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1. Introduction

Proteins are essential to life and they have countless biological functions. Proteins are

synthesized in the ribosome of cells following a template given by the messenger RNA

(mRNA). During the synthesis, the protein folds into a unique three-dimensional structure,

known as native conformation. This process is called protein folding. The biological function

of a protein depends on its three-dimensional conformation, which in turn, is a function of its

primary and secondary structures.

It is known that ill-formed proteins can be completely inactive or even harmful to the

organism. Several diseases are believed to result from the accumulation of ill-formed proteins,

such as Alzheimer’s disease, cystic fibrosis, Huntington’s disease and some types of cancer.

Therefore, acquiring knowledge about the secondary structure of proteins is an important

issue, since such knowledge can lead to important medical and biochemical advancements

and even to the development of new drugs with specific functionality.

A possible way to infer the full structure of an unknown protein is to identify potential

secondary structures in it. However, the pattern formation rules of secondary structure of

proteins are still not known precisely.

This paper aims at applying Machine Learning and Evolutionary Computation methods to

define suitable classifiers for predicting the secondary structure of proteins, starting from their

primary structure (that is, their linear sequence of amino acids).

The organization of this paper is as follows: in Section 2 we introduce some basic concepts and

some important aspects of molecular biology, computational methods for classification tasks

and the protein classification problem. Next, in Sections 3 and 4, we present, respectively, a

review of the machine learning and evolutionary computation methods used in this work.

In Section 6, we describe the methodology applied to develop the comparison of different

classification algorithms. Next, Section 7, the computational experiments and results are

detailed. Finally, in the last Section 8, discussion about results, conclusions and future

directions are pointed out.
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2. Background

2.1 Molecular biology

Proteins are considered the primary components of living beings and they have countless
biological functions. Finding the proteins that make up an organism and understanding their
function is the foundation of molecular Biology (Hunter, 1993).
All proteins are composed by a chain of amino acids (also called residues) that are linked
together by means of peptide bonds. Each amino acid is characterized by a central carbon
atom (also known as Cα) to which are attached (as shown in Figure 1) a hydrogen atom,
an amino group (NH2), a carboxyl group (COOH) and a side-chain that gives each amino
acid a distinctive function (also known as radical R). Two amino acids form a peptide bond
when the carboxyl group of one molecule reacts with the amino group of the other. This
process of amino acids aggregation is known as dehydration by releasing a water molecule
(Griffiths et al., 2000). All amino acids have the same backbone and they differ from each
other by the side-chain, which can range from just a hydrogen atom (in glycine) to a
complex heterocyclic group (in tryptophan). The side-chain defines the physical and chemical
properties of the amino acids of a protein (Cooper, 2000; Nelson & Cox, 2008).

Fig. 1. General structure of an α-amino acid. The side-chain (R element) attached to the Cα
defines the function of the amino acid

There are numerous amino acids in the nature, but only 20 are proteinogenic. They are shown
in Table 1. The first to be discovered was asparagine, in 1806. The last, threonine, was
identified in 1938 (Nelson & Cox, 2008).
To understand the structures and functions of proteins, it is of fundamental importance to
have knowledge about the properties of the amino acids, defined by their side-chain. Thus,
the amino acids can be grouped into four categories: hydrophobic (also called non-polar),
hydrophilic (also called polar), neutral, basic and acid (Cooper, 2000). Kyte & Doolittle
(1982) proposed an hydrophobicity scale for all 20 amino acids. See the Table 1 for detailed
information about the proteinogenic amino acids.
Polar amino acids can form hydrogen bonds with water and tend to be positioned preferably
outwards of the protein, i.e., they are capable to interact with the aqueous medium (which is
polar). On the other hand, hydrophobic amino acids tend to group themselves in the inner
part of the protein, in such a way to get protected from the aqueous medium by the polar
amino acids.
According to this behavior in aqueous solution, one can conclude that the polarity of the side
chain directs the process of protein structures formation (Lodish et al., 2000).
From the chemical point of view, proteins are structurally complex and functionally
sophisticated molecules. The structural organization of proteins is commonly described
into four levels of complexity (Cooper, 2000; Griffiths et al., 2000; Lodish et al., 2000;
Nelson & Cox, 2008), in which the upper cover the properties of lower: primary, secondary,
tertiary and quaternary structures.
The primary structure is the linear sequence of amino acids. This is the simplest level of
organization, it represents only the peptide bonds between amino acids.
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Amino acid
K&D Normalised Value

Type

name symbol

Isoleucine ILE +4.5 10.00 Hydrophobic

Valine VAL +4.2 9.68 Hydrophobic

Leucine LEU +3.8 9.26 Hydrophobic

Phenylalanine PHE +2.8 8.20 Hydrophobic

Cysteine CYS +2.5 7.88 Hydrophobic

Methionine MET +1.9 7.25 Hydrophobic

Alanine ALA +1.8 7.14 Hydrophobic

Glycine GLY -0.4 4.81 Neutral

Threonine THR -0.7 4.49 Neutral

Serine SER -0.8 4.39 Neutral

Tryptophan TRP -0.9 4.28 Neutral

Tyrosine TYR -1.3 3.86 Neutral

Proline PRO -1.6 3.54 Neutral

Histidine HIS -3.2 1.85 Hydrophilic

Glutamine GLN -3.5 1.53 Hydrophilic

Asparagine ASN -3.5 1.53 Hydrophilic

Glutamic acid GLU -3.5 1.53 Hydrophilic

Aspartic acid ASP -3.5 1.53 Hydrophilic

Lysine LYS -3.9 1.10 Hydrophilic

Arginine ARG -4.0 1.00 Hydrophilic

Table 1. Kyte and Doolittle (K & D) hydrophobicity scale and the normalized scale used in
the computational experiments

The secondary structure of a protein refers to the local conformation of some part of a
three-dimensional structure. There are, basically, three main secondary structures: α-helices
(Pauling et al., 1951a), β-sheets (Pauling et al., 1951b) and turns (Lewis et al., 1973). In the
structure of an α-helix, the backbone is tightly turned around an imaginary helix (spiral)
and the side-chains of the amino acids protrude outwards the backbone (Figure 2(a)). The
β-sheet is formed by two or more polypeptide segments of the same molecule, or different
molecules, arranged laterally and stabilized by hydrogen bonds between the NH and CO
groups (Figure 2(b)). Adjacent polypeptides in a β-sheet can have same direction (parallel
β-sheet) or opposite directions (antiparallel β-sheet). Functionally, the antiparallel β-sheets
are present in various types of proteins, for example, enzymes, transport proteins, antibodies
and cell-surface proteins (Branden & Tooze, 1999). Turns are composed by a small number of
amino acids and they are usually located in the surface of proteins forming folds that redirect
the polypeptide chain into the protein. They allow large proteins to fold in highly compact
structures.
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Secondary structures can be associated through side-chain interactions to motifs
(Branden & Tooze, 1999; Griffiths et al., 2000; Nölting, 2006). Motifs are patterns often
found in three-dimensional structures that perform specific functions. For instance, the
helix-turn-helix motif is important in DNA-protein interactions.

(a) (b)

Fig. 2. α-helix (a) and β-sheet (b) structures. Adapted from (Alberts et al., 2002)

The tertiary structure represents the conformation of a polypeptide chain, i.e. the
three-dimensional arrangement of the amino acids. The tertiary structure is the folding of
a polypeptide as a result of interactions between the side chains of amino acids that are in
different regions of the primary structure. Figure 3(a) shows an example of tertiary structure,
where one can observe the presence of two secondary structures: α-helix and β-sheet.
Finally, the arrangement of three-dimensional structures constitutes quaternary structure (as
shown in Figure 3(b)). Figures 3(a) and 3(b) were drawn using RasMol 1 from PDB files (see
Section 2.2).
The Proteins can be classified into two major groups, considering higher levels of structure
(Nelson & Cox, 2008): fibrous and globular proteins. Both groups are structurally different:
fibrous proteins consist of a single type of secondary structure; globular proteins have a
nonrepetitive sequence and often contain several types of secondary structure. Helices are
the most abundant form of secondary structure in globular proteins, followed by sheets, and
in the third place, turns (Nölting, 2006).

2.2 Protein databases and classification

Finding protein functions has been, since long ago, an important topic in the Bioinformatics
community. As mentioned in Section 2, the function of a protein is directly related to its
structure. Due to its great importance for Medicine and Biochemistry, many research has been
done about proteins (including the many genome sequencing projects) and, consequently,
many information is available. There are many resources related to protein structure and
function. Table 2 lists some protein databases. Basically, the protein databases can be classified
into two classes: sequence and structure databases.

1 RasMol is a molecular visualization software. Available at http://www.rasmol.org
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(a) (b)

Fig. 3. Tertiary structure of Ribonuclease-A (a) and quaternary structure of Hemoglobin (b).

Database Description Web Address

PDB repository of protein
structures

http://www.pdb.org

UniProtKB/TrEMBL repository of protein
amino acid sequences,
name/description,
taxonomic data and citation
information

http://www.uniprot.org/

PIR protein sequence databases http://pir.georgetown.edu/

PROSITE documentation entries
describing sequence
motif definitions, protein
domains, families and
functional patterns

http://www.expasy.org/prosite/

PRINTS Fingerprints information on
protein sequences

http://www.bioinf.man.ac.uk/dbbrowser/

BLOCKS Multiple-alignment blocks http://blocks.fhcrc.org/

eMOTIF protein motif database,
derived from PRINT and
BLOCKS

http://motif.stanford.edu/emotif/

PRODOM protein domain databases http://protein.toulouse.inra.fr/prodom.html

InterPro protein families and
domains

http://www.ebi.ac.uk/interpro/

Table 2. Some important protein databases

In this work we used the Protein Data Bank (PDB) (Berman et al., 2000; Bernstein et al.,
1977) that is an international repository of three-dimensional structure of biological
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macromolecules. The data is, typically, obtained by X-ray crystallography (Drenth, 1999;
Sunde & Blake, 1997) or NMR spectroscopy (Nuclear Magnetic Resonance) (Jaroniec et al.,
2004; Wüthrich, 1986). Almost all protein structures known today are stored in the PDB
(Bernstein et al., 1977).
Despite the growing number of protein sequences already discovered, only a few portion
of them have their three-dimensional and secondary structures unveiled. For instance, the
UniProtKB/TrEMBL repository (The UniProt Consortium, 2010) of protein sequences has
currently around 13,89 million records (as in March/2011), and the PDB registers the structure
of only 71,794 proteins. This fact is due to the cost and difficulty in unveiling the structure of
proteins, from the biochemical and biological point of view. Therefore, computer science has
an important role here, proposing models and methods for studying the Protein Structure
Prediction problem (PSP).
There are two basic approaches that are used to the prediction of protein functions:
prediction of the protein structure and then prediction of function from the structure, or
else, classifying proteins and supposing that similar sequences will have similar functions
(Tsunoda et al., 2011). Several approaches to solve the PSP exist, each addressing the
problem by using a computational method to obtain optimal or quasi-optimal solutions,
such as Molecular Dynamics with ab initio model (Hardin et al., 2002; Lee et al., 2001),
neural nets (Yanikoglu & Erman, 2002) and evolutionary computation methods with lattice
(Benítez & Lopes, 2010; Lopes, 2008; Scapin & Lopes, 2007; Shmygelska & Hoos, 2005) and
off-lattice (Kalegari & Lopes, 2010) models.
However, there is no consensus about protein classification which is done using different
properties of proteins through several approaches. Many computational techniques have been
used to classify proteins into families, such as structural transformations (Ohkawa et al., 1996),
data compression (Chiba et al., 2001), genetic programming (Koza, 1996), Markov chains
(Durbin et al., 1998) and neural networks (Wang & Ma, 2000; Weinert & Lopes, 2004).
Other papers focus on motifs discovery, as a starting step for protein classification. For
instance, (Tsunoda & Lopes, 2006) present a system based on a genetic algorithm that was
conceived to discover motifs that occur very often in proteins of a given family but rarely occur
in proteins of other families. Also, Tsunoda et al. (2011) present an evolutionary approach
for motif discovery and transmembrane protein classification, named GAMBIT. Techniques
of clustering for sequences analysis were presented by (Manning et al., 1997). Chang et al.
(2004) proposed a Particle Swarm Optimization (PSO) approach to motif discovery using two
protein families from the PROSITE.
Wolstencroft et al. (2006) describes the addition of an ontology that captures human
understanding of recognizing members of protein phosphatases family by domain
architecture as an ontology. G.Mirceva & Davcev (2009) present an approach based on Hidden
Markov Models (HMMs) and the Viterbi algorithm to domain classification of proteins.
Davies et al. (2007) present an hierarchical classification of G protein-coupled receptors
(GPCRs) The GPCRs are a common target for therapeutic drugs (Klabunde & Hessler, 2002).

3. Machine learning methods

In this section, we focus on the Machine Learning (ML) algorithms applied to the classification
of a secondary protein data set. Most of the methods discussed in this section can be
considered as important supervised ML techniques. It is frequently cited in the literature that
the efficiency of ML algorithms can be quite different from data set to data set. Therefore,
it is usual to test the data set with many different ML algorithms. For this purpose,
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Weka2 (Witten et al., 2011) is an appropriate and a flexible tool which contains a collection
of state-of-the-art ML algorithms and data preprocessing tools. It allows users to test the
algorithms with new data sets quickly.
It is not an easy task to select which algorithm is the most suitable for a specific domain or
problem. Also, as there are many algorithms that use numerical data, an expert is needed to
tune the data. In this context, the comparison of many different algorithms is not an easy task.
Such a comparison can be performed by statistical analysis of the accuracy rate obtained from
trained classifiers on some specific data set (Kotsiantis, 2007). To support this comparison
and to evaluate the quality of the methods, three main measures can be considered (Mitchell,
1997):

• The classification rate of the training data

• The correct classification rate of some test data

• The average performance using cross validation

The most well-known classification algorithms are grouped in the Weka workbench,
including Bayesian classifiers, Neural networks, Meta-learners, Decision trees, Lazy classifiers
and rule-based classifiers (Witten et al., 2011). Bayesian methods include Naïve Bayes,
complement Naïve Bayes (CNB), multinomial Naïve Bayes, Bayesian networks and AODE.
Both decision trees and rule-based classifiers belong to the category of logic-based supervised
classification algorithms (Kotsiantis, 2007). Decision trees algorithms include several variants,
such as NBTree, ID3, J48 (also known as C4.5) and alternative decision trees (ADTree).
PART, decision tables, Rider, JRip, and NNge are included in the group of rule learners.
Lazy Bayesian rules (LBR), Instance-Based learning schemes (IB1 and IBk), Kstar, and
Locally-Weighted Learning (LWL) are part of the lazy learning algorithms.
Besides these basic classification learning algorithms, there are some meta-learning schemes
such as LogitBoost, MultiBoostAB, and ADABoost. These boosting algorithms enable users
to combine instances of one or more of the above-mentioned algorithms. In addition to
these all algorithms, Weka workbench includes neural networks methods such as Multiplayer
Perceptron (MLP), Sequential Minimal Optimization algorithm (SMO), Radial Basis Function
(RBF) network, and logistic and voted perceptron (Witten et al., 2011). In the following
subsections, we discuss specific aspects and present a brief comparison of some classification
methods mentioned previously and used in the protein classification task of this work.

3.1 Bayesian methods

Bayesian methods are the most practical approaches amongst many learning algorithms and
those that provide learning based on statistical approaches. These methods are characterized
by induction of probabilistic networks from the training data (Kotsiantis, 2007). In the Weka
workbench there are several methods, such as: CNB, NaïveBayes, NaïveBayesSimple and
AODE. Bayesian methods emerged as alternative approaches for decision trees and neural
networks and, at the same time, being competitive with them for real-world applications
(John & Langley, 1995). However, it is known that, to apply such methods, prior knowledge
of many probabilities is required (Mitchell, 1997). Naïve Bayes (NB) is one of the learning
algorithms widely applied to classification tasks. The NB classifier is the most effective
algorithm of the Bayesian group of algorithms, and it can easily handle unknown or missing
values (Mitchell, 1997). The main advantage of the NB is that it does not require a long

2 Available at: http://www.cs.waikato.ac.nz/ml/weka/
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time to train the classifier with the data set. This classifier is based on the assumption of
attribute independence. Some Bayesian variants have tried to alleviate this assumption, such
as the NBTree (Zheng & Webb, 2000) algorithm, which has a high computational overhead.
To improve the prediction accuracy without increasing the computational cost, Webb et al.
(2005) developed a variant algorithm of NB called AODE (Aggregating One-Dependence
Estimators) that uses a weaker attribute independence assumption than NB. NB classifier
traditionally relies on the assumption that the numerical attributes are generated by a
single Gaussian distribution. However, this is not always the best approximation for the
density estimation on continuous attributes. Following this direction, John & Langley (1995)
proposed a new approach described as flexible Bayes, in which a variety of nonparametric
density estimation methods were used instead of Gaussian distribution. This approach is
implemented through NaïveBayesUpdateable class in the Weka tool. Bayesian networks (BN)
methods use several search algorithms that works under conditions of uncertainty. All BN
learners are considered as slow and not suitable for large data sets (Cheng et al., 2002). Unlike
decision trees and neural networks, the main aspect of this method is that it obtains prior
information of the data set from the structural relationships among the features (Kotsiantis,
2007).

3.2 Decision trees

Basically, the methods of this category classify data by building decision trees, in which each
node represents a feature in an instance and each branch represents the value of a node.
They are heuristic, non-incremental, and do not use any world knowledge. In this category,
there are many learning methods, amongst of which, ID3, J48 and C4.5 are most well-known
(Kotsiantis, 2007). Not only these algorithms are based on decision trees. There are also some
hybrid versions like NBTree, LMTree, RandomForest and ADTree. In general, these versions
have competitive performance with the traditional C4.5 algorithm. The earliest version of
ID3 was developed by Quinlan (1993) and its improved version is C4.5 (Martin, 1995). ID3
allows to work with errors in the training data, as well as missing attribute values. This
method uses a hill-climbing strategy to search in the hypothesis space, so as to find out a
decision tree that correctly classifies the training data. This learning method can handle noisy
training data and is less sensitive to errors of individual training examples (Mitchell, 1997).
From the decision trees, during the learning process, a set of rules in the disjunctive form are
obtained by traversing the different possible paths in the entire tree. A limitation of the ID3
algorithm is that it cannot guarantee the optimal solution. Another improved version of the
algorithm, J48, implements Quinlan’s C4.5 algorithm by generating a pruned or an unpruned
decision tree (Witten et al., 2011). The NBTree algorithm was proposed by Kohavi (Kohavi,
1996) to overcome the accuracy problem encountered with both Naïve-Bayes and decision
trees in small data sets. NBTree is a hybrid algorithm which induces a mix of decision-tree and
Naïve-Bayes classifiers. Eventually, this algorithm outperforms both C4.5 and Naïve-Bayes.
To predict numeric quantities, Landwehr et al. (2005) introduced a new learning method
combining tree induction methods and logistic regression models into decision trees. This
method is denominated logistic model trees (LMTree). LMTree produces a single tree which is
not easily interpretable, but better than multiple trees. This algorithm achieved performance
higher than decision trees with C4.5 and logistic regression.
RandomForest is a classifier consisting of a collection of tree-structured classifiers in which
each tree depends on the values of a random vector, sampled independently and with the
same distribution for all trees in the forest (Breiman, 2001).
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Freund & Schapire (1999) presented a new type of classification algorithm, combining
decision trees and boosting, called alternative decision trees (ADTree). An important feature
of the ADTree algorithm is the measure of confidence or classification margin. This learning
algorithm was compared with other improved version of C4.5 with boosting, denominated
as C5.0. According to the experiments, it can be realized that the ADTree is competitive with
C5.0 and generate easily interpretable small rules.

3.3 Neural Networks

Neural Network (NN) learning methods are robust to errors in the training data. They provide
a good approximation to real-valued, discrete-valued, and vector-valued target functions.
High accuracy and high speed rate of classification are some relevant aspects of NN classifiers
(Kotsiantis, 2007). Algorithms like Multiplayer Perceptron (MLP), SMO, RBFNetwork and
Logistic are part of the Weka workbench. A RBF neural networks is a particular NN
constructed from spatially localized kernel functions, and uses a different error estimation
and gradient descent function called the radial basis function (RBF). This method uses a
cross-validation technique to stop the training which is not present in other NN algorithms
(Mitchell, 1997). Platt (1998) proposed an improved algorithm for training support vector
machines (SVMs) called Sequential Minimal Optimization SMO. The results obtained for
real-world test sets showed that the SMO is 1200 times faster than linear SVMs and 15 times
faster than non-linear SVMs.

3.4 Meta-learning methods

Most of the methods of this category such as boosting, bagging and wagging are common
committee learning approaches that reduce the classification error from learned classifiers.
Boosting is the one of the most important recent advancements in classification algorithms,
since it can improve dramatically their performance (Friedman et al., 2000). It is also
known as machine learning meta-algorithm or discrete AdaBoost. AdaBoost, as a boosting
algorithm, can efficiently convert a weak learning algorithm into a short learning algorithm.
Furthermore, it is an adaptive behavior with error rates of the individual weak hypotheses
(Freund & Schapire, 1999). AdaBoost calls a given weak learning algorithm repeatedly in
a series of rounds and trains the classifiers by over-weighting the training samples that
were misclassified in the next iteration. A complete algorithm description can be found
in Friedman et al. (2000). One of the important properties of the ADABoost algorithm is
the identification of outliers which are either mislabeled in the training data or inherently
ambiguous and hard to categorize (Freund & Schapire, 1999). Many other developments
on AdaBoost resulted in variants such as Discrete AdaBoost, Real AdaBoost, LPBoost and
LogitBoost. Both ADABoost and bagging generic techniques can be employed together
with any baseline classification technique. Wagging is variant of bagging, that requires a
base learning algorithm capable of using training cases with differing weights (Webb, 2000).
MultiBoosting is an extension technique of AdaBoost with wagging. It offers a potential
computational advantage over AdaBoost (Webb, 2000).

3.5 Rule-based methods

Rules can be extracted from the data set using many different machine learning algorithms.
The IF-THEN rules is a convenient way to represent the underlying knowledge present
in the data set, which can be easily understood by domain experts. Among a variety of
rule-based methods that were investigated, decision trees and separate-and-conquer strategy
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are considered the most important (Frank & Witten, 1998). Based on these approaches,
emerged two dominant rule-based learning methods: C4.5 (Quinlan, 1993) and RIPPER
(Cohen, 1995). In fact, RIPPER is an optimized algorithm which is very efficient in large
samples with noisy data, and produce error rates lower than or equivalent to C4.5 (Cohen,
1995). In the Weka workbench, rule-based classifiers have many learning algorithms,
including PART, DecisionTable, Ridor, JRip and NNge. Decision tables, which are simple
space hypotheses, are represented by DTM (Decision Table Majority). Kohavi (1995) evaluated
the power of decision tables through Inducer DTM (IDTM). IDTM, on some data sets, obtained
comparable performance accuracy as C4.5. JRip implements a propositional rule learner
called Repeated Incremental Pruning to Produce Error Reduction (RIPPER), proposed by
Cohen (1995). Frank & Witten (1998) proposed a new approach, by combining the paradigms
of decision trees and separate-and-conquer, called PART. PART is based on the repeated
generation of partial decision trees in a separate-and-conquer manner. Not only accuracy
of a learning algorithm, but also the size of a rule set resulted from the learning process
is important. The size of a rule strongly influences on the degree of comprehensibility.
Rule sets produced by PART are generally smaller as C4.5 and more accurate than RIPPER
(Frank & Witten, 1998). Another algorithm that is part of Weka workbench is the Non-Nested
Generalized Exemplars (NNge), proposed by Martin (1995). NNge generalizes exemplars
without nesting (exemplars contained within one another) or overlaping. By generalization,
examples in the data set that belongs to the same class are grouped together. When tested
against domains containing both large and small disjuncts, NNge performs better than C4.5.
NNge performs well on data sets that combine small and large disjuncts, but it performs
poorly in domains with a high degree of noise (Martin, 1995).

3.6 Lazy methods

Instance-based methods are considered as lazy learning methods because the classification
or induction process is done only after receiving a new instance or a training example.
Learning process will be started on the stored examples only after when a new query instance
is encountered (Mitchell, 1997). Nearest Neighbor algorithm is the one of the most basic
instance-based methods. The instance space is defined in terms of Euclidean distance.
However, since Euclidean distance is inadequate for many domains, several improvements
were proposed to the instance-based nearest neighbor algorithm which are known as IB1 to
IB5 (Martin, 1995). Zheng & Webb (2000) proposed a novel algorithm called Lazy Bayesian
Rule learning algorithm (LBR) in which lazy learning techniques are applied to Bayesian
tree induction. Error minimization was maintained as an important criteria in this algorithm.
Experiments done with different domains showed that, on average, LBR overcomes mostly all
other algorithms including Naïve Bayes classifier and C4.5. The Locally Weighted Learning
algorithm (LWL) is similar to other lazy learning methods, however it behaves differently
when classifying a new instance. LWL algorithm constructs a new Naïve Bayes model using
a weighted set of training instances (Frank et al., 2003). It empirically outperforms both
standard Naïve Bayes as well as nearest-neighbor methods on most data sets tested by those
authors.

4. Gene expression programming and GEPCLASS

Gene expression programming (GEP) is proposed by Ferreira (2001), and it has features of
both genetic algorithms (GAs) and genetic programming (GP). The basic difference between
the three algorithms is the way the individuals are defined in each algorithm. In the
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traditional GAs individuals are called chromosomes and are represented as linear binary
strings of fixed length. On the other side, in GP, individuals or trees are non-linear entities
of different sizes and shapes. On the other hand, in GEP, the individuals are encoded as linear
strings of fixed length (chromosomes) which are afterwards expressed as non-linear entities
of different sizes and shapes (simple diagram representations or expression trees (ETs))
(Ferreira, 2001). In fact, in GEP, chromosomes are simple, compact, linear and relatively small
entities, that are manipulated by means of special genetic operators (replication, mutation,
recombination and transposition). ETs, in turn, are the phenotypical representation of the
chromosome. Unlike genetic algorithms, selection operates over ETs (over the phenotype, not
the genotype). During the reproduction phase, only chromosomes are generated, modified
and transmitted to the next generations. The interplay of chromosomes and ETs allows to
translate the language of chromosomes into the language of ETs. The use of varied set of
genetic operators introduce genetic diversity in GEP populations always producing valid
ETs. In the same way as other evolutionary algorithms, in GEP, the initial population must
be defined either randomly or using some previous knowledge collected from the problem.
Next, chromosomes are expressed into ETs which will be then evaluated according to the
definition of the problem resulting in a fitness measure. During the iteration process, the best
individual(s) is(are) kept and the rest are submitted to a fitness-based selection procedure.
Selected individuals naturally go through modifications by means of genetic operators leading
to a new generation of individuals. The whole process is repeated until a stopping criterion
is met (Weinert & Lopes, 2006). The structural organization of GEP genes are based on Open
Reading Frames (ORF), a biological terminology. Although the length of genes is constant, the
length of ORFs are not. GEP genes are composed of a head that contain symbols that represent
both function and terminals, and a tail that contains only terminals. GEP chromosomes are
basically formed by more than one gene of different lengths. Unlike GP, in which an individual
of the population is modified by only one operator at a time, in GEP, an individual may be
changed by one or several genetic operators. Besides the genetic operations like replication,
mutation and recombination, GEP includes operations based on transpositions and insertion
of elements.
In this work, we used the GEPCLASS system3 that was specially developed for
data classification with some modifications regarding the original GEP algorithm
(Weinert & Lopes, 2006). Prior implementing data classification using evolutionary
algorithms, it is necessary to definet whether an individual represents a single rule (Michigan
approach) or a complete solution composed by a set of rules (Pittsburg approach) (Freitas,
1998). This system can implement both approaches, either by an explicit decision of a
user, or allowing the algorithm decide by itself which one is the most suitable for a given
classification task, during the evolutionary process. GEPCLASS can manage both continuous
and categorical (nominal) attributes in the data set. If a given attribute is nominal, GEPCLASS
uses only = or �= as relational operators. Otherwise, if the attribute is continuous or ordered
categorical, all relational operators can be used.
Figure 4 shows a 2-genes chromosome with different lengths for heads and tails. In the
chromosome part, upward arrows show the points delimiting the coding sequence of each
gene. This chromosome transformed into an ET and, later, to a candidate rule. GEPCLASS
uses variable-length chromosomes that can have one or more genes. Genes within a
given chromosome are of the same size. Using chromosomes with different lengths in the
population can introduce healthy genetic diversity during the search.

3 Freely available at: http://bioinfo.cpgei.ct.utfpr.edu.br/en/softwares.htm
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Fig. 4. Example of chromosome structure, expression tree (ET) and rule in GEPCLASS.
Adapted from (Weinert & Lopes, 2006).

5. Hidden Markov models

A hidden Markov model (HMM) has an underlying stochastic process that is not observable (it
is hidden), but can only be observed through another set of stochastic processes that produce
the sequence of observations (Rabiner, 1989). A HMM can be visualized as a finite state
machine composed of a finite set of states, a1, a2, . . . , an, including a beginning and an ending
states (G.Mirceva & Davcev, 2009). The HMM can generate a protein sequence by emitting
symbols as it progresses through a series of states. Any sequence can be represented by a
path through the model. Each state has probabilities associated to it: the transition and the
emission probabilities. Although the states are hidden, there are several applications in which
the states of the model can have physical meaning.
HMMs offer the advantages of having strong statistical foundations that are well-suited
to natural language domains and they are computationally efficient (Seymore et al., 1999).
Therefore, HMMs have been used for pattern recognition in many domains and, in special, in
Bioinformatics (Durbin et al., 1998; Tavares et al., 2008).

6. Methodology

6.1 The data set and sequence encoding

A number of records of human globular proteins was selected and downloaded from the
PDB. The original files were scanned and all annotated secondary structures were extracted
by using a parser developed in Java programming language.
These primary sequences extracted from the files had a variable length from 2 to 29 amino
acids, and they were divided into five classes, following the PDB nomenclature: HELIX,
SHEET0, SHEET1 and SHEET2 and TURN with 1280, 284, 530, 498 and 119 sequences,
respectively. HELIX, SHEET0 (SHEET1 and SHEET2) and TURN represent α-helices,
β-sheets and turns, respectively. In order to properly train the classifiers it is also necessary a
“negative” class. That is, a class dissimilar to the others that represent no secondary structure.
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This was accomplished by creating a NULL class of 3000 variable-sized sequences. Therefore,
the database created for this work had 5711 records, with six unbalanced classes.
The natural encoding of the protein sequence is a string of letters from the alphabet of letters
representing the 20 proteinogenic amino acids. However, this encoding is not appropriate for
some classification algorithms. Thus, another encoding was proposed, converting the string
of amino acid symbols into a real-valued vector, by using a physico-chemical property of the
amino acids, as suggested by (Weinert & Lopes, 2004). This was accomplished using the Kyte
and Doolittle hydrophobicity scale. The real-valued vector was normalized in the range 1.00
– 10.00 (as shown in Table 1).

6.2 Computational methods

Three different computational approaches were used in this work. First, we applied
several machine learning algorithms using the Weka workbench, as mentioned before.
The algorithms in Weka were grouped into Bayesian, neural networks, meta-learners,
trees, lazy-learners and rule-based. The input file for this algorithms was formatted to
Attribute-Relation File Format (ARFF). This is an ASCII text file that describes a set of
instances sharing a set of attributes.
An ARFF file has two sections: the header and data information. The header of the ARFF
file contains the name of the relation, a list of attributes and their types. The convention used
for data was: p1, p2,. . . , p29, corresponding to positions in the amino acid sequence from 1 to
29, followed by a nominal class attribute, that identifies the class of each instance (HELIX,
SHEET0, SHEET1, SHEET2, TURN and NULL). Where pi are real-valued, as explained in
Section 6.1.
A second approach used was HMMs. To test this approach, we have used the HMM package
for Weka4. Similar to other input files, the input file for this approach was also formatted as
ARFF. The HMM classifiers only work on a sequence of data which in Weka is represented
as a relational attribute. Data instances have a single nominal class attribute and a single
relational sequence attribute. The instances in this relational attribute consist of single nominal
data instances using the natural encoding of the protein sequence, i.e., the string of letters
representing the amino acid sequence (for example, “GLY, TRP, LEU, . . . , LEU”).
Finally, Gene Expression Programming (GEP) was used for generating classification rules by
means of the software GEPCLASS (Weinert & Lopes, 2006). The input file to GEP is similar to
the ARFF file that was used before, but without header information, just with the real-valued
data instances as detailed in the section 6.1.

7. Experiments and results

The main objective of this work is to compare the performance of ML algorithms and
evolutionary computation approaches for protein secondary structure classification. The main
motivation to test several algorithms is to identify the most suitable one for protein secondary
structure classification.
The performance of the methods are measured according to their predictive accuracy and
other statistical parameters drawn from confusion matrix. The processing time and memory
load were not considered for the experimental analysis.
The training/testing methodology includes a 10-fold cross-validation (Kohavi, 1995) in which
the data set is divided into 10 parts. In the first round, one part is used for testing and the

4 Available at http://www.doc.gold.ac.uk/ mas02mg/software/hmmweka/
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remaining, nine parts are used for training. This procedure is repeated until each partition
has been used as the test set. The reported result is the weighted average of the 10 runs. The
purpose of cross-validation is to avoid biased results when a small sample of data is used.
The outcome of a classifier can lead to four different results, according to what was expected
and what, in fact, was obtained. Therefore, when classifying unknown instances, four possible
outcomes can be computed:

• tp: true positive: the number of instances (proteins) that are correctly classified, i.e., the
algorithm predicts that the protein belongs to a given class and the protein really belongs
to that class;

• f n: false positive: the number of instances that are wrongly classified, i.e., the algorithm
predicts the protein that belongs to a given class but it does not belong to it;

• tn: true negative: the number of instances that are correctly classified as not belonging to
a given class, i.e., the algorithm predicts that the protein does not belong to a given class,
and indeed it does not belong to it.

• f p: false negative: the number of instances of a given class that are wrongly classified, i.e.,
the algorithm predicts that the protein does not belong to a given class but it does belong
to it.

Combining the above-cited four outcomes obtained from a classifier, we have then calculated,
for each class, metrics commonly used in ML: sensitivity (Se), specificity (Sp), the predictive
accuracy and the Matthews Correlation Coefficient (MCC) (Matthews, 1975), defined in
Equations 1, 2, 3 and 4, respectively. Then, the weighted average of these metrics was
calculated. The results are shown in Table 3. The best results, according to these metrics,
are shown in bold in the table.

Se =
tp

tp + f n
(1)

Sp =
tn

tn + f p
(2)

Accuracy =
tp + tn

tp + f p + f n + tn
(3)

MCC =
tp × tn − f p × f n

√

(tp + f p)× (tp + f n)× (tn + f p)× (tn + f n)
(4)

The visual comparison of performance of the classifiers was done using a ROC (Receiver
Operating Characteristics) plot (Fawcett, 2006). The ROC plot is a useful technique for
visualizing and comparing classifiers and is commonly used in decision making in ML, data
mining and Bioinformatics (Sing et al., 2005; Tavares et al., 2008). It is constructed using the
performance rate of the classifiers. The ROC analysis can be used for visualizing the behavior
of diagnostic systems and medical decisions (Fawcett, 2006). In a ROC plot axes x and y are
defined as (1-Sp) and Se, respectively. These axes can be interpreted as the relative trade-offs
between the benefits and costs of a classifier. Thus, each classifier correspond to their (1-Sp,
Se) pairs. The best prediction would be that lying as close as possible to the upper left corner,
representing 100% of sensitivity (no fn) and specificity (no fp). Figure 5 shows the ROC
plot for the classifiers evaluated in this work. It should be noted that some of the classifiers
have achieved almost the same performance. Therefore, some points are superimposed in
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Group Method Se Sp MCC Accuracy rate (%)

Bayes
NaiveBayes 0.601 0.910 0.47 56.58

AODE 0.688 0.292 0.57 68.78

Neural Net

MLP 0.599 0.774 0.39 59.87

Logistic 0.559 0.604 0.21 55.90

SMO 0.792 0.792 0.67 79.16

Meta

ADABoost 0.774 0.875 0.65 77.43

logitBoost 0.769 0.879 0.65 76.89

Bagging 0.741 0.854 0.60 74.07

Trees

J48 0.719 0.87 0.58 71.88

RandomForest 0.774 0.874 0.65 77.41

RepTree 0.717 0.868 0.58 71.72

Lazy

IB1 0.727 0.869 0.59 72.74

IBk 0.683 0.86 0.53 68.33

Kstar 0.730 0.874 0.59 72.96

Rules

Jrip 0.667 0.739 0.45 66.70

PART 0.726 0.862 0.59 72.63

Ridor 0.670 0.831 0.50 66.99

HMM 0.629 0.919 0.54 62.86

GEP 0.750 0.630 0.320 75.43

Table 3. Classifier performance

the graph. The top classifiers are identified in the ROC space: SMO (Sequential Minimal
Optimization algorithm), ADABoost (ML meta-algorithm) and RandomForest (collection of
tree-structured classifiers).

8. Conclusion and future works

Prediction of secondary structure protein has become an important research area in
Bioinformatics. Since the beginning, similar sequences of proteins are used to predict
the function of new proteins. In this work, several methods from ML and evolutionary
computation for classifying protein secondary structures were compared. Considering
sensitivity and specificity alone, SMO and NaiveBayes achieved the highest values, meaning
that the first was good to detect secondary structures when they are present, and the latter
was good to classify sequences that are not secondary structures. The highest sensitivity value
was below 0.8, suggesting the presence of semantic noise in the data set given by the inherent
variability of amino acid sequences in the secondary structure of proteins.
According to the results shown in Table 3 and considering the accuracy rate, we can conclude
that SMO, Meta classifiers (ADABoost and logitBoost), RandomForest, and GEP methods
achieved better performances, all above 75% of accuracy. These results can be considered
very expressive, taking into account the difficulty of the classification problem, imposed, as
mentioned before, mainly by biological variability of the secondary structure of proteins.
It is also possible to observe that the ROC plot shows the differences between methods more
clearly than Table 3, when considering both, sensitivity and specificity. For instance, it is
possible to observe that the HMM and NaiveBayes achieved the lowest number of false
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negatives (highest specificity), however, they perform badly considering sensitivity. In the
upper-left corner are the three best-performing methods. However, GEP is slightly distant
from them, making clear that that considering only the accuracy rate may be misleading. The
analysis of the classifiers using the MCC leads to similar results as the ROC curve. Therefore,
based on our results, we can conclude that ROC and MCC are the best way to analyze the
performance of methods in this classification problem.
It is important to mention that no effort was done to fine-tune parameters of any method. In
all cases, the default parameters of the methods were used. However, it is a matter of fact
that adjusting parameters of classifiers (for instance, in GEP and HMM methods), the overall
performance can be significantly improved. On the other hand, such procedure could lead to
a biased comparison of classifiers.
Although SMO and Meta-learners achieved the best classification performance, it should be
highlighted the importance of rule-based methods (including GEP), since a set of classification
rules are more comprehensive and expressive to humans than other type of classification
method expressed by numbers.
Future work will include the use of hybrid techniques incorporating ML and evolutionary
computation methods, as well as hierarchical classification methods.
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Ce ́sar Manuel Vargas Benítez, Chidambaram Chidambaram, Fernanda Hembecker and Heitor Silve ́rio Lopes

(2011). A Comparative Study of Machine Learning and Evolutionary Computation Approaches for Protein

Secondary Structure Classification, Computational Biology and Applied Bioinformatics, Prof. Heitor Lopes

(Ed.), ISBN: 978-953-307-629-4, InTech, Available from: http://www.intechopen.com/books/computational-

biology-and-applied-bioinformatics/a-comparative-study-of-machine-learning-and-evolutionary-computation-

approaches-for-protein-secondar

www.intechopen.com



Fax: +385 (51) 686 166

www.intechopen.com

Fax: +86-21-62489821



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

