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Abstract

The fish brain has a unique feature of vertebrates—it grows with the growth of body over 
a lifetime. In this regard, fishes are a convenient model for the study of embryonic and 
postembryonic development of the central nervous system and of the influence of differ-
ent factors on these processes. Currently, the mechanisms of adult brain morphogenesis 
of fish, which retain larval stage for a long time, are poorly understood. This is particu-
larly true for participation of radial glia during morphogenesis of the brain, as well as 
the presence and distribution of the proliferative zone in the adult fish brain. Another 
interesting and little known aspect is the posttraumatic ability of fish to form active neu-
rogenic niches. Investigation of the structural organizations of neurogenic niches and 
special conditions of the extracellular environment, as well as the interactions between 
neighboring cells in a neurogenic niche, is interesting and relevant direction in the study 
of the neuronal stem cells biology. Injury of fish brain creates special conditions for the 
implementation of genetic programs aimed at strengthening the proliferation of progeni-
tor cells, as well as the activation and proliferation activity in the neuronal stem cells.

Keywords: adult neurogenesis, neurogenic niche, radial glia, reparative neurogenesis, 
proliferation, migration, neuroal differentiation, teleost fishes, regeneration, matrix 
areas of brain, apoptosis, neuroprotective factors, neural stem cells

1. Introduction

Among vertebrates, fishes are known to be able to effectively restore the structure of cells 
and fibers after damage of the central nervous system (CNS). They have the ability to restore 
the number of damaged cells by production of new cells in the matrix areas of the brain and 
neurogenic niches and the ability to restore the structure of damaged axons of neurons in 
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the spinal cord pathways [1]. However, it is currently unknown how this process is related 
to the neurogenesis in the adult brain and what elements of the matrix areas of the brain are 
involved in the reparative neurogenesis in fish. The evolutionarily ancient animal groups are 
often used as a convenient model for neurogenic studies in adults. The brain of such animals 
has a large number of periventricular proliferative zones and active zones of secondary neu-
rogenesis [2, 3]. In contrast to the mammalian brain, numerous proliferative regions have 
been found in adult fish. The presence of such regions was described in Apteronotus leptorhyn-

chus [4], Sparus aurata [5], Gasterosteus aculeatus [6], Danio sp. [7, 8], and Austrolebias sp. [9].

The regenerative processes in the brain of fish after the damaging impact are determined 
by a number of factors, which distinguish the dynamics of this process from that in other 
vertebrates, particularly mammals and humans [10, 11]. It is known that the brain injury 
in the mammalian brain results in a number of pathological changes associated with the 
development of an inflammatory response to the toxic effects of glutamate and other inflam-

matory mediators, and further pathological changes associated with processes of secondary 
inflammation and involve massive cell death [12, 13]. As a result of CNS trauma, the mam-

malian cells are exposed to severe necrosis and only a small part of them is eliminated via 
apoptosis [14]. In the fish brain, the cellular response to the trauma develops in a different 
scenario. Apoptosis is observed 5 min after the injury, which progresses in the next few days 
[7]. The elimination of damaged cells is carried out by phagocytes (microglia/macrophages), 
which remove damaged cells very effectively and provide a «clean» cell death without the 
remaining damaged cellular material and the development of secondary inflammation [15]. 
The replacement of the large amounts of dead cells resulted from the damage in the fish brain 
appears from various sources: the radial glia, centers of primary and secondary proliferation, 
and neurogenic zones. The high regenerative potential in the central nervous system of fish is 
provided by the activation of specific regenerative factors [1] and the effect of neuroprotective 
factors protecting damaged cells and providing long-term survival of cells formed as a result 
of reparative neurogenesis.

2. Adult neurogenesis and neural regeneration in fish brain

Neuroregenerative properties were investigated in various parts of the fish brain: retina [16], 
optical tectum [17], spinal cord [11], and cerebellum [17]. According to the «Lesion paradigm» 
formulated by Zupanc and his colleagues [10], a high regenerative potential of the central ner-
vous system of fish is determined by a number of different processes, including the response 
of the central nervous system after a damaging effect.

The first few reports related to the development of this theory have been derived from stud-
ies on European carp Carassius vulgaris after injury of the spinal cord at the cervical/thoracic 
levels and monitoring of structural recovery within 2 weeks from the date of damage. In these 
studies, however, the histological studies of crossed pieces of the spinal cord have not been 
conducted, but the conclusions were made for the first time on the functional repair and res-
toration of motor activity (ability to swim) after application of the damaging effects [11, 18].
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Significant progress in understanding the basic signs of successful regeneration after ampu-

tation of the caudal portion of the spinal cord has been made in research on electric fish 
A. leptorhynchus [2]. In animal studies, it was demonstrated by the successful restoration of 
the lost fragments of the spinal cord, along with the amputated part of the caudal fin. One 
of the initial stages of the repair process, resulting from an injury is the rapid destruction of 
damaged cells via apoptosis. The first cells with signs of apoptosis occur in an area of dam-

age within 5 min after the injury, and then the number of cells gradually increases, reaching 
a maximum value within a few hours.

On the second day, the number of cells gradually declined, reaching the background level 
after approximately 3 weeks. During this period, only some cells underwent necrosis. An 
elimination of damaged cells by apoptosis in the brain of fish differs significantly from that 
of mammals [15]. In contrast, the main process of elimination of damaged cells to the injured 
area of mammals is necrosis [19]. Apoptosis also affects the small part of cells in the areas sur-

rounding injury. The prevalence of necrosis in the mammalian brain after injury is one of the 
causes of subsequent secondary inflammation in the lesion [14], which in turn causes a further 
increase in response of necrotic injuries, resulting in the formation of larger cavities deprived 
of cells. These cavities are usually restricted area of reactive astrocytes, creating both mechani-
cal and biochemical barriers that impede the growth of nerve fibers and cell migration into the 
damaged area. Unlike necrosis, apoptotic cells characteristically show overall compression, 
condensation of the nucleus, and the formation of vesicles, which are subsequently destroyed 
by the macrophages/microglia [20].

Initially, the numbers of phagocytes in the area of damage were small, but after about 3 days 
of injury, the number of macrophages begins to increase in the area of injury and in the adja-

cent areas [21]. The main side effects of necrosis, associated with inflammation of the sur-

rounding tissue, are completely absent in apoptotic “clean” method of elimination of cells. 
Thus, the prevalence of processes of “clean” cell death for the destruction of damaged cells is 
a key feature underlying the regenerative capacity of the adult fish brain.

An important aspect of promoting successful regeneration in the brain of the fish is the detec-

tion of specific neuroprotective factors which play a key role in maintaining the viability of 
neurons in the affected areas and prevent further cell death after injury [22]. Such factors are 
being considered as different substances, in particular some of the calcium binding proteins, 
such as calbindin-28 and parvalbumin. Expression of these calcium-binding proteins in the 
cells briefly increases in granular layer of the cerebellum of A. leptorhynchus between 16 h 
and 7 days after injury [23]. It is assumed that the calcium-binding proteins have a protective 
effect by the buffering of free calcium, the level of which increases considerably after injury. 
Another neuroprotective factor is the enzyme glutamine synthetase (GS), which conversed 
synaptically released glutamate in the neutral glutamine. It is known that as a result of dam-

age to the brain cells, the extracellular medium receives a large amount of glutamate, creating 
hyperexcitation of glutamate receptors and the excitotoxicity [12]. To dispose of glutamate, 
there arises a necessity of a sufficient amount of the enzyme glutamine synthetase excreted 
by astroglial cells, carrying out the reuptake of glutamate and converting it into glutamine. 
According to studies, after traumatic injury of fish, levels of glutamine  synthetase significantly 
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increased [24], whereas in the mammalian brain, conversely, decreased [13, 25]. Increased 
synthesis of glutamine synthetase in the brain of the fish is likely to provide an important 
mechanism for reducing the neurodegenerative process caused by neurotoxic effects of glu-
tamate. Such differences in the expression of GS in fish’s brain and in mammals are certainly 
interesting because they determine significant limitations of regenerative activity of the brain 
tissue of mammals in comparison to the fish brain.

3. Apoptosis and cell migration after injury of cerebellum

We observed the apoptosis and migration of cells in the young masou salmon Oncorhynchus 

masou after mechanical injury of the cerebellum. Two days after injury in adjacent zone, we 
detected significant change in cell composition in molecular and in the granular layers [26]. 
The most characteristic phenomenon was the emergence of large areas of cell migration from 
the area of regional neurogenic niches and the largest area of the secondary neurogenesis, 
located in the dorsomedial part of cerebellar body (Figure 1A).

We believe that it was mainly due to the migration process in neurogenic niches and dorso-
medial area. The highest density of cells was detected in the vicinity of the puncture area, 
gradually decreasing with the distance from the area of injury. Near the area of injury, many 
TUNEL-labeled components corresponding to different stages of the apoptotic process were 
localized (Figure 1B). So, dense apoptotic bodies, which are the final stage of coarse chroma-
tin condensation and apoptotic cell degradation, were found. The size of apoptotic bodies 
was about 8–10 μm. In areas of apoptotic fragments localization were found large cells with 
basophilic cytoplasm, the diameter of cells body is about 13 μm. These cells tend to have an 
irregular shape and had cytoplasmic outgrowths. Presumably, these structures correspond to 
regional microglia/macrophages involved in phagocytosis of apoptotic fragments and recy-
cling. Along with individual elements, there also occurred small conglomerates, including up 
to three apoptotic bodies.

Another variety of apoptotic bodies were small TUNEL-labeled bodies representing degranu-
lated fragments of damaged cells. In the most superficial parts of the molecular layer was 
observed a very large number of small cells lacking the morphological features of differen-
tiation (Figure 1C). Such morphological pattern of surface of the molecular layer apparently 
reflects the intensity of the processes of cell migration from the superficial regions of the 
cerebellum to the zone of injury. The surface area which has been characterized by a high 
density of cells revealed TUNEL-labeled small elements corresponding to cell degranulation 
products in the area.

In our studies, some effects of the damaging of cerebellum were combined with complex mor-
phogenetic background of the ongoing postembryonic development of the brain O. masou. 
The experimental fish was in the process of active growth, resulting in increased proliferative 
activity in the cerebellum and morphogenetic zones of periventricular regions of the brain 
(Figure 1C). Previously in experiments with Danio rerio, it has been found that damage to the 
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cerebellum causes increased proliferation of cells in the outer regions adjacent to the meninges 
and also in valvula cerebelli and granular eminentia [27]. These data were obtained using experi-
mental labeling BrdU of dividing cells [28] and other markers of cell proliferation [29]. High 
neurogenetic activity after traumatic injury was detected in the cerebellum of A. leptorhynchus. 
In this species belonging to the group of specialized electrical gymnotiformn fish cerebellum, 
it takes up 75% of total brain volume; it is the largest center for neurogenesis both during nor-

mal adult development and in terms of traumatic impact [30].

In juvenile O. masou was observed very high initial intensity of proliferation in the primary 
matrix region of brain (periventricular zone) and in zones of secondary proliferative activity 
detected in adult animals [31]. The corresponding data obtained by labeling both the prolifer-

ative cell nuclear antigen (PCNA) and using traditional morphological methods to assess the 

Figure 1. Patterns of cell migration and apoptosis in the cerebellum of juvenile masou salmon Oncorhynchus masou after 
injury. A—common view of the areas of trauma, small arrow shows the area of puncture, black arrows (here and below) 
show apoptotic bodies; B—dorsomedial part of corpus cerebellum, which contains migrating from the surface layer (SL) 
cells (contoured by rectangle), the big arrow indicates the direction of radial migration; C—lateral part of the molecular 
layer (ML) contained cells migrating to the area of injury, arrows show the direction of the tangential migration, big  

arrow—radial migration, dark arrows show TUNEL-labeling fragments of degranulated cells, D-m—dorsomedial, D-l—
dorsolateral area; D—the area of median suture, small squares delineated clusters of migrating cells, in other squares 
are small TUNEL-labeled fragments, and apoptotic cells, arrows show the different types of cells; ML—molecular layer, 
GrL—granular layer. Scale bar: A—200 μm, B-D—100 μm.
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mitosis in matrix areas of brain (in particular, the dorsomedial region). The intensity of cell 
proliferation in this region has been previously described in adults D. rerio [7, 32] and A. lepto-

rhynchus [4] and juveniles of trout, Salmo gairdneri [33]. In our observations, particularly high 
proliferative activity has been identified in the dorsomedial area, the surface layer and the 
body of cerebellum, granular eminentia and vestibule-lateral areas of a damaged cerebellum. 
Thus, we can conclude that the proliferation of cells in these areas of the cerebellum, which is 
already very intense during normal morphogenetic activity within a given period of ontogen-
esis, is further enhanced after the damaging effects. The presence of newly formed cells in the 
superficial layer of the cerebellum associates partly with background morphogenetic activity 
and partly with damaging effects. As a result of damage to the cerebellum in young O. masou, 
enhanced proliferative activity was induced in both traditional areas of adult neurogenesis 
and the surface layer.

Counting the number of cell nuclei stained with methyl green, which was carried out on the 
surface layer of the cerebellum, indicates the presence of a large number of undifferentiated 
cells with high nuclear-cytoplasmic ratio. Such cells based on morphological criteria can be 
referred as proliferating population and cell population at the early stages of differentiation 
and/or migration.

We believe that the proliferative response to damage the cerebellum in young O. masou should 
be interpreted taking into account the relatively high background level of activity of the matrix 
areas of brain [34]. The process of apoptotic cell death accompanies the “normal” adult neu-
rogenesis [35], and, at the same time, it is a physiological response of the nervous system to 
injury of O. masou cerebellum. Apoptosis during normal development has been described in 
the brain of A. leptorhynchus [27]. In these studies, it was found that during the proliferative 
activity of matrix areas, cerebellar cells formed with signs of somatic aneuploidy. This mate-
rial is obviously defective, because the relevant units do not have a normal diploid number 
of chromosomes, and is subject to elimination of apoptotic scenario [36]. In studies on intact 
adult specimens of Amur sturgeon have been found high values of apoptotic index in differ-
ent parts of the central nervous system, including the integrative centers of brain (optic tectum, 

cerebellum) and sensory centers of the brain stem (nucleus V and VII cranial nerves pairs) 
[35]. Similar phenomena are typical for continuing morphogenetic activity in the various cen-
ters of the brain of fish, where continued replenishment of new cells occurs throughout life. 
The resulting cells appeared de novo can be integrated into existing neural networks not only 
during embryonic neurogenesis but also in adult animals. This phenomenon, in particular 
the special characteristic of the sensory areas, updated with new structural elements as the 
growth of the animal. Apoptosis in these physiologically active developing systems may play 
a role of physiological filter that regulates the number of new cells and ensures elimination of 
“old cells”.

Large TUNEL-labeled bodies (Figure 1D) conform to the final stage of chromatin degradation 
in apoptotic cells. This stage is characterized by the formation of large condensed fragments 
of chromatin that cannot be disposed by macrophages/microglia. These apoptotic bodies 
were also identified in the morphogenetic studies in mammals [37]. Other visible TUNEL-
labeled elements are small weakly diffused particles, which are products of degranulation of 
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cells that are eliminated by apoptosis. These “remnants” of the cells were identified over large 
areas, located in different parts of the cerebellum. These different types of TUNEL-labeled 
structures in the cerebellum of O. masou were identified almost everywhere. Apoptotic index 
values that vary significantly in different parts of the cerebellum show different intensity of 
apoptosis in the matrix zones, areas of trauma, and in adjacent areas of intact regions of the 
cerebellum of young O. masou.

In our studies on the second day from the date of injury to the cerebellum, intensity of TUNEL-
labeling of apoptotic bodies was not very high [26]. However, apoptosis in a zone adjacent 
to the areas of trauma has been well defined. This surely indicates a part of the mechanism 
in the process of disposing of damaged cells. In the mentioned period of time (2 days after 
injury) in the area of damage was revealed increased density of distribution undifferentiated 
cells. This fact indicates that the reparative process moved at a later stage. Apparently, the 
reparative processes of neurogenesis in juvenile salmonids implemented in earlier periods 
compared with what is commonly referred to in the literature [1, 27, 28]. This is likely due to 
the high intensity of the background morphogenetic activity in the cerebellum of young fishes 
as compared to that in adult animals.

After mechanical trauma of the cerebellum, patterns of tangential and radial cell migration 

can be observed. The zones of cell migration are best expressed in the dorsal part of cerebel-
lar body, as well as in the areas of secondary neurogenesis. In our experimental conditions, 
two groups of TUNEL-labeled structures were identified: large TUNEL-labeled bodies, cor-

responding to the final stage of degradation of apoptotic cells, and small, weakly condensed 
particles, which are apparently products of cells degranulation. In the matrix areas, areas of 
trauma, and intact areas of the cerebellum, different levels of apoptotic activity were observed. 
The highest value of apoptotic index (5%) after the traumatic impact on the cerebellum was 
observed in the molecular layer, which is the main area of radial migration of cells. Thus, the 
background morphogenetic processes and physiological repair processes dominate in the cer-

ebellum of young O. masou after traumatic exposure. The intensity of apoptosis vary between 
different areas of masu salmon cerebellum, as these areas differ considerably.

4. In vivo investigation of cell migration after mechanical injury

Microglia/macrophages have been identified within a few days after lesions in several divi-
sions of the CNS of teleost fish—the cerebellum [38], the dorsal telencephalon [39, 40], and the 
retina [41]. We used multiphoton confocal microscopy for the in vivo study of early response 
of microglia/macrophages in the damaged midbrain of juvenile chum salmon Oncorhynchus 

keta [42]. The results obtained allow the use of injection of DiI in the area of brain injury as a 
method to identify a population of phagocytic cells in the brain, based on the physiological 
response of macrophages/microglia. Thus, the injury with injection of small particles of dye 
DiI causes the phagocytic response from macrophages within 30 min after the application of 
the damaging effects (Figure 2A). This allows the use of fluorescent lipophilic carbocyanine 
dye DiI (1,1′-dioctadecyl-3,3,3′3′-tetramethylindocarbocyanine perchlorate, Aldrich, Sigma, 
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USA) as a vital nonspecific marker of microglia/macrophages. In mesencephalon (tectum opti-

cum) of fish, thin needle containing crystals of dye puncture to a depth of 2–3 mm was applied. 
After that, the animal was placed in a separate aquarium with fresh water and with enhanced 
aeration for recovery. In 780 LSM microscope for multiphoton microscopy, we used lasers 
with pulse durations up to 10–13 (100 femtoseconds). Pulses follow with a high frequency 
(100 MHz), and the intervals between pulses is significantly shorter than the time ranking of 
the beam during scanning. The average radiation power at the same time may be small, of the 
same order as that of a single-photon excitation [42].

Animal at the beginning of the experiment was lying on the back, was submerged in the 
aquarium water, the surface of the skull was tightly pressed to the bottom wall of the spe-
cial POC-R chamber. The brain of the animal was examined as a whole, without opening 
the skull and removing pigmented primary brain tunic. Thus, the substance for the study of 
DiI-labeled cells initially represented structurally heterogeneous environment, including the 
bones of the skull, cerebrospinal fluid, primary brain tunic, and brain tissue. The observation 
was carried out with special planar lens with built-in color correction (Advanced Correction 
System) at 20x magnification. The sample of cells was carried out in the middle portion of the 
optical section at a depth of 200 μm. Since the observations were made in in vivo mode (with-
out production of brain sections), the scanning process have some aberrations.

After 30 min of exposure DiI to mesencephalon of juveniles O. keta, we observed local bright 
fluorescent cell bodies located in the midbrain tegmentum (Figure 2A). Cells were numerous, 
uniformly distributed on the depth of the investigated optical section and formed clearly a 
visible row of selective labeled components (Figure 2A).

As a result of optical scanning, we observed DiI-labeled elements without outgrowths, 
which formed local clusters (after 2 days) and were presented by individual elements (after 
30 min) (Figure 2B). After 2 days in the optical sections of damaged tegmentum, the den-
sity of distribution of DiI-labeled cells was demonstrated as occurrence of cell conglomer-
ates (Figure 2B). To investigate the space relationships of DiI-labeled cell conglomerates 
observed in the area of injury 2 days after injury with DiI-unlabeled, but intensely pig-
mented melanocytes of primary brain tunic, we spent the overlay of transmitted and fluo-
rescent channels (Figure 2C). As a result of intensive multiphoton radiation, the majority 
of melanocytes in the primary brain tunic observed “light reaction” in which the outflow 
of melanin to the central part of the cell body was recorded (Figure 2C). Such melanocytes, 
devoid of outgrowths, were observed through a transmitted channel. DiI-labeled cells in 
deep layers of the midbrain tegmentum of juveniles O. keta were visualized through fluores-
cent channel and grouped into small conglomerates (Figure 2C). Thus, the overlay of trans-
mitted and fluorescent channels made it possible to reconstruct three-dimensional (3D) 
picture of fluorescent cell conglomerates in the midbrain tegmentum, which was located 
in deep layers in combination with surface patterns of distribution of melanocytes in the 
primary brain tunic in the mode of in vivo imaging.

Based on the analysis galleries of optical sections of the midbrain of juveniles O. keta was 
created 3D reconstruction of the spatial distribution of DiI-labeled cells in the damaged area 
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of tegmentum (Figure 2D). This 3D reconstruction shows that the distribution of fluorescent 
cells on day 2 after injury inflicted to tegmentum of juvenile O. keta is uneven. It revealed 
the formation of various DiI-labeled cell conglomerates, the number and amount of which 
increases toward the area of injury. Thus, for the surface layers of tegmentum characterized 
by large clusters of DiI-labeled cells (Figure 2B), in the deeper tegmental layers, smaller 
clusters of fluorescent cells were localized. Study of spatial relationships of DiI-labeled cells 
after 30 min of injury indicates the predominance of large accumulation of these cells in the 

Figure 2. The results of in vivo monitoring at different times after injury midbrain tegmentum of juvenile chum salmon 
Oncorhynchus keta and injection into the area of injury carbocyanine dye (DiI). A—DiI-labeled cells (white arrows) in 
the surface layers of tegmentum 30 min after injury; B—clusters of DiI-labeled cells (arrows) 2 days after the injury; 
C—overly of transmitted and fluorescent channels. Transmitted channel show body of DiI-unlabeled melanocytes 
(white arrows) with a “light reaction.” Fluorescence channel show DiI-labeled conglomerates of cells (arrows); D—3D 
reconstruction of 10 optical sections DiI-labeled cells in damaged tegmentum 2 days after injury. Multiphoton confocal 
microscopy. A, B, C—special planar lens (magnification 20x). Scale bar: 50 μm.
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superficial layers of the tegmentum and their distribution in the form of small conglomerates 
in the deeper layers.

In our studies, DiI was used as a dye for vital fluorescent multiphoton confocal microscopy. 
It can be regarded as a possible method of identifying populations of phagocytic cells in the 
brain, as the effective molecular markers that allow selective identification of populations 
of macrophages and microglia in the brain of the fish have not been developed so far. We 
supposed that using multiphoton confocal microscopy in vivo experiments allow to have the 
substantial preference [42]. The results of in vivo monitoring in different time after injury (30 
min and 2 days) suggest that as a result of midbrain injury of juvenile O. keta has experienced 
rapid cellular response and the emergence of numerous stained cells in the injuries area. It is 
indicating active participation of such cells in migration and phagocytosis of the dye in the 
area of injury.

5. Cell proliferation, neural stem cells and neuronal  

differentiation after injury

A common feature of any regeneration-competent CNS system examined thus far is that 
cells lost to injury are replaced by new cells that differentiate into various cell types, includ-
ing neurons. After the stab-wound lesion to the cerebellum of juvenile O. masou, pro-
cesses of proliferation and migration of cells were amplified compared with the intact brain 
(Figure 3A). However, these processes have properties of spatial specificity, so the most pro-
liferative activity characteristic for the dorsal matrix zone (DMZ). In this zone, proliferative 
activity was observed in normal (intact) conditions and we associate it with intensive per-
sistent neurogenesis in the cerebellum of young O. masou. After stab-wound lesion, we veri-
fied other areas with neurogenic activity located in the dorsal part of the molecular layer, 
the lateral and basal regions. The emergence of neurogenic zones is attributed to the inten-
sification of genetic programs in the proliferative neural stem cells (NSC) and the formation 
of local neurogenic niches (Figure 3A, C). Additionally to markers of neuronal differentia-
tion and proliferation, after stab-wound lesion to the cerebellum O. masou, expression of 
doublecortin (Dcort) was detected in cells and the fibers of molecular layer. Dcort is a spe-
cific marker of migrating stem cell population, and its expression was found in neurogenic 
niches of molecular layer 2 days after injury. The size and location of neurogenic niches 
in the molecular layer of the cerebellum containing Dcort-ip cells are differed. The largest 
accumulation of Dcort-ip cells were found at dorsal and dorsolateral areas. Additionally to 
neurogenic niches, in the infraganglionic plexus of cerebellum, single Dcort-ip NSC were 
revealed; in thickness of the molecular layer, Dcort-ip radial glial cells were identified. So, 
we observed the proliferative activity in neurogenic niches combined with differentiation of 
some cells and their subsequent migration to the area of injury.

In the DMZ of juvenile O. masou, after stab-wound lesion, four types of cells labeled by PCNA 
have been identified. These were small, round, intensely labeled cells, or elongated ones, 
which are able to migrate and form the tangential and radial rows (Figure 3B, D). DMZ has 
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been previously identified in other species of fish, in particular, D. rerio [28], A. leptorhynchus 

[32], Oncorhynchus mykiss [43]. Different species of fish do not have similar rates of prolifera-

tion in the DMZ; for example, the cerebellum of A. leptorhynchus contains 75% of the cells of 
the brain. These cells are formed mainly in the DMZ as well as granular eminentias.

After stab-wound damage to the cerebellum of juvenile O. masou, some neurons were elimi-
nated by apoptosis and replaced by new cells. In the first 10 days in the damaged area, the rate 
of cell proliferation was increased by several times compared with other parts of the cerebel-
lum. Experiments with BrdU labeling showed that the cells formed 2 days before the injury 
participate in the regeneration process [30]. This observation suggests a direct connection 
between the continuous cell proliferation in the intact brain and restoring of the damaged 
area. After injury to the fish’s brain, rate of cell proliferation is much higher than in normal 
conditions. It is believed that some young cells develop into definitive granule neurons and 

Figure 3. Localization of proliferative cell nuclear antigen (PCNA) in the cerebellum of Oncorhynchus masou 2 days after 
stab-wound injury of cerebellum. A—patterns of tangential migration (arrows) and neurogenic niche (in an oval) in the 
molecular layer of cerebellum; B—radial migration of PCNA-ip cells; C—neurogenic niche (in square); D—tangential 
migration of PCNA-ip cells. Scale bar: A—100 μm, B–D—50 μm.
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subsequently most often eliminated by apoptosis. Retrograde tracing in combination with 
BrdU labeling S-phase of mitosis has shown that new granule neurons project to the molecular 
layer [30]. This fact suggests that these neurons are integrated into the existing neural network 
of the cerebellum.

The intensity of proliferation depends on the nature of injury and the amount of damaged 
brain tissue. After the damaging effects in the cerebellum of O. masou, proliferative activity in 
the cells was significantly enhanced in the dorsal area (Figure 4A). These data are consistent 
with the established data for other species of fish, in particular A. leptorhynchus [28] indicating 
that the main volume of cell proliferation after injury localizes at the DMZ. At the surface layers 
of the lateral zones were detected neurogenic niches (Figure 4B), HuCD-ip individual undif-
ferentiated cells, and patterns of cells radial migration. Our results show that in the lateral area 
of cerebellum, migration processes intensified to compare with the dorsal one. Nevertheless, 
after a damaging effect in lateral zones were detected neurogenic niches containing HuCD-in 

Figure 4. Immunofluorescence labeling of parvalbumin in the control (A, B) and 2 days after stab-wound injury of 
cerebellum (C, D) of Oncorhynchus masou. A—dorsal; B—lateral part of corpus cerebellum; Par-ip cells and fibers are 
present in ganglion (GL) and molecular (ML) layers, the density of Par-ip is not high; C—emergence of Par-ip cells 
(arrows) in the granular layer (GrL); D—increasing of density Par-ip innervation in the molecular layer (contoured by 
rectangle) after injury. Scale bar: 100 μm.
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and Dcort-ip cells, which testifies to the existence of neural stem cells in the lateral area and 
enhancing their proliferative potency after injury.

In the basal area of O. masou, cerebellum proliferative activity of cells is high enough to control, 
but significantly reduced after damaging effects. The proliferative activity of the cells after the 
injury persists, prevailing over the processes of cell migration. A process of cell migration in 
basal zone is mild; however, after stab-wound lesion, the cell migration activity is increased. 
Thus, the proliferative activity of cells in the basal area of juvenile O. masou largely provides a 
persistent process of neurogenesis, however, after stab-wound lesion is decreased and begins 
to dominate the processes of cell migration.

Forebrain proliferative activity of juvenile O. masou revealed proliferative surface area cor-
responding to the periventricular area other fish, including the dorsal, lateral, and medial 
compartments. In addition to the large number of cell clusters in the surface zone, under con-
ditions of normal proliferation, some cells were observed in the parenchyma of telencephalon 
and were identified as single or paired immunopositive PCNA-labeled cells. The presence of 
such cells with a high proliferative potential evidences a high level of persistent neurogenesis 
in telencephalon of juvenile O. masou salmon.

After mechanical injury in the telencephalon of O. masou, there has been an increase of cell 
density of distribution in the proliferative zone. In the deep layers of the telencephalic paren-
chyma of masu salmon, we observed an increase in proliferative activity: the number of single 
PCNA-immunopositive cells grew compared to those in intact animals. Induced neurogen-
esis zone appeared; it was presented by neurogenic niches and areas of secondary neurogen-
esis surrounded by radial glial fibers.

HuCD-immunopositive cells were identified as part external proliferative zones and in the 
deep layers of the telencephalon juvenile O. masou. We established that in juvenile O. masou 

telencephalon, HuCD protein is detected in cells being at different stages of neuronal differen-
tiation. HuCD-immunopositive neurons were identified in the area of proliferative zone; dif-
ferentiated neurons of various degrees of maturity were found in the deeper layer. The same 
characteristic HuCD was different levels of marking immunopositive cells. Densitometric 
analysis allowed to distinguish two levels of protein HuCD activity in the telencephalon O. 

masou: intense and medium. However, definitive intensely labeled neurons dominated in all 
areas in the control animal’s brain.

We have identified four types of HuCD-labeled cells differing in morphological parameters (large 
and small size cell bodies) and optical density. Type 1 cells are the smallest undifferentiated cells 
with a high OD; Type 2 are larger oval cells with high and average value of OD; multipolar cells with 
high OD were the third type; and bipolar neurons with large high OD belong to the fourth type.

There are considerable changes in topography HuCD-immunopositive cells in the telen-
cephalon O. masou after mechanical injury. Occurrence of neurogenic niches was registered, 
representing a collection of intensely labeled HuCD positive cells. Appearance of neurogenic 
niches was registered, representing an accumulation of intensely labeled HuCD positive cells. 
The density of distribution of immunopositive and negative cells increased; also, a distinct 
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pattern of cell migration from the surface proliferative zone to the deep parenchymal layer 
was observed to appear.

This evidence based on HuCD and PCNA marking shows us the intense persistent neurogen-

esis in proliferative zone of dorsal region telencephalon O. masou. Distribution of neurogenic 
activity of deeper layers of the parenchyma appears after injury. The main sources of new 
neurons in the process of reparative neurogenesis are neurogenic niches.

6. Neuroprotective factors in damaged fish brain

Calbindin-D28k has been postulated to exert a neuroprotective function by buffering intracel-
lular free Ca2+. This hypothesis is supported by the findings that calbindin-D28k-expressing 
neurons exhibit a relative resistance to neurotoxicity induced by glutamate, calcium iono-

phore, or acidosis [44] and that the rate of survival of neurons can be increased after various 
types of insults by overexpression of the gene for calbindin-D28k [45, 46].

Other calcium-binding protein like parvalbumin may also be involved in the neuroprotective 
properties of fish nervous system. The results of studies on young O. masou showed that cerebel-
lum after injury can significantly increase the level of expression of parvalbumin (Figure 4A, C). 
In control animals, immunofluorescence of parvalbumin was detected in cells of ganglionic layer of 
the cerebellum (pear-shaped Purkinje neurons) and fibers of infraganglionic plexus (Figure 4A, B).  
After mechanical injury of the cerebellum, immunofluorescence of parvalbumin was found in the 
cells of the granular layer and multiple synaptic terminals in the molecular layer (Figure 4C, D).

According to Grosche et al. [13], glutamine synthetase (GS) is a specific glial protein per-

forming the conversion of toxic glutamate into a non-toxic amino acid, glutamine. In nor-

mal conditions, this mechanism prevents accumulation of glutamate neurotoxicity in nerve 
tissue, protecting neurons from cell death. But after a brain injury in a mammalian brain, 
volume of synthesized GS is insufficient to neutralize the toxic effects of glutamate. This 
determines such effects as the development of primary and secondary inflammations and 
progressive neurodegenerative processes observed following injury of the CNS in mam-

mals and human glutamine synthetase [13]. In fish, the increased activity of GS is likely 
to provide an important mechanism for reducing the neurodegenerative effects caused by 
glutamate neurotoxicity. This assumption indicates the presence of certain ways that deter-

mine such strong differences in the regenerative potential of the two taxa of vertebrates [47].

The results of immunohistochemical analysis of GS indicate significant differences between 
the distribution of the enzyme in normal conditions and after stab-wound lesion to the 
cerebellum (Figure 5A, C). In both cases, enzyme activity was identified in cells and fibers. 
Densitometric analysis of enzyme activity in cells has shown that there are two levels of 
activity: intensive and moderate. The results of the morphological analysis and some litera-

ture data [48] indicate that cells containing the GS represent the population of astrocytes. 
Morphological studies of GS-ip cells in the cerebellum in young O. masou show the presence 
of a heterogeneous population of cells in control (Figure 5A). A maximal number of GS-ip 
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cells have been identified in the molecular layer (Figure 5B). The density distribution of 
GS-ip cells in the molecular layer in control was quite high, which indicates a high level of 
GS activity and, possibly, its particular impact on the processes of persistent neurogenesis.

After stab-wound lesion to the cerebellum, maximal number of GS-ip cells has been identified 
in the granular layer of cerebellum (Figure 5C, D). Redistribution of cells synthesizing GS, 
from the molecular to the granular layer, was revealed.

In the lateral and dorsal regions of the cerebellum of O. masou, increased activity of GS in the 
fibers was observed (Figure 5C, D). In the control, activity of the fibers in the granular layer 
(granular eminence) is not high (Figure 5A). We identified heterogeneous population of GS-ip 
cells in cerebellum of O. masou. We believe that among these cells are present glutamatergic 
neurons, containing GS labeled of metabolic glutamate and astrocytes that can receive gluta-
mate due to its reuptake of extracellular space. The observations show that 3 days after injury 
in the cerebellum of O. masou, substantial redistribution of GS activity in various parts of the 
cerebellum may occur. Thus, in area of injury, we showed a significant increasing number of 
GS-ip cells (Figure 5C) and reducing number of GS-ip fibers (Figure 5D). This spatial specific-

Figure 5. Immunocytochemistry of glutamine synthetase in cerebellum of Oncorhynchus masou. A—general view of 
GS-ip element distribution in the area of median suture (MS) of corpus cerebellum; B—GS-ip cells (arrows) in molecular 
layer (ML) and infraganglionic plexus (IFGP), the body of Purkinje cells indicated by asterisk. Distribution of Glutamine 
synthetase in the cerebellum of Oncorhynchus masou 2 days after stab-wound injury; C—GS-ip cells in molecular layer 
(arrows); D—in the dorsal matrix zone (DMZ). Scale bar: A—200 μm; B—50 μm; C, D—100 μm.
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ity can be connected with both the toxicity, induced by stab-wound lesion, and change in the 
glutamatergic neurotransmission in damaged neural networks.

From other hand, the high activity of GS in control suggests the involvement of glutamate in 
plastic processes, including morphogenesis taking place during persistent neurogenesis in 
normal fish cerebellum [1, 47].

We believe that metabolic glutamate which is presumably involved in morphogenic cerebellar 
functions in O. masou can be localized in normal conditions, as in the growing neurons and in 
the fibers. This assumption is confirmed by the results of studies showing the high activity of 
GS in the cells of the molecular layer, especially in dorsal region. This region contains a DMZ 
of cerebellum, characterized by a high neurogenic activity (Figure 5D). Our results suggest 
that the pattern of GS activity was decreased during 3 days of injury, but we do not exclude 
the possibility that these changes are temporary. This hypothesis was supported by data of 
enzyme immunoassay (ELISA) carried out by us in the cerebellum of O. masou (Figure 6). 
Thus, during long-term monitoring, the GS activity was found to be increased during the 
initial few hours after injury (1–3 h) and then continue to increase till the 14th day, except a 
decrease in the 12 h after injury. However, these changes of metabolic activity of GS may only 
represent a local decrease in enzyme activity as shown on the third day. The results of ELISA 
immunoassay established that the enzyme activity after damaging effects has a complicated 
pattern. The increase in enzyme activity was observed during the first few hours (1–3 h) after 
injury and at second, fifth, and tenth days after the damaging effects (Figure 6). On the sec-
ond day, we observed increase in activity of GS by ELISA immunoassay, which is consistent 
with results of IHC labeling on frozen brain sections. Thus, the decrease in activity of GS on 
the third day after mechanical injury of cerebellum O. masou can be a particular manifestation 
of the changes in the metabolic status. At sufficiently high intensity of persistent neurogenesis 
in young O. masou, we tend to believe that the response from the GS-producing elements 

Figure 6. The immunoassay data of glutamine synthetase content in the cerebellum of Oncorhynchus masou at different 
time intervals after stab-wound injury. Protein concentration is 100 ng/ml. On the x axis are shown different time points 
after injury, whereas mean optical density is shown on y axis—(absorbance at 450 nm). Data are shown as mean ± S.E.M; 
*P < 0.05 significant differences compared to the control group (n = 5 in each group).
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in the cerebellum can be complex and ambiguous. So, damaging effects can be the cause of 
death of a large number of cells by apoptosis, as a result of glutamate toxicity. However, the 
presence of increased level of GS in first, second, and fifth day indicates a rather high-level 
production of the enzyme whose activity can be reduced and cyclically be determined by dif-
ferent factors, the nature of which remains to be established.

The increase in the number of GS-ip cells in the granular layer and the high activity of 
GS in them on the second and third day are referred by us to as the astrocytic response 
observed after a damaging impact. However, the number of these cells is not high enough 
for response to the GS-ip cells as «reactive gliosis» appeared on central nervous system 
of mammals after damaging effects. In the mammalian brain, as is known, as a result of a 
traumatic impact, pool of reactive astrocytes formed morphological and biochemical bar-
rier, features which significantly differ from those in normal astrocytes [47]. The cellular 
mechanism associated with the transformation of a population of astrocytes and isolating 
a subpopulation of activated glia in the brain of the fish is currently poorly understood. 
Unlike mammalian brain, astrocytes in a fish brain do not form the astrocytic barrier, which 
is characteristic for the development of posttraumatic process in the mammalian brain. 
Nevertheless, changing GS synthesis is an unambiguous evidence in favor of the neuropro-
tective properties of the enzyme and increased production in the cerebellum O. masou. This 
indicates that not only GS is the marker of cells involved in the conversion of glutamine/
glutamate but it can also be considered as an effective neuroprotective factor contributing 
to posttraumatic reparative processes.

7. Conclusion

The fish brain has a unique feature of vertebrates—it grows with the growth of body 
over a lifetime. In this regard, fish is a convenient model for the study of embryonic and 
postembryonic development of the central nervous system and of the influence of dif-
ferent factors on these processes. Injury of fish brain creates special conditions for the 
implementation of genetic programs aimed at strengthening the proliferation of progeni-
tor cells as well as activation and proliferation activity in the neuronal stem cells. Study 
of neurogenic activity, migration, and differentiation in the neurogenic niches contributes 
to a better understanding about how these structures operate, not only in fish but in other 
vertebrates as well.
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