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Abstract

Based on extensive prior studies of speech science focused on the
spectral-temporal properties of human speech perception, as well as a wide range of
spectral-temporal speech features already in use, and motivated by the time-
frequency resolution properties of human hearing, this chapter proposes and
evaluates one general class of spectral-temporal features. These features, intended
primarily for use in Automatic Speech Recognition (ASR) front ends, allow different
realizations of general time-frequency concepts to be easily implemented and tuned
through a set of frequency and time-warping functions. The methods presented are
flexible enough to allow evaluation of the relative importance of the spectral and
temporal features and to explore the trade-off between time and frequency resolution.
Extensive ASR experiments were conducted to evaluate various spectral-temporal
properties using this unified framework.

Keywords: time-frequency, features, automatic speech recognition, basis vectors,
front end

1. Introduction

As mentioned elsewhere [1], good features for automatic speech recognition
include relevance, compactness, completeness, and robustness. That is, speech fea-
tures should be closely related to speech production and understanding, should be
small in number, represent as much speech information as possible, and should be
little changed in the presence of noise or varying external conditions.

As these elements suggest, both productive and receptive aspects of speech science
form the foundation for signal processing to extract speech features. Although recep-
tive aspects of speech science are most directly relevant to speech features for ASR,
speech production models for vocal tract configurations are also a plausible starting
point for guiding speech feature extraction. In terms of speech production, ever since
the classic Peterson and Barney vowel study [2], by far the most widely used acoustic
features for characterizing vocal tract shape are formants. For speech signal
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processing applications, formant information is generally obtained by first modeling
the vocal tract using an all-pole system, such as in the Perceptual Linear Predictive
(PLP) front end [3]. The motivating idea is that nearly any transfer function can be
approximated by a high-order all-pole model. Due to lack of automatic methods to
reliably estimate formants [4], and also because formants cannot discriminate
between speech sounds for which the main differences are unrelated to formants
(such as fricatives) [5, 6], formants are rarely used as features for ASR. For ASR the
all-pole approximation to the vocal tract is more typically replaced with cepstral
features [7], which encode the global spectral envelope shape without any emphasis
given to spectral peaks.

There are many complex issues raised in the speech science literature about recep-
tive aspects of human speech that could be potentially taken into account for
extracting speech features for use in ASR. However, the only effects taken into
account for the features presented in this chapter are the primary considerations of
frequency and temporal resolution.

Auditory processing research related to the cochlea’s frequency selectivity
provides the fundamental theory for auditory filterbanks, which are often used as a
signal processing step to compute features for ASR. Many canonical studies, such
as [8–10], have pointed out that humans discern low frequency components in a
complex sound with much higher resolution than is the case for high frequencies.
Hence, in speech front ends, to mimic this property, the physical frequency range is
mapped to a perceptual scale, typically using bandpass filtering with 25–60
overlapping bands, each corresponding to approximately equal length regions along
the cochlear membrane. The bandwidths are designed to match the frequency
resolution at each center frequency. Various perceptual scales have been developed,
such as the Mel scale [9], Bark scale [10, 11], and Equivalent Rectangular Bandwidth
(ERB) scale [12].

Commonly used filterbanks include triangular filters [13] based on the Mel scale,
trapezoidal filters [3] based on the Bark scale, and gammatone filters [14, 15] based on
the ERB scale. The output power of each filterbank channel is computed as a
weighted sum of the magnitude-squared Short Time Fourier Transform (STFT),
weighted by the channel frequency response, and then amplitude scaled to approxi-
mate perceptual loudness, which is linearly proportional to the neuron firing rate of
the auditory nerves [16]. The amplitude-scaled outputs are usually combined with a
cosine transform to form cepstral features such as the widely used MFCC fea-
tures [13]. Another front end for computing speech features is PLP [3]. In PLP an
equal-loudness compensation is also modeled to account for the non-equal amplitude
sensitivity of human hearing at different frequencies [17]. Motivated by the
importance of formants, linear prediction coefficients are computed from the Bark
domain spectrum using Durbin’s recursive method [18] and then converted to cepstral
features.

Figure 1 depicts static feature extraction for the MFCC and PLP front ends. Note
that the expression static features refers to features computed from a single very short
segment of speech (on the order of 20 ms duration), called a frame. These features are
computed for each frame with frames typically spaced apart by approximately 10 ms,
thus also overlapped by 10 ms. This gap between adjacent frames is the frame spacing.
Static features based on perceptual frequency scales do not do not explicitly encode
spectral trajectories over time. In [19–22] approximations of time “derivatives” of the
static features are computed and appended to static features to reduce ASR error rate
considerably (empirically on the order of 20%). These time derivatives are called
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dynamic features and are also often referred to as delta and acceleration (second order
differential) terms. Mathematically, the delta terms are computed as:

Δt ¼

PΘ
θ¼1θ ctþθ � ct�θð Þ

2
PΘ

θ¼1θ
2

(1)

Where Δt is the differential at time t estimated from small adjacent groups of static
features (cepstrums) ct�θ to ctþθ with 2Θþ 1 being the total number of surrounding
frames. In the remainder of this chapter, groups of frames used to compute dynamic
features from static features are referred to as blocks. More detailed discussion of
frames and blocks, specifically related to the spectral-temporal features presented in
this chapter, is given in Section 2.

Note that although the time derivatives are estimated from a short block of fea-
tures, they essentially characterize the spectral trajectory at each single time instant,
and thus are unable to account for the non-uniform time resolution of the human
auditory system observed over a long duration of time. Spectral-temporal
modulation features are much more effective than the delta method in addressing the
issue of non-uniform time-frequency resolution and efficiently sampling the short-
time spectrum. In 1994 Drullman et al. [23] found that the most important spectral
trajectory information over time for speech perception is in the range of 1–16 Hz
“modulation” frequencies. Guided by this finding, in order to exploit the information
in the modulation frequencies, relatively long time blocks of each spectral band are
analyzed. Over many years, various modulation features have been investigated.

Figure 1.
Comparison of the MFCC (a) and PLP (b) structure.

3

Generalized Spectral-Temporal Features for Representing Speech Information
DOI: http://dx.doi.org/10.5772/intechopen.104672



Athineos et al. [24] used the dual of time-domain linear prediction to frequency-
domain model the poles of the temporal envelope in each sub-band. Valente and
Hermansky [25] developed an approach combining independent classifier outputs and
modulation frequency channels. Gabor-filter-based approaches for extracting local-
ized directional features also show promise [26, 27]. However, the large number of
parameters, which allow Gabor filters to be aligned in many different directions,
presents the added difficulty of determining these directions in an effective way for
use in ASR.

Based on this prior extensive groundwork, this chapter presents a generalized
spectral-temporal feature extraction front end for representing speech information.
This feature set encompasses a wide range of time-frequency representation options
focusing on two important properties of human hearing–frequency and time resolu-
tion. Rather than presenting one specific type of front end, a unified framework is
presented such that various realizations of the general time-frequency concepts can
easily be implemented and tuned. Based on a set of frequency-warping and time-
warping functions, this front end is flexible enough to allow straightforward evalua-
tion of the trade-off between frequency and time resolution at the acoustic feature
level.

2. Method

The spectral-temporal features presented in this chapter are weighted sums of
short-time spectral magnitudes, using overlapping frame-based processing. Figure 2
illustrates the division of the short-time spectrum. The horizontal and vertical axes
represent physical time (in seconds) and physical frequency (in Hz). A time-
frequency representation (TFR) of the speech, denoted by X(t,f), is obtained by
computing the magnitude-squared STFT of each frame. In Figure 2, the dots in each

Figure 2.
A high level illustration of the proposed front end and definitions of related terminologies.
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column represent the power spectrum of a frame, and the gap between adjacent
columns denotes the frame spacing. Note that unlike the MFCC or PLP front ends, for
which each feature vector is the concatenation of the spectral (static) feature and the
spectral trajectory (dynamic feature) components, and the spectral trajectory is char-
acterized by the time derivatives of the static terms at each sample instant on a frame-
by-frame basis, in the method presented in this chapter, the front end computes a set
of spectral-temporal features for a long block of spectral values centered at each
sample instant, and one feature vector is extracted for each block. As will be seen in
the derivations, this spectral-temporal feature vector for each block integrates both
the spectral and temporal aspects of the speech signal within the block by a weighted
sum of X(t,f) based on a set of two-dimensional spectral-temporal basis vectors. Thus,
in the proposed front end, there are no individual static components in the final
features since they are fused in the output features. Also, the use of long segments to
compute features, using short highly overlapped frames, non-uniform time resolution
can be incorporated in spectral trajectories.

Two basic concepts are also illustrated in Figure 2, which are used and referred to in
the remainder of this chapter–block length and block spacing. Block length is defined as
the time duration (physical time) of a block of short-time frames. Block length is
measured in milliseconds and is equal to the frame spacing multiplied by the number of
frames in the block. The spacing between two adjacent blocks is defined as block
spacing, which is the product of the frame spacing and the number of frames that
separate the two blocks. Since features are extracted on a block basis, the block spacing
is also the feature spacing. At the beginning and ending of each speech utterance, zero
padding is used to allow the first and last blocks to be centered at the first and last
frames respectively. As opposed to MFCC or PLP processing, in which the feature
spacing is identical to the frame spacing, in our work the feature spacing is typically
considerably larger than the frame spacing. With these high level concepts, a detailed
illustration of the feature extraction process is presented in the remainder of this section.

The time-frequency plane obtained by STFT has uniform frequency and time
resolution determined by the analysis window shape and width [28]. This representa-
tion does not take into account the non-uniform perceptual frequency scale of the
peripheral auditory system. For convenience and clarity of explanation, a framework

is established with t0 and f 0 as normalized perceptual time and frequency scales,
whose desirable properties are next described in detail. Then a set of features, Feat(i,j)
for the time block centered at time instant t, can be expressed as:

Feat i, jð Þ ¼

ð1=2

t0¼�1=2

ð1

f 0¼0
a X0 t0, f 0

� �� �

� BV i,j t
0, f 0

� �

d f 0dt0: (2)

In Eq. (2) the feature computation is performed using perceptual scales, where

X0 t0, f 0
� �

is the power spectrum of a time-frequency block in this domain for which

the frequency f 0 is mapped to the range of {0, 1} by subtracting an offset and dividing
by a scaling factor. Similarly, perceptual time t0 is converted to the range of {�1/2, 1/2}
with t0 ¼ 0 the center of the time block. The function a �ð Þ nonlinearly maps the power
spectrum to a perceptual-loudness scale, most often using a logarithmic scaling or a
power-law nonlinearity [29]. Finally, the amplitude-scaled power spectrum is
weighted by a set of two-dimensional basis vectors BV i,j in the perceptual domain

t0, f 0
� �

. The number of features extracted from a time-frequency block depends on
the number of basis vectors used.

5

Generalized Spectral-Temporal Features for Representing Speech Information
DOI: http://dx.doi.org/10.5772/intechopen.104672



It should be emphasized, that for clarity of explanation, integrals as well as
continuous time and frequency variables are used in Eq. (2) in all of the following
equations. In actual implementations, both time and frequency variables are discrete,
as shown in Figure 2, and integrations are computed as sums. Also, although the
feature extraction is effectively performed in the perceptual time-frequency domain

t0, f 0
� �

, the actual computations use the linear time-frequency plane. The mapping
between linear and perceptual domains for time and frequency are established by
nonlinear time and frequency-warping functions and incorporated by changes in
underlying basis vectors as explained below.

In this work, a set of two-dimensional cosine basis vectors for BV i,j t
0, f 0

� �

is used to
compactly encode the spectral envelope as well as the spectral trajectory. The theo-
retical work of Rao and Yip [30] gives reasons why the cosine transform is particularly
appropriate for data compression and feature de-correlation, based on similarity to the
data-driven Karhunen-Loeve Transform. For similar reasons, the MFCC features also
use a one-dimensional cosine transform as a processing step. The popular JPEG
standard for image compression also uses two-dimensional cosine transforms.

Continuing with the specifics of the method presented in this chapter, the 2-D
cosine basis vectors operating in the perceptual space are defined as:

BVi,j t
0, f 0

� �

¼ cos πi f 0
� �

� cos πjt0ð Þ, (3)

0 ≤ i ≤N � 1, 0 ≤ j ≤M� 1:

Eq. (3) shows that each 2-D basis vector is the product of two individual basis

vectors, one over frequency f 0, and one over timet0. The numbers of basis vectors over
frequency and time are specified byN andM respectively. The total number of features
for each block is given by N xM. As is discussed in detail in Section 3, a larger N or M
provides a more detailed representation of the spectral envelope over frequency or the
spectral trajectory over time respectively. Empirical data indicates a total of 75 features
for each block (N = 15, M = 5) results in high ASR accuracy. Eqs. (4) through (9), and

associated figures, show that the nonlinear mapping from f to f 0 and t to t0, together

with their differentials d f 0 and dt0, approximate the frequency and time resolution of
human hearing. Next is shown how the nonlinear mappings are mathematically incor-
porated into the feature calculations. Frequency warping, specifies the relation between

perceptual frequency f 0 and physical frequency f:

f 0 ¼ g fð Þ, 0 ≤ f ≤ 1 (4)

The physical frequency range has also been normalized to {0,1}1. Thus, thed f 0 term
in Eq. (2) is equivalent to:

d f 0 ¼
dg

df
df (5)

1 For convenience, the normalized frequency range {0,1} of f corresponds to the physical range {0, Fs/2}

where Fs/2 is the Nyquist frequency. The normalized perceptual frequency f’ over {0,1} also represents the

range of 0 to Fs/2. With minor changes, this normalized range can be reduced to a shorter frequency range

of physical frequencies.
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As per the discussion in Section I, one reasonable choice for the form of the
frequency warpingg fð Þ is a Mel-shape warping defined as:

g fð Þ ¼ C � log 10 1þ
f

k

� �

(6)

where k is an adjustable warping factor between 0 and 1 that controls the degree of

the warping, and the constant C is chosen to ensure that f = 1 is mapped to f 0 ¼ 1. If
k = 0.0875 and C = 0.9137, for the frequency range of 0 to 8000 Hz, this warping is the
normalized version of the most widely used “standard” Mel warping proposed by
O’Shaughnessy [31]. Another option, using Smith and Abel’s work [32], is to use a
bilinear warping to approximate the Bark scale:

The warping factor α ranges from 0 to 1. In Figure 3, five bilinear warpings, for
various α values.are shown. Addiionaly, Mel warping using O0Shaughnessy’s equation
in [31] and Bark warping as per Wang et al. [33] are plotted in the figure. The figure
clearly shows that bilinear warping can be adjusted to closely approximate both Mel
and Bark warping. From Eq. (5), frequency resolution is continuosly varied, to match
auditory properties, rather than using a quantized version with a filterbank, such as in
the MFCC, PLP or gammatone front ends, [3, 13, 14]. In the filterbank methods,
perceptually indistinguishable frequency components are modeled by the filter band-
widths. Thus, a filterbank is effectively a quantizer which separates the perceptual
frequency scale into a finite number of equal intervals. In the proposed approach, the
perceptual scale is continuous. The frequency selectivity is modeled by the derivative
term dg(f)/df.

Next, the relation between perceptual timet0 and linear time t is modeled with
nonlinear (warping) function, h, but with a normalized range of t {�1/2, 1/2}:

t0 ¼ h t, fð Þ; �
1

2
≤ t ≤

1

2
, 0 ≤ f ≤ 1: (7)

Timet0 can be considered a perceptual time scale that defines a “pseudo” time
instant at which an acoustic event occuring at physical time t is perceived by the

Figure 3.
Bilinear warping with different warping factors—Mel and Bark warping shown for comparison.
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auditory system. Mathematically, perceptual time is given in terms of its derivative
with respect to t:

dt0 ¼
dh t, fð Þ

dt
dt (8)

This time resolution term indicates how far apart two events are perceived when
separated by unit time on the physical scale. A large derivative implies that two
acoustic events are clearly perceptually distinguishable whereas a small value corre-
sponds to a time boundary between events that is not well resolved. When character-
izing the temporal trajectory of acoustic events, it’s reasonable to assume that
perceptual time resolution should be higher near the center of the event than at far
away times. That is, to identify the content of a segment with the help of its left and
right segments, it is plausible that close segments are more relevant than far-away
segments. Hence, temporal changes of the spectrum envelope should be more clearly
resolved at the center of an event than far-away less helpful parts. Therefore, the
shape for dh/dt was chosen to be approximately Gaussian. More specifically, dh/dt is a
Kaiser window, with one parameter, β, the time-warping factor, that conveniently
controls the “sharpness” of time warping.

Note that in Eqs. (8), (9) the sharpness of the time resolution term dh/dt could be
frequency dependent as well. Specifically, the term dh/dt can be made more “peaky”
at high frequencies than at low frequencies, controlled by different warping factor
values in the Kaiser window2, as illustrated in Figure 4. This allows an exploration of
the trade-off between auditory frequency and time resolution. The psychoacoustic
masking experiments [34] show that the very narrow auditory filter bandwidths at
low frequencies produces high frequency resolution, but also prolongs the “ring” time
at the onset and offset transients for short signals, and thus degrades the time resolu-
tion of the excitation patterns. This trade-off is also shown in [35] by

Figure 4.
Time resolution term dh/dt for low and high frequencies using a Kaiser window: The time resolution is non-
uniform over both time and frequency.

2 Note that although Eqs (8), (9) (and thereafter) explicitly show the frequency dependency in h(t,f), in

our implementation of h(t,f) and its derivative, f is treated as a constant, and only t is the variable.
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neurophysiological experiments and in [36] by the gap-in-noise detection experi-
ments, which provide evidence that human subjects are able to detect shorter gaps in a
narrow band of noise when the noise bands are centered at higher frequencies.
Despite of this property of human hearing (high time resolution for high frequencies),
it’s not clear whether this effect can be exploited for improving ASR. Our work pro-
vides one way to investiage this effect in features used for ASR.

Although the principles and forms for frequency and time warping have been
presented, the magnitude of the power spectrum on the perceptual scale is the same as
for the.physical domain. To better represent perceptual magnitudes, the power spec-
trum should also be nonlinearly scaled. This nonlinear scaling is represented by the
function a, typicaly logarithmic or power function with a low exponent such as 1/15.
Eq. (2) can be rewritten in terms of t and f by substituting in Eqs. (3), (4), (5), (8), (9):

Feat i, jð Þ ¼

ð1=2

t¼�1=2

ð1

f¼0
a X t, fð Þð Þ � cos πig fð Þð Þ

dg fð Þ

df
� cos πjh t, fð Þð Þ

dh t, fð Þ

dt
dfdt

(9)

Eq. (10) can be written using modified basis vectors over frequency f as:

φi fð Þ ¼ cos πig fð Þð Þ
dg fð Þ

df
, (10)

0 ≤ i ≤N � 1:

and modified frequency-dependent basis vectors over time t as:

ψ j t, fð Þ ¼ cos πjh t, fð Þð Þ
dh t, fð Þ

dt
, (11)

0 ≤ j ≤M� 1:

Using the basis vectors from Eqs. (11), (12), Eq. (10) can be expressed as:

Feat i, jð Þ ¼

ð1=2

t¼�1=2

ð1

f¼0
a X t, fð Þð Þ � ϕi,j t, fð Þdfdt: (12)

Figure 5.
Two-dimensional basis vector ϕ1,1 t, fð Þ with bilinear frequency warping g(f) and a Kaiser window for dh(t,f)/dt.
α is the frequency-warping coefficient as in Eq. (7), and βlow, βhigh are the time-warping factors for low and high

frequencies, respectively.
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where the two-dimensional basis vectors ϕi,j t, fð Þ are the product of the basis

vectors given in Eqs. (11) and (12).
In Figure 5, the two-dimensional basis vector ϕ1,1 t, fð Þ is plotted with bilinear fre-

quency warping g(f) and a Kaiser window for the dh(t,f)/dt term. Panels (a) and (b) are
based on the same time-warping factor β = 5 for all frequencies, and only the frequency-
warping factor α is varied. Compared with the linear frequency scale (α = 0) in panel (a),
the basis vector becomes more sharply peaked at low frequencies in panel (b) as higher
frequency resolution is incorporated through a larger warping factor α = 0.45. Panel (c)
uses increasing time warping as frequency increases. The Kaiser window β value is
linearly interpolated between βlowand βhigh. The higher time resolution for high

frequencies makes the basis vectors more concentrated near the center of the block.
Another option for the cosines used as the starting point for the two-dimensional

basis vectors is to use a Gabor filterbank. As described in the work of [26, 27, 37], Gabor
filtering is performed as a two-dimensional correlation between the Gabor filterbank and

the perceptual time-frequency plane t0, f 0
� �

. Each Gabor filter is defined using the
product of a two-dimensional Gaussian envelope and a complex exponential function
over a localized region in the time-frequency plane. Directionality is the most apparent
difference between Gabor filter approach and the cosine expansion used in this chapter.
Gabor filters can be adjusted toward any direction whereas the cosine transform only
represents modulation of the spectrum along the vertical and horizontal axes. The deeper
reason for this difference is that the Gabor approach and the method presented in this
chapter are motivated by different considerations. The power spectrum directionality
property of Gabor features stems from the response of neurons to combinations of
spectral-temporal modulation frequencies in the spectral-temporal receptive field [38].
In contrast, the proposed framework is intended to model the trade-off between time
and frequency resolution of the peripheral auditory system. However, it is possible to
modify the proposed front end to incorporate the directionality of spectral-temporal
patterns in a way similar to the Gabor filterbank. In prior work [39], this was achieved by
rotating the 2-D cosine basis vectors by various angles.

3. Implementation

The 2-D integral in Eq. (10) can be implemented in a variety of ways, as discussed
below. As mentioned previously, integrations are computed using sums and vector
inner products between basis vectors and the sampled time-frequency plane.

3.1. DCTC/DCSC method

The first version of the implementation is based on frequency-independent
time warping; i.e. the time warping h(t,f) is simplified to h(t) for all frequencies. In
this case, integrating in any order (first over f and then over t or the reverse) is
equivalent. Conventionally, frequency integration is performed first, which generates
a set of intermediate static features3 called Discrete Cosine Transform Coefficients
(DCTCs):

3 Note that the term “static features” refers only to the outputs of the DCTC step. As mentioned in the

beginning of Section II, the final outputs are the spectral-temporal features, which are computed by another

integration over the time sequence of these “static” features.
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DCTC ið Þ ¼

ð1

f¼0
a X t, fð Þð Þ � φi fð Þdf, (13)

where φi fð Þ is the ith static basis vector as defined in Eq. (11). Then the trajecto-
ries of these DCTCs are encoded by integrations over time, yielding a set of features
referred to as Discrete Cosine Series Coefficients (DCSCs):

DCSC i, jð Þ ¼

ð1=2

t¼�1=2

DCTC ið Þ � ψ j tð Þdt, (14)

where ψ j tð Þ is the jth basis vector over time, as defined in Eq. (12), but without

dependence on f. These DCSC 2-D features, arranged as a 1-D feature vector, are the
input to a recognizer. This implementation is depicted in Figure 6(a). Figure 7 is a
plot of the first three DCTC and DCSC basis vectors, using a Mel-shape frequency
warping and a Kaiser window with β = 5 for (derivative of) time warping. The zeroth
order terms represent the form of the spectral/temporal resolution.

Unlike some other front ends, such as RASTA [40], TRAPS [41], as well as the
Gabor method mentioned previously, for which modulation frequencies are a key
concept, the proposed DCTC and DCSC method does not explicitly use this concept.

Figure 6.
Two implementations of the proposed front end: (a) the DCTC/DCSC implementation in which DCTCs are
computed first followed by DCSCs. The time warping in the DCSC basis vectors is uniform for all frequencies. (b)
the DCSC/DCTC implementation in which a set of DCSCs are obtained first followed by DCTCs. This
implementation enables frequency-dependency in the DCSC basis vectors.
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The DCSC basis vectors act as non-causal FIR low pass temporal filters of spectral
dynamics. Similarly, the DCTCs can also be viewed as low pass filtering of the power
spectrum. Parameters used in the DCTC/DCSC implementation can be varied to exam-
ine the trade-offs between spectral and temporal resolution. The trade-off between
spectral and temporal resolution considered here is different than the auditory time-
frequency resolution built into the warping of the basis vectors as presented previously.
Here, based on the filtering point of view, the parameters determine howmuch detail of
the static spectrum and dynamic trajectory is preserved after the low pass filtering. The
time-frequency resolution represented by the derivatives of the warping (which also
cause a trade-off effect) is an intrinsic property of human hearing. As mentioned, the
proposed DCTC/DCSC front end can be tuned to emphasize either side of the overall
spectral or temporal resolution. For increased emphasis on the spectral information, a
long frame length and a relatively large number of DCTCs should be used, with a
relatively small number of DCSCs computed from a long block length. For increased
emphasis on time resolution, a short frame length and frame spacing should be used
with a large number of DCSCs computed from a short block length.

Figure 8 graphically illustrates this spectral-temporal trade-off. The top panel depicts
the unprocessed spectrogram of a speech segment. Two spectrograms reconstructed from
DCTC/DCSC terms are shown in the bottom panels4. The left one has high spectral
resolution and low temporal resolution. It is rebuilt using 16 DCTCs, computed using
25 ms frames, a 10 ms frame spacing and 4 DCSCs with a block length of 50 frames
(500ms). The one in the right bottom panel has low spectral resolution but high temporal
resolution. It is computed from 8 DCTCs, 5 ms frames spaced by 2 ms, and 6 DCSCs with
a block length of 100 frames (200 ms). The low frequency components in both rebuilt

Figure 7.
The first three DCTC (a) and DCSC (b) basis vectors: A Mel-shape and a cumulative Kaiser window are used for
frequency and time warping respectively.

4 Briefly, to rebuild the spectrum, the DCTCs and DCSCs are computed using orthonormal basis vectors,

which can be obtained using Gram-Schmidt orthonormalization. Then the DCTCs of the center frame of a

block are rebuilt first by multiplying the DCSCs by the transpose of the DCSC basis vector matrix and

preserving only the center frame. Then the spectrum of this frame is rebuilt in a similar way by a matrix

product using the transpose of the DCTC basis vector matrix.
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spectrograms are represented with higher resolution than are the higher frequency com-
ponents due to the Mel frequency warping. Comparing the two reconstructed spectro-
grams, the spectrogram in the left panel preserves more spectral details than does the
spectrogram in the right panel. In contrast, the spectral dynamics are shown with more
resolution in the right hand panel than are the spectral dynamics in the left pane.

3.2. DCSC/DCTC method

In the case of frequency-dependent time warping, the 2-D integration in Eq. (10)
can be implemented by integrating over the time axis first followed by another
integration over frequency. Figure 6(b) depicts the diagram of this configuration. In
this case, Eq. (10) can be rearranged as:

Figure 8.
Spectrogram of a speech segment (upper panel) and two rebuilt spectrograms: The bottom left one has high spectral
resolution and low temporal resolution while the bottom right one has low spectral resolution but high temporal
resolution.
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Feat i, jð Þ ¼

ð1

f¼0
cos πig fð Þð Þ

dg fð Þ

df

ð1=2

t¼�1=2

a X t, fð Þð Þ � cos πjh tð , f ÞÞ
dh t, fð Þ

dt
dt

� �

df

" #"

(15)

The inner integral defines a set of frequency-dependent DCSCs,

DCSC j, fð Þ ¼

ð1=2

t¼�1=2

a X t, fð Þð Þ � ψ j t, fð Þdt, (16)

where ψ j t, fð Þ is the jth DCSC basis vector for frequency f, as defined in Eq.(12).

Then, the integral over frequency computes the DCTCs, which yields the final
features

Feat i, jð Þ ¼ DCTC i, jð Þ ¼

ð1

f¼0
DCSC j, fð Þ � φi fð Þdf , (17)

where φi fð Þ is the ith DCTC basis vector as in Eq. (11).

3.3. Unified framework

As mentioned in Section 1, the DCTC/DCSC structure proposed in this chapter can
be viewed as a unified framework which incorporates the filterbank implementation
of the frequency warping as well as the conventional delta and acceleration dynamic
features. To illustrate this unified viewpoint, a comparison of the “standard” MFCC
front end and the DCTC/DCSC front end is presented in Figure 9.

In the filterbank-based front end, the frequency warping is performed by a group of
auditory filters, and followed by a “regular” DCT transform with the term “regular”
referring to sampled versions of half cosine basis vectors (in contrast to the basis vectors
proposed in the previous sections). Specifically, the regular DCT transform is given by:

c ið Þ ¼

ffiffiffiffi

2

Q

s

X

Q

j¼1

a P jð Þð Þ cos
πi

Q
j� 0:5ð Þ

� �

, (18)

where c(i) is the ith DCT coefficient, Q is the total number of filter channels, P(j)
is the output power of the jth channel, and a(.) is the amplitude scaling function. The

terms cos πi
Q j� 0:5ð Þ

� 	

are the unmodified cosine basis vectors.

In prior work [42], it was experimentally verified that the nonlinear amplitude
scaling in the filterbank based front end can be moved to immediately before the
filterbank without degrading ASR performance (i.e. swap the position of the
filterbank block and the amplitude scaling block in Figure 9(a)). Then the filterbank
weights can be combined with the unmodified cosine basis vectors by a simple matrix
multiplication. Mathematically, suppose each row of the matrix W contains the mag-
nitude response of a filterbank channel (i.e. if 26 channels are used with 128 FFT
samples for each channel, W is a 26 by 128 matrix), and each row of the matrix
BVFreg contains the 12 unmodified cosine basis vectors, BVFreg is a 12 by 26 matrix).
A set of unified static basis vectors BVFuni, which incorporate the filterbank, can be
formed by a matrix multiplication:

14

Speech Recognition - New Perspectives



BVFuni ¼ BVFreg �W (19)

In the proposed DCTC/DCSC case, BVFuni is simply the matrix of the basis vectors
φi fð Þ defined in Eq. (11) with each row containing one such basis vector. Thus, with
the unified static basis vectors, the static features in the filterbank front end and the
DCTC/DCSC front end can be obtained using the same mathematical framework. The
only difference lies in how their basis vectors are computed. Specifically, if the matrix
X represents the power spectrum of a block of frames5 for which each column is the
magnitude squared STFT for a frame, the static features of this block for both the

Figure 9.
Block diagrams of the filter bank front end (a), the DCTC/DCSC front end (b) and a unified framework (c) of
(a) and (b) dashed blocks (� �) are optional.

5 For consistency with the block processing in the computation of the dynamic features, the static feature

computation also uses block notation here. When implemented, the static features are computed for the

entire utterance once, and only the final features are computed block by block. That is, in the static feature

step,X represents the spectrum of the entire utterance, and in dynamic feature step in Eq. (22),X denotes a

block of frames.
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filterbank front end and the DCTC/DCSC front end can be computed in a unified way
as BVFuni � a Xð Þ where a Xð Þ represents the amplitude scaling.

Similarly, the delta and higher order dynamics in the standard MFCC front end can
also be computed by a summation of the static features over time, weighted by a set of
dynamic basis vectors. From Eq. (1), to compute any nth order differential term, its
basis vector with respect to the previous lower order terms (neglecting the constant
denominator) is given by bvn ¼ �Θn,�Θn þ 1, … , 0, 1, …Θn½ � where Θn is the win-
dow length in Eq. (1). Considering bvn as a discrete signal with each element
representing both the index and the amplitude (i.e. [�3,-2,-1,0,1,2,3] gives a signal
whose magnitude is �3 at index �3, and � 2 at index �2, etc.), then the nth order
delta basis vector bvTn can be computed as

bvTn ¼ bv1 ⊛bv2 … ⊛bvn: (20)

where ⊛ is the convolution operator. Thus, a set of unified dynamic basis vectors
BVTuni can be defined. In the case of the delta features, each row of BVTuni stores one
dynamic basis vector of the form in Eq. (21) whereas in the proposed DCTC/DCSC
front end, each row of BVTuni stores one DCSC basis vector as defined in Eq. (12).
Hence, again the final output features F for both the MFCC and the DCTC/DCSC
methods can be written in a unified way:

F ¼ BVTuni � BVFuni � a Xð Þ½ �T (21)

Figure 9(c) is a block diagram of this unified framework. This diagram depicts the
essence of the proposed speech features as well as similar features such as MFCCs.
They are essentially a series of linear transformations of the spectrum scaled by an
auditory nonlinearity with optional peripheral nonlinearities in between (dashed
blocks in the diagram), such as the sigmoid-shaped functions given in [43, 44]. These
nonlinearities generally improve the noise robustness of front ends. In this work, the
linear transformations are represented by unified basis vectors. Filterbank-based fea-
tures (such as MFCC or PLP) exert their impact on features by shaping the basis
vectors implicitly. The unified basis vectors presented here determine the properties
of a front end. Thus we have a common yardstick with which to analyze and compare
front ends based on the properties of the unified basis vectors.

A basic comparison can be made between filterbank-based frontends such as the
widely-used MFCCs and the proposed DCTC/DCSC front end by comparing their
unified basis vectors. Although the MFCC front end and the DCTC/DCSC front end
are derived differently, the unified framework shows the two approaches are the
same, except that the basis vectors are different.

Figure 10 is a plot of the first three unified static basis vectors underlying MFCC
features (based on 26 Mel filters) and three unified temporal basis vectors used to
compute the zeroth order, delta and acceleration terms. The unified basis vectors over
frequency are not as “smooth” as the ones proposed here which are based on the
continuous Mel-shape warping g(f), as shown in Figure 7(a). The “jagged” basis
vectors ‘plotted in Figure 10(a) result from the quantization effect caused by the
coarse sampling of the frequency axis by the filter bank. The unified temporal basis
vectors, implicit in most current methods, estimate derivatives very approximately
using a small number of samples. A comparison of the temporal basis vectors (see
Figures 7(b) and 10(b)) graphically illustrate that the standard delta/acceleration
method uses only a few central terms in each block whereas in the proposed method,
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the incorporation of non-uniform time resolution result in long “smooth” basis vec-
tors emphasizing the center of the block but extending to the ends of the block. A
comparison of both panels of Figure 7 with both panels of Figure 10 clearly illustrate
the more continuous nature of the temporal basis vectors for the proposed method
versus the implicit basis vectors corresponding to delta and acceleration terms. This
suggests that the proposed DCSC basis vectors may represent spectral dynamics with
more accuracy and resolution than is the case for delta/acceleration method.

4. Experimental evaluation

4.1 Experimental configuration

A comprehensive suite of ASR tests for various conditions and parameter settings
was performed to evaluate the effectiveness of the spectral-temporal DCTC/DCSC
features and to investigate trade-offs in time and frequency resolution as that affects
ASR performance. All experiments reported in this chapter are for phone recognition,
with monophone models using the HTK 3.4 HMM/GMM recognizer [45]. Except for
one set of evaluation experiments described below, all experiments use the TIMIT
database [46]. As is typically done with this database, 3696 utterances (462 speakers,
eight sentences/speaker, approximately 236 minutes) with SA sentences removed
were used for training. The TIMIT database document [46] suggests using 1344
utterances (168 speakers, eight sentences/speaker, approximately 86 minutes) for
testing. However, since various parameters in the proposed front end needed to be
tuned both for performance optimization and for exploring the effects on the time-
frequency properties, a development set (DEV set) was needed. Thus, 672 utterances
from the original test set were randomly chosen for this purpose, and the remaining
672 utterances were used as the evaluation set (EVAL set). Also, as recommended
in [47], the original set of 61 labeled phones was collapsed to 48 phones to create 48
phone models with a further reduction to 39 phone categories for scoring. Some
similar phones were merged to create the 39 categories: For convenient reference, the
reduction from 61 to 48 phones and further from 48 to 39 phones (shaded) is
presented in Table 1, and a frequency count of the 39 phones for the training and the
original test sets is shown in Figure 11. All HMM acoustic models had three emitting

Figure 10.
The first three unified static basis vectors resulting from 26 Mel filters (a) and the first three unified dynamic basis
vectors of the delta method (b).
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Figure 11.
A frequency count of the 39 TIMIT phone categories.

TIMIT Phone Reduced Phone TIMIT Phone Reduced Phone TIMIT Phone Reduced Phone

oy oy v v er axr er

uh uh b b iy iy

aw aw f f r r

th th w w el el

ch ch ey ey l l

y y ae ae ah ah

jh jh dh dh ax-h ax ax

g g d d s s

ng eng ng p p en en

sh sh eh eh n nx n

zh zh m em m ih ih

ow ow z z ix ix

hh vv hh k k #h pau sil

dx dx t t pcl tcl kcl qcl cl

ay ay ao ao bcl dcl gcl vcl

uw ux uw aa aa epi epi

Table 1.
61 TIMIT phones, reduced to 48 for training, and 39 categories (shaded) for testing.
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hidden states. A bigram language model was used based on phone bigram frequencies
in the training set.

Since invariability is also crucial for “good” features, which means that the optimal
front end parameters experimentally tuned from a DEV set should work approxi-
mately equally well on different independent evaluation sets without the need of
re-tuning the parameters, an independent phone recognition task was also conducted
using the Chinese Mandarin 863 Annotated 4 Regional Accent Speech Corpus
(RASC863) [48]. The phonetically transcribed portion of this database was used for
this work, which includes 20 speakers, each uttering 110 phonetically balanced
sentences. Due to the much smaller number of speakers than for TIMIT, approxi-
mately 70% of the total set of 2200 utterances from all of the 20 speakers were used
for training (1540 sentences, approximately 77 sentences/speaker and 224 minutes),
and the remaining 30% were used for evaluation (660 sentences, 33 sentences/
speaker, 96 minutes). Fifty-nine Chinese base phones (without considering tone
information) were trained and evaluated on the evaluation set against the baseline
directly using the optimal parameters obtained from the TIMIT experiments.

Processing begins with a complex pole pair IIR pre-emphasis filter:

y n½ � ¼ x n½ � � 0:95x n� 1½ � þ 0:494y n� 1½ � � 0:64y n� 2½ � (22)

This second order filter has a peak near 3200 Hz and is a reasonably good match to
the inverse of the equal-loudness contour for human hearing. In our previous
work [49], it was found that this filter results in slightly higher ASR accuracy than is
obtained with the more typically-used first-order one zero pre-emphasis. All speech
passages were then divided into overlapping windowed frames (Kaiser window with β

of 6, similar to a Hamming window). A 512 point FFT of each frame was computed,
and log magnitudes computed, for a frequency range of 100 Hz to 7000 Hz. For each
frame, log magnitudes were “floor” clipped at 40 dB below the largest spectral mag-
nitude in each frame. In previous work [50], this simple floor was found to improve

Figure 12.
Phone recognition accuracy as function of frame length using 21, 23, and 25 DCTCs.
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ASR accuracy by a small amount, especially for noisy speech. In summary, each
sentence was converted to a matrix of spectral values which were then further
processed by the DCTC/DCSC methods proposed in this chapter.

4.2 TIMIT DEV set parameter optimization

4.2.1 Experiment set 1: DCTC features only (static features)

For the experiments reported in this section, DCTC features only were computed.
The goal was to experimentally evaluate how frame length, frame space, number of
DCTCs, and type and degree of frequency warping affects ASR accuracy. Not all
combinations of parameter values are presented in the results due to the very large
number of combinations. Rather, most of the parameter values were fixed at what
appeared to be the best values based on pilot experiments, and then a subset of
parameter values was varied and performance evaluated.

Experiment A1— Spectral resolution issues for DCTCs: The goal was to examine
spectral resolution effects on ASR performance as determined by frame length and
number of DCTCs. The frame space was fixed at 8 ms. Mel frequency warping
(bilinear warping with a coefficient of .45) and 16 mixture GMM/HMMs were used.
The spectrum of each frame was represented with 9 to 26 DCTCs. Frame length
ranged from 5 ms to 40 ms. ASR accuracy ranges from approximately 49–57% in these
tests. Figure 12 depicts ASR accuracy using 21, 23, and 25 DCTCs as a function of
frame length. It also contains the static MFCC baseline results using 26 filters, 21
DCTCs, again with the frame space fixed at 8 ms. The absolute best accuracy (57.3%)
was obtained with 20 ms frames and 25 DCTCs. However, the increase in perfor-
mance for more than 19 DCTCs is minimal, typically less than 0.5%. Frame lengths of
15 ms to 30 ms result in fairly similar ASR accuracies.

Figure 13.
Effect of frame length and frame space on phone recognition accuracy for 21 DCTCs.
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Experiment A2-Time resolution effect for DCTCs: To investigate the role of time
resolution on frame-based speech features, the feature “sampling rate” was varied by
changing the frame spacing from 2 ms to 20 ms. Since the time resolution is also
affected by frame length, 4 frame lengths (5, 10, 20, and 30 ms) were evaluated. 21
DCTCS were used for all tests. Other parameters were the same as for Experiment A1.
The baseline in this experiment is the case of static MFCCs with frame length fixed at
5 ms. Results are shown in Figure 13.

Results vary from 34.9% (5 ms frames, 20 ms apart) to 59.7% (10 ms frames, 5 ms
apart). Phonetic recognition accuracy degrades when the frame space is too large,
especially for shorter frame lengths. The best performance for each frame length
varies from 57.6% to 59.7%. As might be expected, the highest accuracy is
obtained with short frame spaces and short frame lengths—that is high time
resolution. However, unexpectedly, accuracy degrades when the frame space is too
short. We hypothesize that oversampling of features is problematic for the HMM
recognizer, due to the high correlation of features when frames are very closely-
spaced.

Experiment A3—Effect of frequency warping on DCTC features: To evaluate fre-
quency warping, bilinear frequency warping was used as in Eq. (7) with a single
parameter α controlling the shape of the nonlinearity for the frequency warping.
Bilinear warping with a coefficient of 0.45 closely approximates Mel warping, whereas
a coefficient in the range of 0.5 to 0.57 approximates Bark warping [32].

Figure 14.
Phone recognition accuracy as function of frequency warping for two cases: The standard Mel warping, i.e. g
(f) = 2595log(1 + f/700), was used as a baseline, and results were within 0.1% of bilinear warping with a
coefficient of 0.45 in both cases.
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Since pilot experiments showed that the effects of frequency warping depend on the
number of DCTC features and the number of HMMmixtures in the recognizer, these
experiments were performed for two cases–13 DCTCs with 8 mixture HMMs; 21
DCTCs with 16 mixture HMMs. 10 ms frames spaced 5 ms apart were used in all cases.
Results are plotted in Figure 14 as the warping coefficient varies from 0 (no warping)
to 0.8 (over warped).

The effect of warping is more apparent for the 8 mixture case than for the 16
mixture case. The overall best warping values found were.4 and.45 (most similar to
Mel warping). For the 8 mixture/13 DCTC cases, the best warping of .45 resulted in a
3% accuracy improvement over the no warping case. For the 16 mixture/21 DCTC
case, the best warping of .4 yielded a 1.5% accuracy improvement over the no warping
case. The “standard” Mel warping, as proposed by O’Shaughnessy [31], was also
evaluated as a baseline, and the result was within 0.1% of the result obtained using a
bilinear warping coefficient of 0.45 for both 13 DCTCs/8 mixtures and 21 DCTCs/16
mixtures.

4.2.2 Experiment set 2: Dynamic features (DCTCs and DCSCs)

In these experiments, a myriad of parameters believed to be significant for DCTC/
DCSC features which represent spectral-temporal characteristics in a block of frames
centered on each frame were varied. These parameters include number of DCTCs/
DCSCs, frame length/space, frequency/time-warping coefficients, and block length/
space. Not all combinations of parameters were tested due to both the very large
number of cases and the assumption that many of the variations would have much
effect on ASR accuracy. Based on pilot experiments and the results reported previ-
ously for experiments B1, B2, and B3, many of these parameters were either fixed to a

Figure 15.
Phone recognition accuracy of 39 DCTCs/DCSCs as function of block space with block length fixed at 251 ms: The
39 MFCC features produce a baseline of 70.5% (block space fixed at 8 ms).
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single value or varied over a small range. The other parameters were varied and
performance evaluated. 32 HMM mixtures were used due to the large dimensionality
of the feature space.

Experiment B1—39 feature (13 DCTCs/3 DCSCs) experiments: Since 39 MFCC fea-
tures are often used for ASR systems, the first experiments were performed with 39
features—13 DCTCs/3 DCSCs. The 39 MFCC feature case was the baseline. In this
these experiments, the block length was fixed at 251 ms, and the effect of block
spacing, which was also the feature “sampling” rate, was varied from 4 ms to 12 ms,
with results depicted in Figure 15. The frame length/space was fixed at 10 ms/1 ms,
and bilinear frequency warping (coefficient of 0.45) was used. The time-warping
coefficient was 50 using a Kaiser window. The effect of block space on ASR accuracy
varies approximately 2% from the lowest (12 ms) case to the highest (8 ms) case.

Experiment B2—39 features (13 DCTCs, 3 DCSCs), block length and time-warping
effects (auditory time resolution): The objective of this experiment set was to examine
the role of block length and time warping in representing the feature trajectories.
These two parameters are closely related to the auditory time resolution of feature
trajectories: A longer block length gives the ability to represent lower temporal mod-
ulation frequencies. A higher time-warping factor corresponds to higher time resolu-
tion in the central portion of a segment. To study these effects, five block lengths were
used (51, 151, 251, 501, 1001 ms) with block spacing fixed at 8 ms. The time-warping
factor of a Kaiser window was varied from 5 to 60 for the 51, 151, and 251 ms cases in
steps of 5, and it was varied from 45 to 305 for the 501 and 1001 ms cases with steps of
20. The parameters for static features were identical to those in Experiment B1.
Results are depicted in Figure 16 again with a baseline of 39 MFCCs.

The highest accuracy of 71.9% was obtained with a time-warping coefficient of 50
using a block length of 251 ms. Results suggest that the block length and time warping
are closely related to each other. As the block length increases, a larger time warping is
required to achieve better performance, and a moderately long block length, such as
251 ms, which incorporates informative contextual information for each sample
instant, provides the best result. However, very long contexts, such as 501 and
1001 ms, do not improve the performance and require very large-time-warping
values. This shows that the spectral contexts too far from the current “observation
point” do not provide much useful information, but can be suppressed by a large

Figure 16.
Phone recognition accuracy as function of time-warping factor for different block lengths with a fixed block spacing
of 8 ms: The baseline 39 MFCC case is also depicted.
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time-warping factor, which emphasizes the useful information within a much shorter
range surrounding the block center. Also, a long block length greatly increases the
computations for each block (the number of multiplications in the vector inner
product for computing the integration). Based on these considerations, 251 ms is
considered the best value for the block length.

Experiment B3—Overall spectral-temporal effect: Phonetic recognition accuracy was
evaluated with a variety of DCTC numbers (9 to 23 in steps of 2) and for a variety of
DCSC numbers (3, 4, 5, and 6). These combinations were used to examine the trade-
off between spectral and temporal resolution. Other parameters were selected to
match the best parameter settings from earlier experiments (frame length/space of
10 ms/1 ms, bilinear frequency warping with coefficient of 0.4 for cases with 15 or
more DCTCs and.45 for cases with fewer than 15 DCTCs, 251 ms/8 ms block
length/space, and time warping of 50). Results are shown in Figure 17.

First, as the number of DCTCs increases beyond about 15, the performance begins
to decrease. The number of DCSCs has a similar effect. Also, when a relatively small
number of DCTCs were used, i.e. less overall spectral resolution, the performance
increases relatively quickly as more DCSCs are used, i.e. more overall time resolution,
as can be seen in the 9 and 11 DCTC cases (2% improvement from 3 DCSCs to 5
DCSCs using 9 DCTCs). However, the performance improves more slowly with more
DCSCs when a relatively large number of DCTCs is deployed (less than 1% increment
using 23 DCTCs). This observation shows the trade-off between the overall spectral
and temporal resolution. The optimal “balance point” was obtained using 15 DCTCs
and 5 DCSCs which produced 72.9% accuracy.

4.3 Independent EVAL set results and invariability

Based on the results from the TIMIT DEV set, a subset of parameters was
further optimized. Two optimal parameter sets for a small feature set (27 features)
and a large feature set (75 features) were obtained respectively. Also, the number of

Figure 17.
Phone recognition accuracy as function of combinations of DCTCs and DCSCs.
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GMM mixtures for each feature set was also optimized using the TIMIT DEV set.
After these “final” optimizations were performed, to verify the generality of the tuned
front end parameters, two EVAL phone recognition tasks were conducted with dif-
ferent data, as mentioned previously. The EVAL sets were the TIMIT EVAL set and
the RASC863 Chinese Mandarin EVAL set. For the Chinese phone recognition task,
the number of GMM mixtures was reduced due to the lower amount of available
training data and the greater number of phone models to be trained. The best
parameter values and the EVAL results are reported in Tables 2 to 5. In these
tables, “BIG_REC” refers to the results using the optimal number of GMMs,
indicating the best accuracy achieved by a high order HMM recognizer. In addition,
the accuracy for the training set in each case is also reported, which shows an ideal
upper bound of the recognizer performance if the training data completely
represents the test data.

It can be seen from these results that the proposed DCTC/DCSC method achieves
generally better performance than the baseline MFCC for independent EVAL sets. In
addition, to further examine the feature invariability of the DCTC/DCSC front end,
for the Chinese phone recognition task, the parameter values based on the TIMIT DEV
set were varied and re-evaluated. These tests showed (results not given here) that the
parameter values for best performance did not change, which meant that the param-
eter values determined from the TIMIT DEV applicable to an entirely different data-
base in a vastly different language.

Experiment C1—DCTC/DCSC small feature set evaluation performance: The opti-
mum settings for a small feature set are summarized in Table 2. Accuracies on the
EVAL sets are reported in Table 3.

Experiment C2—DCTC/DCSC large feature set evaluation performance: The opti-
mum settings for a large feature set are summarized in Table 4, and accuracies on the
EVAL sets are reported in Table 5.

4.4 Unified framework explanation and statistical significance tests

As mentioned in Section 3 and in previous work [42], since the step of the ampli-
tude scaling can be moved to immediately before the filterbank, the filterbank weights
can be merged with the unwarped regular DCT basis vectors by a simple matrix
product. Similarly, the delta and higher order acceleration dynamic terms can also be
computed in a basis vector form. Thus, the proposed DCTC/DCSC front end and more

Parameter Value

Frame Length 8 ms

Frame Spacing 1 ms

Frequency Warping g(f) Bilinear, α= 0.45

Number of DCTCs 9

Number of DCSCs 3

Frames per Block 251 ms (251 frames)

Block Spacing 7 ms (7 frames)

Time Warping (dh/dt term) Kaiser window, β = 50

Table 2.
Optimum parameter settings for small feature set.
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typically used filterbank front ends can be viewed as a unified framework. The
reported experimental results can be explained using the unified time-frequency basis
vectors as a common yardstick. First, Experiments A1 and A2 show that for static
features, the proposed continuous Mel-shape warping results in slightly better per-
formance than that obtained using Mel filterbank-derived basis vectors. By comparing
their unified static basis vectors in Figure 7(a) and Figure 10(a), our conjecture is
that the quantization effect of the filterbank caused this difference. However, since
the continuous Mel-shape warping and the filterbank are essentially two ways of
implementing a Mel warping, the difference should be small as verified by the exper-
imental results. It should be pointed out that it was experimentally verified that the
standard way of implementing the MFFC front end, and MFFCs computed using
unified basis vectors, result in identical feature values, provided the amplitude
nonlinearity immediately follows the spectral magnitude step. Similarly, by compar-
ing the unified dynamic basis vectors in Figure 7(b) and Figure 10(b), it’s clear that

TIMIT Database Number of HMM

mixtures

EVAL Accuracy

(%)

Training Accuracy

(%)

Baseline 27 MFCCs 16 66.7 70.0

DCTC/DCSC 16 68.9 72.1

BIG_REC Baseline 27

MFCCs

80 69.2 79.2

BIG_REC DCTC/DCSC 80 71.3 81.2

RASC 863 Database Number of HMM

mixtures

EVAL Accuracy

(%)

Training Accuracy

(%)

Baseline 27 MFCCs 16 65.6 70.9

DCTC/DCSC 16 67.5 73.0

BIG_REC Baseline 27

MFCCs

48 68.8 79.1

BIG_REC DCTC/DCSC 48 70.4 80.6

Table 3.
27 feature TIMIT and RASC863 EVAL accuracies.

Parameter Value

Frame Length 8 ms

Frame Spacing 1 ms

Frequency Warping g(f) Bilinear, α= 0.4

Number of DCTCs 15

Number of DCSCs 5

Frames per Block 251 ms (251frames)

Block Spacing 7 ms (7 frames)

Time Warping (dh/dt term) Kaiser window, β = 40

Table 4.
Optimum parameter settings for large feature set.
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the non-uniform time resolution for a long segment of speech is a better representa-
tion of the spectral trajectory than the discrete time derivatives (most obvious in the
zeroth order unified basis vectors). The more significant improvements over the
baseline MFCC for various numbers of features in Experiments B and C support this
observation.

Another set of experiments was conducted to address the issue of statistical signif-
icance. The goal was to show that the difference or similarity between the reported
best cases for the DCTC/DCSC front end and the best baseline results in each previous
experiment were statistically significant rather than due to noise or other random
factors. These significance tests were conducted using the TIMIT database. To do this,
the best results of the proposed method and the baseline were viewed as two random
variables whose mean values were denoted as μT and μB. Then the 672 utterances of
the TIMIT DEV and TIMIT EVAL sets were divided into 12 groups respectively, and
test results were obtained for each group as samples. Since it’s reasonable to assume
the same (but unknown) variance for the proposed front end and the baseline

TIMIT Database Number of HMM

mixtures

EVAL Accuracy

(%)

Training Accuracy

(%)

Baseline 39 MFCCs 32 69.7 76.2

DCTC/DCSC 32 72.5 79.4

BIG_REC Baseline 39

MFCCs

96 71.0 84.5

BIG_REC DCTC/DCSC 96 74.0 87.1

RASC863 Database Number of HMM

mixtures

EVAL Accuracy

(%)

Training Accuracy

(%)

Baseline 39 MFCCs 32 71.5 80.9

DCTC/DCSC 32 73.3 83.8

BIG_REC Baseline 39

MFCCs

64 72.0 85.0

BIG_REC DCTC/DCSC 64 74.2 87.1

Table 5.
75 feature TIMIT and RASC863 EVAL accuracies.

Experiment number Hypothesis tested Results

Exp. A1/A2, DEV set μT > μB Significant at 90% confidence level

Exp. A3, DEV set μT ¼ μB (μT uses a warping

of 0.45)

Significant at 97.5% confidence level

Exp. B1/B2, DEV set μT � μB ≥ 1% Significant at 90% confidence level

Exp. B3, DEV set μT � μB ≥ 2:5% Significant at 97.5% confidence level

Exp. C1 (both 16 and 80 mixtures,

EVAL set)

μT � μB ≥ 2% Significant at 90% confidence level

Exp. C2 (both 32 and 96 mixtures,

EVAL set)

μT � μB ≥ 2:5% Significant at 97.5% confidence level

Table 6.
Results of statistical significance tests for reported TIMIT experiments.
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(because the database was identical in all cases), a t-test with 22 degrees of freedom
was performed to test the significance of the difference term, i.e. μT � μB. The results
of these tests are summarized in Table 6.

4.5 Frequency-dependent time warping in DCSC/DCTC scheme

In addition to the DCTC/DCSC implementation in which the time warping is
independent of frequency, a slate of experiments for the DCSC/DCTC variation,
which incorporated frequency-dependent time warping, was also conducted. The goal
was to test the effectiveness of the auditory time-frequency trade-off caused by the
nonlinear frequency selectivity for improving ASR performance. Specifically, the best
warping factors obtained in the DCTC/DCSC experiments (i.e. 50 in the 27 feature
case and 40 in the 75 feature case) were used as a baseline; smaller time warping for
lower frequencies and larger time warping for higher frequencies were used with
averages fixed at the baseline values (the block length was identical for all frequen-
cies). Another equivalent method implemented was to use a longer block length for
low frequencies compared to higher frequencies with the warping factor fixed. The
results of these experiments showed no advantages over the baseline, which uses
uniform time warping over all frequencies. This seems to imply that despite the results
from human auditory research, which shows that humans have frequency-dependent
temporal sensitivity [34–36], it may not play a crucial role, at least for the phone
recognition ASR task evaluated in this chapter. Similar findings were observed by
others. In one detailed study using wavelet signal processing to extract features for
phonetic class recognition [51], the best performance obtained with wavelet features
was only comparable to that obtained with MFCC features. In another study [52], a set
of spectral-temporal features, which also accounts for the similar time-frequency
trade-off, resulted in improved performance but only for restricted tasks (an
isolated phone classification task rather than a continuous recognition application).
The method introduced in [52] has not been adopted by the ASR community for
general use.

5. Conclusion and future work

This chapter presents a generalized spectral-temporal feature extraction front end
for representing speech information. The feature set is motivated by the attempt to
mimic two primary properties of human hearing: frequency and time resolution.
Based on a set of frequency and time-warping functions built into a set of modified
2-D cosine basis vectors and the trade-off between frequency and temporal and time
resolution can be explored. A wide range of ASR experiments were conducted using
the DCTC/DCSC method to comprehensively evaluate spectral-temporal resolution
effects. This was done by adjusting parameters controlling the DCTC and DCSC
parameters emphasize either spectral resolution or temporal resolution, and
attempting to find the best overall “balance” point. The best combination point, using
phonetic recognition experiments with the English language, also worked well with
the Mandarin language.

Empowered by the front end unification approach, a higher level systematic
unification can be envisioned. Conceptually, a recognizer front end should only
require static features, with temporal patterns modeled by the recognizer. The human
auditory system primarily performs spectral analysis whereas higher levels of
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processing in the human brain appear to extract the longer terms spectral-temporal
information. Apparently, the HMM framework is not able to adequately capture the
temporal patterns contained in sequences of static speech features alone. Thus, it is
possible that modeling of the “hidden” spectral-temporal patterns can be exploited by
a data-driven training of a state-of-the-art recognizer, such as a deep neural network
(DNN), which has the power of performing “deep learning.”
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