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Abstract

In this chapter, we obtain some reproducing kernel spaces. We obtain reproducing kernel
functions in these spaces. These reproducing kernel functions are very important for
solving ordinary and partial differential equations.
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1. Introduction

Reproducing kernel spaces are special Hilbert spaces. These spaces satisfy the reproducing
property. There is an important relation between the order of the problems and the
reproducing kernel spaces.

2. Reproducing kernel spaces

In this section, we define some useful reproducing kernel functions [1-23].

Definition 2.1 (reproducing kernel). Let E be a nonempty set. A function K: ExE — C is
called a reproducing kernel of the Hilbert space H if and only if

a. K(,t)eHforallteE,
b. (p,K(-,t)) =@(t) forallte E and all p € H.

The last condition is called the reproducing property as the value of the function ¢ at the point
tis reproduced by the inner product of ¢ with K(-, #).
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Then, we need some notation that we use in the development of this chapter. Next, we define
several spaces with inner product over those spaces. Thus, the space defined as

W3[0,1] = {v|v, v'," : [0,1] — R areabsolutely continuous, v® € [0, 1]} 1)
is a Hilbert space. The inner product and the norm in W3[0, 1] are defined by

2 1
©0.9)w = >0(097(0) + | +¥ g, 0 geWd0.1,
par 0 @

lollws = /(@ 0)wa, veEW;(0,1],

respectively. Thus, the space W3[0,1] is a reproducing kernel space, that is, for each fixed
y€[0,1] and any v € W3[0, 1], there exists a function R, such that

U(y) = <U(x)7Ry(x)>Wg/ (3)

and similarly, we define the space

olv, ', 0" : [0,1] — R areabsolutely continuous,
7300,1] = 4
v €120,1],v(0) = 0,/(0) =0

The inner product and the norm in T5[0, 1] are defined by

2 1
(0.9)s = > 0(0)g"(0) + J o (" (Hdt, v, geT30,1]
i=0 0 5)

vl = /(0,0)3, ©0€T5[0,1],

respectively. The space T5[0,1] is a reproducing kernel Hilbert space, and its reproducing
kernel function r, is given by [1] as

iszt‘2 +%szt3721—45t4+%t5, t<s,
ST 1 1 1 ©
152t2+ﬁ53t2—ﬂt54+m55, t>s,
and the space
G3[0,1] = {v[v : [0,1] — R isabsolutely continuous, ' (x) € L*[0,1]}, 7)

is a Hilbert space, where the inner product and the norm in G} [0, 1] are defined by
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1

(0.9)q = 0"(0)g"(0) + [ v (0)g'(x)dx,  v,9€G[0,1],
Jo ®)

lollgy = \/(@,0)q, vEG[0,1],

respectively. The space G,[0,1] is a reproducing kernel space, and its reproducing kernel
function Qy is given by [1] as

1+x x<y
= 9
Q {1+y, x>y ®)

Theorem 1.1. The space W3[0, 1] is a complete reproducing kernel space whose reproducing kernel R,

is given by
6
Zci(y)x”l, x<y,
R,(x)={ " (10)
D odiya, x>y,
i=1
where
2 2
_ _ v _r _ 1 _
ay)=1 oW =y oy =7 al) =5 b 24y’ c(¥) = 135
}/5 _]/4 yz ]/3
qy)=1+355 Ry) =5ty dly)="g+5 dily) =ds(y) =ds(y) =0.
Proof. Since
2 1
(0, Ry )z = >0 (O)R(0) + J o (@RP (x)dx, (v, R, € W30,1] (11)
2 Z 0

i (12)
o 1
+30 (1)@ 00 ()RED(1) + J o(x)R (x)dx
i—0 0
Note, the property of the reproducing kernel as
(0(0), Ry(0))yy3 = 0(y). (13)

If
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Ry(0) = R>(0) =0,
I (4) _
Ry(O) —+ Ry (0) =0,
" "
Ry(O) — Ry (0) =0,
B)(1) —
R (1) =0,
(1) =
Ry (1)=0,
5)(1) —
Ry (1)=0,
Then by (11), we obtain
RE() = o(x -~ y),
when x # y,
R (x) =0,
therefore,
6
S aly)xl, x<y,
i=1
Ry(x) =
Zdi(y)xl_l, x>y,
i=1
Since
(6) () — _
RO (x) = 8(x — y),
we have

akR]ﬁ (y) = akR}f (y)’ k = 01 17 27 37 4/

PRy (y) — Ry (y)

From (14) and (19), the unknown coefficients c;(y) and di(y) (i =1,2, ...

Thus, Ry is given by

1 1 1 1
1 1oo, L os 1 4 1
AR R T A VI AR T TR

Ry, =

1,,, 145, 1
1+yx+4yx +12yx 24xy

+ L s
12077

(14)

(15)

(16)

17)

(18)

(19)

,6) can be obtained.

(20)
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Now, we note that the space given in [1] as

4

v(x, t)|%,is completely continuousin Q = [0,1] x [0,1],
x
W(Q) = @1)
% 5 0v(x,0)
ax3at3 eL (Q), U(x, 0) = 0, T =0

is a binary reproducing kernel Hilbert space. The inner product and the norm in W(Q) are
defined by

2 63 al 63 ai
Y, [ __>]

: (2)

”U"w = <U7 U>W/ UEW(Q)/

respectively.
Theorem 1.2. The W(Q) is a reproducing kernel space, and its reproducing kernel function is
K

y.s) = RyTs (23)

such that for any ve W(Q),

'U(y, S) = <v(x, t)7 K(%s) (X, t)>W’ (24)
K(}LS) (x7 t) = K(x,t) (% S)~
Similarly, the space

/VV(Q) = {v(x7 Hlv(x, t) is completely continuousin Q = [0,1] x [0,1], ﬁ ELZ(Q)} (25)

is a binary reproducing kernel Hilbert space. The inner product and the norm in W(Q) are defined by
[1] as
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(v(x, t),g(x,t))w = r {%U(O,t)gg(o,t)] dt + (v(x,0), g(x,0))y1

1173 3 . .
" Jo Jo {a&v(x’ t)a&g(% f)} dxdt,

loligy = /0.0l vEW(Q),

respectively. /VV(Q) is a reproducing kernel space, and its reproducing kernel function G, ) is
Gy = QQs- @7)

Definition 1.3.

u(x)|u(x), u' (x), u” (x), areabsolutely continuousin [0, 1]

w3l0,1] =
u®(x) €L?0,1], x€0,1], u(0) = 0, u(1) = 0.
The inner product and the norm in W3[0, 1] are defined, respectively, by
2 4 1
(u(x), gz = D u”(0)g"(0) + J u® (x)g® (x)dx, u(x), g(x) € W3[0, 1]

i=0 0

and

lullws = /u, Wyy UE W3[0, 1].

The space W3[0,1] is a reproducing kernel space, that is, for each fixed y€[0,1] and any
u(x) €W3[0,1], there exists a function R, (x) such that

() = (@), Ry(x))y-
Definition 1.4.
u(x)|u(x), is absolutely continuousin [0, 1]
W300.1] =

W' (x) €L*0,1],x€[0,1],

The inner product and the norm in W3[0, 1] are defined, respectively, by
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<wnywmw:mmam+jwwvaxwmgweM&au (28)
and
lullwy = \/(u,0)ys,  wEW(0,1]. 29)

The space W}[0,1] is a reproducing kernel space, and its reproducing kernel function T, (y) is
given by

1+x x<y,
T,(y) = 30
o) {1+% o (30)

Theorem 1.5. The space W3[0, 1] is a complete reproducing kernel space, and its reproducing kernel
function R, (x) can be denoted by

Ry(x):
Zdi(y)x'_l, x>y,
i=1
where
aly) =0,
_ 5 4 1 5 5 2 5 3 3
W) =516Y ~156Y “26Y “78Y T13¥
_S5 a1 s 21, 5 5 5
W) =g ~ga¥ T10a¥ “312Y 26V
5 ., 1 4 7, 5, 5
aW) = 1572Y ~ 1872 t10a¥ " o36Y ~78Y
PR L R SR S S HY SR S
SW= "3744Y T 3748Y Tea¥ T1872Y T10aY
1 01, 1 . 1, 1 1

[ R - = - .3 =
W) =120 " 37a4Y 187207 " 62a¥ 18727 156Y
1
di(y) = @ysr

DY) = 1538 ~ 15— eV~ ¥+ 1g¥

d3(y) = %Vl —alzlf +12—014y2 +%4y3 —%y,

dy(y) = w%y“ - H;?ys - B%yz f%f - %y,

ds(y) = —;my‘l +ﬁy5 +6g—4y2 +%y3 + 12—6%
1 1 1 1 1

= - A+ 5 - 2 - .3
o) =~ 156¥Y T 3724Y ~18720Y " 62a¥ " 18727
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Proof. We have

2 .
(u(x), Ry(x) )yys = IZ:O:”(Z) (0)R}(0) 61)
+ fy u® ()R (x)dx.

Through several integrations by parts for (31), we have
(u(x), Ry (x))wg = i”(i) (0) [RS) (0) — (—1)2IRG=(0)
i=0
+§2:(—1)<2*">u<f> (DRE-)(1) 62)
— Eou(x)R;é) (x)dx.

Note that property of the reproducing kernel
(u(®), Ry(2)) 3 = u(y),

If
(33)

then by (31), we have the following equation:

RO (x) = 5(x ~ y),

when x # y,
(6) () —
R} (x) =0,
therefore,
6
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Since
fR;@ (x) =0(x —v),
we have
IRy (y) =Ry (y), k=0,1,2,34, (34)
and
PRy (y) — Ry (y) = 1. (35)

Since R, (x) € W3[0, 1], it follows that

R,(0) =0,R,(1) =0, (36)

From (33)-(36), the unknown coefficients ¢;(y) and d;(y) (i =1,2,...,6) can be obtained. Thus
R, (x) is given by

5 oAl ,5x2,3x3+3x+5x s 1 o5 2 oo
516 1567 V' =78 T3 T et Y Teoa™ Y T10a™ Y
5 5 5 4, 1 7 5, 5 33 5 4
35V T VY Y 1wty Tt Y Toagt Y 7t Y

3_

Y tamt Y e Tt Y 1 Y "1t Y ety

1 55 1 5.3
R — [ <

w20* Y "’V "Rty ¥V
5 1 5x27 x+3 . L o5, 21
5167 ~ 5% ~ g% ~ 7Y 4 624y ~eaV ¥ T1" Y
5 34 3.5 25 33 5 3
1872y * 1872y x +104y TR sy *
1
~104V"* ~ 15 +37443/

5
s 2.3 Y2
VAT A

4 4 2
~ 5V Ty 624y + 1872y
1
w5720° Y "l * "1l *

o(x)lo(x), '(x), ©" (x), 0" (x)

x>y

W3[0,1] = { areabsolutely continuousin [0, 1], (37)
@ (x)eL?0,1],x€[0,1]

The inner product and the norm in W3[0, 1] are defined, respectively, by
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3 1

(), gx))ws = > _0?(0)g"(0) + j o (x)g¥ (x)dx, o(x), gx) € W3(0,1],
= 0 (38)

||v||W§: (v,v)wg, veW‘zl[O,l].

The space W3[0, 1] is a reproducing kernel space, that is, for each fixed.

y€0,1] and any v(x) € W5[0,1], there exists a function R, (x) such that
o(y) = (0(0), Ry (%)) s (39)
Similarly, we define the space

o(B)lo(t), /(1)

) are absolutely continuousin [0, T],
W3[0, T] = (40)

v'(t) e L2[0, T), t€[0,T],2(0) =0

The inner product and the norm in W3[0, T] are defined, respectively, by

(0(1), 9wz = D 0" (0)g"(0) + J o"(Hg" (Hdt, (), g(t) W3[0, T),
par 0 (41)

lollw, = /(@ 0)w2, vEe W3[0, T].

Thus, the space W3[0, T] is also a reproducing kernel space, and its reproducing kernel function
75(t) can be given by

sy, 1g
St+§t *gt, tSS,
ro(t) = P, (42)
st+§s _65’ t>s,

and the space
v(0)lo(x), v'(x)

) are absolutely continuousin [0, 1],
W3[0,1] = (43)

v (x) €L?[0,1], x€0,1]
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where the inner product and the norm in W3[0, 1] are defined, respectively, by

(0(8), 9wz = D07 (0)g"(0) + J o"(Hg" (Hdt, (), g(t) eW3[0,1],
par 0 (44)

lollw, = /(0 00wz, 0EW3[0,1].

The space W3[0, 1] is a reproducing kernel space, and its reproducing kernel function Qy(x) is
given by

1
1+xy+yx2—fx3 x<y,

Q(x) = 1 (45)
1+X]/+§ _Ey/ xX>y.

Similarly, the space W3[0, T] is defined by

v(t)|v(t) is absolutely continuousin [0, T),
W300,7] = (46)
v(t)€L?0,T], t€0, T

The inner product and the norm in W3[0, T] are defined, respectively, by

(0(H), 9())ws = 0(0)g(0) + [y ¥'(1)g'()dt,  o(t), g(H) W3[0, T],

1 (47)
lolw: = /(@ 0)w1,  ©EW,[0, T].

The space W, [0, T] is a reproducing kernel space, and its reproducing kernel function g,(f) is
given by

1+t (<5
t) = 48
9:() {1—{—5, t>s. 48
Further, we define the space W(Q) as
o
v(x, 1)) 3050 is completely continuous,

W(Q) = inQ =1[0,1] x [0, T], (49)

%

W S LZ(Q), U(X, 0) =0

and the inner product and the norm in W(Q) are defined, respectively, by
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3 2 i 2 i
0”0 6 0
< (x t ZOJO |: 2 axz atza 19(0’ t):| dt
1
o
+ Z<a—t] bt] .X 0)>
j=0 wi

T 1 64 62 4 62
+ JO JO {@@v(x, t)a—ﬁﬁg(x, t)] dxdt,
”v”W = <U7U>W, UEW(Q)

Now, we have the following theorem:

(50)

Theorem 1.6. The space W3[0, 1] is a complete reproducing kernel space, and its reproducing kernel

function Ry(x) can be denoted by

Ry(x) = s
D dilya, x>y,
i=1
where
1 2
aly) =1, o) =y cy) = 5v
1, 1 1
C4(y) - 36y 4 5(.1/) my 4 6(]/) - 240y 4
1 1
) =550% ) =~ 5000
1
d1(y) sa0? Ry =yt my )
1 1 1 1
d3(y) :1y2—my5/ ds(y) :%]/ +my p
ds(y) =0, de(y) = dz(y) =0, ds(y)

Proof. Since

(o), Ry () g = iv@ R + j PR (x)d,

through iterative integrations by parts for (53), we have

Q)

(52)

(33)
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Note that property of the reproducing kernel

If

<v(x), Ry(x)>w‘21 = U(}/)

Ry(0) + R (0) =0,
R} (0) = R (0) =0,
R;(0) + R (0) =0,
R,(0) = R{¥(0) =0,
R¥(1) =0,
RP(1) =0,
R¥(1) =0,
RY(1) =0,

then by (54), we obtain the following equation:

when x # y,

therefore,

Since

R (x) = 8(x — ),

(54)

(35)

(56)

(57)

(58)

(9)
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R (x) = 5(x —y), (60)

we have
IR, (y) =Ry (y), k=0,1,2,3,4,56, (61)
Ry (y) — ¥Ry (y) = 1. (62)

From (56)-(62), the unknown coefficients ¢;(y) ve di(y)(i =1,2,...,8) can be obtained. Thus,
R, (x) is given by

333 4
36y + 144y
L X x<
240y 7203/ 5040 1 Y
Ry(x) = (63)

1 1 1
14+ xy+— xy+ xy +144 y

1
l+yx+1y2x2+

6_
~50° Y ™ oY >V
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