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1. Introduction 

The inclusion of cameras in everything from cell phones to pens to children’s’ toys is 

possible because of the low cost and low power consumption of the imaging arrays that 

form the core of the cameras. However, these arrays are low cost and low power because 

they are CMOS-based; this allows for the devices to be made with the same processes and 

facilities that are used to make memory and computer chips. Yet, the continued surge in 

CMOS imager popularity goes beyond the lower cost to other factors such as ability to 

integrate the sensors with electronics, and the ability to achieve fast, customizable frame 

rates [1]. 

In this chapter, we will cover the design and layout of the various types of CMOS 

photodetectors and fundamentals of photo-conversion processes in these devices, including 

a brief review of CMOS photodetector history. We will then describe the emerging CMOS 

based technologies in photodetector design optimization to tune device responsivity, 

integration of micro-optics to achieve enhanced detection in low-light conditions, 

integration of photonic grating structures on photodetectors for spectral response selectivity, 

and bio-inspired CMOS imaging devices. We will conclude the chapter with some examples 

of applications of these technologies. 

2. CMOS photodetector history  

Since the mid-1960s, combinations of p-n (or n-p-n) junctions have been used to convert 

light into electronic signals [2, 3]. Work not only focused on the conversion of photons to 

electrons, but also on the ability to read the signals out from arrays of pixels. For example, 

Shuster and Strull reported in 1965 that they had developed a 2500 pixel array of 

phototransistors with 100 leads for readout [4, 5]. For these earliest devices, high gain had 

to be used at the pixels because no integration of light (or charge) was used. A year later, 

Weckler demonstrated how to operate a p-n junction photodiode in “photo flux 

integrating mode” which enabled pixels to be much simpler and ultimately smaller [6]. 
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Photon integration required that the photodiode be turned on for a fixed amount of time 

to raise (or lower) the voltage level on a charge storage device; thus, the amount of charge 

remaining (or charge that was removed) is proportional to the light intensity over that 

integration time.  

In the 1970s, CMOS detectors and imaging arrays began to lose popularity to Charge-

Coupled Device (CCD) -based imagers because CCDs could achieve a higher fill-factor; the 

fill-factor was lower for CMOS imagers because of the need for transistors at the pixels for 

read out and gain. The ability to produce CCD imagers with the necessary number of pixels 

for applications (such as TV) gave CCDs a large advantage over CMOS imagers [7]. Noise in 

CCDs was also considerable less than in CMOS devices; it was generally regarded that fixed 

pattern noise in CMOS imaging devices was worse than in CCDs, which remained true into 

the late 1980s and early 1990s. However, improvements in CMOS fabrication technology 

and increasing pressure to reduce power consumption for battery operated devices began 

the re-emergence of CMOS as a viable imaging device.  

It is generally regarded that the first all-CMOS sensor array to produce acceptable images is 

the active pixel sensor (APS) imager [8-10].  The APS design used the linear integration 

method [6] for measuring light because of the large output signal generated, as opposed to 

the logarithmic method [11-16]. The active column sensor (ACS) [17] is similar to the APS 

but has lower fixed pattern noise (FPN). As of 2011, we have CMOS image sensors that have 

14.6 Megapixels, and higher.  

While CMOS and CCDs continue to compete for a share of the image array sensor market, 

the ability to design custom integrated circuits (ICs) with photodetectors to perform specific 

functions is an enormous advantage over CCD arrays. These ICs are often used in 

applications that have specific requirements such as extremely low power consumption [18] 

or variable read-out (frame) rates [19] or very fast read-out rates [20]. Normal video rates of 

30 or 60 frames per second are fine for standard definition videos, but for some applications, 

frame rates of more than a thousand frames per second are needed to capture extremely fast 

occurring events (for example see [20]).  

CMOS photodetectors are the technology of choice in smart focal plane arrays. In the mid-

1980s, Carver Mead and Misha Mahowald introduced the Silicon Retina that used a 

“vertical bipolar transistor” as the light detecting element [21]. This spawned a significant 

amount of research into bio-inspired vision chips that used CMOS photodetectors combined 

with CMOS signal processing circuitry [22-32]. Generally, these chips are arrays of smart 

pixels with significantly more transistors per pixel than the three or four found in typical 

APS-based arrays. However, the relative low cost of fabrication for prototyping CMOS ICs 

enables chips with one, two, dozens or thousands of detectors to be designed, fabricated and 

tested. For chips with few photodetectors, the remaining silicon die area can be used for 

signal processing, read-out, or digital interface logic, so there is no wasted space. 

Applications of these custom detector and imaging chips range from sub-retinal implant 

imagers [33] to glare detection [34] to fluorescence imaging [35, 36] and x-ray imaging [37], 

to name a few. A study of three common photodiode structures available in non-

imager/standard CMOS processes provides valuable benchmark data for designers looking 

to use CMOS photodetectors [38]. While not an exhaustive study of all possible CMOS 

photodetectors, this chapter provides a useful starting point for selecting the best structure 

for the application. 
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3. Operation of CMOS photodetectors 

The core of the sensing element of a CMOS detector is the photosensitive element of the 
circuit. Photogates, phototransistors, and photodiodes all can be used as the sensing 
element. In this section, the use of a photodiode is discussed. As its name implies, the 
photodiode is simply a junction between a p-type and an n-type semiconductor, 
commonly known as a p-n junction. Although a simple p-n junction can be used for light 
detection, the more sophisticated p-i-n junction with an intrinsic region between the p-
type and n-type region is often used to improve the device efficiency. In this section, the 
basic working principle of a photodiode will be discussed, followed by a discussion on 
the p-i-n photodiode, and a method of signal amplification resulting in the avalanche 
photodiode.  

3.1 Photogeneration and recombination in semiconductors 

When a semiconductor is illuminated, a photon that has higher energy, hν, than the 
bandgap energy, Eg, may cause an excitation of an electron from the lower energy valence 
band to the higher energy conduction band. This results in a pair of the mobile charge 
carriers - electrons and holes.  This process known as photogeneration can occur if the total 
energy and total momentum among the photogenerated electron-hole pair and the incoming 
photon is conserved. 
The probability of photogeneration by a single photon is a property of the material. 

Macroscopically, this is described by the absorption coefficient, α. As a light beam 

propagates through a piece of homogeneous semiconductor, its power decreases 

exponentially as the semiconductor absorbs some of the power for photogeneration. The 

power that remains in the light beam after propagating through a depth of z is given by: 

 ܲ = ଴ܲ	exp	[−ݖߙሿ (1) 

where, P0 is the intensity at zero depth. Note that the rate of absorption, −dP/dz, decreases 
exponentially with depth. Therefore, more photogeneration is expected to occur near the 
surface.  
Because the photogenerated carriers exist in an excited state, the excess electrons and holes 

will recombine after a short period of time (~ picoseconds on average) to release the excess 

energy. This process is known as recombination, and it returns the carriers distributions to 

thermal equilibrium condition. These excess carriers are lost if they are not captured to 

create an electrical signal for light detection. Therefore, a semiconductor device structure is 

needed to facilitate the capturing of the photogenerated carriers. The simplest and most 

commonly used structure for this purpose is a diode structure known as photodiode (PD).  

3.2 Quantum efficiency and responsivity 

Before the discussion on photodiode, two important parameters that are used to 

characterize the effectiveness of detection by a photodetector should be discussed; these are 

quantum efficiency and responsivity. Quantum efficiency is defined as the probability that 

an incident photon will generate an electron-hole pair that will contribute to the detection 

signal, so it can be expressed as, 

ߟ  = ሺͳ − ℛሻߞ[ͳ − exp	ሺ−݀ߙሻሿ (2) 
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where, ℛ is the surface reflectance, ߞ is the probability that the generated electron-hole pair 
will become a contribution to the detection signal, and d is the depth of the photo-absorption 
region. Therefore, quantum efficiency is affected by material properties and device geometry.  
The captured carriers are used to generate a signal either as a voltage or a current. The 
measure of signal strength to incident power of the device is called responsivity. If the 
output is a current, then it is related to the quantum efficiency by the following expression, 

 ܴ = 	 ௤௛௩ ߟ = ௤௛௖ ߟ	ߣ = ఒଵ.ଶସ	[nm⋅W/A]
 (3) ߟ	

where, q is the electron charge and λ is the wavelength in nanometers. 

4. Photodiode 

Many photodetectors utilizes the formation of p-n junctions, and the simplest of these is a 
photodiode, because a photodiode is simply a p-n junction that is designed for capturing the 
photogenerated carriers. In CMOS sensing, a photodiode is usually made by forming an n-
type region on a p-type semiconductor substrate, or vice-versa. This can be done by epitaxial 
growth, diffusion or ion implantation. 

4.1 A quick review of P-N junction 

Figure 1 shows the carrier distributions, charge distribution, built-in electric field and band-
diagram of a typical p-n junction. The inhomogeneous charge and carrier distributions are 
the result of a state of equilibrium between diffusion, drift and recombination. The 
following is a review of the key features of a p-n junction, 
1. An absent of the carriers in a region known as the depletion region or space charge 

region. It has layer width, W, and ionic space charge of the donors and acceptors are 
exposed in this region. 

 

 

Fig. 1. (a) Diffusion of carriers at the p-n junction, (b) the resulting electron and hole density 
distribution, where Na and Nd are the acceptors and donors densities, (c) the resulting 
charge density distribution, (d) the resulting electric field, and (e) the band diagram of a p-n 
junction showing the alignment of the Fermi level, Ef, and shifting of the bands. Ev is the top 
of the valence band and Ec and the bottom of the conduction band. 
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2. Due the charge distribution, a built-in electric field, E, has emerged. 
3. Alignment of Ef between the p-type region and the n-type, as the conduction and 

valance bands shift in the depletion region. 
4. There is a potential difference of V0 between the p-side and the n-side. 

4.2 Operating rinciple 

The operation of a photodiode relies upon the separation of the photogenerated carriers by 

the built-in field inside the depletion region of the p-n junction to create the electrical signal 

of detection. Under the influence of the built-in electric field, the photogenerated electrons 

will drift towards the n-side, and photogenerated holes will drift towards the p-side. The 

photogenerated carriers that reach the quasi-neutral region outside of the depletion layer 

will generate an electric current flowing from the n-side to the p-side; this current is called a 

photocurrent. The generation of the photocurrent results in the shift of the I-V characteristic 

of the photodiode as shown in Figure 2. Therefore, the I-V characteristic of a photodiode is 

expressed as, 

௅ܫ  = sܫ ቂexp ቀ௤௏௞்ቁ − ͳቃ −  ph (4)ܫ

where, the first term is the Schottky Equation that described the ideal I-V characteristics 
with IS being the saturation current, k the Boltzmann constant and T the operating 
temperature, and the second term, Iph, is the photocurrent.  

 

Fig. 2. Photogeneration in a p-n junction: (a) the built-in electric field driving the 
photogenerated carriers from the depletion region away from the junction, and (b) shifting 
of the I-V characteristic due to the photogenerated current, Iph. 

4.3 Basic modes of operation 

A photodiode can be operated in three basic modes: open circuit mode, short circuit mode, 

and reverse bias (or photoconductive) mode.  The circuit diagrams of the three different 

basic operating modes are shown in Figure 3. 

Open circuit (OC) mode is also known as photovoltaic mode. As the name implies, in this 

mode, the terminals of the photodiode is connected an open circuit.  In this mode, there is no 

net current flowing across the photodiode, but due to the photogenerated current, a net 
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voltage is created across the photodiode, called the open circuit voltage, VOC. In reference to 

Figure 2(a), the photodiode is operating at the point where the I-V characteristic curve 

intersects the x-axis. 

 
 
 

 
 
 
 

Fig. 3. Basic operating mode of a PD: (a) open circuit mode, (b) short circuit mode, and (c) 
reverse-bias mode. 

In contrast, in the short circuit (SC) mode, the terminal of the photodiode is short-circuited. 
This allows the photogenerated current to flow in a loop as illustrated in Figure 3(b). In 
Figure 2(b), this is represented by the point at which the I-V characteristic curve intersects 
the y-axis. The current that flows in the loop in SC mode is also known as the short circuit, 
Isc, and it has the same magnitude as Iph.  
In reverse bias mode, a reverse bias is applied across the photodiode as shown in Figure 
3(c). Therefore it is operated in the lower left quadrant of Figure 2(b). Note that by applying 
a bias voltage, the potential difference across the p-n junction changes to V0 – V, and the 
balance between drift and diffusion in the p-n junction also changes. This will affect the 
depletion width (W) and E as well. The dependence of W on the bias voltage can be 
described by, 

 ܹ = ሺܭ ଴ܸ − ܸሻ௠ೕ  (5) 

where, K is a constant, and mj depends on the junction geometry (mj = 1/2 for a step junction 
and mj = 1/3 for a linear junction). Therefore, operating in reverse bias has the effect of 
increasing W. The increase in W is not as great as the change in the potential difference, 
because mj < 1, so E should also increase. From the point of view of charge distribution and 
Gauss’s Law, a wider depletion region exposes more of the ionic space charge, which in turn 
increases the electric field.  
The widened depletion region under reverse bias creates a greater photogeneration region, 
while the stronger E increases the drift velocity of the photogenerated carriers. In principle, 
the drift velocity increases in proportion with E, so even with an increase in W given by 
Equation (5), the transit time (the average time that a drifting carrier to reach the end of the 
depletion region) is reduced. Therefore signal loss due to recombination in the depletion 
region is reduced. Because of these beneficial effects, reverse bias operation is often 
preferred. 
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4.4 Dark current 
4.4.1 Saturation current – diffusion of minority carriers 

As shown in Figure 2(b) there exist a small current under revers bias in the I-V characteristic 
even in dark condition. This dark current is caused by saturation current, IS. On the 
boundaries of the depletion region, minority carriers (electrons on the p-side and holes on 
the n-type side) can diffuse into the depletion region. Because of the built-in electric field, 
these diffused minority carrier may drift across to the depletion region; this is a source of the 
saturation current. Therefore, in photodiodes there exist a dark current; however, the 
diffusion process is not the only contribution the dark current. 

4.4.2 Generation-recombination current 

Apart from the diffusion contribution to the dark current, carriers that are generated by 
thermal excitation inter-band trap (defect) states in the depletion region can also have a 
contribution to the dark current. This trap-assisted process is essentially the reverse of 
Shottky-Read-Hall (SRH) recombination. Just like the photogenerated carriers, carriers 
created by trap-assisted generation in the depletion region can also be swept away from the 
depletion region by drift before they can recombine and form part of the dark current. This 
dark current contribution is known as the Generation-Recombination (G-R) current, and it 
can be more significant than the diffusion contribution. 

4.4.3 Tunneling currents 

Under sufficient reverse bias, the EC on the n-side can fall below EV on the p-side.  In this 
condition, there is a finite possibility that an electron in the valence band of the p-side can 
tunnel through the bandgap into the n-side conduction band. This process is call direct 
tunneling or band-to-band tunneling. If sufficient numbers of direct tunneling events occur, its 
contribution to the dark current will be measurable. 
Tunneling can also occur through an inter-band trap (defect) state. Due to thermal 
excitation, a carrier can be trapped in one these states. If this state exists in the depletion 
region, and sufficient reverse biased is applied, a trapped electron from the valence band 
can have energy higher than EC, and tunneling into the conduction band can occur. This is 
called trap-assisted tunnel. 

4.4.4 Surface leakage current 

Due to the interruption of the crystal lattice structure, there can be a high density of surface 

charge and interface states at the physical surface of a device. The surface charge and 

interface states can affect the position of the depletion region, as well as behaving as 

generation-recombination centers. Therefore, the surface of a device can introduce another 

contribution to the dark current called surface leakage current. Passivation of the surface can 

be used to control the surface leaking current. This is usually achieved by adding a layer of 

insulator such as oxide to the surface.  

4.4.5 Frankel-poole current 

When a sufficiently large electric field is applied to an insulator, it will start to conduct. This 

is called the Frankel-Poole Effect. This effect is caused by escape of electrons from their 

localized state into the conduction band. Therefore, the Frankel-Poole Effect can occur in a 

semiconductor as well. When a sufficiently large reverse bias is applied across a p-n 

www.intechopen.com



 
Photodiodes - World Activities in 2011 72

junction, electrons generated by the Frankel-Poole Effect can also have a contribution to the 

dark current. 

4.4.5 Impact ionization current 

Under reverse bias, the motion of carriers in the depletion can be described as a drift where 

the carriers are repeatedly accelerated by the electric field and collide with the atoms in the 

crystal lattice. Under strong reverse bias, the acceleration between collisions can be large 

enough for a carrier to obtain the energy required to dislodge a valance electron to create a 

new electron-hole pair. This process is known as impact ionization and it can generate new 

carriers that contribute to the reverse bias current. When the applied reverse bias is beyond 

the breakdown voltage, Vbd, impact ionization becomes a dominant factor of the photodiode 

behavior, and the photodiode is said to be operating in avalanche mode. 

4.4.6 Summary of dark current 

Table 1 summarizes the different dark currents and their dependence. When these dark 

currents are taken into consideration, the photodiode no longer follows the ideal diode 

characteristic. A detailed discussion on dark current can be found in [39]. 

 

Process Dependence 

Diffusion ∝ exp ቀ− ா೒௞்ቁ  
G-R ∝ √ܸexp ቀ− ா೒ଶ௞்ቁ  
Band-to-band tunneling ∝ ܸଶexp ቀ− ௔௏ቁ  
Trap-assisted tunneling ∝ exp ቀ− ௔ᇱ௏ቁଶ  
Surface Leakage ∝ exp ቀ− ா೒ଶ௞்ቁ  
Frankel-Poole ∝ ܸexp ቀ− ௕்ቁ  
Impact Ionization ∝ exp ቀ− ௖்ቁ  

Table 1. Summary of dark current dependence, where a, a’, b and c are constants. 

4.5 Noise 

There are two basic noise generating mechanisms in a photodiode: the statistical fluctuation 

in the number of carriers and photons, and the random motion of the carriers. The statistical 

fluctuation in particle numbers is the cause of shot noise. The root mean square of the 

current fluctuation due to shot noise is 

 ݅௦௛,			௥௠௦ = ඥʹ	ݍ	ܫ௔௩௚	∆݂  (6) 
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where, Iavg is the average signal current and Δf is the bandwidth of the signal. The signal-to-
noise ratio (SNR) of shot noise is given by, 

 SNR = ඥ୍౗౬ౝଶ	୯	∆୤. (7) 

The random movement of carriers produces thermal noise also known as Johnson-Nyquist 
noise. The root mean square of the current fluctuation due to Johnson-Nyquist noise is 

 ݅௦௛,			௥௠௦ = ටଶ	௞	்	∆௙ோಽ  (8) 

where, RL is the load resistance. 

4.6 Capacitance and dynamic esponse 

In high-speed light detection application of the photodiode, the dynamic response of the 
photodiode is of the utmost importance. The dynamic response of the photodiode depends 
on the drift velocities of the photogenerated carriers, the junction capacitance that is 
associated with the space charge in the depletion region, and the diffusion of 
photogenerated carriers from the quasi-neutral regions into the diffusion region. The delay 
related to the drift can be characterized by a transit time, the amount of time that it takes a 
photogenerated carrier to reach the quasi-neutral region. It is simply given by, 

୲୰ݐ  = ݔ	୰୧୤୲ୢݒ =  (9) ݔ	E	ߤ	

where, vdrift is the drift velocity, x is the distance from the point of photogeneration to the 
quasi-neutral region, and µ is the mobility of the carrier. Then, the longest possible transit 
time is, 

୲୰ሺmaxሻݐ	  =  ܹ. (10)	E	ߤ	

Another delaying factor is due to the bias voltage dependence of the depletion layer width. 
A change in bias voltage will change the depletion region width as described by W=K	ሺ ଴ܸ −ܸሻ௠ೕ  Equation (5), which in turn changes the amount of exposed space charge. This 
change in the amount of space charge due to a change in the bias voltage can simply be 
modeled by the junction capacitance. The junction capacitance is given by, 

୔ୈܥ  = ఌ஺ௐ  (11) 

where, ε is the dielectric constant, A is the cross-sectional area of the p-n junction. 
Photogenerated carriers in the quasi-neutral region are normally lost by recombination. 
However, on occasion, the minority species of the photogenerated electron-hole pair can 
diffuse into the depletion region and contribute to the photogenerated current. Although the 
contribution to the overall signal by these carrier diffusion is small, a delay due to this 
diffusion process is observable [40, 41]. The time that takes a minority carrier in the quasi-
neutral region to diffuse into the depletion region is approximately, 

୧୤୤ୢݐ  = ௫మସ஽ (12) 

where, x is the carrier’s distance to the depletion region boundary, and D is the diffusion 
constant. 
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5. Accumulation mode for signal integration in imaging 

The basic operating modes are very useful for real time measurement of light intensity that 
falls on a photodiode. However, in imaging applications, an integrated signal from the 
photodiode is often preferred. The integrated signal from the accumulation of 
photogenerated charge provides a form of statistical binning. This statistical binning not 
only provides a stronger accumulative signal, but the accumulative signal is a more faithful 
representation of light intensity that falls on the pixel within the time period of signal 
integration than an instantaneous measurement, especially for weak or noisy signals. 
Moreover, in imaging applications, the integration period of the pixels can be synchronized 
using a shutter. In this case, the stored charge can then be read one by one after the 
exposure. The result is an image. 
Charge accumulation can be achieved in the accumulation mode, and it is used in CCD and 
CMOS imaging. 
 

 

Fig. 4. An abstract representation of a circuit for accumulation mode operation of a 
photodiode 

Figure 4(a) shows an abstract representation of a circuit for operating a photodiode in 

accumulation mode. This circuit represents the circuit element of a pixel in an imaging 

array. The goal of the circuit is to accumulate the photogenerated carriers (as charge) within 

a set period of time and readout the amount of charge collection as the voltage Vout. Here is 

a description of an operation cycle, assuming that there is an optical shutter for exposure 

control: 

1. To begin, the reset switch is closed. The photodiode is in reverse bias, and VD= VDD.  
2. The reset switch opens, follow by the shutter. VD starts to drop. 
3. After tint, the shutter closes, followed by the read switch, and Vout = VD. 
4. Read switch opens, and then reset switch closes. Circuit returns to initial state. 
To measure the light intensity of the pixel for single image, only one cycle of operation is 
needed.  To measure a series of images (e.g. in video recording), the operation cycle can be 
repeated continuously. During the integration phase, the rate of voltage drop depends on 
Iph, Id and CPD, which can be described by the following differential equation, 
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ௗ௏ీௗ௧ = − ூ౦౞ାூ೏஼ౌీ  (13) 

Note that CPD varies with the bias voltage. As discussed in [42], this voltage drop is usually 
linear for a wide range of values below VDD. Therefore, the voltage readout at the end of the 
integration period can be used as a measurement of the amount of light that has fallen on 
the pixel during the integration phase.  

6. CMOS active pixel sensing 

There are many ways to implement CMOS pixel sensing using accumulation mode. The 
simplest active pixel sensing implementation is the T3-APS, as shown in Figure 5. In this 
implementation, a MOSFET is used to control the reset current. Another MOSFET is used as 
a source follower (SF) to keep the output voltage the same as VD, and the control of the 
readout is control by yet another MOSFET (Select). The SF-FET prevents discharge during 
the readout; therefore it is possible to re-read the same pixel twice without losing VD. 
Because of difficulty in suppressing thermal noise and other design limitations [43-45], the 
T3-APS has been superseded by other implementation such as T4-APS [43, 44, 46]. 
 

 

Fig. 5. T3-APS implementation of CMOS pixel sensing. 

7. P-i-N photodiode 

Increasing the active region where the signal generating photogenerated carriers originated 
from should in principle increase the collection efficiency.  Previously, increasing the active 
region by increasing W through reverse biased was discussed. To further increase the active 
region, the device geometry can be altered to include an intrinsic region between the p-type 
and n-type regions, as shown in Figure 6, this results is a p-i-n junction. 
Figure 6(e), shows a band diagram of a p-i-n junction under reverse bias. Under reverse bias, 
certain assumptions can be made because the external field has driven almost all the carriers 
from the intrinsic region [47]. These assumptions are, 

• No net charge in the intrinsic region. 

• A very narrow depletion region on the doped side of each of the doped-intrinsic 
junctions. 

With these assumptions, the depletion layer width is simply the width of the intrinsic 
region; the electric field in the intrinsic region is simply, 
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 E = 	 ୯୚బି୚୛ , (14) 

and the junction capacitance is given by Equation 11. 
Consequently, the p-i-n photodiode under reverse bias can have a CPD smaller than a p-n 

junction photodiode, but the wider depletion region also implies a longer transit time. 

Therefore, transit time becomes the dominant limiting factor in the speed the device, and 

operating the device under sufficient reverse bias is essential, and quick estimation in [41] 

shows that the transit time of a carrier to cross the intrinsic layer is on the order 0.1 ns. 

Moreover, to optimize for quantum efficiency without sacrificing speed, it is common 

practice to design the intrinsic layer thickness to be larger than absorption length given by 

α-1, but not much more [41]. Further discussion on p-i-n photodiodes can be found in 

references [40, 41].  

 

 

Fig. 6. (a) Structure, (b) carrier distribution, (c) charge distribution, (d) electric field, and (e) 
band diagram of P-I-N junction under reverse bias. 

8. Avalanche photodiode 

The avalanche photodiode (APD) is the solid state equivalent of a photomultiplier tube.  Its 

main application is for detection of weak optical signal such as single photon events. The 

APD exploits the impact ionization of carriers by photogenerated carriers under extremely 

high reverse bias. During its operation, carriers that trigger impact ionization and the 

carriers that are generated by impact ionization continue to drift to cause more impact 

ionization events to occur. The result is a cascade of impact ionization events that produces 

an avalanche effect to amplify the photogenerated current. The amplification of the current 

is given by a multiplication factor, M = Imph / Iph. It is fundamentally related to the 

ionization coefficients of the carrier by the follow Equation, 

 ͳ − ଵெ = ׬ exp	௡ߙ ቂ−׬ ൫ߙ௡ − ௐ௫′ݔ௣൯݀ߙ ቃ ௐ଴ݔ݀  (15) 
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where, αn and αp are the ionization coefficients of the electrons and holes respectively [48].  
Empirically, it can be approximated by,  

 M = ଵଵି൬ ౒౒ాీ൰౤ (16) 

where, n is material dependent parameter [49]. When taking the dark current into account, it 
becomes 

ܯ  = ଵଵି൬ೇష಺ೃᇲೇాీ ൰೙ (17) 

where, I is the total current following through the APD, and R’ is the differential resistance 
observed in junction breakdown [50]. Because the random nature of impact ionization, APD 
suffers from another form of statistical noise call excessive noise [41]. It is given by, 

ܨ  = ܯ ൤ͳ − ሺͳ − ݇ሻ ቀெିଵெ ቁଶ൨ (18) 

where, k is the ratio αn/αp. 
An APD can also be operated in Geiger mode under reverse bias beyond the breakdown 
voltage.  In this case, an electron-hole pair generated by a single photon will trigger the 
avalanche effect that generates a large current signal. Therefore, photon counting (like 
particle counting with a Geiger counter) can be achieved in Geiger mode. An APD that can 
operate in Geiger mode is also known as a single photon avalanche diode (SPAD). 
 

 

Fig. 7. The cross-section of a SPAD CMOS sensor [51] showing the guard ring surrounding 
the active region. 

Because APDs operate in or near the breakdown region, a physical feature known as a 
guard ring around the active region is used prevent surface breakdown, as shown in Figure 
7. Moreover, the high reverse bias voltage required to produce the avalanche effect had 
hindered the incorporation of CMOS technology with APD. In 2000, Biber et al. at Centre 

Suisse d’Electronique et de Microtechnique (CSEM) produced a 12×24 pixel APD fabricated 
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in standard BiCMOS technology [52, 53]. Since that pioneering work, there has been a 
steady growth in the development of CMOS APD [54-56] and CMOS SPAD [51, 57-61] for 
application such as fluorescence sensing [51, 62, 63] and particle detection [64]. 

9. Mask-level layout and structure 

Mask-level layout is the process in which integrated circuits (IC) are defined in terms of 

their fabrication layers. In this process, a circuit is defined in terms of the functional layers 

that are later fabricated at a foundry. The designer specifies sizes, locations, connections and 

spacings of all of the devices in a circuit. The term “mask-level” means that the design 

results in specifications for the lithographic masks used to make the IC.  

Mask-level layout is done using specialized computer-aided design (CAD) tools, such as 

CADENCE, L-Edit, or the venerable Magic. The process is essentially one of drawing 

colored boxes or other shapes, and “connecting” them by drawing other boxes. The view of 

design is as one looks at an IC held in one’s hand; for example, see Figure 8 to compare the 

mask-level layout and the fabricated circuit itself.   

The layout of a circuit involves the placement of shapes, where the shapes are predefined 

layers; the layers are represented as different colors or shadings or fill. For example, a P-type 

MOSFET is shown with the layers labeled in Figure 9. These layers, in addition to other 

metal layers and, in some processes, another poly layer are available for circuit design. The 

designer controls the sizes of all of the components (wires, capacitors, transistors, etc.), how 

they are connected and their location. How large or small these components can be, how 

close to other layers, and whether layers can overlap are all determined by the design rules 

for the particular technology. The CAD tools used for layout will have these rules available 

and can aid the designer by indicating when these rules are violated. The rules help to 

ensure that the circuit can be fabricated without the fabrication process itself causing the 

circuit to fail. These failures are a result of limitations in the lithography process that can 

create undesired short circuits or open circuits. However, the layout tools by themselves do 

not guarantee proper functionality; the designer must perform a circuit verification step in 

which the layout is compared to the original circuit to verify that the two match. See [65] for 

additional information on layout. 

What is clearly missing in this process is the third dimension, which is the depth into the 

substrate or height above the substrate. Since designers have no control over depths or 

heights, it is “hidden” from the designer in the CAD tools and ignored. While, for integrated 

photodetectors, the depths of the p-n junctions are critical, the designer still does not have 

control over these in a standard CMOS fabrication process. Also, it should be noted that 

most processes are an n-well/p-substrate process, and we will assume that for the 

discussion of photodetector devices. 

The simplest structure is the vertical p-n photodiode; it can be formed as a p+ region in an 

n-well (Figure 10) or as an n+ region in a p-substrate (Figure 11).  The uncovered active area 

is the region that is intended to be the photon collection area. To prevent unwanted charge 

carrier generation, other regions of the IC should be covered in a metal layer (see Figure 12).  

It is also possible to create a p-n photodiode using n-well/p-substrate; the difference with 

this type of device is that the p-n junction is quite a bit deeper than the junction for the p+ 

active or n+ active devices. As discussed previously, this can affect the wavelength 

sensitivity of the device. 

www.intechopen.com



 
CMOS Photodetectors 79 

 
a) 

 
b) 

Fig. 8. (a) Mask-level layout of a circuit. (b) Microphotograph of the fabricated circuit shown 
in (a). 
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Fig. 9. Mask level layout with layers labeled. 

 
 
 

 
 
 
 

Fig. 10. CMOS-based photodiode: p+/n-well. 
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Fig. 11. CMOS-based photodiode: n+/p-substrate. 

 

 

Fig. 12. Photodiode with metal-2 layer as a shield to block photons from reaching the 
substrate. 

In order to create a dense array of photodiodes, as needed for a high-resolution imaging 
device, the ratio of the area designated for the collection of light to the area used for control 
circuitry should be as high as possible. This is known as the fill-factor. Ideally, this would be 
unity, but this is not possible for an imaging device with individual pixel read-out. Thus, 
actual fill-factors are less than one. A layout of the APS pixel as shown in Figure 5 is shown 
in Figure 13 . The fill factor of this 3 transistor pixel is 41% using scalable CMOS design 
rules. The metal shielding of the circuitry outside of the photodetector is not shown for 
clarity; in practice, this shielding would cover all non-photoactive areas and can also be 
used as the circuit ground plane. 
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In order to create an array of imaging pixels, the layout not only requires maximizing the 
active photodetector area, but also requires that the power (VDD), control and readout wires 
be routed so that when a pixel is put into an array, these wires are aligned. An example of 
this is shown in Figure 14.  
 

 

Fig. 13. Layout of the T3-APS pixel as shown in Figure 5. 

A slightly more complex structure is the buried double junction, or BDJ, photodiode [66]. 
The BDJ is formed from two vertically stacked standard p-n junctions, shown in Figure 15. 
The shallow junction is formed by the p-base and N-well, and the deep junction is formed 
by the N-well and P-substrate. As discussed previously, the depth of each junction is 
determined by the thickness of the p-base and n-well. Incident light will be absorbed at 
different depths, so the two junctions will produce currents based on the wavelength of the 
incident light. The current flow through two junctions is proportional to the light intensity 
at the junction depth. An example layout of the structure is shown in Figure 16. 
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Fig. 14. Simple 3x3 arrays of pixels shown in Figure 13. Notice that the wires align vertically 
and horizontally. 

 

 

Fig. 15. Cross-sectional view of the BDJ (not to scale). 
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Fig. 16. Layout of a 24μm x 24μm BDJ photodiode in the AMI 1.5μm process. 

The final structure we will discuss is the phototransistor. Typically, a phototransistor can 
produce a current output which is several times larger than a same area size photodiode due 
to the high gain of the transistor. However, a major drawback of these phototransistors is 
their low bandwidth, which is typically limited to hundreds of kHz. Additionally, the 
current-irradiance relationship of the phototransistor is nonlinear, which makes it less than 
ideal to use in many applications. Like the photodiode, there are a number of possible 
configurations for the phototransistor in a standard CMOS process, such as the vertical p-n-
p phototransistor and lateral p-n-p phototransistor [67-71]. 
A cross-section of a vertical p-n-p phototransistor is shown in Figure 17 and an example 
layout is provided in Figure 18. 
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Fig. 17. Cross-sectional view of a vertical p-n-p phototransistor (not to scale). 

 

 

Fig. 18. Layout of a 60 x 60 um vertical p-n-p phototransistor. 

10. Current trends in performance optimization 

10.1 Tune device responsivity 

In a standard CMOS technology, a photodiode can be formed using different available 
active layers, including n-active/p-substrate, p-active/n-well and n-well/p-substrate, to 
form a p-n junction. In a photodiode, the photo-conversion mostly takes place in the 
depletion region where an incident photon creates an electron and hole pair with the 
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electron passing to the n-region and hole to the p-region. Hence, varying the depth at which 
the depletion region forms in the silicon wafer would control the performance of the 
photodiodes in terms of responsivity and quantum efficiency. Also, varying the width of the 
depletion region by appropriately applying a reverse bias to the photodiode, one could 
control the response time of the detector. A wider depletion region reduces the junction 
capacitance of the p-n-junction and improves the response time of the detector.  
Here, we will aim to understand the effect on responsivity and external quantum efficiency 
on the design of photodiode structures. Given that all materials in a standard CMOS process 
are set by the manufacturer, the external quantum efficiency, which takes into account only 
the photon-generated carriers collected as a result of the light absorption or, in other words, 
the useful portion of signal generated by interaction of light and photodetector, is more 
relevant. The external quantum efficiency depends on the absorption coefficient of the 
material, a (units: cm-1) and thickness of the absorbing material. Assuming that the entire 
incident light is absorbed by the detector, if the photon flux density incident at the surface is 
Φo, then the photon flux at depth, x, is given by Beer’s law (Equation 1) [72]. 
The external quantum efficiency is also a function of wavelength of the incident light. Thus 
in a CMOS photodiode, one can strategically chose the depth of the location of the depletion 
region to which photons are likely to penetrate and thereby optimize the photodetector to 
provide high absorption for particular spectrum of wavelengths. In practical optoelectronic 
systems development, responsivity, that is defined as the output current divided by the 
incident light power, may be a more relevant performance metric. Responsivity is related to 
quantum efficiency by a factor of hµ/q, where, q is the electron charge, h is Planck’s constant, 
and µ is the frequency of the incident photon. The spectral response curve is a plot of 
responsivity as a function of wavelength.  
Thus, to optimize a silicon photodiode structure for detecting blue wavelengths, the 
depletion region should be near to the silicon surface. For red wavelengths, the depletion 
region should be placed deeper in the silicon substrate. Based on this idea, Yotter et al. [73] 
have compared photodiode structures (p-active/n-well and n-well/p-substrate) to develop 
photodiodes better suited for blue or green wavelengths for specific biosensing applications. 
The blue-enhanced structure used interdigitated p+-diffusion fingers to increase the 
depletion region area near the surface of the detector, while the green-enhanced structure 
used n-well fingers to increase the depletion region slightly deeper within the substrate. 
Bolten et al. [74] provided a thorough treatment of the photodiode types and their 
properties. They reported that in a standard CMOS process n-well/p-substrate structure 
provides relatively better quantum efficiency for biosensors operating in visible 
electromagnetic spectrum.  
Using the properties that external quantum efficiency varies as a function of wavelength of 
the incident light and Beer’s law, many research groups reported the use of buried double p-
n junction (BDJ) and buried triple p-n junction structures, which can be implemented with a 
standard CMOS process, for monochromatic color detection [75, 76]. The BDJ structure has 
two standard p-n junctions (p-base/n-well/p-substrate) are stacked vertically in the CMOS 
chip. For the BDJ detector, we obtain Itop (only from top p-n junction) and Ibottom (sum of 
currents from top and bottom p-n junctions) from the detector. The current ratio, Itop/Itop-

Ibottom can be used for the color/ wavelength measurements. The CMOS BDJ detector has 
been used for fluorescence detection in microarrays [77], and for the detection and 
measurement of ambient light sources [78]. The BDJ color detectors have been used in many 
chemical and biological sensors such as seawater pH measurement [79] and volatile organic 
compounds detection [80]. 
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10.2 Monolithic integration of photonic devices on photodetectors  
10.2.1 Microlens and microfilters 

Most CMOS image sensors are monochrome devices that record the intensity of light. A 

layer of color filters or color filter array (CFA) is fabricated over the silicon integrated circuit 

using a photolithography process to add color detection to the digital camera.  CFA is 

prepared by using color pigments mixed with photosensitive polymer or resist carriers. 

Many recent digital color imaging systems use three separate sensors to record red, green, 

and blue scene information, but single-sensor systems are also common [81]. Typically, 

single-sensor color imaging systems have a color filter array (CFA) in a Bayer pattern as 

shown in Figure 19. The Bayer pattern was invented at Eastman Kodak Company by Bryce 

Bayer in 1976 [82]. This CFA pattern has twice as many green filtered pixels as red or blue 

filtered pixels. The spatial configuration of the Bayer pattern is tailored to match the 

optimum sensitivity of human vision perception. Imager sensors also include microlenses 

placed over the CFA to improve the photosensitivity of the detection system and improve 

the efficiency of light collection by proper focusing of the incident optical signal over the 

photodetectors [83]. A microlens is usually a single element with one plane surface facing 

the photodiode and one spherical convex surface to collect and focus the light. Thus, as 

photons pass through the microlens and through the CFA filter, thus passing only 

wavelengths of red, green, or blue color and finally reach the photodetectors. The 

photodetectors are integrated as part of an active pixel sensor to convert the incident optical 

signal into electrical output [84]. The analog electrical data from the photopixels are then 

digitized by an analog-to-digital converter. To produce a full color image, a spatial color 

interpolation operation known as demosaicing is used. The image data is then further 

processed to perform color correction and calibration, white balancing, infrared rejection, 

and reducing the negative effects of faulty pixels [85, 86]. 

 
 

 
 

Fig. 19. Bayer film pattern and microlenses integrated onto a device. 

One of the first example of a monolithic microlens array fabricated on the MOS color imager 

was done using photolithography of a polymethacrylate type transparent photoresist [87]. 
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In commercial camera production, glass substrates are typically used as carrier and spacer 

wafers for the lenses and are filled with an optical polymer material which is 

photolithographically patterned to form the microlenses. A fairly straightforward method 

used in many microlens implementations is to photolithographically pattern small cylinders 

of a suitable resin on a substrate. The small cylinders are then melted in carefully controlled 

heating conditions. Hence, after melting they tend to form into small hemispheres due to 

surface tension forces. However, molten resin had a tendency to spread such that lens size 

and spatial location is difficult to control. A well-defined spherical surface for the microlens 

is required to achieve high numerical aperture which improves the image sensor efficiency. 

Different techniques are used to control the spherical shape and spatial location of the 

microlens including pre-treatment of the substrate to adjust the surface tension to control 

the reflow of the microlens [88] and use of microstructures such as pedestals to control the 

surface contact angle [83]. In more recent processes the glass substrates are eliminated and 

instead microlenses are made with polymer materials that are molded using master stamps. 

The molded polymer microlenses are cured with ultra violet exposure or heat treatment.  By 

replacing the glass substrates, wafer-level system manufacturers face fewer constraints on 

the integration optics and imager integrated circuit enabling the production of compact and 

efficient imager sensors.   

10.3 Waveguides, gratings, and couplers 

In this section, we will concentrate on understanding device architectures that deal with 

monolithic integration of photonic waveguides, gratings and couplers with CMOS 

photodetectors for applications in optoelectronics to improve quantum efficiency, spectral 

response selectivity, and planar coupling and guiding of light signals to on-chip 

photodetectors. CMOS photodetectors operate only in visible and near infra-red region 

between 400nm and 1.1µm of the electromagnetic spectrum. There are applications in 

sensing and optical communications in this wavelength region where silicon or CMOS 

photodetectors can offer low-cost and miniaturized systems.  Monolithic integration of 

photonic components with silicon/CMOS photodetectors started as a major research area 

since early 1980’s [89-92]. It is advantageous that a monolithic integrated optoelectronic 

system on silicon use materials typically employed in CMOS-technology. The dielectrics 

available in CMOS are favorable as the light guiding layer for wavelengths in the visible 

and near infrared region. The available materials in CMOS processing technology to 

develop the photonic devices include layers such as silicon nitride [3], Phospho-Silicate 

Glass (PSG) —SiO2 doped with P2O5 [4] or silicon oxynitride layers deposited as 

insulating and passivation layers. Confinement of light is achieved by an increased 

refractive index in the light guiding film, compared to silicon oxide. The first proposed 

CMOS compatible devices were based on using silicon oxynitride waveguides 

sandwiched with silicon dioxide (SiO2) layers [93-95].  

System-level integration is commonly used in compact spectrometers with Lysaght et al. 

[96] [97] first proposing a spectrometer system in the year 1991 that would integrate silicon 

photodiode array with microfabricated grating structures for diffraction of the incident light 

signals and subsequent detection of the optical spectrum components by the silicon 

photodiode array. More recent and commercial available compact spectrometers use a 

CMOS line array. Csutak et al. [98] provided an excellent background for related work done 
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prior to their research article. After considering the absorption length of silicon and required 

bandwidth for high-speed optical communications, the improvement of quantum efficiency 

of the photodetectors remains an important challenge. 

10.4 Biosensors on CMOS detectors 

Many research groups are working on the idea of contact imaging systems for imaging or 

detection of a biological specimens coupled directly to the chip surface which was first 

proposed by Lamture et al. [99] using a CCD camera. As the photodetector components in 

biosensors, CMOS imagers are preferable to convert the optical signals into electrical signals 

because of monolithic integration of photodetection elements and signal processing circuitry 

leading to low cost miniaturized systems [100, 101]. In 1998, a system termed as 

bioluminescent-bioreporter integrated circuit (BBIC) was introduced that described placing 

genetically engineered whole cell bioreporters on integrated CMOS microluminometers 

[102]. In a more recent implementation of BBIC system includes sensing low concentrations 

of a wide range of toxic substances such as salicylate and naphthalene in both gas and liquid 

environments using genetically altered bacteria, Pseudomonas fluorescens 5RL, as the 

bioreporter [103]. BBIC system operates on the basis of using a large CMOS photodiode 

(1.47 mm2 area using n-well/p-substrate structure) for detection of low levels of 

luminescence signals by integration of the photocurrent generated by the photodiode over 

time and a current-to-frequency converter as signal processing circuit to provide a digital 

output proportional to the photocurrent.  

Recent implementations of contact imaging include using custom-designed CMOS imagers 

as platform for imaging of cell cultures [104] and DNA sequencing [105, 106]. Now 

researchers are working on the integration of molded and photolithographically patterned 

polymer filters and microlenses with CMOS photodetectors and imagers towards complete 

development of miniaturized luminescence sensors. Typically, luminescence sensors require 

an optical excitation source for exciting the sensor materials with electromagnetic radiation 

and a photodetector component for monitoring the excited state emission response from the 

sensor materials at a higher wavelength electromagnetic spectrum that is filtered from the 

excitation input. The next step towards convenient monolithic integration of filters, 

biological support substrates, and microfluidic interfaces create interesting challenges for 

engineers and scientists. A recent report discusses the approach of using poly(acrylic acid) 

filters integrated with custom-designed CMOS imager ICs to detect fluorescent micro-

spheres [107]. Polydimethylsiloxane (PDMS) could offer a more versatile material to 

fabricate lenses, filters, diffusers and other components for optical sensors [108]. PDMS is a 

silicone-based organic polymer that is soft, flexible, biocompatible and optically transparent 

and well amenable to various microfabrication techniques. PDMS can be doped with apolar 

hydrophobic color dyes such as Sudan-I, -II or -III to form optical filters that work in 

different regions of visible electromagnetic spectrum [109]. The Authors group recently 

proposed a prototype compact optical gaseous O2 sensor microsystem using xerogel based 

sensor elements that are contact printed on top of trapezoidal lens-like microstructures 

molded into PDMS that is doped with Sudan-II dye as shown in Figure 20 [110]. The 

molded PDMS structure serves triple purpose acting as immobilization platform, filtering of 

excitation radiation and focusing of emission radiation onto the detectors. The PDMS 

structure is then integrated on top of a custom design CMOS imager to create a contact 
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imaging sensor system. The low-cost polymer based filters is best suited for LED excitation 

and may not be able to provide optimum excitation rejection performance when laser 

radiation is used for excitation. As a more traditional alternative, Singh et al. [111] proposed 

micromachining a commercially available thin-film interference filter and gluing it to the 

CMOS imager die. 
 

 

Fig. 20. Fabricated microlenses and xerogel sensors. 

11. Optical sensor chip with Color Change-Intensity Change Disambiguation 
(CCICD)  

In this section we present a CMOS-sensor chip that can detect irradiance and color 

information simultaneously. Compared with other BDJ-based systems [112-114], this system 

includes an irradiance detection pathway that can be used in combination with the color 

information to provide color change -intensity change disambiguation (CCICD). The 

irradiance detection pathway is based on the work by Delbruck and Mead [23] with a single 

standard CMOS photodiode (see Figure 21). Thus, this pathway can function ambient light 

conditions without an additional light source, is more robust to background light changes, 

has a higher bandwidth for time-varying signals, and has the ability to emulate adaptation 

to background light levels, which is an important phenomena found in biological visual 

systems. The color detection pathway consists of a BDJ photodetector and subsequent 

processing circuitry to produce a single voltage as the chip output without additional 

external circuitry. The BDJ produces two currents which are used as inputs to individual 

logarithmic current to voltage converter circuits whose outputs are converted to a voltage 
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difference using a differential amplifier. The output of this pathway is a single voltage that 

represents the color of the input signal, with better than 50nm resolution. Both pathways are 

integrated on the same IC.  

 

 

Fig. 21. Block diagram of the sensor chip pathways (from [115]). 

The irradiance detection pathway out is shown in Figure 21. The response of the irradiance 
detection pathway circuit is logarithmic over the measured irradiance range spanning 
nearly 3 orders of magnitude. 
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Fig. 22. Output of the irradiance detection pathway (from [115]). 

 

 

Fig. 23. Output of the color detection pathway as a function of incident light wavelength 
(from [115]). 
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Fig. 24. Output of the color detection pathway as a function of incident power (from [115]). 

From the experimental results, we can see that the output voltage is larger for longer 
incident light wavelengths (see Figure 23).  So, for a practical implementation based on this 
chip, a look-up table can be used to map the output voltage to the incident wavelength. 
Moreover, from Figure 24, the changes in the output voltage caused by irradiance change 
will not cause confusion between which color (primary wavelength) is detected; the R, G 
and B curves will not overlap for a normal operating range of irradiance. The reason for this 
performance is because the I2/I1 ratio from the BDJ is (ideally) independent of light 
intensity. 
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