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Abstract

Various ternary and quaternary liquid-liquid phase equilibrium data for water þ phos-
phoric acid þ solvent(s) have been reported. Salting-out, solvent, and temperature
effects on the binodal curve and the tie lines have been highlighted and the capability
of solvents with different functional groups to extract phosphoric acid from water has
been compared. Studying of influence of magnetic, electromagnetic, and ultrasonic
fields on the separation factors and distribution coefficients of aqueous phosphoric acid
mixtures has been proposed. Moreover, a summary of the optimized binary interaction
values, which resulted from non-random two-liquid (NRTL) and universal quasi-chem-
ical (UNIQUAC) thermodynamic models using genetic algorithm (GA), bee algorithm
(BA), and simulated annealing (SA), has been presented. Group method of data han-
dling (GMDH) and linear solvation energy relationship (LSER) methods for the correla-
tion of experimental liquid-liquid equilibrium (LLE) data have been used.
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1. Introduction

The phosphoric acid due to its potential applications in various industries attracted a great

deal of attention in the area of petrochemical operations, pharmaceutical productions, food

industry, detergents, insecticides, and agricultural fertilizers. Generally, there are two basic

methods in commercial use for the production of phosphoric acid—thermal and wet processes.

The thermal process produces a pure acid with huge energy consumption, whereas the wet

process is economic and practiced everywhere in the world [1]. Nevertheless, phosphoric acid

produced from both methods contains a variety of impurities, which could affect quantity and

the quality of the product. Therefore, for efficient removal and decreasing the impurities to

below acceptable regulatory levels, not only suitable studies but also using and developing
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new different techniques and technologies are required. For this purpose, some of the common

selective methods such as liquid-liquid extraction, solid-liquid extraction, crystallization, con-

centration, addition of additives, and so on, have been investigated [2–4].

Liquid-liquid extraction or solvent extraction is now one of the most important and widely

employed separation techniques in themodern process industries. It iswell knowndue to various

practical characteristics, including simplicity, rapid method development, and reasonable selec-

tivity. Moreover, it can be used for several purposes, for instance, to separate the systems with

similar boiling points, high boiling points, and temperature-sensitive components [2].

Success of liquid-liquid extraction and accurate understanding of the performance of that is

measured through the liquid-liquid equilibrium (LLE) data. LLE is described with the separa-

tion of components of a feed solution, containing the carrier and extract components, using an

additional liquid solvent, as the mixture of feed and solvent—if enough solvent is added—

forms two immiscible liquid phases. LLE is based on the differences in solubility and equilib-

rium distribution of these components between the two produced immiscible—or partially

miscible—phases. In other words, it depends on the mass transfer of the component to be

extracted from the carrier to the solvent. For having an effective extraction, the extract compo-

nent should more preferably dissolve in the solvent. After settling the two phases, the raffinate

and the extract phases are formed. The raffinate phase contains mostly the carrier, as well as a

residue of the extracted component and solved solvent, whereas the extract phase consists of

the main the solvent, a part of the extracted component, and solved carrier. Solvent extraction

is a separation process aiming to purify the feed or to recover one or more components from

it [5]. Nowadays, enormous amounts of acid, specifically high-purity phosphoric acid, can be

commercially produced through liquid-liquid equilibrium process.

2. Phase diagram of multicomponent liquid mixtures: measurement and

visualization

Only systems with at least three components and a miscibility gap can be used for extractions.

Phase behavior of such systems at a constant temperature and pressure is conveniently

represented on an equilateral triangular diagram, which its corners indicate the pure compo-

nents, binary compositions are along the edges, and ternary mixtures are located inside the

triangle. A common phase diagram is type I system and shown in Figure 1, where a pair of

components propylene carbonate and water are partially miscible, and liquid phosphoric acid

dissolves completely in propylene carbonate or water [6]. In this figure, the boundaries that

each one of them separates the single-phase region from the two-phase region are named

binodal (solubility) curves. The two-phase region is included inside below the curved enve-

lope. The binodal curve results are determined by cloud-point titration method [7]. According

to this method, a binary mixture of known composition was titrated with the third component

at each mixture using non-sealed glass vessels. The transition point is taken as the appearance/

disappearance of turbidity in the sample and it is defined as a cloud point. The mixture

temperature is regulated by a thermostatic thermometer with an accuracy of �0.1 K. Every

point on the binodal curve also has another corresponding point on the binodal curve, as these

two points represent the phase equilibrium. The lines between these two equilibrium points

Phosphoric Acid Industry - Problems and Solutions144



are called tie lines. The tie lines are usually not parallel and their slopes can increase and

decrease drastically. Tie line experiments were carried out in a jacketed 150 ml glass cell. The

biphasic mixture with known compositions was placed in the extraction cell and was vigor-

ously agitated by a magnetic stirrer for 4 h, and then left to settle for minimum 4 h for phase

Figure 1. Binodal curves for (water þ phosphoric acid þ propylene carbonate) mixture at two different temperatures and

atmospheric pressure: ( ) T ¼ 298.2 K, and ( ) T ¼ 318.2 K [6].
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Figure 2. Tie lines of the system water þ phosphoric acid þ MIAK at two different temperatures and atmospheric

pressure: ( ) T ¼ 308.2 K, and ( ), T ¼ 318.2 K [9].
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separation. After separation, samples of both phases were transparent and were carefully

weighed and analyzed to determine their compositions. Then, the concentrations of the

acid in both the phases were obtained by potentiometric NaOH titration [6]. Besides, the

water content of the organic phase was measured by the Karl-Fisher method [6] and the

water contained in the aqueous layer was determined using refractive index measurement

method [8]. The obtained tie line data for (water þ phosphoric acid þ methyl isoamyl

ketone (MIAK)) [9] and (water þ phosphoric acid þ dichloromethane (DCM)) [10] ternary

systems are presented in Figure 2 and Table 1, respectively. As either the temperature or

pressure is varied, the location of the binodal curve and slopes of the tie lines may change

(see Figures 1 and 2).

3. Separation factor and distribution coefficients

In order to evaluate the extracting capability of the solvent for the separation of components

from feed solutions with liquid-liquid extraction, the separation factor, S, is calculated. The

separation factor is defined as the ratio of distribution coefficients of extract component, 2, to

carrier one, 1, S ¼D2/D1. Additionally, distribution coefficient is the ratio of concentrations of a

component in a mixture of two immiscible phases at equilibrium. This ratio is therefore a

measure of the difference in the component solubilities in these two phases (see Table 1).

Depending on the system, the distribution coefficient and separation factor can be a function

of temperature, the concentration of chemical species in the system, and a large number of

other parameters. Figure 3 gives the distribution coefficient as a function of the mass percent

of phosphoric acid in aqueous phase for water þ phosphoric acid þ mixed-solvent (dichloro-

methane þ 1,2-dichloroethane (DCE)) system at different ratios of mixed solvent [11]. Gener-

ally, if the separation factor is greater than one (S > 1) for the systems investigated, it means

that the component can be extracted by the proposed solvent—for example, according to the

reported S for studied system in Table 1, DCM can be considered as a possible candidate for

the recovery of the aqueous phosphoric acid solutions.

Aqueous phase (raffinate) mass percent Organic phase (extract) mass percent D1 D2 S

W11 W21 W31 W13 W23 W33

70.48 15.00 14.52 6.14 1.40 92.46 0.087 0.093 1.071

66.82 16.39 16.79 6.49 1.67 91.84 0.097 0.101 1.049

58.19 19.78 22.03 6.60 2.01 91.39 0.113 0.102 0.896

50.89 23.28 25.83 6.78 2.92 90.30 0.133 0.125 0.941

45.74 24.33 29.93 6.80 3.31 89.89 0.149 0.136 0.915

*GMDH is used to predict the tie lines.

Table 1. Calculated tie line data, distribution coefficient, and separation factor for the ternary system of water (1) þ

phosphoric acid (2) þ DCM (3), according to the GMDH* results [10].
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In recent years, significant investigations on LLE measurements and the extraction of phos-

phoric acid from aqueous solutions have been carried out, while many solvents have mainly

been tested, in order to understand and provide further information for accurate interpretation

of phase equilibria of the different multicomponent mixtures with phosphoric acid [12–27]. As

a detailed evaluation of extraction abilities of the different solvents reported in the literature,

including alcohols, esters, ethers, ketones, and hydrocarbons to extract phosphoric acid from

aqueous solutions, a comparative study is listed in Table 2. Figure 3 also highlights the

definitive effects of different chemical structures present in solvents on recovering of the acid.

As it is drawn, results show the following order of effectiveness of solvent for systems

containing phosphoric acid: methylcyclohexane > ethyl benzene > isoamyl acetate > n-pentane

> 1-octanol > bis(2-methylpropyl) ether. From the obtained experimental results, it can be

concluded that methylcyclohexane is the most appropriate solvent for the separation of a

mixture of water and phosphoric acid. It is also apparent from Figure 4 that bis(2-

methylpropyl) ether is a less favorable solvating agent for phosphoric acid.

In addition, the presence of dissolved salt changes the phase equilibrium behavior of a mixture

significantly [28–31]. Recently, Govindarajan and Sabarathinam [32], Mohsen-Nia et al. [33],

and Santos et al. [34] have investigated effects of some inorganic salts such as Na2SO4, ZnSO4,

(NH4)2SO4, NaCl, KCl, KBr, and NaNO3 on the ternary liquid-liquid equilibria data. Similarly,

by considering the importance of the salting effect on the extraction of phosphoric acid from

aqueous mixtures, it is worthwhile to study LLE of mixtures of (water þ phosphoric acid þ

solvent þ salt). In particular, as can be seen in Table 2, maximum values of separation factor

for (water þ phosphoric acid þ DCM þ 10 wt% NaCl and 10 wt% CaCl2) solutions are

improved compared with those in the absence of added salts [26].

Although solvents with high separation are considered as potential candidates to carry out the

extraction, due to the economic, environmental, and technical factors, the suitable solvent at

optimum conditions is proposed to be chosen for the extraction of phosphoric acid from aqueous

mixtures. Meanwhile, it seems that the measurement of the (liquid þ liquid) equilibrium data of
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Figure 3. Distribution coefficients D2 of phosphoric acid as a function of the mass percent W21 of acid in aqueous phase

for NRTL LLE data of {water + phosphoric acid + mixed-solvent (DCM + DCE)} system at temperature T = 298.15 K: (25%

DCM + 75% DCE); , (50% DCM + 50% DCE); , (75% DCM + 25% DCE); [11].
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System Solvent type T/K S Ref.

Water þ phosphoric acid þ 1-butanol Alcohol 308.2 1.65 [12]

Water þ phosphoric acid þ 2-methyl-2-butanol Alcohol 298.2 1.82 [13]

Water þ phosphoric acid þ isoamy1 alcohol Alcohol 308.2 1.82 [14]

Water þ phosphoric acid þ 2-ethyl-1-hexanol Alcohol 298.2 1.46 [15]

Water þ phosphoric acid þ 1-octanol Alcohol 298.2 6.35 [16]

Water þ phosphoric acid þ 1-nanonol Alcohol 298.2 3.54 [17]

Water þ phosphoric acid þ 1-decanol Alcohol 303.2 3.80 [18]

Water þ phosphoric acid þ 1-dodecanol Alcohol 303.2 4.30 [18]

Water þ phosphoric acid þ cyclohexanol Alcohol, cyclic alcohol 308.2 1.57 [14]

Water þ phosphoric acid þ 1-dodecanethiol Thiol, aliphatic thiol 303.2 18.20 [18]

Water þ phosphoric acid þ butyl acetate Ester 308.2 5.78 [12]

Water þ phosphoric acid þ isobutyl acetate Ester 298.2 7.46 [13]

Water þ phosphoric acid þ isoamyl acetate Ester 298.2 19.70 [9]

Water þ phosphoric acid þ hexyl acetate Ester 298.2 7.00 [19]

Water þ phosphoric acid þ cyclohexyl acetate Ester 298.2 6.20 [19]

Water þ phosphoric acid þ propylene carbonate Ester 298.2 2.82 [6]

Water þ phosphoric acid þ tributyl phosphate Ester 298.2 3.40 [20]

Water þ phosphoric acid þ diisopropyl ether Ether 293.2 1.89 [21]

Water þ phosphoric acid þ bis(2-methylpropyl) ether Ether 298.2 3.76 [22]

Water þ phosphoric acid þ n-pentane Hydrocarbon 308.2 15.08 [23]

Water þ phosphoric acid þ 2-methylpentane Hydrocarbon 308.2 3.36 [23]

Water þ phosphoric acid þ n-hexane Hydrocarbon 308.2 4.60 [23]

Water þ phosphoric acid þ cyclohexane Hydrocarbon, cycloalkane 308.2 15.30 [24]

Water þ phosphoric acid þ methyl cyclohexane Hydrocarbon, cycloalkane 308.2 43.10 [24]

Water þ phosphoric acid þ toluene Hydrocarbon, aromatic hydrocarbon 308.2 26.50 [24]

Water þ phosphoric acid þ ethyl benzene Hydrocarbon, aromatic hydrocarbon 298.2 32.70 [25]

Water þ phosphoric acid þ isopropyl benzene Hydrocarbon, aromatic hydrocarbon 298.2 23.70 [25]

Water þ phosphoric acid þ dichloromethane (DCM) Halogenated aliphatic hydrocarbon 298.2 1.04 [26]

Water þ phosphoric acid þ DCM þ 10 wt% NaCl Halogenated aliphatic hydrocarbon þ salt 298.2 2.20 [26]

Water þ phosphoric acid þ DCM þ 10 wt% CaCl2 Halogenated aliphatic hydrocarbon þ salt 298.2 1.39 [26]

Water þ phosphoric acid þ 1,2-dichloroethane (DCE) Halogenated aliphatic hydrocarbon 298.2 1.10 [26]

Water þ phosphoric acid þ DCE þ 10 wt% NaCl Halogenated aliphatic hydrocarbon þ salt 298.2 2.35 [26]

Water þ phosphoric acid þ DCE þ 10 wt% CaCl2 Halogenated aliphatic hydrocarbon þ salt 298.2 2.13 [26]

Water þ phosphoric acid þ methyl isobutyl ketone Ketone 308.2 1.26 [14]

Water þ phosphoric acid þ methyl isoamyl ketone Ketone 298.2 11.00 [9]

Water þ phosphoric acid þ methyl ethyl ketone Ketone 308.2 0.91 [27]

Table 2. The maximum values of separation factors for the (water þ phosphoric acid þ solvent) ternary systems.
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the mixtures with a mixed solvent has become the turning point topic of the chemistry investi-

gations in recent years [11, 35–42]. As an illustration, Figure 3 compares distribution coefficients

of phosphoric acid for three quaternary systems of (water þ phosphoric acid þ mixed solvent

(25% DCMþ 75%DCE) or (50%DCMþ 50% DCE) or (75% DCMþ 25%DCE)) [11]. The results

confirm the different effects of the dichloromethane as co-solvent on 1,2-dichloroethane for the

extraction of phosphoric acid from aqueous mixtures. The comparison between the experimental

separation factors obtained for the mixed solvent (DCM þ DCE) with various ratios also indi-

cates that mixed solvent (25% DCM, 75% DCE) has a higher separation factor than the other

mixed solvents at T ¼ 298.15 K, which means that the extraction of phosphoric acid by mixed

solvent (25% DCM, 75% DCE) is more suitable.

Besides, it is anticipated that the magnetic, electromagnetic, and ultrasonic fields as external

factors can affect LLE data by influencing solvents properties such as polarity and permit-

tivity, especially for polar solvents. Therefore, the application of them to the phase separa-

tion in the solvent extraction process has been considered from the technical and economical

viewpoints. For studying this purpose, the effect of the applied different fields on phase

behavior of several ternary systems has been obtained and reported [43–48]. There are a

number of effective potentials for future research to evaluate the effects of the magnetic,

electromagnetic, and ultrasonic fields on the extraction of phosphoric acid from aqueous

mixtures.

The linear solvation energy relationship (LSER) models [49] such as Kamlet (Eq. (1)) and

Katritzky (Eq. (2)) equations [50, 51] were used to correlate separation factor for several ternary

LLE systems with phosphoric acid, reporting in references [16, 19, 24]. Kamlet LSER model

with the solvatochromic parameters is defined according to the following equation:

logS ¼ logS0 þ sðxπ� þ dxδÞ þ axαþ bxβ ð1Þ

where π* is a measure of solvent dipolarity/polarizability, δ is a discontinuous polarizability

correction term, α is a measure of the solvent hydrogen-bond donor acidity, and β is a measure
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Figure 4. The effects of solvents with various functional groups on separation factor S for {water + phosphoric acid + solvent}

system at mentioned temperature: (methylcyclohexane, 308.2 K [24]), ; (ethyl benzene, 298.2 K [25]), ; (isoamyl acetate,

308.2 K [9]), ; (n-pantane, 308.2 K [23]), ; (1-octanol, 298.2 K [16]), ; bis(2-methylpropyl) ether, 298.2 K [22]), .
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of the hydrogen-bond acceptor basicity. The coefficients S0, s, d, a, and b include the properties

of solute and are derived from regression. The values of Kamlet-Taft solvatochromic parame-

ters (α, β, and π*) of the solvents are obtained from literature [49].

Katritzky [51] introduced a multiparameter polarity scale with combination of Riechardt's sol-

vent polarity, EN
T , the dielectric constant, ε, and the index of refraction, n, functions. The Katritzky

equation (Eq. (2)) allows one to estimate independent description of solvent dipolarity, polariz-

ability, and specific interactions (such as hydrogen bonding, π-π interaction). The coefficients, a,

b, c, and dmeasure the relative susceptibilities of log (S) to the indicated solvent parameters and

are regressed using experimental data. EN
T , ε, and n values of solvents are also present in

literature [49]. Amodified form of the Katritzky equationmay be used, consisting of the addition

of a dimensionless term as T/298.2 that characterizes temperature effect

logS ¼ logS0 þ a : EN
T þ b :

ε� 1

2εþ 1

� �

þ c :

n2 � 1

2n2 þ 1

� �

þ d :

T

298:2

� �

ð2Þ

The LSER model values showed a good regression of the experimental data for all investigated

systems. The temperature susceptibility coefficient, d, shows that all the systems in refer-

ences [24] are temperature sensitive.

4. LLE correlation

Various thermodynamic models with different abilities can be used to accurately describe the

multicomponent LLE systems. Aided by these activity coefficient equations and a parameter

fit, it is possible to reproduce the measurement and control the data. The non-random two-

liquid (NRTL) [52] and the universal quasi-chemical (UNIQUAC) [53] methods have been

successfully applied for the correlation of many ternary and quaternary liquid-liquid phase

equilibrium solutions [12, 16–19, 24–26], while a group contribution approach (UNIFAC) [54]

may be utilized to predict the LLE mixtures.

4.1. NRTL equation

The basic idea in NRTL equation follows from the concept of local composition which was

used by Renon and Prausnitz [52]. Renon's equation is applicable to partially miscible liquid

mixtures, and for the binary mixtures the excess Gibbs energy is

GE

RT
¼ x1x2

τ21G21

x1 þ x2G21
þ

τ12G12

x2 þ x1G12

� �

ð3Þ

where
G12 ¼ exp ð�α12τ12Þ; G21 ¼ exp ð�α21τ21Þ ð4Þ

τ12 ¼
g12 � g22

RT
; τ21 ¼

g21 � g11
RT

ð5Þ
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The significance of gij is an energy parameter characteristic of the i-j interaction. Parameter α12

is related to the nonrandomness in the mixture; when α12 is zero, the mixture is completely

random and Eq. (1) reduces to the two-suffix Margules equation [55]. The NRTL equation

contains three parameters, but reduction of experimental data for a large number of binary

systems indicates that α12 varies from about 0.20 to 0.47; when experimental data are scarce,

the value of α12 can often be set arbitrarily; a typical choice is α12 ¼ 0.3. From Eq. (3), the

activity coefficients are

lnγ1 ¼ x22 τ21
G21

x1 þ x2G21

� �2

þ
τ12G12

ðx2 þ x1G12Þ
2

" #

ð6Þ

lnγ2 ¼ x21 τ12
G12

x2 þ x1G12

� �2

þ
τ21G21

ðx1 þ x2G21Þ
2

" #

ð7Þ

For strongly nonideal mixtures and especially for partially immiscible systems [56], the NRTL

equation often provides a good representation of experimental data if care is exercised in data

reduction to obtain the adjustable parameters.

The equations discussed are readily to as many components as desired without any additional

assumptions and without introducing any constants other than those obtained from binary

data. For a solution of m components, the NRTL equation is

GE

RT
¼

X

m

i¼1

xi

X

m

j¼1

τjlGjixj

X

m

l¼1

Glix1

ð8Þ

where

τij ¼
gij � gjj

RT
, τji ¼

gji � gii

RT
ð9Þ

Gji ¼ exp ð�αjiτjiÞ ðαji ¼ αijÞ ð10Þ

The activity coefficient for any component i is given by

lnγi ¼

Xm

j¼1
τjiGjixj

Xm

l¼1
Glixl

þ
X

m

j¼1

xjGij
Xm

l¼1
Gijxl

τij �

Xm

r¼1
xrτrjGrj

Xm

l¼1
Gljxl

0

@

1

A

2

4

3

5 ð11Þ

Eqs. (8) and (11) contain only parameters obtained from binary data. The experimental tie line

LLE data of multicomponent mixtures can be correlated using the NRTL model within well-

known simulation software such as Aspen Plus. The quality of the correlation is measured by

the root-mean-square deviation (RMSD) [16]. Many NRTL LLE values for the ternary and

quaternary systems containing water, phosphoric acid, and solvent have appeared in the
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available literature [11, 16, 17]. For example, in Figure 3, the calculated NRTL data have been

used to plot and show the variation of distribution coefficients of acid for (water þ phosphoric

acid þ mixed-solvent (DCM þ DCE)) system at temperature T ¼ 298.15 K. Furthermore,

several optimization algorithms such as genetic algorithm (GA) [57], bee algorithm (BA) [58],

and simulated annealing (SA) [59] can be applied to predict the binary interaction parameters.

As can be seen in Table 3, the SA and NRTL models have been used to estimate the optimized

binary interaction parameters for an aqueous ternary system containing phosphoric acid [60].

Table 4 reports 12 NRTL binary interaction parameters obtained using BA for the quaternary

aqueous mixture including phosphoric acid and (50% DCM þ 50% DCE) [61].

4.2. UNIQUAC equation

A critical examination of the derivation of the NRTL equation shows that this equation is more

suitable for HE than GE [53]. Abrams derived an equation that, in a sense, extends the quasi-

chemical theory of Guggenhiem [56] for nonrandom mixtures to solutions containing mole-

cules of different size. This extension was therefore called the universal quasi-chemical theory

or, in short, UNIQUAC. The UNIQUAC equation for GE consists of two parts: a combinatorial

part that attempts to describe the dominant entropic contribution and a residual part that is

due primarily to intermolecular forces that are responsible for the enthalpy of mixing. The

combinatorial part is determined only by the composition and by the sizes and shapes of the

molecules; it requires only pure-component data. The residual part, however, depends also on

i-j AijðKÞ * AjiðKÞ

1–2 7.01 62.86

1–3 996.58 334.13

2–3 230.64 270.65

*gij (J mol�1) ¼ Aij (K)/RT.

Table 3. Correlated LLE results from theNRTL (α12¼ 0.3)model using SA; the corresponding binary interaction parameters,

Aij and Aji, for ternary system water (1) þ phosphoric acid (2) þ DCE (3) þ 10 wt% CaCl2 at temperature T ¼ 298.15 K.

i-j AijðKÞ AjiðKÞ

1–2 2492.75 �419.50

1–3 2303.05 1212.55

1–4 7.56 �3652.94

2–3 2466.50 4329.12

2–4 �2316.04 �2817.74

3–4 �854.74 �3413.39

Table 4. NRTL (α12¼ 0.3) interaction parameters, Aij and Aji, using BA for quaternary LLE system water (1)þ phosphoric

acid (2) þ (50% DCM (3) þ 50% DCE (4)) at temperature T ¼ 298.15 K.
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intermolecular forces; the two adjustable binary parameters, therefore, appear only in the

residual part. The UNIQUAC equation is

GE

RT
¼

GE

RT

 !

combinatorial

þ
GE

RT

 !

residual

ð12Þ

For a binary mixture,

GE

RT

 !

combinatorial

¼ x1ln
Φ1

x1
þ x2ln

Φ2

x2
þ

z

2
x1q1ln

θ1

Φ1
þ x2q2ln

θ2

Φ2

� �

ð13Þ

GE

RT

 !

residual

¼ �x1q
0
1ln ðθ0

1 þ θ
0
2τ21Þ � x2q

0
2ln ðθ0

2 þ θ
0
1τ12Þ ð14Þ

where the coordination number z is set equal to 10. Segment fraction, Ф, and area fraction, θ

and θ
0, are given by

Φ1 ¼
x1r1

x1r1 þ x2r2
, Φ2 ¼

x2r2
x1r1 þ x2r2

ð15Þ

θ1 ¼
x1q1

x1q1 þ x2q2
, θ2 ¼

x2q2
x1q1 þ x2q2

ð16Þ

θ
0
1 ¼

x1q
0
1

x1q01 þ x2q02
, θ

0
2 ¼

x2q
0
2

x1q01 þ x2q02
ð17Þ

where

lj ¼
z

2
ðrj � qjÞ � ðrj � 1Þ ð18Þ

Parameters r, q, and q0 are pure component molecular structure constants depending on

molecular size and external surface areas. In the original formulation, q ¼ q0. To obtain better

agreement for systems containing water or lower alcohols, q0 values for water and alcohols

were adjusted empirically by Anderson [62] to give an optimum fit to a variety of systems

containing these components. For alcohols, the surface of interaction q0 is smaller than the

geometric external surface q, suggesting that intermolecular attraction is dominated by the

OH group (hydrogen bonding). For fluids other than water or lower alcohols, q ¼ q0.

For each binary mixture, there are two adjustable parameters, τ12 and τ21. These, in turn, are

given in terms of characteristic energies Δu12 and Δu21, by

τ12 ¼ exp �
Δu12
RT

� �

� exp �
a12
T

� �

ð19Þ

τ21 ¼ exp �
Δu21
RT

� �

� exp �
a21
T

� �

ð20Þ
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For many cases, Eqs. (19) and (20) give the primary effect of temperature on τ12 and τ21.

Characteristic energies Δu12 and Δu21 are often only weakly dependent on temperature.

lnγ1 ¼ ln
Φ1

x1
þ

z

2
q1ln

θ1

Ф1
þ Ф1 l1 �

r1
r2
l2

� �

� q01 lnðθ
0

1 þ θ
0

2τ21Þ þ θ
0

2 q
0
1

τ21

θ
0

1 þ θ
0

2τ21
�

τ12

θ
0

2 þ θ
0

1τ12

 !

ð21Þ

lnγ2 ¼ ln
Φ2

x2
þ

z

2
q2ln

θ2

Ф2
þ Ф2 l2 �

r2
r1
l1

� �

� q02 lnðθ
0

2 þ θ
0

1τ12Þ þ θ
0

1 q
0
2

τ12

θ
0

2 þ θ
0

1τ12
�

τ21

θ
0

1 þ θ
0

2τ21

 !

ð22Þ

For a multicomponent system, the UNIQUAC equation for the molar excess Gibbs energy is

given by the sum of

GEðcombinatorialÞ

RT
¼
X

m

i¼1

xiln
Φi

xi
þ

z

2

X

m

i¼1

qixiln
θi

Φi
ð23Þ

and

GEðresidualÞ

RT
¼ �

X

m

i¼1

q0ixiln
X

m

j¼1

θ0
jτji

0

@

1

A ð24Þ

where segment fraction Ф and area fractions θ and θ0 are given by

Φi ¼
xiri

X

j

xjrj

, θi ¼
qixi

X

m

j¼1

qjxj

, θ0
i ¼

q0ixi
X

m

j¼1

q0jxj

ð25Þ

The activity coefficient for any component i is given by

lnγi ¼ ln
Φi

xi
þ

z

2
qiln

θi

Φi
þ li �

Φi

xi

X

m

j¼1

xjlj � q0iln
X

m

j¼1

θ0
jτji

0

@

1

Aþ q0i � q0i

X

m

j¼1

θ0
jτij

X

m

k¼1

θ0
kτkj

ð26Þ

i-j uijðJ mol�1Þ ujiðJ mol�1Þ

1–2 3589.99 �2835.91

1–3 909.55 4182.19

2–3 3043.92 �4435.44

*r1 ¼ 0.920, r2 ¼ 3.000, r3 ¼ 4.827 *q1 ¼ 1. 400, q2 ¼ 4.000, q3 ¼ 4.196

*ri and qi are the UN1QUAC structural parameters.

Table 5. Optimized UNIQUAC binary interaction energy parameters, uij and ujiðJ mol�1Þ, for water (1) þ phosphoric

acid (2) þ butyl acetate (3) ternary system at T ¼ 308.2 K [12].
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Themolecular interaction-basedmodel of UNIQUAC successfully has correlated many LLE data

of ternary and quaternary systems [10, 15–17, 24] within Aspen Plus—for example, see Table 5;

however, as previously mentioned, during the last 10 years, many LLE-based algorithm—GA,

SA, and BA—have been developed and introduced in the literature [57, 60, 61]. Recently, a study

on improved binary parameters using GA for ternary mixtures: UNIQUAC model has been carried out

by Hamidi [63].

4.3. GMDH-type neural network

It is observed that usually LLE measurements are successfully correlated using common

models such as NRTL and UNIQUAC. However, these conventional thermodynamic methods

for data prediction of complex systems are tedious and involve a certain amount of empiri-

cism. Recently, a new prediction method, the group method of data handling, was developed

to predict LLE and VLE data in order to avoid these limitations [64, 65]. Namely, the GMDH tie

line data for the ternary system of water þ phosphoric acid þ dichloromethane have been

illustrated in Table 1 [10, 26]. Furthermore, the reliability of the presented tie line results can be

tested through the Othmer-Tobias [66] and Bachman [67] correlation equations.
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