distributions (after
three days of tracking) are provided in Figure 11. In addition, the examples of trajectory comparison
are shown in Figures S1–S4.

3.2.1. Influence of Release Start Time

From Table 3, it can be clearly seen that the oil start of release time had a significant impact
on the mass balance of water surface, shoreline and recovered, as their p-values were less than 0.05.
About 32.7% of spilled oil remained on the water surface and heavy contamination on the shoreline
(63%) when the oil started spilling at 12:00, as shown in Figure 11a. In comparison with the 12:00 start
of release time, the shoreline contamination was reduced (52.8%) along with an increased amount
of spilled oil on the water surface (37.9%). If recovery was conducted, 7.46% of the oil was removed
when it was released at 13:00. Interestingly, much more spilled oil (36.4%) can be recovered when
the start of release time was 14:00, along with 32.9% contamination on the shoreline. The similar
contamination on the shoreline was also observed if the oil spill started at 15:00 and/or 16:00, but
larger amounts of spilled oil remained on the water surface (54.7% for and 70.5% for 16:00), rather
than being recovered. In terms of oil trajectory, overall, the earlier the oil spill occurred, such as 12:00,
the greater the contamination of the water surface and shoreline. However, this difference was not
significant when the oil spill started at 14:00 and 15:00 (Figure S1).
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3.2.2. Influence of Wind

The effect of the wind was to increase the amount of oil on the shoreline and decrease the amount
of oil on the water surface compared to the no-wind simulation (Table 3 and Figure 11b). Specifically,
the fraction of oil remaining on the surface decreased from 67% to 23%, and the amount of oil on
the shore increased from 21% to 56%. This can be seen in the trajectory results (Figure S2), which
illustrate the heavy contamination on the shoreline of West Vancouver and the western side of Stanley
Park. The amount of oil recovered stayed roughly constant at 15–20% and was not influenced by wind
forcing in this study.

3.2.3. Influence of Discharge Duration

A short discharge duration (2 h) led to more serious shoreline contamination (54.1% vs. 22.2%)
than that of long discharge duration (22 h) and resulted in less oil on the water surface (29.6% for 2 h
vs. 54.1% for 22 h). Most of the contaminant was still concentrated on the water surface around the
release location after 3 days tracking when a long discharge duration was taken into consideration
(Figure S3). The discharge duration did not play a significant role in the amount of oil recovered.

3.2.4. Influence of Recovery Action

Whether the recovery action did not significantly influence the mass balance of the oiled shoreline
(Table 3), as well as the oil trajectory (Figure S4), only about 34.4% of the spilled oil remained on the
water surface, if the recovery action removed 30.2% of the oil, and 33.5% ended up on the shoreline,
as shown in Figure 11d. When no recovery action was taken (0% of recovered oil), 55.6% of spilled oil
remained on the water surface, and 42.8% contaminated the shoreline.

Table 3. The p-values for the influence of studied factors on oil mass balances. Significant influence
(p-value < 0.05) is shown in bold.

Source Water Surface Shoreline Recovered

Start-releasing time 0.000 0.001 0.008
Wind 0.000 0.000 0.196

Discharge duration 0.000 0.000 0.760
Recovery action 0.003 0.179 0.000

4. Discussion

4.1. FVCOM Validation

In general, the simulated trajectory and velocities from the FVCOM were comparable with that
of SCT drifters in this study. However, it was relatively less capable of predicting SCT2 U-velocity,
as shown in Table 2. This is likely due to the following three reasons: (1) The SCT drifter used in
this study was a shallow water drifter that worked close to the water surface. This type of shallow
drifter was therefore susceptible to the surrounding windage, which could potentially cause higher
uncertainty on recorded data. This was supported by a similar statement that was proposed by
Halverson et al. [40] to explain the inconsistency of radial and observed velocities. (2) Relatively more
observed data of SCT2 velocity were missed, which resulted in a less thorough comparison of modeled
and observed data. (3) The difference between the model and the drifters may also be due to the winds
and waves, which are not included in FVCOM.

4.2. Hindcast of the MV Marathassa Oil Spill

4.2.1. Comparison of Oil Trajectory

The model simulations of oil trajectory were evaluated and compared with the observed oil
distributions, as shown previously in Section 1 (Table S1 and Figure 2). The oil distribution map
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indicated the observed oil trajectory on the water surface and the contamination on the shoreline in
the English Bay and Vancouver Harbour from 8 April 2015 to 10 April 2015 [8]. The contaminated
water surface area was labeled as 1–10, and the contaminated shoreline area was labeled as A–P.
The comparison of the results of modeled and observed for water surface and shoreline contamination
are listed in Tables S7 and S8, respectively. Four scenarios achieved the highest matches with the
observation data. The studied factors’ setting in these four scenarios was: (1) oil started to release at
14:00, discharged continuously (22 h), with wind and without recovery actions (labeled as Scenario
#4 in Table S5); (2) oil started to release at 14:00, discharged continuously (22 h), with wind and
recovery actions (labeled as Scenario #8 in Table S5); (3) Scenario #4, which started to discharge at
15:00; (4) Scenario #8, which started to discharge at 15:00.

As described in Sections 3.2.1 and 3.2.4, there was almost no difference between the oil trajectories
whether or not the recovery action was used, and the difference of trajectories was not significant when
oil started to discharge at 14:00 and 15:00. Therefore, as shown in Tables 4 and 5, those four scenarios
mentioned above have achieved 70% and 62.5% matches in the comparison of surface contamination
and shoreline contamination, respectively.

The oil trajectory in Scenario #4 that started at 14:00 is plotted in Figure 12. It can be seen that oil
was first transported east of the oil release point and then moved to the southwest in the next twelve
hours under the forcing of hydrodynamics and wind. Spilled oil was forced and moved into the First
Narrow and eventually entered into Vancouver Harbour, which resulted in heavy oil contamination
on the water surface and the shoreline around Vancouver Harbour and the First Narrow. There was no
oiled shoreline until 19:00 (9 April 2015) when the oil reached English Bay Beach, which conformed
well to the observed information [4,7]. The majority of shoreline contamination was on the west side of
Stanley Park, West Vancouver, and North Vancouver, which matched the observation data well [4,7].

Table 4. Examples of water surface contaminant comparison. The simulated results were compared
with observation data.

Start-Releasing Time Scenarios #
Labels of Surface Contaminant

Matches (%)
1 2 3 4 5 6 7 8 9 10

14:00
4

√ × √ √ × √ √ √ √ × 70
8

√ × √ √ × √ √ √ √ × 70

15:00
4 × √ √ √ √ × √ √ √ × 70
8 × √ √ √ √ × √ √ √ × 70

Scenario #4 represents oil discharged continuously (22 h), which then moves with the wind and without recovery
actions; Scenario #8 represents oil discharged continuously (22 h), which then moves with wind and recovery
actions. Detail factors’ setting in each scenario is shown in Table S5. “×” means the simulated results do not match
with the observed data; “

√
” indicates the simulated results match the observed data.

Table 5. Examples of shoreline contaminant comparison. The simulated results were compared with
observation data.

Time to Start Spill Scenarios #
Labels of Shoreline Contaminant

Matches (%)
A B C D E F G H I J K L M N O P

14:00
4 × √ √ √ √ × √ √ √ √ × √ × √ × × 62.5
8 × √ √ √ √ × √ √ √ √ × √ × √ × × 62.5

15:00
4 × √ √ √ √ × √ √ √ √ × √ × √ × × 62.5
8 × √ √ √ √ × √ √ √ √ × √ × √ × × 62.5

Scenario #4 represents oil discharged continuously (22 h), which then moves with the wind and without recovery
actions; Scenario #8 represents oil discharged continuously (22 h), which then moves with wind and recovery
actions. Detail factors’ setting in each scenario is shown in Table S5. “×” means the simulated results do not match
with the observed data; “

√
” indicates the simulated results match the observed data.
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Figure 12. Example of oil trajectories for the oil spill that started to discharge at 14:00 on 8 April 2015.
Spilled oil discharged continuously (22 h) and then tracked with wind and without recovery actions
(labeled as Scenario #4 in Table S5). Figures from top to bottom are oil distribution at 8:00 on (a) 9 April,
(b) 10 April and (c) 11 April 2015.

4.2.2. Comparison of Mass Balance

The oil mass balance in the simulations of the above-mentioned four scenarios was compared
with that from the 2D, Automated Data Inquiry for Oil Spills (ADIOS, version 2.0) model (in CCG’s
report) [7]. In CCG’s report, the ADIOS2 model was employed to study the mass balance of spilled
IFO-380. Three metric tons (about 3067 L) of IFO-380 were assumed to be spilled at 4 Coordinated
Universal Time (UTC) on 9 April 2015 (18:00 Pacific time on 8 April 2015) and then tracked for five
days. A constant wind speed of 10 knots (about 5.14 m/s) was selected in CCG’s modeling [7].

The modeling results from the ADIOS2 model (Figure 13) indicated that approximately 11% and
2% of the oil was expected to evaporate and disperse, respectively after three days post spill. The other
87% of spilled oil was expected to remain on the water surface. This proportion of evaporation and
remaining oil was totally different from OSCAR’s modeling. In Scenario #4, as shown in Figures 14
and 15, around 1.4% of spilled oil was predicted to evaporate after three days of tracking. About 24.9%
and 43.1% of the spilled oil were expected to contaminate the shoreline in Scenario #4 that started
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at 14:00 and 15:00, respectively. There are a number of reasons that could contribute to the different
mass balance in the ADIOS2 and OSCAR models. The first main reason is that oil was trapped on
shorelines as observed by oil spill responders. This process was included in the OSCAR model because
it is a 3D fate/transport model that uses geographic and bathymetry data. By contrast, ADIOS2 is
a weathering only model, and it has a limitation in accurately representing the significant onshore
component. Another main difference is the evaporation, of which the rate is affected by wind, wave,
currents and temperature [7]. The wind and currents conditions are very different in this study and
CCG’s modeling.

 

Figure 13. Automated Data Inquiry for Oil Spills (ADIOS, version 2.0) model’s predictions of
evaporated, dispersed and remaining (surface) Intermediate Fuel Oil 380 (IFO-380) oil after three
days of simulation.

 

Figure 14. OSCAR model’s predictions of evaporated, dispersed, remaining (surface contaminant)
and ashore (shoreline contaminant) IFO-380 oil after three days of tracking in Scenario #4 and started
at 14:00.
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Figure 15. OSCAR model’s predictions of evaporated, dispersed, remaining (surface contaminant)
and ashore (shoreline contaminant) IFO-380 oil after three days of tracking in Scenario #4 and started
at 15:00.

By comparison, a lesser proportion of the spilled oil remained on the water surface in Scenario #8
due to recovery actions. Nearly 61.8% (1730 L) and 65.5% (1834 L) of the spilled oil were recovered
when oil was discharged at 14:00 and 15:00, respectively. The modeled recovered oil was more than
the actual volume of spilled oil recovered, which was probably due to the lack of information reported
by the response vessels.

Overall, among the total number of forty studied scenarios, the results from four scenarios agree
well with observations. The results indicate that the M/V Marathassa oil spill was most likely started
between 14:00 and 15:00 on 8 April 2015. This spill was most likely a continuous slow release for an
unknown period (assumed to be 22 h in this study) instead of an instantaneous release.

5. Conclusions

The FVCOM implementation for English Bay and Vancouver Harbour was further validated in
this study by comparing the simulated trajectory and velocities with that of observed data from SCT
drifters (SCT1 and SCT2). This validated FVCOM was then used to generate the hydrodynamic forcing
in English Bay and Vancouver Harbour, which was input in the state-of-art OSCAR model to simulate
the M/V Marathassa oil spill.

The M/V Marathassa oil spill event was numerically simulated to assess the ability of the coupled
oil spill model. Forty scenarios were performed using the OSCAR model to study the effects of various
input parameters on the fate and transportation of spilled oil. The results were compared with the
available data of the M/V Marathassa oil spill. The trajectories from four scenarios match well with the
observed data. The assumed recovery actions were performed better in the scenario of oil discharged
continuously (22 h) with winds at 14:00 than that in the other simulations. The combined results of
trajectory and mass balance indicated that the M/V Marathassa oil spill probably started between 14:00
and 15:00 (8 April 2015) and kept discharging oil for a relatively long time (assumed to be 22 h in this
study). The weathering processes and movement of spilled oil and contamination distribution in the
surrounding waters and coastlines were affected by wind and currents.

In general, the oil spill model integrating the OSCAR and FVCOMs has effectively simulated
the offshore and onshore distributions of the M/V Marathassa oil spill. To our best knowledge, this is
the first study that modeled the oil spill in the English Bay and Vancouver Harbour by using the
OSCAR model.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2077-1312/6/3/106/s1:
Figure S1. Example of oil trajectories for the oil spill with different oil start-releasing time. Figures from top
to bottom are oil start release at (a) 12:00, (b) 13:00, (c) 14:00, (d) 15:00 and (e) 16:00; Figure S2. Example of oil
trajectories for spilled oil forced without wind (top) or with winds (bottom); Figure S3. Example of oil trajectories
for oil discharge instantly (top) or continuously (bottom); Figure S4. Example of oil trajectories for oil spill
without (top) or with (bottom) recovery actions; Table S1. Aerial overflight surveys for the MV Marathassa oil spill;
Table S2. Western Canada Marine Response Corporation’s (WCMRC) response to the spill; Table S2. The chemical
composition of IFO 380 in the OSCAR model; Table S4. Assumptions for mechanical response strategies (recovery
actions); Table S5. Factors’ setting in each simulation; Table S6. The influence of studied factors on the mass
balance of MV Marathassa spilled oil; Table S7. Water surface contaminant comparison. The simulated results
were compared with observation data; Table S8. Shoreline contaminant comparison. The simulated results were
compared with observation data.
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Abstract: Vulnerability mapping of sea-coastal zones is an important element of oil spill response
plans, environmental support for offshore projects, and the integrated management of the marine
environment. The creation of such maps is a complex scientific problem. In their development, it is
necessary to take into account differences in the nature of biotic and abiotic components existing
in the cartographic area, dissimilarities in their relative vulnerability and significance, the seasonal
variability of ecosystem components, and other factors. The purpose of this paper is to briefly review
the main elements of international and Russian methods of mapping the vulnerability of sea-coastal
zones to oil spills, and the development problems of such maps, including problems of using rank
(ordinal) values, and to note possible solutions. Based on the analysis of key existing international
and Russian approaches to vulnerability mapping, it was concluded that almost all methods of map
calculations use rank (ordinal) values. However, arithmetic operations cannot be performed with
them, as they lead to incorrect results. The paper shortly describes the main problems of mapping
the vulnerability of sea-coastal zones to oil (the choice of the map scales and season limits for them,
differences in the units of biota abundance, the calculation of relative vulnerability coefficients for the
considered biotic components, the summation of the vulnerability of objects of different types, etc.).
For some problems, possible solutions are outlined.

Keywords: oil spill response; sea-coastal zones; methods of vulnerability mapping to oil; the problems
of vulnerability maps development; ordinal values; arithmetic operations with rank values

1. Introduction

Prospecting, extraction, and maritime transportation of oil require special attention to
environmental safety, notably with respect to accidental oil spills in the shelf zones. In this regard,
the problem of developing and using sensitivity/vulnerability maps of sea-coastal zones to oil is
especially urgent. These maps should be used in the planning of oil spill response (OSR) activities,
as well as in the course of these activities [1,2]. Such maps are able to minimize the potential damage
from oil spills to natural and man-made environments. Specialists distinguish between two types
of maps. Sensitivity maps represent the sensitivity of a shoreline to oil, which is ranked by the
environmental sensitivity index (ESI). There is a corresponding well-developed procedure for the
creation of such maps; these are widely used outside Russia [1–5]. Vulnerability maps represent the
integrated vulnerability of sea areas to oil spills, describing all negative consequences, possible damage
to biological resources, social and economic objects, and nature conservation territories, should a spill
occur. This paper considers the water areas near the coast (sea-coastal zones), although a similar
approach to vulnerability assessment is fully applicable to the water areas that are more remote from
the shoreline.
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The recommendations of international organizations [1,2] and some other methods [6–8],
emphasize that in order to minimize oil spill damage, it is necessary to take into account both the
vulnerability of sea-coastal zones and the sensitivity of the shoreline by the ESI index. We do not dwell
on examples of sea oil spills because there are a lot of reviews focusing on this problem (for example,
extensive bibliography [9] and bibliography of accident with oil platform in the Gulf of Mexico [10]).
Detailed analysis of important incidents is given in [11–13] and many other publications. Spills
statistics concerned with tanker accidents are represented in ITOPF material [14].

In this paper we consider only issues of the methodology to construct the maps of water
area vulnerability. There is still no consensus on the procedure of vulnerability maps construction.
These maps are compiled by different methods in different countries; they are supposed to have some
general correct provisions and principles. The best situation is when the sensitivity or vulnerability
maps of neighboring countries that have access to the sea are prepared by a single or similar method,
and both are used in OSR, including joint operations. It is important for coordinating the actions of
these countries’ liquidators in large-scale oil accidents affecting the neighbor states.

It should also be noted that a general methodology for constructing the maps of a marine
environment’s vulnerability to oil can be used to make vulnerability maps and assess possible
damage to the environment in any offshore project, for any form of anthropogenic impact. A unified
methodology can be employed for constructing the maps of marine environment vulnerability to
spills of oil and oil products (spills in accidents with tankers, oil platforms, underwater oil pipelines),
reservoir water (accidents in shelf drilling) or suspended matter (in dredging and dumping of the
ground), and acoustical action (working oil platforms, tubing, freight by large-capacity vessels).
With an appropriate common algorithm, differences can only be accounted for in vulnerability
coefficients of the considered groups/subgroups/biota species. This general approach is determined
by the following: (1) the main base of the natural and man-made environment data for vulnerability
mapping is one and the same for different types of exposure; (2) the coefficients of biota vulnerability
themselves from different anthropogenic impacts may differ in one of the parameters, e.g., sensitivity
and/or potential effect (the details are given below); (3) the algorithm for calculating such maps is
virtually the same.

Except for OSR operations, such vulnerability maps are necessary for: (1) conducting preliminary
environmental studies in the area of the possible impact of a project (in Russia they are called
engineering and environmental surveys), which is required for environmental support and justification
of the environmental safety of planned economic activities; (2) assessing the zone of their possible
impact during normal operation and in emergency situations; (3) integrated management of
marine environments, including the integrated management of coastal zones; (4) planning of
environmental monitoring.

In and outside of Russia, there is experience in constructing vulnerability maps [6–8,15–18],
but the calculations of water area integrated vulnerabilities are usually based on ordinal values (ranks)
and the application of associated arithmetic operations. However, the latter is infeasible with rank
values [19–22]. Otherwise, vulnerability maps constructed on this basis are incorrect. At the same
time, refusal to use ordinal values leads to several methodic problems. Therefore, any research in
this area—developing a correct methodology for constructing vulnerability maps of water areas—is
significant and rather complicated, especially with regard to the total vulnerability of a large number
of biological objects in one area. The Appendix A provides a brief justification and an example of the
fact that using rank values in arithmetic operations, including the calculation of vulnerability maps,
leads to incorrect results.

The purpose of this paper is to briefly review the main elements of international and Russian
methods of mapping the vulnerability of sea-coastal zones to oil spills, and the development problems
of such maps, including problems of using rank (ordinal) values, and to note possible solutions.
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2. A Brief Overview of Methods for Constructing Vulnerability Maps

Vulnerability maps for oil are based on different approaches in different countries. The main
methods are referred to below. In their consideration, it is more important to pay attention to the
correctness of vulnerability maps, their clarity, and comprehensibility for the user, rather than the
complexity or simplicity of the methodology. A rigorous approach is also significant.

2.1. The International Organizations—International Marine Organization (IMO), International Petroleum
Industry Environmental Conservation Association (IPIECA), International Association of Oil & Gas
Producers (IOGP)

These organizations prepared reports [1,2] on the mapping of environmentally vulnerable zones
for oil spill response. In this report [2], the terms “sensitivity” and “vulnerability” are not explained,
no distinction is made between them, and the term “sensitivity” is used, with very few exceptions.
The term “sensitivity” always refers to the effects of marine environment pollution associated with
accidental hydrocarbon spills (verbatim: ‘Within this guide, ‘sensitivity’ always relates to the effects of
accidental marine pollution involving hydrocarbons’).

Vulnerability maps are a key stage in the preparation of OSR, and an essential tool for liquidators.
The map scale is a very important element for the methodology and the end product. The nature
and volume of necessary initial data, the volume of cartographic materials, and the possibility of
liquidators to use such maps depend on scale. Let us consider the report of 2012 [2]. The maps
are prepared by the working group during the preparation of OSR plans. There are three levels of
spills—from Tier 1 (a small spill) to Tier 3 (a large-scale spill)—and three map scales corresponding
to them: 1:10,000–1:25,000 (object-related), 1:25,000–1:100,000 (tactical), and 1:200,000–1:1,000,000
(strategic). At different stages of the OSR, they use one or more sets of maps, depending on the level of
the spill.

Tactical maps are developed in the first instance and are fundamental for operations managers and
field coordinators. They show: (1) the type of the shoreline by the ESI index; (2) sensitive ecosystems,
habitats, biological species, and key natural resources; data on their concentration can be expressed in
a simplified manner (presence/absence in ranks/points from 1 (no information) to 5 (high abundance
of species)); (3) social and economic objects: ports, aquaculture, etc.; (4) logistic and other important
resources for OSR; (5) potential sources of oil spills.

Strategic maps are prepared based on tactical maps; they are intended for the OSR headquarter
management team. They represent: (1) the most sensitive types of the coastline, for example, only
ESI 8 index as high and ESI 9–10 indices as very high; and the other types (low sensitivity) may not be
shown; (2) the ranked sensitivity of ecosystems and native resources (a five-point scale from very low
to very high); (3) the ranked sensitivity of socio-economic resources in a manner similar to the previous
parameter. To determine the rank sensitivity of the site, there is a recommended matrix (Figure 1). It is
recommended that an assessment of the site’s sensitivity be undertaken in terms of the diversity of
sensitive species (the abscissa axis) and the sensitivity of those species (the ordinate axis). A similar
scheme can be used to rank socio-economic sites and nature conservation areas.

This is an approach based on rank assessment values. It doesn’t involve performing arithmetic
operations with the values of sensitivity and species diversity, although neither of the two matrix
scales is a metric ratio scale (the rational zero and unit of measurement are not defined).

In our opinion, the most important point here is that this approach does not take into account
the abundance (biomass or number per unit area) of individual groups/subgroups/species of biota.
Abundance also largely defines the impact of oil on the site. Thus, the greater the biota abundance
within a site, the more (with other conditions remaining the same) negative the consequences (possible
damage) of an oil spill for it, and the more priority should be given to such a site in terms of oil
spill protection. The presented matrix and the approach described in the report do not allow for this
fact, since sensitivity and vulnerability are not distinguished. It was already noted that the report [2]
uses only the concept of “sensitivity”, which is not defined in this document. This concept can be
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interpreted as the presence of one or another reaction to the effect of a negative factor on one or another
organism. To our mind, it is more optimal to talk of area vulnerability as of the total negative effects
from oil spills, taking into account not only biota sensitivity, but also a number of other characteristics,
including the abundance of biota in the area and its recoverability rate after a spill. For example,
we may compare two zones. With a “medium” level of sensitivity of one or two mass species (“very
low” diversity), the sensitivity of the first zone will be “medium” (Figure 1). Also with a “medium”
sensitivity of species, but their “high” diversity and “low” total abundance, the sensitivity of the
second zone will be “high”. At the same time, the vulnerability (overall negative consequences) of
the first zone may be greater than that of the second zone, just because of the greater abundance of
species. In addition, the restorability rate of certain species is not taken into account at all. With other
conditions remaining the same, the consequences (vulnerability of the zone) are more serious, based on
the recovery rate of the species after a spill.

Figure 1. The matrix for ranking the sensitivity of a site with a wide range of biological species and
other objects [2]. This simple matrix can be used to establish a sensitivity ranking for an area where a
diverse range of sensitive species is present, by comparing the sensitivity of the species/protected area
with the diversity of species in that area [2] (reproduced with permission from IPIECA, 2018).

Operational maps are optional maps for liquidators and field coordinators; they are developed for
the most sensitive areas and high-risk areas. These maps show detailed information about logistics and
operational resources for OSR, data on the protection of specific vulnerable resources and areas, as well
as information on the protection system for a specific object and details of planned OSR operations.

2.2. The Model of OSR Mapping in Norway (Modellen for Miljoprioriteringer—MOB)

The Norwegian Climate and Pollution Agency (Statens forurensningstilsyn) issued the document
“Emergency Pollution Prevention—Model for prioritizing environmental resources for an acute oil spill
in the coastal zone” [6]. This model is still in force. The authorities of coastal territories prepared maps
according to this method. In case of an oil pollution threat to the sea areas adjacent to the territory,
these maps must be used to coordinate the administration experts in oil spill response operations.
The method is based on the classification of natural resources (biological, geographical, physical,
chemical) and human activity objects according to four factors: natural occurrence, compensability,
conservational value, and general oil vulnerability, which are estimated as ranks/points (Table 1).

Table 1. Estimation of the factor in the MOB model [6] (reproduced with permission from Miljødirektoratet,
Norway, 2018).

Evaluation
Factor Value (VX)

3 2 1 0

Natural occurrence? I - Yes No -
Able to be compensated

economically?
II - No Yes -

Conservational value III National/International Regional Local Insignificant
General oil vulnerability IV High Medium Low Insignificant
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For all objects, vulnerability tables are shown on a point (or rank) scale: for biological objects
(groups/subgroups/species of birds, marine mammals, fish)—in the integer range between 0
and 3; for the types of shores and objects of nature management—in the range between 0 and 2.
After multiplying all the factors (P = VI × VII × VIII × VIV) for each object, they obtain one of the five
priority protection categories: A (P = 36), B (P = 18 or 24), C (P = 9 or 12), D (P = 4 or 6 or 8), E (P ≤ 3).
These categories Psx (where s is the index of the calendar season, x is the reference number) are plotted
on maps along with the boundaries of the corresponding objects’ distribution or location. The maps
are supplemented with a table containing a detailed description of each resource. The map scale is
1:100,000–1:200,000 (actually, they are tactical maps).

The maps take into account all of the most important biological, social, and economic resources,
as well as the sensitivity of the coastline. All important information on resources is collected in a
single format, which can be used both for OSR and for other environmental purposes. Two or more
priority categories marked on the different areas does not change the protection priority of area where
they may overlap. In addition, maps are developed for the whole year (although it is recommended
that they be constructed for distinct seasons in exceptional cases). This, as well as the description of
the resource priorities provided in the tables, may hinder the liquidators or coordinators in making
a decision or undertaking action because they need to address both to the maps and to tables with
resource descriptions in order to decide about the presence or absence of the corresponding resource
in the area. Also, the use of rank values in calculating the priority category (P) of individual objects is
not correct (see Appendix A).

2.3. The Method to Construct Environmental Vulnerability Maps in the Economic Zone of the Netherlands

The method was developed by the National Institute for Coastal and Marine Management (RIKZ,
The Hague) [15]. Its experts prepared seasonal maps for the vulnerability of the Dutch Exclusive
Economic Zone to various pollutants, including oil. The basis for their development is biota seasonal
abundance in each map cell (5 × 5 km) and the vulnerability of biota to toxic agents. Ecosystem
components should be represented by the major groups of biota (benthic and pelagic invertebrates,
fish, birds, mammals), and related habitats. The method takes into account (1) biota species and their
habitats for all vertical zones: near the seabed (zoo benthos), those moving freely in the water column
(pelagic species), those found near the sea surface (birds) and the coast (phytobenthos); (2) the habit
complex of these biota species (flight, swimming, diving, hunting) and the features of typical habitats
(seabed, water column, sea surface, shore), in order to assess the potential impact of the pollutant
on them.

The behavior of pollutants in the environment is divided, according to the Standard European
Behavior Classification (SEBC code, Bonn Agreement), into five main types: gases, evaporators, floaters,
dissolvers, sinkers. The mechanisms of their actions are based on the European criteria of persistence,
bioaccumulation, and toxicity. Vulnerability is determined by three values: the potential effect (E) of
the pollutant on the ecosystem component, its sensitivity (S) to the active factor, and the recoverability
(R) of the component after exposure cessation. The values E, S, and R are calculated from a number of
parameters; the final vulnerability (V) is calculated by the formula: V = (E × S)/R. All the parameters
for the calculation of these three values are estimated expertly on the basis of points/ranks, mainly
in the integer range between 0 and 10. Seasonality is also considered. To construct biota distribution
maps, initial abundance (spec/km2, kg/m2) is normalized and reduced to non-dimension parameters.
The scale of these maps is 1:100,000.

The negative point in this approach is that all the parameters used for calculations and mapping
are assessed as ranks (if regarded as points, these are not “values” for the metric scale). Most
likely, the maps provide strategic, small-scale reference points, especially since the objects of possible
protection from oil spills and other pollutants within the area 25 km2 are represented on the map as
one element. The mapping model takes into account the biota and its habitats, as well as various
socio-economic objects. However, there is no mention of how these two components are “added”
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when calculating the final area vulnerability. In a practical implementation, this method turned out to
be difficult and is not used currently. Nevertheless, the very approach to the calculation of biological
objects vulnerability proposed in this work seems important. In our view, it is advisable to use it in
any methodology for constructing vulnerability maps.

2.4. The Method to Calculate Environmental Vulnerability to Oil Spills and Other Chemicals in the Baltic Sea
(the BRISK Project)

In 2009–2012, the Baltic countries carried out the project “Sub-regional risk of spill of oil and
hazardous substances in the Baltic Sea” (BRISK) [16]. It was a response to the concerns about
the growth of accidents and environmental damage in the sea because of a significant increase in
shipping, particularly oil tanker transportation. The project involved all the countries of the Baltic Sea,
including Russia.

An integral part of the project is mapping the vulnerability of the Baltic Sea to oil and other
hazardous chemical substances. Construction of vulnerability maps is a small part of the whole project;
they serve as a foundation for calculating possible environmental damage in various scenarios of
pollutant spills (Risk of damage = Probability of oil spills × Vulnerability). To reduce the risk in an area,
possessing information on its vulnerability is essential.

The methodology for constructing vulnerability maps is very briefly described in the
document [16]. It covers 17 different objects (natural and socio-economic resources), each with a
distribution map. The maps (positions or areas without biota abundance quantities) are based on
expert evaluation, taking into account the available information. The expert ecological seasonal
vulnerability of each object is ranked as an integer from 0 to 4 (1—low, 4—very high). For each calendar
season, all 17 maps are integrated into one map by summation of the distribution of corresponding
objects, multiplied by their vulnerability coefficients. The vulnerability values on the integrated maps
change in the range, approximately, between 0 and 40. This range is divided into 5 sub-ranges for
better perception, from low to high vulnerability (or from dark green to red on the maps). The map
scale is 1:500,000 (strategic maps).

The map resources were selected after project discussions. The vulnerability ranking is based
on knowledge about the physical and biological characteristics of different ecosystems, organisms,
or socio-economic resources, and their response to oil. Experts considered the behavior of oil,
its potential impact on organisms and their habitats, and the recoverability of respective components
after exposure; abiotic components were also taken into account. Given the incorrectness of the
vulnerability calculation (because it is based on arithmetical operations with ranks), the assessments of
pollutant spill damage risk are incorrect as well.

2.5. The Methodology to Construct Integrated Environmental Vulnerability Maps by CJSC “Ecoproject” and
World Wildlife Fund (WWF) Russia

The leading author of the development in CJSC “Ecoproject” is Doctor of Biological Sciences
V. Pogrebov [7]. The WWF methodology is the result of specialists’ teamwork under the guidance
of WWF Russia [8]. This methodology is completely based on the approach of CJSC “Ecoproject”.
The company has developed and improved it, but has not changed its principles. Starting from the
1990s, the works of V. Pogrebov and his team in creating vulnerability maps was practically unique in
Russia. They greatly contributed to the development of this sphere in the country, and initiated broad
discussions on the topic of working groups; their seminars were organized by WWF Russia.

According to the approach that gave a start to the Ecoproject method, the potential environmental
vulnerability of a water area in a particular season is determined by the abundance of organism
groups that inhabit that area and their varied vulnerability to oil [7]. The algorithm is as follows.
Specialists determine the limits of seasons, define objects for evaluation (all environmental groups,
from phytoplankton to birds), and make maps of abundance distribution for them (rank distribution
based on points). The coefficients of biota vulnerability (in terms of sensitivity and recoverability)
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are evaluated expertly as integer points, in the range from 1 to 5; the potential impact of oil on
the biota groups is not considered, but there are individual vulnerability coefficients for dispersed
oil and oil films. In addition to biota, the method takes into account zones of special significance,
e.g., water protection areas, vulnerable habitats, etc., but they do not constitute a separate group,
and the vulnerability coefficients for them are not given. Initial maps are converted to geographic
information system (GIS) data, represented in the form of layers on a regular grid, the cell size of
which is based on the minimum size of the map contours.

Another step in the calculation of vulnerability maps is the spatial “summation” of all initial
maps developed for the ranked ecological groups’ abundance, taking into account their vulnerability
coefficients as ordinal values. The obtained results are seasonal maps of vulnerability to oil
(and/or other types of exposure). The integrated vulnerability is represented on maps by five color
gradations—from green (low vulnerability) to red (high vulnerability), but the algorithm for dividing
by subranges is not described. The maps have one specified scale. The maps developed according
to procedure [7] are used in many Russian OSR plans and in offshore project materials. This process
is based entirely on the use of ranks (non-metric points), which is not correct. Using cells instead of
polygons for data representation distorts biota distribution and the positions of objects, and can hinder
the orientation of liquidators during OSR.

WWF Russia’s method [8] recommends the use of polygonal distribution of sensitive objects, but it
also involves rank evaluation of species abundance. Two groups of objects are evaluated separately:
biotic components, or important ecosystem components, and vulnerable socio-economic objects,
or areas of priority protection. The map scale depends on a particular purpose and the level of oil
spill: there are plans (1:10,000–1:25,000), large-scale (1:25,000–1:100,000), and small- and medium-scale
(1:100,000–1:1,000,000) maps. For vulnerability factors in this method, it is proposed to use a table,
which is more detailed than in [7], but also the range of the ranks is the same, from 1 to 5. The method
calculations use polygonal shapefiles, but all sample vulnerability maps are presented in [8] with a
division of the calculation area into individual cells, like in [7]. The coastline sensitivity maps should
also support the ESI requirements.

Thus, given that these methods are based on the use of ranks, it is possible to speak of incorrectness
of the maps developed with them.

2.6. The Methodology of Murmansk Marine Biological Institute (MMBI) for Constructing Vulnerability Maps

The methodology developed at MMBI [17,18] was initially based on the methods outlined in [7,8],
but was fundamentally different from them in some aspects. The methods were similar in the
following points: (1) all initial values for calculation (biota abundance distribution, biota vulnerability
coefficients) were estimated in most cases as rank values (in the ranges 1–5 and/or 1–10); (2) the
integrated vulnerability of a site was the total abundance of biota groups/subgroups multiplied by the
corresponding vulnerability coefficients; (3) final vulnerability maps had the form of individual cells,
although the calculation applied polygonal distribution.

However, this method differs from the Ecoproject /WWF Russia procedure in some significant
points. Firstly, there were calculations of both relative and absolute integrated vulnerability [17].
The relative integrated vulnerability of the map area was presented as several (three-five) subranges of
the total range of the area’s integrated vulnerability in a given season. This range is different for each
season. The absolute integrated vulnerability in a particular season is represented as 3–5 subranges
of the total range of the area’s integrated vulnerability for the whole year; the range of vulnerability
is single for different seasons. Secondly, the selection of seasons was based on the limits of the
periods of the year, i.e., the periods when the distribution densities of biota groups/subgroups are
approximately constant [18]. With this approach, the number of seasons can differ from the number
of conventional calendar periods. It should be noted that in the first version of the methodology to
calculate the vulnerability maps for the eastern part of the Barents Sea [17], seasons were defined
before the construction of maps for the biota groups’ abundance distribution. Nevertheless, for large
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marine areas, it is only possible to use an approach that takes into account the seasonal variability of
biota for various parts of the map area. Thirdly, it is the use of metric, dimensionless units of biota
abundance (groups/subgroups distribution density), rather than rank values in subsequent specific
calculations, that became possible due to normalizing the initial distributions to the average annual
abundance of groups in the mapping area [18,23]. However, even partial use of rank values (relative
vulnerability coefficients) also makes the methodology incorrect.

A comparison of the main elements of the vulnerability mapping method of sea-coastal zones
to oil is represented in Table 2. It is possible to draw an overall conclusion from the comparison and
short analysis of the considered methods: all these methods are not quite correct because they are
based on the use of ordinal values (ranks) in different stages of calculations; however, this is not
acceptable, and leads to incorrect maps. We recommend against the use of ranks in vulnerability maps
calculation entirely.

We propose a new, more correct procedure of vulnerability mapping (briefly presented in [24,25],
which is completely based on the use of only metric values. It also assumes a fundamentally different
approach to assessing the specific vulnerability of biota groups with different interactions with water
(see below Sections 3.4–3.6). This direction requires further research, since the “metric” methods still
have unresolved questions and difficulties. Some of them are described below in Section 3.
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3. Main Problems in the Development of Vulnerability Maps

We believe that in order to construct sea-coastal vulnerability maps correctly, one should consider
vulnerable objects and their specific (relative) vulnerability. For the correct assessment of coastal marine
vulnerability to oil, it is necessary to have the following information: (1) the quantitative characteristics
of seasonal spatial distribution of biota ecological groups/subgroups/species (their abundance) on all
sites of the evaluated area; (2) the specific vulnerability of these biota groups/subgroups/species to oil;
(3) the position of the considered abiotic (socio-economic, nature-conservative) objects in the evaluated
area, which are not directly related to the biota abundance; (4) the degree of their significance for human
beings. In fact, the latter parameter is the evaluation of coefficients of abiotic objects’ significance,
an analogue of biota specific vulnerability. All values must be appropriate for the metric ratio scale.

The development of vulnerability mapping procedures has different problems. These are the
main ones, taking into consideration the absence of ranks and points.

3.1. Selection of Vulnerability Mapping Scale

It is recommended developing maps on different scales only in one method [2]. Our proposals
for map scales are as follows (all scale values are tentative and require detailed discussion). Strategic
small-scale maps (1:500,000 and less) give a general representation of the most vulnerable areas.
For such maps (covering quite large areas of the sea), it is difficult to correctly identify the seasons,
for which the maps are designed (see below). But they are important to OSR senior managers for
general strategic planning, especially for large-scale spills. Tactical maps (1:100,000–1:250,000) should
probably be prepared for all sea-coastal areas; they are the most numerous vulnerability maps for
marine and coastal zones. Object-related maps (1:10,000–1:50,000) must be developed for the most
significant marine and sea-coastal areas.

Some questions remain unanswered: what is shown on each of the vulnerability maps of
different scales, what the strategic, tactical, and object-related maps have in common, and what
their fundamental differences are. The work [2] gives comprehensive recommendations in this respect,
and the content of information on maps with different scales is fundamentally dissimilar. We believe
that vulnerability maps should be on different scales for cartographic areas. The difference between
them should be specified by a generalization in transfer from large-scale to small-scale maps. In any
case, this suggestion and recommendations on scales stated in report [2] should be discussed in detail.

3.2. The List of Objects for Evaluation

This is a debatable issue, especially if the development of maps involves specialists working
in different fields. It is important to avoid inclusion into this list all or almost all the biota groups
inhabiting the cartographic area; only the dominant, essential, and Red Book species should be
considered. It is also necessary to take into account socio-economic objects and nature conservation
areas. At this stage, the issue should be generally solved using methods which are in line with the
recommendations given in the report of international organizations [2].

3.3. Adjustment of Limits for Seasons

It is important to decide about periods—will the map be created for the entire year, for each
month, or for certain seasons (climatic, calendar, etc.)? The authors of [17] show that for large areas,
e.g., for the whole eastern (Russian) part of the Barents Sea, there can be several proposed variants
of such periods, based on different criteria. We believe that the most important criterion for the
selection of seasons is the stability of the distribution density of vulnerable objects, primarily biological
ones. While preparing the initial data, it is reasonable to start from the periods of the year within
which the initial distribution (abundance) of the evaluated biota and the position of abiotic objects
remain relatively constant. The seasons for mapping should be chosen with the help of these data on
stability [18]. If you construct a series of vulnerability maps of a long-stretching coastal water area for a
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single season and deal with great variability in many parameters (there is an example of the Barents Sea
coast of the Kola Peninsula), you will inevitably face discrepancies between the maps of neighboring
sites of the cartographic area. The reason is differences in the time limits of the seasons for the western
and eastern parts of the coastal regions. This issue also still requires discussion and solution.

3.4. The Units of Biota Abundance

Usually units of biota abundance are different—spec/km2, kg/m2, g/m3, etc. Integrated map
construction requires summarizing the vulnerabilities of individual biota groups (abundance of
groups/subgroups/species multiplied by corresponding specific vulnerability). This cannot be done if
biota distribution values have different units of measurement. That is why biota abundance must be
in the same units as those that have been proposed in [15] for map calculations using cells instead of
polygons. Another possible option is a transition to dimensionless units via normalizing the abundance
of groups/subgroups/species to the average annual abundance of the corresponding group in the
mapping area [23–25]. The following is a proposed procedure.

Determine the list of vulnerable components of the ecosystem: important biotic components
(IBC), especially significant social-economic objects (ESO), and protected areas (PA). The required
information on all these objects, such as results of expeditions, published works, and expert estimates,
is assumed to have been collected for the area mapped.

Demarcate seasonal boundaries for this area. When boundaries of the seasons do not coincide
with different biotic components (and probably for occurring ESOs), the final number and boundaries
of seasons for maps of integral vulnerability are determined by boundaries of corresponding seasons
of all biotic groups/subgroups/species and abiotic components that are taken into account.

Make seasonal maps of the distribution of ecosystem components for each adopted scale: IBC
density (Bsg, s is the season index, g is the biota group index), locations of ESOs and PAs (Ce and D f ,
where e and f are the indices of the corresponding abiotic objects).

Maps of distributing Bsg are constructed in the units that are accepted for biotic groups
(benthos—g/m2; birds—item/km2).

Normalize seasonal maps (Equation (1)) of distribution of each gth biotic component (Bsg) to the
annual average abundance of the corresponding group Pgy within the mapped area (the superscript y

indicates that a year is the period under consideration):

Bsg(y)= Bsg/Pgy. (1)

This procedure enables us to use identical units of measurement for densities of biota [23]: all biotic
components that are taken into account are represented in the units of the share of the annual average
abundance of the corresponding group in the mapped region per unit area: (kg/m2)/kg = 1/m2;
(item/km2)/item = 1/km2 → 1/m2.

Construct ESO maps, polygons of Ce (Ce = 1 for ESOs, the remaining water area is 0) and PA
maps, polygons of D f (D f = 1 for PAs; the remaining water area is 0).

The normalization of the distribution density of biotic groups/subgroups/species to the annual
average abundance (Pgy) of the corresponding groups makes it possible to represent all biotic
components under study in identical units of measurement (shares of annual average abundance of
the group within the mapped region per unit area).

Such an approach, like in the previous case, can lead to discrepancies between the maps of
neighboring areas, because the maps for each of them are normalized, taking into account the
abundance of biota groups/subgroups/species specific for each area. This issue is not finally resolved
on this stage.
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3.5. Coefficients of Biota (Relative) Vulnerability

Expert evaluation of vulnerability coefficients or the parameters (sensitivity, recoverability,
the potential exposure to oil) required for calculating the coefficients of biota specific vulnerability to oil
can easily be made in integer ranks or points [6–8,15–18]. The refusal to use rank values leads to a new
problem. The indicated parameters are quite difficult to quantify, for both dominant environmental
groups and well-studied individual species. Vulnerability coefficients (V) may be calculated as
described (in simplified view) in [15]: V = (E × S)/R. Considerable research has been devoted to
sensitivity assessments of major biological groups/subgroups/species to oil (evaluation of the values
LC50 and/or LL50). The works were carried out both at the end of the last century (e.g., [27,28] and
many others) and in recent years, when new methodological approaches were used (e.g., [29–32]
and others). On this basis, it is possible to make quite a realistic estimation of the necessary metric
values of S for most biota groups/subgroups/species. The values of S for the remaining objects will be
chosen by expert evaluation, but also on the metric ratio scale. The coefficients of potential exposure
(E, percentage) and recovery (R, years) are probably easier to manage, because the information about
them is extensive and easily available, and the methodological problems are few. Priority protection
coefficients for abiotic components should also be presented as metric values on the basis of their social
and economic importance.

The choice of a certain scale of units for biota sensitivity (S) is an additional problem. It is possible
to distinguish at least 4 habitats: pelagic (fish, plankton), bottom (fish, benthos), littoral (zoobenthos,
macrophytobenthos, birds), and sea surface (birds), although this segmentation is quite nominal. Birds,
mostly contacting with the water surface, are exposed to oil film (including exposure on littoral areas),
but not to oil dissolved or dispersed in water. Fish and plankton are exposed to oil dispersed only in
the water column. Thus, the sensitivities of fish/plankton and birds have different scales and cannot
be fully compared. A possible solution to this problem is also briefly presented in [24,25].

Vulnerability coefficients for IBSs (Vg
b ) should be calculated, and coefficients of priority protection

for ESOs (Ve
c ) and PAs (V f

d ) expertly evaluated. All values are given in the metric scale (the use of
points and ranks is excluded).

For IBCs, the coefficients of V
g
b are estimated by three parameters (Equation (2)):

V
g
b = Rg × Eg/Sg, (2)

where Rg is expressed in years, Eg is in percent, and Sg is in units of values of oil concentrations in
the water, or the thickness of an oil film on the water, that are maximum permissible for biota of the
components that are taken into account; subscript b denotes the ratio of these parameters to the biota.

Initially, LC50 (the lethal concentration of oil in the water) or LL50 (the lethal load of oil) is taken
as the sensitivity of the biota (parameter S

g
n) inhabiting the water column [27–32]; S

g
n is normalized to

the maximum permissible concentration of oil in the water, MPC: Sg = S
g
n/MPC.

The thickness of an oil film that causes 50% death of biota (conventionally S
g
n = LT50) is taken as

the sensitivity of biota that mostly contacts the water surface, i.e., an oil film. Then LT50 is normalized
to the maximum permissible thickness (MPT) of an oil film that does not produce a considerable effect
on these biotic groups: Sg = S

g
n/MPT.

The values of coefficients of priority protection are expertly selected with respect to the ecological,
economical, and/or other importance of objects for humans or the ecosystem of the region. In this

case, the ratios between coefficients V
ei
c /V

ej
c and V

fi

d /V
f j

d (ei, ej, and fi, fj are the indices of ESO and PA
objects) should reflect the ratio of importance between the corresponding objects that is the closest to
reality, rather than the “ratios” of rank (ordinal) values.

The normalization of the values of S
g
n to the maximum permissible concentrations, or the

maximum permissible thickness, removes the dependence of this parameter (sensitivity) from that it is
related to the water column or to its surface; Sg is expressed in identical units of measurement for all
biotic groups/subgroups/species.
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This approach also requires more detailed separate consideration, and more precise determination
of LC50 (LL50) and LT50 values, including the issues of littoral and benthic communities.

3.6. Summation of Vulnerability for Objects of Different Nature

In constructing vulnerability maps, it is necessary to take into account not only the vulnerability
of biota, but also the vulnerability (significance) of abiotic components. Their summation is inevitable,
regardless of possible overlapping of biota distribution areas and socio-economic zones/nature
conservation areas. We propose the following as a solution to this problem.

Maps of vulnerability for IBCs and maps of priority protection for ESOs and PAs (in fact, maps
of ESO and PA vulnerability) based on the data obtained for each season and each scale adopted are
constructed as follows.

For IBCs: Ys
b = ∑g Bsg(y) × V

g
b and normalize the values obtained for each season:

—to max Ys
b per season for maps of relative vulnerability Y

[s]s
b = Ys

b /(maxYs
b per season);

—to max Ys
b per year for maps of absolute vulnerability Y

[y]s
b = Ys

b /(maxYs
b per year).

For ESOs: Ys
c = ∑e Ces × Ve

c and normalize the values obtained for each season:

—to max Ys
c per season for maps of relative vulnerability Y

[s]s
c = Ys

c /(maxYs
c per season);

—to max Ys
c per year for maps of absolute vulnerability Y

[y]s
c = Ys

c /(maxYs
c per year).

For PAs, perform the same procedure as for ESOs.
Make seasonal maps of integral vulnerability of the region:

—for maps of relative vulnerability Y
[s]s
Σ = Kb × Y

[s]s
b + Kc × Y

[s]s
c + Kd × Y

[s]s
d ;

—for maps of absolute vulnerability Y
[y]s
Σ = Kb × Y

[y]s
b + Kc × Y

[y]s
s + Kd × Y

[y]s
d ,

where Kb,c,d are coefficients (estimated expertly) that determine the contribution of IBCs, ESOs, and PAs
to the integral vulnerability.

The range of values of vulnerability Y
[s]s
Σ is divided into three subranges for each season (they are

given ranks (1, 2, 3): each season has its own range of values of min ÷ max Y
[s]s
Σ . Here, ranks can be

used, since this is the final stage of mapping and no further mathematical operations are performed
with the data, except for comparisons of the obtained values shown in the maps.

The range of values of vulnerability Y
[y]s
Σ is also divided into three subranges (they are given

ranks (1, 2, 3): each season has a common range of values of min ÷ max Y
[y]s
Σ .

The segments with different ranks are shown in different colors: green (rank 1 is the minimum
values of YΣ), yellow (rank 2), and red (rank 3 is the maximum values of YΣ).

In addition, here vulnerability maps for each season are developed for two different ranges.
Relative vulnerability maps: for each season there is a unique range of vulnerability (min ÷ max for
specific season). Absolute vulnerability maps—for all seasons of the year, there is one, common range
of vulnerability (min ÷ max for the year).

3.7. Representation of Water Area Total Vulnerability (the Problem of Classification)

The maps should contain the areas of the highest and lowest vulnerability for planning operations
of OSR or for the waters and shores cleaning. Representation of these zones on maps is a result of
vulnerability calculations (performed with the use of GIS programs). It partly depends on the choice
of the method for classifying the final range of integrated vulnerability to subranges (the methods of
equal intervals, natural breaks, etc.). This choice also affects the overall picture of site vulnerabilities.
The classification of subranges may possibly be such that the maps of sea-coastal zones would reflect,
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along the shoreline, areas with a low, medium, and high vulnerability in an approximately equal
manner (proportions). This direction also requires further research.

There are other problems of mapping the vulnerability of sea-coastal areas to oil: whether it is
necessary to create separate vulnerability maps for oil with various densities, how to take into account
the hydrological situation in the area (for example, the density jump layer), the ice conditions, etc.

4. Conclusions

Vulnerability maps of sea-coastal zones are important elements of oil spill response plans,
environmental support for offshore projects, preparation of the Environmental Impact Assessment,
and integrated marine environmental management. The compilation of such maps is a complex
scientific problem. When developing them, it is necessary to take into account the presence of
different biotic and abiotic components in the cartographic area’s ecosystem, differences in their specific
vulnerability, seasonal variability of components, spills of different types of oil, and other factors.

Coastal sensitivity maps and water vulnerability maps have been developed and are being used
in many countries. The brief analysis of several existing international and Russian methods for the
mapping of sea-coastal vulnerability to oil allows us to draw the following conclusions. The majority
of the reviewed methods are based on arithmetic operations with rank values. For all the simplicity
of the approach, it is not acceptable, and leads to incorrect vulnerability maps. Using such maps,
in turn, results in erroneous spill liquidators’ actions in terms of the minimization of damage to the
environment from both oil spills and the operations aimed to eliminate them. It is necessary to reject
the use of rank estimates of parameters if the latter are used in arithmetic operations during calculation
of vulnerability maps.

The article also briefly describes the main problems of constructing the maps of sea-coastal
vulnerability to oil. For some problems, the main solutions are outlined. We suppose that, despite
the complexity of these problems, acceptable and rational solutions exist. The necessary conditions
are initial rigor of the approach to development of mapping algorithm. There is a need to consider
existing mathematical rules and restrictions, processes of oil spreading in water, regularities of biota
distribution and behavior, and oil impact on it. Simplifications and assumptions should be done on
the later stages of calculations considering the complexity of all processes and the necessity of clearly
showing the vulnerable zones on the maps. Only this will allow us to create correct and comprehensible
maps of sea coast vulnerabilities to oil for OSR plans. This direction requires further investigation and
the joint efforts of researchers, experts, and liquidators of spills from different countries.
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Appendix

Appendix A.1 Rank Values in Arithmetic Operations

In the development of vulnerability maps, many algorithms for their calculation assume execution
of arithmetic operations. Then there is a question: is it feasible to use the variables presented on ordinal
(rank) scales in such calculations? This question is discussed in detail in several publications [19–22].
The sequence of numerical characteristics of a value can be denoted by any method as they increase,
for example, by a series of natural numbers. These are ranks. But they are not numerical (metric)
values. They are mere markers that reflect the order of objects. They do not reflect the correlation of
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values. Using ranks (points) is permitted if they are arithmetized. Then all the resulting dimensions on
the linear ordinary scale, which have no numeric character, take the form of numerical information [21].
But this operation is usually not performed in constructing vulnerability maps.

Let us give an example of arithmetic operations when the values X and Y are represented on the
metric scale with a rational zero (ratio scale) and on the rank (order) scale. Let us normalize the metric
values Xm and Ym and represent them as ranks (Xr and Yr)—please, see the left part of the example
table. The obtained products of the ranks Xr × Yr do not reflect the sequence of products of these
values Xm × Ym on the metric scale (the right part of the example Table A1).

Table A1. Example of arithmetic operations—on the metric and on the rank (order) scales.

Initial Values X and Y on the Metric (m) and Rank (r) Scales
The Product X × Y of Metric (Xm × Ym) and

Rank (Xr × Yr) Values

X Xm Xr Y Ym Yr X × Y Xm × Ym Xr × Yr

A 50 1 P 60 5 A × P 50 × 60 = 3000 1 × 5 = 5

B 60 2 Q 40 4 C × Q 70 × 40 = 2800 3 × 4 = 12

C 70 3 R 30 3 A × Q 50 × 40 = 2000 1 × 4 = 4

D 110 4 S 10 2 E × S 120 × 10 = 1200 5 × 2 = 10

E 120 5 T 4 1 B × S 60 × 10 = 600 2 × 2 = 4

If actual quantities are not known and replaced with ranks, performing operations with them
as operations with metric numbers leads to incorrect results. In arithmetic operations, including
calculation of sea-coastal vulnerability maps to oil, it is unacceptable to use any values if all or even
some of them (biota density distribution, biota vulnerability, etc.) are ranks or points (in case points
are not presented on the metric ratio scale). This approach may lead to incorrect results (to incorrect
vulnerability maps). The latter means that in reality the most vulnerable areas can be marked as areas
having an average or even low vulnerability and vice versa. The use of such vulnerability maps in
OSR will not minimize the damage from oil spills and reduce the OSR operations efficacy.

References

1. International Maritime Organization (IMO); International Petroleum Industry Environmental Conservation
Association (IPIECA). Sensitivity Mapping for Oil Spill Response; IPIECA: London, UK, 1994; Volume 1.

2. International Petroleum Industry Environmental Conservation Association (IPIECA); International Maritime
Organization (IMO); International Association of Oil & Gas Producers (OGP). Sensitivity Mapping for Oil Spill

Response; IPIECA: London, UK, 2012.
3. Gundlach, E.R.; Hayes, M.O. Vulnerability of coastal environments to oil spill impacts. Mar. Technol. Soc.

1978, 12, 18–27.
4. Petersen, J.; Michel, J.; Zengel, S.; White, M.; Lord, C.; Plank, C. Environmental Sensitivity Index Guidelines;

Ver. 3.0. Technical Memorandum NOS OR&R 11; NOAA Ocean Service: Seattle, WA, USA, 2002.
5. Introduction to Environmental Sensitivity Index Maps. NOAA, 2008; 56p. Available online: http://response.

restoration.noaa.gov/sites/default/files/ESI_Training_Manual.pdf (accessed on 18 September 2018).
6. Statens Forurensningstilsyn (SFT). Beredskap Mot Akutt Forurensning—Modell for Prioritering av Miljøressurser

ved Akutte Oljeutslipp Langs Kysten; TA-nummer 1765/2000; SFT: Oslo, Norway, 2004; ISBN 82-7655-401-6.
(In Norwegian)

7. Pogrebov, V.B. Integral assessment of the environmental sensitivity of the biological resources of the coastal
zone to anthropogenic influences. In Basic Concepts of Modern Coastal Using; RSHU: St. Petersburg, Russia,
2010; Volume 2, pp. 43–85. (In Russian)

8. World Wildlife Fund (WWF). Methodological Approaches to Ecologically Sensitive Areas and Areas of

Priority Protection Map Development and Coastline of the Russian Federation to Oil Spills; Vladivostok:
Moscow/Murmansk/St. Petersburg, Russia, 2012. (In Russian)

113



J. Mar. Sci. Eng. 2018, 6, 115

9. Fiolek, A.; Pikula, L.; Voss, B. Resources on Oil Spills, Response, and Restoration: A Selected Bibliography.
Library and Information Services Division, Current References 2010-2, June 2010, revised December 2011.
Available online: ftp://ftp.library.noaa.gov/noaa_documents.lib/NESDIS/NODC/LISD/Central_Library/
current_references/current_references_2010_2.pdf (accessed on 18 September 2018).

10. Belter, C. Deepwater Horizon: A Preliminary Bibliography of Published Research and Expert Commentary.
NOAA Central Library Current References Series No. 2011-01; First Issued: February 2011; Last Updated:
13 May 2014. Available online: https://repository.library.noaa.gov/view/noaa/10854 (accessed on
18 September 2018).

11. Albaigés, J.; Bernabeu, A.; Castanedo, S.; Jiménez, N.; Morales-Caselles, C.; Puente, A.; Viñas, L. The Prestige
Oil Spill. In Handbook of Oil Spill Science and Technology; Fingas, M., Ed.; John Wiley & Sons, Inc.: Hoboken,
NJ, USA, 2015; pp. 513–545. ISBN 978-0-470-45551-7.

12. Sweet, S.T.; Kennicutt, M.C., II; Klein, A.G. The Grounding of the Bahía Paraíso, Arthur Harbor, Antarctica:
Distribution and Fate of Oil Spill Related Hydrocarbons. In Handbook of Oil Spill Science and Technology;
Fingas, M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 547–556. ISBN 978-0-470-45551-7.

13. Siddiqi, H.A.; Munshi, A.B. Tasman Spirit Oil Spill at Karachi Coast, Pakistan. In Handbook of Oil Spill

Science and Technology; Fingas, M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 557–573.
ISBN 978-0-470-45551-7.

14. The International Tanker Owners Pollution Federation Limited (ITOPF). Oil Tanker Spill Statistics 2017.
London, 2018. Available online: http://www.itopf.org/fileadmin/data/Photos/Statistics/Oil_Spill_Stats_
2017_web.pdf (accessed on 18 September 2018).

15. Offringa, H.R.; Låhr, J. An Integrated Approach to Map Ecologically Vulnerabilities in Marine Waters in the

Netherlands (V-Maps); RIKZ working document RIKZ 2007-xxx; Ministry of Transport, Public Works and
Water Management, Rijkswaterstaat, National Institute for Marine and Coastal Management: Hague,
The Netherlands, 2007.

16. Sub-Regional Risk of Spill of Oil and Hazardous Substances in the Baltic Sea (BRISK). Environmental Vulnerability;
Doc. No. 3.1.3.3, Ver. 1; Admiral Danish Fleet HQ, National Operations, Maritime Environment:
Copenhagen, Denmark, 2012.

17. Shavykin, A.A.; Ilyn, G.V. An Assessment of the Integral Vulnerability of the Barents Sea from Oil Contamination;
MMBI KSC RAS: Murmansk, Russia, 2010. (In Russian)

18. Shavykin, A.A. A method for constructing maps of vulnerability of coastal and marine areas from oil.
Example maps for the Kola Bay. Bull. Kola Sci. Centre RAS 2015, 2, 113–123. (In Russian)

19. Sachs, L. Statistische Auswertungsmethoden (Methods of Statistical Analysis), 3rd revised and expanded ed.;
Springer: Berlin/Heidelberg, Germany, 1972.

20. Glantz, S.A. Primer of Biostatistics, 7th ed.; The McGraw-Hill Companies: New York, NY, USA, 2012;
ISBN 978-0071781503.

21. Khovanov, N.V. Analysis and Synthesis of Indicators in Information Deficit; SPbU: St. Petersburg, Russia, 1996.
(In Russian)

22. Orlov, A.I. Organizational-Economic Modeling: In 3 Parts. Part 2: Expert Evaluation; Bauman MSTU: Moscow,
Russia, 2011. (In Russian)

23. Shavykin, A.A.; Kalinka, O.P.; Vashchenko, P.S.; Karnatov, A.N. Method of Vulnerability Mapping of
Sea-Coastal Zones to Oil, Oil Products and Other Chemical Substances. RF. Patent 2613572, 17 March 2017.
(In Russian)

24. Shavykin, A.A.; Matishov, G.G.; Karnatov, A.N. A Procedure for mapping vulnerability of sea-coastal zones
to oil. Dokl. Earth Sci. 2017, 475, 907–910. [CrossRef]

25. Shavykin, A.A.; Karnatov, A.N. Method of Vulnerability Mapping of Sea-Coastal Zones to Oil, Oil
Products and Other Chemical Substances Based on Calculations with Metric Values. RF. Patent 2648005,
21 March 2018.

26. International Maritime Organization (IMO); International Petroleum Industry Environmental Conservation
Association (IPIECA). Sensitivity Mapping for Oil Spill Response; IPIECA: London, UK, 2010.

27. Rice, S.D.; Moles, D.A.; Karinen, J.F.; Kern, S.; CarIs, M.G.; Brodersen, C.C.; Gharrett, J.A.M.M. Effects of

Petroleum Hydrocarbons on Alaskan Aquatic Organisms: A Comprehensive Review of All Oil-Effects Research

on Alaskan Fish and Invertebrates Conducted by Theauke Bay Laboratory, 1970–81; NOAA: Silver Spring, MD,
USA, 1984.

114



J. Mar. Sci. Eng. 2018, 6, 115

28. Markarian, R.K.; Nicolette, J.P.; Barber, T.R.; Giese, L.H. A Critical Review of Toxicity Values and an Evaluation

of the Persistence of Petroleum Products for Use in Natural Resource Damage Assessments; API Publication
Number 4594; American Petroleum Institute: Washington, DC, USA, 1995.

29. French-McCay, D.P. Development and application of an oil toxicity and exposure model, OILTOXEX.
Environ. Toxicol. Chem. 2002, 21, 2080–2094. [CrossRef] [PubMed]

30. Environmental Impacts of Arctic Oil Spills and Arctic Spill Response Technologies. Literature Review
and Recommendations December 2014. Arctic Oil Spill Response Technology Joint Industry Programme.
Available online: http://neba.arcticresponsetechnology.org/assets/files/Environmental%20Impacts%20of%
20Arctic%20Oil%20Spills%20-%20report.pdf (accessed on 18 September 2018).

31. Gardiner, W.W.; Word, J.Q.; Word, J.D.; Perkins, R.A.; McFarlin, K.M.; Hester, B.W.; Word, L.S.; Ray, C.M.
The acute toxicity of chemically and physically dispersed crude oil to key Arctic species under Arctic
conditions during the open water season. Environ. Toxicol. Chem. 2013, 32, 2284–2300. [CrossRef] [PubMed]

32. Dupuis, A.; Ucan-Marin, F. A Literature Review on the Aquatic Toxicology of Petroleum Oil: An overview of Oil

Properties and Effects to Aquatic Biota; Canadian Science Advisory Secretariat: Vancouver, BC, USA, 2015.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

115



Journal of

Marine Science 
and Engineering

Article

Multi-Criteria Analysis of Different Approaches to
Protect the Marine and Coastal Environment
from Oil Spills

Antigoni Zafirakou *, Stefania Themeli, Eythymia Tsami and Georgios Aretoulis

Department Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
stefthemeli@gmail.com (S.T.); efits1993@gmail.com (E.T.); garet@civil.auth.gr (G.A.)
* Correspondence: azafir@civil.auth.gr; Tel.: +30-2310-994371

Received: 17 September 2018; Accepted: 13 October 2018; Published: 24 October 2018
��������	
�������

Abstract: Marine pollution has many different sources. This study focuses on oil spills that may occur
after a ship collision or during oil extraction and other oil tanker activities. The most critical oil spill
accidents are presented, followed by the regulatory framework on maritime oil spill management.
Among the measures taken towards the protection of the marine and coastal environment from oil
pollution are floating booms and barriers, oil collecting materials and vessels, absorbent materials,
chemical dispersants, other chemicals, physical degradation, biodegradation, on-site oil burning.
These measures may assist coastal facilities and local authorities in their strategic development of oil
spill mitigation planning and response towards coastal and marine protection from oil spills. In the
present paper, the aim is to rank the approaches of dealing with the oil spill by means of a multicriteria
method. The theoretical background of the selected multicriteria method, called PROMETHEE,
is briefly presented; necessary to understand the ranking of the treatment approaches as well as the
subsequent findings of the possible criteria for the analysis. Almost all of the scenarios evaluated
rank floating booms and barriers as the most suitable methods to deal with oil spill containment,
followed by oil collecting materials and vessels.

Keywords: marine pollution; oil spill pollution; oil spill accidents; oil spill mitigation plans;
coastal protection; statistical analysis; PROMETHEE methodology

1. Introduction

Pollution that comes from a single source, like an oil or chemical spill, is known as point

source. In addition, nitrates and point-source pollution near estuaries and other water outlets can be
catastrophic. Figure 1 depicts clearly how pollution sources are distributed. Urban, agricultural and
industrial runoff coincide with air pollution (namely non-point sources) to a very high 77% of marine
pollution, whereas point sources such as marine transport, dumbing and oil extraction (when focusing
only on oil pollution) contribute only by 23% [1,2]. In addition to that, discharge from malfunctioned
or damaged factories, wastewater treatment plants and desalination facilities, is also considered point
source pollution [3].

Ship collision or malfunction, or simply cleaning and sailing, can contribute to marine pollution
by spreading garbage, black or grey water, sludge, water ballast, coatings or even air emissions,
to the deep sea or at seashore. Oil spills occur after a collision and/or sinking of oil tankers,
under bad weather conditions and are extremely hazardous in ports with dense maritime traffic.
Ship malfunctions and accidents on-board are the main causes of ships running aground, or colliding
contributing to the spreading of the spills. The most common nautical accidents occur due to sinking
or foundering, grounding, structural failure, scuttling, by contact or collision, explosion or fire, or after
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disappearance or abandonment [2]. The environmental impact of oil accidents is immense on both
the water ecosystems and the coastal environment, including the urban and economic growth of
the affected coastal zones (Figure 2) but only for a set period of time, as some areas have natural oil
cleaning ability.

 

44%

33%

12%

10%

1%

Marine pollution sources

Urban, Agricultural &

Industrial runoff

Air Pollution

Marine Transport

Dumping

Oil Extraction

Figure 1. Distribution of marine pollution sources (point and non-point), data from [1]. (Reproduced
from [2], with permission from Themeli, S. and Tsami, E., 2017)

 

Figure 2. Oil stranded on the shoreline adjacent to a fishing farm. Reproduced from [4], with permission
from ITOPF, 2018.

According to the International Tanker Owners Pollution Federation (ITOPF), oil spills can be
attributed to allision/collision, grounding, hull or equipment failure, fire/explosion, while ships
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are at anchor (inland/restricted or in open waters), underway (inland/restricted or in open waters),
or during loading/discharging or other operations, in the following percentages (Figure 3).

Figure 3. Primary causes of spills > 700 tn by operation at time of incident, 1970–2017. Reproduced
from [5], with permission from ITOPF, 2018.

For historical reasons, spills are generally categorized by size: below 7 tn, between 7–700 tn and
above 700 tn. Information is now available on over 10,000 incidents; luckily most of the spills are below
7 tn. According to the International Tanker Owners Pollution Federation (ITOPF) the average number
of recorded small and large-scale oil spills worldwide is remarkably decreasing [2], as graphically
depicted in Figure 4. This is mainly due to the fact that illegal discharges are being increasingly
monitored and ship owners punished by doing such discharges.

 

Figure 4. Recorded oil spills on international scale, annually averaged by decade. Reproduced from [2],
with permission from Themeli, S. and Tsami, E., 2017.
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When looking at the frequency and quantities of oil spilled, it should be noted that a few very
large spills are responsible for a high percentage of the oil spilled. For example, in more recent decades
the following can be seen [5]:

‚ In the 1990s, there were 358 spills of more than 7 tn, resulting in 1,134,000 tn of oil lost; 73% of this
amount was spilled in just 10 incidents.

‚ In the 2000s, there were 181 spills of more than 7 tn, resulting in 196,000 tn of oil lost; 75% of this
amount was spilled in just 10 incidents.

‚ In the period 2010–2017 there have been 53 spills of more than 7 tn, resulting in 47,000 tn of oil
lost; 80% of this amount was spilled in just 10 incidents.

In terms of the oil volume spilled, the statistics for a particular year may be severely distorted by
a single large incident. This is clearly illustrated in Figure 5 [5].

 

Figure 5. Oil spills per decade (1970s–2010s), of over 7 tn, showing the influence of a relatively small
number of comparatively large spills on the overall figure. Reproduced from [5], with permission from
ITOPF, 2018.

Table 1 summarizes the top 10 oil spills accidents in history, in descending order of oil volume
spilled, which were caused due to collision, fire, explosion or sinking. Two of the biggest oil spills in
history, caused after a wellhead blowout, were Deepwater Horizon, on April 21st, 2010, in the Gulf of
Mexico, with 633,116 tn, and IXTOC 1, on June 3rd, 1979, in the Gulf of Mexico, with 470,000 tn.

Figure 6 demonstrates two of the most renowned oil spills in history. The 1989 Exxon Valdez,
the 1991 Gulf war, the 2010 Deepwater Horizon are few of the most renowned oil spills in history
that alarmed the scientific community and directed all towards the management of anthropogenic
environmental disasters in the marine environment. The TORREY CANYON (1967) was the first major
tanker disaster to be brought to the notice of the general public due to enormous media coverage,
and drew universal attention to the dangers of dispersants. The spill triggered the international
Conventions, which form the basis for compensation for damage caused by tanker spills, and interim
voluntary agreements to bridge the gap before the Conventions entered into force and became widely
accepted [5].
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Table 1. The 10 largest oil spills in history in descending order. Reproduced from [5], with permission
from ITOPF, 2018.

Rank
Oil Spill/Case

Name
Date

(MM/DD/YYYY)
Location

Oil Volume
(tn)

Cause

1 Atlantic Empress 07/19/1979
Off Tobago, West

Indies
287,000 Collision

2 ABT Summer 05/28/1991
700 n.mi off the coast

of Angola
260,000 Fire/explosion

3 Castillo de Bellver 08/06/1983
Off Saldanha Bay,

South Africa
252,000 Fire

4 Amoco Cadiz 03/16/1978 Brittany, France 223,000 Collision

5
M/T Heaven

Tanker
04/11/1991 Genoa, Italy 144,000 Explosion

6 ODYSSEY 11/10/1988
700 nautical miles off
Nova Scotia, Canada

132,000 Sinking/Fire

7
TORREY

CANYON
03/18/1967 Scilly Isles, UK 119,000

Collision on
reef

8 SEA STAR 12/19/1972 Gulf of Oman 115,000 Collision

9
IRENES

SERENADE
02/23/1980

Navarino Bay,
Greece

100,000 Explosion

10 URQUIOLA 05/12/1976 La Coruna, Spain 100,000
Collision on

bottom

  
(a) Atlantic Empress (1979) (b) Exxon Valdez Oil spill clean-up efforts (1989) 

Figure 6. Oil spills and clean-up efforts

2. Oil Spill Contingency Plans and Relative Legislation

In the wake of global concerns, the Marine Environment Protection Committee of the International
Marine Organization (IMO) developed the International Convention on Oil Pollution Preparedness,
Response and Cooperation (OPRC) in 1990, to provide a framework for international cooperation for
combating oil pollution incidents. It came into effect only after the ratification from the majority of the
countries-members, in 1995. The OPRC Convention has 19 Articles and 10 Resolutions, covering both
administrative and technical aspects. These call, among others, for parties’ oil exploration and
production activities, shipyards, oil refineries, terminals and depot, ports, harbours and marinas,
manufacturing plants and other establishments using oil, to develop and maintain oil spill response
plans. Ships and vessels are also required to develop and maintain on board a Shipboard Oil Pollution
Emergency Plan (SOPEP), while countries are required to develop and maintain a National Oil
Spill Contingency Plan for major incidents. The parties to the OPRC Convention are required to
establish measures for dealing with pollution incidents, either nationally or in cooperation with other
countries [6]. A contingency plan should comprise three parts:

1. A strategy/preparedness section to get ready for real action, which should describe the scope
of the plan, the geographical coverage, the perceived risks and hazard assessment, the roles
and responsibilities of those charged with implementing the plan, the available equipment,
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scenarios of oil spill incidents accompanied by oil slick simulation and identification of
combating options.

2. A response action, to deal with the spilled oil, which should set out the emergency procedures that
will allow rapid assessment of the spill and the mobilization of appropriate response resources,
as well as application of models upon request for prediction of oil spill movement.

3. A data directory, which should contain all relevant maps, resource lists and data sheets required
to support an oil spill response effort and conduct the response according to an agreed strategy.

All countries with extremely important maritime traffic, are obliged, according to the legislation,
to establish an oil contingency plan and next to them, every port authority, company and facility that
handles oil products in coastal areas. Methodologically the development of a Port Contingency Plan
(PCP) should include the following stages [7]:

a. Recording of general information about the area and description of its basic morphological,
economic, social and environmental characteristics.

b. Establishment of a catalogue of all the hazardous substances (name, characteristics, properties)
handled by the port facilities and mapping of the handling locations in the port area.

c. Identification of all the incidents/scenarios that could lead to emergency situations.
d. Qualitative and quantitative risk assessment for the marine environment in any case of incident

involving any of the dangerous substances.
e. Description of the equipment and the sequence of actions for the collection and disposal of the

dangerous waste.
f. Definition and description of the preparedness exercises that the authorized-to handle emergency

situations personnel should take.
g. Definition of rules and measures to be followed to preserve the personnel’s safety and health.
h. Prediction of the necessary procedures in the case of a plan’s revision.

It is easily derived that stages (e) and (f) are of utmost importance. The recognition of actions
that should be taken in case of an accidental oil spill and the tools required to achieve the best marine
protection comprise the operational activity needed to handle successfully an oil pollution emergency.

Besides the OPRC, the management of the maritime pollution from oil is further supported by
a series of regulatory and legislative acts, such as the International Convention on Civil Liability
for Oil Pollution Damage (1969), the International Convention for Marine Pollution MARPOL73/78,
Bonn Agreement (1983) for cooperation in dealing with pollution by oil and other substances in the
North Sea, Helsinki Convention (1992) on the protection of the marine environment of the Baltic
Sea area, OSPAR Convention (1992) for the protection of the marine environment of the North-East
Atlantic sea, the Protocol on Preparedness, Response and Co-operation to Pollution Incidents by
Hazardous and Noxious Substances (2000), the International Convention on Civil Liability for Bunker
Oil Pollution Damage (2001), the Directive 2013/30/EU on safety for offshore oil and gas operations
and amending Directive 2004/35 EC, other regional/European initiatives, national laws and port
regulations. The NEREIDS project [8] provides an integrated vision of maritime policy and surveillance,
aimed to enhance automatic and unsupervised ship monitoring capabilities for Maritime Situational
Awareness (MSA) and to support advanced and efficient decision-making tools.

International research has focused on modelling the oil spills. The trajectory and the transport
mechanism of the M/V Marathassa oil spill have been studied. The research results showed that the
fraction of the oil on the water surface and on the shoreline, as well as the amount of oil recovered
were affected by the time of the initial release, the overall duration of the discharge, wind and recovery
actions [9].

Another study compares the Department of Energy’s (DOE’s) National Energy Technology
Laboratory’s (NETL’s) Blowout and Spill Occurrence Model (BLOSOM), with the National Oceanic
and Atmospheric Administration’s (NOAA’s) General NOAA Operational Modelling Environment
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(GNOME). A complex approach was used for the comparison of the two models. This proposed
methodology could be used to illustrate the approach an oil spill modeller would typically follow
when trying to hindcast or forecast an oil spill, including detailed technical information on basic
aspects [10].

Detection of oil spills is another research challenge. In this context, an algorithm is developed
to effectively analyse large-scale oil spill areas in SAR images. Furthermore, an ANN algorithm was
used to generate probability maps of oil spills [11]. In the same scientific area of the oil detection is
also focusing the next study. Authors developed algorithms for oil spill detection using radar remote
sensing. The algorithms take into account both the mathematical and the physical modelling of the sea
surface covered by oil slicks [12].

Modelling the “fate” of oil in shallow waters is extremely important. This is the aim of a study,
where a model for the dynamics of oil in suspension, appropriate for shallow waters, including the
nearshore environment is presented. The proposed model is capable of oil mass conservation and
does so by evolving the oil on the sea surface as well as the oil in the subsurface [13]. The theme of the
following papers focuses on the treatment approaches of oil spills. This is field of research of the next
study that describes a two-stage method for optimizing the location of marine oil spill combat forces
and assessing the costs related to this action at the sea. Response time, cost and effectiveness of the
means to treat multiple oil spills is the aim of the current paper. This translates into an optimization
problem that relates to positioning the oil pollution combat ships in ports, in such a way that they are
able combat the anticipated number of oil spills in certain positions in the Polish coast of the Baltic Sea
area in the shortest possible time [14].

Another step towards the treatment of oil spills is the use of novel methods and materials
to prevent or slow the advancement of oil spills and remove them from the sea. Materials and
techniques environmentally friendly are being developed. This is the goal of the following study.
An environmentally friendly and degradable material, Poly (lactic acid) (PLA) ultrafine fibres is
introduced, for the removal of oil from water. It is emphasized that this work is expected to promote
the mass production and application of biodegradable PLA fibres in the treatment of marine oil spill
pollution [15].

Last but not least, is the contribution of the Aristotle University of Thessaloniki, to the
development of oil spill transport models that can predict the fate and evolution of an oil spill and
provide useful information to the authorities in order to apply the abovementioned measures [16–20].

Research has focused on preventing and detecting oil spills, developing methods for treating the
oil spills and removing them from the natural environment, assessing the impact that such accidents
cause on the various forms of life and especially in the human health and nutrition. The current paper
focuses on the treatment stage and highlights a methodological approach for prioritizing/ranking
available treatment methods for oil spills based on the unique characteristics of the affected location.

3. Methodological Approach and Findings

In the present paper, the aim is to rank the alternative treatment approaches for dealing with the
oil spill by means of a multicriteria method. The methodological steps included the following:

‚ Consideration of the alternative treatment approaches for the oil containment (please see Table 2)
‚ Definition of selection parameters/scenarios for the alternative treatment approaches, namely:

✓ Coastal description
✓ Weather conditions
✓ Oil type
✓ Approach characterization

‚ Definition of corresponding selection criteria per parameter/scenario, for the alternative
treatment approaches
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‚ Creation and dissemination of a structured questionnaire to experts in order to assign weights to
the considered criteria (please see Tables 3–6)

‚ Creation and dissemination of a structured questionnaire to experts for assessing the
performance-effectiveness of each alternative treatment approach against each criterion and
within each scenario (please see Tables 7–10)

‚ Application of Visual PROMETHEE per parameter/scenario
‚ Presentation of results and comparison among parameters/scenarios (please see Tables 11–14)

Table 2. Selected alternatives for the multi-criteria analysis.

Codes Alternatives

A1 Floating booms and barriers
A2 Oil collecting materials
A3 Oil collecting vessels
A4 Absorbent materials
A5 Chemical dispersants
A6 Other Chemicals
A7 Physical Degradation
A8 Biodegradation
A9 On-site oil burning

Table 3. Weighting factors for the 1st scenario—Coastal description.

Scenario 1: Coastal Description Weights

C1 Port W1 2.98
C2 Beach (Bathing waters—Touristic zones) W2 2.73
C3 Natura-Ramsar protected wetlands W3 2.92
C4 Fish/mussel-cultures W4 2.81
C5 Waterfront-urban area W5 2.87

Table 4. Weighting factors for the 2nd scenario—Weather conditions.

Scenario 2: Weather Conditions Weights

C1 Sunshine W1 2.95
C2 Rain W2 3.13
C3 Wind W3 2.60
C4 Snow W4 2.36
C5 Fog W5 2.48

Table 5. Weighting factors for the 3rd scenario—Oil type.

Scenario 3: Oil type Weights

C1 Light fractions W1 3.30
C2 Medium fractions W2 3.09
C3 Heavy fractions W3 2.90

Table 6. Weighting factors for the 4th scenario—Approach characterization.

Scenario 4: Approach Characterization Weights

C1 Effective W1 3.30
C2 Required (to apply) W2 2.97
C3 Time consuming W3 3.05
C4 Economical W4 3.06
C5 Well-known W5 3.09
C6 Environmentally friendly W6 3.13
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Table 7. Treatment Effectiveness per Coastal Description Criteria.

Approach/Coastal
Description

Port
Beach (Bathing

Waters—Touristic
Zones)

Natura-Ramsar
Protected
Wetlands

Fish/Mussel-
Cultures

Waterfront-
Urban Area

Floating Booms and Barriers 5 5 5 5 5
Oil Collecting Materials 3 3 3 3 3

Oil Collecting Vessels 3 3 3 3 3
Absorbent Materials 2 2 2 2 2

Chemical Dispersants 1 1 1 1 2
Other Chemicals 1 1 1 1 2

Physical Degradation 1 1 1 1 1
Biodegradation 1 1 1 1 1

On-Site Oil Burning 1 1 1 1 1

Table 8. Treatment Effectiveness per Weather Condition Criteria.

Approach/Weather Condition Sunshine Rain Wind Snow Fog

Floating Booms and Barriers 5 5 2 2 2
Oil Collecting Materials 3 1 1 2 2

Oil Collecting Vessels 4 3 1 1 2
Absorbent Materials 2 2 3 3 2

Chemical Dispersants 1 3 2 2 2
Other Chemicals 1 2 2 2 2

Physical Degradation 2 2 1 1 1
Biodegradation 2 2 1 1 1

On-Site Oil Burning 1 1 1 1 1

Table 9. Treatment Effectiveness per Oil Types Criteria.

Approach/Oil Types Light Fractions Medium Fractions Heavy Fractions

Floating Booms and Barriers 2 3 4
Oil Collecting Materials 2 3 4

Oil Collecting Vessels 1 3 4
Absorbent Materials 3 2 1

Chemical Dispersants 3 1 1
Other Chemicals 3 1 1

Physical Degradation 2 1 1
Biodegradation 2 1 1

On-Site Oil Burning 4 2 1

Table 10. Treatment Effectiveness per Approach Characterization Criteria.

Approach/Approach
Characterization

Effective Required
Time

Consuming
Economical Well-Known

Environmentally
Friendly

Floating Booms and Barriers 4 4 4 4 4 4
Oil Collecting Materials 4 4 4 4 2 4

Oil Collecting Vessels 4 4 3 2 3 3
Absorbent Materials 3 2 2 2 2 3

Chemical Dispersants 2 2 3 2 2 1
Other Chemicals 2 2 3 2 2 1

Physical Degradation 1 2 1 2 2 1
Biodegradation 1 2 1 2 2 2

On-Site Oil Burning 1 2 1 2 2 1
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Table 11. Alternatives’ ranking with respect to the coastal description (Scenario 1).

Ranking Alternatives Phi Phi+ Phi-

1 Floating booms and barriers 1.000 1.000 0.0000
2 Oil collecting materials 0.6250 0.7500 0.1250
3 Oil collecting vessels 0.6250 0.7500 0.1250
4 Absorbent materials 0.1999 0.5749 0.3750
5 Chemical dispersants ´0.3997 0.0752 0.4749
6 Other chemicals ´0.3997 0.0752 0.4749
7 Natural degradation ´0.5501 0.0000 0.5501
8 Biodegradation ´0.5501 0.0000 0.5501
9 On-site oil burning ´0.5501 0.0000 0.5501

Table 12. Alternatives’ ranking with respect to the weather conditions (Scenario 2).

Ranking Alternatives Phi Phi+ Phi-

1 Floating booms and barriers 0.6801 0.7260 0.0459
2 Absorbent materials 0.4067 0.5754 0.1686
3 Chemical dispersants 0.2114 0.4499 0.2384
4 Oil collecting vessels 0.1719 0.4333 0.2615
5 Other chemicals 0.0378 0.3341 0.2963
6 Oil collecting materials ´0.0554 0.3197 0.3751
7 Natural degradation ´0.3718 0.1397 0.5115
8 Biodegradation ´0.3718 0.1397 0.5115
9 On-site oil burning ´0.7090 0.0000 0.7090

Table 13. Alternatives’ ranking with respect to the oil type (Scenario 3).

Ranking Alternatives Phi Phi+ Phi-

1 Floating booms and barriers 0.3504 0.5280 0.1776
2 Oil collecting materials 0.3504 0.5280 0.1776
3 On-site oil burning 0.2797 0.5215 0.2418
4 Oil collecting vessels 0.1284 0.4836 0.3552
5 Absorbent materials 0.1021 0.3883 0.2862
6 Chemical dispersants ´0.1473 0.2220 0.3693
7 Other chemicals ´0.1473 0.2220 0.3693
8 Natural degradation ´0.4582 0.0444 0.5026
9 Biodegradation ´0.4582 0.0444 0.5026

Table 14. Alternatives’ ranking with respect to the approaches’ characterization (Scenario 4).

Ranking Alternatives Phi Phi+ Phi-

1 Floating booms and barriers 0.5667 0.7101 0.1435
2 Oil collecting materials 0.3590 0.5440 0.1850
3 Oil collecting vessels 0.3584 0.5444 0.1860
4 Absorbent materials 0.0059 0.3185 0.3126
5 Biodegradation ´0.1526 0.2071 0.3597
6 Natural degradation ´0.2578 0.1230 0.3808
7 On-site oil burning ´0.2578 0.1230 0.3808
8 Chemical dispersants ´0.3109 0.1075 0.4184
9 Other chemicals ´0.3109 0.1075 0.4184

The theoretical background of multicriteria methods was sought, necessary for understanding the
ranking of the treatment approaches as well as for the subsequent findings based on the considered
scenarios and criteria of the analysis.

The selected method for this evaluation is PROMETHEE (Preference Ranking Organization
METHod for the Enrichment of Evaluations), by Brans and Marechal [21]. In PROMETHEE
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methodology there are no specific instructions about how the weights will be assigned but instead each
decision maker is capable of assigning priorities depending on the criteria [22]. In this context,
various approaches existed in international literature and Macharis et al. [23] were the first to
investigate potential synergies between European and American multicriteria methods. To understand
PROMETHEE method, one should consider a decision problem with n alternatives and k criteria.
For each criterion fj (j = 1, . . . , k), a preference function Pj(a,b) shall be adopted to translate the deviation
between two alternatives a and b into Preference degree, with a range between 0 and 1. This function
describes the difference d = fj(a) - fj(b) between the evaluations of the alternatives on each criterion.

Pj(a,b) = Gj {fj(a) - fj(b)} (1)

A different preference function corresponds to each criterion, regardless if it is qualitative or
quantitative. In Reference [24] the following, six possible functions are proposed: U-Shape, V-Shape,
Linear and Gaussian for quantitative criteria and Usual and Level for qualitative criteria. For qualitative
criteria with no large rating scale, such as the 5-scale rating, Usual function appears as a decent choice,
although for larger scales the most suitable function is Level. For some of the remaining functions,
it is necessary to choose thresholds of Indifference (Q) or Preference (P) [21,25–31]. After choosing the
most suitable function, criteria weights wj are used to calculate the multicriteria preference index π(a,b)
taking into consideration all the criteria.

πpa, bq “
k

ÿ

j“1

wjPjpa, bq (2)

That index is used to calculate the positive preference flow (Phi+, ϕ+(α)) and the negative preference
flow (Phi´, ϕ´(α)), where

ϕ`paq “
1

n ´ 1

ÿ

b

πpa, bq (3)

ϕ´paq “
1

n ´ 1

ÿ

b

πpa, bq (4)

The difference between the preference flows is the Net Preference flow (Phi, ϕ). Higher value of
net preference flow represents higher appeal of the alternative solution. Therefore, in this paper the
highest value of a net preference flow assigned to a treatment approach/alternative identifies the latter
as the best choice among the available treatment methods for the examined scenario.

3.1. Choice of Alternative Approaches for the Oil Containment

In this particular study, the focus is on oil spill pollution and prevention. The alternative
approaches in dealing with oil collection and removal can be ranked in terms of their effectiveness
for the prevention and treatment of marine pollution from the oil spilled in case of an accident.
The most common tools and methods for the spilled oil containment and removal in the sea are:
(1) floating booms and barriers, (2) oil collecting materials, (3) oil collecting vessels, (4) absorbent
materials, (5) chemical dispersants, (6) other chemicals, (7) physical degradation, (8) biodegradation
and (9) on-site oil burning. These are recognized as the ‘alternatives’ (treatment approaches) in the
multi-criteria analysis.

3.2. Selection of Scenarios and Corresponding Criteria

For the optimal choice among the alternatives some ‘criteria’ should be defined. Parameters (in the
context of Visual PROMETHEE, they are called “scenarios”) that are critical for proper selection
of responses to the oil spill, include: (a) coastal description (location - morphology), (b) weather
conditions and (c) oil type. Coastal location and morphology, play a significant role in terms of
economic, ecological or touristic value, as an even small oil spill would create multiple environmental
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and economic effects. The oil type that is spread after an accident and the weather conditions at the time
of the accident, contribute correspondingly to the problem’s dimensions and its solution. For instance,
light, medium and heavy fractions of oil, require different cleaning measures. More specifically,
light products (e.g., gasoline, diesel) do not require costly and time-consuming applications to deal
with, quite the opposite with heavy oil products. Lastly, the weather conditions, such as strong winds,
can be prohibitive and disastrous during cleaning operations if they direct the spill towards a coast,
or can be beneficial if they direct it towards the open seas where a mitigation plan can be applied.

The considered scenarios are assigned specific criteria. Therefore, the proposed scenarios along
with the corresponding criteria include the following:

‚ Scenario 1: Coastal description

✓ Port
✓ Beach (Bathing waters—Touristic zones)
✓ Natura-Ramsar protected wetlands
✓ Fish/mussel-cultures
✓ Waterfront-urban area

‚ Scenario 2: Weather conditions

✓ Sunshine
✓ Rain
✓ Wind
✓ Snow
✓ Fog

‚ Scenario 3: Oil type

✓ Light fractions
✓ Medium fractions
✓ Heavy fractions

‚ Scenario 4: Approach characterization

✓ Effective
✓ Required (to apply)
✓ Time consuming
✓ Economical
✓ Well-known
✓ Environmentally friendly

3.3. Determination of Weights for the Criteria

PROMETHEE multi-criteria analysis method was chosen to rank the approaches than can be
used to deal with oil spills, based on the criteria already mentioned. The Visual PROMETHEE
Academic Edition program was used. As with any multicriteria method, it is imperative to define
alternatives as well as the evaluation criteria. The following tables show in detail the alternatives
(Ai) and the criteria (Cj) to be used along with their codification to facilitate data input in the Visual
PROMETHEE application.

Weights are required according to the PROMETHEE methodology. This was pursued by collecting
questionnaires and following a statistical analysis through the SPSS program (Statistical Package for
Social Sciences). These questionnaires were distributed to scientists of various disciplines, who were
asked to rank, according to their knowledge, the criteria that should play a significant role in the
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decision making of an oil spill containment. The scale was defined in such a way that 1 denotes
the minimum significance of each criterion examined and 5 the maximum significance, respectively.
The average weights for each criterion were ultimately used as the final weight-value for each criterion.
Tables 3–6 below, present the weights assigned to the criteria per scenario and serve as the entry data
in the Visual PROMETHEE application.

Visual PROMETHEE software used the average weights as seen in the criteria tables and
the performance/effectiveness assessment according to experts for each alternative per criterion.
The application succeeded in assessing which alternatives are considered best with respect to the
aforementioned criteria per scenario.

3.4. Determination of Treatment Approaches’ Effectiveness Against Each Criterion

The Visual PROMETHEE application additionally needs as inputs the effectiveness/performance
of each treatment approach against each criterion. This was made possible through a structured
questionnaire survey towards a number of selected experts. The questionnaires were completed
through interviews. The following Tables 7–10, present the mean values of the effectiveness for each
treatment approach per criterion as recorded through the survey.

4. Results

The results of Visual PROMETHEE software for the four scenarios (coast description,
weather conditions, oil type and approach characterization), are presented herein based on net,
positive and negative flows. Higher value of net preference flow, as mentioned before, represents
higher appeal of the alternative solution. The net preference flow (Phi) is calculated by adding the
positive (Phi+) and negative (Phi-) flows.

Table 11 presents the ranking of the alternative solutions, based on net, positive and negative flows.
It seems that the best four approaches to deal with oil spills, with respect to the coastal description, are,
in descending order: floating booms and barriers, oil collecting materials and vessels and absorbent
materials. The remaining five techniques were not ranked as important.

Table 12 shows the ranking of alternative solutions to deal with oil spills with net, positive and
negative flows. It depicts that the best five ways to deal with oil spills, with respect to the
weather conditions, are, in descending order: floating booms and barriers, absorbent materials,
chemical dispersants, oil collecting materials and other chemicals. The remaining four show a negative
flow, so they are not considered as best approaches, when dealing with the weather conditions.

Table 13 shows the ranking of approaches with net, positive and negative flows. It seems that
the best five ways to deal with oil spills, with respect to the oil type spread, are in descending order:
floating booms and barriers, oil collecting materials, on-site oil burning, oil collecting vessels and
absorbent materials. The remaining four show a negative flow, so they are not accounted for best
approach, when the oil type is considered.

Table 14 presents the ranking of approaches with net, positive and negative flows for each
alternative in relation to the features examined. It depicts that the best four ways to deal with oil
spills are, in descending order: floating booms and barriers, oil collecting materials and vessels and
absorbent materials. The remaining five show a negative flow, so they are not considered as best
approaches, with respect to the characterization of these approaches.

Taking into consideration all results, it is noticed that for the four examined scenarios,
the alternative methods preferred by the participants of the survey, are the floating booms and
barriers, the oil collecting vessels and the absorbent materials, which all show a positive net flow.
Next, the oil collecting materials show a positive net flow in three of the four scenarios (only in the case
of the weather conditions they show a negative net flow). The opposite is noticed for the treatment
approaches of natural degradation and biodegradation, which always present a negative net flow.
In addition, chemical dispersants and other chemicals exhibit a negative net flow in three out of four
cases (only in the scenario of weather conditions a positive net flow is presented) and the on-site oil
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burning exhibits a negative net flow in three out of the four cases (only because of the criteria for the
type of oil present a positive net flow).

Finally, Table 15 was created to illustrate and summarize the ranking of the alternatives. Table 15
highlights that in all four cases, the floating booms and barriers are in the 1st place and in one of
them (criteria related to the scenario: type of oil) together with the oil collecting materials are ranked
1st. In general, oil collecting vessels and absorbent materials occupy high positions in the ranking
(2nd–5th) while other chemicals, chemical dispersants, natural degradation, biodegradation and on-site
oil burning occupy mainly the last positions (with the exception of on-site burning which in one case
occupies the 2nd position).

Table 15. Frequency of occurrence of approaches for each position in the ranking.

APPROACH

RANKING
1 2 3 4 5 6 7 8 9

Floating Booms and Barriers 4 1 0 0 0 0 0 0 0
Oil Collecting Materials 1 3 1 0 0 1 0 0 0

Oil Collecting Vessels 0 1 2 2 0 0 0 0 0
Absorbent Materials 0 1 0 2 1 0 0 0 0

Chemical Dispersants 0 0 1 0 1 2 1 1 1
Other Chemicals 0 0 0 0 2 2 1 1 1

Natural Degradation 0 0 0 0 0 1 3 3 2
Biodegradation 0 0 0 0 1 0 2 3 2

On-Site Oil Burning 0 1 0 0 0 1 2 1 2

5. Conclusions

In the present study, the aim was to prioritize the actions (treatment approaches) that can be taken
from local authorities and other relevant authorities, in the case of an oil spill accident, through a
multicriteria methodology. Initially reference was made to point sources of marine pollution, such as
oil accidents, which even though they contribute much less than the non-point sources of land runoff,
their effect on the marine environment is direct, eminent and long-lasting. Both the environment
and the economy of the affected areas suffer the consequences. Therefore, strict legislation exists,
which requires mitigation plans readily available by the relevant authorities. The prioritization of
these plans is very crucial, depending on the coastal characterization (port, beach, wetland etc.),
the weather conditions at the time of the accident and the cleaning efforts and the oil type. With the use
of Visual PROMETHEE application, the alternative cleaning methods were ranked with respect to the
abovementioned criteria. The weight of each criterion and the performance of each treatment approach
per criterion, were the subject of a questionnaire survey that took place, with the participation of expert
scientists from various disciplines. The theoretical background of the multicriteria method is briefly
presented, necessary for understanding the ranking of the treatment approaches. The alternative
approaches to deal with an accidental oil spill were selected from among a wide variety. The most
prominent are floating booms and barriers, oil collecting materials and vessels, absorbent materials,
chemical dispersants and other chemicals, physical degradation and biodegradation and, finally,
on-site oil burning.

Based on the weighting factors, provided by the questionnaires and the multicriteria analysis,
the alternatives were ranked. The results have identified the floating booms and barriers, as the best
oil spill containment approach, followed by the oil collecting vessels and the absorbent materials.
Given the scenarios of oil type, weather conditions and the coastal characterization, as well as the
opinion of the participants to the questionnaire on each alternative method, those three approaches
are nominated as the most popular and effective. Even though the data sample was relatively small,
PROMETHEE methodology is capable of completing the analysis and provide reliable results.

129



J. Mar. Sci. Eng. 2018, 6, 125

However, regarding future work, the same questionnaires could be distributed to a narrower range
of disciplines on oil spill or marine pollution related fields, and/or to a greater number of participants.
Moreover, additional criteria and scenarios could be considered and alternative multicriteria methods
could be applied. Furthermore, the combined simultaneous consideration of all scenarios could be
examined, in order to identify the optimum treatment approach or examine relevant combinations
of treatment approaches. The criteria weights could be evaluated based on a more extensive body
of experts. Finally, as part of the future research, the proposed model will be applied in real case
studies and examine the effectiveness of a simulated application of the identified optimum treatment
method. Limitations of the current research focus on the criteria weights and treatment approaches’
effectiveness, because these are evaluated by experts, bearing in mind the special conditions of Greece.

Conclusively, marine pollution created by oil spills is eminent and requires immediate action.
Local authorities must obey the relevant legislation and provide the proper equipment and mitigation
plans to deal with the containment of the spills. The needs and requirements for taking measures
against pollution vary according to the nature and utilization of each site under consideration. Lack of
pollution detection due to extreme weather conditions leads to unpleasant consequences. This study
verifies that the allocation of oil spill combating stations, in the form of containers, where the necessary
booms, pumps and dispersants are stored, to be transported to the oil spill accident site by special
vessels and well-trained crews, in the least time, is an effective approach. Among other tools are the
oil spill transport models that can predict the fate and evolution of an oil spill and provide useful
information to the authorities in order to apply the abovementioned measures. These tools could be
evaluated in another similar analysis.
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Abstract: This study examines the use of chemical dispersant to treat an oil spill after the initial release.
The natural and chemically enhanced dispersion of four oil products (dilbit, dilynbit, synbit and
conventional crude) were investigated in a wave tank. Experiments were conducted in spring and
summer to capture the impact of temperature, and the conditions in the tank were of breaking waves
with a wave height of 0.4 m. The results showed that natural dispersion effectiveness (DE) was
less than 10%. But the application of dispersant increased the DE by an order of magnitude with a
statistically significant level (p < 0.05). Season (spring versus summer) had an effect on chemical DE
of all oils, except for the conventional oil. Thus, the DE of dilbit products is highly dependent on the
season/temperature. A model was fitted to the DE as a function of oil viscosity for the chemically
dispersed oil, and the correlation was found to be very good. The model was then combined with a
previous model compiled by the author predicting oil viscosity as a function of time, to produce a
model that predicts the DE as function of time. Such a relation could be used for responders tackling
oil spills.

Keywords: Access Western Blend (condensate/bitumen-dilbit); Western Canadian Select (condensate
mixed with synthetic crude/bitumen-dilsynbit); Synthetic Bitumen (synthetic crude/bitumen-Synbit);
Heidrun; dispersant; wave tank; dispersion effectiveness (DE)

1. Introduction

Crude bitumen, produced in Alberta, Canada, is a highly viscous crude oil and semi-solid at
room temperature. The majority of the oil produced is shipped via pipeline and railcars outside the
province for refinement or export. In order to meet conventional oil pipeline specifications, the crude
bitumen is diluted with a lighter hydrocarbon oil to reduce its viscosity and subsequently improve
flow. The blending process for crude bitumen is at the discretion of the oil producer, so a wide variety
of products of varying chemical composition is produced [1]. Heavy oil sands (blended bitumen)
represent ca. two million barrels per day (b/d) of the four million b/d of crude oil produced and
transported in Canada [2]. From pipelines, oil products may be transferred to tankers for shipment to
global markets. Canada’s production, transport, and sale of these products are expected to increase by
a million barrels per day in the next decade [2]. The anticipated growth in oil production and transport
increases the risk of oil spills in aquatic areas, and places greater demands on oil spill transport routes
and capabilities to respond to spills.
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In July of 2016, Environment Canada released new regulations and a list of approved oil spill
treating agents that included COREXIT®EC9500A as an alternative measure, to recovery, to mitigate oil
spills that occur in waters offshore Canada [3]. The use of a spill treating agent in offshore areas, by the
responding parties, is to reduce damage to shoreline areas that are highly productive and sensitive,
and also costly to clean. The application of conventional techniques, such as spill treating agents,
are limited to studies showing significant, but incomplete effectiveness of COREXIT®EC9500A on a
Cold Lake bitumen blend (e.g., Cold Lake crude bitumen blend with 30% condensate, dilbit) spilled
under different environmental conditions [4,5]. However, there is no information in the literature
to support the use of chemical dispersant to treat surface spills of various other oil sands products
(e.g., Access Western Blend (AWB) or dilbit, Western Canadian Select (WCS) of dilsynbit and synthetic
bitumen or synbit) that have weathered at sea, post spill. In addition, a science-based tool to estimate
the window of opportunity to treat such spills is highly desirable. According to a Royal Society
of Canada report on the behaviour and environmental impacts of crude oil released into aquatic
environments [6], more research is required on the natural and chemically enhanced dispersion of
bitumen blends under a variety of oceanographic conditions.

Chemical dispersants have been shown to be effective in treating heavy fuel oil, but water
temperature can be a limiting factor [7,8]. Therefore, seasonal temperature variations are considered
in this study, since the blended bitumen products are classified as heavy oils. Also, weathering of
oil can increase its viscosity, which reduces the effectiveness of chemical dispersant to treat spills [9].
The chemical dispersant, COREXIT®EC9500A (as the only listed dispersant for offshore use in Canada),
is tested at a dispersant-to-oil ratio (DOR) of 1:20 (manufacturer’s recommended dose) to determine
its effectiveness at treating surface spills of bitumen blends and readily dispersible conventional oil
spilled on seawater in a flow-through wave tank during spring and summer of 2016 and 2017 in
Atlantic Canada.

Attempts are made to address these gaps in knowledge by evaluating (1) dispersant effectiveness
by oil type, including fresh and weathered products and seasonal effects (i.e., water temperature) to
generate a new dispersant model based on empirical data; and (2) a previously generated viscosity
weathering model [9] integrated with the newly generated dispersion effectiveness model to provide a
means to estimate the effectiveness of dispersant to treat weathered oil. The information generated
will aid oil spill responders and decision-makers on the appropriate conditions, where dispersant
might be applicable to treat oil spills that have weathered at sea.

2. Materials and Methods

2.1. Oil Types and Characterizing the Chemical Composition and Physical Properties of the Oil Products

Access Western Blend (a dilbit comprised of crude bitumen blended at 30% with condensate),
synthetic bitumen (a synbit made up of 50% synthetic crude oil blended with crude bitumen) and
Western Canadian Select (a dilsynbit consisting of 50% synthetic crude oil/condensate blended with
crude bitumen) were selected, because they represent the highest volume of oil sands products
transported throughout Canada. Heidrun was also selected as the reference conventional crude,
since it physical properties are reasonably close to the blended bitumen products. Similar to the
technique used by Li et al. [10], the bitumen oil products were artificially weathered by purging them
with nitrogen for 48 h at ~20 ◦C. Weathering the products prior to placing the oil in the tank for
dispersion effectiveness testing is a key step as weathering generally increases oil viscosity and is likely
to limit chemical dispersant effectiveness.

Samples of the unweathered oils were evaluated for saturates, aromatics, resins and asphaltenes
(SARAs) using thin-layer chromatography coupled with flame ionization detection (TLC-FID) [1,11].
To monitor changes in the physical properties of the oil at various seawater temperatures; recovered
oil samples were analyzed by an Anton Paar SVM 3000 Analyzer to quantify viscosity [12] and
density [13].
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2.2. Wave Tank Facility

The wave tank facility is located at the Bedford Institute of Oceanography (BIO) in Dartmouth,
Nova Scotia. The tank dimensions are 30 m long, 0.6 m wide and 2.0 m high, with a typical water level
of 1.5 m (Figure 1). The tank is equipped with a series of manifolds to generate a more or less uniform
current along the wave propagation direction; hence, the label flow-through system has been used to
evaluate dispersant effectiveness of fresh and weathered crude oils [4,5,8,14–16].

 

Figure 1. Schematic diagram (not to scale, all units in cm) illustrating the location of the oil source
(black ellipse between A and B), Laser In-situ Scattering and Transmissometry (LISST) particle counters,
sampling locations at A, B, C, D (3 depths), the effluent port E (1 port) and surface (near sample location
D). LISST#1 is at location B (ca. 1.2 m downstream at a 0.45 m depth) and LISST#2 is at location D
(ca. 12 m downstream at a 0.45 m depth) of oil release.

The hydrodynamics of the various wave types generated in the wave tank facility has been
characterized in prior works [17,18]. Each experiment was conducted for one hour during which each
wave cycle (four breakers) lasts for 15 s followed by a quiescence period that lasts for 25 s.

2.3. Oil and Dispersant Application during Wave Tank Tests

The experimental factorial design involves testing of four oils with two treatments (without
and with dispersant) in triplicate over two seasons. Therefore, the total number of runs was 24,
conducted in random order for spring and summer experiments. Briefly, for each experiment, quiescent
conditions were achieved in the tank (i.e., no waves). Next, ca. 240 g of oil product was gently poured
onto the filtered seawater surface within a 40 cm diameter ring located 10 m downstream from the
wave-maker and ~12 g of the dispersant COREXIT®EC9500A (Nalco, active surfactant is dioctyl
sodium sulfosuccinate; U.S. Patent No. 614285) was sprayed gently onto the oil slick through a
pressurized nozzle (60 psi, 0.635 mm i.d.). This resulted in a DOR of 1:20. The wave-maker was
started, and produced a sequence of waves. The ring was promptly lifted prior to the arrival of
the first breaking wave on the location of the ring. The sequence of waves; generated a 0.4 m high
plunging breaker (where the water curls and re-enters the water surface downstream) every 40 s at the
same location using the dispersive focusing technique [19]. In this study, only breaking waves were
investigated with the use of chemical dispersant to treat oil spills, since an earlier study [20] revealed
that spill treating agents were ineffective in the dispersion of condensate bitumen blends when no
wave breaking occurs.
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2.4. Wave Tank In Situ Measuring Devices

Two particle size counters (Laser In-situ Scattering Transmissometry (LISST)-100X,
Sequoia Scientific, Inc., Bellevue, WA, USA) were employed during the experiments, one at
1.2 m and another at 12 m downstream of the oil release point and both at a depth of 0.45 m (Figure 1).
Particle size (2 to 500 µm) distributions were recorded at 2.0 s intervals for 1 h per experiment as in
previous studies [4,8,10,14–16].

The Sauter mean diameter DSauter was estimated based on the LISST measurement [21]. It is
obtained as:

DSauter = D32 =

M

∑
i

ciDi
3

M

∑
i

ciDi
2
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where ci is the concentration of particles, calculated from the volume concentration as obtained from
the LISST measurements (ci = Vi

( π
6 )D3

i

); D is the particle diameter; the subscript i refers to the size

class, and M is the total size bins (32 intervals herein).

2.5. Laboratory Analysis of Seawater Samples from Wave Tank Studies

The experimental and sampling procedures were consistent with the crude oil dispersant efficacy
testing in the flow-through wave tank reported previously [4]. Four water sampling devices were
deployed, one at 2.0 m upstream from the oil release point and the other three downstream at 2.0 m,
8.0 m and 12 m from the oil release point (Figure 1). Each of the four samplers, collect water (~100 mL)
at three depths (0.05, 0.75 and 1.4 m) in the tank at the time points: 5, 15, 30, 45, and 60 min. In addition,
effluent samples (from the side opposite the wave-maker) were taken (Figure 1). Four time-zero
samples (prior to oil release, to check background levels) were selected at arbitrary sampling locations
(Figure 1).

The collected water samples were extracted and analysed for total petroleum hydrocarbons (TPH)
using a gas chromatograph equipped with flame ionization detection (GC-FID) [4,22]. The method is a
modified version of EPA 3500C, whereby the sample container is the extraction vessel. Briefly, 12 mLs
of dichloromethane (DCM) were added to a 125 mL amber glass sample bottle containing ~80 mLs
of seawater collected during the experiments. Next, the sample was placed on a Wheaton R2P roller
(VWR, Canada) for 18 h. The roller has been modified to accommodate a 3-inch (internal diameter)
PVC pipe into each roller slot. This modification permits sample containers of different sizes to be used
in the apparatus. Once extraction was complete, the sample bottles were removed and the DCM was
recovered. The recovered DCM was placed in a pre-weighed 15 mL centrifuge tube, and the solvent
was removed using a nitrogen evaporator until the final volume reached 1.0 mL graduation on the
centrifuge tube. The extracts were then analysed by GC-FID. Calibration standards prepared from the
test oils were used to develop calibration curves for evaluating the oil concentration in the seawater
extracts. The method detection limit is <0.5 mg/L. The benefit of this procedure is that 240 samples
can be extracted simultaneously; thus increasing productivity with acceptable accuracy and precision.

3. Results and Discussion

3.1. Composition and Physical Properties of Test Oils

In their unweathered state, bitumen blends have viscosities >200 cSt @ 15 ◦C and are classified
as heavy oils (Table 1). The bitumen blends contain a greater percentage of resin and asphaltenes
compared to Heidrun crude oil, which is the medium conventional crude. Depending on the rate of
diluent released and seawater temperatures during a spill, these high molecular weight (>500 atomic
mass units) chemicals can greatly affect the physical properties (e.g., density and viscosity) of the
oils that are relevant to responding to spills. The source of these chemicals in blended bitumen
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products is most likely from the crude bitumen. Oil sands products are expected to significantly
weather within a few hours post-spill, thus significantly altering their viscosities, which would limit
dispersant effectiveness [9]. Heidrun is not expected to weather to the extent that limits its treatment
with chemical dispersant after a spill. The viscosities and densities of the four oils, at the recorded
experimental seawater temperatures are found in Table S1 (Supplementary Materials) where one notes
a viscosity range varying from 60 up to 10,000 cSt.

Table 1. Saturates, aromatics, resins and asphaltenes (SARAs) contribution and physical properties for
the three oils (unweathered).

Oil Type Chemical Composition Physical Properties Oil Class

Sat Aro Resin Asph Viscosity Density API◦

%Contribution (cSt) (g/cm3)

Access Western Blend (AWB) 14 23 46 17 244 0.9189 22.3 Heavy
Heidrun 38 40 27 4 68.9 0.9132 23.3 Medium
Synbit 20 10 52 18 205 0.9304 20.4 Heavy

Western Canadian Select (WCS) 20 10 57 13 211 0.9214 21.9 Heavy

3.2. Test Conditions during Wave Tank Studies

To capture the effect of water temperature on the chemical dispersion of the test oil products,
experiments were conducted consecutively during the spring and summer of 2016 and 2017 in
Atlantic Canada and the physical measurements of the seawater obtained are recorded in Table S1
(Supplementary Materials). The water was obtained directly from the Bedford Basin, Dartmouth Nova
Scotia, Canada and its temperature ranged from 3.7 ◦C to 19.7 ◦C for the entire study. Water temperature
can affect dispersant effectiveness when treating heavy conventional oils such as Intermediate Fuel
Oil (IFO) 180 [8]. Salinity is also an important factor to consider, since it can affect the efficacy of
dispersants, such as COREXITEC®9500A, that are formulated for saltwater environments [23]. In our
experiments, the salinity, over spring and summer months, ranged from 25.5 to 30.4 parts-per-thousand
(ppth). The small difference between these values suggests that salinity variation would not make a
measureable impact on the behavior of the test oils during the experiment.

3.3. Laser In-Situ Scattering Transmissometry (LISST)-100x

Since natural dispersion was very poor and due to transport and dilution, information collected
from the first LISST (1.2 m from oil release) was placed in the Supplementary Materials (Figures S1,
S3 and S5). Figure 2 reports contour plots of oil droplet volume concentration (µL/L) obtained from
the second LISST-100x (12 m from the oil application) for the natural dispersion case as a function of
time. The vertical axis (y-axis) represents particle or oil droplet size (µm). Additional information on
particle sizes, volume concentrations and Sauter values can be found in the Supplementary Materials
(Figures S1–S4). Without any treatment, the four oils showed poor natural dispersion under spring
and summer conditions, where very little oil (in dispersed form or as small droplets) was in the water
column; only the largest size (i.e., >100 µm) droplets had a non-negligible concentration, but still
low. The findings in Figure 2 are consistent with the literature of conventional oils; oil droplets that
have been produced by breaking waves in the absence of dispersant are typically larger than 100 µm,
have a unimodal distribution, and tend to rise to the surface where they are likely to coalesce [8,10,14].
The Sauter mean diameter values of Figure 2 varied between 150 to 350 µm, which is in agreement
with prior studies on heavy oil dispersion.

Figure 3 reports contour plots of oil droplet volume concentrations (µL/L) obtained from the
LISST-100x (12 m from the oil application) for the chemical dispersion case as a function of time.
The vertical axis (y-axis) represents particle or oil droplet size (µm). The oil detected by the first LISST
(1.2 m from oil release, Supplementary Materials) remained dispersed in the water.
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Figure 2. Contour plots (LISST data, 12 m from oil release) showing seasonal effects on the concentration
of oil particle size simulated in the wave tank for the natural dispersion of: (A) Heidrun-spring,
(B) Heidrun-Summer, (C) AWB-Spring, (D) AWB-Summer, (E) Synbit-Spring, (F) Synbit-Summer,
(G) WCS-Spring, and (H) WCS-summer. The Sauter mean diameter values varied between 150 to
350 µm and low concentration of small particles (<100 µm) were detected in all cases.
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Figure 3. Contour plots (data from LISST, 12 m from oil release) illustrating seasonal effects on
the concentration of oil particle size for chemically enhanced dispersion of: (A) Heidrun-spring,
(B) Heidrun-Summer, (C) AWB-Spring, (D) AWB-Summer, (E) Synbit-Spring, (F) Synbit-Summer,
(G) WCS-Spring, and (H) WCS-summer. The Sauter mean diameter values varied between 4 to 170 µm
and high concentration of small particles (<100 µm) were detected in all cases.

Figure 3 displayed higher volume concentrations and smaller particle sizes (<50 µm) in the water
column compared to natural dispersion (without dispersant) of all oil types for spring and summer
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conditions. In general, higher concentrations of small particles (<50 µm) were detected in summer
conditions. The chemical dispersion of Heidrun and synbit (both in spring and summer) produced
large concentrations of very small droplets (<10 µm). This occurred also for the chemical dispersion of
WCS, but only in summer conditions.

Our recent investigation [21] elucidated two major aspects of the LISST that should be considered
when evaluating the droplet size distribution. The first is the impact of high concentrations, and it
was found that if the optical transmission drops below 30%, the measured peak value of the LISST
tended to underestimate the true peak by up to 50%, and the instrument accuracy decreased by up
to ~30%. Fortunately, all LISST measurements in this study had an optical transmission that was
larger than 45%. The out-of-range sizes of particles affected the LISST measurements especially near
the limits of the range (but also slightly within the mid-range) when very high concentrations were
detected. However, the impact of the out-of-range values decreases sharply as the size associated with
that concentration is farther from the limit. In Zhao et al. [21], concentrations of 1.0 micron droplets
increased the readings of the 2.3 micron concentrations by 20% of the 1.0 micron concentration. Thus,
unless the out of range concentrations are 10 times or larger than those within range, the LISST should
be viewed as capturing the totality of the mass of the droplets within range.

3.4. Total Petroleum Hydrocarbons (TPH) in the Water Column

Averaged TPH concentrations at all depths (0.05, 0.75, and 1.4 m) for location D (10 m from
oil release point; Figure 1) are plotted in Figure 4 as function of time for the four oils under natural
and chemically enhanced dispersion conditions in spring and summer. Each curve represents the
average of a triplicate. Low TPH concentrations were observed under natural dispersion conditions,
which have been reported by others [8,10]. The concentration during the summer was slightly higher
than spring (warmer temperatures decrease the viscosity thus affecting dispersion), but remained
an order of magnitude smaller than the chemically dispersed TPH for both seasons. For all four oil
types, TPH concentrations reached at maximum and gradually declined with dilution and transport
by waves and currents in the tank. These trends were similar for the natural and chemically enhanced
dispersion of other oils in spring and summer from previous studies [4,8].

During dispersant application, the increased oil concentration in the water column creates
controversy from a policy point of view, since it makes the oil more bioavailable to aquatic species,
but reduces the amount of oil reaching the sensitive habitats in shoreline areas. Through natural
dilution and transport the TPH concentrations in the water column dropped to near background levels
for each of the four oil types. Sufficient mixing and water currents to transport dispersed oil are critical
components when assessing not only dispersant effectiveness to treat oil products, but also the rate of
dilution and transport to ensure minimal impacts to aquatic species and their habitats.
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Figure 4. Average total petroleum hydrocarbon (TPH) concentrations in the water column over
a depth of 0.05 to 1.4 m located 12 m downstream from the oil release point for treated and
untreated oils: (A) Heidrun, (B) AWB, (C) Synbit and (D) WCS under spring and summer conditions.
TPH concentrations were an order magnitude higher for oils treated with dispersant.

3.5. Dispersant Effectiveness (DE)

The averaged TPH concentrations for all depths at each sampling location (A, B, C, D, and E) were
used to generate DE (%) values, which was obtained over the duration of the entire experiment by
computing the fraction of dispersed oil in the effluent from the wave tank and the residual dispersed
oil in the water column at the end of each experiment. Details on calculating DE (%) values during
wave tank studies can be found in King et al. [4,5,8].

Table 2 (analysis of variance [ANOVA] single factor, Excel) shows the natural and chemically
enhanced dispersion of the four oils under breaking waves and spring and summer environmental
conditions. For each untreated and treated oil type, DE testing was performed in triplicate covering a
range of seawater temperatures over two seasons and the experiments were conducted in random order.
Natural dispersion effectiveness ranged from 0 to 7% for all four oils (Table S1). The application of a
chemical dispersant had a significant (p < 0.05) effect on dispersion of all oil types. In the discussions to
follow reference is made to viscosities in units of centipoise (cP) when taken from the literature. To get
viscosity in cSt, divide cP by the density of the oil. In this case, cSt values would be approximately 10%
higher than cP. Oil viscosity is critical in studying dispersants, because thin, medium-viscosity oils
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(<2000 cP) are readily dispersible, but heavy, highly-viscous oils (>10,000 cP) are not [24,25]. Lewis [26]
reported that a 2000 cP oil treated with COREXIT®EC9500A dispersed quickly and completely, but a
more viscous 7000 cP fuel oil did not. This implies that viscosity has an effect on dispersion of oil;
however in that study the time window of opportunity to treat weathered oil is not considered. Since,
Heidrun’s viscosity is <2000 cSt even with seasonal temperature factored in, the performance of the
chemical dispersant was not affected when treating it. For the bitumen blends (e.g., AWB, synbit and
WCS), DE was notably lower (~20 to 30% less) most likely due to the fact that these products are
more viscous, in their pre-weathered state, than the fresh Heidrun crude oil. Also, the dispersant had
an effectiveness of 40 to 50% and low as 30% for bitumen blends with viscosities of 4000 and near
10,000 cSt, respectively.

Table 2. Analysis of variance of the randomization tests showing the dispersion effectiveness of
dispersant to the natural dispersion of four oils under breaking waves. The value of “p” provides
information on the probability of the observation (i.e., difference) to be due to randomness. The smaller
the value of “p” the less likely the difference is due to randomness. Average ± Standard Deviation
(Ave ± std).

Spring Summer

Treatment n *
Value (%)

(Ave ± std)
Difference (%) p

Value (%)
(Ave ± std)

Difference (%) p

No Treatment 6 1.7 ± 1.6 - - 1.8 ± 1.1 - -
Corexit/AWB 6 30.6 ± 2.8 −28.9 1.0 × 10−4 53.2 ± 3.3 −51.4 1.0 × 10−5

No Treatment 6 2.7 ± 1.2 - - 1.8 ± 1.1 - -
COREXIT/Heidrun 6 70.6 ± 1.7 −67.9 5.0 × 10−7 76.0 ± 7.4 −74.2 7.9 × 10−5

No Treatment 6 4.2 ± 3.0 - 4.0 ± 1.6 - -
COREXIT/Synbit 6 48.4 ± 4.8 −44.2 1.7 × 10−4 59.2 ± 2.9 −55.2 9.0 × 10−6

No Treatment 6 2.7 ± 1.6 - - 3.5 ± 1.0 - -
COREXIT/WCS 6 41.3 ± 4.2 −38.6 1.2 × 10−4 53.5 ± 4.0 −50.0 3.1 × 10−5

* n = n1 + n2 observations.

Significantly (p < 0.05) higher DE values were recorded during summer than spring conditions,
since seasonal temperature affects the viscosity of these heavy oil products (Table 3). This is consistent
with a study on heavy conventional oil products such as IFO 180, which was effectively dispersed
with a DE of 90% at high temperature (16 ◦C) and had low DE (<10%) at low temperatures (<10 ◦C)
using the same test facility [8]. Also, laboratory studies showed a 20% difference in DE of heavy oils
between 16 and 5 ◦C [7]. The seasonal effects (% difference) on DE for the bitumen blends were greatest
(22.3%) for AWB (dilbit) and the least (10.8%) for synbit (Table 3). This is most likely due to the fact
that synthetic crude as the diluent portion of synbit is less volatile than the condensate in AWB (dilbit).
Its composition contains a greater portion of chemicals including saturates in the range of C17 to C35

and alkylated polycyclic aromatics [27] that are less susceptible to natural attenuation by evaporation
than condensate (primarily of low molecular weight aromatics and aliphatics in the range of n-C5

to C10) [28] when dispensed in a dynamic state in spring and summer. Both diluents (condensate
and synthetic crude) are present in WCS (dilsynbit), so the seasonal effect (% difference) on DE falls
between the other two blends. Also, one can note that the bitumen blends prior to treatment have
different viscosities, since they were pre-weathered (7% w/w) under similar conditions. Heidrun crude
oil was readily dispersible when treated with chemical dispersant over the entire temperature range
with DE values >70% for both spring (7.1 ± 0.8 ◦C) and summer (16.8 ± 1.6 ◦C) conditions. With this
medium crude oil, the reported seawater temperature range did not have a significant (p = 0.28)
influence on the effectiveness of the chemical dispersant (Table 3).
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Table 3. Analysis of Variance of the randomization tests show the DE of oils affected by seasonal water
temperatures under breaking waves. The value of “p” provides information on the probability of the
observation (i.e., difference) to be due to randomness. The smaller the value of “p” the less likely the
difference is due to randomness. Average ± standard deviation (Ave ± std).

The Effect of Seasonal Water Temperature on DE

Treatment n * Value (%) (Ave ± std) Difference (%) p

COREXIT/AWB-Spring 6 30.6 ± 2.8 - -
COREXIT/AWB-Summer 6 53.2 ± 3.3 −22.6 0.00088
COREXIT/Heidrun-Spring 6 70.6 ± 1.7 - -
COREXIT/Heidrun-Summer 6 76.0 ± 7.4 −5.4 0.28
COREXIT/Synbit-Spring 6 48.4 ± 4.8
COREXIT/Synbit-Summer 6 59.2 ± 2.9 −10.8 0.029
COREXIT/WCS-Spring 6 41.3 ± 4.2 - -
COREXIT/WCS-Summer 6 53.5 ± 4.0 −12.2 0.023

3.6. Modelling Dispersion Effectiveness

The four different oil types, consisting of fresh and artificial weathered products, selected for
this study cover a board range of viscosities, over two seasons, with measured DE values (Table S1).
The untreated (naturally dispersed) oil DE values were plotted as a function of oil viscosity (Figure 5).
The plot revealed that natural DE was very similar or changes were minimal for all four oils dispersed
under spring and summer conditions. Figure 6 reports the DE as function of the viscosity for the
chemically enhanced dispersion of the four oils. A linear model was fitted to the plot of chemical DE
as a function of oil viscosity (Figure 6). Therefore one would write the equation:

DE = mln(v) + b (2)

where m is slope, v is the viscosity of the oil and b is the y-intercept.
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Figure 5. A plot of effectiveness of natural dispersion (DE %) as a function of oil viscosity. Experiments
were conducted in spring and summer (Table S1). DE is <10% for all oils tested.
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Figure 6. A plot of the effectiveness of chemically enhanced dispersion (DE %) as a function of oil
viscosity. Experiments were conducted in spring and summer with fresh and weathered oils (Table S1).
A dispersion model was fitted to the data points that represent four different oil types. DE (%) decreases
with the increasing viscosities of oils, but effectiveness better than natural dispersion.

The fit was generally good, as one notes visually through the absence of any systematic bias
(undershooting or overshooting), and the large coefficient of determination, R2 > 0.86 and ANOVA
showed a significant (p < 0.001) curve fit. If the viscosity of oil, at a specific temperature is known, then
the model can be used to predict the chemically enhanced DE (%) of spilled oil at sea.

3.7. Combining Dispersant Effectiveness (DE) and Viscosity Functions to Estimate the Window of Opportunity
to Treat Surface Spills of Oil after the Initial Release

King et al. [9] developed a model for the temporal evolution of viscosity due to weathering:

v = (v0 +
(

v f − v0

)

(

t

T + t

)n

(3)

where ν represents the viscosity (cSt) of weathered oil, ν0 and νf are the initial and final oil viscosities,
respectively, and t represents time in hours. The parameter “T” represents the “half-weathering rate
constant”; the value of t when ν/νmax = 0.5, and the parameter “n” reflects the slope of the curve to
reach the maximum value. The advantage of Equation (3) is that it allows for the rapid increase in the
early hours, and then for the plateaus in the data.

Equation (3) can be substituted for v into Equation (4) to determine DE as function of time for
various oils:

DE = a ln((v0 + (v f − v0)

(

t

T + t

)n

+ b) (4)

Table S2 (Supplementary Materials) shows DE values generated using Equation (4) for the four
oil products considered herein that were weathered under different conditions. Thus, assuming
weathering conditions similar to those reported in King et al. [9], calm seas in either spring or summer,
one can predict the DE based simply on time, if conditions change to a more energetic state where
dispersants are applicable. The predicted data presented (Table S2) shows changes in oil viscosity with
time of weathering and the DE to treat a spill on water after the initial release in spring (ca. 6 ◦C) and
summer (ca. 15 ◦C) conditions. In this case, the bitumen blends’ viscosities exceeded 2000 cSt in 24 h
for spring and summer, thus having a great effect on the predicted DE to treat these weathered oil
products. For the conventional crude (Heidrun), changes in its viscosity were <500 cSt in 360 h after
weathering on water and the predicted DE to treat the weathered oil was good. However, similar to
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King et al. [9] the data was based on an oil slick thickness of 4 mm and the effect of slick thickness on
the rate of weathering of oil is considered in the discussion to follow.

A previous report [29] suggested that temperature and time were greater factors in oil evaporation
than surface wind speed or oil slick thickness for a wide range of crude oils. In contrast, Gros et al. [30]
determined that wind speed strongly affected the thickness of the oil slick and thus evaporation very
early in an experimental spill of Norwegian crude in the North Sea. So one would assume that the
thickness of the oil slick can affect the rate of weathering of condensate bitumen blends (where 30% of
the product is gas condensate). This was substantiated by King et al. [9], where the thickness of the
oil slick affected the rate of weathering of condensate bitumen blends. However, the results of that
study showed that for a 4 mm thick slick of AWB, the viscosity exceeded 10,000 cSt within three hours
of weathering on temperate (22 ◦C) water. Under such conditions there was a rapid change in the
viscosity of the oil regardless of oil slick thickness, where the time window for dispersant use would
be closed, as indicated from studies by others [24–26]. Temperature and the thickness of the oil slick
affects the rate of weathering of oil [27], so these factors could affect the use of Equation (4) to estimate
DE. The effects of temperature on DE have been substantiated by Li et al. [8], but not the weathering of
oil at different temperatures and its inherent effect on DE to treat a spill at various points in time after
the initial release as shown in Table S2. The function (Equation (4)) proposed here may be applicable
to other oil types with the limitations mentioned above.

4. Conclusions

The natural and chemically enhanced dispersion of four oil products were investigated in the
wave tank of the Center for Offshore Oil and Gas Research (COOGER), placed outdoor in Halifax Nova
Scotia, Canada. The products were: Access Western Blend, Heidrun (conventional heavy crude), synbit,
and Western Canadian Select, and the dispersant was COREXIT9500A. Experiments were conducted
in spring and summer to capture the impact of temperature, and the hydrodynamic conditions in
the tank were of breaking waves with a wave height of 0.4 m. The results showed that the natural
(or physical) dispersion of these oils was less than 10%, and there was essentially no difference in
behavior between seasons. The application of dispersant increased the DE by an order of magnitude
within a significant statistical level (p < 0.05). Also, temperature (summer versus spring) resulted in
larger chemical DE for all oils, except for the conventional oil (Heidrun). For this study, oil type, fresh
and weathered oil, and seasonal effect data produced a broad range of oil viscosities with measured
DE values that were fitted to a linear regression model. The approach could, therefore, be readily used
to estimate the chemical DE values of released oil.

Equation (4) has the potential to predict the DE based simply on the time of weathering of oil.
For this study it was applied to various bitumen blends and the conventional crude, Heidrun, but may
be applicable to other oils as well. However, some limitations of the function to consider are the oil
type, thickness of the oil slick, temperature, and the fact that the weathering of oil initially occurs in
calm waters prior to more energetic sea states where dispersant is applicable. Although the dispersion
model has only been considered in its application to oil spills in Canadian waters, it may be applicable
to predict the use of dispersant to treat spills in international waters as well.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2077-1312/6/4/128/s1;
Table S1: Summary of test conditions, physical properties of test oils, and dispersion effectiveness measurements;
Table S2: Predicted viscosity data generated from oil weathering (Equation (2)) and dispersion effectiveness
(Equation (3)) models; Figure S1: The plot represents the seasonal effect on particle size distribution data
(LISST 100X-#1; 1.2 m from oil release) obtained at the point in time of maximum total particle concentration
during the natural dispersion of four oils; Figure S2: The plot represents the seasonal effect on particle size
distribution data (LISST 100X-#2; 12 m from oil release) obtained at the point in time of maximum total particle
concentration during the natural dispersion of four oils; Figure S3: The plot represents the seasonal effect on
particle size distribution data (LISST 100X-#1; 1.2 m from oil release) obtained at the point in time of maximum
total particle concentration during the chemically enhanced dispersion of four oils; Figure S4: The plot represents
the seasonal effect on particle size distribution data (LISST 100X-#2; 12 m from oil release) obtained at the point in
time of maximum total particle concentration during the chemically enhanced dispersion of four oils; Figure S5:
Contour plots (LISST 100X-#1; 1.2 m from oil release) illustrating seasonal effect on the concentration of oil particle
sizes simulated in the wave tank for the natural dispersion of four oil types.
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Abstract: Our research focuses on refining the ability to discriminate two petrogenic oil-slick categories:
the sea surface expression of naturally-occurring oil seeps and man-made oil spills. For that, a long-term
RADARSAT-2 dataset (244 scenes imaged between 2008 and 2012) is analyzed to investigate oil slicks
(4562) observed in the Gulf of Mexico (Campeche Bay, Mexico). As the scientific literature on the use of
satellite-derived measurements to discriminate the oil-slick category is sparse, our research addresses this
gap by extending our previous investigations aimed at discriminating seeps from spills. To reveal hidden
traits of the available satellite information and to evaluate an existing Oil-Slick Discrimination Algorithm,
distinct processing segments methodically inspect the data at several levels: input data repository,
data transformation, attribute selection, and multivariate data analysis. Different attribute selection
strategies similarly excel at the seep-spill differentiation. The combination of different Oil-Slick Information
Descriptors presents comparable discrimination accuracies. Among 8 non-linear transformations, the
Logarithm and Cube Root normalizations disclose the most effective discrimination power of almost
70%. Our refined analysis corroborates and consolidates our earlier findings, providing a firmer basis and
useful accuracies of the seep-spill discrimination practice using information acquired with space-borne
surveillance systems based on Synthetic Aperture Radars.

Keywords: oil-slick discrimination algorithm; petrogenic oil-slick category; naturally-occurring oil
seeps; man-made oil spills; exploratory data analysis; remote sensing; synthetic aperture radar;
RADARSAT; Gulf of Mexico; Campeche Bay

1. Introduction

The impact of mineral oil pollution is a widely spread source of environmental concern in
various ecosystems [1,2]. The detection of the sea surface expression of oil using space-borne
surveillance systems is an extensively studied subject [3–5]. Oil floating on the surface of the ocean
can be located, to some extent, with different types of remote sensing sensors—e.g., thermal infrared
(AVHRR: Advanced Very High Resolution Radiometer [6]), visible/near infrared (MODIS: Moderate
Resolution Imaging Spectroradiometer [7]), etc.—but generally, most attempts concentrate on using
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satellite-derived measurements from active microwave-imaging instruments (SAR: Synthetic Aperture
Radars [8–10]), e.g., RADARSAT [11,12].

Research projects using SAR measurements to study petrogenic oil slicks usually focus on
understanding two major processes: (1) Identification of smoother regions observed at the sea surface
with reduced radar backscattering signal, i.e., classification and segmentation for dark spot detection
(e.g., [13]); and (2) Differentiation of radar signature of mineral oil slicks from what is commonly referred
to as “radar look-alikes” (e.g., [14])—for instance, surface natural oil produced by plants or animals (i.e.,
biogenic oil films), atmospheric conditions (e.g., low wind and rain cells), oceanographic features (e.g.,
upwelling regions and internal gravitational waves), etc. [15]. Apart from the scientific effort studying
these two processes [16], few investigations are directed at using remote sensing systems to differentiate
the mineral oil-slick type—i.e., differences among types of anthropogenic oil slicks observed at the sea
surface, for instance: oil slicks formed from heavy versus light oil [17]; or oil slicks from production oil
tests (i.e., oil released at the surface of the ocean in the process of evaluating new drilling wells) versus
oily water (i.e., oil slicks from leakages occurring during the exploration or production phases) [18].

The available literature covering the subject of identifying oil slicks at the surface of the ocean
using space-borne surveillance systems, for the most part, does not address the petrogenic oil-slick
category discrimination: telling apart the oil-slick sea surface expression in relation to their source,
thus considering oil seeps (i.e., natural oil seepages from a hydrocarbon reservoirs) versus oil spills
(i.e., mineral oil spillages from man-made activities) [19–22]. The seep-spill discrimination mostly
regards two points of view: economic and environmental. While the former deals with the discovery
of new oil exploration frontiers in finding the presence of active petroleum systems, the latter is
capable of improving the relationship between the oil- and gas-related industry and environmental
organizations (and society as a whole) by reducing any origin uncertainty about the oil slick source
(i.e., naturally-occurring seeps versus man-made spills). A third point of view is the one of the
remote sensing community, in which if a certain methodology is capable of discriminating oil from
oil using microwave measurements acquired from space [19–22], it might be plausible to say that
such methodology can also be applied to differentiate oil from look-alike features in SAR imagery.
This framework scientifically strengthens the other two points of view.

Notwithstanding the relative neglect of research projects on the use of satellite sensors for
the discrimination of the oil-slick category, Carvalho [19] showed it is feasible to use SAR-derived
measurements for seep-spill discrimination—see also [20–22]. These authors have used a series of
Multivariate Data Analysis Techniques to devise a novel idea to discriminate the oil-slick category
while studying seeps and spills observed on the surface of the ocean in the Gulf of Mexico off
the Mexican coast in the Campeche Bay region (Figure 1). They have proposed a simple Oil-Slick
Discrimination Algorithm based on SAR backscatter signature, i.e., sigma-naught (σo), beta-naught
(βo), and gamma-naught (γo) [23–25], along with the geometry, shape, and dimension of the oil slicks.
Their best outcome is reached with optimal Overall Accuracies of approximately 70%, based on the oil
slicks’ areas and perimeters.

We report on analyses to refine the ability to discriminate the petrogenic oil-slick category (seeps
versus spills) proposed in our previous investigations [19–22]. Exploiting the same dataset, but with
expanded Data Processing Segments, we extend our earlier studies onto a firmer basis. Based on our
methodical data mining exercise, we seek to improve the seep-spill discrimination accuracy, as well as
to answer three scientific questions:

1. Among the several Data Transformation Approaches we tested, which one provides the most
accurate oil-slick category discrimination?

2. Is there a specific Attribute Selection Process that excels at choosing variables to discriminate
seeps from spills?

3. Which combination of Oil-Slick Information Descriptors promotes the best discrimination
between seeps and spills?
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Figure 1. Campeche Bay located off the Mexican coast on the southernmost bight of the Gulf of
Mexico. The highlighted region shows the location of the analyzed oil slicks. Courtesy of Adriano
Vasconcelos (LabSAR/UFRJ).

2. Methods

We developed a comprehensive Exploratory Data Analysis (EDA) to reveal hidden information
contained in the satellite-derived measurements and to refine the analysis to discriminate slicks by
category, as proposed in our earlier studies [19–22]. The design of our EDA focuses on a data-driven
scheme to investigate possible ways to improve the seep-spill discrimination with the simplest possible
analysis and the lowest satellite-imaging cost. The research strategy employed herein is a development
of our previous investigations [19–22], and consists of four distinct Data Processing Segments (i.e.,
A, B, C, and D in Figure 2)—devised in eight individual Phases—separately described in detail and
introduced in a complete manner easily enabling replicability of our data mining exercise. A summary
of our EDA design is depicted in Figure 2. While in-house Python codes are used to run the oil slick
RADARSAT-2 related analyses (i.e., Phases 1–4), PAST (PAleontological STatistics: version 3.20, Oslo,
Norway [26]) is used in the implementation of Phases 5–8.

 

Figure 2. Research strategy developed to refine the ability to discriminate between two petrogenic
oil-slick categories (i.e., seeps versus spills), as proposed in our previous studies [19–22]. The proposed
Exploratory Data Analysis (EDA) has four distinct Data Processing Segments defined as: (A) Input
Data Repository (Phases 1–3); (B) Data Treatment Practice (Phases 4–5); (C) Multivariate Data Analysis
Techniques (Phases 6–7); and (D) Oil-Slick Discrimination Algorithm (Phase 8).
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A multi-year dataset of RADARSAT-2 scenes imaged between 2008 and 2012 gave rise to the oil
slick data archive analyzed in our earlier investigations [19–22]. This data archive consists of polygons
representative of oil slicks that had been identified and field validated as seeps and spills by domain
experts. For more information about this dataset, see [19–22]. The workable dataset explored herein is
defined after fine-tuning this data archive along the 1st Data Processing Segment (Figure 2A: Input
Data Repository—Phases 1–3).

2.1. Phase 1: Data Quality Control

The initial oil slick data archive from our previous studies [19–22] is sorted by the satellite
scene-imaging configuration (i.e., beam modes determining the acquisition swath width and ground
resolution), thus establishing the amount of RADARSAT-2 imagery and the seeps and spills of our
workable dataset.

2.2. Phase 2: Positive Domain Rescaling

The initially available oil slick data archive analyzed in our earlier investigations [19–22] had
undergone a linear scaling action (Negative Values Scaling Filter: NVSF) that is comprised of a
two-fold procedure applied to individual oil slicks: the subtraction of the minimum negative pixel
value within each oil slick from every single pixel of such oil slick, followed by the addition of
1 to every single pixel—the minimum pixel value becomes 1. This brings all pixel values to the
positive domain, which is a requirement of data normalization procedures that cannot be applied to
negative values, e.g., log10. The NSVF is applied at the pixel level, i.e., taking into account all pixels
of each oil slick to provide a single measure representative of all pixels of such oil slick (see below:
Section 2.3.2). Nevertheless, previously, the NVSF was only applied to certain oil slicks: those having
at least one negative pixel value—for instance, oil slicks that had spurious negative SAR backscatter
signature caused by intrinsic multiplicative random granular speckle noise destructive imprecision in
the range-dependent gain calculation [27,28].

Although we also conduct this filtering strategy, we apply it in the present research to all oil
slicks. In essence, hereafter, for our purpose, the NVSF is referred to as Minimum Values Scaling Filter
(MVSF), such that: PIXpos = (PIX-PIXmin) + 1, in which PIXpos corresponds to the new positive pixel
value, PIX is the original pixel value, PIXmin is the minimum pixel value of all pixels of each oil slick.
Therefore, this is a dissimilarity between our previous investigations and the current EDA: NVSF
versus MVSF. The reason for applying the MVSF to all oil slicks is three-fold: (1) To avoid possible
biases caused by gradient differences among oil slicks with and without NVSF; (2) To circumvent the
application of despeckle filtering (e.g., Frost Filter: FFrost [29]; see also Phase 3) that eventually would
eliminate negative values, but would alter (e.g., smoothing) the SAR backscatter signature values—the
lack of such filter is justifiable to preserve the data-driven design of our EDA; and (3) To exploit data
transformations that do not accept negative values (see below: Phase 4).

2.3. Phase 3: Slick Feature Refinement

2.3.1. SAR Backscatter Signature

Previously, we explored twelve SAR backscatter signatures: SAR backscatter coefficients
corresponding to the radar cross-section (RCS: σ) normalized by the unit area calculated in three
different surface planes (i.e., σo, βo, and γo [30–34]) computed in four radiometric-calibrated image
products—i.e., the amplitude (1st) of the received radar beam and its dimensionless physical quantity
form that represents power expressed in dB (2nd), both with (3rd) and without (4th) despeckle filtering
(FFrost: 3-by-3 window). However, herein we perform a simplification for a more controlled EDA solely
using σo given in amplitude without despeckle filtering. As such, from this point onwards, unless
otherwise stated, any reference to SAR backscatter signature synonymously refers to this simplification.
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2.3.2. Oil-Slick Information Descriptors

As before [19–22], we start our research analyzing the same ten attributes describing the oil slicks’
geometry, shape, and dimension (these are collectively referred to as Size Information Descriptors)
derived from two basic morphological features characterizing the oil slicks—i.e., area (Area) and
perimeter (Per):

• AtoP: Area to Per ratio;
• PtoA: Per to Area ratio [35];
• PtoAnor: Normalized Per to Area ratio = Per/[(2.(Pi.Area))1/2] [36];
• Complex Index = [Per2]/Area [37];
• Compact Index = [4.Pi.Area]/[Per2] [18];
• Shape Index = [Per/4]/[Area1/2] [38];
• Fractal Index = [2.Ln(Per/4)]/[Ln(Area)] [39];
• LEN: Number of pixels of each oil slick polygon.

Analogously, we also exploit the same 36 basic descriptive statistics metrics experimentally
explored to characterize the oil slicks’ SAR backscatter signature as in our previous
investigations [19–22]. These metrics are calculated based on all pixels inside individual oil
slick polygons:

• Four central tendency measures: Average (AVG), Median (MED), Mode (MOD), and Mid-mean
(MDM: mean of the values between the 2nd and 3rd interquartiles, i.e., it trims off 25% of
both ends);

• Six measures of dispersion: Range (RNG), Coefficient of Dispersion (COD: the subtraction of the
1st interquartile from the 3rd interquartile and the division by their sum), Standard Deviation
(STD), Variance (VAR), Average Absolute Deviation (AAD: mean of the absolute difference of each
value to the mean), and Median Absolute Deviation (MAD: median of the absolute difference of
each value minus the median);

• 24 pair-values of Coefficients of Variation (COV: ratio between STD and AVG [18], such that each
of the six dispersion measures are individually divided by the four central tendencies);

• The Minimum (MIN) and Maximum (MAX) pixel values of each oil slick.

Herein we introduce two new variables that describe the distribution patterns of the pixels within
each oil slick: Skewness (SKW) and Kurtosis (KUR). As such, this collection of 38 basic descriptive
statistics metrics characterizing the oil slick’s SAR backscatter signature is henceforth referred to as
SAR Information Descriptors. Together, these two types of Oil-Slick Information Descriptors (i.e., Size
and SAR) determine the initial number of variables (48) accounted in our workable dataset.

2.4. Phase 4: Data Transformation Approaches

In contrast with our previous investigations [19–22], which implemented only a single non-linear
normalization (log10) and one linear standardization (Ranging [40]), we exploit several Non-Linear
Transformations (NLTs [41–44]):

• NLT.0: No Transformation (x);
• NLT.1: Reciprocal (1/x);
• NLT.2: Logarithm Base 10 (log10(x));
• NLT.3: Napierian Logarithm (Ln(x));
• NLT.4: Square Root (x1/2);
• NLT.5: Square Power (x2);
• NLT.6: Cube Root (x1/3);
• NLT.7: Third Power (x3).

In which x corresponds to the actual value of each oil slick variable (i.e., Oil-Slick Information
Descriptors—see Phase 3). Half of these (i.e., NLT.1, NLT.2, NLT.3, and NLT.4) do not accept negative
values (x). To simplify our analyses, we do not perform linear standardizations.
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2.5. Phase 5: Attribute Selection Processes

The processes of selecting relevant attributes deals with the complex matter of reducing
dimensionality in the variable-hyperspace domain (see also Phase 6); this generally helps to elucidate
the problem solution of numerical ecology assessments and to improve the performance of classification
algorithms [42,45]. As such, another difference from our earlier studies is the number of explored
attributes: before, we investigated 44 data sub-divisions with 502, 433, 423, 151, 141, 35, 10, and 2
variables [19–22]. Indeed, we considerably reduce these numbers with the SAR backscatter signature
simplification (see Phase 3: Section 2.3.1). Additionally, we start with 48 Oil-Slick Information
Descriptors (see Phase 3: Section 2.3.2) but use even fewer variables upon the completion of the
Attribute Selection Processes (see below: Section 2.5.1).

2.5.1. Unweighted Pair Group Method with Arithmetic Mean (UPGMA)

Two attribute selection strategies (i.e., R-mode) have been performed in our previous
investigations [19–22]: UPGMA [42,43,46] and CFS (Correlation-Based Feature Selection [47,48]).
Based on our earlier results, we only implement the former as it allows a user-defined strategy
to select relevant variables: the choice of the similarity index (Pearson’s r correlation coefficient)
used in the UPGMA dendrogram as cut-off to form groups of similar variables, i.e., phenon
line [49,50]. See also [19–22] for further information about analyses and interpretations of rooted
tree UPGMA dendrograms.

Moreover, an imperative distinction from our earlier investigations is that herein we are
experimenting the use of a strict cut-off level, i.e., a fixed similarity value of 0.3, in relation to the
previous fixed value of 0.5 and varying one ranging around 0.9 [19–22]. The selection of the 0.3
similarity cut-off is enlightened by the Bonferroni Adjustment as the level of minimum significance
(p value) for large datasets (n > 100); below this there is no statistically significant correlation and
variables are considered different from one another [51].

2.5.2. Histograms and Correlation Matrices

Histograms and correlation matrices assist in the verification of residual inter-variable correlation
and to help with the decision of which variables to select on the groups formed on the UPGMA analyses.

2.6. Phase 6: Principal Component Analysis (PCA)

PCAs reduce the large correlated variables set into a smaller set of uncorrelated hypothetical
variables—Principal Components (PCs)—containing most of the relevant information of the initial
larger set [42,43]. The rotation of the original axes to the new orthogonal coordinate system is
implemented in the same manner as our earlier work: square symmetric correlation matrix and
1000 bootstraps [52]. However, the approach to select relevant axes (i.e., PCs) is a departure from
our earlier investigations. While, herein we use only the Kaiser Cut, i.e., Kaiser-Guttman criterion
(eigenvalues > 1 [53]), previously we explored several PC-selection practices, e.g., Jolliffe, Scree Plot
(Knee/Elbow), and a combined strategy using the Scree Plot (broken stick) with Kaiser [54–57].

2.7. Phase 7: Discriminant Function

Discriminant Analysis differs from Clustering Analysis as it is not meant to determine to which
group each object belongs [43]. Instead, Discriminant Functions use a priori measured information
(Oil-Slick Information Descriptors) and knowledge of the object’s (oil slick) group membership (seep
or spill), to obtain the maximum discriminating power that minimizes the probability of erroneous
discrimination: [DF(X) = (W1X1 + W2X2 + . . . + WnXn)−Coff]; in which DF(X) corresponds to the
dependent variable (i.e., Discriminant Function); Xn to the independent variables (i.e., Oil-Slick
Information Descriptor value); Wn to the independent variables’ weight; and Coff to the constant
offset [58–61].
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The use of uncorrelated attributes (selected PCs from Phase 6), or at least with the lowest
possible degree of dependence (UPGMA selected variables from Phase 5), is a pressing need for
Discriminant Functions [62], and as such, this concerns a crucial development of the current EDA from
our previous investigations [19–22]: herein, we are not only using the PCA scores (PCs) as input to the
Discriminant Functions, we are also testing the use of UPGMA dendrogram selected variables (see
Phase 5: Section 2.5.1) without passing through the PCA.

2.8. Phase 8: Confusion Matrices (2-by-2 Tables)

The Oil-Slick Discrimination Algorithm accuracy is reported based on the Discriminant Function
results by means of the complete understanding of adapted 2-by-2 Tables (Confusion Matrices:
CMs). See also [19–22,63–65] for information on how to analyze and to better interpret 2-by-2 Tables.
The conjunct interpretation of five metrics [66] is essential to fully evaluate the algorithm’s effectiveness.
Table 1 gives a picture of these metrics that are color-coded for clarity:

• CM.1: Overall Accuracy (shown in Green);
• CM.2: Producer’s Accuracy (i.e., Sensitivity and Specificity—shown in Yellow);
• CM.2: Commission Error (i.e., False Negative and False Positive);
• CM.3: User’s Accuracy (i.e., Positive and Negative Predictive Values—shown in Purple);
• CM.3: Omission Error (i.e., Inverse of the Positive and Negative Predictive Values).

Table 1. Adapted 2-by-2 Tables (Confusion Matrix: CM [19–22,63–65]) illustrating the various metrics
explored to evaluate the Oil-Slick Discrimination Algorithm accuracy, i.e., Discriminant Function (DF) results.

 

3. Results and Discussion

3.1. Phase 1: Data Quality Control

The initially available oil slick data archive is composed of 4,916 oil slick polygons—2021 oil seeps
(41%) and 2895 oil spills (59%)—imaged with 277 RADARSAT-2 scenes (Table 2 I), all of which are
16-bit and VV polarized [19–22]. These include two different RADARSAT beam modes—Wide [W1 and
W2: 354 oil slicks (7%)] and ScanSAR Narrow [SCNA and SCNB: 4562 oil slicks (93%)]—that own two
fundamental imaging differences: (1) W1 and W2 are Single Beam Modes (i.e., a strip-map SAR mode
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with certain imaging aspects constant along the entire scene), whereas SCNA and SCNB are ScanSAR
Modes (i.e., combine two or more of the Single Beam Modes) [67]; the latter provides larger area coverage:
swath width of 300 km—almost twice that of W1 and W2: 170 km and 150 km, respectively; and (2) Wide
has a finer ground resolution of 25 m, which is 1

4 of the ScanSAR Narrow one: 50 m.

Table 2. Number (and percentage) of explored oil slicks (seeps and spills) and satellite images.

Regarding their specification differences, eventual inaccuracies may be introduced to beam mode
cross-comparisons. Notwithstanding that W1 and W2 provide better delineation of smaller oil slicks with
their finer ground resolution, only SCNA and SCNB are kept in our analysis as these represent more
than 90% of the available scenes. Furthermore, the ScanSAR Narrow swath width is more appropriate
for monitoring applications requiring large-scale coverage such as the one that gave rise to the initially
available oil slick data archive [19–22]. In fact, the lower scene cost of using ScanSAR Narrow to monitor
larger ocean regions is rather preferable than the smaller area coverage of the Wide images.

Consequently, our workable dataset is composed of the collection of oil slick polygons imaged
with the two ScanSAR Narrow beam modes: 4562 oil slicks—1994 oil seeps (44%) and 2568 oil
spills (56%)—Table 2 II. Despite the fact that our EDA has 7% (354) fewer oil slicks than our previous
study [19–22], representing about 1% (27) fewer seeps and approximately 11% (327) fewer spills (Table 2
III), such data reduction results in a more balanced dataset as compared to the one explored in our
previous investigations, i.e., a smaller difference between the number of analyzed spills and seeps: 13%
instead of 18% (Table 2: I–II). Indeed, this provides a firmer basis in the oil-slick category discrimination.
Moreover, the oil slick polygons imaged with SCNA and SCNB come from 244 RADARSAT-2 scenes
imaged between 2008 and 2012—12% (33) fewer images than our earlier investigations (Table 2).

3.2. Phase 2: Positive Domain Rescaling

As the MVSF is applied at the pixel level to all oil slicks in our workable dataset (Table 2 II: 4562), it
affects the values of the 38 SAR Information Descriptors but not of the 10 Size Information Descriptors
(see Phase 3: Section 2.3.2). The latter is independent of the MVSF application as they are derived from
and include the two basic morphological oil slick features: Area and Perimeter.

3.3. Phase 3: Slick Feature Refinement

The consequence of MVSF (see Phase 2) is two-fold: (1) the SAR Information Descriptors are not the
same as in our previous investigations and need to be recomputed for all analyzed oil slicks; (2) MIN
loses its meaning as its value for all oil slicks becomes 1; accordingly, it is not pursued in our analysis.

3.4. Phase 4: Data Transformation Approaches

Although the NLTs can be independently applied to each attribute, for consistency, during our EDA,
all-numeric variables uniformly undergo the same column-wise transformation. Because three Oil-Slick
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Information Descriptors—i.e., Fractal, SKW, and KUR—have values that range from negative to positive,
they are not used on half of the NLTs that require only positive values: NLT.1; NLT.2; NLT.3; and NLT.4.

3.5. Phase 5: Attribute Selection Processes

Histograms show that the distribution of some Size Information Descriptors is the same as others,
sometimes being inverted independent of NLT, meaning that there is no new information revealed. As a
result, only one of these variables is selected, for instance: (1) AtoP and PtoA have equal but inverted
distributions; (2) PtoAnor, Complex, Compact, and Shape, also have equal distribution but Compact is
inverted from the three other. Of these variables, we only keep PtoA and Compact, as Area and Perimeter
appear in opposition in their formula: PtoA has area in the denominator, as opposed to Compact, which
has area in the numerator; the contrary holds true for the perimeter (see Phase 3: Section 2.3.2).

3.5.1. Unweighted Pair Group Method with Arithmetic Mean (UPGMA)

The combined analysis of dendrograms and correlation matrices show that the 24 COV pair-values
have a strong intra-correlation, as well as that they are highly correlated with most of the other variables;
hence, they are not further explored. Therefore, out of the 48 initial Oil-Slick Information Descriptors
(see Phase 3: Section 2.3.2), only 19 remain for further analyses—Size (6): Area, Per, PtoA, Compact,
Fractal, and LEN; and SAR (13): AVG, MED, MOD, MDM, RNG, COD, STD, VAR, AAD, MAD, MAX,
SKW, and KUR. However, only half of the NLTs (NLT.0, NLT.5, NLT.6, and NLT.7) utilize these 19
variables; the other half (NLT.1, NLT.2, NLT.3, and NLT.4) explores three fewer Oil-Slick Information
Descriptors, i.e., only 16 variables (see Phase 4: Section 3.4).

Figure 3 depicts eight UPGMA dendrograms (one for each of the analyzed NLT), in which it is
possible to observe a number of differences, as well as resemblances, between them; mostly regarding
inter-variable correlations. An evident characteristic of the two Logarithm functions (NLT.2: Log10;
and NLT.3: Ln) is that their dendrograms are equal; the same holds true for their correlation matrices
that are also identical.

Prior to the uncorrelated variables selection, we have to identify the groups of correlated variables.
The process of defining and/or interpreting groups in UPGMA dendrograms is quite subjective [43],
but, at first glance, the global picture of Figure 3 clearly reveals how equivalent are the groups between
the several NLTs; these are color-coded for clarity. In the visual analysis of Figure 3, one can note
that variables tend to group based on their main characteristics, following the Oil-Slick Information
Descriptor features, such that:

• Green: Measures of central tendency (AVG, MED, MOD, and MDM);
• Blue: Dispersion measures (RNG, COD, STD, VAR, AAD, and MAD);
• Grey: Metrics of pixel distribution (SKW and KUR);
• Yellow: Basic morphological features (Area and Per) and LEN;
• Red: Ratios derived from the morphological features (PtoA, Compact, and Fractal).

An advanced analysis of the UPGMA dendrograms shown in Figure 3 discloses that:

• The three morphological ratios (Red group) are not correlated with any other variable (similarity
close to or equal to zero)—PtoA and Compact form an uncorrelated group, and Fractal usually
stands alone; the exception is in NLT.0 where Compact is the one by itself;

• The two groups of SAR Information Descriptor, i.e., Green (central tendency) and Blue (dispersion),
generally form a larger group—Geen + Blue—the exception is in NLT.7;

• The Grey group (pixel distribution metrics) is usually correlated with the Yellow group (basic
morphological features)—Grey + Yellow group—the exception is in NLT.7 where it groups with
the Green group (measures of central tendency);

• RNG is an exception in three NLTs (NLT.0, NLT.6, and NLT.7) as it correlates with the central
tendency variables (Green group);

• MAX groups among the central tendency variables (Green group) except in NLT.4.
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Figure 3. Rooted tree dendrograms (Unweighted Pair Group Method with Arithmetic Mean:
UPGMA—see Phase 5: Sections 2.5.1 and 3.5.1) of the several Non-Linear Transformations (NLTs—see
Phase 4: Section 2.4). While the horizontal red dashed line represents the phenon line exploited herein
to form groups of variables, i.e., similarity value of 0.3 (i.e., Pearson’s r correlation coefficient), the
two horizontal black dotted lines correspond to the more relaxed thresholds reported in our previous
investigations [19–22]. The various color-colored boxes indicate the main groups of variable (see Phase
3: Section 2.3.2). Size Information Descriptors: Yellow [basic morphological oil slick features, i.e.,
area (Area) and perimeter (Per), and the number of pixels (LEN)] and Red [three ratios derived from
the morphological features]. SAR Information Descriptors: Green [measures of central tendency, i.e.,
average (AVG), median (MED), mode (MOD), and mid-mean (MDM); an exception is the maximum
pixel value (MAX)], Blue [dispersion measures, i.e., range (RNG), coefficient of dispersion (COD),
standard deviation (STD), variance (VAR); average absolute deviation (AAD), and median absolute
deviation (MAD)], and Grey [metrics of the pixel distribution: skewness (SKW) and kurtosis (KUR)].
Selected variables are indicated (+); see also Table 3. * Same outcome: NLT.2 = NLT.3.
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The phenon line, represented by the horizontal red dashed line in Figure 3 (i.e., 0.3 Pearson’s r
correlation coefficient) defines the actual groups from which we select one variable of each—groups
are formed when this cut-off line crosses a vertical line (i.e., branch or edge) [49,50]. In fact, the groups
formed in this manner match the preliminary visual analysis of the dendrograms:

• Three groups are observed (Green + Blue, Yellow, and one Red) when 16 variables are analyzed,
i.e., NLT.1, NLT.2, and NLT.3—NLT.4 is an exception;

• Four other groups are also formed (Green + Blue, Grey + Yellow, and two Red ones) when 19
variables are accounted for, i.e., NLT.0, NLT.5, NLT.6—NLT.7 is an exception;

• Three other groups are formed in NLT.4 (16 variables) in which VAR, RNG, and MAX cluster together
forming an extra assemblage (Light Blue)—Light Blue + Green + Blue, Yellow, and one Red;

• Six groups are formed in NLT.7 (19 variables): Green, Grey, Blue, Yellow, and two Red ones.

One should pay close attention to the two Red groups, as from them, three variables are
selected—e.g., NLT.0 (Fractal, PtoA, and Compact)—because such variables have no correlation.

The number of selected variables ranges between 4 and 7 variables, depending on the NLT
(Table 3), such that:

• AVG is selected from the Green + Blue group to maintain the simplest possible analysis;
• VAR is selected when the Blue group is alone (only in NLT.7) to keep it simple as possible;
• SKW is preferable from the Grey group as it measures asymmetry;
• LEN is selected from the Yellow group as Area and Perimeter are both present in the ratios;
• The three morphological ratios (Red group: PtoA, Compact, and Fractal) are always selected

when present.

Table 3. Summary of the Attribute Selection Processes (Phase 5).
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3.6. Phase 6: Principal Component Analysis (PCA)

The scatterplots show a large overlap between seeps and spills, but their centroids are somehow
distinctively independent of NLT. When all variables (16 or 19) are directly input to the PCA, the cumulative
variance of the selected PCs (3 to 7) ranges between 80 to 90% for all NLTs. However, when the input is the
UPGMA selected variables (4 to 7), the PC-selection (2 to 4 PCs) shows a much lower cumulative variance:
from 52% to 70%; the exceptions are the Logarithm functions (NLT.2: Log10; and NLT.3: Ln) with 99.5% (2
PCs). Table 4 reports the number of selected PCs and their cumulative variance per NLT.

Table 4. Outcome of the Principal Component Analysis (PCA: Phase 6) showing the number of selected
Principal Components (PCs) and cumulative variance.

 

3.7. Phase 7: Discriminant Function

As we are comparing the results of using the score values of the selected PCs versus the use of
actual values of the Oil-Slick Information Descriptors, both directly input to the Discriminant Analysis,
four different Discriminant Function sets are analyzed per NLT:

• Set.1: No UPGMA variable selection, i.e., all variables (16 or 19), without PCA;
• Set.2: No UPGMA variable selection, i.e., all variables (16 or 19), with PCA (3 to 7 PCs);
• Set.3: UPGMA selected variables (4 to 7) without PCA;
• Set.4: UPGMA selected variables (4 to 7) with PCA (2 to 4 PCs).

Figure 4 portrays the scheme defining these four input dataset versions for each NLT (8x). Another
improvement from our earlier studies is that besides exploring the seep-spill discrimination capabilities
of using the PC-scores and values of the variables, as well as the sole use of Area with Perimeter as
before [19–22], we also test a separate analysis with a pair of Size Information Descriptors (PtoA with
Compact) and with a pair of SAR Information Descriptors (AVG with SKW)—see Figure 4. These are
chosen based on the interpretation of the UPGMA dendrograms (Phase 5: Section 3.5.1—see also
Figure 3). Although the histograms of the Discriminant Functions’ axes show that seep and spill
properties overlap, independent of NLT, their centroids are separate.
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Figure 4. Discriminant Functions explored to discriminate oil seeps from oil spills: (a) All variables; (b)
Separate analysis of Size Information Descriptors (Area with Perimeter and PtoA with Compact); and
c) Separate analysis of SAR Information Descriptors (AVG with SKW). The four input dataset versions
are shown: all variables (16 or 19—see Phase 5: Section 3.5.1; Figure 3 and Table 3) without (Set.1) and
with (Set.2) PCA (Principal Component Analysis—see Phase 6), UPGMA (Unweighted Pair Group
Method with Arithmetic Mean—see Phase 5: Section 2.5.1) attribute selection (i.e., 4 to 7 variables—see
Phase 5: Section 3.5.1; Figure 3 and Table 3) without (Set.3) and with (Set.4) PCA. 8× refers to the
several Non-Linear Transformations (NLT—see Phase 4: Section 2.4); 3x to the best NLT: NLT.0, NLT.2,
and NLT.6; and 2× to NLT.0 and NLT.6. * See Figure 3. ** See [19–22].

3.8. Phase 8: Confusion Matrices (2-by-2 Tables)

Each NLT is evaluated with the four input dataset versions (Figure 4), and usually, Set.1 presents
the highest discrimination power. However, these variables (16 or 19) are strongly correlated (Figure 3)
and do not fulfill a Discriminant Functions requirement to use independent, or the least as correlated
as possible, attributes [62]. The second best discrimination accuracy occurs with Set.2, which is closely
followed by Set.3. The lowest observed accuracies are from Set.4, as the selected PCs have a very low
cumulative variance in the selected PCs; the exceptions are the Logarithm functions (NLT.2: Log10;
and NLT.3: Ln—see Table 4).

The global analysis of all 32 Data Transformation Approaches combinations (i.e., eight NLTs versus
four input dataset versions) demonstrates the Logarithm functions (NLT.2: Log10; and NLT.3: Ln)
and Cube Root (NLT.6) as the most effective NLTs in supporting an accurate Oil-Slick Discrimination
Algorithm. The Confusion Matrices evaluating the results of the Discriminant Functions for the several
NLTs are shown on the color-coded Table 5 (Pink) and Table 6 (Red): Set.2 and Set.3, respectively. In the
examination of these two tables that report the accuracy of the Oil-Slick Discrimination Algorithm, if
taking the Log10 (NLT.2), for example, one can find that:

• CM.1: Overall Accuracies ranging about 69%;
• CM.2: Producer’s Accuracy, i.e., Sensitivities (65%) or Specificities (71%);
• CM.2: Commission Error, i.e., False Negative (35%) and False Positive (29%);
• CM.3: User’s Accuracy, i.e., Positive (64%) and Negative (73%) Predictive Values;
• CM.3: Omission Error, i.e., Inverse of the Positive (36%) and Negative (27%) Predictive Values.

From Tables 5 and 6, one verifies the successful, and similar, results of the Cube Root (NLT.6) in
comparison to the Logarithm functions (NLT.2 and NLT.3). Additionally, the cross-comparison of the
results from Set.2 (Table 5) and Set.3 (Table 6) indicates that these two attribute selection strategies—i.e.,
1) no UPGMA variable selection with PCA; and 2) UPGMA selected variables without PCA—promote
comparable seep-spill discrimination accuracies.
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A careful analysis of Table 5 (Set.2) discloses that the preferred lowest rate of False Negatives
(20.4%) and Inverse of the Positive Predictive Values (23.3%) are observed in NLT.1 (Reciprocal);
however, their counterparts, i.e., False Positives (48.0%) and Inverse of the Negative Predictive Values
(43.7%), have undesirable high values among all NLTs. As its Overall Accuracy is reasonable (64.07%),
this is an example that one needs to look into the conjunct interpretation of the five main metrics
shown in Table 1 [19–22,63–65]. Similarly, the cautious analysis of Table 6 (Set.3) reveals that an ideal
low rate of False Negatives (11.7%) and Inverse of the Positive Predictive Values (21.8%) are observed
in NLT.5 (Square Power), but on the other hand, their counterparts, i.e., False Positives (67.5%) and
Inverse of the Negative Predictive Values (49.6%), have unwanted high values. In this case, its Overall
Accuracy is quite low (56.90%) though.

When considering the separate analysis of the Oil-Slick Information Descriptors (i.e., Size and
SAR), Set.3 and Set.4 (see Figure 4: without PCA and with PCA, respectively) present the same
result—these are shown in Table 7. The foremost outcome revealed in Table 7 is that the sole use of SAR
Information Descriptors (AVG with SKW) is not as effective as using only Size Information Descriptors
(Area with Perimeter and PtoA with Compact). Table 7 also discloses that these two pairs of Size
Information Descriptors have the same results in the Logarithm function (NLT.2), and in fact, these
results present superior discrimination power than in the other two analyzed NLTs, i.e., NLT.0 (No
Transformation) and NLT.6 (Cube Root). Slightly better Overall Accuracies are achieved when using
Area with Perimeter than PtoA with Compact; however, one should note that the False Negatives of
the former pair are much higher than those of using the second pair: 67.7% against 21.0% (NLT.0), and
43.4% against 28.9% (NLT.6).

We can also evaluate the results of using several variables (Tables 5 and 6) against the use of
individual pairs of attributes, i.e. the separate analysis of Size and SAR Information Descriptors
(Table 7). If one compares the outcomes of NLT.2 (Log10) in Tables 5–7, it is possible to notice that the
sole use of the two Size Information Descriptor pairs (Table 7) has equivalent results as the ones from
the other two attribute selection strategies, i.e., no UPGMA variable selection with PCA (Set.2: Table 5)
versus UPGMA selected variables without PCA (Set.3: Table 6).

4. Conclusions

Our research addresses a gap in our scientific knowledge regarding the discrimination of the
oil-slick category, i.e., sea surface expression of oil seeps versus oil spills observed in Campeche Bay
(Figure 1). We report on analyses to refine the ability of using SAR-derived measurements for this task,
thus addressing expanded Data Processing Segments (A, B, C, and D in Figure 2) as compared to our
previous investigations [19–22]. A firmer basis to discriminate slicks by category has been established
with the specific data-driven design of our Exploratory Data Analysis (EDA). An innovative strategy
to select uncorrelated attributes based on the Bonferroni Adjustment (i.e., Pearson’s r correlation
coefficient of 0.3 [51]) has been successfully implemented using rooted tree dendrograms (Unweighted
Pair Group Method with Arithmetic Mean: UPGMA—see Figure 3). We investigate several Non-Linear
Transformations (NLTs—see Phase 4: Data Transformation Approaches) and various strategies to select
uncorrelated attributes: we tested more than 32 combinations of Data Transformation Approaches, i.e.,
eight NLTs versus four input dataset versions (see Set.1, Set.2, Set.3, and Set.4 in Phase 7: Discriminant
Function—Figure 4).
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Table 5. Confusion Matrices (CMs) expressing the results of the Discrimination Functions (DFs)
of the Oil-Slick Discrimination Algorithm from Set.2—i.e., all variables (16 or 19—see Phase 5:
Section 3.5.1—Figure 3 and Table 3) without the dendrogram selection (no UPGMA: Unweighted
Pair Group Method with Arithmetic Mean) but with the application of the PCA (Principal Component
Analysis—see Phase 6: Section 3.6—Table 4). Note that NLT.2 and NLT.3 have the same outcome.
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Table 6. Confusion Matrices (CMs) expressing the results of the Discrimination Functions (DFs) of the
Oil-Slick Discrimination Algorithm from Set.3—i.e., with the UPGMA (Unweighted Pair Group Method
with Arithmetic Mean—see Phase 5: Section 2.5.1) attribute selection (i.e., 4 to 7 variables—see Phase
5: Section 3.5.1; Figure 3 and Table 3) and without the application of the PCA (Principal Component
Analysis—see Phase 6). Note that NLT.2 and NLT.3 have the same outcome.
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Table 7. Confusion Matrices (CMs) expressing the results of the Discrimination Functions (DFs) of the
separate analysis of the Oil-Slick Discrimination Algorithm (see Phase 3: Section 2.3.2): Size Information
Descriptors: Area with Perimeter (shown in Orange) and PtoA with Compact (Shown in Blue); and
SAR Information Descriptors: AVG with SKW (shown in Black). See also Figure 4.
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Based on our comprehensive approach to find a simple way to discriminate seeps from spills, we
are able to answer the three scientific questions:

1. The two Logarithm functions (NLT.2: Log10; and NLT.3: Ln) and Cube Root (NLT.6) have the
most accurate seep-spill discrimination among the eight Data Transformation Approaches tested.

2. Of the different strategies tested for selecting relevant attributes (i.e., four input dataset
versions—see Phase 7: Section 3.7), two (Set.2 and Set.3) have comparable discrimination power
with Overall Accuracies of almost 70%; however, the sole use of UPGMA dendrograms (i.e.,
Set.3) excels at selecting uncorrelated variables as it provides a simpler form avoiding the
implementation of additional Multivariate Data Analysis Techniques (i.e., PCA). This is clearly
observed in an inspection of Table 6 (Set.3) and in a comparison with Table 5 [Set.2: the use of all
variables (see Phase 5: Section 3.5.1—Figure 3 and Table 3) without the dendrogram selection
(i.e., no UPGMA) but with the application of the PCA (see Phase 6: Section 3.6—Table 4)].

3. The use of a collection of variables from two attribute selection strategies, i.e., Set.2 [no UPGMA
with PCA (19 or 16 attributes but with 3 to 7 PCs—Table 5)] and Set.3 [UPGMA and no PCA (4 to
7 variables—Table 6)] is equally capable of discriminating seeps from spills. However, these are
comparable to the sole use of the two Size Information Descriptor pairs (Area with Perimeter and
PtoA with Compact) that outperform the SAR Information Descriptor pair (AVG with SKW)—see
Table 7.

Our EDA also demonstrates that using simple and low-cost RADARSAT-2 beam modes (SCNA
and SCNB), one can achieve useful seep-spill discrimination accuracies, thus supporting new products
for the RADARSAT Constellation Mission (RCM): RADARSAT-2 Mode Selection for Maritime
Surveillance (R2MS2).
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Abstract: Oil extraction platforms are potential sources of oil spills. For this reason, an oil spill
forecasting system was set up to support the management of emergencies from the oil fields in the
Italian seas. The system provides ready-to-use products to the relevant response agencies and optimizes
the anti-pollution resources by assessing hazards and risks related to this issue. The forecasting system
covers seven working oil platforms in the Sicily Channel and middle/low Adriatic Sea. It is composed
of a numerical chain involving nested ocean models from regional to coastal spatial scales and an oil
spill model. The system provides two online services, one automatic and a second dedicated to possible
real emergencies or exercises on risk preparedness and responding. The automatic service produces
daily short-term simulations of hypothetical oil spill dispersion, transport, and weathering processes
from each extraction platform. Products, i.e., risk maps, animations, and a properly called bulletin, are
available on a dedicated web-portal. The hazard estimations are computed by performing geo-statistical
analysis on the daily forecasts database. The second service is activated in near-real-time producing oil
spill simulations for the following 48 h.

Keywords: oil spill; Italian seas; numerical forecasting tool; emergency management

1. Introduction

The success of oil spill mitigation actions is closely dependent on the time necessary to detect
the slick and predict its fate (i.e., slick displacement and dispersion), in order to permit governmental
response agencies in planning and providing a specific and timely intervention at sea. The oil slick
detection can be done in situ or by satellite, while its forecast is usually performed through more or
less complex systems of numerical simulation with the application of empirical and semi-empirical
algorithms, or the estimate of a surface water masses path starting from the intensity of winds [1–6].
The most advanced systems currently used incorporate both the weather–marine physical forcing
and a Lagrangian module that reproduces trajectories, diffusion, and transformation processes of the
oil slicks [7,8]. The knowledge of the marine and the weather components is essential to treat any
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kind of oil pollution, like that coming from maritime accidents with relative spillage of hydrocarbons,
or chronic pollution as a continuous release from punctual or diffuse sources. Numerical models are
strictly deterministic and based on “primitive equations” for the reproduction of water circulation with
a good reliability [9,10]. This approach provides an essential basis for a realistic numerical simulation
of the complex processes of transformation and transport of “active” tracers, subject to change as a
function of space and time. Therefore, oil spill transport and weathering processes can be provided
through the use of numerical models suitably coupled with hydrodynamic ones [7,11–13]. Such a
structured system, composed by a three-dimensional hydrodynamic model plus transport simulation
and processing of the oil slick, allows users to obtain a space and time evolution of a potential
spillage, and then provides important information for the management of a possible emergency.
This integrated modelling system permits obtaining maps of potential hazard estimations (i.e., net of
the coastal vulnerability) of the stranding/concentration of hydrocarbons in a stretch of coast as well
(e.g., References [3,14]).

The Italian seas are subject to oil spill emergencies because there exists hydrocarbons exploration,
extraction, and transport within them. In particular, the Sicily Channel and the low/middle Adriatic
Sea have seven working oil extraction sites that are potential sources of pollution through accidental
oil spills.

Due to an increasing sensibility of the Italian public opinion on marine oil pollution, the Italian
Ministry of the Environment and Protection of Land and Sea (MATTM) recently planned to provide an
oil spill forecasting system for the Italian seas. Starting from the experience gained in previous national
and international projects [15,16], the Italian Research Council (CNR) has developed a forecasting tool
regarding the dispersion and transformation of oil at sea and for the estimation of the “riskiness” do to
possible oil spillage in the Sicily Channel and in the medium–low Adriatic Sea (Figure 1a,b, respectively).

 

Figure 1. Spatial distribution of the four active oil platforms (green triangles) in the Sicily Channel (a),
and the three in the medium–low Adriatic Sea (b).

The purpose of the system is two-fold: (a) To provide the responsible authority with possible
indications on the spatial/temporal evolution of oil spills at sea in near-real-time in case of emergency
events or planned exercises. This is important for optimizing both the resources and the management
of the emergency. (b) To determine hazard estimations, based on statistics of the simulated dispersions,
of a hydrocarbon slick virtually issued (i.e., simulated) using individual platforms according to
different weather and sea conditions from the forecasting system. Such a system wishes to answer
to three of the four priorities of the Sendai Framework for Disaster Risk Reduction (2015–2030) [17],
adopted by United Nations (UN) Member States in March 2015. These priorities are the first, the second,
and the fourth based on oil spill risk assessment, preparedness, and response, but focusing on the
management of oil spill events at sea. Specifically, the first priority is on understanding the disaster
risk, the second on strengthening disaster risk governance to manage it, and the fourth on enhancing
disaster preparedness for an effective response.
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In this paper, we describe the forecasting numerical system realized in the framework of the
ministerial project “SOS-Piattaforme e Impatti Offshore” and highlight the main features of the service
realized at this stage via CNR. Section 2 presents the study area and the oil rigs covered by the system,
followed by its components in Section 3. In Section 4 we describe their processes of validation and
show resulting products, i.e., the daily bulletin and the hazard assessment. Finally, in Section 5, we give
our conclusions and future perspectives.

2. The Oil Fields in the Italian Seas

The oil spill model predicts the fate, i.e., transport and weathering processes, of possible slicks
from seven different areas of oil extraction in the Italian seas (see Table 1).

Table 1. The oil fields in the Italian seas covered by the forecasting system (data from the Italian
Ministry for the Economic Development—MISE [18], updated on 31 December 2016).

Area Oil Field Platforms
Storing
Facility

Wells
Distance from

Land (Km)
Depth (m)

Sicily
Channel

Prezioso 1 Pipeline 9 12 45
Perla 1 Pipeline 4 13 70

Gela 1 1 Pipeline 11 2 10
Vega A 1 FSO 20 20 124

Central
Adriatic

Sarago 2 Pipeline 1 + 5 3–4 12
Rospo 3 FSO 9 + 10 + 12 19–21 80

Southern
Adriatic

Aquila 2 FPSO 1 + 1 40–45 820

In these areas we have a variety of extraction facilities, from a single to multiple wells, collecting
at a single platform, to wider extraction fields populated by nearby but separated platforms.
Once extracted, the oil is stored on FPSO or FSO (floating production storage and offloading) units or
moved to the land by underwater pipelines when the platform is near the mainland.

This variety in configurations, described in Table 1, is taken into account in setting up the
forecasting system. Therefore, multiple well configurations are simplified by considering a single well
with a geographically averaged position, as the distance between platforms in multi-platform fields is
comparable with the resolution of the coastal model’s grid.

3. The Numerical System

The numerical system developed for the project “SOS-Piattaforme e Impatti Offshore” is based on
what was experienced in past projects like Development of TEcnologies for Situational Sea Awareness
(TESSA) [19,20], Mediterranean Decision Support System per la Marine Safety (MEDESS-4MS) [8]
and SOS-Bonifacio [1,2,15]. It is composed by nested hydrodynamic numerical models at different
spatial scales, from the regional to the coastal, through a methodology known as downscaling [21–23].
Daily forecasts from regional scale models are used by sub-regional numerical systems as initial, lateral
boundary, and surface boundary conditions for the air–sea interface [24,25]. This repeats from the
sub-regional to coastal models then increasing the resolution of the forecasts to a limited area [2,26].
The whole forecast system is presented in Figure 2 and is described in the following paragraphs.
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Figure 2. The numerical forecasting chain for coastal circulation and oil dispersion at sea.

3.1. The Oil Slick Model

In our system, the transport and weathering processes of an oil slick at sea are modelled using
MEDSLIK-II, widely described in References [12,13]. This is a community model available for free at
Reference [27]. MEDSLIK-II is a Lagrangian model that requires meteorological and marine conditions
at the air–sea interface, as well as chemical and physical characteristics of the spilled oil to perform
a simulation. It simulates the transport of an oil slick with its dispersion due to turbulent fluctuation
components, parameterized with a random walk scheme. The transport of the slick in the marine
environment is attributed to the advection field, while turbulent fluxes cause its dispersion. The general
equation of the model takes into account the variation of the oil concentration in time and space,
considering the weathering processes affecting the slick [7,20]. MEDSLIK-II is coupled with the ocean
models using hourly oceanographic outputs of current speed and temperature and with the weather
model for wind speed, all described in the following paragraphs.

We considered just the early stage weathering processes of evaporation, emulsification, dispersion
in the water column, and adhesion to the coast. These processes take their effect in the fate of a typical
crude oil for about a week (described in Reference [28]), the usual length of the most oil emergencies
at sea. Every day, a simulation of the transport of a specific type (API 33.4) and quantity of oil (at a rate
of 15 m3·h−1) were provided for each active oil platform or groups of Italian platforms.

The realized forecasting system is also used in delayed-mode to calculate statistics and builds
hazard estimation maps related to each oil platform or group of platforms and support the eventual
emergency containment strategies. In the case of an accident or planned exercise, numerical simulations
of the scenario of dispersion and transformation of a real hydrocarbon slick are realized for the
following 48 h from the simulation start. In order to perform the numerical simulation, several further
inputs were requested like type of oil, areal position and time when the spill started, estimation of the
amount of oil spilled, instantaneous or prolonged spill in time, and requested simulation duration.

3.2. The Hydrodynamic Models

The modelization of oil spill trajectories requires operational ocean models. Then, due to the
different morphological and oceanographic characteristics of the two basins, different numerical
approaches were applied.
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3.2.1. The Sicily Channel

In order to describe the circulation in the Sicily Channel, including the processes at the basin
scale that influence circulation from mesoscale to coastal [29], we used a sub-regional model called
Tyrrhenian-Sicily Channel Sub-Regional Model (TSCRM). It is a free surface three-dimensional
primitive equation. It is based on the Princeton ocean model [30] and was implemented between
9–16.50◦ E and 31.50–43◦ N with a horizontal resolution of about 2 km (1/48◦ of degree in latitude) on
30 sigma levels [10]. The initial and lateral conditions were obtained from a one-way asynchronous
nesting of the forecasted hourly fields of temperature, salinity, and total velocity [25] from the regional
Mediterranean Forecasting System (MFS) provided by the Copernicus Marine Service [31].

Solely for the very shallow Gela platform in the Gulf of Gela, the TSCRM was downscaled to
very high resolution using the 3-D hydrodynamic Shallow water HYdrodynamic Finite Element
Model (SHYFEM). SHYFEM resolves the system of the primitive equations, vertically integrated over
each vertical layer, with Boussinesq approximation used horizontally and hydrostatics used vertically.
For vertical diffusivity and viscosity, it used the general ocean turbulence model [32]. It was integrated
with a module for the simulation of the transport processes and had a spatial resolution varying from
25 m in very coastal areas or shallow waters to few kilometers off-shore [2,33].

At the surface, both ocean models were forced by using the hourly atmospheric data from the
weather limited area model SKIRON. Every day, they produce 3-D 5-day forecasts with an hourly
resolution of the main oceanographic parameters as shown in Figure 2.

SKIRON is a numerical weather prediction model developed at the University of Athens [34].
It provides 5-day forecasts of atmospheric parameters at a high frequency (hourly fields) with a
horizontal resolution of 10 km. The core of the system is based on the ETA/NCEP model that has
been developed at the National Centre for Environmental Prediction of the National Oceanic and
Atmospheric Administration (NCEP/NOAA). Initial and boundary conditions are taken from the
coarse Global Forecast System model NCEP/GFS. The atmospheric parameters included hourly fields
of: mean sea level pressure, air temperature at 2 m, wind speed, and direction at 10 m above sea level
(s.l.), convective and accumulated precipitation, cloud cover, sensible and latent heat fluxes, incoming
and outgoing shortwave and long-wave radiation fields, and evaporation. These parameters were
used in both circulation models to force momentum, turbulent heat, and water fluxes calculated using
appropriate bulk formulae [35].

3.2.2. The Adriatic Sea

In the Adriatic Sea, MFS’s outputs were used to nest the SHYFEM model to solve for the coastal scales.
The numerical computation was performed on a spatial domain that represented the Adriatic basin by
means of an unstructured grid. The use of elements of variable sizes was fully exploited to create a
seamless transition between different spatial scales. The mesh resolution varied from 4 km in the open
sea to 1 km in coastal waters, and up to 300 m around the oil platforms. The sea level and the current
velocity boundary conditions at the Otranto Strait were obtained by summing the hourly tidal signal
derived from the Finite Element Solution (FES2012) global tidal model [36] (available at Reference [37]),
the daily water level, and the baroclinic velocity predicted using MFS. The total water levels were imposed
to the boundary nodes, while the total current velocity were nudged using a relaxation time of 3600 s.
Water temperature and salinity boundary conditions were computed using the oceanographic fields
of MFS. Three-dimensional MFS fields of sea temperature and salinity were nudged during the simulation.
Nudging data were given for all nodes of the grid. The value of the relaxation coefficient spatially varied
over the model domain (as a function of the grid resolution) from 2 days in the open sea and increasing
toward the coast, thus diminishing the restoration contribution.

For the river discharge, where available, daily updated values were derived from automatic
hydrometric stations nearest to river mouths, through calibrated stage-discharge relationships (like Isonzo,
Piave, Adige, Po, etc.). For the other rivers considered in this study, discharges were prescribed using mean
climatological values [38]. Such model implementation resembled the one described in Reference [39].
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The meteorological forcing was supplied by the hydrostatic Bologna limited area model (BOLAM),
developed and implemented at CNR in Bologna with a daily operational chain [40,41]. The initial
and boundary conditions for the BOLAM model were derived from the analyses (00 UTC) and
forecasts of the GFS (NOAA/NCEP, Silver Spring, MD, USA) global model [42]. The BOLAM
model is implemented over the Euro-Mediterranean region with a horizontal grid spacing of 8.3 km.
Forecasts are daily provided at hourly resolution up to 3 days.

At the end of the whole chain, transport, diffusion, and transformation of an oil slick at sea were
modelled by MEDSLIK-II.

4. Results

A daily bulletin and hazard estimations are valid and easy products of the system to provide
updated information on potential risks at sea and coastal areas and optimize intervention in case of a
spill from oil rigs. The quality of the above instruments has been assured through previous validations
of the numerical system.

4.1. Numerical System Validation

The forecast current fields from the system for the Sicily Channel and the Adriatic Sea areas
have been validated against trajectories of GPS-equipped surface drifters [43] with a small subsurface
plastic drogue at a depth of 1 m. In order to obtain forecasts, a process of validation is fundamental to
verify the reliability of the implemented integrated system (hydrodynamic data production and oil
spill simulation). To carry out this process, several Lagrangian drifters were released in the areas of the
platforms with their positions recorded at 10-min intervals for coastal drifters and at 1-h intervals for
offshore satellite ones.

In order to evaluate the integrated system capability in reproducing drifters’ trajectories,
we calculated the root mean square error (RMSE) of the separation distance between observed
and simulated trajectories and the skill score [43]. This last parameter is dimensionless based on
the cumulative Lagrangian separation distances normalized by the associated cumulative observed
trajectory lengths. Its value can vary between 0 and 1, with 1 corresponding to a total overlap between
the observed and simulated trajectories, while 0 corresponds to a difference between the path of the
drifters and the simulated trajectories on the same path made by the drifters [10,13].

In Figure 3, the 72-h long trajectories of two drifters released in the Sicily Channel are shown.
The surface drifters moved south-eastward, following the Atlantic Ionian Stream flow (AIS; [29,44]).

 

Figure 3. The 72-h long trajectories of two drifters, the red and the black lines starting from the white
circle at north to the south, overlapped to the TSCRM current field averaged for the day of the release
(29 October 2017). Blue arrows indicate the surface current.
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Their trajectories were numerically reproduced by re-initializing the TSCRM simulation every day
with updated forecasting fields. Such daily re-initialization is necessary to avoid errors to excessively
propagate in calculations that affect the final results. The idea of frequent re-initialization in trajectory
simulation was proposed in Reference [43] and was actually used in the Deepwater Horizon oil spill
trajectory forecast [45,46].

The simulated drifters’ trajectories produced low values of RMSE of less than 10 km (Figure 4a),
and a skill score higher than 0.6 (Figure 4b), both in the first 10 h of simulation. Over this time,
the RMSE increased exponentially and its average was about 25 km at 24 h. At the same time,
the averaged skill score was 0.7. This decrease in efficiency was due to a difficulty in the reproduction
of a correct surface current speed but directions were comparable. This deficiency was particularly
true for drifters approaching the coast due to the low resolution of the model and/or to lower wind
forcing. Stokes drift was demonstrated to be an important factor in bring the oil from the offshore
areas to the beaches [47]. Furthermore, although the wave-induced transport was parameterized to
simulate the effect of Stoke drift in all numerical experiments, the swell processes were not considered.
This factor may be a source of uncertainty in the estimation of the drifters’ trajectories.

Figure 4. (A) The blue lines are the RMSE of separation distances computed from the comparison
between TSCRM and both drifters trajectories released on 29 October 2017. The red line is the
averaged RMSE. (B) The blue lines are the skill score; the red line is the averaged trend.

In the very shallow waters inside the Gulf of Gela, we implemented SHYFEM to solve such
a limitation. For its validation, we used the data from two coastal drifters named LCA00128 and
LCA00112, deployed on 29 October 2017, for about 30 h. The trajectories were reproduced by groups of
particles released at each observed position along the drifters path. For both drifters there is a general
correspondence between the simulated trajectories and the observed path (Figure 5).

The path of the simulated particles was both in terms of the distance traveled and the direction
that was completely congruent with that followed by the two drifters. In the two experiments,
an initial deviation of the path of the particles was observed with respect to the trajectory of the drifters
during the first hours of simulation. Here they follow an northwestern (NW) direction, while the
numerical particles are directed to the south-western (SW). For the remaining period of the simulation,
the simulated and observed trajectories are quite similar.

Furthermore, in both experiments, for each trajectory the accuracy of the results obtained from
a series of simulations was quantified. The dimensionless skill score and its average (AV3) obtained
for the first 3 h of forecast were calculated at 1, 6, and 12 h of forecast. In Table 2, the skill score for
the two drifters was generally low with values at 1 h varying between 0.7 and 0.5, at 6 h between 0.8
and 0.6, and finally at 12 h between 0.8 and 0.7. As far as AV3 was concerned, the most accurately
simulated trajectory was the LCA00112 with an AV3 of 0.7.
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Figure 5. Trajectories simulated by the model for each release made on each position of the drifters
LCA00128 (a) and LCA00112 (b) paths. In black is the trajectory of each drifter, and in green the path
of the particles at their first release. In gray is the groups of particles released at each hourly position.

Table 2. Skill score of the results of the numerical simulations performed in the two calibration tests
(Test 1 and Test 2) calculated at the forecast intervals of 1, 6, and 12 h from the release and AV3 for each
single trajectory (LCA00128 and LCA00112).

TEST 1

1 h 6 h 12 h AV3

LCA00128 0.6 0.6 0.7 0.6

LCA00112 0.7 0.8 0.8 0.7

TEST 2

LCA00128 0.4 0.5 0.7 0.4

LCA00112 0.4 0.7 0.7 0.5
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The goodness of the results obtained in simulating the trajectory followed by the two drifters
was largely due to the fact that the surface transport was mainly modulated by the wind action on
the coastal area. The initial deviation between model results and observations was because the wind
was initially of moderate intensity and therefore the transport was probably predominantly led by the
large-scale circulation that was not well represented in these simulations.

For the Adriatic Sea, the model results were compared with the trajectories of a satellite
global positioning system (GPS)-equipped drifter operating between 14 and 28 May 2018 (14 days,
LCE00234-1), and again between 13 and 18 June 2018 (5 days, LCE00234-2) in the central basin.
Drifter LCE00234-1 was equipped with a 50 cm long plastic drogue placed at a 20 m depth,
thus providing the integral information of the currents in the upper 20 m of the water column.
Conversely, during the second drifter release, the plastic drogue was placed at a 1 m depth.

Numerical particles were released every hour along the observed drifters’ trajectories in the first
20 m of the water column and at the surface in the two experiments, respectively. The particle-tracking
model correctly reproduced the trajectories of the drifters, which moved southward along the coast
with a mean speed of 15 cm s−1 and 50 cm s−1 for drifters LCE00234-1 and LCE00234-2, respectively
(Figure 6).

The RMSE and skill score after 24 h of simulation were 5 and 15 km, and 0.57 and 0.67 for
the two trajectories, respectively, in the two experiments (Figure 7). The drifter LCE00234-2 was
particularly good because it moved along the coast with a high transit velocity (up to 1.2 m s−1)
induced by strong southerly winds.

In conclusion, all three models showed good performances that, after 24 h, showed a skill score
higher than 0.6 for coastal models and lower for the sub-regional model.

 

Figure 6. Observed (black thick line) and mean simulated (yellow lines) trajectories for the drifters
LCE00234-1 with a drogue at 20 m (a), and LCE00234-2 with a drogue at 1 m (b), below the sea surface.
The green thick line represents the mean trajectory of the particles released at the beginning of
simulations. The circles mark the oil platforms.
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Figure 7. RMSE of separation distance (top) and skill score (bottom) for the LCE00234-1 drifter with a
drogue at 20 m and LCE00234-2 with a drogue at 1 m below the sea surface.

4.2. The Products

4.2.1. The Daily Bulletin

The realized system provides two different operational online services, one automatic and a
second in case of emergencies.

The aim of the automatic service is to give a daily forecast of the trajectories of possible oil slicks
close to each platform, assuming that the same polluting event repeats daily. It is provided every day
at 08:00 UTC through the issue of a web bulletin for each of the seven active oil fields in the Sicily
Channel (four fields) and in the Adriatic Sea (three fields) listed in Table 1. Each bulletin contains the
scenario of a simulation through 3-hourly maps with the possible distribution of the density in kg m−2.
The bulletin is valid for the following 48 h and downloadable from a website with restricted access.
The type of oil is the API well number typical of the field, and the time length of the spill is 48 h.
Information on transport and weathering processes of the slick are given during the entire simulation.
It shows the percentage of oil on the coast along the water column, still on the surface, and evaporated
through 3-hourly plots with fields of dispersion at sea and the stranding of the oil released from UTC+1
to UTC+48. The different daily sea conditions produce a mid/long-term numerical dataset to compute
hazard and risk statistics.

The service for emergencies is active just in case of real (emergency) or hypothetical (exercise)
dispersion in one or more of the seven active oil fields. A user-interface allows a dedicated operator
to start any simulation in the areas of the rigs, inputting details about the spill such as coordinates,
quantity, and the type of oil released, along with the date and hour of the spill. Also, a near-real-time
bulletin is available in case of emergencies.

4.2.2. Hazard Assessment

The hazard estimation is part of the information provided by the system. The hazard assessment
is an essential requisite for an attempt and accurate plan for intervention in case of emergencies.
It provides probability estimations of the areas that are potentially mostly affected by eventual oil
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slicks due to spills occurring at the extraction platforms. For the calculation and implementation of
hazard maps for each oil platform, we used the forecasting system described above.

The methodology adopted to assess hazard, and further to use hazard as basic informative layer
to assess the coastal risk, will be described in a separate work currently in preparation. This system
is based on long-term (1 year) statistics performed on forecast outputs. Such hazard maps depict
the statistics of the beaching of a hydrocarbon slick after 48 h. The maps represent the statistical
distribution of the release for the whole area that is potentially contaminated by hydrocarbons, both at
sea and on the land if affected by simulated spills.

Two different geo-statistical descriptive quantities of this probability have been considered:
(a) hazard index or HI, calculated like oil concentration for a defined surface unit normalized

at its maximum recorded concentration (at 99th percentile of the distribution of the calculated
concentration frequency). It is dimensionless and defined between 0 and 1;

(b) occurrence probability index or PI, indicating the percentage of probability that a given cell is
contaminated by an oil spill. Its highest values are recorded on the point of release. It is defined to be
between 0 and 100.

The risk assessment can be performed by combining such indices with indicators of vulnerability
of the coastal areas like i.e., protection level, shore types, submerged vegetation, beach use,
granulometry, etc.

Hazard estimation, for both indexes, was done climatologically on 1-year long outputs and is
shown in Figure 8. It will be also done on a seasonal basis with three seasons on the basis of the
local circulation and hydrographical characteristics and defined for January–April (mixed conditions),
May–August (stratified conditions), and September–December (mixing conditions).

Figure 8. The climatological annual calculation of (a) the hazard index (dimensionless) and
(b) the occurrence probability index (percentage) related to the Perla platform.

5. Summary and Conclusions

In 2017, an oil spill forecasting system for the Italian seas was realized in case of oil spill
emergencies on seven active oil extraction areas.

Through a numerical chain composed by nested ocean models, weather models, and Lagrangian
models, the system was able to obtain a forecast of the fate of an oil spill for the following 48 h.
The integrated system has undergone a positive validation process that has involved the use of drifters’
paths collected in the Sicily Channel and in the middle/low Adriatic Sea. It can be used both in
operational automatic mode or in case of emergency.

In operational automatic mode, a daily bulletin is provided simulating a virtual oil spill from
each of the seven oil platforms using forecasted sea conditions, and then provided a 48 h-scenario
of a common quantity of oil at the sea surface. Furthermore, we innovatively adopted an advanced
approach combining deterministic calculus with long-term and continuously updating statistics on
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the trajectories in a database and obtained two hazard indexes, called the hazard and the occurrence
probability indexes. They were periodically revised for the areas surrounding platforms on the basis of
the continuous updates of the database shaped by the forecast system outputs. These hazard indexes
were combined with sensitivity layers to assess risk of the coast and intertidal zone.

In case of emergency, the system produces 48-h forecasts in near-real-time regarding the fate of an
oil slick from each of the seven platforms. Currently, a web interface is available to allow an operator
to initialize an oil spill scenario.
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Abstract: In this paper, we present a probabilistic approach which uses nadir-looking wide-band radar
to detect oil spills on rough ocean surface. The proposed approach combines a single-layer scattering
model with Bayesian statistics to evaluate the probability of detection of oil slicks, within a plausible
range of thicknesses, on seawater. The difference between several derived detection algorithms is
defined in terms of the number of frequencies used (within C-to-X-band ranges), as well as of the
number of radar observations. Performance analysis of all three types of detectors (single-, dual- and
tri-frequency) is done under different surface-roughness scenarios. Results show that the probability
of detecting an oil slick with a given thickness is sensitive to the radar frequency. Multi-frequency
detectors prove their ability to overcome the performance of the single- and dual-frequency detectors.
Higher probability of detection is obtained when using multiple observations. The roughness of
the ocean surface leads to a loss in the reflectivity values, and therefore decreases the performance
of the detectors. A possible way to make use of the drone systems in the contingency planning is
also presented.

Keywords: oil spill; remote sensing; reflection coefficient; electromagnetic roughness; multi-
frequency detector; multiple observations; probability density function; probability of detection;
contingency planning

1. Introduction

Enormous applications and industries use petroleum products worldwide, and thus require
the presence of petroleum materials on site. This need stresses the necessity of moving petroleum
substances using maritime ships or underwater pipelines internationally between different continents
and countries. In addition to the intentional petroleum waste spill in sea water, transportation is
vulnerable to involuntary oil spills from tanker collisions with rocky shoals, ship accidents and pipeline
ruptures [1]. The European Space Agency (ESA) stated that more than 4.5 million tons of oil is the
estimate of the annual spill worldwide, where 45% of the amount is due to operative discharges
from ships [2]. Oil spills in sea water are one of the major incidents which adversely cause long-term
repercussions for the maritime environment. They are happening on a global scale, and their influence
on the ecosystem is extremely severe. Oil spills, including gasoline, fuel, crude, and bulk oil, will affect
the ecosystem starting from maritime life and ending in the human life and environmental disasters.
Marine oil spills can be highly dangerous since wind, waves and currents can scatter a large oil spill
over a wide area within a few hours in the open sea. Environmental rules, regulations and strict
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operating procedures have been imposed to prevent oil spills, but these measures cannot completely
eliminate the risk [3]. Therefore, oil spill detecting and monitoring systems are extremely important in
order to react quickly and to limit contamination.

Oil spill detection and monitoring is done with the aid of several techniques and sensors.
State-of-the-art sensor technology for oil spill surveillance is listed and described in [4–6]. Infrared
sensors are relatively cheap remote-sensing technologies which can be used to detect oil spills.
However, thermal radiation from sea weeds appear similar to the radiation arising from the oil
which may lead to a false positive result. In addition, infrared sensors require the absence of cloud
and heavy fog for good operation [4]. Ultraviolet (UV) sensors cannot detect oil thickness greater
than 10 microns. Less UV use is being made for oil spills in today’s remote sensing because of the
low relevance of thin slicks to oil spill cleanup [6–8]. Microwave radiometer (MWR) is an additional
passive sensor that is used for oil spill detection and oil thickness measurements. However, MWR
sensors are costly and it is complicated to put them into operation. Microwave radiometer sensors
require information about many environmental characteristics and oil properties to accurately detect
the oil [4]. There are interferences, and signal differentials may be poor. Currently, microwave is not
being used for slick imaging [6].

Radar is a very useful active sensor to detect oil over a large area. Thus, it can be used as a first
assessment tool to detect the possible location of an oil spill. SAR (Synthetic Aperture Radar) and SLAR
(Side-Looking Airborne Radar) are the two most common types of radar which can be used for oil spill
remote sensing [4,9]. Synthetic Aperture Radar is the most widely used sensor on spaceborne platforms
for oil spill detection [4]. Imaging SAR systems are off-nadir instruments whose backscattering over the
ocean is primarily due to Bragg scattering at relevant incident angles. In [10–13], comparison between
different spaceborne and airborne SAR algorithms is done. Synthetic Aperture Radar technique is
highly prone to false targets, however, and is limited to a narrow range of wind speeds (approximately
2 to 6 m/s). At winds below this, there are not enough small waves to yield a difference between
the oiled area and the sea [3]. At low wind speed it is not possible to distinguish between thick and
thin oil slicks. The ocean’s slight surface roughness due to very low wind speed (<3 m/s) leads the
backscattering to be dominated by the specular component, challenging SAR systems for oil spill
detection [12]. Therefore, it would be advantageous to study the radar observations from nadir-looking
systems since they cover scenarios that cannot be studied by SAR systems. Being largely independent
of surface roughness, the returns from nadir (or near-nadir) systems will benefit from the dominance
of the specular scattering and enable detection in very low wind conditions.

Most recent ones are those done remotely using airborne [14,15] and satellite systems [16–21].
Satellites face the limitations of overpass frequency and low spatial resolution [5], whereas airborne
systems, despite their high cost due to aircraft dedication, can be used directly when needed for
real-time dataset processing [4]. The European Maritime Safety Agency (EMSA) launched in 2016 the
need to complement the satellite maritime surveillance systems—that can detect only 25% of pollution
accidents—by drones [22]. According to [23], aerial surveillance could be improved significantly by
the admission of drones.

According to [7], sensors should provide the following information for oil spill contingency
planning:

• info 1: the location and spread of an oil spill over a large area,
• info 2: the thickness distribution of an oil spill to estimate the quantity of spilled oil,
• info 3: a classification of the oil type in order to estimate environmental damage and to take

appropriate response activities,
• info 4: and timely and valuable information to assist in cleanup operations.

From a system-level perspective, we study the incorporation of both C-band and X-band using
remote sensing nadir-looking wide-band radar sensors that can be implemented on drones as oil spill
detection systems. The drone-based radar will allow quick assessment of the area where the flag of
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possible spills is raised by witnesses. Winds and the ocean’s currents may spread the spilled oil to a
large area within a short period of time [4], hence the proposed systems will be able to provide the
most critical information needed for an effective contingency planning by specifying the location of
the oil (info 1) and its spread over the ocean. Nevertheless, working as nadir-looking systems will
definitely decrease the surface of the scanned area viewed by the radar compared to that scanned by
“side-looking” radars. However, parallelization in scanning can be used to cover large area in a critical
time. This means that instead of using a single drone with several scans to cover a large area, multiple
drones can be used at the same time. Using the radar on drone platforms will be a complementary
solution to the satellite systems. Once we have a flag of possible oil spill (due to collision of tankers,
or to the rupture of pipelines), the drones can be used to start the scans as tactical-response systems.
Afterwards, the satellites can be used for strategic planning by providing the synoptic view of the scene.
This will assist later in cleanup operations by providing valuable data as needed (info 4). Furthermore,
scanning with drones provides high spatial resolution compared to satellite and with a principal
advantage of relative low cost compared to dedicated airborne detection systems. With respect to
(info 2), we proposed in [24] using the same drones systems implementing different algorithms to
estimate the thickness of the oil. This information is very important to the effectiveness of oil spill
contingency planning because it allows the estimation of the total volume spilled.

We developed in [25,26] dual- and multi-frequency algorithms using only single observations
for oil spill detection. The model adopted was a planar multi-layer structure. The ocean surface
was assumed to be totally smooth corresponding to scenarios where the wind speed is very low.
Performance analysis of the proposed algorithms was presented in [27]. In this journal, we extend
the previously proposed approach by applying Bayesian statistics on the reflectivity values evaluated
at multiple frequencies and collected with multiple observations. A full derivation of the different
algorithms is presented. In addition, the multi-layer structure is no more assumed to be planar.
The statistical attributes of the ocean surface are presented. The performance of the detectors is tested
under different roughness scenarios. Since the oil properties (info 3) are not known during the first
stages of an oil spill, we study the effect of this missed information on the overall performance of the
proposed algorithms.

2. Methods

2.1. Reflection Coefficient Calculation for the Multi-Layer Planar Structure

From a physical point of view, the problem is considered to be a multi-layer structure where
we study the reflection of the electromagnetic waves from the sea layer covered by an oil layer.
The electrical properties and the physical characteristics are defined for the layers at the boundaries
where interaction with electromagnetic waves occurs.

In our model, we assume that there is an oil slick, with d thickness (in mm), on the top of the
sea water surface. An oil spill on the sea surface will dampen the waves and hence reduce the
surface roughness. Furthermore, at open ocean space, with low wind speeds (2–6 m/s) which are
considered to be optimal for oil spill detection [4], the correlation length of the ocean waves is large
and the root-mean-square (rms) height of the capillary waves is very small. Hence, we assume that
the multi-layer structure is planar. We consider that this assumption is indeed realistic when the
ocean’s surface is very smooth due to the very low wind conditions. When the roughness increases,
it decreases the reflection measurements made or increases the noise level of the environment.

The relative dielectric constants of the air, oil, and sea water are respectively ε1, ε2 and ε3.
The different media are assumed to be non-magnetic. The refractive indices n for the different
materials are ni =

√
εi. The electromagnetic waves are assumed to be normally incident on the ocean

surface. We assume that the sea water is deep enough so that we can neglect the radar reflections from
the sea-floor. The field reflection coefficients for the first interface (between air and oil) and the second
interface (between oil and water) are respectively:
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ρ12 =
n1 − n2

n1 + n2
, (1)

ρ23 =
n2 − n3

n2 + n3
. (2)

Across the boundaries, E is conserved. Using continuity property at these interfaces, the
reflectivity (power reflection coefficient) for the three-layer structure is derived in [25] as:

R = |ρ|2 =
ρ2

12 + ρ2
23 + 2 ρ12 ρ23 cos(2 δ)

1 + ρ2
12 ρ2

23 + 2 ρ12 ρ23 cos(2 δ)
. (3)

The phase shift δ is dependent on the oil-refractive index n2, the wavelength of the electromagnetic
wave λ0, and the thickness of the oil slick t. It is given by:

δ =
2 π f

c
n2 t =

2 π

λ0
n2 t, (4)

where c is the speed of light.
The reflectivity R is a trigonometric function with period TR that is dependent on the oil-refractive

index and the frequency of the electromagnetic wave. The period is expressed as:

TR =
2 π
2 δ
t

=
π

2 π
λ0

n2
=

λ0

2
√

ε2
. (5)

2.2. Smooth or Rough Surface

Several statistical attributes can be calculated for a random surface [28]. The collection of surface
height measurements may be described using standard statistical parameters. The surface height
measurements are denoted by z(i,j) in two-dimensional array N × N collected at a horizontal step-size
Δx over an area whose length and width are given by L [29]:

z(x,y)(Δx, L) (6)

with (x, y) ∈ [1, ..., N][1, ..., N].
Collecting big number of measurements, the height probability density function p(z) can be

approximated to one of many well-known distributions such as Gaussian, Exponential, or Rayleigh.
For most random surfaces, the probability density function (pdf) looks approximately Gaussian in
shape, that is [28,29]

p(z) =
1√

2 πs2
e
−z2

2s2 (7)

where s2 is the variance of surface heights. With zero-mean distribution, the variance is equal to the
standard deviation.

Given p(z), we can calculate several statistical attributes of the random surface, including [28]:

• the height standard deviation s given by

s =

√

∫ + inf

− inf
z2 p(z)dz (8)

which is also called the rms-height , and
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• the surface correlation function defined by

l(ξ) =
〈z(x,y)z(x′ ,y′)〉

s2 (9)

where (x, y) and (x′, y′) are two locations on the surface, and ξ is the lateral separation
between them.

The correlation function l(ξ) is a measure of the degree of correlation between the surface at
different locations. The value of the correlation function decreases with ξ. Hence, if the spacing
between two locations is greater than a certain distance called the correlation length, we can assume
that the heights are considered to be statistically uncorrelated [28].

Electromagnetically, the roughness of a surface is measured relatively to the electromagnetic (EM)
wavelength λ. According to [28], for a surface with rms height s, its electromagnetic roughness ks is:

ks =
2π

λ
s (10)

For a perfectly smooth surface (flat surface) with rms height s = 0, an incident EM wave is
reflected along the specular direction, and the reflected power is related to the incident power by the
reflectivity formula given in Equation (3).

The component of the scattering pattern of the perfectly smooth surface consists of only a coherent
component. If the surface is rough with ks, the scattering pattern will also include a non-coherent
component along all other directions. In that case, the reflectivity along the specular direction will be
noted as the coherent reflectivity Rcoh, expressed as

Rcoh = R e−4ψ2
(11)

where
ψ = ks cos(θi) =

2π

λ
s cos(θi) (12)

with θi being the incident angle of the EM wave to the interfaces.
With respect to the oil spill problem, according to [11,13], an oil spill on the sea surface dampens

the waves and hence reduces the roughness of the surface. Furthermore, at open ocean space, with very
low wind speed ( <2–3 m/s) which are considered to be optimal for oil spill detection [4], the correlation
length of the ocean waves is large and the rms height s of the capillary waves is very small. Hence, the
electromagnetic roughness ks is negligible and all interfaces are assumed to be planar.

When the variation of the ocean waves increases due to higher wind speed, the electromagnetic
roughness increases respectively with the rms height s. Therefore, the surface is not considered to
be totally planar anymore, and its variation will affect its level of roughness. Depending on the
electromagnetic roughness factor, the surface can be described to be planar (ks = 0), relatively smooth
(ks = 0.2) or extremely rough (ks = 2). The effect of the electromagnetic roughness on the reflectivity
value is displayed in Figure 1 [28].
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Figure 1. Effect of the electromagnetic roughness on the reflectivity value.

2.3. Detection Algorithms

From the mathematical perspective, the detector algorithms use the statistical characterization
of the reflectivity values and its distribution under different oil thicknesses in order to obtain a final
decision whether oil exists or not. These reflectivity values are assumed to be independent events.
Any previous knowledge about the existence or absence of oil in the surface scanned should be taken
into consideration to weight the probability of the decision in the detector block. Nevertheless, without
any previous knowledge about the spill situation, the detector decision will be totally based on the
statistics of the calculated power reflection ratio.

Let “o, w” be the events indicating the presence of the oil slick and the water, respectively. Let R

be the event representing the reflectivity value(s) measured. R could represent one or more reflectivity
values repeated at the same frequency or at different frequencies. In all cases, these reflectivity values
are assumed to be uncorrelated in time domain (at multiple observations) and in frequency domain
(at multiple frequency measurements). The difference between these cases will be studied in the
following subsections. With “·” being the numerical multiplication, the probability of oil presence and
absence given R are respectively

Pr(o|R) = Pr(o ∩ R)

Pr(R)
=

Pr(R|o) · Pr(o)

Pr(R)
(13)

Pr(w|R) = Pr(w ∩ R)

Pr(R)
=

Pr(R|w) · Pr(w)

Pr(R)
(14)

Without any previous knowledge about the spill situation, i.e., with Pr(o) = Pr(w) = 50%,
the ratio of probabilities of oil presence to water presence is given by

Pr(o|R)
Pr(w|R) =

Pr(R|o) · Pr(o)

Pr(R|w) · Pr(w)
=

Pr(R|o)
Pr(R|w)

. (15)

The probability of obtaining a measured reflectivity value given that the oil exists is evaluated
using the corresponding pdf. Similarly, the probability of obtaining the same reflectivity value given
that the water exists is evaluated. If the ratio in (15) gives a result greater than unity, the decision will
indicate the oil existence.
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2.3.1. Single Observation at Multiple Frequencies

If R in (15) represents single observations of reflectivity measured at different frequencies (up to I

total frequencies), then we can express it as

R = R f1
, R f2

, ...R f I
(16)

Replacing (16) in (15), we obtain

Pr(o|R)
Pr(w|R) =

Pr(R f1
, R f2

, ...R f I
|o)

Pr(R f1
, R f2

, ...R f I
|w)

=
Pr(R f1

|o) · . . . · Pr(R f I
|o)

Pr(R f1
|w) · . . . · Pr(R f I

|w)

=
Pr(R fi

, R f j
, ..|o)

Pr(R fi
, R f j

, ..|w)
· Pr(o)

Pr(w)
(17)

=
∏i Pr(R fi

|o)
∏i Pr(R fi

|w)

= ∏
i

Pr(R fi
|o)

Pr(R fi
|w)

2.3.2. Multiple Observations at Single Frequency

If R in (15) represents multiple observations (up to M total observations) of reflectivity measured
at single frequency, then we can express it as

R = R
(1)
f1

, R
(2)
f1

, ...R(M)
f1

(18)

Replacing (18) in (15), we obtain

Pr(o|R)
Pr(w|R) =

Pr(R
(1)
f1

, R
(2)
f1

, ...R(M)
f1

|o)

Pr(R
(1)
f1

, R
(2)
f1

, ...R(M)
f1

|w)

=
Pr(R

(1)
f1
|o) · . . . · Pr(R

(M)
f1

|o)

Pr(R
(1)
f1
|w) · . . . · Pr(R

(M)
f1

|w)
(19)

=
∏m Pr(R

(m)
f1

|o)

∏m Pr(R
(m)
f1

|w)

= ∏
m

Pr(R
(m)
f1

|o)

Pr(R
(m)
f1

|w)

2.3.3. Multiple Observations and Multiple Frequencies

If R in (15) represents multiple observations (up to M total observations) of reflectivity measured
at multiple frequencies (up to I total frequencies) , then we can express it as

R = R
(1)
f1

, ..., R
(M)
f1

, R
(1)
f2

, ..., R
(M)
f2

, ..., R
(1)
f I

, ..., R
(M)
f I

(20)
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Replacing (20) in (15), we obtain

Pr(o|R)
Pr(w|R) =

Pr(R
(1)
f1

, ..., R
(M)
f1

, R
(1)
f2

, ..., R
(M)
f I

|o)

Pr(R
(1)
f1

, ..., R
(M)
f1

, R
(1)
f2

, ..., R
(M)
f I

|w)

=
Pr(R

(1)
f1
|o) · . . . · Pr(R

(M)
f1

|o)

Pr(R
(1)
f1
|w) · . . . · Pr(R

(M)
f1

|w)

×
Pr(R

(1)
f2
|o) · . . . · Pr(R

(M)
f2

|o)

Pr(R
(1)
f2
|w) · . . . · Pr(R

(M)
f2

|w)

× . . . (21)

×
Pr(R

(1)
f I
|o) · . . . · Pr(R

(M)
f I

|o)

Pr(R
(1)
f I
|w) · . . . · Pr(R

(M)
f I

|w)

=
∏m Pr(R

(m)
f1

|o)

∏m Pr(R
(m)
f1

|w)
× . . .

∏m Pr(R
(m)
f I

|o)

∏m Pr(R
(m)
f I

|w)

= ∏
i

∏
m

Pr(R
(m)
fi

|o)

Pr(R
(m)
fi

|w)

3. Results and Discussion

3.1. Simulation Setup

Probability of detection calculations are performed using Monte Carlo Simulations in MATLAB.
The dielectric constant of the air is ε1 = 1. The dielectric constant of the thick oil is assumed to be real
ε2 = 3 (the imaginary part of order 0.01 j can be neglected without affecting the results). Sea water
dielectric constant, ε3, is function of the water temperature tw, water salinity sw and the frequency of
the electromagnetic signal used. For its calculation, we use the model mentioned in [28] with tw = 20◦

C and sw = 35 ppt. The noise variance in the system is considered to be additive white Gaussian
(AWG) in linear scale, with variance of σ2 = 0.02.

3.2. Reflectivity Behavior with Smooth and Rough Surfaces

Figure 2 shows the reflectivity values (coherent component) calculated from the planar multi-layer
structure versus the oil thickness, under different electromagnetic roughness (ks = 0, 0.2 and 0.5).
The plot of Rcoh,w is simply a copy of the value obtained at d = 0 mm at the given frequency. For totally
smooth surfaces, the plot of Rcoh,o at 4 GHz is almost monotonically decreasing in the range (0–10 mm).
It has a very small slope at small thickness values (0–3 mm), but this slope increases with the increase of
the oil slick thickness (3–7 mm). At some thicknesses, any error in the power reflectivity measurements
at 4 GHz would mislead the oil detection due to the very small variation between Rcoh,o and Rcoh,w.

The variation of the reflectivity values at 12 GHz is quite high for consecutive values of thicknesses.
This variation allows the oil detection for small thicknesses (1–3 mm). As discussed in Equation (5), the
reflectivity is a trigonometric function and has a cyclic behavior. This is observed clearly at f = 12 GHz;
the reflectivity repeats every 7.2 mm. Due to the cyclic behavior, many thickness values give the same
reflectivity value leading to false interpretations. Therefore, it is important to use more than one
frequency to improve the detection. When the electromagnetic roughness of the surfaces increases, the
reflectivity values decrease as presented in Equation (11). Increasing the surface roughness ks from 0.2
to 0.5 leads approximately to 4 dB loss in the reflectivity.
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Figure 2. Comparison between the reflectivity values (in dB) versus the oil thickness (in mm) at 4 GHz
and 12 GHz for different roughness scenarios. Ro and Rw in each graph represents the oil and water
reflectivity values, respectively.

3.3. Effect of the Oil Properties on the Performance of the Single-Frequency Detectors

In real scenarios, when oil spill takes place, it is not always the case that the oil type is well known
and defined. This rises the following question from system-monitoring aspect: Does the absence of
the exact value of the oil property affects the reflectivity values? To answer this, Figure 3 presents
the reflectivity values for different relative dielectric constants of the oil (ε2 = 2.9, 3 and 3.3) at two
frequencies (4 and 12) GHz. At 4 GHz, the difference in the relative dielectric constant values does
not modify the reflectivity values at (0–3) mm. However, for higher thickness values, the reflectivities
start to change for different dielectric constants. At 4 GHz, the difference between the reflectivities
when ε2 = 2.9 and ε2 = 3.3 reaches approximately 1 dB at around 7.8 mm. At 12 GHz, the difference is
high at around 3.5 mm, decreases to null at 7.8 mm and increases again to 2 dB at 10 mm. Now, we
know that the oil type slightly affects the reflectivity value, but more importantly, is it the case for the
performance of the detectors?

Figure 4 compares between the probability of detection versus the oil thickness (in mm) for
different single-frequency detectors with single scan (M = 1) and variant oil properties. Using the
detector with single observation at 4 GHz, the probability of oil detection increases with the oil
thickness from 51% to 70%. At 8 GHz, the detector records highest detection of 69% at 5 mm but it
fails for thickness ranges (1–2 mm) and (8.5–10 mm) recording a value smaller than 55%. At 12 GHz,
the detector fails at 1 mm and between (6–8 mm), where the higher detection occurs at 3.5 mm.
The results for all these single-frequency detectors (with single observation) validate the reflectivity
behavior explained previously in Figure 2.

The effect of the variation in the reflectivity values, due to the variation of the oil properties, in
the performance of the single-frequency detectors is also presented in Figure 4. From the obtained
results, we notice that although at different thickness values there exists some noticeable difference in
the reflectivity values at the same frequency for different dielectric constants (as shown in Figure 3),
but these variations do not affect the performance of the detectors more than 2%. Therefore, even when
monitoring an oil spill, the proposed algorithms can be used with an approximate value of the oil
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permittivity without affecting the performance of the technique on the detection. This analysis is highly
useful for the monitoring system because it defines the vulnerability of the drone systems against the
absence of some information about the oil properties that are not be present during tactical response.

 

Figure 3. Reflectivity R (in dB) versus oil thickness (in mm) at different frequencies (4 GHz, and
12 GHz) and different oil dielectric constants. The electromagnetic roughness is ks = 0.5.

 

Figure 4. Comparison between the probability of detection versus the oil thickness (in mm) for
single-frequency detectors at 4 GHz, 8 GHz and 12 GHz, using single observation (M = 1) and different
oil properties. The electromagnetic roughness is ks = 0.5.
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3.4. Performance Analysis of the Multi-Frequency Detectors

Figure 5 compares between the probability of detection versus the oil thickness (in mm) for
different single-frequency detectors when the number of observations used by the detectors is varied
up to 5. The electromagnetic roughness of the surface is 0.5. The performance of all detectors improves
when the number of observations increases from 1 to 5. Using many observations for the detection
reduces the AWG noise. However, no improvement is recorded for thickness values equal to multiple
of wavelengths. Therefore, even when increasing the number of observations to reduce the effect of
the noise, there are still some thickness ranges where the decision is totally wrong. With the use of one
frequency, it is not possible to cover all the possible range of thickness values because of the periodicity
of the reflectivity. The reflectivity’s cyclic behavior highlights the need to use multiple frequencies to
achieve accurate decision about the oil spill situation.

 

Figure 5. Comparison between the probability of detection versus the oil thickness (in mm) for
single-frequency detectors at 4 GHz, 8 GHz and 12 GHz, using single observation (M = 1) and multiple
observations (M = 2 and M = 5), with electromagnetic roughness ks = 0.5.

Figure 6 compares the probability of detection for different single- and dual-frequency detectors
under different surface-roughness scenarios. Using more than one frequency in the detector increases
the range of thicknesses over which the detection is correct and omits to a certain extent the drawbacks
of the reflectivity cyclic behavior. When combining 4 GHz with 8 GHz, the probability of detection
increases to more than 70% for any thickness value exceeding 4.5 mm. Using more observations
(M = 3 and 5), the dual-frequency detectors performs respectively around 10% and 15% better than
using single observation only. The performance of the detection is much efficient when the surface
is planar. It is evaluated to be higher than 75% for thickness values greater than 2 mm when M = 5.
The probability of detection generally improves for a larger number of scans M because the noise
will be averaged out. However, with dual-frequency detectors, the probability of detection in the low
frequency range is still low. What if we increase the number of frequencies used when scanning?

Figure 7 shows the effect of increasing the number of frequencies on the performance of the
detectors. For planar surfaces, the tri-frequency detector using the combination of (4 GHz, 6 GHz
and 8 GHz) shows better performance than the combination of (4 GHz, 8 GHz and 12 GHz) in high
thickness ranges. The cyclic behavior of the reflectivity at 12 GHz leads to the 8% drop witnessed at
8.5 mm. However, its slope is steepest than the slope of the reflectivity at 6 GHz. This explains the
5–15% less efficiency at low thickness values 1–4 mm.
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Figure 6. Comparison between the probability of detection versus the oil thickness (in mm) for different
detector algorithms: single-frequency detectors at 4 GHz and 8 GHz, and dual-frequency detectors
using combinations of these frequencies, for different surface-roughness scenarios.

 

Figure 7. Comparison between the probability of detection versus the oil thickness (in mm) using
different multi-frequency detectors for smooth and rough surfaces.

Higher frequencies witness more electromagnetic loss at the same rms height (s) of the surface.
Therefore, it would be more advantageous to use lower frequencies when the ocean surface is rough.
For electromagnetic roughness ks = 0.5, the loss of the reflectivity at 12 GHz is much higher than the
loss at 6 GHz. For that reason, the tri-frequency detector that uses 6 GHz instead of 12 GHz gives
better performance over all the possible thickness values. By increasing the number of scans, more
benefit can be achieved at low thickness values.
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Overall, based on the previous obtained results, we can propose the following plan using drone
systems for oil spill detection:

1. Receiving alarm for possible oil spill (witnesses, underwater pipelines ruptures, collisions of
tankers, etc.)

• Send multiple drones to test the candidate scene.
• The drones should use wide-band radar to collect several measurements at different

frequencies in each scan.
• Depending on the weather conditions and the ocean’s waves, scan M times the scene to

reduce the effect of the noise on the collected measurements as needed.
• Data collected should be transmitted directly to base stations for post-processing.

2. Apply the detection algorithms on the collected data and analyze it. If the probability of detection
exceeds the threshold set by the persons in charge, launch the oil spill alarm and the need to start
the contingency plan.

3. Apply the oil thickness estimation algorithms [24] on the collected data to estimate the severity
of the spill. High values (>1 mm) indicate the need for quick intervention because the oil slick
will be considered to be “thick” and “heavy”, and it will persist for a long period of time [4].

4. Use the satellite systems to provide a synoptic view of the scene during the upcoming days to
track the spill.

5. Once the contingency plan is started, make use of other sensors to get all other needed information
more accurately (for example, the large-size and weight fluoro-sensor can be used to identify the
oil type [4].)

4. Conclusions

In this paper, we present a new probabilistic approach using wide-band radar for drone-based
oil spill detection applications. We derived multi-frequency algorithms that use the statistical
characterization of the power reflectivity and its distribution under various oil thicknesses and
electromagnetic wave frequencies. We first introduce multi-frequency single-observation detector that
uses single measurement of power reflection coefficient at different frequencies. Then, we present the
single-frequency multiple-observations detector that uses multiple measurements of power reflection
coefficients over several scanning for the sea area under study. We finally derive the multi-frequency
multiple-observations detector that uses different frequencies at the same time and repetitively to
provide a final decision about oil spill presence or absence. Performance analysis of all three types of
detectors is done. Results show the inability of the single-frequency detectors to effectively distinguish
between oil slicks and water for the total range of possible thicknesses. Nevertheless, increasing the
number of observations leads to an increase in the effectiveness of the detectors. Dual-frequency
and tri-frequency detectors prove their ability to overcome the drawbacks of the single-frequency
detector by providing accurate detection especially for multiple observations. The performance of these
detectors is reduced when the roughness of the ocean surface due to winds increases. The proposed
algorithms can be implemented on nadir-looking systems such as the drones to be complementary
systems for oil spill detection. Using multiple drones at the same time allow for quick intervention and
real-time data collection for post-processing. During the early stages of a possible oil spill, the drone
systems act as tactical-response systems complementing the large-scale view obtained by satellite
systems. Once the spill is confirmed, the drones can track the spill using the high spatial resolution
feature provided by the wide-band radars.
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Abstract: In recent years, large oil spills have received widespread media attention, while small and
micro oil spills are usually only acknowledged by the authorities and local citizens who are directly or
indirectly affected by these pollution events. However, small oil spills represent the vast majority of oil
pollution events. In this paper, multiple oil spill typologies are introduced, and existing frameworks
and methods used as best practices for facing them are reviewed and discussed. Specific tools
based on information and communication technologies are then presented, considering in particular
those which can be used as integrated frameworks for the specific challenges of the environmental
monitoring of smaller oil spills. Finally, a prototype case study actually designed and implemented
for the management of existing monitoring resources is reported. This case study helps improve the
discussion over the actual challenges of early detection and support to the responsible parties and
stakeholders in charge of intervention and remediation operations.

Keywords: marine information systems; environmental monitoring; proactive systems; decision
support systems; signal integration; oil spills

1. Introduction

It is well-known that large spills of oil and related petroleum products in the marine environment
can have serious biological and economic impacts. According to [1], the 2010 Deepwater Horizon
disaster is still exacting an ongoing and largely unknown toll. Public and media scrutiny is usually
intense after a spill, demanding that the location and extent of the oil spill be properly identified and
quantified. Remote sensing is playing an increasingly important role in oil spill response efforts [2].
Through the use of modern remote sensing instrumentation, oil can be continuously monitored on the
open ocean. With knowledge of slick locations and movement, response teams can more effectively
plan countermeasures in an effort to curtail the effects of the induced pollution.

Pollution sources in the sea are disparate in size, origin, and nature of the pollutants, and are
not limited to major accidents. It is possible to distinguish several classes of pollution sources and to
evaluate the impact of each class. Particular classes are: (i) pollution sources caused by oil exploration
and production; (ii) pollution sources caused through transporting oil by sea; (iii) natural oil pollution
sources; (iv) pollution sources generated by general maritime traffic and shipping operations; and (v)
pollution sources caused by coastal activities. While events deriving from (i) and (ii) might produce
accidents of great impact to coastal populations, they are relatively rare compared to pollution events,
due to the general shipping traffic and coastal activities.

Although operational discharges may be considered small when compared to spills caused by
shipping accidents, they tend to be repetitive and even chronic, being concentrated in ports and along
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shipping routes. Therefore, these spills will have an impact on local marine habitats, including physical
disturbances, toxic inputs to sensitive species, and organic sediments enrichment [3]. Ships of all kinds
discharge oily residues into the sea during routine operations. Further, ships periodically clean their
ballast and bilge water tanks, comprising a considerable source of pollution. It has been estimated
that most oil spills are the result of daily operations, most often occurring in oil or port terminals [4].
Indeed, the International Tanker Owners Pollution Federation Limited (ITOPF) reports that small and
medium-sized spills account for 95% of the total number of all the incidents recorded [5]. Furthermore,
the impact of coastal activities as a source of oil spills does not yet seem to be too well-understood [6–8].

Operational oil spills pose a serious threat to the environment, especially because attention and
mitigation measures tend to be focused on large accidental spills. Most of the existing frameworks
based on remote sensing and systems for environmental decision support are mainly focused on large
catastrophic events, while small-scale oil spills have received somewhat less attention. For instance,
the European Maritime Safety Agency (EMSA) provides the CleanSeaNet service [9], covering all
European sea areas, which are analyzed in order to detect and track possible oil spills on the sea surface.
Besides operational services, the interest of the research community is witnessed by the numerous
projects and prototypical systems for marine pollution monitoring [10,11]. Recent works include
cloud-based solutions [12], in which a cloud-based image processing the facility for oil spill detection
is integrated with a web-based geographical information system, and the framework is introduced
in [13] in which a high-resolution hydrodynamic model is used for accurately forecasting oil spill
evolution and weathering.

Addressing small and micro oil spills exhibits some challenging differences with respect to large
ones. For example, they are on a small spatial scale, and most of them are difficult to detect solely on
the basis of remote sensing. For instance, aerial surveys of the North Sea have shown that between 500
and 1200 oil spills have been observed each year, with 73–88% of oil spills having a volume less than
1 cubic meter [14], which make them difficult to be accurately detected and analyzed by satellite-borne
sensors alone.

One possible approach to the problem of small-scale oil pollution monitoring is to fuse satellite
images with other data sources. For instance, integrating data collected in situ by a suitable network of
sensors may improve the pervasiveness of monitoring in a marine area of particular environmental
value, while simultaneously helping to resolve ambiguities and filtering false positives deriving from
the analysis of data coming from a specific and single modality, i.e., the use of data acquired and
processed from only one source. Multisource, i.e., more sensors that can be from different devices that
can offer the same typology of data (e.g., SAR with different resolutions or from different satellites),
and multimodal, i.e., with reference to the physical features recorded by devices using different
typologies for acquisition (e.g., buoys, in situ, airborne, AIS, satellite, SAR/optical), surveillance of
the sea thus has good capabilities in addressing small-scale oil spills, but it demands for additional
problems to be solved. Collection, cross-correlation, and comparison of multiple data sources cannot
be routinely performed manually by authorities and stakeholders in charge of the intervention and
remediation operations. For instance, it is difficult to establish possible correspondences between
vessels and oil slick positions sampled at different times by: (a) satellite-borne sensors, (b) Automatic
Identification System (AIS), and (c) in situ devices, without including and integrating the data
into a single information system endowed with models where all encompassing forecasting and
retrodiction of slick and ship positions are available. Furthermore, while major pollution events are
managed by special contractors for carrying out intervention and remedy actions, small ones are
addressed—at least in the first stages—primarily through the use of local monitoring and remedy
resources. The orchestration and optimization in the use of such resources also poses some problems
in the routine management of small pollution events.

From the above considerations, it may be evinced that while multimodal data integration has
strong potential in dealing with small and micro oil spills, suitable algorithms and models are
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needed to properly exploit such data and optimize the use of both a monitoring network and a
local intervention chain.

The main contribution of this paper is to review the relevant literature concerning decision support
in environmental monitoring, especially for the marine and maritime domain, and then to establish a
rationale for the design and integration of an Environmental Decision Support System (EDSS) devoted
to oil spill management. Advanced data gathering functionalities and coordinated management of
available models emerge as key components for the design of a successful and useful Information
and Communication Technologies (ICT) system. On the basis of the proposed analysis, guidelines
are suggested for steering the design of an EDSS, as well as for defining its functional requirements.
Such guidelines are then put into practice and properly demonstrated in a case study. EDSS is designed
and integrated into the Marine Information System (MIS) presented in [15]. Such integration shows the
advantages of decision support services for more efficient management of small and micro oil spills.

2. Related Works

An environmental system is complex, dynamic, spatially distributed, and highly non-linear.
Its processes operate on a multitude of interdependent scales in time and space [16,17]. In addition,
many of the governing processes are not directly observable, and therefore are not easily understood.
Along with such inherent difficulties, every decision related to environmental planning and
management is characterized by multiple and usually conflicting objectives, as well as multiple
criteria; thus, it is important to be aware of the problem of uncertainty and also of issues arising as
a consequence of the increasingly wide public participation in decision-making processes. In this
framework, EDSSs are emerging as fundamental tools to aid analysis and planning of all the decisional
processes that are pertinent to environmental management. The advantage of using EDSS, in particular
for small-scale oil spill, is at least twofold: it aids decision-makers in their activity by facilitating the
use of data, models, and structures; and it favors reproducibility and transparency of decision-making.
In the following, a general treatment of EDSS is provided, while simultaneously focusing on the
requirements and functionalities needed to properly address small-scale events, to which the rest of
the present work is devoted.

The three primary axes of intervention of EDSS might be identified as (see also [18]): (i) integrating
information into a coherent framework for analysis and decision-making, discerning key information
that impacts decision-making from more basic information; (ii) identifying realistic management
choices; and (iii) providing a framework for transparency (i.e., all parameters, assumptions, and data
used to reach the decision should be clearly documented) and ensuring that the decision-making
process itself is documented.

In most applied contexts, environmental monitoring processes imply a continuous intelligent
monitoring system, an increasing volume of data, and, in many instances, decreasing time for making
decisions. This is particularly true in the case of marine and maritime monitoring for taking care of
pollution events, where the so-called near-real-time is the amount of time between the occurrence of the
event and its notification to the appointed authorities, who take charge of the notification and start
possible remediation operations. This time span represents the interval that can be used by automated
tools to perform more or less autonomous tasks which lead to a better and more precise description of
the polluting event, or to disregard the event if it is a false alarm.

The provision of support services is generally based on Artificial Intelligence (AI) paradigms.
In [19], an overview of the impact of AI techniques on the definition and development of the first
EDSS during the last fifteen years is reported. Cortés et al. highlights the desirable features that an
EDSS must show, and their paper concludes with a selection of successful applications to a wide
range of environmental problems. By contrast, in [20], the authors understand that these tools often
fail to be truly adopted by the intended end-users, and try to identify and assess key challenges in
EDSS development and offer recommendations to resolve them. In particular, to tackle the described
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challenges, the authors provide a set of best-practice recommendations to improve ease of use, establish
trust and credibility, and promote EDSS acceptance.

More general integrated environmental modeling, which fairly comprises Environmental
Information Systems (ENVISs), is presented in [21] where the problem is faced from a socio-economic
environmental point of view and the decision-making approach follows an integration of resources
and analyses to address the problems as they occur in the real-world, including input from appropriate
stakeholders [22]. In [23], the authors perform a review of five common modeling approaches for
an integrated environmental assessment and management. Integration is defined by the purpose
the specific model wants to achieve, from prediction to decision-making, in the context of different
environmental assessments. In particular, regarding the approach to modeling complex situations,
knowledge-based models offer advice to the users, based both on their own knowledge and on the
user’s response to a number of if–then questions [24]. In parallel, [25] introduced another probabilistic
approach producing a framework and claiming to have a holistic view of the global risk assessment.
In particular, they operate for what concerns the risk factors on a single species endangered by a
polluting event, and providing a model for a quantitative risk estimate. Mokhtari et al. [26] developed
a spatial predictive model for estimating the probability of oil spills’ occurrence. Their model estimates
the probability of oil spills at a pixel level as a function of four specific variables: ship routes, coastlines,
oil facilities, and oil wells. It uses a Generalized Linear Model (GLM) with a polynomial function.
The number of variables taken into account is very limited, but the spatial mapping approach produces
informative raster maps for aggregating and presenting risk estimation, similar to the dynamic risk
maps presented by us in [15]. Finally, [27] developed another system for the evaluation of spatially
distributed ecological risk related to oil spills. Their system features a tanker accident model based
on Bayesian networks which has been placed upstream to an existing oil spill simulation model for
evaluating the impact on a set of threatened species.

Oil spill prediction services have also been proposed in the literature and tested in conjunction
with operational oil spill detection and monitoring frameworks. In the Mediterranean sea, an oil spill
prediction service has been set up, known as Mediterranean Decision Support System for Marine
Safety (MEDESS-4MS), whose underlying concept is the integration of existing regional models
and national ocean forecasting systems with the Copernicus Marine Environmental Monitoring
Service (CMEMS) and their interconnection, through a dedicated network data repository, facilitating
access to all these data and to the data from the oil spill monitoring platforms, including satellite
data [28]. MEDESS-4MS offers a range of service scenarios, access to multiple models tuned for
specific Mediterranean areas, and interactive capabilities to suit the needs of Regional Marine Pollution
Emergency Response Centre for the Mediterranean Sea (REMPEC) and EMSA. Such variegated
prediction services are based on the comparison of oil spill simulation exercises carried out during EU
projects, such as ECOOP [29], MERSEA-IP [30], MyOcean [31], and NEREIDs [8,32], which include
well-established oil spill models of the Mediterranean region, as well as new oil plume models to
simulate the oil from spills located at any given depth below the sea surface [33]. Although the
approach of MEDESS-4MS is comprehensive, it is focused on prediction services and, thus, its direct
impact on the routine workflow of regional stakeholders is limited.

A particular mention is for the NEREIDs project ended in 2014 [34]. Its goal has been to foster
effective cross-border co-operation, while setting best practices for other members of the European
Civil Protection Mechanism in order to use innovative ideas and tools as a base to build on training,
preparedness, and research.

Again in the Mediterranean, but more specifically in the East, other exercises were conducted
and precise models were derived based on novel and high-resolution bathymetric, meteorological,
oceanographic, and geomorphological data. Seabed morphology has been correlated to the direction
of the oil slick expansion, since it is able to alter the movement of sea currents [35]. The work
derived precise a priori information for the management of oil spills, and while it provided aid
for civil protection authorities and mitigation teams, it is not yet a real-time decision support
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method. Specifically, the above work suggests that oil spills in the Eastern Mediterranean Sea
should be mitigated within a few hours of their onset, and before wind and currents disperse them,
thus prompting the need for an EDSS for prompt mitigation actions. Protocols should be prioritized
between neighboring countries to mitigate any oil spills. Similarly, the work in [36,37] shows shoreline
susceptibility varies significantly depending on differences in morphology, degree of exposure to wave
action, as well as the existence of uplifted wave-cut platforms, coastal lagoons, and pools. The added
presence of tourists and environmentally sensitive zones suggests that mitigation work should take
into account the high shoreline susceptibility of parts of the Eastern Mediterranean Sea. A significant
suggestion arising from experiences like the abovementioned projects is to increase the monitoring
of oil-spills.

Another example of an integrated monitoring system is presented in a project regarding the Venice
Lagoon, named Atlas of the lagoon [38], where heterogeneous dynamic data and tools are published
and focused on various thematic maps using a large amount and typology of environmental data.

Other examples of susceptibility analysis include small basins and gulfs, such as the Gulf of
Finland. In [39], the presented results characterize the role of surface currents in the transport of
contaminants located in the uppermost layer in the Gulf of Finland on a time-scale of the first few
weeks. Their work contributes to the understanding of the potential use of the dynamics of currents
for environmental management of offshore activities. Again in this case, the proposed services may
support the stakeholders in designing and optimizing fairway, but no relevant real-time support can
be offered in the case of crises.

Finally, another important and current topic regards the raising of environmental consciousness and
awareness, and several projects, even some which have already been mentioned in this section include
this aspect as its importance is well-recognized, as shown by an Erasmus+ project called Sea4ALL [40],
which specifically addresses this problem through school games and an educational portal.

3. Rationale for an EDSS Devoted to Oil Spill Management

In this section, we survey the main decisional points in which an EDSS can be beneficial,
highlighting the importance of both data integration and service orchestration, meant as the
coordinated deployment and arrangement of multiple services according to a precise logic. Below,
details are provided starting from a general oil spill management system, then looking more closely at
what EDSS tasks might be, and ending up with specific details about its design and overall operation.

3.1. Main Tasks to Address in Oil Spill Management

The management of problems related to oil spill detection in a certain site includes a number of
tasks that can benefit from the intervention of automatic systems and computational models for a more
efficient treatment. Among them, it is important to mention:

(i) Collection of information about the site: In order to be as accurate as possible, the number,
frequency, and location of the site-specific data to be collected should be decided on;

(ii) Assessment of the risk: Based on the initial site-characterization data, models for interpolation,
extrapolation, and prediction should be applied for evaluating the hazard and guiding the
decisions on recovery strategies;

(iii) Projections of contamination levels: Decisions should regard which strategy should be followed
for an effective recovery and, to this end, whether more data are needed to better define the
region that requires recovery, or to improve the remedy selection or remedy design;

(iv) Monitoring and evaluation of the interventions made: Further decisions should be made on what
and where to monitor, the duration of monitoring, and, of course, the effective monitoring of the
selected areas.
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There is a number of basic decisions that should be made before the actual decision process is
developed, such as design choices (what to sample, when to sample, what technologies should be
used), as well as policies for determining which risk levels might be considered acceptable.

It is unlikely that any single person will have the knowledge to perform every analysis required
to support all of the abovementioned decisions. Typically, a team of people with different areas of
expertise are involved in interpreting basic information and providing it in a form useful for other
people in the decision process chain. EDSS can be employed to offer support to the team as a whole,
by providing more thorough monitoring or strengthening the skills and technical expertise of its
members using computational models and automatic reasoning methods.

3.2. Main EDSS Points of Intervention and Reasoning Paradigms

On the basis of the tasks identified above in the management of oil spills, an EDSS is useful for
addressing different activities [19], also shown in Figure 1:

(i) Hazard identification, by filtering and screening criteria and reasoning about the activity being
considered: This phase may be characterized as a continuous monitoring activity of the system
looking for possible adverse outcomes, and includes the search for further data to enhance its
own performance.

(ii) Risk assessment, by quantitative and qualitative measurements of the hazard: The heterogeneity
of data coming from various sources and with many different levels of precision may be faced by
using a number of approaches, including model-based, rule-based and case-based reasoning (see,
e.g., [41] for a review of such approaches).

(iii) Risk evaluation: Once potential risks have been assessed, it is possible to introduce judgments
regarding the degree of concern about a certain hypothesis. This is possible if the system has
accumulated experience solving similar situations using, for instance, a case-based reasoning
approach or inferential modeling, where previous experience of risk evaluation is used to assist
future judgments.

(iv) Intervention decision-making: The system needs appropriate methods for controlling or reducing
risks. The system also requires knowledge about the context where the activity takes place and
must be able to interpret its results and knowledge about the risk/benefit balancing methods.

Figure 1. Main and subsequent steps of an EDSS during its activity.
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In order to be effective and useful, an EDSS should be able to collect all the relevant data and
interpret these data according to prediction models for understanding the situation and assessing
the risk. This entails managing the monitoring resources for acquiring more useful data or planning
a remedy intervention. Such requirements lead to the definition of a particular design of EDSS,
as explained in Section 3.3 below.

3.3. EDSS Design

Design of an EDSS requires an understanding of the environmental problem domain and
identifying the experts and authorities to cooperate with. The identification of the problem to be solved
by exploiting the EDSS aid has been particularly important, as well as the functionalities by which
the system can intervene and improve the current oil spill detection and management procedures.
Coherently with the outcome of interviews carried out with experts and authorities, the following
three main functionalities have been included: (i) Data Gathering, (ii) Diagnosis and/or Prediction, and (iii)
Decision Support.

For (i), the EDSS has to cope with very different types of data, which can be produced and received
even in real time from a variety of sensors. Indeed, data can be gathered from various monitoring
resources, including Synthetic Aperture Radar (SAR) images, hyperspectral images collected during
flight campaigns, data collected by sensorized buoys [42] and Autonomous Underwater Vehicles
(AUVs), forecast data obtained by applying simulation models, data about ship traffic through AIS
systems, and other miscellaneous reports, possibly including Volunteered Geographical Information
(VGI) [43]. Heterogeneity of these data suggests the necessity of distributing interpretation tasks among
different subsystems of an EDSS. Identified requirements on data gathering are discussed below.

Resource Management Services (RMSs) should be provided for diagnosis and prediction (ii).
In particular, the environmental data acquired by various monitoring resources should be fused by
applying simulation and optimization models for site characterization and observation, in order to
detect possible marine pollution events.

Finally, for (iii), assistance in decision-making should be supplied by drawing an optimized
plan for the exploitation of available monitoring resources and of the modules for data analysis,
so as to confirm the detection of an event and raise an alert if required. Suitable presentation and
documentation of events are to be supplied, along with feasible suggestions aimed at supporting
sustainable event management and recovery interventions.

Once EDSS general requirements have been explained, the EDSS shall have strict interaction with
the various components of the information system. Such an interaction will be needed in order to
guarantee fulfillment of the following features:

• Ability to acquire, represent and structure the knowledge in the specific domain under
investigation;

• Ability to separate data from models, in order to be re-usable;
• Ability to deal with geo-referenced data;
• Ability to provide expert knowledge related to the specific domain;
• Ability to give the end-users (both on the manager/experts side, and the external users) assistance

for interfacing with the system and selecting resolution methods.

A prerequisite for such skills is represented by the possibility to transfer data seamlessly
among different elements and actors involved in the decision chain (data sources, EDSS modules,
and stakeholders), so as to bring different data together easily and in a consistent form, and to
facilitate dynamic links between different models and analytical processes. To this end, a network of
distributed subjects ensuring integration of every single dataset in the collection, storage, retrieval,
and dissemination of environmental information is highly desirable. In brief, an EDSS is required
to achieve interoperability at several levels, such as the measurement and monitoring level, where
the issues principally concern the consistency of observational methods and monitoring network
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design; the models and data analysis level where key issues relate to the consistency and suitability
of input data, and to the validity and robustness of the models and algorithms used; the metadata

level, where agreement needs to be reached on the data attributes described and the form of these
descriptions, and the service level needed to facilitate data exchange and information retrieval and
dissemination.

Despite the recent, great advances in standards and specifications, there is still a real need to
test and demonstrate their deployment in large, integrated systems, and to realize the vision of
Infrastructure for Spatial Information in the European Community (INSPIRE) [44] for a paneuropean
spatial data platform.

4. EDSS Integration into a MIS Platform

In order to have a complete understanding of EDSSs, it is necessary to also briefly review the
general platform in which it is integrated and consolidated, i.e., a special kind of ENVIS dedicated to
the marine environment, which we will call the Marine Information System (MIS) in the following.
It must be kept in mind that all the data, information, and models that are acquired, processed,
and applied are all part of the MIS and, to this end, a brief recall of a general MIS architecture and of
its main components is provided in this section.

The MIS aims at an effective and feasible detection and management of marine pollution
events, by integrating a number of monitoring resources that are exploited to get useful and relevant
information about the controlled sites. Each resource collects a specific type of data which are processed
by a dedicated module that can be nominally considered a subsystem of the MIS.

The main task of the MIS is, then, to serve as a catalyst for integrating data, information,
and knowledge from various sources in the environmental sector by means of adequate ICT tools.
The MIS has been conceived as a connected group of subsystems for performing data storage,
data mining, and analysis over data warehouses, decision support, as well as a web portal for the
access and usage of products and services released to system managers and end-users.

Architecturally, six main units have been identified when designing the MIS—that is,
the Service Unit, the Notification Unit, the Operational Storage Unit, the Graphical User Interface (GUI) Unit,
the Knowledge Discovery Unit, and, of course, the EDSS Unit, which is the core component surveyed in
this paper. A scheme of this composition is shown in Figure 2.

Figure 2. Architecture of a prototypical Marine Information System with its component units.

The Service Unit and the Notification Unit, having a direct interface with the external data sources
(i.e., the different technologies and sensors used for data acquisition and processing), provide and
allow data access and data exchange from and to the MIS for each external data source. In particular,
the Service Unit is in charge of acting as a data manager for integrating information from all available
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data sources, applications (such as mathematical simulation models and image analysis methods),
and repositories (like AIS data). The Notification Unit dispatches messages, such as alerts and
suggestions, to personnel enrolled in the system. The Operational Storage Unit constitutes an internal
storage unit of the MIS useful for guaranteeing timely access to operational data. In particular,
a geo-enabled Data Base (DB) and a multimedia repository constitute the core of this unit. The GUI
Unit represents the graphical front-end of the MIS, encompassing the interface for end-users and
system manager. The Knowledge Discovery Unit and the EDSS are the most advanced services of
the MIS. The first is oriented to off-line trend analysis and to the discovery of hidden patterns in the
data in order to learn suitable data models, while the latter aims at providing real-time suggestions to
system users, as discussed in detail in Section 5. The management of the data flow and of the main
communications among these units is in charge of a central orchestrator, i.e., Middleware, detailed in
the following Section 4.1.

4.1. The Middleware

The Middleware provides interfaces and methods to allow components to cooperate,
and exchange information, products, or results among them in a reliable and efficient way, and with
an optimized approach. The middleware allows general access both to the data and software units
available in the MIS. From a Service Oriented Architecture (SOA) perspective [45], a middleware
layer allows seamless consumption of data into models, making transparent to both users and
software agents the transactions with the actual service providers, fully supporting paradigms such as
Data-as-a-Service (DaaS) [46] and Software-as-a-Service (SaaS) [47]. Thus, the middleware is not a mere
communication bus to transfer data, but consists of an interface engine that guarantees the functioning
of the entire MIS system. This is the reason why the middleware is actually composed of two modules:
the workflow manager and the communication infrastructure. The former orchestrates business processes
in the MIS. An internal business logic engine has to be included for managing complex sequences
of process executions and for coping with branching in case of connection failures. The workflow
manager has to incorporate a scheduler of the event-driven stream of information/requests. The latter,
i.e., the communication infrastructure, covers the connectivity logic part of the MIS and manages
message-based communications between the single units and services, routing and transforming the
needed data and requests. Communications between MIS units and services is based on generating
proper messages (e.g., as XML structured documents or JSON) containing the data to be exchanged.
Each unit has to be endowed with a dedicated listener able to retrieve incoming messages, as well as
to parse and understand them. The reception of a message will start the process required to manage
the contained data. The workflow manager might also be in charge of acting as a logging facility,
by keeping track of the platform workflow. When an operation is performed, the relative identifying
code is saved into the log, along with the involved units and the operation outcome. In this way,
reproducibility, auditing, and transparency of every process, including decision-making, are met.

5. A Prototype Case Study of an EDSS

In MIS architecture, the EDSS Unit has a central role because it is responsible for the combination
of all the multi-source data entering the system through the various units introduced in order to detect
and monitor oil spills, issue alarms, and support their operational management.

In this section, we discuss how a prototypical case study of an EDSS can be related to other MIS
components; then, we detail its functionalities and discuss its main modules.

Whenever the likelihood of a polluting event is determined, either by the risk analysis or reported
by the processing results of one of the other MIS subsystems, the EDSS is responsible for developing
an optimized exploitation plan of monitoring resources and models, in order to confirm the detection
of the event and issue an alarm.

The presentation and documentation of suitable alarms should be provided, together with possible
EDSS suggestions aimed at supporting event management and recovery interventions.
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5.1. EDSS Main Components and Their Interconnection with the MIS Platform

According to the design of an EDSS introduced in Section 3.3, a prototype EDSS should be
logically organized according to a three-level structure that consists in: (i) data-gathering, (ii) analysis
and/or prediction, and (iii) decision support. With reference to the MIS platform:

(i) Data need to be gathered through the Service Unit and stored into the Operational Storage
Unit. Planning of their collection and retrieval needs to be performed through requests that are
orchestrated by the Middleware.

(ii) Analysis and prediction are realized through the risk assessment models within the EDSS that can
be applied to the collected data previously retrieved from the Operational Storage Unit through
the Middleware.

(iii) Decisions are supported, first of all, by the definition within the EDSS of an optimized exploitation
plan of available resources in order to confirm the detection of the event and issue an alarm
through the Notification Unit. In addition, suggestions should be provided to support the
implementation of event management and recovery interventions.

This logical structure corresponds architecturally to the two main components of the EDSS,
namely the Risk Analysis Model (RAM) and the Resource Management Service (RMS). The RAM
implements the analysis and prediction function, while the RMS is responsible for organizing the
monitoring resources. Their combination results in the decision-support function of the system.
In particular, since much of the work of the EDSS regards the planning of various activities, such as
the acquisition of monitoring data, its general functioning can be structured according to a workflow
model. This approach is also particularly convenient because the entire organization of the MIS
operation is organized in a workflow, and therefore, part of the EDSS work can be delegated to the
Workflow Manager in the Middleware (see Section 4.1), thus increasing the possibility to control and
orchestrate all activities more effectively.

5.2. Functionalities of a Prototypical EDSS

The EDSS Unit consists of a multi-criterion decision support system aimed at helping
decision-makers by providing them with criteria for assessing the most suitable way for the prevention,
control, and recovery of oil spill pollution events. The system can be defined as the main intelligence
of the MIS, and can be imagined as a consultancy and supervision service that implements predictive
activities and planning of environmental monitoring. This is achieved by providing the following
functional characteristics:

(i) Detection and characterization of possible oil slick events and consequent alerting;
(ii) Organization and management of the different monitoring resources;
(iii) Orchestration and combination of the results of the different data acquisition and processing

subsystems;
(iv) Harmonization and issue of alerts;
(v) Suggestions on possible intervention protocols;
(vi) Provision of specific and well-documented alarms to the competent authorities.

In more detail, the system should act according to two different modalities—it could be (a)
reactive, or (b) proactive. In the reactive mode, the EDSS is triggered when new data or new reports
coming from the monitoring resources are uploaded into the system and analyzes them in order to
detect possible pollution events. In case some anomalies are detected, the system can try to better
clarify the situation by collecting all the other related information, such as previous, current, or future
data that can be acquired from other monitoring resources. By analyzing all the available monitoring
data, the system decides when to issue an alarm or a warning and supply all related information.
This could be done automatically, or simply by assisting an operator in the analysis workflow of the
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different resources. In the case of a proactive mode, the EDSS should apply a dynamic risk analysis
derived from a model available for the identification of areas that could be under-monitored, i.e.,
where there is a high risk of a pollution event, but the resources deployed in situ are not enough to
supervise the area. When this happens, the system prioritizes the resources, for example by increasing
the rate of data acquisition from a specific device, or by organizing another specific in situ mission in
those areas. The analysis of data obtained in this way is then periodically scheduled, and the system
could move to the reactive functioning mode.

Once an alarm is issued, the EDSS can provide a protocol that can be followed by the authorities
in charge for the intervention activities. This might be selected among a number of possible procedures
that are properly represented and stored. Suitable reasoning mechanisms for this selection might
be employed, such as simple case-based processing. To supply the above-described functionalities,
the EDSS needs to be aware of the monitoring resources available in the whole platform and be able to
optimize their employment by suitably handling the different events that can occur. This might be
achieved by developing proper optimization and models for risk analysis, and by implicitly encoding
the relevant knowledge into orchestration and organization procedures. In particular, as already
introduced in the previous chapter, the EDSS Unit comprises:

- a RAM, which concerns the identification of areas with a high risk of oil spills, and needs to be
developed following a model-based approach;

- an RMS, which is dedicated to prioritization of resources to detect possible oil spill events, and
needs to be developed according to an optimization approach (see e.g., [48]) .

In the following Figure 3, a schematic view is given of the composition of the central
Environmental Decision Support System with its described components and the interaction with
the rest of the Marine Information System.

Figure 3. Structure of the Environmental Decision Support System and its components and behavior.

The application of the models, the provision of services, and the integration of the results coming
from different resources and subsystems of the MIS might be orchestrated according to a business
logics approach based on event handling. This means that the flow of data and actions of the system
might be codified according to a workflow-based representation.
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5.3. Risk Analysis Model (RAM)

The main task of risk assessment lies in the complex environmental problem of evaluating
the likelihood of the occurrence of a hazard balanced with the severity of its consequences [49].
A RAM calculates the probability of spill occurrence, as well as the likely paths or trajectories of
spills in relation to the locations of recreational and biological resources which may be vulnerable.
The analytical methodology can easily incorporate estimates of weathering rates, slick dispersion,
and possible mitigating effects of cleanup. The developed method for providing a risk assessment
in near-real-time, defined as the actual time lapse passing between the occurrence of the hazard (i.e.,
oil spill) and the first official notification to the deputed authorities, has been developed with the goal
to produce risk-related information in a geographic area of interest which can be both automatically
analyzed by proactive services, and visually analyzed by the users involved within the intervention
chain in order to reduce the risks and possibly improve the efficiency of the remediation operations.

For example, an implicit codification of the risk is represented by the amount of monitoring
resources actually existing in an area, where an augmented number of them decreases the risk level
(heavy monitoring and quicker intervention), whereas a smaller number of them, as well as distant
location (sparse monitoring and delay in intervention), increase the risk level.

A dynamic risk map can be defined for assessing the hazard of oil slicks by evaluating several risk
factors through the combination of the data collected by the MIS. This map can be used for planning
and monitoring a prioritization of the resources in order to improve the degree of control of a high-risk
area. Aiming at increasing the precision of the risk map, and at the same time lowering the amount
of data to be transferred, the map cells with higher risk have smaller dimensions (i.e., thus a higher
granularity) with respect to the ones with lower risk.

Risk calculation takes account of data gathered by the MIS, combining and correlating them in
order to better estimate the risk of oil slick occurrences. Gathered data contribute to risk calculation by
increasing or lowering it: for instance, the presence of vessels in a small area increases the risk at a
different degree depending on the typology of the vessel (e.g., a tanker will bring a much increased risk
level); meanwhile, a negative analysis from a remote device (e.g., a sensor-equipped buoy) will result
in the lowering of the risk in the covered zone. All these variables, and many others which can bring
their input data into the MIS, represent factors with specific weights, which, combined, altogether
yield a final risk value for each specific location (i.e., cell) of the dynamic risk map.

5.4. Models for the Resource Management Service (RMS)

The RMS is devoted to the optimization of the monitoring resources that compose the available
devices in the model in order to cover the monitoring areas and get the most valuable information
possible about polluting events. The idea is that when an oil spill event is detected by one of the
monitoring resources, the EDSS, with its RMS, organizes the use of the other resources to get more
information about the site of interest and to provide suggestions about the recovery strategy to be
followed. Methods for the development of RMS are based on optimization models that try to drive the
effective and efficient use of resources, according to the tasks to be performed. In particular, the aim is
to define strategies for assigning resources to different activities focusing on both process and resource
use to optimize task operations. Different options should usually be explored for resource allocation,
availability, relevance, and data. The development of descriptive and analytical models is required
to accurately represent and simulate the processes that involve resource deployment. These models
should be dynamic and provide a new resource deployment plan each time it is required. From a
methodological point of view, defining the resource optimization models requires outlining objectives,
decision variables, and constraints. How these are involved in the optimization process is illustrated
in Figure 4, and described according to the following steps that are being performed to develop the
resource optimization model:
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Figure 4. The components of optimization. The optimization models analyzes all possible decisions or
actions based on given objectives and constraints.

Step 1. Define the objective to reflect the model mission and strategy.
The objectives to be pursued need to be determined—what the resources are meant to do, and how

they are characterized, described, and cataloged for assessing their relevance and availability to the
tasks to be performed. Moreover, the activities to reach these objectives should be outlined, as well as
how success or failure will be measured.

Step 2. Establish the context.
The requirements, rules, and constraints need to be established to precisely define the action scene

of the optimization model and the decisions that will be made.
Step 3. Define the conceptual model.
All the elements of the model should be inserted into a conceptual framework. First of all, input

data should be defined, and then decision variables and actions listed in accordance to objectives
and constraints.

Step 4. Formulate the resource optimization model.
The conceptual model is then translated into an analytic model with more rigor and detail,

represented in mathematical terms. The key elements of the optimization model—the objective,
constraints, and decision variables—are initially coded. There is no single “correct” way to use
mathematical expressions to represent the elements of a decision problem. Every formulation
represents a compromise because no mathematical representation can reflect every detail of a real-world
scenario. Good modeling balances realism and workability.

Step 5. Implement and update the model.
The model should finally be implemented, and analytical software can be useful for this task.

The real application of the implemented model can then supply some hints about necessary changes to
the model for improving performance.

To be more clear, we report as an example within the case study EDSS, the use of an actual device
implemented and integrated—in particular, the device is a static floating buoy equipped with several
sensors for water quality control, such as hydrocarbons detection, tide measurement, wind and waves
measures, and several other environmental variables. Specific details of the sensorized buoy can be
found in [42], but for this specific case-study we report it as one of the monitoring resources which
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could be used for prioritization and active monitoring of a marine area. For example, reception of an
oil spill report has been simulated close to a sensorized buoy. Once this information was gathered
by the MIS and understood by the EDSS, the latter could proactively perform further investigations
autonomously by checking eventual resources in the surrounding area and querying them. In this
case, one of the resources was the sensorized buoy, which was questioned and asked to perform
new sampling on the water, without any need of user intervention. Once the results from the buoy
were received and collected by the MIS, the dynamic risk map was recomputed and a new updated
risk value issued for the area being monitored. Once this action was taken, the new risk map could
be analyzed, and decisions could be made regarding whether a further proactive action should be
made (i.e., maybe querying some different available resources) or whether the end users in charge of
the monitoring should be notified about the general situation, in order to take into consideration all
available variables [50].

6. Conclusions

In this paper, we addressed the problem of small-scale oil spills at sea, focusing on the scientific
and technological advances in Marine Information Systems.

As a first step, existing solutions and approaches have been analyzed, surveying the
ever-increasing number of initiatives and funded projects addressing complementary and different
aspects—from the assessment of the environmental risks, to the preparedness with respect to polluting
events, and from the spread of knowledge and the raising of environmental consciousness and
awareness, to the skill development for the training of civil protection, marine pollution professionals,
volunteers, and other related stakeholders.

Afterwards, a rationale for an integrated framework was proposed, which we assert to be an
important tool as support for the deputed authorities and stakeholders, particularly in view of prompt
remediation operations.

We are optimistic that the impact of these advances will grow and improve quality of life and
the sea environment. The dedication of research scientists and technological advances in such areas
as remote sensing, modeling, and electronic communications have taught us far more about the seas,
the surrounding environment, and their resources.

We shared our experiences with regard to actions that it may have undertaken to reduce sea and
coastal pollution. Our survey shows that we have learned to make better predictions about how the
marine environment resources are responding at both the individual species and ecosystem levels.
Improvements and advances in monitoring programs have also been considered—this allows for
a more accurate assessment of changes and for a more effective dissemination of such information
to policy-makers who would implement science-based management actions [51]. Tools have been
developed, along with the knowledge, to design an instrument for the support of policy-making
that increases the ability of tomorrow’s generation to understand its position in the local, global,
coastal, and marine environment, and to sustain that position. The produced tools and instruments
proved to be effective and of actual use within the intervention chain of an oil-spill event, when these
tools can act as a valuable Environmental Decision Support System for the deputed authorities and
stakeholders involved.
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Abstract: During emergency responses to oil spills on the sea surface, quick detection and
characterization of an oil slick is essential. The use of Synthetic Aperture Radar (SAR) in general and
polarimetric SAR (PolSAR) in particular to detect and discriminate mineral oils from look-alikes is
known. However, research exploring its potential to detect oil slick characteristics, e.g., thickness
variations, is relatively new. Here a Multi-Source Image Processing System capable of processing
optical, SAR and PolSAR data with proper statistical models was tested for the first time for oil slick
characterization. An oil seep detected by NASA‘s Uninhabited Aerial Vehicle Synthetic Aperture
Radar (UAVSAR) in the Gulf of Mexico was used as a study case. This classifier uses a supervised
approach to compare stochastic distances between different statistical distributions (fx) and hypothesis
tests to associate confidence levels to the classification results. The classifier was able to detect zoning
regions within the slick with high global accuracies and low uncertainties. Two different classes,
likely associated with the thicker and thinner oil layers, were recognized. The best results, statistically
equivalent, were obtained using different data formats: polarimetric, intensity pair and intensity
single-channel. The presence of oceanic features in the form of oceanic fronts and internal waves
created convergence zones that defined the shape, spreading and concentration of the thickest layers
of oil. The statistical classifier was able to detect the thicker oil layers accumulated along these
features. Identification of the relative thickness of spilled oils can increase the oil recovery efficiency,
allowing better positioning of barriers and skimmers over the thickest layers. Decision makers can
use this information to guide aerial surveillance, in situ oil samples collection and clean-up operations
in order to minimize environmental impacts.

Keywords: oil slicks characterization; oil thickness; polarized SAR data; polarimetric SAR data
(PolSAR); statistical region-based classification; uncertainty maps; UAVSAR

1. Introduction

Petrogenic oil slicks in offshore areas can occur naturally through oil seeps or be caused by
anthropogenic activities related to oil exploration, production and transportation. Depending on the
amount and characteristics of the oil, as well as the sea state and drift direction, oil can reach coastal
regions, increasing environmental damages.

During emergency response, the oil containment and recovery are the main cleanup operations
with potential to minimize these impacts. The thickness of the oil slick has a significant effect on the
recovery efficiency rates, being higher over the thicker layers [1,2].

J. Mar. Sci. Eng. 2019, 7, 36; doi:10.3390/jmse7020036 www.mdpi.com/journal/jmse216



J. Mar. Sci. Eng. 2019, 7, 36

Synthetic Aperture Radars (SAR) data are most frequently used by operational oil spill
surveillance service providers to detect and monitor oil slicks on the sea surface. Within the microwave
region of the electromagnetic spectrum, oil slicks and look-alikes dampen the sea surface roughness
and are detected as low backscatter regions [1–6].

Previous research [2,5,7] indicated a relationship between the oil slick thickness and the damping
effect on the sea surface roughness. Thicker layers cause more damping of the capillary and
gravity-capillary waves, and hence appear darker than thinner layers of oil in SAR imagery.

The potential of the polarimetric SAR (PolSAR) data in full, dual, and compact polarization
modes was indicated to distinguish petrogenic from biogenic oil slicks and other look-alikes in
some circumstances [8–10]. However, methodologies able to characterize oil slicks by extracting
additional information regarding the thickness variations within the slicks have been less explored
until recently [2,5,11–14].

PolSAR data has the potential to detect a wide range of scattering mechanisms that may be related
to oil slick thickness, weathering, as well as different concentrations of water in oil-mixtures and
emulsions [2,5,8,12,13]. However, there is evidence that low noise airborne SAR instruments are also
able to characterize oil slicks with single polarization SAR data. In these cases, the most sensitivity was
obtained transmitting and receiving the electromagnetic pulse in the vertical direction (VV). The VV
damping ratio, a contrast measure, or the VV intensity [2,11,13] can also be used.

The potential of SAR to detect and characterize an oil slick varies depending on several
factors [4,6,8,15] such as: (i) physical characteristics of oil and oil layer: the denser, more viscous
and thicker the oil, the higher the damping effect; (ii) Wind intensity: greater contrast within the limits
considered ideal for oil detection, between 3 and 10 m/s; (iii) Currents intensity and wave height: the
larger, the less the contrast of the slicks with the ocean; (iv) Radar frequency: the higher, the greater the
interference from adverse atmospheric conditions, but also the greater the sensitivity to ocean capillary;
(v) Polarization: the greater the number of polarimetric channels available, the greater potential to
detect different scattering mechanisms; (vi) Incidence angle: greater contrast of the slicks in the near
range within Bragg scattering limits, and; (vii) Signal to Noise Ratio (SNR): a higher SNR increases the
potential of each polarization channel to detect oil slicks at sea surface.

The numerous aerial and orbital platforms available, acquiring PolSAR and SAR data with
different configurations and formats (single look complex, intensity or amplitude) increase this
challenge, and there is a need to understand which is the better format and statistical model to
improve oil slick detection and characterization.

Considering all aforementioned factors, the better configuration to detect and characterize an
oil slick may be different according to different acquisition scenarios. From the operational point of
view, the use of only one polarization channel simplifies data acquisition, the statistical modeling
needed, and reduces the complexity and the time required for processing. However, in some cases the
polarimetric data may extract key information to characterize the oil slicks.

In this context, testing a Multi-Source Image Processing System developed to integrate SAR &
PolSAR data of different formats and with different statistical properties, aiming to discriminate
and characterize oil slicks, represents strategical research. This Multi-Source system, based on
information theory and using stochastic distances to perform the region-based classification process,
was previously developed [16–18]. The supervised classifier uses stochastic distances between different
statistical distributions (fx) and hypothesis tests to classify the regions and associate confidence levels
to the classification results. The multi-source approach permits the integration of SAR (intensity and
amplitude), PolSAR (single look complex) and optical data considering proper statistical modelling for
each type of data, and processing single or multi-source data in a customized computational system.

Previous research using satellite acquired PolSAR data [5,19] has shown the potential of this
system, not to characterize, but rather to discriminate oil slicks considering different oil types. In that
research, it is shown that the polarimetric information provided improvements that are statistically
significant in terms of accuracy. It also shows that the classification performance is dependent on the
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input data format and, consequently, on the statistical modeling used to represent the diversity of
formats properly.

The objective of the work reported here is to evaluate the potential of the Multi-Source Image
Processing System to characterize thickness variations within the oil slick, indicating the better format
and statistical modeling for this application, considering as a study case an oil seep detected by NASA’s
UAVSAR, with components ranging from thin sheen through thick emulsions [2]. As the system is
being tested for the first time with this focus, a complete scientific investigation using the amount of
available data and combining all formats is recommended.

To accomplish this investigation, the polarized information in intensity format as well as all
polarimetric complex information contained in the PolSAR data was considered by using the full
and dual-polarization (dual-pol) covariance matrices. The integration of the uncertainty levels in the
interpretation process provided additional information to more reliably indicate the regions of likely
thicker oil within the slick.

The fast processing of multiple products, all of them integrated to generate operational maps to
inform the position, area and likely thicker oil layers, constitutes an important method to be used by the
contingency team during the clean-up operations. This specific demand for spatial intelligence during
oil spill emergencies emphasizes the importance of developing and testing robust image processing
systems, as proposed in this research. As indicated by reference [2], once validated, a system like that
could be implemented on an aircraft and incorporated into an on-board processor (OBP) to be used
operationally, transmitting all information in near real time (NRT) to the incident command system
(ICS).

2. Statistical Modeling Classification Based on Stochastic Distances

The statistical classifiers require proper models to represent the statistical nature of the pixels
(or image regions). Depending on the sensor used (optical, microwave, etc.), the acquired data
format (polarimetric, intensity, amplitude, etc.) and the scene backscattering characteristics, different
probability density functions (fx) are needed to represent and process the data properly [20].

Research to develop and test computational systems able to process this diversity of data
is essential, especially considering the wide range of remote sensors available operating in
multi-frequency and multi-resolution. Optimized systems to integrate different data sources, as
well as to deliver operational reports in near real time, are needed to plan and implement response
actions during emergencies involving oil spills.

In this way, a Multi-Source Image Processing System able to utilize this data diversity and
complexity has been developed and tested by the Brazilian Institute for Space Research (INPE) [16–18]
in different real applications, including oil slick detection. The Multi-Source statistical region-based
classifier performs a supervised classification using stochastic distances (d) and statistical tests (S),
considering proper statistical modeling for different data formats [16–18]. Its architecture (Figure 1) is
designed in four processing modules according to the statistical distribution (fx) of the input data:

• Polarimetric: consider as input full or dual-pol covariance matrices in a complex format, assuming
that the data comes from a Scaled Complex Wishart distribution (fx = SCW);

• Intensity Pair: consider as input a pair of SAR images in intensity format, assuming as statistical
distribution the multi-look Intensity Pair (fx = IP);

• Intensity Single-channel: consider as input each channel individually in intensity format,
assuming the Gamma distribution for the data (fx = G);

• Multivariate Amplitude: consider as input optical and/or SAR data in amplitude format,
assuming the Multivariate Gaussian (fx = MG) as statistical distribution.

This is an innovative approach that permits us to process and integrate different data types in a
single computational system, considering two approaches: (i) Mono-Source: process each data type
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independently, and; (ii) Multi-Source: integrate the mono-source classifications searching for the best
classification performance.

Figure 1 illustrates the architecture of the Multi-Source Image Processing System, indicating the
proper statistical modeling for each data type and the stochastic distances available for each module.
The type of mathematical solution used—analytical or numerical—was also indicated.

In order to understand the trade-off between each data type in capability to characterize an oil
slick, a mono-source approach, with proper statistical modeling, was used to process three different
types of SAR & PolSAR data, those being: (i) Polarimetric full & dual-pol; (ii) intensity pairs (Intensity
Pair); and (iii) single-channel intensity (Intensity single-channel).

Figure 1. The Multi-Source image processing architecture indicating the four module configurations.

A region-based classification provides K disjoint segments, R1, . . . Rk; and a set of training samples
defined for each class. The data (pixels) in the segment k are denoted by Zik, with k = 1, . . . , K and
i = 1, . . . , Nk, where Nk is the number of pixels within the segment k.

It is important to highlight that Zik is a matrix whereby the SAR data can be represented in
complex, intensity or amplitude format assuming different statistical distributions (fx). In this way,
assuming that Zik (k = 1, . . . , K) follows a fx distribution with parameters Σk and L (number of looks),
the maximum likelihood (ML) estimator of Σk is:

Σ̂k = N−1
k ∑

Nk

i=1 Zik, (1)

The purpose of the classifier is to classify each of the k segments into one of the C classes, assuming
that (i) the training samples follows a fx distribution with parameter L and ΣCj

, with j = 1, . . . , C;

and (ii) the ML estimator of ΣCj
, based on samples of size Mj, is denoted by Σ̂Cj

. This classification is
performed calculating stochastic distances (d) between different statistical distributions (fx) associated
to each region Rk (k = 1, . . . , K) and to each training sample of class Cj. Then, using these distances
and the results given in references [21,22], a statistic Skj is used to perform a statistical test to verify the
hypothesis that Σk = ΣCj

for all k, j (k = 1, . . . , K and j = 1, . . . , C).
At the end of the process, each segment Rk is assigned to a class which presents: (i) the lower

distance (d) between Σ̂k and Σ̂Cj
, (ii) the lower or equivalently statistical test (Skj), and a higher

associated p-value pkj. The Bhattacharyya stochastic distance (dB) was used because it is available in
all modules (Figure 1), being the only option to compare the classifier potential combining all data
formats and polarimetric channels.

For the Polarimetric module, the dB between two SCW distributions (dWB), one associated to
segment k and the other associated to the class j, is given by [21]:
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For the Intensity Single-channel module, the dB distance was derived between Gamma
distributions (dGB), being [18]:

dGB
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)

= log
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)L

2L
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⎞

⎟

⎠
, (3)

Under the conditions stated by [11,12], the hypothesis test H0 : Σk = ΣCj
can be performed using

the test statistics Sfx defined by each stochastic distance. The equations developed for the statistical
tests between SCW distributions (SWB) and between the Gamma distributions (SGB) are given in the
Equations (4) and (5), following [16,18]:

SWB

(

Σ̂K, Σ̂Cj

)

=
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(
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, (4)

SGB
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Σ̂K, Σ̂Cj

)

, (5)

The equations for the Intensity Pair module were defined by reference [23], being the distance
(dIPB) and statistical test (SIPB) derived from a Bivariate Gamma distribution extracted from the SCW
distribution. However, the distance and the statistical test need an extensive and complex numerical
solution, available in reference [16].

The null hypothesis is rejected at α significance level if the probability

Pr
(

χ2
ν > S f x

(

Σ̂K, Σ̂Cj

))

≤ α, where χ2
ν represents a chi-square distribution with ν degrees

of freedom, where ν is the number of parameters of the distribution. The classification based on a
minimum test statistic consists in assigning the segment (Rk) to the class Cl if:

S f x

(

Σ̂K, Σ̂Cl

)

< S f x

(

Σ̂K, Σ̂Cj

)

, ∀j �= l, (6)

When a segment Rk is assigned to the class l, the p-value (pk,l) is calculated as:

pKl = Pr
(

χ2
ν > S f x

(

Σ̂K, Σ̂Cl

)

)

, (7)

It is a measure of certainty that the segment k belongs to the class l. At the end of the process,
the classification and the uncertainty (1 − pkl) maps are provided. To illustrate the region-based
classification, Figure 2 indicates the class assignment process considering only one segment as
an example.

Figure 2. Demonstration of the region-based classification method: The algorithm calculates the
distance (d), the statistical test (S) and p-value between the segment analyzed (a) and the training
samples collected for each class (b). The class of the training sample, which presented the lowest d,
the lowest S and the highest p-value in relation to the segment will be assigned to this segment (c).
In this example, the segment used (a) was classified as Oil 1 (c), presenting the lowest d, the lowest S

and the highest p-value related with this class.
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3. SAR & PolSAR Data Description and Methodology

During Hurricane Ivan in 2004 a persistent seep source developed following damage caused to
production infrastructure in the Mississippi Canyon 20 area of the Gulf of Mexico. This study case
used L-Band PolSAR data acquired over this region on 17 November 2016 by the NASA’s UAVSAR
sensor. In this occasion, a large oil slick with thickness ranging from thin sheen through thick emulsion
was detected [2].

In this study, a Multi-source Image Processing System—able to process different data formats,
with different statistical properties—was tested to characterize and extract regions with different oil
thicknesses using both UAVSAR SAR & PolSAR data. The goal was to differentiate sheen from thicker
layers, as well as indicate the better format and statistical modeling to do this.

The PolSAR data provides the amplitude and phase information, while the polarized SAR
data only provides the amplitude of the backscattered signal. The electromagnetic pulse can be
transmitted and received by the antenna in different directions, Vertical (V) or Horizontal (H), being:
(i) co-polarized—transmitting and receiving in one single direction (VV or HH), or; (ii) cross-polarized
– transmitted and received in orthogonal directions (HV) or (VH). Different combinations are possible,
defining the SAR systems as: (i) single: VV, HH or HV; (ii) dual: HH-HV, HH-VV or VV-HV, and;
(iii) full (quad): HH-HV-VH-VV. The term ´polarimetric‘ is applied only when the amplitude and phase
information are available. For monostatic antennas, HV is considered equivalent to VH, configuring
a full polarimetric system with 3 bands HH-HV-VV. Details about different mathematical forms to
represent SAR and PolSAR data including the scattering matrix, covariance matrix (C) and others can
be found in reference [24].

Standard full-polarimetric UAVSAR products in ground projected format (grd) contain the
calibrated complex cross products HHHH, HVHV, VVVV, HHHV, HVHV and HVVV used to
calculate the elements of the multi-looked covariance matrix (C). The PolSAR image was acquired
with 20 km swath width, incidence angle 22◦ (near range) to 67◦ (far range), and 7 m spatial
resolution after multilooking, and the intensity products were extracted from the main diagonal
of the covariance matrix.

To perform the case study, three types of data were used as input. The Polarimetric module used
as input the covariance matrices in a full-pol (C3: HH-HV-VV) and dual-pol (C2: HH-HV or HH-VV or
VV-HV) format. The Intensity Pair module uses as input pairs of intensity images (IP) combining the
polarized channels as indicated: HH-HV or HH-VV or VV-HV. The Intensity Single-channel module
processes each channel individually using the intensity (I) format as input. The segmented image,
the training and test samples are also needed as input to process the classification in all modules.
Figure 3 depicts the classification methodology, indicating the input and output data.

Figure 3. The statistical region-based classification methodology, indicating the input and output data.

The segmented image (Figure 4) was obtained applying the multi-level region-growing algorithm,
MultiSeg [25]. MultiSeg is a hierarchical segmentor which uses the information contained at the top
level to segment the subsequent levels through a pyramidal compression, integrating region growing
and clustering techniques, edge detection, minimum area threshold and homogeneity tests to split
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& merge pixels in segments. The cartoon model, used in this work, considers that the image is formed
by homogeneous regions, being themselves clustered according to predefined parameters. The larger
the similarity index, the greater the area of the generated segments. In this study case the following
parameters were considered: (i) 5 levels of compression; (ii) minimum area of 20 pixels; (iii) 1 dB of
similarity degree, and (iv) 9.17 equivalent number of looks.

Figure 4. (a) Multiresolution Segmentation, (b) details about dark spots detection, and (c,d) Centroids
position of the training (c) and test (d) samples.

The segmentation process was completely unsupervised and considered as input the three
polarized channels HH-HV-VV in intensity format. The algorithm automatically recognized
11,772 representative segments (Figure 4a), which delineated even the smaller dark regions (Figure 4b)
originated by the influence of the internal waves and currents. This result is relevant considering that
without representative segments it is impossible reach a good classification accuracy.

Considering the aforementioned oil slick properties, three classes were defined, namely, (i) Ocean,
(ii) Oil 1: representing the thicker layers (crude oil or emulsion), and (iii) Oil 2: representing the thinner
layers (sheen). The classes definition was reinforced by previous research which detected thickness
variations within the same oil slick using the VV damping ratio [2]. As described by reference [2],
the VV damping ratio is the contrast between the clean sea water vs. slicked water, using the VV
channel in intensity format (VVclean/VV).

The samples collection considered that thicker layers cause more damping, appearing darker
than thinner layers, as observed previously [2,7,11–13]. Therefore, the training and test samples were
collected manually, based on the interpreter’s experience, searching for darker areas to represent the
thicker oil (class Oil 1) and the less dark areas to represent the thinner oil (class Oil 2). The ocean
samples were collected over the brighter areas in the background. Figure 4c,d illustrates the centroids
position of the training (TRN) and test (TST) samples collected per class, being the total number
of pixels collected per class: 1887 for Ocean-TRN, 1890 for Oil 1-TRN, 1886 for Oil 2-TRN, 1887 for
Ocean-TST, 1890 for Oil 1-TST and 1886 for Oil 2-TST.

The class assignment process associates the class of the training sample to the analyzed
segment, considering the lowest statistic and the highest p-value, all computed for each segment
k (k = 1, . . . , 11,772) and each class Cj (j = 1, . . . , 3). The statistical reports, as well as the classification
and uncertainty maps, are the classifier output. The validity of the mineral oil slick characterization
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was evaluated considering visual interpretation, statistical accuracy indexes and the statistical
uncertainty levels.

It is important to note that the proposed methodology is designed to be applied when mineral oil
slicks are confirmed in the field, determining a real emergency situation. In this context, the goal is to
characterize the oil slicks and extract additional information such as the relative thickness variation
within the slicks. The spatial location, the area of the slicks, as well as identifying the thickest layers
are all extremely important data to support decision making during clean-up operations.

4. Oil Slick Characterization

The classification results obtained for all formats tested are available in Table 1 and Figure 5
providing (i) the overall accuracies, (ii) the variances of the overall accuracies, (iii) the Kappa coefficient
of agreement, and (iv) the Kappa Variance. The Kappa coefficient is another index to do the accuracy
assessment in remote sensing data classification. An explanation can be found in references [26–28].

The oil slick characterization using a statistical approach and applying stochastic distances
achieved global accuracies above 99% for all data types. However, the best result was obtained by
the IP: HH-VV (99.84%). This result is statically equivalent to C3: HH-HV-VV (99.70%), C2: HH-VV
(99.68%) and I: VV (99.68%) (Table 1: results highlighted in blue) and statistically superior to the
remaining results, at the 95% confidence level.

Despite these differences, the results obtained by the best data formats were very similar and
statistically equivalent. Therefore, for this study case, the oil slick characterization can be done
using a fully polarized data, as well as using only the VV channel in intensity, as these results are
statistically equivalent.

Table 1. Statistical evaluation of the classification results.

Overall Accuracy Variance Kappa Kappa Variance

Full-Pol HH-HV-VV 0.9970 5.28 × 10−7 0.9955 1.19 × 10−6

Dual-Pol

HV-VV 0.9938 1.09 × 10−6 0.9907 2.44 × 10−6

HH-HV 0.9935 1.14 × 10−6 0.9902 2.58 × 10−6

HH-VV 0.9968 5.64 × 10−7 0.9952 1.26 × 10−6

Intensity Pair

HV-VV 0.9954 8.09 × 10−7 0.9931 1.82 × 10−6

HH-HV 0.9935 1.14 × 10−6 0.9902 2.58 × 10−6

HH-VV 0.9984 2.82 × 10−7 0.9976 6.31 × 10−7

Intensity
Single-Channel

HH 0.9811 3.28 × 10−6 0.9716 7.37 × 10−6

HV 0.9793 3.58 × 10−6 0.9690 8.05 × 10−6

VV 0.9968 5.64 × 10−7 0.9952 1.26 × 10−6

The classification maps and the detected area (km2) per class are available at Figure 5a–d, only the
best overall accuracies are considered statistically equivalent. It is interesting to note that the potential
to recognize different patterns within the oil slick was more stable for the thicker layers of oil,
represented by the class Oil 1 (red regions). For this class, the detected area was very similar between
these different data types, ranging between 13 and 14 km2.

A higher confusion visible in the background of all classification maps was observed between the
classes Oil 2 (orange regions) and Ocean (blue regions). However, a higher instability was observed
for the I: VV and C2: HH-VV, which presented higher classification noise in the background generated
by the confusion between these classes, returning the smaller oceanic areas (≈156 km2).

To conduct a detailed analysis regarding the confidence levels applied to oil slick characterization,
only the C3 classification result was considered (Figure 6).
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Figure 5. Classification results obtained by the better overall accuracies, all of then indicated as
statistically equivalent: (a) covariance matrix full-pol (C3: HH-HV-VV): (b) covariance matrix dual-pol
(C2: HH-VV), (c) Intensity Pair (IP: HH-VV), and (d) Intensity Single-channel (I: VV).

The criteria used for this choice were: (i) the best results are very similar so it is feasible to choose
any one of them to evaluate details, (ii) the C3 classification had lower confusion between the classes
Ocean and Oil 2, (iii) using covariance matrix results, it is possible to discuss the results in terms of
scattering mechanisms if the returns are significantly above the noise floor.

Figure 6a illustrates the oil slick detected by the UAVSAR using the VV channel. The classification
map (Figure 6b) and uncertainty map (Figure 6c) are available only for the result C3. In Figure 6c low
uncertainties are represented in black, while high uncertainties are represented in white. Figure 6d–g
provides details of the oil slick classification along selected ocean features, allowing us to compare the
dark spots backscattering, the classification results and the uncertainty levels.

The results show the potential of the Multi-source Image Processing System for characterizing the
oil slick. The two oil classes show general differences with respect to their location within the slick,
likely related to oil thickness variations, with Oil 1 class (red regions) likely related with the thicker
layers, as discussed below, and the thinner layers, represented by the Oil 2 class (orange regions),
spreading around the thicker layers.

Usually the thickest layers are concentrated at the center of the slicks, becoming gradually thinner
towards the edges, where the spreading mechanisms are stronger, as shown in Figure 6d. However,
the presence of the intense oceanic fronts and currents may create convergence zones (Figure 6e,g),
which influence the dispersion, shape and concentration of the thickest layers within the oil slicks.
A similar effect occurs when internal waves or fronts are observed (Figure 6f). In the UAVSAR data
used for this study, these two patterns are present, influencing the concentration of the thickest oil
layers within the slick.

The first pattern is visible in the Figure 6d and the second in Figure 6e,g, where the thickest layers
are concentrated near the borders in the convergence zones, being influenced by the currents, as well
as following the geometry of the oceanic fronts (Figure 6 e,g) and the internal waves (Figure 6f). This is
consistent with the oil being trapped by the internal waves and concentrated along the oceanic fronts.
The detection of zones within slicks was also demonstrated in other published research using only
the VV channel [2,11,13] or including the polarimetric information [5,12]. The authors of reference [2],
evaluating the same slick as the one studied here, showed that the VV-intensity contrast between clean
and slicked water (damping ratio) could be used to identify likely concentrated oil along convergence
features in the scene.
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Figure 6. Classification results obtained by the covariance matrix (C3: HH-HV-VV): (a) Oil Slick study
case; (b) Classification map; (c) Uncertainty map; (d–g) three image regions in detail.

Regarding the classification uncertainty levels, for all classes, most of the regions show low
uncertainties in the class assignment process. These regions are seen in dark in the uncertainty
map (Figure 6c) and within detailed regions shown in Figure 6d–g. The ocean class has the greater
uncertainty variability, with the higher incidence of regions with intermediate and high uncertainties.
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Almost all regions classified as Oil 1 presented low uncertainty levels, as seen in Figure 6d–g.
Oil 2 regions returned mainly low uncertainty levels but with some regions of moderate and high
uncertainties, albeit lower than that observed for the ocean class. This makes sense considering that
the thickest oil layers likely evolve in thin layers through spreading and some weathering processes,
increasing the uncertainties during the class assignment process.

It is important to note that the multilevel segmentation algorithm was essential to provide the
high level of accuracy achieved by the statistical region-based classifier. The satisfactory delineation of
smaller dark paths was obtained through a hierarchical process, splitting and merging pixels from
segments, according to statistical tests applied along the five compression levels.

Over the slick-free ocean, where the homogeneity is higher, the segmentor was able to merge more
pixels in larger segments and to reduce the classification noise in the background (Figure 7a). However,
the lower homogeneity within the oil slick generated a higher number of smaller segments, making
it feasible to delineate and to detect small thicker layers (in red, Figure 7b). Figure 7b–f exemplify in
details the potential of the tested method to characterize the oil slick, indicating the contour of the
segments and the regions classified as Oil 1 (thicker layers: red) and Oil 2 (thinner layers: orange).

Figure 7. Oil slick characterization illustrating details of the segmented and classified regions over:
(a) slick-free ocean regions, and; (b–f) oil slick covered regions with different thicknesses, sizes
and geometries.

This type of information, organized in thematic maps and integrating in situ measurements about
the sea state and meteorological conditions, is a valuable instrument to guide the response actions in
the field. During emergencies involving rapid spillage of large volumes of oil or continuous long-term
spills, the action of wind and currents can form kilometer-long slicks, which can be fragmented, contain
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weathered oil, and drift in multiple directions depending upon the time on surface and changing
winds and currents. Especially in these situations, using remote sensing instruments to rapidly identify
the location of the thicker oil layers is highly valuable to efficiently and effectively guide the aircraft
flight planning and oil dispersion or recovery activities.

5. Conclusions

The Multi-source Image Processing System provided promising results in separating the slick
into two classes of oil and differentiating sheen from thicker oil, a distinction that is important to
responders. The classifier was able to detect zoning regions within the slick and to identify specific
locations - convergence zones - where the oil was concentrated by the influence of the oceanic waves
and currents. These areas are likely sites of the thicker oil layers. The statistical analysis showed that
this method could classify most of the regions within oil slicks containing sheen and thicker layers
with high global accuracy and low uncertainty levels. Further study in controlled releases of known
amounts of oil or with in situ validation data would provide more stringent validation, but those
studies are costly and their data are not often available.

In this study case, oil slick characterization is possible using fully polarized data, as well as only the
VV channel in intensity format, with both being statistically equivalent. Other research using UAVSAR
data characterized oil slicks using only the VV through the damping ratio [2,11,13]. One reason for this
is the higher signal-to-noise ratio (SNR) provided by airborne SAR sensors compared with satellite
SAR sensors [2]. Because polarimetric data contains all possible information about the sea surface
backscattering, it is an important data source for understanding different scattering mechanisms. Thus,
given that UAVSAR provides a complete polarimetric dataset, it is interesting to explore the possible
combinations of multi-polarization and polarimetric data.

The equivalence of the classification using the three types of input data tested does not invalidate
the results and importance of the Multi-Source classifier. Different classification accuracies may be
reached by oil slicks detected in different wind and current conditions, acquired by airborne or satellite
sensors, in multi-frequency, multi-resolutions and with different acquisition geometries. Within this
broader trade space, polarimetric data may contribute to better discriminate and characterize oil
slicks detected under diverse and unknown conditions, which is the situation faced by operational
surveillance agencies, including differentiation of different types of surface slicks, such as from biogenic
and petrogenic oils.

In particular during environmental emergencies when any and all remote sensing data are used
for responses, the possibility to use and integrate all data available, including polarimetric and optical
data, within the same processing system has both tactical and strategic advantages. The system tested
was shown capable of extracting essential information on the location of relatively thicker oil from
each SAR data set both individually and in combination, offering the capability to customize an
operational tool to deliver to the incident command system (ICS) in near real time thematic maps and
accuracy reports.

For the operational activities, the use of only one polarization channel simplifies the data
acquisition, the statistical modeling needed, as well as the complexity and the time required for
processing. In some cases, the polarimetric data may extract key information to characterize the
oil slicks, but at the expense of increasing the time needed to process and evaluate the results.
This reinforces the relevance and importance of continuing this avenue of research into SAR and
PolSAR-based oil classification, and suggests extending it to include study cases acquired with
multi-frequency, polarimetry, or different resolution, and including optical imagery. Therefore,
consolidating a database with several examples of mineral oils and look-alikes validated in the
field using a multi-sensor approach would be of high value to evaluating the full potential of the
proposed system.

Considering that oil thickness has a significant effect on recovery efficiency, the possibility to
identify the thicker layers of the spilled oil using SAR and PolSAR data is a significant contribution to
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ongoing efforts to improve emergency responses. Methods that work to locate the thickest oil layers
irrespective of the particular type of available remote sensing data will aid in directing responders to
the best regions for barriers and skimmer deployment, thereby increasing the oil recovery efficiency
and ultimately minimizing environmental impacts.
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Abstract: The oil spill risk analysis (OSRA) model is a tool used by the Bureau of Ocean Energy
Management (BOEM) to evaluate oil spill risks to biological, physical, and socioeconomic resources
that could be exposed to oil spill contact from oil and gas leasing, exploration, or development on
the U.S. Outer Continental Shelf (OCS). Using long-term hindcast winds and ocean currents, the
OSRA model generates hundreds of thousands of trajectories from hypothetical oil spill locations
and derives the probability of contact to these environmental resources in the U.S. OCS. This study
generates probability of oil spill contact maps by initiating trajectories from hypothetical oil spill
points over the entire planning areas in the U.S. Gulf of Mexico (GOM) OCS and tabulating the
contacts over the entire waters in the GOM. Therefore, a probability of oil spill contact database that
stores information of the spill points and contacts can be created for a given set of wind and current
data such that the probability of oil spill contact to any environmental resources from future leasing
areas can be estimated without a rerun of the OSRA model. The method can be applied to other OCS
regions and help improve BOEM’s decision-making process.

Keywords: trajectory model; oil spill model; oil spill response; oil spill risk analysis; Gulf of
Mexico; Outer Continental Shelf; environmental resources; risk modelling; Princeton Ocean Model;
trajectory analysis

1. Introduction

The Gulf of Mexico (GOM), a semi-enclosed sea bordering the western Atlantic Ocean in the east
and connected with the Caribbean Sea to the south, remains an important ecosystem that provides
the Gulf Coast communities and nations with abundant fisheries and energy resources. Offshore oil
production in the U.S. GOM Outer Continental Shelf (OCS) generally has increased over the past
several decades, partly due to advancing technology. Today, the GOM OCS remains a significant
source of oil and gas for the nation’s energy needs. As of December 2017, OCS leases in the GOM
produce 17 percent of domestic oil and 5 percent of domestic gas, and oil and gas production in the
GOM OCS is forecasted to increase through 2024 [1].

According to the Outer Continental Shelf Lands Act (OCS Lands Act), established in 1953, the
U.S. Department of the Interior (USDOI) has jurisdiction over OCS lands—submerged lands located
generally 3 miles from state coastlines. Under the OCS Lands Act, the Bureau of Ocean Energy
Management (BOEM) within the USDOI is responsible for managing the oil and gas resources in
the OCS, with a goal of balancing the benefits derived from development of these resources with
environmental protection. Prior to any offshore oil and gas leasing or approval of exploration and
development plans, BOEM is required to prepare environmental analyses such as Environmental
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Impact Statements (EISs) under the National Environmental Policy Act (NEPA). One of the key
components in BOEM’s EIS documents is the estimation of the likelihood of oil spill contact with
biological, physical, social, and economic resources in the OCS. These resources are referred to as
‘environmental resources’ herein, with details discussed in Section 2.4.

The oil spill risk analysis (OSRA) model was developed by the USDOI in 1975 to evaluate the oil
spill risks associated with the offshore oil and gas leasing and related activities to the environmental
resources. A variety of environmental resources are considered in BOEM’s OSRA model, including
coastlines; water quality; archaeological and culture resources; recreation, tourism, and visual resources;
environmental sensitive areas that represent concentrations of wildlife, habitat, or subsurface habitat;
and national and state parks, refuges, and protected areas. The first application of OSRA was conducted
in 1976 for the North Atlantic OCS Lease Area [2], and the first detailed documentation of the OSRA
model was written by Smith et al. in 1982 [3]. The OSRA model has been verified with several oil spill
incidents including the Argo Merchant incident off Nantucket Island in 1976 [4] and the Santa Barbara
Channel blowout in 1969 [5], and the spill trajectories simulated by the OSRA model closely resembled
the observed movements of the spill oils during these incidents.

As shown in Figure 1, the OSRA model delivers three products: conditional probability, oil spill
occurrence, and combined probability. The calculation of the conditional probability begins with the
construction of the oil spill trajectory. The trajectories are initiated every day and calculated every
hour using long-term (decades) hindcast wind and current data. The conditional probability of contact
to an environmental resource is calculated by dividing the number of contacts (i.e., number of times
a trajectory reaches a location occupied by the environmental resource) in a given time by the total
number of trajectories initiated within each hypothetical oil spill area. Only spills greater than or
equal to 1000 barrels (referred to as ‘large oil spills’) undergo trajectory simulation in the OSRA model
because smaller spills would not persist on water long enough for such analysis. The term ‘conditional’
is used to reflect the assumption (condition) that an accidental large oil spill occurs at hypothetical
oil spill location. The OSRA model estimates the probability of large oil spills occurring from the
prospective production sites and transportation routes of a specific volume over the lifetime of the
scenario. The estimate of large spill occurrence at the production sites or transportation routes is
based on the projected oil production volume, transportation scenarios, and historical spill occurrence
in the U.S. OCS [6–8]. Finally, the OSRA model uses the conditional probability and estimated oil
spill occurrence relative to the production volume and transport scenarios to derive the combined
probability. The ‘combined’ probability is the overall probability of one or more large oil spill occurring
and contacting the environmental resources over the lifetime of the scenario.

Figure 1. Schematic diagram of the OSRA model process.
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BOEM has committed to continuous improvement of the OSRA model over years [9–16]. A more
recent overview of the OSRA model is given by Price et al. (2003) [9]. The sensitivity analysis in
Price et al. (2004) [10] showed that a time integration step of 1 h with a fourth-order Runge–Kutta
scheme and a daily release of the hypothetical oil spills are sufficient to apply the OSRA model to the
GOM using the selected wind and current data sets. Guillen et al. (2004) [11] suggested utilizing a
‘multivariate statistical method called cluster analysis‘ to group areas that ‘pose similar risk to specific
targets or groups of targets‘. This method was used in the spill risk analysis for the recent lease sales in
the GOM OCS [12]. Johnson et al. (2005) [13] examined the statistics of length of coastline in the GOM
contacted by the hypothetical oil spills by varying the number of spillets (adding a random component
to both components of velocity at each OSRA model integration time step to represent the spreading
of oil spills), the number of the trajectories, and level of concern.

The OSRA model results have been compared with the surface drifter data in the GOM to evaluate
the accuracy of the model. Comparison of the estimated landing probabilities on the GOM coastline
from the historical (1955–1987) surface drifter data (mostly cards and bottles) with the OSRA model
results by Lugo-Fernández et al. (2001) [14] demonstrated that the probabilities were within an order
of magnitude. The correlation coefficients were from 0.44 to 0.49 for the total, winter, and nonwinter
seasons in their spatial distributions. The OSRA model trajectories were compared statistically against
97 trajectories of ‘oil-spill-simulating’ drifters (freely moving, satellite-tracked, surface floats) deployed
over the northeastern GOM continental shelf during five hydrographic surveys from 1997 through
1999 in Price et al. (2006) [15]. The discrepancies found were largely due to the integration of the
imperfect wind and ocean current fields, the empirically derived wind-drift factor, and inability of the
ocean model in resolving the smaller-scale processes.

Though the OSRA model was designed to study the surface oil spills, it was shown to statistically
capture the pattern of surface oiling from the Deepwater Horizon oil spill of 2010, as detailed in Ji et al.
(2011) [16]. For a deepwater oil spill trajectory model, BOEM uses the Clarkson Deepwater Oil and Gas
Blowout Model [17–19], which was funded by BOEM in collaboration with 11 industry partners [20,21]
and simulates the transport of oil and natural gas from a blowout or a pipeline rupture in deepwater.

Although most of the oil spill models are designed for use in real-time forecast mode, such
as the National Oceanic and Atmospheric Administration’s (NOAA’s) General NOAA Operational
Modeling Environment (GNOME) [22,23], the OSRA model was specifically developed to inform the
decision-making process for OCS oil and gas lease sales. It was designed to estimate the long-term
(decades) risk associated with the OCS lease sales. The model characterizes an entire lease sale area
by simulating hundreds of thousands of trajectories under decade-long, historical wind and current
conditions to derive the climatology of spill contact probabilities, without having to make assumptions
on the exact locations of the leases, numbers of wells drilled, and the oil properties. As such, the OSRA
model adopts a conservative approach without considering the oil weathering process. The specifics of
one or more appropriate oils for weathering estimates are described in the EIS using the oil weathering
model from SINTEF (Stiftelsen for INdustriell of TEknisk Forskning ved NTH—Foundation for Industrial
and Technical Research) [24]. The use of a stand-alone weathering modelling allows BOEM the
flexibility of examining the weathering characteristics of different types of crude oils rather than a
single oil type for multiple different reservoirs.

BOEM’s NEPA documents for lease sales are governed by a number of environment laws,
regulations, and executive orders, including Clean Air Act, Clean Water Act, Coastal Zone
Management, Endangered Species Act, Magnuson–Stevens Fishery Conservation and Management
Act, Marine Mammal Protection Act, Migratory Bird Treaty Act, Tribal Consultation and Environmental
Justice. To comply with these laws and regulations, the OSRA model compiles a large list of
environmental resources that include broad categories of onshore and offshore resources [12] and
estimates the likelihood (probability) of oil spill contact to the resources. The impact of oil spill on
all considered resources is analyzed separately in the EIS that are prepared prior to conducting any
leasing sales, and therefore factors in measures such as weathering and the effects of cleanup activities.
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The existing OSRA model estimates the conditional probability of contact from a specific launch
area to an environmental resource mapped to OSRA model grid at three time intervals—3, 10, and
30 days. The environmental resources, typically on the order of hundreds of resources, are treated
as inputs to the existing OSRA model; as such, a rerun of the OSRA model is needed if additional
environmental resources are considered later. In this study, a method is developed to calculate the
conditional probability by treating entire waters in the GOM as a multitude of environmental resources
consisting of ocean grid cells. The number of contacts to each ocean grid cell from hypothetical oil
spill trajectories initiated over entire planning areas of the U.S. GOM OCS is tracked and tabulated.
For a given wind and current data set, this information can be loaded into a database and statistics on
any launch areas within GOM OCS planning areas can be retrieved later for use in the estimates of
conditional probability of future lease sales. Using this method, conditional probability maps can be
generated, thus allowing a quantitative evaluation of the effects of hindcast surface winds and ocean
currents on conditional probability estimates. Instead of estimating conditional probability of contact
at three fixed time intervals, this study calculates these probabilities each day from day 1 to day 30.

The conditional probabilities are calculated in this study using two sets of relatively high resolution
hindcast surface wind (six-hourly) and ocean current (three-hourly) data from two time periods,
1993–1999 and 2000–2007. Both sets of surface ocean current data were generated by the Princeton
Regional Ocean Forecast System (PROFS), which is described in detail by Oey and Lee (2002) [25],
Oey et al. (2003) [26], Oey (2005) [27], and Chang et al. (2011) [28]. The model results were used to
study the Loop Current, eddies, and related circulation in the GOM, and they were extensively verified
with a variety of surface and subsurface observations including in situ and shipboard acoustic Doppler
current profiler measurements, National Data Buoy Center data, and satellite and drifter data [29–40].
Chang et al. (2011) [28] demonstrated that trajectories generated by a long-term hindcast current data
(2000–2007) from the PROFS can reasonably simulate the spread of the Deepwater Horizon oil spill in
2010. An in-depth description of these data sets is in Section 2.3. These data sets were chosen to match
that used in the recent OSRA application in BOEM’s Eastern Planning Area in the GOM [12]. BOEM
also provided these data sets to NOAA for use in its analysis of long-term outlook of oil spill transport
during the Deepwater Horizon oil spill incident [41].

Similar approach was used in the European Commission’s NEREIDs project for assessing shoreline
and offshore susceptibility to the hypothetical large oil spills around Suez Canal and nearby oil and
gas fields in the Eastern Mediterranean Sea [42–44]. The model in NEREIDs project considers various
factors that mitigate the impacts of oil spills and is designed for use in a small confined marine basin
that needs a rapid response. The method proposed in this study aims for use in open sea with the
focus on long-term contingency planning.

This paper begins with descriptions of the OSRA model domain and components, followed by
comparisons of annual and monthly conditional probability calculated from two time periods, and an
application of the new method to estimate probability of spill contact to a subset of environmental
resources in the GOM OCS. The discussion focuses on the advantage of this method and explains how
this method will improve BOEM’s decision-making process in the future.

2. Methods

2.1. Study Area

As shown in Figure 2, the study area for OSRA extends from 98◦ W to 78◦ W and 18◦ N to
31◦ N, which includes portion of the western Atlantic Ocean. The study area was chosen to be large
enough to allow hypothetical oil spill trajectories to develop without contacting the boundary at the
east within 30 days (the maximum elapsed time considered). The OSRA model has a resolution of
0.1◦ latitude by 0.1◦ longitude and a total of 28,564 grid cells in the study area. The hypothetical oil
spill locations, also referred to as the launch points, are shown as blue dots in Figure 2. There are
6044 launch points spaced at a resolution of 0.1◦ latitude by 0.1◦ longitude. These launch points are
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selected to represent the Western GOM, Central GOM, and Eastern GOM Planning Areas as displayed
in Figure 3. Note that the launch points are located in the OCS waters, which are generally about three
miles from the shore, except for the launch points off the western Florida Shelf and Texas coastline,
which are about nine miles offshore. As of 3 December 2018, the GOM OCS planning areas comprised
a total of 29,100 leasing blocks and 159,381,023 acres. The number of active leases was 2557, covering
13,540,330 acres of leased areas. About 86% of active leases are in the Central GOM Planning Area, and
very few are in the Eastern GOM Planning Area.

Figure 2. Map of the GOM used for the OSRA model simulation with schematic drawings showing the
Loop Current and Loop Current Eddy. Blue dots denote hypothetical oil spill locations.

The dominant circulation features in the GOM are the Loop Current and Loop Current eddies
(Figure 2). The Loop Current originates from the Yucatan Channel and loops inside the GOM before
forming the Florida Current at the Straits of Florida around the Florida Peninsula. As part of the Gulf
Stream System, the Florida Current flows from the Straits of Florida to Cape Hatteras along the U.S.
southeastern coast. The Loop Current can reach a speed of 1.7 ms−1 inside the GOM [45] and extends
deep into the GOM. The Loop Current exhibits a range of variations, which can be measured by how
much farther north it penetrates into the GOM. The Loop Current eddies are large anti-cyclonic rings
separating from the Loop Current when it becomes unstable as it extends farther north into the GOM,
and these eddies subsequently drift to the west after separation [46]. The time interval of the separation
events varies from 3 to 17 months with an average of about 9.5 months [46]. Cyclonic eddies, also
referred to as the Loop Current Frontal eddies, are much smaller than the Loop Current eddies, and
they originate from the boundary of the Loop Current and Loop Current eddies. These powerful
currents can influence biological production, pollutant transport such as oil spills, design and operation
of oil and gas facilities, fishery management in the GOM, and other processes and resources [47].
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Figure 3. Active leases in the GOM planning areas (Western, Central, and Eastern) as of 3 December 2018.

2.2. Trajectory Simulations

One of the key components of the OSRA model is trajectory simulation. The path that a
hypothetical oil spill moves under the forces of surface currents and winds is the modeled trajectory.
The hypothetical oil spill trajectories are constructed using vector addition of a temporally and spatially
varying ocean current field and an empirical wind-induced drift of the hypothetical oil spills [48].
The wind-drift factor was estimated to be 0.035, with a variable drift angle ranging from 0◦ to 25◦

clockwise that is inversely related to wind speed. The drift angle is computed as a function of wind
speed according to the formula in Samuels et al. (1982) [48]. Collectively, the trajectories represent a
statistical ensemble of simulated oil spill displacements produced by the fields of winds and ocean
currents from numerical models with observations assimilated.

The existing OSRA model initiates the trajectories every day at the same time from hypothetical
spill locations in areas of prospective drilling and production and along projected pipeline and tanker
routes. The trajectories are advected every hour using the instantaneous surface current and wind data
and are allowed to continue for as long as 30 days. The maximum travel time of 30 days is chosen
because a typical GOM oil slick of 1000 barrels (bbl) or greater, when exposed to typical winds and
currents, would not persist on the water surface beyond 30 days [49]. Considering the diurnal cycle of
surface winds, initiating trajectories at random time during the day would be a better approach and
will be pursued in the future.

It is worth noting that the trajectories simulated by the OSRA model represent only hypothetical
pathways of oil slicks, and they do not consider cleanup, dispersion, or weathering processes that
could alter the quantity or properties of oil that might eventually contact the environmental resources.
However, an implicit analysis of weathering and decay can be considered by choosing a travel time
that represents the likely persistence of the oil slick on the water surface.

235



J. Mar. Sci. Eng. 2019, 7, 41

2.3. Surface Wind and Ocean Current Data

The trajectory simulations in this study used two sets of six-hourly surface wind and three-hourly
ocean current data, one from 1993 to 1999 and the other from 2000 to 2007. These wind and current
data were further interpolated in the OSRA model to an hourly interval to calculate the trajectories,
and seasonal statistics on conditional probability were derived from a huge ensemble (millions) of
individual trajectories simulated on an hourly basis. These data were chosen because they were used
in the recent OSRA report for lease sales in the Eastern GOM Planning Area [12], and therefore the
results generated from this study can be validated before applying this method to BOEM’s lease sales.

Surface wind data for 1993–1999 are taken from the European Centre for Medium-Range Weather
Forecasts [27]. Surface wind data for 2000–2007 are from the National Centers for Environmental
Prediction (NCEP) QuikSCAT blended (https://rda.ucar.edu/datasets/ds744.4/) [50]. Both sets of
data are at six-hourly time intervals. The NCEP QuikSCAT blended wind data are derived from
merging of high-resolution satellite data (SeaWinds instrument on the QuikSCAT satellite) and NCEP
reanalysis. The NCEP–QuikSCAT blended winds were corrected using high-resolution wind fields
from NOAA’s Hurricane Research Division, which includes hurricane strength winds [39].

Surface winds are primarily northeasterly in the winter, becoming easterly or southeasterly in
the summer. During the spring and fall time, the surface winds are mostly easterly or southeasterly.
Winds at the west Florida shelf are primarily offshore, where strong winds (northeasterly in winter,
easterly in spring and southeasterly to easterly in fall) push the particles offshore. The weak onshore
winds tend to occur in the summer months.

As mentioned earlier, PROFS produced the ocean current data at three-hourly time intervals.
PROFS is a version of Princeton Ocean Model (POM), which is a three-dimensional, time-dependent,
primitive equation model using orthogonal curvilinear coordinates in the horizontal dimension and
a topographically conformal coordinate in the vertical dimension [51]. These coordinates more
realistically represent coastline and bottom topography in the model simulation. There are some
similarities and differences in model configuration for these two time periods. Both simulations cover
a large domain that includes the northwest Atlantic Ocean, extending to 55◦ W in the east, 50◦ N in
the north, and the Caribbean Sea in the south. Monthly climatology of temperature and salinity is
obtained from the World Ocean Atlas at NOAA’s National Oceanographic Data Center and is used for
initial conditions and boundary conditions for eastern boundary in the Atlantic Ocean [28]. The model
simulation incorporates daily river discharges from 34 rivers in the northern GOM obtained from
the U.S. Geological Survey [28]. Both simulations assimilate satellite-derived sea surface height and
sea surface temperature. Major differences between these two runs are data assimilation scheme and
resolution. The 2000–2007 simulation uses a nested grid in the GOM with a resolution of 3.5 km and
adopts a more advanced Ensemble Kalman Filter data assimilation scheme. Simulation for 1993–1999
uses an optimal interpolation and has a resolution of 5 km. The temporal and spatial resolution of
the PROFS is typical of the state-of-the-art ocean model used in the GOM for oil spill modelling.
For example, during the Deepwater Horizon oil spill, MacFadyen et al. (2011) [23] applied ocean
current output from six hydrodynamic models with spatial resolution ranging from ~3 to 14 km to
NOAA’s GNOME ensemble forecasting (daily 72 h) of surface oil transport.

The model simulations were extensively verified with many observations, from satellite-borne
instrument to in situ measurements including moored current meters and drifters in the
GOM [29,31–35,39,40]. These extensive observations afford a rigorous assessment of the POM’s ability
to reproduce ocean transport and prominent features in the GOM, such as the Loop Current and large,
energetic eddies that spin off from the Loop Current. The POM reproduced realistic surface currents
both on and off the continental shelf.

2.4. Environmental Resources

The environmental resources consist of biological, physical, and socioeconomic resources located
in any onshore and offshore areas that could be potentially affected by OCS oil spills. BOEM analysts
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defined these resources in the GOM region with additional input from the National Marine Fisheries
Service and the U.S. Fish and Wildlife Service. BOEM analysts also used information from the results
of the Bureau’s funded research projects, literature reviews, and consultations with other scientists
to define resources. Typically, the OSRA model for the GOM OCS incorporates 184 offshore and
102 onshore environmental resources [12]. Those resources are not limited to environmental sensitive
areas such as fish habitats; they also include the state offshore waters that are defined by each of five
costal states (Texas, Louisiana, Mississippi, Alabama, and Florida) that border the GOM and seafloors
of nearshore, shelf, and deepwater. Moreover, international waters of Cayman Islands, Bahamas, and
Jamaica are considered. The onshore environmental resources include the U.S. coastline (grouped into
counties or parishes, resource habitats, recreational beaches) and coastline of Mexico, Belize (country),
and Cuba. For a comprehensive list of these resources, see Ji et al. (2013) [12].

The geographic locations of environmental resources are displayed as maps that can be digitalized
onto the OSRA model grid. Each environmental resource has a seasonal vulnerability, defined as
a time period when resources are present or susceptible to damage from an oil spill. The offshore
environmental resources—the focus of this study—are delineated as the areas of surface waters
overlying their locations.

In the existing OSRA model, the environmental resources are treated as inputs to the OSRA model.
The spatially and temporally varying environmental resources are digitalized and hard-coded onto the
OSRA model grid prior to OSRA model simulation. If the environmental resources are changed later,
a new OSRA model run has to be performed. The new method proposed in this study tabulates the
trajectory contacts to every ocean grid cell in the OSRA model and archives the number of counts to
compute the conditional probability to a specific environmental resource later without re-running the
OSRA model.

The OSRA model does not assess the susceptibility of these environment resources to oil spill,
such as the ‘Environmental Susceptibility Index‘ defined in Adler and Inbar (2007) [52]. The details
of how and why these resources could be negatively impacted by oil spills due to BOEM’s leasing
activities are discussed thoroughly in the EIS.

2.5. Conditional Probability

The OSRA model geographically tracks the contacts of each hypothetical spill trajectory to the
environmental resources. A contact occurs when a trajectory touches an environmental resource.
At every hour, the OSRA model calculates the locations of the simulated spills and counts the number
of oil spill contacts to the environmental resources. The OSRA model only tabulates the counts during
the months when the environmental resources are vulnerable. For a given hypothetical launch point,
the OSRA model divides the total number of contacts to the environmental resources by the total
number of hypothetical spills initiated in the model after specific periods of time. These ratios are
the estimated conditional probabilities of oil spill contact from a given hypothetical launch point at
designated oil spill travel times, which are 3, 10, and 30 days in the GOM OCS.

2.6. Conditional Probability from Two Launch Points in 1998

Two launch points of the same latitude are selected to demonstrate how conditional probability is
calculated using the new method. One launch point is east of Mississippi delta at 91.9◦ W, 29◦ N and
the other launch point is west of Mississippi delta at 88.1◦ W, 29◦ N. The trajectories were launched
from each launch point every day for year 1998 and were driven by the corresponding six-hourly
surface winds and three-hourly ocean currents. Price et al. (2006) [15] compared the OSRA model
generated trajectories using the 1993–1999 wind and current data described earlier with drifter data
collected during five hydrographic survey from 1997 through 1999 and found that the cumulated
errors in the input fields led to an average discrepancy of 78 km after 3 days. Nevertheless, this wind
and current data were shown to be able to reproduce the similar oil spill patterns when used in the
ORSA model to simulate the 2010 Deepwater Horizon oil spill [16].
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The trajectories are calculated every hour and are allowed to continue for 30 days. The model
tabulated contacts of trajectories to each ocean grid cell and estimated the conditional probability of
contact at each ocean grid cell using the number of contacts divided by the total number of trajectories
launched, i.e., 365. Figures 4 and 5 show the conditional probability of contact from these two launch
points at 3, 10, and 30 days.

Figure 4. Conditional probability of contact from the launch point at 91.9◦ W, 29◦ N for year 1998:
(a) 3 days; (b) 10 days; (c) 30 days. Isobaths of 20, 50, 200, 1000, and 2000 m are shown.
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Figure 5. Conditional probability of contact from the launch point at 88.1◦ W, 29◦ N for year 1998:
(a) 3 days; (b) 10 days; (c) 30 days. Isobaths of 20, 50, 200, 1000, and 2000 m are shown.

Conditional probability maps for two launch points that are separated by the Mississippi River
(MR) Delta show a completely different behavior. For the launch point west of the MR Delta, the
conditional probability of contact remains mostly in areas west of the MR Delta; for the launch point
east of the MR Delta, the conditional probability of contact spreads both westward and eastward.

2.7. Sensitivity Studies

Significant amounts of computer time are required to calculate the trajectories from over
6000 launch points on an hourly basis and tabulate contacts to each of 20,615 ocean grid cells on
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a daily basis for 30 days. Since trajectories are initiated every day over a combined time period of
13 years, over 28.6 million trajectories are generated. A sensitivity test was performed by reducing
the number of launch points to 3022, i.e., every other point in Figure 2, to assess the differences in
conditional probability fields between these two simulations. No significant differences were found in
the conditional probability at day 30 when reducing the number of launch points by half. With the
reduced number of launch points, over 1.1 million trajectories are initialized each year.

3. Results

3.1. Annual Conditional Probability

Annual conditional probability refers to the conditional probability calculated over an entire year
for the environmental resources that are vulnerable all year round. Each year OSRA model launches
over 1.1 million trajectories for estimating the annual conditional probability, as each launch point
initiates one trajectory every day for a period of 365 days. Two sets of wind and current data, i.e.,
1993–1999 and 2000–2007, are used to estimate annual conditional probability on a daily basis from
day 1 to day 30. Because the OSRA model simulates the trajectories for 30 days, a trajectory launched
at 31 December 1998 (or 31 December 2006) will need the first 30 days of data from year 1999 (or
2007) to complete a 30-day trajectory analysis. Thus, the annual conditional probability calculated
is from 1993 to 1998 and from 2000 to 2006. Figure 6 through Figure 7 show the annual conditional
probability at day 30 for each year for these time periods. The annual conditional probability displays a
strong variability from year to year, with different spatial distributions. The distribution of the annual
conditional probability reflects the convergence of the trajectory paths, which depends on convergence
of surface ocean currents and drifting effects of surface winds.

Areas of highest annual conditional probability tend to occur near the Loop Current and Loop
Current eddies. From 1993 to 1998, areas of highest annual conditional probability appear around
the Loop Current near the western entrance of Florida Strait. Annual conditional probability in the
Loop Current–Florida Current in 1997 and 1998 stands out as the highest among all. Another area of
relatively high annual conditional probability for 1993–1998 is at the Texas shelf. A relatively high
annual conditional probability occurs near the Texas shelf at the 20- to 50-m isobaths in 1994.

For 2000–2006, areas of large annual conditional probability are located in the interior of the
GOM, where cyclonic and anti-cyclonic eddies dominate. It is not surprising that locations of largest
annual conditional probability coincide with the most energetic portion of circulation in the GOM.
The distribution pattern varies, with highest annual conditional probability occurring in 2001, 2003,
and 2005.

The west Florida shelf remains one of the areas with lowest probability of contact despite the fact
there are launch points adjacent to it. The low annual conditional probability in the west Florida shelf
coincides with the so-called ‘Forbidden Zone‘ described by Yang et al. (1999) [53]. In this zone, drifters
do not enter the shallow waters off the coast of southwest Florida and Florida Bay (i.e., south of Tampa
Bay and west of Florida Bay); it suggests that currents, winds, bathymetry, or all three combined,
keep the drifters offshore. The drifters presented by Yang et al. (1999) [53] were launched by the
Surface Current and Lagrangian-Drift Program (SCULP) II during February 1996 to June 1997 [54].
Over 300 passive drifters were launched at various locations in the northeastern GOM, from the
Mississippi-Alabama border on the east to Cedar Key in Florida on the west; drifters were tracked via
satellite throughout the GOM and along the Florida Current. Although drifters in the SCULP II were
deployed mostly north of the Tampa Bay at 28◦N, the launch points in this study were located inside
the Forbidden Zone, but the trajectories initiated from these launch points were mostly driven away
from the shore by the combination effects of currents, winds, and bathymetry.
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Figure 6. Cont.
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Figure 6. Annual conditional probability at day 30 for year: (a) 1993; (b) 1994; (c) 1995; (d) 1996;
(e) 1997; (f) 1998. The color bar has an interval of 0.001 from 0.001 to 0.025 and an interval of 0.005 from
0.025 to 0.004. Isobaths of 20, 50, 200, 1000, and 2000 m are shown as black lines.
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Figure 7. Cont.
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Figure 7. Annual conditional probability at day 30 for year: (a) 2000; (b) 2001; (c) 2002; (d) 2003;
(e) 2004; (f) 2005; (g) 2006. The color bar has an interval of 0.001 from 0.001 to 0.025 and an interval of
0.005 from 0.025 to 0.004. Isobaths of 20, 50, 200, 1000, and 2000 m are shown as black lines.

3.2. Multi-Year Mean Annual Conditional Probability

This section analyzes multi-year mean annual conditional probability and standard deviations
for these two time periods. The OSRA model launches 6,527,520 trajectories for 1993–1998, and
7,615,440 trajectories for 2000–2006. The model tabulates the contacts of these trajectories to each of
20,615 ocean grid cells to estimate the multi-year mean annual conditional probability and the standard
deviations of annual conditional probability. These are calculated every day from day 1 to day 30.

As shown in Figure 8, maps of multi-year mean annual conditional probability at day 30 for these
two time periods show different patterns. For 2000–2006, the multi-year mean annual conditional
probability reaches a maximum value in areas of Loop Current eddies and has relatively large values
in areas of Loop Current eddies; for 1993–1998, its counterpart has relatively large value in the Loop
Current. For 1993–1998, the multi-year mean annual conditional probability is relatively larger near
the Texas shelf, ranging from 0.016 to 0.018. Areas of maximum variations in the annual conditional
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probability coincide with the most energetic part of the circulation in the GOM as indicated by large
standard deviations.

Figure 8. (a) Multi-year mean of annual conditional probability for 1993–1998 at day 30; (b) Standard
deviation of annual conditional probability for 1993–1998 at day 30; (c) Multi-year mean conditional
probability for 2000–2006 at day 30; (d) Standard deviation of annual conditional probability for
2000–2006 at day 30. Isobaths of 20, 50, 200, 1000, and 2000 m are shown as grey lines.

3.3. Monthly Conditional Probability

The monthly conditional probability at day 30 is calculated every month from January to December
for each year from 1993 to 1998, and a multi-year averaged conditional probability for each month
is generated. Figure 9 shows the monthly conditional probability averaged from 1993 to 1998 at
day 30 in January, March, May, July, September, and November. Relatively low monthly conditional
probability occurs at the Texas shelf from May to August, and the monthly conditional probability
starts to increase during the fall and winter months, as would be expected from the seasonal difference
in the Texas–Louisiana coastal circulation [55].

Figure 10 shows the monthly conditional probability averaged from 2000 to 2006 at day 30 in
January, March, May, July, September, and November. Very high monthly conditional probability
occurs at the Loop Current in January and November. The monthly conditional probability at Loop
Current–Florida Current near the Florida Strait in January and March is among the highest of all
months for this time period. The monthly conditional probability in May remains the lowest of all
months. Compared to 1993–1998, the monthly conditional probability for 2000–2006 is much higher
in areas around the Loop Current and Loop Current eddies, reflecting the presence of stronger Loop
Current and Loop Current eddies for this time period.

Standard deviations of monthly conditional probability for these two time periods are calculated
(not shown). Generally speaking, large variability tends to occur in the Florida Current in 1993–1998,
versus in areas of Loop Current and Loop Current eddies in 2000–2006. For 1993–1998, largest standard
deviation occurs in May and July near the Loop Current centered at about 83.5◦ W and overlaid on top
of the 200-m isobaths. For 2000–2006, largest standard deviation occurs in September and November
in regions dominated by the Loop Current and Loop Current eddies.

245



J. Mar. Sci. Eng. 2019, 7, 41

Figure 9. Cont.
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Figure 9. Monthly conditional probability averaged from 1993 to 1998 at day 30 in (a) January;
(b) March; (c) May; (d) July; (e) September; (f) November. Isobaths of 20, 50, 200, 1000, and 2000 m are
shown as black lines.
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Figure 10. Cont.

248



J. Mar. Sci. Eng. 2019, 7, 41

Figure 10. Monthly conditional probability averaged from 2000 to 2006 at day 30 in (a) January;
(b) March; (c) May; (d) July; (e) September; (f) November. Isobaths of 20, 50, 200, 1000, and 2000 m are
shown as black lines.

3.4. Estimation of Annual Conditional Probability for a Subset of Environmental Resources

To demonstrate the advantage of the new method, the annual conditional probability of a few
selected offshore environmental resources in the GOM OCS is estimated. Note that these estimates
are for demonstration purpose only; the hypothetical oil spills are assumed to occur over the entire
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planning areas, and therefore these estimates do not represent real lease sales. Because annual and
monthly conditional probability are estimated from each launch point in the planning areas to every
ocean grid cell in the OSRA model and are estimated on a daily basis from 1 to 30 days, a database
could be created to archive these results. For any future lease sales, conditional probability for any
offshore environmental resources can be calculated later from the database without re-running the
OSRA model, and they can be estimated at any designated oil spill travel time from 1 to 30 days if
wind and current data remain the same.

The resources shown in Figure 11 are examples of offshore environmental resources included in
the EISs prior to a lease sale in the GOM. These particular resources are part of the group of resources
described as Habitat Areas of Particular Concern (HAPC). HAPCs are defined by the NOAA’s National
Marine Fisheries Service, and regional Fishery Management Councils identify habitats that fall within
HAPCs. These areas provide important ecological functions and/or are especially vulnerable to
degradation. HAPCs are discreet subsets of Essential Fish Habitat (EFH). HAPCs are considered high
priority areas for conservation, management, or research because they are rare, sensitive, stressed
by development, or important to ecosystem function. The HAPC designation does not necessarily
mean additional protections or restrictions are placed upon an area, but it helps to prioritize and
focus on conservation efforts. Although these habitats are particularly important for healthy fish
populations, other EFH areas that provide suitable habitat functions are also necessary to support
and maintain sustainable fisheries and a healthy ecosystem. Most of the resources areas in this group
are topographic features, meaning that the ocean water over the feature is shallower than much of
the surrounding sea floor. These areas are frequently habitats for a variety of fish species, including
commercial, recreational, and non-commercial fish.

Figure 11. Locations of selected offshore environmental resources in the GOM OCS.

Table 1 lists the estimated mean annual conditional probability and standard deviations for
selected environmental resources at day 30, which are calculated from OSRA model output shown
in Figures 6 and 7. The environmental resources located near the western edge of the Florida
Current, such as the North and South Tortugas Ecological Reserve, have relatively high annual
conditional probability and are often associated with high standard deviations due to the interannual
and seasonality variability of Loop Current positions. The mean annual conditional probability is
slightly higher for 1993–1998 for all selected environmental resources than that of 2000–2006.
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Table 1. Mean and standard deviations (SD) of annual conditional probability for a few selected
environmental resources in the GOM OCS at day 30 calculated from two data sets.

Environmental Resource
1993–1998 2000–2006

Mean SD Mean SD

Chandeleur Islands 0.0061 0.0009 0.0054 0.0010

Madison Swanson and
Steamboat Lumps Marine Reserve

0.0100 0.0009 0.0084 0.0005

Florida Middle Ground 0.0084 0.0008 0.0072 0.0007

Pulley Ridge 0.0123 0.0022 0.0118 0.0017

Pinnacle Trend 0.0107 0.0008 0.0098 0.0013

Tortugas Ecological Reserve (North & South) 0.0178 0.0050 0.0143 0.0031

Key Biscayne National Park 0.0088 0.0018 0.0061 0.0011

Dry Tortugas 0.0100 0.0009 0.0090 0.0011

Florida Keys National Marine Sanctuary 0.0112 0.0015 0.0093 0.0014 1

1 Note that these estimates are based on the assumption that the hypothetical oil spills occur in the entire planning
areas and do not represent a real leasing scenario. They are for demonstration purposes only with a very small
subset of environmental resources considered.

4. Discussion

The OSRA model plays an important role in BOEM’s decision-making process as it provides
critical information for BOEM’s NEPA documents and oil spill response planning. BOEM continues to
improve the OSRA model on several fronts, including updating ocean circulation model on a recurring
schedule, improving the pre-processing and post-processing of OSRA model input and output files,
and developing tools for visualization of OSRA results.

However, utilizing the OSRA model to meet the needs for NEPA analyses still proves to be a
challenge, especially when a lease sale is announced without adequate time to perform an updated
OSRA model run. This study attempts to provide a solution that will speed up the OSRA process
by ‘extracting’ conditional probability from an existing database without re-running the model.
For each leasing scenario, the conditional probability field for the hypothetical oil spills at a specific
travel time can be generated for BOEM’s contingency planning. Typically, BOEM updates the ocean
model hindcast data every five to seven years depending on the availability of funds from BOEM’s
Environmental Study Program. With this method, the conditional probability can be derived from
conditional probability database and used in NEPA analyses for any lease sales, as long as the wind
and current data are not updated within the five- to seven-year time frame.

There are many other applications for this method. Because the OSRA model typically uses a
long-term, hindcast wind and current data to generate a large ensemble of trajectories for statistical
analyses, the variations in conditional probability can be estimated by calculating the standard
deviations to reflect the annual and seasonal variability in the forcing fields. Second, this method can
be used to analyze the environmental resources that are not distributed evenly in the area represented
by the polygon. For this type of environmental resource, a spatial- and/or temporal-dependent density
function can be created, and this function can be used in combination with the number of counts
tabulated to generate a more accurate estimate of conditional probability. Third, because the database
will store the information of the hypothetical oil spill locations, the ‘source of pollution‘ may be
identified from convergence of the conditional probability. This is equivalent to running the OSRA
model in a reverse mode. These locations can be presented in the form of probability map showing the
hypothetical oil spill locations with a certain travel time. Fourth, this method can be used to answer
questions; for example, what is the likelihood of the potential oil spills from proposed leasing areas
exiting the GOM via the Florida Straits and into the Atlantic Ocean, and at what travel time?
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It is important to note that the OSRA model is not designed for use as an oil spill response
tool. It was developed for assessing the spill risk prior to a lease sale, without knowing the oil
properties. The trajectories are calculated without any approximations of weathering or intervention.
It is a conservative approach specifically for the pre-sale process. The use of the term ‘contact’ to the
environmental resources was chosen by USDOI before 1982 to allow a calculation of the probabilities
while leaving out the estimation of the ‘impact’ of the possible oiling. The impact estimation was based
on the probability of contact, with the subject matter expert on the particular resource making the
assessment. Barker (2011) [41] discussed the similarities and differences between the OSRA model
and GNOME when used for longer-term planning purposes, such as the Deepwater Horizon oil spill.
The OSRA model is capable of considering the probability that a spill may occur, while NOAA’s
GNOME and Trajectory Analysis Planner approaches do not have this capability. The OSRA model
only considers the surface release of the oil spills because much of the oil released at depth was shown
to surface within a few hours and at a radius of a few kilometers [56]. Though the OSRA model
includes the sub-surface environmental resources, the model only calculates the probability of contact
at the surface and the subject matter experts will use the OSRA model results to assess the impacts to
these resources in BOEM’s EIS documents.

This method can be improved by conducting more sensitivity tests to derive an optimal number of
launch points and model resolutions corresponding to a specific set of wind and current data. Spacing
between the launch points may depend on the geographic areas, whether mesoscale or sub-mesoscale
eddies dominate. It is constrained by the Rossby radius of deformation, which varies from 10 km
in the shelf to 40 km in the interior of the GOM [57]. This study identifies the ‘least contacted areas‘
(i.e., the west Florida shelf, east coast of Florida), and the ‘most contacted areas‘ (i.e., Loop Current and
eddies) in the GOM on seasonal and interannual time scales, based on the assumptions that there are
hypothetical spills from BOEM’s entire planning areas. The analysis can be further grouped into each
planning area, such as the Western GOM, Central GOM, and Eastern GOM Planning Areas, with field
of conditional probability generated for each planning area. Other OCS regions can use this method to
speed up the spill risk assessment process.
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Abstract: A major threat for marine and coastal environment comes from oil spill accidents. Such
events have a great impact on both the ecosystem and on the economy, and the risk increases over
time due to increasing ship traffic in many sensitive areas. In recent years, numerical simulation
of oil spills has become an affordable tool for the analysis of the risk and for the preparation of
contingency plans. However, in coastal areas, the complexity of the bathymetry and of the orography
requires an adequate resolution of sea and wind flows. For this reason, we present, to the best of
the author’s knowledge, the first study on the subject adopting Large Eddy Simulations for both the
low-atmosphere and sea dynamics in order to provide highly-resolved marine surface current and
wind stress to the oil slick model, within a one-way coupling procedure. Such approach is applied to
the relevant case of Kotor Bay (UNESCO heritage since 1979), in Montenegro, which is a semi-closed
basin surrounded by mountains that is subject to an intense ship traffic for touristic purposes. Oil spill
spots are tracked along ship paths, in two wind scenarios.

Keywords: oil spill; numerical simulation; LES; low atmosphere; coastal flow; contingency plan;
Kotor bay

1. Introduction

Oil spill accidents represent a major threat to marine and coastal environment, impacting
both biological species and human health, as well as economic, touristic and commercial activities.
For example, according to data collected from 1977 to 2003 about 304,700 tons of oil have been released
in the Mediterranean Sea mainly due to extensive marine traffic of oil tankers and ships [1,2].

Weather conditions, oil physical and chemical characteristics determine oil fate and persistence
at sea. Most kinds of oils spread on the sea surface as a thin film, the slick is then driven by the
sea currents and wind stress; furthermore, if the oil temperature drops below the pour-point, oil
can solidify and form tar balls. In case of wavy and turbulent seas, small oil drops can detach from
the oil slick and then, depending on their density, particles can either sink, float on the surface or
be transported along the water column. Moreover, oil interacts with the surrounding environment.
Immediately after spills, oil can evaporate and, under the action of wind and waves, it can absorb water
droplets producing emulsion. Such phenomena, called weathering processes, change oil physical and
chemical properties in time, strongly affecting oil fate and persistence at sea [3–6].

Given the significant impact of oil spill on the environment and economy of the area, over the
years, efforts have been devoted to the preparation of contingency plans, aimed at ensuring fast
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response and to facilitate clean-up operations after accidents. In this context, oil spill numerical
models have been widely established as helpful tools, both for development of contingency plans
and for guiding clean-up operations. Oil slick models are usually integrated with hydrodynamic and
meteorological models that provide sea currents and wind data. The modeling approaches can be
classified as Lagrangian, Eulerian and Lagrangian/Eulerian hybrid models [4,7]. In the Lagrangian
models, e.g., [2], oil slick is treated as a multitude of finite size particles, which are advected by a mean
drift velocity plus a fluctuating turbulent component, the latter usually parametrized by means of
a random walk technique. In the Eulerian method, e.g., [8], oil slick dynamics are derived from mass
and momentum conservation equations. Finally, in hybrid Lagrangian/Eulerian models (see, for
example [9]), a large number of particles parametrizes the oil slick immediately after the spill, and, as
far as the width of the slick reaches a terminal value, the computation switches to a Eulerian model.

In the present paper, we study the case of a hypothetical oil spill accident due to ship collision
in Boka Kotorska Bay, a long and tortuous fjord situated in the Adriatic Sea. The study is aimed at
preparation of contingency plans for the area under investigation. This area is under the UNESCO
protection since 1979, for its own important natural and historical heritage. The prevention from
possible hazardous situations is becoming urgent in light of the increased maritime traffic over the
recent years. To make the study as realistic as possible, the typical ship path is considered within the
bay [10,11] in conjunction with oil spill spots identified as dangerous from an environmental point
of view.

We use a novel approach to simulate oil slick dispersion in coastal areas characterized by
surface currents and low atmosphere circulations governed by complex bathymetry, coastline and
orography. We use a two-dimensional Eulerian model derived by Nihoul’s theory [12–14] for the oil
slick. The oil slick simulation is coupled with LESCOAST [15,16], a high resolution hydrodynamic
model used to simulate water circulation in coastal areas. Given the complex orography surrounding
the bay, a preliminary low-atmosphere wind simulation is required to take into account the horizontal
variability of wind stress. This latter is the main forcing item driving both the oil slick and the sea
current in the upper layers, and it has to be properly modeled, for example as suggested in [17].

The paper is organized as follows: in Section 2, we provide a brief overview of the hydrodynamic
models for water and air domains; then, we introduce the oil spill model and finally we briefly describe
the features of the area under investigation along with the boundary and initial condition for the
simulations. Results of the most significant scenarios are reported and examined in Section 3. Finally,
the discussion is provided in Section 4.

2. Materials and Methods

In this section, we describe the methodology used for the study: in Section 2.1, we provide a brief
description of the LESCOAST/LESAIR model used for the marine and low-atmosphere simulations;
in Section 2.2, we present the oil spill model for the analysis of pollutant dispersion; in Section 2.3, we
give a description of the Boka Kotorska Bay; in Section 2.4, we discuss the set-up of the simulations.

2.1. Hydrodynamical Model

LESCOAST/LESAIR model [18,19] solves the filtered form of three-dimensional, non-hydrostatic
Navier–Stokes equations under the Boussinesq approximation along with the transport equations
for scalar quantities, i.e., salinity and temperature/humidity and temperature in marine/atmosphere
simulations, respectively.

The LESCOAST/LESAIR model uses a Large Eddy Simulation approach to parametrize
turbulence, and the variables are filtered by a low-pass filter function represented by the size of
the cells. The subgrid-scale fluxes (SGS), which come out from the filtering operation, are parametrized
by a two-eddy viscosity anisotropic Smagorinsky model developed in [18]. Such method is effective in
simulating coastal flows on sheet-like anisotropic computational grids.
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The complex geometry, which usually characterizes harbor and coastal areas, is treated using
an Immersed Boundary Method (IBM), based on a direct forcing approach, as described in [20];
the technique is used to reproduce coastline, anthropogenic structures, bathymetry and topography.

The filtered Boussinesq form of the Cartesian Navier–Stokes equations reads as follows:
Continuity equation:

∂uj

∂xj
= 0, (1)

Momentum equation:

∂ui

∂t
+

∂uiuj

∂xj
= − 1

ρ0

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
− 2εijkΩjuk −

Δρ

ρ0
giδi3 −

∂τij

∂xj
, (2)

Scalar transport equation:
∂s

∂t
+

∂ujs

∂xj
= ks ∂2s

∂xj∂xj
−

∂λs
j

∂xj
, (3)

where ’−’ represents the filtering operation, ui represents the ith-component of the Cartesian velocity
vector (u, v, w), xi represents the ith-component of the Cartesian coordinates (x, y, z), t is time, ρ0 is the
reference density, p is the hydrodynamic pressure, ν is the kinematic viscosity, εijk is the Levi–Civita
tensor, Ωi is the ith-component of the Earth rotation vector, Δρ is the density anomaly, gi is the
ith-component of the gravity vector, and τij is the SGS stress tensor which comes from the nonlinearity
of the advective term, s is a scalar quantity (e.g., temperature and salinity/humidity), ks is scalar
diffusivity and λs

j is the SGS scalar flux.
In the present low-atmosphere simulations, density variations are small and therefore buoyancy

effects are neglected. In the marine simulations, we solve the transport equation of the scalar quantities,
temperature T and salinity S, respectively. The fluid density is computed through the state equation:

Δρ

ρ0
=

ρ − ρ0

ρ0
= −βT(T − T0) + βS(S − S0), (4)

where ρ0 is the reference density at the temperature T0 and salinity S0; βT and βS are respectively the
coefficient of temperature expansion and haline contraction.

At immersed boundaries, we apply the wall-layer model (IBWLM) presented in [21]; and at the
open boundaries the Orlanski boundary condition is enforced [22], and it reads as:

∂ui

∂t
+ Ci

ui

∂xi
= 0, (5)

where Ci is the phase velocity, calculated as the flux at the cell face.
The effect of the wind imposed over the free surface is taken into account by means of the formula

proposed in [23]. It calculates the stress at the sea surface as:

τw = ρaC10U2
10, (6)

where ρa is the density of air and C10 is the drag coefficient which is a function of wind speed as:

C10 = (0.8 + 0.065U10)10−3, (7)

where U10 is the wind velocity 10 m above the mean sea level, which is provided by the
low-atmosphere simulations.

For scalar quantities, we apply a no-flux condition at solid walls and, at the surface; at the open
boundaries, the Dirichlet condition is enforced with values interpolated from measured data.

258



J. Mar. Sci. Eng. 2019, 7, 54

Equations (1)–(3) are integrated using the finite difference semi-implicit fractional step method
of [24]; it is second-order accurate in both space and time. The model adopts a non-staggered grid,
meaning that the primitive variables, like velocity, pressure and scalars are located at the cell centroids,
while the fluxes are defined at the cell faces. More details about the numerical model can be found
in [18]. In [15], the LESCOAST model is validated against measured and numerical results.

2.2. Oil Spill Model

LESOIL [13,25] is a two-dimensional Eulerian numerical model which simulates the main physical
processes governing oil behavior at sea from the start of the release for a time period of the order of
24 h. The processes are: transport and spreading under gravity, friction and Coriolis forces, and the
short-term weathering processes, namely evaporation and emulsification.

The model, derived from Nihoul’s theory [12], considers oil slick as a thin-film, whose evolution
is driven by gravity and friction forces. The equation that is solved for the thickness of the oil slick h

reads as:
∂h

∂t
+

∂vjh

∂xj
= Q +

∂

∂xj

(

α∂h

∂xj

)

, (8)

where v is the transport velocity induced by sea currents and wind stress; Q is the source/sink term that
takes into account a continuous release of oil, or oil loss due to dispersion of particles or evaporation.
The term α = gh2(ρw − ρo)ρo/0.02ρw can be interpreted as the oil slick diffusion coefficient and it
depends on gravitational acceleration g, oil and water densities (respectively ρo and ρw). Based on
literature findings [8], the contribution of sea current and wind stress on the transport velocity of oil
slick is given by:

v = uc + kwU10, (9)

where uc is the velocity induced by current which is provided at each time step by the LESCOAST
model; kw is the wind drift factor, set equal to 0.03 in agreement with relevant literature [8,9,26–28];
U10 is supplied by the low-atmosphere simulation.

Immediately after the spill, weathering processes can take place, changing oil density and volume,
and eventually influencing oil slick fate and persistence. The model can take into account the main
processes, namely evaporation and emulsification, by means of established literature models [29,30].
Parametrization of these effects, in Eulerian models, requires an average of quantities, such as wind
velocity, over the whole surface/volume of the slick. This approach is suitable for simulating oil slick
in an open ocean scenario where wind stress is almost constant, but it is not properly suited for a slick
undergoing a highly varying wind-sea current flow conditions. For these reasons, in this study, the
weathering processes are not considered. Although this assumption may appear less realistic, it is still
reasonable over a time scale of the order of 12 h and it allows for underlining the spreading mechanism
due to the combined wind and sea currents’ actions.

In order to facilitate coupling with LESCOAST, the oil model Equation (8) is run on a surface
mesh that perfectly matches the horizontal discretization of the first cells layer at the free surface
of the marine model. We use a second-order Adams–Bashfort scheme to integrate numerically
Equation (8), the diffusion terms are treated using a centered second-order finite differences method,
while the advective terms are discretized using SMART, a third order accurate, monotonic scheme [31].
Compared to literature results [8], the method is proved to be accurate without appreciable numerical
diffusion [13,25]. At the immersed bodies, we apply a no-flux condition, neglecting the phenomenon
of oil deposition over coastlines.

2.3. Kotor Bay Area Description

The area under investigation, illustrated in Figure 1, is Boka Kotorska Bay, or Kotor Bay,
a semi-enclosed karstic basin situated in the southeastern side of the Adriatic Sea (Montenegro).
The bay covers an area of about 87 km2. The fjord consists of three different sub-bays: Kotor-Risan
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Bay, Tivat Bay and Hergeg-Novi Bay. The inner one, Kotor-Risan Bay, is further divided into two
smaller basins: Kotor Bay (southeast) and Risan Bay (northwest). Two straits connect the three bays:
the Kumbor Strait links Tivat Bay with Herceg-Novi Bay, and a narrow canyon, Verige Strait, connects
Tivat with Kotor-Risan Bay. The bathymetry decreases rapidly up to a depth of 40 m in the largest part
of the basin, the average depth and the maximum depth are 27.3 m and 60 m, respectively. The largest
and narrowest widths of the bay are respectively 7 km and 0.3 km [32–34].

Figure 1. Kotor Bay area and its location in the Adriatic Sea—image from Google Maps (online,
Italy, 2017).

Numerous fresh water inputs characterize the bay, such as submarine springs, precipitations
and rivers. In the upper layers, the water circulation is driven mainly by wind, tide, river runoff,
and density gradients; denser water from the Adriatic Sea flows into the bay in the bottom layer.
The fresh water inflow mainly impacts the inner bay and, as a matter of fact, salinity at the sea surface
increases moving from Kotor-Risan Bay towards the outer basin. In the winter season, characterized by
higher precipitations and river runoff, the saline vertical stratification can be more pronounced. One of
the most frequent wind conditions for this area is Bora, a strong katabatic wind which flows from the
first quadrant. Bora is more frequent in winter time, and it can last for 3–7 days [33,34]. Because of the
mountains surrounding the bay, the fetch is small, preventing the generation of significant waves [32];
for this reason, we neglect the effect of waves on sea current and oil slick simulations.

2.4. Case Set-Up

The computational domain for sea circulation has overall dimensions of Lx = 18, 435 m,
Ly = 21, 575 m, and Lz = 72 m. The computational domain is Cartesian and it is discretized
uniformly by 640 × 1024 × 24 grid cells, respectively, with dimensions of about Δx ≈ Δy ≈ 25 m
and Δz ≈ 3 m. The coastline, the anthropogenic structures and bathymetry, as well as topography
for the low-atmosphere simulation, are reproduced by the IBM [20]. The computational grid is
illustrated in Figure 2; the black rectangle identifies grid borders, and its four corners are labelled with
Cardinal points according to grid orientation. The immersed body used to reproduce the coastline is
shaded in dark-gray, while the contour colors represent the depth of sea bottom as reproduced in the
computational domain. On the southwest side, the basin exchanges water with the Adriatic Sea. Here,
we apply the Orlanski boundary condition (Equation (5), [22]), which allows for the simulation of the
inversion of the currents over the vertical. At the sea surface, currents are forced by wind stress, whose
intensity and direction are obtained by LESAIR Simulations (LAS).
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Figure 2. Computational domain: the black lines define grid borders, the Immersed Boundary Method
is used to reproduce the coastline (gray shade) and bathymetry (contour plot) of the fjord. The yellow
line indicates the main ship route in the bay as reported in literature [10,11], red dots indicate the
position where we consider oil spill occurrence in our simulations.

For the low-atmosphere, first, a simulation was run on a large and coarse grid (hereafter referred
to as LASc); then, the obtained velocity data were nested as initial and boundary conditions of
a second simulation on a smaller and finer grid (hereafter labeled as LASf). The height of the domain
(Lv = 2000 m) is the same for both low-atmosphere grids, and it is discretized by 24 grid cells, stretched
in order to obtain a finer resolution near the surface. For LASf, the horizontal domain dimension
and discretization are the same as those adopted for the marine domain, while, for the LASc, the
horizontal dimensions of the domain are three times larger than in LASf, retaining the same number of
grid points.

For the atmosphere simulations, two summer-wind conditions are chosen: the first is the Bora
wind case, which is the most frequent wind in the area; the second is the Libeccio (southwest) wind
condition. Although it is not the most frequent wind in the area, it is chosen because it represents the
worst scenario in case of oil spills, especially in low river runoff conditions. Libeccio, blowing inland
from the Adriatic Sea, prevents oil slicks from flowing out of the bay.

The boundary conditions applied for the LASc are: a logarithm inflow velocity with intensity
U10 = 6 m/s, set at the wind side (northeast for Bora wind simulation θ = 65° and southwest for
Libeccio wind simulation θ = 206°), named Log Inflow in Table 1. On the opposite sides, southwest
and northeast for Bora and Libeccio cases, respectively, the Orlanski boundary condition is adopted.
On the northwest and southeast sides, periodicity is enforced. On the top boundary, we use a free
slip condition. On the bottom boundary, at the interface with the sea, a free slip is used, while, at the
immersed boundaries surface, a wall model is applied. The LASf boundaries and initial conditions
are provided by a nesting procedure, interpolating data from the coarser simulation. Finally, from the
computed wind velocity 10 m above the surface, the stress at the free surface of the hydrodynamic

261



J. Mar. Sci. Eng. 2019, 7, 54

model is calculated using Equation (6). The summary of boundary conditions applied for air and sea
simulations is reported in Table 1.

For the sea simulation, temperature and salinity fields are initialized according to literature field
data of Boka Kotorska Bay [33,35], while, at the southwest boundary, Copernicus database values [36]
are adopted. Density stratification is principally driven by temperature gradients in Kotor-Risan
Bay. In the inner bay, the temperature varies from 24° (C) at the surface to 17° (C) at the bottom,
while the salinity varies from 33 (PSU) close to the surface to 36 (PSU) at the bottom. In the other
bays, the vertical distribution of the two quantities is almost constant with values approximately of
T = 24° (C) and S = 38 (PSU).

Oil spill simulations are set considering a ship collision that releases a light oil (CPC-BLEND),
with density ρo = 809 kg/m3 and a pour point of −36° (C), low enough to prevent formation of tars.
In Figure 2, the yellow line indicates the ship navigation route as reported in [10], obtained from [11].
The accidents are assumed to happen along the path in Verige Strait, the narrowest region of the bay.
The red dots in Figure 2, labeled with letters (a)–(h), indicate the oil release points. The spill rate
reproduces a tub emptying process, considering a total amount of spilled oil of V = 1400 m3, in 4 h.

Table 1. Summary of boundary conditions applied.

LASc Bora LASc Libeccio LASf Sea sim.

Top Free Slip Free Slip Free Slip Wind stress Equation (6)
Bottom Free Slip/IBWLM Free Slip/IBWLM Free Slip/IBWLM IBWLM

Side N-E Log Inflow: Orlanski Outflow Nesting Ibm
U10 = 6 m/s, Equation (5)
θ = 65°N

Side S-E Periodic Periodic Nesting Ibm
Side W-S Orlanski Outflow Log Inflow:, Nesting Ibm/Orlanski Outflow

Equation (5) U10 = 6 m/s
θ = 206°N

Side N-W Periodic Periodic Nesting Ibm

BM = Immersed boundary method; IBWLM = Wall Layer Model for Immersed boundary.

3. Results

In this section, we show and describe the dynamics of low-atmosphere, sea and oil spill, first for
the Bora wind scenario and successively for the Libeccio one. Finally, we analyze the effect of wind
stress on oil slick dynamics.

3.1. Low-Atmosphere Simulations for Bora Wind Scenario

Figure 3 shows the wind velocity magnitude and vectors obtained from low-atmosphere
simulations. Panel (a) shows the contour plot of wind velocity 10 m above the sea level in the
LASc. The immersed bodies adopted to reproduce mountains surrounding the bay, are represented by
green-brown contour plot. Panel (b) shows the inhomogeneous map of wind velocity obtained over the
bay in simulation LASf; there are regions where the magnitude of horizontal velocity is close to zero,
especially by the leeward side of the surrounding mountains. For example, in panel (c), a recirculation
zone leeward a hill is well visible at a vertical cross-section over Herceg-Novi Bay. The position and
direction of the section is marked by a red line and rectangle in Figure 3b.
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Figure 3. Low-atmosphere simulation of Bora wind case: horizontal instantaneous velocity 10 m above
the sea surface for the LASc (a) and for the LASf (b); (c) a cross section along wind direction shows the
development of recirculation zones close to mountains slopes. The location of the section is shown
with the red line and rectangle in (b). Velocity vectors are plotted every 16 nodes in both horizontal
directions. The green-brown contour plot in (a) represents the immersed body that reproduces the
terrain elevation z. The velocity vector on the top-right shows wind direction, set up as inflow boundary
condition in LASc.

3.2. Sea Current Simulation for the Bora Wind Scenario

Figure 4a shows the surface contour plot of the horizontal instantaneous velocity field. The
horizontal space variability of wind stress directly affects the sea current, which flows from the inner
bay towards Adriatic Sea. The red lines indicate the position of two vertical sections (W-E Figure 4b
and N-S Figure 4c). The flow features within the fjord are made evident by streamlines: at the
surface, the current follows the wind direction, while, at the bottom, it flows in the opposite direction.
These up-welling and down-welling phenomena are typical in coastal regions. On the vertical section,
horizontal axis vortices, spanning all over the water column, are visible. Such structures generated by
wind stress at the sea surface have also been observed previously in [15,17].

Horizontal and vertical distributions of water density are shown in Figure 5. Panel (a) illustrates
density variations at the surface layer; we notice that in the Kotor-Risan Bay, more than in other
bays, sea currents are driven by both wind stress and density differences. Panels (b) and (c) show
vertical distribution of density in two cross-sections indicated by red lines in panel (a). In Kotor-Risan
Bay (panel (b)), analysis of the contour plot and streamlines suggest that wind stress is able to break
stratification, thus enhancing water mixing along the vertical depth: lighter surface water is transported
towards the denser region along the wind direction. This phenomenon appears more pronounced in
panel (c), which shows that low-density water is pushed by wind from Kotor-Risan Bay towards Tivat
Bay. The horizontal axis vortex developing in Verige Strait is promoted by both bathymetry and the
horizontal stratification effect.
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Figure 4. Sea water horizontal instantaneous velocity |uh| =
√

u2 + v2 in Bora wind scenario.
(a) contour plot and velocity vectors close to the surface Vectors are skipped every 12 node cells
in both directions. (b) contour plot in a vertical section along Kotor-Risan Bays; (c) contour plot
in a vertical section along Kotor-Tivat Bays. The location of sections is shown in (a) with red lines.
Streamlines indicate fluid flow direction.

Figure 5. Contour plot of instantaneous density in Bora wind scenario: (a) at the surface; (b) in a vertical
plane in Kotor-Risan Bays; (c) in a vertical plane in Kotor-Tivat Bays. The location of sections is shown
in (a) with red lines. Streamlines and vectors indicate fluid flow direction; vectors are skipped every 12
node cells in both directions.

3.3. Oil Spill Simulation for Bora Wind Scenario

Figure 6 shows different oil spill scenarios, simulated for the Bora wind case. Following a typical
ship’s path, from Kotor harbor to Kumbor Strait (yellow line in Figure 2), oil is released at different
points (identified by panels from (a) to (h)) along the route. Film thickness contour lines of h = 10−3 mm
show the oil slick position at different simulation times after the initial release, tr: tr = 5 min (red line),
tr = 1 (green line), tr = 5 h (purple line) and tr = 12 h (blue line). Vectors indicate the direction and
intensity of currents at the sea surface (dark gray), and wind velocity 10 m above sea level (orange); for
clarity, vectors are shown every 20 grid cells in both horizontal directions and wind velocity vectors
are scaled by a factor of 0.01. For each scenario, the area of interest for the oil spill event is shown on
the left; on the right, we show a zoom over the oil slick, in order to better visualize oil spreading and
transport dynamics.

In the first scenario (Figure 6a), oil is released in the narrow bay (700 m wide) close to Kotor
harbor. Here, both sea currents and wind are weak and the slick spreading is driven by gravity force
rather than friction. One hour after the spill, the slick reaches the eastern coastline, and, later on, the
western one. Five hours after the spill, the slick spreads over the entire narrow strait and, after twelve
hours, the oil slick occupies an area of about 6 · 105 m2, still moving towards Kotor harbor and slipping
along the coastlines.
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Figure 6. Cont.
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Figure 6. Oil slick, released at different points, at different simulation times in the Bora wind scenario;
the film thickness represented is 10−3 mm. Vectors show the direction and intensity of sea currents
(dark grey) and wind (orange), vectors are shown every 20 grid cells in both horizontal directions and
wind vectors are scaled by a factor 0.01. Zoom factors of the right panels are: (a) 4; (b) 4; (c) 4; (d) 2.5;
(e) 3.25; (f) 4.5; (g) 3.75; (h) 3.25.

At the second release point, wind and sea currents are relevant (Figure 6b). During the first hour
after the spill, oil starts spreading in the direction of the wind and is transported southward by the sea
current towards Kotor harbor. Five hours after the spill, the slick reaches approximately the position
described in the previous scenario. Here, wind and sea currents are weaker and the oil slick starts
spreading radially driven by gravity force, similarly to the case of scenario (a).

In panel (c), the release spot is in the central part of Kotor Bay (Figure 6c), where wind and current
point westward. Oil impacts on the southern coastline and is then transported by currents northward,
close to Verige Strait, where sea currents flow in the direction opposite to the wind. Once oil reaches
the northern coastline, it starts accumulating and then spreads driven by friction and gravity forces.
The flow pattern of recirculation wind in this area makes the evolution of the oil slick more complex.
Wind is weak because of the presence of mountains and the opposite sea currents (from Risan and
from Kotor Bays, respectively) drive oil towards Verige Strait.
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Panels (d) to (f) show the evolution of oil spill taking place in the Verige Strait. In each scenario,
oil is transported mainly along wind and currents’ directions. In the scenario shown in Figure 6d, oil
reaches the eastern shore of Verige Strait in less than one hour. Later on, because of lateral spreading,
the slick also reaches the other side of the strait, covering a distance of about 150 m. Five hours after
the spill, the slick occupies the whole strait area. After 12 h, the slick is transported inside Tivat Bay,
where it finally reaches the southern coastline and starts accumulating because of the overall weaker
transport velocity. In scenario (e), oil reaches the southern coastline about five hours after the spill and
then it starts accumulating along the shore. Scenario (f) is similar to the aforementioned one; oil spot is
3 km south with respect to the previous scenario and the slick impacts the shore sooner.

In the scenario illustrated in Figure 6g, the oil slick spreads along wind and sea currents and it
moves towards Kumbor Strait. Five hours after the spill, the oil slick reaches the southern shoreline
where it starts accumulating and to be transported towards the strait along the coastline.

Finally, for the scenario with oil release spot in the Kumboir Strait (Figure 6h), where wind stress
is weaker, the slick is spread mainly by friction and gravity force. The slick advection velocity is
slower than in previous scenarios because of the lower wind friction in the area. In five hours, the slick
impacts both shores of the strait and it moves towards Herget-Novi Bay.

3.4. Low-Atmosphere Simulations for Libeccio Wind Scenario

In Figure 7, we show wind horizontal velocity 10 m above the sea surface obtained in the two
low-atmosphere simulations of Libeccio wind case. In panels (a) and (b), we show contour plot of
wind velocity obtained in the LASc and LASf, respectively (note that the green-brown contour plot in
panel (a) illustrates the immersed body used to reproduce the topography around the bay). For clarity,
velocity vectors are plotted every 16 nodes in the horizontal directions. Similar to the Bora wind
scenario, regions with different wind stress intensities can be identified. In Tivat Bay, at the entrance of
Verige Strait, the wind accelerates and reaches a peak value of about U10 = 10 m/s.

Figure 7. Contour plot of instantaneous horizontal wind velocity 10 m above the sea level for Libeccio
wind case: (a) LASc; (b) LASf. Velocity vectors are plotted every 16 nodes in both the horizontal
directions. The green-brown contour plot in (a) represents the immersed body reproducing terrain
elevation z. The velocity vector in top-right shows wind direction set as inflow boundary condition
in LASc.
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3.5. Sea Current Simulation for Libeccio Wind Scenario

Contour plots of the horizontal velocity and vectors in Figure 8a indicate the intensity and the
direction of the surface current. It moves along the wind direction and become more intense in
correspondence of wind peaks. In the vertical sections W-E (Figure 8b) and N–S (Figure 8c), the
streamlines show the behavior of fluid flow along the vertical direction. At the surface, the current
is aligned with wind direction and flows from Tivat Bay to the inner one, while, at the bottom, the
current moves in the opposite direction. Close to the coastline or in correspondence of rapidly varying
bathymetry, up-welling and down-welling phenomena are visible.

Figure 8. Sea water instantaneous horizontal velocity |uh| =
√

u2 + v2 for Libeccio wind scenario.
(a) contour plot and velocity vectors close to the surface, vectors are skipped every 12 nodes for cells
in both horizontal directions. (b) contour plot in a vertical section of Kotor-Risan Bays; (c) contour
plot in a vertical section in Kotor-Tivat Bays. The location of sections is shown in the (a) with red lines.
Streamlines indicate fluid flow direction.

3.6. Oil Spill Simulation for Libeccio Wind Scenario

Figure 9 illustrates oil spills events for Libeccio wind case. In the following, all notation, colors,
resolution and scaling factors are the same as for the Bora wind case, if not explicitly reported.

The oil spill dynamics, in all the distinct scenarios under Libeccio wind conditions, seem to
indicate Kotor Bay as the most sensitive area in case of an oil spill accident. In fact, in all cases shown
in Figure 9a–h, the oil slick is transported towards the northeast in Kotor Bay, where both wind and
sea currents entrap the oil.

In the first scenario, shown in Figure 9a, oil starts spreading immediately after the spill under
the action of gravity force rather than friction, since wind and sea currents are weak in this region, as
also observed for Bora wind scenario. One hour after the spill, the slick impacts the western shore and
from here it starts spreading northward along the coastline; then, it starts to be drifted eastward under
the action of the more intense wind. Finally, it impacts the eastern coastline about twelve hours after
the spill.

In the second scenario, panel (b), wind and currents are stronger at the oil spill location: the slick
is immediately transported toward the eastern coastline. The impact takes place at about tr = 1 h.
Then, the slick is driven northward along the shore and eventually gets trapped in the bay.

The oil spill scenario shown in Figure 9c is similar to the one described in (b): oil is firstly
transported towards the eastern coastline in less than one hour, and then it moves along the coastline
toward the bay.

In the scenario in Figure 9d, oil is released immediately after the Verige Strait. The slick impacts
the portion of coastline situated in front of the strait, in less than one hour after the spill, and then it
travels along the coastline towards the inlet.
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Figure 9. Oil slick, released at different points, at different simulation times for Libeccio wind scenario;
the film thickness represented is 10−3 mm. Vectors show the direction and intensity of sea currents
(dark grey) and wind (orange), vectors are shown every 20 grid cells in both horizontal directions and
wind vectors are scaled by a factor 0.01. Zoom factors of the right panels are, respectively: (a) 4; (b) 4;
(c) 4; (d) 4; (e) 4; (f) 3; (g) 2.4; (h) 2.1.

In the scenario illustrated in Figure 9e, oil is released at the entrance of Verige Strait. In less than
one hour, the slick impacts the eastern coastline of the strait first, and, later on, the coastline in front
of the mouth of the strait. From here, oil is further transported along the coastline. Inside the strait,
a fraction of the oil slick slows down and starts accumulating on the strait shore, slowly releasing more
oil in the bay.

In scenario (f) (Figure 9f), the oil slick moves towards the Verige Strait and impacts its eastern
shoreline in less than one hour. At about tr = 5 h, it reaches the coastline in front of the strait and
then it slips along the shore eastward. As in scenario (e), a part of the slick slows down, impacting the
shore, releasing an elongated tail, departing from the main slick.

In scenario (g) (Figure 9g), oil spreads along the wind direction towards the Verige Strait. In about
one hour, it impacts the western coastline at the entrance of the strait, and then it is transported by
wind and currents on the other side of the strait. As for scenarios (e) and (f), when part of the slick
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starts slowing down approaching the shore, an elongated tail departs from the main slick. At tr = 12 h,
part of the oil is still located along the eastern strait’s shore.

The last scenario is illustrated in Figure 9h. The spill occurs in an area where both wind and
sea currents are weak; therefore, as mentioned in scenario (a), oil spreads radially mainly due to
gravity force. A part of the slick reaches the southwestern coastline where wind and sea currents are
almost absent; here, oil starts to accumulate along the shore. Another part of the slick meets stronger
currents and starts to spread along the flow direction. At the tr = 1 h, the slick has also reached the
northwestern coastline. The slick is then transported through Tivat Bay along the coastline, and, in the
meantime, part of the oil from the slick accumulated along the southwestern shore starts detaching.
As a consequence of this continuous release of oil along the coastline, the oil slick is much larger than
in the other scenarios analyzed. Five hours after the spill, the oil slick arrives at the entrance of the
Verige Strait. Twelve hours after the spill, the slick crosses the Tivat Bay and Verige Strait. Part of the
oil is accumulated at the entrance along the western coast and at the eastern shore of the strait. The
slick also reaches the coastline in front of the straits and it is transported eastward.

3.7. Effect of Wind Stress Parametrization on Oil Slick Transport

In most models present in literature, oil slick advection velocity is given by the sum of two
contributions proportional to sea current and wind velocity, respectively (see Equation (9)). Usually,
for sea current, the drift coefficient is set equal to 1.0, while the wind drift factor adopted is
kw = 0.03 [8,9,28]. More recently, some authors proposed different values for the parametrization,
as, for example [2]. They calibrated the drift coefficients of their oil spill Lagrangian model using
trajectories of buoys; the wind drift coefficient was found to be kw = 0.005, a value one order of
magnitude smaller than the standard literature one. Such difference can completely modify the
trajectory of the spill predicted by the model. At the moment, we cannot draw any conclusion on
the correct value to be used in simulations, especially in the presence of Eulerian models. However,
assessing the difference in results considering the two values can shed light upon the necessity of
more fundamental work on the topic. For this reason, we apply the newly proposed parametrization
value in the scenarios studied in Section 3.3, for the Bora wind case, considering the release points (d)
and (e). In such cases, the relative importance of wind and sea current can lead to completely different
predicted trajectories. Both points are located in Verige Strait, which is surrounded by mountains
rising up to 600 m. In this canyon, the wind blows from Kotor-Risan Bay towards Tivat Bay. With the
standard kw value, the slick spreads along the wind direction while lateral diffusion is inhibited. The
wind stress is dominating over the other forces. The oil slick moves following the path where wind
and currents reach the maximum velocity as can be deduced by an analysis of the wind and current.
Figure 10 shows a vertical cross-section downwind the Verige Strait, the position being indicated by
the red line in the black top view of the bay. Contour plots indicate the plane-normal velocities for
air and water flows, in the upper and lower panels of the figure, respectively. The dark green line
indicates the position and the extension of the oil slick at tr = 12 h, for scenario (d). We can notice that,
leeward, the Verige Strait, the velocity of wind and sea current are higher and move from the strait
towards the bay; oil slick is located in the area where both wind and sea currents are stronger.
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Figure 10. Plot of cross-shore plane leeward the Verige Strait. The contour plot shows the plane-normal
instantaneous velocities of air (top panel) and water (bottom panel) simulations, the vectors indicate
the plane-tangential velocity components. The dark green line between the panels shows the position
of the oil slick at tr = 12 h for scenario (d).

On the other hand, the use of kw = 0.005 produces a variation of the trajectories as depicted in
Figure 11 for scenarios (d) and (e). In scenario (d), oil is transported slower and it spreads laterally and
backward in the Kotor Bay. At tr = 12 h, the oil slick has moved along the wind direction inside the
strait, but also against wind, following the sea current close to the southern coast of the Kotor Bay.

In scenario (e), the slick spreads laterally following the sea current. After tr = 12 h, the slick is
still in the middle of the bay.

This brief analysis highlights the importance of a correct wind stress parametrization in order
to correctly predict oil slick trajectory and spreading, especially in the presence of complex air and
sea flows as in coastal areas. The new parametrization seems to have a minor impact in case of
a strong wind, while, in case of light wind, it overestimates the effects of sea currents in oil slick
transport, as we can observe in Figure 11, for the scenarios (e) (on the right panel) and (d) (on the left
panel), respectively.
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Figure 11. Contour plot of oil slick position at different simulation times. Oil is released windward
Verige Strait (left figure) and leeward Verige Strait (right figure). Here, we use the wind drift factor
proposed in [2] kw = 0.005. Vectors show the direction and intensity of sea currents (dark grey) and
wind (orange), vectors are shown every 20 grid cells in both horizontal directions and wind vectors are
scaled by a factor 0.01.

4. Discussion

In this study, we analyze the dynamics of a hypothetical oil spill accident in the Boka Kotorska
Bay, a fjord characterized by a rapidly varying orography, a complex bathymetry and sinuous coastline.
A high resolution model is used to reproduce this complex dynamics and to obtain reliable oil slick
predictions. In this study, the oil model does not take into account the weathering processes, in order
to underline the role played by wind and sea current on the oil fate. Its inclusion will be considered in
future works.

As suggested in [17], the complex orography can affect the horizontal distribution of wind stress
in the bay, making it highly inhomogeneous. For this reason, two low-atmosphere simulations are
run: LASc uses a large domain with a coarse grid, LASf uses a small domain with a fine grid. The
latter provides an accurate distribution of the wind stress, used for both marine and oil simulations.
The analysis of low-atmosphere results highlights the presence of zones where wind stress is strong,
spots where wind is almost absent or even recirculating in the opposite direction. The wind stress
is adopted as surface boundary conditions for marine simulations. We investigate different oil spill
scenarios, characterized by different locations of oil release within the bay, along the ship route. We
consider two meteorological conditions: Bora wind (NE), which is the most frequent wind in the area;
Libeccio wind (SW). We consider a summer situation, in which river runoff is almost absent and river
discharge in the bay can be neglected. The absence of river runoff and hence lower outflowing currents
turn out to be pejorative since the pollutant remains longer in the bay.

In both cases, we find that oil slick approaches the coastline in few hours and then it spreads
along it, constrained by wind forcing and by the alongshore surface sea current. This small time scale
underlines the need of contingency plan for this type of situation, allowing for an effective pollutant
mitigation action.
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The complex orography has a strong impact on the oil slick because wind flow is influenced by
the presence of the mountains. This aspect and its interaction with the coastline generate complex flow
patterns at the sea surface, eventually influencing pollutant dispersion.

On leeward coastline, because of the mountains, the wind exhibits separation, with low stress
regions and recirculations with respect to the wind direction. On the windward coastline, down-welling
takes place, but, due to the mountains on the same side, the wind is then forced to blow parallel to
the coastline, and the sea current adjusts accordingly. This behaviour is accentuated under strongly
stratified water column, since the energy transfer from the wind to the sea, is confined in the upper
water layer; this results in an intensification of the horizontal component of the surface current, rather
than in an increase of down-welling.

Depending on the wind direction, the gulch between Tivat Bay and Risan-Kotor Bay behaves as
a bottleneck (see Libeccio case), where the wind, constrained by converging mountains, accelerates
increasing the stress at the sea surface. Moreover, the wind, constrained by lateral and bottom
boundaries in the fjord, forms secondary flows characterized by vortexes elongated in the streamwise
direction. The resulting stress at the sea surface reduces lateral oil spreading.

The complex orography and coastline also determine areas where the sea current is opposite
to the wind direction. Considering Bora case, scenario (c), such effect is evident and could trigger
counterintuitive oil spreading: sea current flows in one direction while the oil spreads on the opposite
one. In this kind of analysis, the wind parametrization adopted in the oil model becomes crucial
for cases where air and surface water move in opposite directions. As underlined by the numerical
simulations, variations in the wind parametrization can bring to completely different spreading
scenarios. In this study, we adopted the literature’s widely accepted value and successively, for
two spill scenarios, we re-run some cases with a smaller value recently proposed in literature. The
differences are significant.

These aspects show the difficulties in the prediction of oil fate in such a complex situation, and
that a proper wind pattern representation, together with a robust wind stress parametrization for the
oil model, are of crucial importance.
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