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Abstract

The problem of fault diagnosis in a class of nonlinear system is considered. Systems that can
be written in the so-called Generalized Hamiltonian Representation (which is equivalent
to an Euler-Lagrange representation) are studied, and a model-based observer approach
for this class of systems is developed. The main advantage of the proposed approach is
the facility to design the required observers, which take advantage of the system struc-
ture given by the Hamitonian representation. In order to show the proposed schema, a
model of a permanent magnet synchronous machine is revised and the fault diagnosis
schema presented. Simulation results confirm the effectivity of the proposed schema.

Keywords: fault diagnosis, Hamiltonian systems, nonlinear systems, observers, fault
isolation

1. Introduction

Safety operation and reliability of industrial processes are highly prized by the contemporary

society. A key to achieve safety and reliability in industrial processes is through the use of

diagnosis and fault-tolerant control algorithms. Note that a fault is understood as a change of a

parameter out of the tolerance limits. Physical systems are liable to potentially harmful fault

events, which could cause a negative effect on the system functionality, as well as under-

performance. Faults can be originated by diverse reasons, for example, natural wear caused

by common use, aging, use under stress conditions and so on. The importance of detecting and

isolating the fault occurrence in a system lies in the possibility to reduce the maintenance and/

or dead-time for repairing on a production line.
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There exist a lot of results related to fault diagnosis for linear systems, as it can be seen in the

literature, for example, in Refs. [1–6], among others. For the case of nonlinear systems, there

are also some available solutions based on diverse model structures, see, for example, Refs.

[7, 8]. Fault diagnosis in nonlinear systems has been considered in Ref. [9], where the solution

is based on a geometric approach, and the conditions of existence are not easily satisfied. Other

approaches consider Lipschitz-type nonlinear systems together with an observer-based

method [10, 11]. Ref. [12] is related to the problem of fault estimation for a class of switched

nonlinear systems of neutral type, where the problem formulated as an H
∞
filtering is solved

using a switched observer-based fault estimator. In Ref. [13], the fault diagnosis is made for a

class of bilinear systems considering only the case of faults on the actuator.

In Ref. [14], an unknown input observer (UIO) for a class of nonlinear state-affine systems for

fault diagnosis is proposed. By using sum-of-squares (SOS) theory and Lie geometry as the main

tools, the rank constraint in the traditional UIO approach is relaxed and the design procedure

simplified, especially for the case of nonlinear polynomial systems. In Ref. [15, 16], an approach

to fault detection and isolation for the class of nonlinear systems with linear parameter varying

(LPV) systems is shown. A different idea is to use a energy index in the diagnosis process, as in

Ref. [17]. In Ref. [18], an algorithm for the diagnostics of nonlinear systems is presented where

the solution is based on the estimation of the system parameters using the nonlinear response.

The use of a bank of high-order sliding mode observers has been proposed in Ref. [19].

From the above discussion, it is clear that even if some approaches are available to settle the

fault diagnosis problem, in general there is no systematic way to design it (a model-based or an

observer-based approach), because of the difficulty to design an observer for nonlinear sys-

tems even if the system is known. The available solutions consider a specific class of nonlinear

systems, but each of these class of systems is more related to some mathematical (or system)

properties and not necessarily to a wide class of systems from a practical point of view.

Systems in Hamiltonian representation form represent a wide range of physical systems

considering the relationship between Euler-Lagrange and Hamiltonian systems [20–22].

In this chapter, a solution to the problem of fault detection and isolation applying the observer-

based residual generation method is proposed. The class of nonlinear systems considered

includes all systems, which admit a generalized Hamiltonian representation. The proposed

solution begins with a mathematical nonlinear model of a system with faults. A nonlinear

decoupling is applied to the faulty system in order to obtain a set of subsystems with sensibil-

ity to a particular fault or group of faults. Then, each subsystem is represented in a generalized

Hamiltonian form, for which, a nonlinear observer is designed. Using the nonlinear observer,

the residual generator is designed for each subsystem. One contribution of this work is the

systematic way for residual generator design (an observer-based approach with weak design

requirements). Note that the observer-based approach is guaranteed because of the Hamilto-

nian representation. Fault detection and isolation follow from the residual analysis. The struc-

ture of the Hamiltonian system representation is exploited to guarantee the residual existence

for each subsystem. The approach is then applied to the model of a permanent magnet

synchronous machine with additive faults. The faults are detected and isolated conveniently,

showing the effectiveness of the proposed approach.
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2. Generalized Hamiltonian representation of a system

Consider a nonlinear system described in general form as follows:

_x ¼ fðx;uÞ;

y ¼ hðxÞ;
ð1Þ

where x∈ℝ
n is the state vector, u∈ℝ

r is the input vector, y∈ℝ
m represents the output vector,

and the function f : ℝ
n
·ℝ

r ! ℝ
n associates with each value of x and u a corresponding n

dimensional vector.

A special class of Generalized Hamiltonian representation is defined by Sira-Ramierez and

Cruz-Hernandez [23],

_x ¼ ½JðxÞ þ S�
∂HðxÞ

∂x
þ FðxÞ þGu;

y ¼ C
∂HðxÞ

∂x
;

ð2Þ

where x∈ℝ
n denotes the state vector, u∈ℝ

r is the input vector, G∈ℝ
n · r is a constant matrix,

FðxÞ∈ℝ
n denotes a vector that contains the nonlinearities, y∈ℝ

m denotes the output vector,

and C∈ℝ
m ·n is a constant output matrix. Some nonlinear systems such as these described by

Eq. (1) can be represented by Eq. (2) if satisfies the following conditions: There exists a smooth

energy function HðxÞ that is positive definite in ℝ
n and described by:

HðxÞ ¼
1

2
xTMx; ð3Þ

the column gradient vector denoted by ∂HðxÞ
∂x ¼ Mx can be obtained using Eq. (3), where

M∈ℝ
n· n must be a symmetric matrix constant and positive definitive, JðxÞ∈ℝ

n ·n must be

satisfied for all x∈ℝ
n, and S∈ℝ

n· n is a constant symmetric matrix,

JðxÞ ¼ �JTðxÞ; S ¼ ST
: ð4Þ

These conditions allow that a wide set of nonlinear systems can be brought to a generalized

Hamiltonian representation, such as electromechanical systems, electric systems, mechanical

systems, etc.

In the generalized Hamiltonian representation, the additive faults can be represented as in

Eq. (5), where these appear as additional inputs (unknown inputs).

_x ¼ JðxÞ
∂HðxÞ

∂x
þ S

∂HðxÞ

∂x
þ FðxÞ þGuþNðΔf Þ;

y ¼ C
∂HðxÞ

∂x
þQðΔf Þ,

ð5Þ

where NðΔf Þ∈ℝ
n and QðΔf Þ∈ℝ

m represent the additive faults of the system.
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3. Fault detection and isolation

In a general sense, if the fault diagnosis consists in the detection of a fault, then it is called fault

detection(FD), and similarly, if the fault diagnosis consists in the detection and isolation of a

fault, then it is called fault detection and isolation (FDI). The fault detection consists in deter-

mine the occurrence of faults in the functional units of the process, which leads to undesired

behavior of the system, and the fault isolation consists in to classify the detected faults. The

observer based fault diagnosis technique is a scheme of the model-based fault diagnosis

approach. In this technique, the idea is to replace the process model by an observer which

estimates the fault-free process outputs. The difference between the measured process vari-

ables and the estimated process variables defines the residual. The fault effect is contained in

the measured process variables. Thus, a residual signal includes the fault effect. Ideally, if the

residual is different from zero then a fault has occurred, otherwise the process is fault free. The

residual generation allows to know the occurrence of faults, and the residual evaluation is

necessary to extract the fault information. Figure 1 shows a common diagnosis scheme.

In this contribution, a fault detection and isolation approach to nonlinear systems that admit a

generalized Hamiltonian representation is considered. The proposed approach follows the

classical procedure of fault diagnosis: First, a fault decoupling in order to get subsystems with

sensibility to a specific fault is developed. Second, an observer-based residual generator for

each subsystem is designed. Third, a residual analysis is performed to determine which

functional unit has failed.

Figure 2 shows the proposed fault detection and isolation scheme, where Cn is the nominal

control, ΣH is a system in Hamiltonian representation, and the diagnostic block contains the

observer and the residual generator.

y(t)

fault

generator

directional
residual

residual

Σ

−

ref Cn Σ
H

Figure 2. Diagnostic scheme.

evaluator
residualu(t)

y(t)
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generator fault isolation

alarm (fault detection)
+

Figure 1. Fault diagnosis scheme.
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The fault decoupling consists in to define a transformation over the system in order to get a

subsystem with sensibility to a fault or a set of faults, and this subsystem is coupled with a

fault and decoupled from the rest of possible faults. There are some works on the analysis and

synthesis of these transformations, see, for example, Refs. [9, 24, 25].

For the case of the generalized Hamiltonian representation with faults, Eq. (5) considers the

following nonlinear transformation

ζ ¼ TðxÞ: ð6Þ

It is required that

_ζ ¼
∂TðxÞ

∂x
_x; ð7Þ

_ζ ¼
∂TðxÞ

∂x
JðxÞ

∂HðxÞ

∂x
þ S

∂HðxÞ

∂x
þ FðxÞ þGuþNðΔf Þ

� �

; ð8Þ

and the transformation TðxÞ be selected in such a way that the resulting transformed system

has the desired fault sensibility, that is, suppose NðΔf Þ ¼ ½n1ðΔf Þ n2ðΔf Þ ⋯ nlðΔf Þ� where

NðΔf Þ represents the columns associated with the faults that requires no to affect a specific

subsystem and NðΔf Þ are the columns related to the faults that are required to affect the

subsystem. With ∂TðxÞ
∂x NðΔf Þ ¼ 0 and ∂TðxÞ

∂x NðΔf Þ 6¼ 0. In Ref. [24], it can be found details about

the existence of this transformation.

Assumption 1. Consider the system Eq. (1) in generalized Hamiltonian representation with faults as

in Eq. (2) as well as the nonlinear transformation TðxÞ satisfying decoupling requirements. Also, the

transformed system (decoupled) can be represented in the Hamiltonian form given by Eq. (2).

For some examples, at least, the assumption is satisfied and consequently, a systematic way to

fault isolation is obtained. At the moment, we do not have a result on the characterization of

the class of systems for which the assumption is satisfied. The resulting decoupled system is

represented in a Hamiltonian form.

_ζ ¼ JðζÞ þ S
� � ∂HðζÞ

∂ζ
þ FðζÞ þ

G

u
þNðΔf Þ;

yζ ¼ C
∂HðζÞ

∂ζ
;

ð9Þ

where ζ∈ℝ
nζ denotes the state vector, JðζÞ∈ℝ

nζ ·nζ , S∈ℝ
nζ · nζ , u∈ℝ

rζ is the input vector,

G∈ℝ
nζ · rζ is a constant matrix, FðζÞ∈ℝ

nζ denotes a vector that contains the nonlinearities,

yζ ∈ℝ
mζ denotes the output vector, and C∈ℝ

mζ ·nζ is a constant output matrix.

After a subsystem has been determined, the next step is to design an observer for each

subsystem. From the decoupled subsystem in the generalized Hamiltonian representation

Eq. (9), an observer can be designed as follows [26]:
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_̂
ζ ¼ Jðζ̂Þ

∂Hðζ̂Þ

∂ζ̂
þ S

∂Hðζ̂Þ

∂ζ̂
þ Fðζ̂Þ þGuþKðyζ � ŷζÞ;

ŷζ ¼ C
∂Hðζ̂Þ

∂ζ̂
;

ð10Þ

where K∈ℝ
n ·m is the observer gain, ^ζ ∈ℝ

n is the estimated state, ŷ
ζ
∈ℝ

m is the estimated

output calculated in terms of ζ̂, ∂Hðζ̂Þ

∂ζ̂
¼ Mζ̂ is the gradient vector with M∈ℝ

n ·n as a symmet-

ric positive definite matrix.

For this observer, the conditions design is described in the following Theorem:

Theorem 1. The state x of the nonlinear system in the generalized Hamiltonian representation Eq. (9)

can be globally, exponentially, asymptotically estimated by the observer Eq. (10), if the pair (C,S) is

observable or at least detectable and the matrix

M S�
1

2
ðKCþ CTKTÞ

� �

MþΠ; ð11Þ

is negative definite. With Π ¼ 1
2 M ∂FðrÞ

∂x þ ∂FðrÞ
∂x

� �T
M

� �

and ρ is a vector such that ρ∈ ðx;ζ̂Þ.

⋄⋄⋄

The proof of Theorem 1 is fully defined and explained in Ref. [26]. Then, for the decoupled

system, a residual generator is defined as follows

Theorem 2. For the decoupled nominal system (Eq. (9) with N ¼ 0). The system

_̂
ζ ¼ Jðζ̂Þ

∂Hðζ̂Þ

∂ζ̂
þ S

∂Hðζ̂Þ

∂ζ̂
þ Fðζ̂Þ þGuþK yζ � C

∂Hðζ̂Þ

∂ζ̂

 !

; ð12Þ

r ¼ yζ � C
∂Hðζ̂Þ

∂ζ̂
; ð13Þ

is a directional residual generator if the pair ðC; SÞ is observable or at least detectable and the matrix

M S�
1

2
ðKCþ C

T
KTÞ

� �

MþΠ; ð14Þ

is negative definite. With Π ¼ 1
2 M ∂FðrÞ

∂ζ
þ ∂FðrÞ

∂ζ

� �T

M

� �

and ρ is a vector such that ρ∈ ðζ;ζ̂Þ.

⋄⋄⋄
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Proof:

The proof of Theorem 2 is a consequence of the proof of Theorem 1.

⋄⋄⋄

4. Application example

In this section, the results to apply in the permanent magnet synchronous machine (PMSM)

the proposed approach for fault detection and isolation are presented. The closed loop system

is used in the fault diagnosis analysis where any specific control law is used.

The PMSM mathematical model in the stationary reference frame dq0 (direct-quadrature-zero

axes) is taken from Ref. [27] and is described by:

_x ¼ fðxÞ þGmum; ð15Þ

where x ¼ ½id iq ω�
T , Gm ¼ diag

1

L

1

L
�

1

Jm

� �

, um ¼ diag½ ud uq τL � and

fðxÞ ¼

�
R

L
id þ Pωiq0:3cm

�
R

L
iq � Pωid �

PΦ

L
ω0:3cm

3PΦ

2Jm
iq �

B

Jm
ω

2

6

6

6

6

6

4

3

7

7

7

7

7

5

;

where B is the viscous friction coefficient, R is the stator resistance, L is the inductance, Φ is the

flux linkage, P is the pole pairs, id and iq are the electric currents on the direct and quadrature

axis, respectively, ud and uq are the voltages on the direct and quadrature axes, respectively, ω

is the rotor speed, Jm is the rotor inertia, and τL is the load torque.

In the fault diagnosis analysis, it is considered that the system is operating in nominal condi-

tions, which implies that the system is in closed loop with any controller. In this case, a back-

stepping nonlinear control [22] is used in the PMSM.

In order to obtain the Hamiltonian representation Eq. (2) of the PMSM described by Eq. (15), a

Hamiltonian energy function is defined as follows:

HðxÞ ¼
1

2
i2d þ Li2q þ

2

3
Jmω

2

� 	

; ð16Þ

with a gradient vector

∂

∂x
HðxÞ ¼ id Liq

2
3 Jmω

� �T
; ð17Þ

∂HðxÞ

∂x
¼ Mx ) M ¼ diag 1 L

2Jm
3

� �

; ð18Þ
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where M is a symmetric, positive definite and constant matrix so that the Hamiltonian repre-

sentation of the PMSM is as follows:

_x ¼ JðxÞ
∂H

∂x
þ S

∂H

∂x
þ FðxÞ þGu; ð19Þ

y ¼ C
∂H

∂x
; ð20Þ

where x ¼ ½id iq ω�
T , u ¼ ½ud uq τL�

T ,

JðxÞ ¼

0 0 0

0 0 �
3PΦ

2JmL

0
3PΦ

2JmL
0

2

6

6

6

6

4

3

7

7

7

7

5

;

S ¼

�
R

L
0 0

0 �
R

L2
0

0 0 �
3B

2J2m

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

; C ¼

1 0 0

0 1=L 0

0 0
3

2Jm

2

6

6

6

4

3

7

7

7

5

;

FðxÞ ¼

Pωiq

�Pωid

0

2

6

6

4

3

7

7

5

; G ¼

1

L
0 0

0
1

L
0

0 0 �
1

Jm

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

Solving the Hamiltonian representation Eq. (19) for each of the state equations, the same model

described by Eq. (15) is obtained, so that the Hamiltonian representation is correct since it

fulfills the conditions Eq. (4).

An intermittent connection, signal lost or signal offset are some of the sensor faults prone to

occur in electrical machines [28], the control objective is affected mainly by first and second

faults. The nominal value of the load torque is known, an unknown change in this parameter is

considered as an additive fault. The PMSM may occur faults on elements such as sensors,

actuators and components. The following additive faults are considered in this contribution:

Δω is a fault in the speed sensor, f a is a fault in the control input, and ΔτL is an unknown

change in the load torque.

When these faults are considered, the Hamiltonian representation of the PMSM is as follows:

_x ¼ JðxÞ
∂H

∂x
þ S

∂H

∂x
þ FðxÞ þGuþNðDfÞ;

y ¼ C
∂H

∂x
þQðDfÞ;

ð21Þ
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where x, S, JðxÞ, FðxÞ,G and u are the same as in the nominal case when there are no faults and

NðDfÞ ¼

f a

f a

ΔτL

2

6

4

3

7

5
; QðΔfÞ ¼

0
0
Δω

2

4

3

5:

Once defined the mathematical model of the PMSM with faults, the fault decoupling is done

for each fault presented in the system. From this fault, decoupling analysis is obtained sub-

systems with sensibility to a particular fault and without sensibility for the rest.

Subsystem sensitive to the control input fault f a: For this subsystem, decoupling the output y3 is not

used to avoid the sensor fault effect. Considering the first two equations and the outputs y1 and

y2 of the faulty system Eq. (21) a subsystem sensitive to the actuator fault is obtained, as follows:

_x1 ¼ �
R

L
x1 þ Px3x2 þ

1

L
ud þ f a; ð22Þ

_x2 ¼ �
R

L
x2 � Px3x1 �

Pφ

L
x3 þ

1

L
uq þ f a; ð23Þ

y ¼
1 0 0

0 1=L0

� �

∂H

∂x
; ð24Þ

solving Eq. (23) for x3

x3 ¼
L

Pφþ PLx1
�
R

L
x2 � _x2 þ

1

L
uq þ f a

� 	

; ð25Þ

now replacing x3 in Eq. (22)

_x1 ¼ �
R

L
x1 þ

Lx2
φþ Lx1

�
R

L
x2 � _x2 þ

1

L
uq þ f a

� 	

þ
1

L
ud þ f a; ð26Þ

multiplying Eq. (26) by
φ
L þ x1

� �

and solving for
φ
L
_x1 þ x1 _x1 þ x2 _x2 ¼ _υ1,

_υ1 ¼
R

L
v1 �

R

2L
ðx21 þ x22Þ þ

uq

L
x2 þ

ud
L

φ

L
þ x1

� 	

þ f a x2 þ
φ

L
þ x1

� 	

;

ð27Þ

yυ1 ¼ υ1; ð28Þ

Eqs. (27) and (28) are the subsystem 1 with sensitivity to the control input fault f a, where x1

and x2 are quantities available in measurable outputs y1 and y2, respectively.

Subsystem sensitive to the load torque fault ΔτL: once more the output y3 is not used to avoid

sensitivity to the sensor fault. Subtracting Eq. (22) to Eq. (23)
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ð _x1 � _x2Þ ¼ �
R

L
ðx1 � x2Þ þ Px3ðx1 þ x2Þ þ

1

L
ðud � uqÞ þ

Pφ

L
x3; ð29Þ

if a new state _υ2 ¼ _x1 � _x2 is defined, Eq. (29) becomes Eq. (30), this equation and the third

equation of Eq. (21) define the subsystem 2,

_v2 ¼ �
R

L
v2 þ Px3ðv2 þ 2x2Þ þ

1

L
ðud � uqÞ þ

Pφ

L
x3; ð30Þ

_x3 ¼
3Pφ

2Jm
x2 �

B

Jm
x3 �

τL
Jm

þ ΔτL; ð31Þ

yv2 ¼
υ2
x3

� �

; ð32Þ

where x2 is available in the measurable output y2.

Subsystem sensitive to the sensor fault Δω: since this subsystem must be sensitive to the sensor

fault, the output y3 is used. Using the transformed state _υ3 ¼ _x1 � _x2, the subsystem 3 is

obtained with sensibility to the sensor fault:

_υ3 ¼ ðPx3 �
R

L
Þv3 þ 2Px2x3 þ

Pφ

L
x3 þ

1

L
ðud � uqÞ; ð33Þ

yv3 ¼ v3; ð34Þ

where x3 and x2 are quantities available in the measurable outputs y1 and y2, respectively.

Once decoupled subsystems were obtained, for the residual generator design an observer for

each one for each of the decoupled subsystem is designed.

For decoupled subsystems sensitive to f a and Δω, the observer design using the proposed

approach in Ref. [26] coincides with a Luenberger observer [29, 30], but, however, this does not

apply for decoupled subsystems sensitive to ΔτL.

The observer design and the residual generator for the decoupled subsystem sensitive to ΔτL
are presented. The decoupled subsystem sensitive to ΔτL can be expressed as follows:

_υ2 ¼ �
R

L
v2 þ Px3ðv2 þ 2y2Þ þ

Pφ

L
x3 þ

1

L
ðud � uqÞ;

_x3 ¼
3Pφ

2Jm
y2 �

B

Jm
x3 �

τL
Jm

þ ΔτL;

yv2 ¼
v2

x3

� �

:

ð35Þ

Which can be written in the form Eq. (9) with

HðxÞ ¼
1

2

R

L
v22 þ

1

2

B

Jm
x23; ð36Þ
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where xa ¼ ½υ2 x3�
T whose gradient vector is defined as follows

∂HðxaÞ

∂xa
¼

R

L
υ2;

B

Jm
x3

� �T

) M ¼ diag
R

L
;

B

Jm

� �

; ð37Þ

and with

JðxaÞ ¼

0
JmPφ

2BL

�
JmPφ

2BL
0

2

6

6

4

3

7

7

5

; S ¼

�1
JmPφ

2BL

JmPφ

2BL
�1

2

6

6

4

3

7

7

5

; u ¼
ud � uq

ΔτL

" #

;

FðxaÞ ¼

Px3ðv2 þ 2y2Þ

3Pφ

2Jm
y2 �

τL
Jm

2

6

4

3

7

5
; G ¼

1

L
0

0 1

2

6

4

3

7

5
; C ¼

L

R

Jm
B

� �

:

For this case, the pair ðC,SÞ is observable, and thus, there exists a matrix K that satisfies both

the requirements of Theorem 1 for the observer design and the requirements of Theorem 2 for

the residual generator design, and thus the observer is as follows

_̂υ2 ¼
Pφ

L
x̂3 �

R

L
υ̂2 þ Px̂3ðυ̂2 þ 2y2Þ þ

1

L
ðud � uqÞ þ L2ðυ2 � υ̂2Þ;

_̂x3 ¼ �
B

Jm
x̂3 �

τL
Jm

þ
3Pφ

2Jm
y2 þ L3ðx3 � x̂3Þ;

ŷv2 ¼
υ̂2

x̂3

" #

:

ð38Þ

and the directional residual generator for the decoupled subsystem sensitive to ΔτL is given by

r2 ¼ υ2 � υ̂2: ð39Þ

For decoupled subsystem sensitive to control input f a Eqs. (27) and (28), the observer and its

directional residual generator are as follows:

_̂υ1 ¼ �
R

L
υ1 �

R

2L
ðy22 þ y21Þ þ ud

y1
L
þ

φ

L2

� 	

þ
uqy2
L

þ L1ðυ1 � υ̂1Þ;

ð40Þ

ŷυ1 ¼ υ̂1; ð41Þ

r1 ¼ υ1 � υ̂1: ð42Þ

Finally, for the decoupled subsystem sensitive to the sensor fault Δω Eq. (33), the observer and

its directional residual generator are as follows:
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_̂υ3 ¼ �
R

L
υ3 þ Py3ðy1 þ y2Þ þ

Pφ

L
y3 þ

1

L
ðud � uqÞ

þ L4ðυ3 � υ3Þ;

ð43Þ

ŷv3 ¼ v̂3; ð44Þ

r3 ¼ v3 � v̂3: ð45Þ

To summarize the fault sensitivity results of each residual (associated to each subsystem), see

Table 1.

Where the fault affecting the residual is indicated with √, and the symbol ∅means that there is

no connection between the fault and the corresponding residual.

As can be appreciated from Table 1, there is a one-to-one relationship between faults and

residuals so that perfect decoupling has been attached. One nice thing of perfect decoupling is

that the occurrence of faults can be detected and isolated without problems.

The following results were obtained by computer simulation. Table 2 shows the considered

faults. About 10% of the nominal value of each variable is the fault magnitude considered,

where 34 : 62 is the nominal value of the control input on the stationary reference frame dq0,

100 rad=sec is the nominal value of the angular speed, and 1 : 4 Nm is the nominal value of the

load torque.

Residual (subsystem) Fault

f 1
Actuator fault (f a)

f 2
Sensor fault (Δω)

f 3
Change of charge (ΔτL)

1 √ ∅ ∅

2 ∅ √ ∅

3 ∅ ∅ √

Table 1. Fault incidence table.

Case Fault Fault interval

ðsec:Þ

Magnitude

1 0 0 0

2 f a ½2; 2 : 5� 3 : 462

3 Δω ½3; 3 : 5� 10

4 ΔτL ½4; 4 : 5� 0 : 14

5 f a, Δω, ΔτL ½3; 3 : 5�, ½4; 4 : 5�, ½2; 2 : 5� 3 : 462, 10, 0:14

Table 2. Fault cases.
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Table 3 shows the PMSM parameters, which were taken from Ref. [22].

Figure 3 shows the evolution of PMSM states in the time (the time scale is given in seconds),

that is, the current in the direct axis idðtÞ, the current in the quadrature axis iqðtÞ and the

angular velocity ωðtÞ in nominal conditions (without faults). Actually, this figure represents

the response of the PMSM with nominal parameters.

The evolution of the residuals when an actuator fault f a occurs is depicted in Figure 4, where

both residuals 2 and 3 are equal to zero since these are insensitive to the fault f a, while residual

1 is different from zero indicating the sensitivity to control input fault f a. Note that the

magnitude of the two first residuals represents deviations between nominal and measurement

currents with respect to the time (time is given in seconds). The third residual represents the

deviation of the nominal and measured angular velocity of the PMSM rotor.

Figure 5 shows the residuals evolution when the sensor fault occurs, where residuals 1 and 3

are zero at all time due to its insensitivity to this fault, while residual 2 differs from zero due to

its sensitiveness to this fault.

Figure 6 shows the residuals evolution when the load torque fault occurs, where residuals 1

and 2 are null and residual 3 is different from zero, indicating the sensitivity to load torque

fault. Note that the fault magnitude is of 0:14; however, the residual becomes a value around 3,

that is, the effect of the fault is not directly the magnitude of this. Extra work is required in the

design of the observer-based residual in order to get at the residual a more approximated value

of the fault magnitude.

Figure 7 shows the case when all three faults occur, even if not at the same time. The effect of

the faults is manifested in the correct residual. It means that the problem of fault isolation in

multiple faults can be carried out effectively.

As a final note, it can be appreciated a minimum transient at the beginning of all residuals

signals, and this transient does not affect the fault detection and isolation process.

Parameter Numerical value

Resistance (R) 1.6 Ω

Rotor inertia (Jm) 76.5 · 10�6kg m2

Viscous friction coefficient (B) 4 · 10�6Nm/rev/min

Flux linkage (Φ) 0.29Nm/A

Inductance (L) 9.4H

Load torque (τL) 1.4Nm

Pole pairs (P) 1

Table 3. PMSM parameters.
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Figure 3. Nominal states.
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Figure 4. Residual sensitive to the actuator fault f a .

Fault Detection and Isolation of Nonlinear Systems with Generalized Hamiltonian Representation
http://dx.doi.org/10.5772/68084

229



0 1 2 3 4 5
−3

−2

−1

0

1

2

3

time, sec

re
s
id

u
a
l 
1

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

3

time, sec

re
s
id

u
a
l 
2

0 1 2 3 4 5
−3

−2

−1

0

1

2

3

time, sec

re
s
id

u
a
l 
3

Figure 5. Residual sensitive to sensor fault Δω.
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Figure 6. Residual sensitive to ΔTL.
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5. Concluding remarks

Fault diagnosis for a wide class of nonlinear systems, the class of systems that admit a

Hamiltonian representation, has been considered. An observer-based solution with weak

existence conditions for the fault diagnosis has been proposed, and this approach allows the

detection and isolation of additive faults.
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Figure 7. Residuals occurring simultaneously at f a, Δω and ΔTL.
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The proposed procedure follows the traditional way, namely: First, a decoupling methodology

is applied to systems with Hamiltonian representation in order to obtain subsystems that

preserve the Hamiltonian structure. Observer-based residual generators are designed for each

subsystem so that each residual generator is sensible to a fault (or to a specific group of faults).

The residual has the property of remain close to zero (or under a threshold value) if no fault is

present in the system and non zero (or greater than a threshold value) when a fault affects the

system. The proposed approach solves the fault isolation problem, and it permits a systematic

design of the required residual generators. In contrast with other methodologies, for systems

with Hamiltonian representation, an easy way to design an observer has been introduced. In

addition, a wide set of nonlinear systems can be represented in the Hamiltonian structure,

making the proposed solution widely applicable.

The proposedmethodology has been applied to a synchronous machine, showing that, using the

proposed approach, it is possible to detect and isolate additive faults in scenarios such as a fault

in the control input, a change in the load torque as well as a fault in the angular velocity sensor.

Future work includes the study of multiplicative fault type.
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